-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathgenerate_graphs.py
556 lines (483 loc) · 30.2 KB
/
generate_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
from collections import Counter
from sqlite_adapter import query_db
import json
from datetime import datetime
import numpy as np
PRINCETON_TEMPLATE = open('graph_templates/princeton1.tex').read()
BREADTH_SCATTER_TEMPLATE = open('graph_templates/breadth_scatter.tex').read()
LINE_TEMPLATE = open('graph_templates/date_line.tex').read()
COORDS_CONSTANT = "\\addplot+ coordinates {%coords%};"
HIST_COORDS = "\\addplot+[only marks, scatter,opacity=0.1,mark=*] coordinates {%coords%};"
buckets = {}
def init_dict(d,k,v):
if not k in d:
d[k] = v
def get_princeton_graph_tikz(desiredsize):
results = query_db("SELECT SUM(CAST(eth_profit as FLOAT)) as total_profit,mergedprofitabletxs.block_number as block_number,total_fees,substr(timestamp,0,11) as date FROM mergedprofitabletxs LEFT JOIN block_fees ON block_fees.block_number=mergedprofitabletxs.block_number WHERE all_positive='True' GROUP BY mergedprofitabletxs.block_number ORDER BY CAST(total_profit as FLOAT) DESC LIMIT %d;" % desiredsize)
labels = ""
profits = ""
fees = ""
rewards = ""
dates = ""
datespoints = ""
for result in results:
label = result['block_number']
date = result['date']
date = date.split("-")
date = date[2] + "-" + date[1] + "-" + date[0][2:]
if date in dates:
date = date + " " # (dirty hack for repeated labels)
dates += date + ", "
datespoints += "("+ date+ ", 0) "
labels += label + ", "
profits += "(" + label + ", " + str(result['total_profit']) + ") "
fees += "("+ label+ ", "+ str(result['total_fees']) + ") "
blocknum = int(result['block_number'])
if blocknum < 4370000:
reward = 5
elif blocknum < 7280000:
reward = 3
else:
reward = 2
rewards += "("+ label+ ", "+ str(reward) + ") "
print(PRINCETON_TEMPLATE.replace("%labels%", labels).replace("%profits%", profits).replace("%fees%", fees).replace("%rewards%", rewards).replace("%dates%", dates).replace("%datespoints%", datespoints))
def get_princeton_graph_tikz_2(skip_under=0):
block_nums = []
results = query_db("SELECT SUM(CAST(eth_profit as FLOAT)) as eth_profit,total_fees,mergedprofitabletxs.block_number as block_number,total_fees FROM mergedprofitabletxs LEFT JOIN block_fees ON block_fees.block_number=mergedprofitabletxs.block_number WHERE all_positive='True' GROUP BY mergedprofitabletxs.block_number ORDER BY mergedprofitabletxs.block_number ASC;")
for result in results:
if int(result['block_number']) < skip_under:
continue
fees = float(result['total_fees'])
eth_revenue = float(result['eth_profit'])
block_nums.append(int(result['block_number']))
ratio = eth_revenue/(eth_revenue + fees)
bucket = float("{0:.2f}".format(ratio))
if ratio - bucket > .00000001:
print("adding")
bucket += .01
bucket = round(bucket, 2)
bucket = str(bucket)
print(ratio,bucket)
if not bucket in buckets:
buckets[bucket] = 1
else:
buckets[bucket] += 1
numtotal = sum(buckets.values())
print(buckets)
for bucketlabel in sorted(buckets.keys(), key=float):
#print("(%s, %f)" % (bucketlabel, float(buckets[bucketlabel])/float(numtotal)))
print("(%s, %f)" % (bucketlabel, buckets[bucketlabel]))
print(numtotal, max(block_nums), min(block_nums))
def get_moving_average(coords, width):
coords = np.convolve(coords, np.ones((width,))/width, mode='same')
return coords
def get_cumulative(coords):
