From f2f758d85dfd678429f7250a755dd67539e9da2d Mon Sep 17 00:00:00 2001 From: Chandler Carruth Date: Fri, 17 Nov 2017 19:58:36 +0000 Subject: [PATCH] [PM/Unswitch] Teach SimpleLoopUnswitch to do non-trivial unswitching, making it no longer even remotely simple. The pass will now be more of a "full loop unswitching" pass rather than anything substantively simpler than any other approach. I plan to rename it accordingly once the dust settles. The key ideas of the new loop unswitcher are carried over for non-trivial unswitching: 1) Fully unswitch a branch or switch instruction from inside of a loop to outside of it. 2) Update the CFG and IR. This avoids needing to "remember" the unswitched branches as well as avoiding excessively cloning and reliance on complex parts of simplify-cfg to cleanup the cfg. 3) Update the analyses (where we can) rather than just blowing them away or relying on something else updating them. Sadly, #3 is somewhat compromised here as the dominator tree updates were too complex for me to want to reason about. I will need to make another attempt to do this now that we have a nice dynamic update API for dominators. However, we do adhere to #3 w.r.t. LoopInfo. This approach also adds an important principls specific to non-trivial unswitching: not *all* of the loop will be duplicated when unswitching. This fact allows us to compute the cost in terms of how much *duplicate* code is inserted rather than just on raw size. Unswitching conditions which essentialy partition loops will work regardless of the total loop size. Some remaining issues that I will be addressing in subsequent commits: - Handling unstructured control flow. - Unswitching 'switch' cases instead of just branches. - Moving to the dynamic update API for dominators. Some high-level, interesting limitationsV that folks might want to push on as follow-ups but that I don't have any immediate plans around: - We could be much more clever about not cloning things that will be deleted. In fact, we should be able to delete *nothing* and do a minimal number of clones. - There are many more interesting selection criteria for which branch to unswitch that we might want to look at. One that I'm interested in particularly are a set of conditions which all exit the loop and which can be merged into a single unswitched test of them. Differential revision: https://reviews.llvm.org/D34200 --- llvm/include/llvm/Analysis/LoopInfo.h | 36 +- llvm/include/llvm/Analysis/LoopInfoImpl.h | 2 +- .../llvm/Transforms/Scalar/LoopPassManager.h | 13 + .../Transforms/Scalar/SimpleLoopUnswitch.h | 6 +- llvm/lib/Analysis/LoopPass.cpp | 3 +- .../Transforms/Scalar/SimpleLoopUnswitch.cpp | 1515 ++++++++++- .../2006-06-27-DeadSwitchCase.ll | 44 +- .../nontrivial-unswitch-cost.ll | 501 ++++ .../SimpleLoopUnswitch/nontrivial-unswitch.ll | 2352 +++++++++++++++++ 9 files changed, 4372 insertions(+), 100 deletions(-) create mode 100644 llvm/test/Transforms/SimpleLoopUnswitch/nontrivial-unswitch-cost.ll create mode 100644 llvm/test/Transforms/SimpleLoopUnswitch/nontrivial-unswitch.ll diff --git a/llvm/include/llvm/Analysis/LoopInfo.h b/llvm/include/llvm/Analysis/LoopInfo.h index ab2c84798633..28afc39727fa 100644 --- a/llvm/include/llvm/Analysis/LoopInfo.h +++ b/llvm/include/llvm/Analysis/LoopInfo.h @@ -146,11 +146,11 @@ template class LoopBase { bool empty() const { return getSubLoops().empty(); } /// Get a list of the basic blocks which make up this loop. - const std::vector &getBlocks() const { + ArrayRef getBlocks() const { assert(!isInvalid() && "Loop not in a valid state!"); return Blocks; } - typedef typename std::vector::const_iterator block_iterator; + typedef typename ArrayRef::const_iterator block_iterator; block_iterator block_begin() const { return getBlocks().begin(); } block_iterator block_end() const { return getBlocks().end(); } inline iterator_range blocks() const { @@ -165,6 +165,19 @@ template class LoopBase { return Blocks.size(); } + /// Return a direct, mutable handle to the blocks vector so that we can + /// mutate it efficiently with techniques like `std::remove`. + std::vector &getBlocksVector() { + assert(!isInvalid() && "Loop not in a valid state!"); + return Blocks; + } + /// Return a direct, mutable handle to the blocks set so that we can + /// mutate it efficiently. + SmallPtrSetImpl &getBlocksSet() { + assert(!isInvalid() && "Loop not in a valid state!"); + return DenseBlockSet; + } + /// Return true if this loop is no longer valid. The only valid use of this /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to /// true by the destructor. In other words, if this accessor returns true, @@ -314,6 +327,12 @@ template class LoopBase { return Child; } + /// This removes the specified child from being a subloop of this loop. The + /// loop is not deleted, as it will presumably be inserted into another loop. + LoopT *removeChildLoop(LoopT *Child) { + return removeChildLoop(llvm::find(*this, Child)); + } + /// This adds a basic block directly to the basic block list. /// This should only be used by transformations that create new loops. Other /// transformations should use addBasicBlockToLoop. @@ -744,9 +763,16 @@ template class LoopInfoBase { void verify(const DominatorTreeBase &DomTree) const; -protected: - // Calls the destructor for \p L but keeps the memory for \p L around so that - // the pointer value does not get re-used. + /// Destroy a loop that has been removed from the `LoopInfo` nest. + /// + /// This runs the destructor of the loop object making it invalid to + /// reference afterward. The memory is retained so that the *pointer* to the + /// loop remains valid. + /// + /// The caller is responsible for removing this loop from the loop nest and + /// otherwise disconnecting it from the broader `LoopInfo` data structures. + /// Callers that don't naturally handle this themselves should probably call + /// `erase' instead. void destroy(LoopT *L) { L->~LoopT(); diff --git a/llvm/include/llvm/Analysis/LoopInfoImpl.h b/llvm/include/llvm/Analysis/LoopInfoImpl.h index 7e0796f132e8..b3a16b5369f7 100644 --- a/llvm/include/llvm/Analysis/LoopInfoImpl.h +++ b/llvm/include/llvm/Analysis/LoopInfoImpl.h @@ -400,7 +400,7 @@ static void discoverAndMapSubloop(LoopT *L, ArrayRef Backedges, // Discover a subloop of this loop. Subloop->setParentLoop(L); ++NumSubloops; - NumBlocks += Subloop->getBlocks().capacity(); + NumBlocks += Subloop->getBlocksVector().capacity(); PredBB = Subloop->getHeader(); // Continue traversal along predecessors that are not loop-back edges from // within this subloop tree itself. Note that a predecessor may directly diff --git a/llvm/include/llvm/Transforms/Scalar/LoopPassManager.h b/llvm/include/llvm/Transforms/Scalar/LoopPassManager.h index 330eb857e202..55adc640f5dd 100644 --- a/llvm/include/llvm/Transforms/Scalar/LoopPassManager.h +++ b/llvm/include/llvm/Transforms/Scalar/LoopPassManager.h @@ -217,6 +217,19 @@ class LPMUpdater { // shouldn't impact anything. } + /// Restart the current loop. + /// + /// Loop passes should call this method to indicate the current loop has been + /// sufficiently changed that it should be re-visited from the begining of + /// the loop pass pipeline rather than continuing. + void revisitCurrentLoop() { + // Tell the currently in-flight pipeline to stop running. + SkipCurrentLoop = true; + + // And insert ourselves back into the worklist. + Worklist.insert(CurrentL); + } + private: template friend class llvm::FunctionToLoopPassAdaptor; diff --git a/llvm/include/llvm/Transforms/Scalar/SimpleLoopUnswitch.h b/llvm/include/llvm/Transforms/Scalar/SimpleLoopUnswitch.h index d7282ac6a781..63bfe6373d04 100644 --- a/llvm/include/llvm/Transforms/Scalar/SimpleLoopUnswitch.h +++ b/llvm/include/llvm/Transforms/Scalar/SimpleLoopUnswitch.h @@ -36,8 +36,10 @@ namespace llvm { /// of the loop, to make the unswitching opportunity obvious. /// class SimpleLoopUnswitchPass : public PassInfoMixin { + bool NonTrivial; + public: - SimpleLoopUnswitchPass() = default; + SimpleLoopUnswitchPass(bool NonTrivial = false) : NonTrivial(NonTrivial) {} PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U); @@ -46,7 +48,7 @@ class SimpleLoopUnswitchPass : public PassInfoMixin { /// Create the legacy pass object for the simple loop unswitcher. /// /// See the documentaion for `SimpleLoopUnswitchPass` for details. -Pass *createSimpleLoopUnswitchLegacyPass(); +Pass *createSimpleLoopUnswitchLegacyPass(bool NonTrivial = false); } // end namespace llvm diff --git a/llvm/lib/Analysis/LoopPass.cpp b/llvm/lib/Analysis/LoopPass.cpp