newcoords = []
runningtotal = 0
for i in range(len(coords)):
runningtotal += coords[i]
newcoords.append(runningtotal)
return newcoords
def calculate_top(valuesdict, num):
# return top num keys in valuesdict with highest mapped values
# used to find top *n* arbitrage bots, exchanges, etc
return sorted(valuesdict.keys(), key=lambda x : sum(valuesdict[x].values()), reverse=True)[:num]
def get_versus_graphs():
num_clashes = {}
pgas_participated = {}
net_profits = {}
all_mined_bids = query_db("SELECT block_number,hash,eth_profit,auction_id,from_address,receipt_gas_used,mergedprofitabletxs.gas_price as gas_price FROM mergedprofitabletxs JOIN auctions ON auctions.hash=mergedprofitabletxs.transaction_hash ORDER BY CAST(auction_id as INTEGER) ASC;")
auctions = {}
first_auction_participated = {}
last_auction_participated = {}
for bid in all_mined_bids:
auction_num = int(bid['auction_id'])
if not auction_num in auctions:
auctions[auction_num] = []
auctions[auction_num].append(bid)
historical_states = {}
current_state = {} # mapps bidder pairs to (total advantage, )
# advantage is defined as the number of advantage by this bidder in auctions where the pair was active,
# where advantage is defined as revenue minus costs (profit) minus competititor's cost
for auction_num in range(0, max(auctions.keys()) + 1):
if not auction_num in auctions:
continue
losers = set()
winners = set()
for bid in auctions[auction_num]:
profit = 0.0
if bid['eth_profit'] is not None:
profit = float(bid['eth_profit'])
if profit <= 0:
losers.add(bid)
else:
winners.add(bid)
#print(auction_num, winners, losers)
# we only consider games w 1 winner and 1 loser (2 bot auctions)
if len(winners) == 1 and len(losers) == 1:
winner = list(winners)[0]
winner_gas_used = float(winner['receipt_gas_used'])
winner_revenue = float(winner['eth_profit'])
winner_profit = winner_revenue - ((winner_gas_used * float(winner['gas_price'])) / (10 ** 18))
# update current_state w results
init_dict(current_state, winner['from_address'], 0)
current_state[winner['from_address']] += winner_profit
init_dict(pgas_participated, winner['from_address'], [])
pgas_participated[winner['from_address']].append(auction_num)
init_dict(net_profits, winner['from_address'], 0)
net_profits[winner['from_address']] += winner_profit
for loser in losers:
# log pair participation in first/last auction
init_dict(first_auction_participated, loser, auction_num)
init_dict(first_auction_participated, winner, auction_num)
last_auction_participated[winner] = auction_num
last_auction_participated[loser] = auction_num
loser_cost = (float(loser['receipt_gas_used']) * float(loser['gas_price'])) / (10 ** 18)
winner_vs = winner['from_address'] + "-" + loser['from_address'] # winning pair
loser_vs = loser['from_address'] + "-" + winner['from_address']
init_dict(first_auction_participated, loser_vs, auction_num)
init_dict(first_auction_participated, winner_vs, auction_num)
last_auction_participated[winner_vs] = auction_num
last_auction_participated[loser_vs] = auction_num
init_dict(current_state, winner_vs, 0.0)
current_state[winner_vs] += winner_profit
init_dict(current_state, loser['from_address'], 0.0)
current_state[loser['from_address']] -= loser_cost
init_dict(current_state, loser_vs, 0.0)
current_state[loser_vs] -= loser_cost
canonical_id = sorted([winner_vs, loser_vs])[0]
init_dict(num_clashes, canonical_id, 0)