index ce3cb2ab183f..9af717bafdca 100644 --- a/llvm/lib/Analysis/LoopPass.cpp +++ b/llvm/lib/Analysis/LoopPass.cpp @@ -46,8 +46,7 @@ class PrintLoopPassWrapper : public LoopPass { } bool runOnLoop(Loop *L, LPPassManager &) override { - auto BBI = find_if(L->blocks().begin(), L->blocks().end(), - [](BasicBlock *BB) { return BB; }); + auto BBI = llvm::find_if(L->blocks(), [](BasicBlock *BB) { return BB; }); if (BBI != L->blocks().end() && isFunctionInPrintList((*BBI)->getParent()->getName())) { printLoop(*L, OS, Banner); diff --git a/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp b/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp index aaab5857e0f1..5cfd3cd76510 100644 --- a/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp +++ b/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp @@ -17,6 +17,7 @@ #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" @@ -28,6 +29,7 @@ #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" @@ -36,11 +38,15 @@ #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GenericDomTree.h" #include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include +#include #include #define DEBUG_TYPE "simple-loop-unswitch" @@ -51,6 +57,15 @@ STATISTIC(NumBranches, "Number of branches unswitched"); STATISTIC(NumSwitches, "Number of switches unswitched"); STATISTIC(NumTrivial, "Number of unswitches that are trivial"); +static cl::opt EnableNonTrivialUnswitch( + "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, + cl::desc("Forcibly enables non-trivial loop unswitching rather than " + "following the configuration passed into the pass.")); + +static cl::opt + UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, + cl::desc("The cost threshold for unswitching a loop.")); + static void replaceLoopUsesWithConstant(Loop &L, Value &LIC, Constant &Replacement) { assert(!isa(LIC) && "Why are we unswitching on a constant?"); @@ -68,24 +83,95 @@ static void replaceLoopUsesWithConstant(Loop &L, Value &LIC, } } -/// Update the dominator tree after removing one exiting predecessor of a loop -/// exit block. -static void updateLoopExitIDom(BasicBlock *LoopExitBB, Loop &L, - DominatorTree &DT) { - assert(pred_begin(LoopExitBB) != pred_end(LoopExitBB) && - "Cannot have empty predecessors of the loop exit block if we split " - "off a block to unswitch!"); +/// Update the IDom for a basic block whose predecessor set has changed. +/// +/// This routine is designed to work when the domtree update is relatively +/// localized by leveraging a known common dominator, often a loop header. +/// +/// FIXME: Should consider hand-rolling a slightly more efficient non-DFS +/// approach here as we can do that easily by persisting the candidate IDom's +/// dominating set between each predecessor. +/// +/// FIXME: Longer term, many uses of this can be replaced by an incremental +/// domtree update strategy that starts from a known dominating block and +/// rebuilds that subtree. +static bool updateIDomWithKnownCommonDominator(BasicBlock *BB, + BasicBlock *KnownDominatingBB, + DominatorTree &DT) { + assert(pred_begin(BB) != pred_end(BB) && + "This routine does not handle unreachable blocks!"); + + BasicBlock *OrigIDom = DT[BB]->getIDom()->getBlock(); + + BasicBlock *IDom = *pred_begin(BB); + assert(DT.dominates(KnownDominatingBB, IDom) && + "Bad known dominating block!"); - BasicBlock *IDom = *pred_begin(LoopExitBB); // Walk all of the other predecessors finding the nearest common dominator // until all predecessors are covered or we reach the loop header. The loop // header necessarily dominates all loop exit blocks in loop simplified form // so we can early-exit the moment we hit that block. - for (auto PI = std::next(pred_begin(LoopExitBB)), PE = pred_end(LoopExitBB); - PI != PE && IDom != L.getHeader(); ++PI) + for (auto PI = std::next(pred_begin(BB)), PE = pred_end(BB); + PI != PE && IDom != KnownDominatingBB; ++PI) { + assert(DT.dominates(KnownDominatingBB, *PI) && + "Bad known dominating block!"); IDom = DT.findNearestCommonDominator(IDom, *PI); + } + + if (IDom == OrigIDom) + return false; + + DT.changeImmediateDominator(BB, IDom); + return true; +} - DT.changeImmediateDominator(LoopExitBB, IDom); +// Note that we don't currently use the IDFCalculator here for two reasons: +// 1) It computes dominator tree levels for the entire function on each run +// of 'compute'. While this isn't terrible, given that we expect to update +// relatively small subtrees of the domtree, it isn't necessarily the right +// tradeoff. +// 2) The interface doesn't fit this usage well. It doesn't operate in +// append-only, and builds several sets that we don't need. +// +// FIXME: Neither of these issues are a big deal and could be addressed with +// some amount of refactoring of IDFCalculator. That would allow us to share +// the core logic here (which is solving the same core problem). +void appendDomFrontier(DomTreeNode *Node, + SmallSetVector &Worklist, + SmallVectorImpl &DomNodes, + SmallPtrSetImpl &DomSet) { + assert(DomNodes.empty() && "Must start with no dominator nodes."); + assert(DomSet.empty() && "Must start with an empty dominator set."); + + // First flatten this subtree into sequence of nodes by doing a pre-order + // walk. + DomNodes.push_back(Node); + // We intentionally re-evaluate the size as each node can add new children. + // Because this is a tree walk, this cannot add any duplicates. + for (int i = 0; i < (int)DomNodes.size(); ++i) + DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end()); + + // Now create a set of the basic blocks so we can quickly test for + // dominated successors. We could in theory use the DFS numbers of the + // dominator tree for this, but we want this to remain predictably fast + // even while we mutate the dominator tree in ways that would invalidate + // the DFS numbering. + for (DomTreeNode *InnerN : DomNodes) + DomSet.insert(InnerN->getBlock()); + + // Now re-walk the nodes, appending every successor of every node that isn't + // in the set. Note that we don't append the node itself, even though if it + // is a successor it does not strictly dominate itself and thus it would be + // part of the dominance frontier. The reason we don't append it is that + // the node passed in came *from* the worklist and so it has already been + // processed. + for (DomTreeNode *InnerN : DomNodes) + for (BasicBlock *SuccBB : successors(InnerN->getBlock())) + if (!DomSet.count(SuccBB)) + Worklist.insert(SuccBB); + + DomNodes.clear(); + DomSet.clear(); } /// Update the dominator tree after unswitching a particular former exit block. @@ -127,58 +213,14 @@ static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH, // dominator frontier to see if it additionally should move up the dominator // tree. This lambda appends the dominator frontier for a node on the // worklist. - // - // Note that we don't currently use the IDFCalculator here for two reasons: - // 1) It computes dominator tree levels for the entire function on each run - // of 'compute'. While this isn't terrible, given that we expect to update - // relatively small subtrees of the domtree, it isn't necessarily the right - // tradeoff. - // 2) The interface doesn't fit this usage well. It doesn't operate in - // append-only, and builds several sets that we don't need. - // - // FIXME: Neither of these issues are a big deal and could be addressed with - // some amount of refactoring of IDFCalculator. That would allow us to share - // the core logic here (which is solving the same core problem). SmallSetVector Worklist; + + // Scratch data structures reused by domfrontier finding. SmallVector DomNodes; SmallPtrSet DomSet; - auto AppendDomFrontier = [&](DomTreeNode *Node) { - assert(DomNodes.empty() && "Must start with no dominator nodes."); - assert(DomSet.empty() && "Must start with an empty dominator set."); - - // First flatten this subtree into sequence of nodes by doing a pre-order - // walk. - DomNodes.push_back(Node); - // We intentionally re-evaluate the size as each node can add new children. - // Because this is a tree walk, this cannot add any duplicates. - for (int i = 0; i < (int)DomNodes.size(); ++i) - DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end()); - - // Now create a set of the basic blocks so we can quickly test for - // dominated successors. We could in theory use the DFS numbers of the - // dominator tree for this, but we want this to remain predictably fast - // even while we mutate the dominator tree in ways that would invalidate - // the DFS numbering. - for (DomTreeNode *InnerN : DomNodes) - DomSet.insert(InnerN->getBlock()); - - // Now re-walk the nodes, appending every successor of every node that isn't - // in the set. Note that we don't append the node itself, even though if it - // is a successor it does not strictly dominate itself and thus it would be - // part of the dominance frontier. The reason we don't append it is that - // the node passed in came *from* the worklist and so it has already been - // processed. - for (DomTreeNode *InnerN : DomNodes) - for (BasicBlock *SuccBB : successors(InnerN->getBlock())) - if (!DomSet.count(SuccBB)) - Worklist.insert(SuccBB); - - DomNodes.clear(); - DomSet.clear(); - }; // Append the initial dom frontier nodes. - AppendDomFrontier(UnswitchedNode); + appendDomFrontier(UnswitchedNode, Worklist, DomNodes, DomSet); // Walk the worklist. We grow the list in the loop and so must recompute size. for (int i = 0; i < (int)Worklist.size(); ++i) { @@ -197,7 +239,7 @@ static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH, DT.changeImmediateDominator(Node, OldPHNode); // Now add this node's dominator frontier to the worklist as well. - AppendDomFrontier(Node); + appendDomFrontier(Node, Worklist, DomNodes, DomSet); } } @@ -395,7 +437,7 @@ static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, // one of the predecessors for the loop exit block and may need to update its // idom. if (UnswitchedBB != LoopExitBB) - updateLoopExitIDom(LoopExitBB, L, DT); + updateIDomWithKnownCommonDominator(LoopExitBB, L.getHeader(), DT); // Since this is an i1 condition we can also trivially replace uses of it // within the loop with a constant. @@ -540,7 +582,7 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, *ParentBB, *OldPH); - updateLoopExitIDom(DefaultExitBB, L, DT); + updateIDomWithKnownCommonDominator(DefaultExitBB, L.getHeader(), DT); DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; } } @@ -567,7 +609,7 @@ static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, *ParentBB, *OldPH); - updateLoopExitIDom(ExitBB, L, DT); + updateIDomWithKnownCommonDominator(ExitBB, L.getHeader(), DT); } // Update the case pair to point to the split block. CasePair.second = SplitExitBB; @@ -708,15 +750,1172 @@ static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, return Changed; } +/// Build the cloned blocks for an unswitched copy of the given loop. +/// +/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and +/// after the split block (`SplitBB`) that will be used to select between the +/// cloned and original loop. +/// +/// This routine handles cloning all of the necessary loop blocks and exit +/// blocks including rewriting their instructions and the relevant PHI nodes. +/// It skips loop and exit blocks that are not necessary based on the provided +/// set. It also correctly creates the unconditional branch in the cloned +/// unswitched parent block to only point at the unswitched successor. +/// +/// This does not handle most of the necessary updates to `LoopInfo`. Only exit +/// block splitting is correctly reflected in `LoopInfo`, essentially all of +/// the cloned blocks (and their loops) are left without full `LoopInfo` +/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned +/// blocks to them but doesn't create the cloned `DominatorTree` structure and +/// instead the caller must recompute an accurate DT. It *does* correctly +/// update the `AssumptionCache` provided in `AC`. +static BasicBlock *buildClonedLoopBlocks( + Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, + ArrayRef ExitBlocks, BasicBlock *ParentBB, + BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, + const SmallPtrSetImpl &SkippedLoopAndExitBlocks, + ValueToValueMapTy &VMap, AssumptionCache &AC, DominatorTree &DT, + LoopInfo &LI) { + SmallVector NewBlocks; + NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); + + // We will need to clone a bunch of blocks, wrap up the clone operation in + // a helper. + auto CloneBlock = [&](BasicBlock *OldBB) { + // Clone the basic block and insert it before the new preheader. + BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); + NewBB->moveBefore(LoopPH); + + // Record this block and the mapping. + NewBlocks.push_back(NewBB); + VMap[OldBB] = NewBB; + + // Add the block to the