num_clashes[canonical_id] += 1 # todo fix this to more accurately track clashes
init_dict(pgas_participated, loser['from_address'], [])
pgas_participated[loser['from_address']].append(auction_num)
init_dict(net_profits, loser['from_address'], 0)
net_profits[loser['from_address']] -= loser_cost
#print(auction_num, current_state)
historical_states[auction_num] = dict(current_state) # make copy of current state for history
print("Most common pairs:")
for k, v in Counter(num_clashes).most_common(1):
break
opposite_pair = "-".join(reversed(k.split("-")))
winner = k.split("-")[0]
loser = k.split("-")[1]
print("auction_num,winner_advantage,loser_advantage,winner_pga_total,loser_pga_total")
for auction_num in range(0, auction_num + 1):
if not auction_num in historical_states:
continue
print(auction_num, historical_states[auction_num].get(k, 0), historical_states[auction_num].get(opposite_pair, 0), historical_states[auction_num].get(winner, 0), historical_states[auction_num].get(loser, 0), sep=",")
for num_bots in [5,20,50,100]:
output_handle = open('reports/versus_%d.csv' % num_bots, 'w')
output_handle.write("auctions_elapsed_%d,loser_versus_%d,winner_versus_%d,loser_net_%d,winner_net_%d\n" % tuple([num_bots] * 5))
loser_versus_vectors = []
winner_versus_vectors = []
loser_overall_vectors = []
winner_overall_vectors = []
for k, v in Counter(num_clashes).most_common(num_bots):
opposite_pair = "-".join(reversed(k.split("-")))
winner_versus_vector = []
loser_versus_vector = []
winner_overall_vector = []
loser_overall_vector = []
winner = k.split("-")[0]
loser = k.split("-")[1]
first_vs_auction = min(first_auction_participated[k], first_auction_participated[opposite_pair])
last_vs_auction = max(last_auction_participated[k], last_auction_participated[opposite_pair])
for auction_num in range(first_vs_auction, last_vs_auction + 1):
if not auction_num in historical_states:
continue
if auction_num in pgas_participated[winner] and auction_num in pgas_participated[loser]:
winner_versus_vector.append(historical_states[auction_num].get(k, 0))
loser_versus_vector.append(historical_states[auction_num].get(opposite_pair, 0))
if auction_num in pgas_participated[winner]:
winner_overall_vector.append(historical_states[auction_num].get(winner, 0))
if auction_num in pgas_participated[loser]:
loser_overall_vector.append(historical_states[auction_num].get(loser, 0))
if loser_versus_vector[-1] > winner_versus_vector[-1]:
# swap winners/lossers in canonical order
loser_versus_vector, winner_versus_vector = winner_versus_vector, loser_versus_vector
loser_overall_vector, winner_overall_vector = winner_overall_vector, loser_overall_vector
#print(k, historical_states[auction_num].get(k, 0), historical_states[auction_num].get(opposite_pair, 0), historical_states[auction_num].get(winner, 0), historical_states[auction_num].get(loser, 0), sep=",")
loser_versus_vectors.append(loser_versus_vector)
winner_versus_vectors.append(winner_versus_vector)
loser_overall_vectors.append(loser_overall_vector)
winner_overall_vectors.append(winner_overall_vector)
for auction_index in range(max([len(v) for v in (loser_versus_vectors + winner_versus_vectors + loser_overall_vectors + winner_overall_vectors)])):
if not auction_index in historical_states:
continue
winner_versus_advantages = []
loser_versus_advantages = []
winner_overall_advantages = []
loser_overall_advantages = []
for vector in loser_versus_vectors:
loser_versus_advantages.append(vector[min(auction_index, len(vector) - 1)])
for vector in winner_versus_vectors:
winner_versus_advantages.append(vector[min(auction_index, len(vector) - 1)])
for vector in loser_overall_vectors:
loser_overall_advantages.append(vector[min(auction_index, len(vector) - 1)])
for vector in winner_overall_vectors:
winner_overall_advantages.append(vector[min(auction_index, len(vector) - 1)])
output_handle.write(",".join([str(x) for x in [auction_index, np.mean(loser_versus_advantages), np.mean(winner_versus_advantages), np.mean(loser_overall_advantages), np.mean(winner_overall_advantages)]]) + "\n")
print("Done with versus graphs")
#for address in pgas_participated:
# print(address, len(pgas_participated[address]),net_profits[address]/len(pgas_participated[address]), net_profits[address], max(pgas_participated[address])-min(pgas_participated[address]), sep=",")
def get_breadth_graphs_tikz(graphs_to_generate, skip_until='2017-09-01'):
prices = {}
price_data = query_db("SELECT * FROM eth_data")
for price_datum in price_data:
prices[price_datum['date']] = price_datum['price(USD)']
results = query_db("SELECT * FROM mergedprofitabletxs WHERE all_positive = 'True' AND CAST(eth_profit as FLOAT) > 0.0;")
eth_revenues = {}
usd_revenues = {}
usd_profits = {}
gas_ratios_pertx = {}
num_trades_pertx = {}
exchange_breakdowns_eth = {}
bot_breakdowns_usd = {}
bot_breakdowns_usd_profit = {}
pertx_ratios = open('reports/data/ratios.csv', 'w')
for result in results:
date = result['date']
eth_revenue = float(result['eth_profit'])
gas_used = float(result['receipt_gas_used'])
eth_profit = eth_revenue - ((gas_used * float(result['gas_price'])) / (10 ** 18))
usd_revenue = eth_revenue * float (prices.get(result['date'], 0))
usd_profit = eth_profit * float (prices.get(result['date'], 0))
pertx_ratios.write("%f\n" % (eth_profit/eth_revenue))
revenue_graph = json.loads(result['profit_graph'])
num_trades = len(revenue_graph) / 2 # revenue graph contains two edges per trade
init_dict(eth_revenues, date, 0)
init_dict(usd_revenues, date, 0)
init_dict(usd_profits, date, 0)
init_dict(gas_ratios_pertx, date, [])
init_dict(num_trades_pertx, date, [])
eth_revenues[date] += eth_revenue
usd_revenues[date] += usd_revenue
usd_profits[date] += usd_profit
gas_ratios_pertx[date].append(gas_used/num_trades)
num_trades_pertx[date].append(num_trades)
for edge in revenue_graph:
if edge[0][0] == "!": # ! is a special marker for exchange node
# each exchange will appear once with a special "!" label, in two edges in the revenue graph
# however, it will be the source of only one edge
exchange = edge[0][1:]
if not exchange in exchange_breakdowns_eth:
exchange_breakdowns_eth[exchange] = {}
if not date in exchange_breakdowns_eth[exchange]:
exchange_breakdowns_eth[exchange][date] = 0
exchange_breakdowns_eth[exchange][date] += ((1.0/num_trades) * eth_revenue)
bot = result['from_address']
init_dict(bot_breakdowns_usd, bot, {})
init_dict(bot_breakdowns_usd[bot], date, 0)
bot_breakdowns_usd[bot][date] += usd_revenue
init_dict(bot_breakdowns_usd_profit, bot, {})
init_dict(bot_breakdowns_usd_profit[bot], date, 0)
bot_breakdowns_usd_profit[bot][date] += usd_profit
eth_revenue_coords = ""
usd_revenue_coords = ""
usd_profit_coords = ""
gas_usage_coords = ""
xs = []
eth_revenue_ys = []
usd_revenue_ys = []
usd_profit_ys = []
sorted_dates = sorted(prices.keys())
sorted_dates = sorted_dates[sorted_dates.index(sorted(eth_revenues.keys())[0]):sorted_dates.index(sorted(eth_revenues.keys())[-3])] # (prune last 3 days for potential data quality issues)
if skip_until is not None:
sorted_dates = sorted_dates[sorted_dates.index(skip_until):] # trim early non-representative data
for date in sorted_dates:
eth_revenue_coords += "(%s,%f) [%f] " % (date, eth_revenues.get(date, 0.0), sum(num_trades_pertx.get(date, [0])))
usd_revenue_coords += "(%s,%f) [%f] " % (date, usd_revenues.get(date, 0.0), sum(num_trades_pertx.get(date, [0])))
usd_profit_coords += "(%s,%f) " % (date, usd_profits.get(date, 0.0))
gas_usage_coords += "(%s,%f) [%f] " % (date, np.mean(gas_ratios_pertx.get(date, [0.0])), np.mean(num_trades_pertx.get(date, [0])))
xs.append(date)
eth_revenue_ys.append(float(eth_revenues.get(date, 0.0)))
usd_revenue_ys.append(float(usd_revenues.get(date, 0.0)))
usd_profit_ys.append(float(usd_profits.get(date, 0.0)))
ma_eth_coords = ""
ma_usd_coords = ""
ma_usd_profit_coords = ""
ma_eth_revenue=get_moving_average(eth_revenue_ys,14)
ma_usd_revenue=get_moving_average(usd_revenue_ys,14)
ma_usd_profit=get_moving_average(usd_profit_ys,14)
cum_eth_graph_lines = ""
ma_botusd_graph_lines = ""
ma_botusd_profit_graph_lines = ""
price_coords = ""
cum_eth_coords = ""
cum_usd_coords = ""
cum_usd_profit_coords = ""
cumulative_eth_revenue=get_cumulative(eth_revenue_ys)
cumulative_usd_revenue=get_cumulative(usd_revenue_ys)
cumulative_usd_profit=get_cumulative(usd_profit_ys)
for i in range(len(xs)):
ma_eth_coords += "(%s,%f)" % (xs[i], ma_eth_revenue[i])
ma_usd_coords += "(%s,%f)" % (xs[i], ma_usd_revenue[i])
ma_usd_profit_coords += "(%s,%f)" % (xs[i], ma_usd_profit[i])
price_coords += "(%s,%f) " % (xs[i], float(prices[xs[i]]))
cum_eth_coords += "(%s,%f) " % (xs[i], cumulative_eth_revenue[i])
cum_usd_coords += "(%s,%f) " % (xs[i], cumulative_usd_revenue[i])
cum_usd_profit_coords += "(%s,%f) " % (xs[i], cumulative_usd_profit[i])
cum_eth_graph_lines += COORDS_CONSTANT.replace("addplot+", "addplot+[black]").replace("%coords%", cum_eth_coords) + "\n"
ma_botusd_graph_lines += COORDS_CONSTANT.replace("addplot+", "addplot+[black]").replace("%coords%", ma_usd_coords) + "\n"
ma_botusd_profit_graph_lines += COORDS_CONSTANT.replace("addplot+", "addplot+[black]").replace("%coords%", ma_usd_profit_coords) + "\n"
top_5_exchanges = calculate_top(exchange_breakdowns_eth, 6)
for exchange in top_5_exchanges:
exchange_coords = ""
exchange_revenues = []
for i in range(len(xs)):
exchange_revenues.append(exchange_breakdowns_eth[exchange].get(xs[i], 0))
cumulative_exchange_revenue = get_cumulative(exchange_revenues)
for i in range(len(xs)):
exchange_coords += "(%s,%f) " % (xs[i], cumulative_exchange_revenue[i])
cum_eth_graph_lines += COORDS_CONSTANT.replace("%coords%", exchange_coords) + "\n"
top_bots = calculate_top(bot_breakdowns_usd, 10)
# todo consolidate this + above into method
for bot in top_bots:
bot_revenue_coords = ""
bot_revenues = []
bot_profit_coords = ""
bot_profits = []
for i in range(len(xs)):
bot_revenues.append(bot_breakdowns_usd[bot].get(xs[i], 0))
bot_profits.append(bot_breakdowns_usd_profit[bot].get(xs[i], 0))
bot_revenue_ma = get_moving_average(bot_revenues, 14)
bot_profit_ma = get_moving_average(bot_profits, 14)
for i in range(len(xs)):
bot_revenue_coords += "(%s,%f) " % (xs[i], bot_revenue_ma[i])
bot_profit_coords += "(%s,%f) " % (xs[i], bot_profit_ma[i])
ma_botusd_graph_lines += COORDS_CONSTANT.replace("%coords%", bot_revenue_coords) + "\n"
ma_botusd_profit_graph_lines += COORDS_CONSTANT.replace("%coords%", bot_profit_coords) + "\n"
if "pure_revenue_eth" in graphs_to_generate:
open('reports/pure_revenue_eth.tex', 'w').write(BREADTH_SCATTER_TEMPLATE.replace("%coords%", eth_revenue_coords).replace("%macoords%", ma_eth_coords).replace("%title%", "Pure Revenue Market Size (ETH)").replace("%ylabel%", "Daily Pure Revenue Captured (ETH)").replace("%cumcoords%", cum_eth_coords).replace("%extra%", "").replace("%max%", str(2*max(cumulative_eth_revenue))).replace("%colorbartitle%", "\\# Trades").replace("%extraaxisoptions%", " point meta max=1000,").replace("%extracolorbar%", "ytick={0,200,400,...,800}, extra y ticks={1000}, extra y tick labels={1000+}"))
if "pure_revenue_usd" in graphs_to_generate:
open('reports/pure_revenue_usd.tex', 'w').write(BREADTH_SCATTER_TEMPLATE.replace("%coords%", usd_revenue_coords).replace("%macoords%", ma_usd_coords).replace("%title%", "Pure Revenue Market Size (USD)").replace("%ylabel%", "Daily Pure Revenue Captured (USD)").replace("%cumcoords%", cum_usd_coords).replace("%extra%", open('graph_templates/eth_price_line.tex').read().replace("%coords%", price_coords)).replace("%max%", str(2*max(cumulative_usd_revenue))).replace("%colorbartitle%", "\\# Trades"))
if "pure_revenue_exch" in graphs_to_generate:
open('reports/pure_revenue_exch_breakdown.tex', 'w').write(LINE_TEMPLATE.replace("%plots%", cum_eth_graph_lines).replace("%legendkeys%", "Market Total," + ",".join(top_5_exchanges)).replace("%title%", "Pure Revenue Per Exchange Since 04/18").replace("%ylabel%", "Cumulative Pure Revenue Captured (ETH)").replace("%max%", str(2*max(cumulative_eth_revenue))).replace("%legendpos%", "south east").replace("%extraaxisoptions%", ""))
if "pure_revenue_botmas" in graphs_to_generate:
open('reports/pure_revenue_bot_revenue.tex', 'w').write(LINE_TEMPLATE.replace("%plots%", ma_botusd_graph_lines).replace("%legendkeys%", "Market Total," + ",".join([x[:8] + ".." for x in top_bots])).replace("%title%", "Pure Revenue Per Bot, 14-Day Moving Average").replace("%ylabel%", "Daily Pure Revenue Captured (USD)").replace("%max%", str(2*max(ma_usd_revenue))).replace("%legendpos%", "outer north east").replace("%extraaxisoptions%", ",enlarge x limits=-1,width=.9\\textwidth, height=0.4\\textwidth,x label style={at={(1.15,-.15)},anchor=south,}"))
open('reports/pure_revenue_bot_profit.tex', 'w').write(LINE_TEMPLATE.replace("%plots%", ma_botusd_profit_graph_lines).replace("%legendkeys%", "Market Total," + ",".join([x[:8] + ".." for x in top_bots])).replace("%title%", "Pure Revenue Profit Per Bot, 14-Day Moving Average").replace("%ylabel%", "Daily Pure Revenue Profit (USD)").replace("%max%", str(2*max(ma_usd_profit))).replace("%legendpos%", "outer north east").replace("%extraaxisoptions%", ",enlarge x limits=-1,width=.9\\textwidth, height=0.4\\textwidth,x label style={at={(1.15,-.15)},anchor=south,}"))
if "pure_revenue_gas_numtrades" in graphs_to_generate:
open('reports/pure_revenue_gas.tex', 'w').write(BREADTH_SCATTER_TEMPLATE.replace("%coords%", gas_usage_coords).replace("%macoords%", "").replace("%title%", "Gas Trends in Pure Revenue").replace("%cumcoords%", "(2018-03-08, 0) (2018-03-08, 300000)").replace("%extra%", "").replace("%max%", "300000").replace("%ylabel%", "Mean Gas Used Per Trade").replace("ymode=log,", "").replace("scatter,", "scatter, only marks,").replace("%colorbartitle%", "Mean Trades/TX"))
def get_pga_winner_graphs():
results = query_db("SELECT *,substr(timestamp,0,11) as date FROM auctions JOIN mergedprofitabletxs ON auctions.hash=mergedprofitabletxs.transaction_hash WHERE all_positive='True' GROUP BY transaction_hash")
revenue_file = open('reports/data/revenue.csv', 'w')
profit_file = open('reports/data/profit.csv', 'w')
cost_file = open('reports/data/cost.csv', 'w')
gas_used_file = open('reports/data/gas_used.csv', 'w')
gas_prices_file = open('reports/data/gas_prices.csv', 'w')
for result in results:
revenue = float(result['eth_profit'])
gas_price = float(result['gas_price'])
gas_used = float(result['receipt_gas_used'])
cost = (gas_price * gas_used) / (10 ** 18)
profit=revenue-cost
revenue_file.write(str(revenue) + "\n")
profit_file.write(str(profit) + "\n")
cost_file.write(str(cost) + "\n")
gas_used_file.write(str(gas_used) + "\n")
gas_prices_file.write(str(gas_price) + "\n")
print(result['txhash'], revenue, cost, profit)
def get_pga_dynamics_graphs():
good_auctions = set()
auction_dates = {}
auction_profits = {}
good_auctions_res = query_db("SELECT auction_id,eth_profit FROM auctions JOIN profits ON auctions.hash=profits.txhash WHERE all_positive='True' GROUP BY txhash")
for auction in good_auctions_res:
good_auctions.add(int(auction['auction_id']))
auction_profits[int(auction['auction_id'])] = float(auction['eth_profit'])
print(good_auctions)
# todo consolidate w auction postprocessing code in read_csv.py; move this there or that here?
per_auction_bot_traces = {}
for auction_id in sorted(list(good_auctions)):
bids = query_db("SELECT * FROM auctions WHERE auction_id='%d'" % auction_id)
for result in bids:
bot = result['sender']
auction_date = datetime.utcfromtimestamp(int(result['time_seen']) / (10 ** 9)).strftime('%Y-%m-%d')
auction_dates[int(result['auction_id'])] = auction_date
init_dict(per_auction_bot_traces, auction_id, {})
init_dict(per_auction_bot_traces[auction_id], bot, [])
per_auction_bot_traces[auction_id][bot].append(dict(result))
sorted_bot_deltas = {}
min_bid_ratios = []
for auction in per_auction_bot_traces:
for bot in per_auction_bot_traces[auction]:
trace = per_auction_bot_traces[auction][bot]
if len(trace) < 5:
# no repeated bids; probably noise
continue
trace = sorted(trace, key=lambda x : float(x['gas_price']))
min_bid = float(trace[0]['gas_price']) * float(trace[0]['gas_limit']) / (10 ** 18)
profit = float(auction_profits[int(trace[0]['auction_id'])])
min_bid_profit_ratio = min_bid/profit
min_bid_ratios.append(min_bid_profit_ratio)
per_auction_bot_traces[auction][bot] = trace
init_dict(sorted_bot_deltas, auction, {})
init_dict(sorted_bot_deltas[auction], bot, ([],[]))
for i in range(1, len(trace)):
try:
bid_price_percent_delta = round((float(trace[i]['gas_price']) - float(trace[i-1]['gas_price']))/float(trace[i-1]['gas_price']), 8) * 100
bid_time_delta = (float(trace[i]['time_seen']) - float(trace[i-1]['time_seen'])) / (10 ** 9)
except:
print(result['auction_id'], "has a failed bid")
pass
sorted_bot_deltas[auction][bot][0].append(bid_price_percent_delta)
sorted_bot_deltas[auction][bot][1].append(bid_time_delta)
xs = []
median_raise_ys = []
mean_time_delta_ys = []
raises = []
eth_profit_ys = []
num_raises = []
for auction in sorted_bot_deltas:
for bot in sorted_bot_deltas[auction]:
#print(auction, bot, np.mean(sorted_bot_deltas[auction][bot][1]), auction_dates[auction])
print(auction, bot, sorted_bot_deltas[auction][bot][0], auction_dates[auction])
raises += sorted_bot_deltas[auction][bot][0]
xs.append(auction_dates[auction])
eth_profit_ys.append(auction_profits[auction])
median_raise_ys.append(np.median(sorted_bot_deltas[auction][bot][0]))
mean_time_delta_ys.append(np.mean(sorted_bot_deltas[auction][bot][1]))
num_raises.append(len(sorted_bot_deltas[auction][bot][1]))
print([np.min(raises), np.max(raises), np.median(raises), np.mean(raises), np.var(raises), sum((y < .13 and y >= .12 for y in raises))], len(raises))
median_raise_plots = ""
time_delta_plots = ""
median_raise_coords = ""
time_delta_coords = ""
for i in range(len(xs)):
median_raise_coords += "(%s,%f) [%f] " % (xs[i], median_raise_ys[i], eth_profit_ys[i])
time_delta_coords += "(%s,%f) [%f] " % (xs[i], mean_time_delta_ys[i], num_raises[i])
median_raise_plots += HIST_COORDS.replace("%coords%", median_raise_coords)
time_delta_plots += HIST_COORDS.replace("%coords%", time_delta_coords)
open('reports/data/pga_raises.csv', 'w').write(median_raise_plots)
median_raise_plots += " \\addplot+[red] coordinates {(%s,15.0) (%s,15.0)}; \\addplot+[green] coordinates {(%s,12.5) (%s,12.5)};" % (xs[0], xs[-1], xs[0], xs[-1]) # draw horizontal lines at model prediction through coords; hack to get around no horizontal lines in pgfplots datelib
open('reports/median_raise_scatter.tex', 'w').write(LINE_TEMPLATE.replace("%plots%", median_raise_plots).replace("%legendkeys%", "\\\\y=15\\\\y=12.5\\\\").replace("%title%", "Raise Strategy Evolution").replace("ymode=log,", "").replace("%ylabel%", "Median Raise Percent Over Own Bid").replace("%max%", "75").replace("%legendpos%", "north east").replace("%extraaxisoptions%", open('graph_templates/median_raise_extraaxisoptions.tex').read()))
open('reports/latency_scatter.tex', 'w').write(LINE_TEMPLATE.replace("%plots%", time_delta_plots).replace("%legendkeys%", "").replace("%title%", "Bot Latency Evolution").replace("ymode=log,", "").replace("%ylabel%", "Mean Observed Time Between Bids (s)").replace("%max%", "1").replace("%legendpos%", "north east").replace("%extraaxisoptions%", open('graph_templates/latency_extraaxisoptions.tex').read()))
min_bid_ratios_file = open('reports/data/min_bid_ratios.csv', 'w')
for bid in min_bid_ratios:
min_bid_ratios_file.write(str(bid) + "\n")
if __name__ == "__main__":
get_versus_graphs()
exit(1)
get_breadth_graphs_tikz(["pure_revenue_gas_numtrades"], skip_until=None)
get_breadth_graphs_tikz(["pure_revenue_eth", "pure_revenue_usd", "pure_revenue_botmas"], skip_until=None)
get_breadth_graphs_tikz(["pure_revenue_exch"], skip_until="2018-04-01")
#get_pga_winner_graphs()
get_pga_dynamics_graphs()
#get_princeton_graph_tikz_2()
#get_princeton_graph_tikz_2(skip_under=7000000)
#get_princeton_graph_tikz(20)
# TODO
# - MA on latency graph?
# - color bucketing for breadth graph 1pm
# - authorship info? 4pm
# - pgf out all existing figures 5pm
# - regen all graphs
# - mention github, website features throughout
# - texttexttexttext
# - get GH, etc ready for release [tyler]
# me, steven, iddo, (tyler, yunqi, xueyuan), lorenz, ari
# - defer
# - share of fees/blocks by mining pool
# - add gnosis dex
# - investigate uniswap 0s (reflected in db)
# - fix loser issue on frontrun.me