domtree. We'll move it to the correct position + // below. + DT.addNewBlock(NewBB, SplitBB); + + return NewBB; + }; + + // First, clone the preheader. + auto *ClonedPH = CloneBlock(LoopPH); + + // Then clone all the loop blocks, skipping the ones that aren't necessary. + for (auto *LoopBB : L.blocks()) + if (!SkippedLoopAndExitBlocks.count(LoopBB)) + CloneBlock(LoopBB); + + // Split all the loop exit edges so that when we clone the exit blocks, if + // any of the exit blocks are *also* a preheader for some other loop, we + // don't create multiple predecessors entering the loop header. + for (auto *ExitBB : ExitBlocks) { + if (SkippedLoopAndExitBlocks.count(ExitBB)) + continue; + + // When we are going to clone an exit, we don't need to clone all the + // instructions in the exit block and we want to ensure we have an easy + // place to merge the CFG, so split the exit first. This is always safe to + // do because there cannot be any non-loop predecessors of a loop exit in + // loop simplified form. + auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); + + // Rearrange the names to make it easier to write test cases by having the + // exit block carry the suffix rather than the merge block carrying the + // suffix. + MergeBB->takeName(ExitBB); + ExitBB->setName(Twine(MergeBB->getName()) + ".split"); + + // Now clone the original exit block. + auto *ClonedExitBB = CloneBlock(ExitBB); + assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && + "Exit block should have been split to have one successor!"); + assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && + "Cloned exit block has the wrong successor!"); + + // Move the merge block's idom to be the split point as one exit is + // dominated by one header, and the other by another, so we know the split + // point dominates both. While the dominator tree isn't fully accurate, we + // want sub-trees within the original loop to be correctly reflect + // dominance within that original loop (at least) and that requires moving + // the merge block out of that subtree. + // FIXME: This is very brittle as we essentially have a partial contract on + // the dominator tree. We really need to instead update it and keep it + // valid or stop relying on it. + DT.changeImmediateDominator(MergeBB, SplitBB); + + // Remap any cloned instructions and create a merge phi node for them. + for (auto ZippedInsts : llvm::zip_first( + llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), + llvm::make_range(ClonedExitBB->begin(), + std::prev(ClonedExitBB->end())))) { + Instruction &I = std::get<0>(ZippedInsts); + Instruction &ClonedI = std::get<1>(ZippedInsts); + + // The only instructions in the exit block should be PHI nodes and + // potentially a landing pad. + assert( + (isa(I) || isa(I) || isa(I)) && + "Bad instruction in exit block!"); + // We should have a value map between the instruction and its clone. + assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); + + auto *MergePN = + PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", + &*MergeBB->getFirstInsertionPt()); + I.replaceAllUsesWith(MergePN); + MergePN->addIncoming(&I, ExitBB); + MergePN->addIncoming(&ClonedI, ClonedExitBB); + } + } + + // Rewrite the instructions in the cloned blocks to refer to the instructions + // in the cloned blocks. We have to do this as a second pass so that we have + // everything available. Also, we have inserted new instructions which may + // include assume intrinsics, so we update the assumption cache while + // processing this. + for (auto *ClonedBB : NewBlocks) + for (Instruction &I : *ClonedBB) { + RemapInstruction(&I, VMap, + RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); + if (auto *II = dyn_cast(&I)) + if (II->getIntrinsicID() == Intrinsic::assume) + AC.registerAssumption(II); + } + + // Remove the cloned parent as a predecessor of the cloned continue successor + // if we did in fact clone it. + auto *ClonedParentBB = cast(VMap.lookup(ParentBB)); + if (auto *ClonedContinueSuccBB = + cast_or_null(VMap.lookup(ContinueSuccBB))) + ClonedContinueSuccBB->removePredecessor(ClonedParentBB, + /*DontDeleteUselessPHIs*/ true); + // Replace the cloned branch with an unconditional branch to the cloneed + // unswitched successor. + auto *ClonedSuccBB = cast(VMap.lookup(UnswitchedSuccBB)); + ClonedParentBB->getTerminator()->eraseFromParent(); + BranchInst::Create(ClonedSuccBB, ClonedParentBB); + + // Update any PHI nodes in the cloned successors of the skipped blocks to not + // have spurious incoming values. + for (auto *LoopBB : L.blocks()) + if (SkippedLoopAndExitBlocks.count(LoopBB)) + for (auto *SuccBB : successors(LoopBB)) + if (auto *ClonedSuccBB = cast_or_null(VMap.lookup(SuccBB))) + for (PHINode &PN : ClonedSuccBB->phis()) + PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); + + return ClonedPH; +} + +/// Recursively clone the specified loop and all of its children. +/// +/// The target parent loop for the clone should be provided, or can be null if +/// the clone is a top-level loop. While cloning, all the blocks are mapped +/// with the provided value map. The entire original loop must be present in +/// the value map. The cloned loop is returned. +static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, + const ValueToValueMapTy &VMap, LoopInfo &LI) { + auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { + assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); + ClonedL.reserveBlocks(OrigL.getNumBlocks()); + for (auto *BB : OrigL.blocks()) { + auto *ClonedBB = cast(VMap.lookup(BB)); + ClonedL.addBlockEntry(ClonedBB); + if (LI.getLoopFor(BB) == &OrigL) { + assert(!LI.getLoopFor(ClonedBB) && + "Should not have an existing loop for this block!"); + LI.changeLoopFor(ClonedBB, &ClonedL); + } + } + }; + + // We specially handle the first loop because it may get cloned into + // a different parent and because we most commonly are cloning leaf loops. + Loop *ClonedRootL = LI.AllocateLoop(); + if (RootParentL) + RootParentL->addChildLoop(ClonedRootL); + else + LI.addTopLevelLoop(ClonedRootL); + AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); + + if (OrigRootL.empty()) + return ClonedRootL; + + // If we have a nest, we can quickly clone the entire loop nest using an + // iterative approach because it is a tree. We keep the cloned parent in the + // data structure to avoid repeatedly querying through a map to find it. + SmallVector, 16> LoopsToClone; + // Build up the loops to clone in reverse order as we'll clone them from the + // back. + for (Loop *ChildL : llvm::reverse(OrigRootL)) + LoopsToClone.push_back({ClonedRootL, ChildL}); + do { + Loop *ClonedParentL, *L; + std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); + Loop *ClonedL = LI.AllocateLoop(); + ClonedParentL->addChildLoop(ClonedL); + AddClonedBlocksToLoop(*L, *ClonedL); + for (Loop *ChildL : llvm::reverse(*L)) + LoopsToClone.push_back({ClonedL, ChildL}); + } while (!LoopsToClone.empty()); + + return ClonedRootL; +} + +/// Build the cloned loops of an original loop from unswitching. +/// +/// Because unswitching simplifies the CFG of the loop, this isn't a trivial +/// operation. We need to re-verify that there even is a loop (as the backedge +/// may not have been cloned), and even if there are remaining backedges the +/// backedge set may be different. However, we know that each child loop is +/// undisturbed, we only need to find where to place each child loop within +/// either any parent loop or within a cloned version of the original loop. +/// +/// Because child loops may end up cloned outside of any cloned version of the +/// original loop, multiple cloned sibling loops may be created. All of them +/// are returned so that the newly introduced loop nest roots can be +/// identified. +static Loop *buildClonedLoops(Loop &OrigL, ArrayRef ExitBlocks, + const ValueToValueMapTy &VMap, LoopInfo &LI, + SmallVectorImpl &NonChildClonedLoops) { + Loop *ClonedL = nullptr; + + auto *OrigPH = OrigL.getLoopPreheader(); + auto *OrigHeader = OrigL.getHeader(); + + auto *ClonedPH = cast(VMap.lookup(OrigPH)); + auto *ClonedHeader = cast(VMap.lookup(OrigHeader)); + + // We need to know the loops of the cloned exit blocks to even compute the + // accurate parent loop. If we only clone exits to some parent of the + // original parent, we want to clone into that outer loop. We also keep track + // of the loops that our cloned exit blocks participate in. + Loop *ParentL = nullptr; + SmallVector ClonedExitsInLoops; + SmallDenseMap ExitLoopMap; + ClonedExitsInLoops.reserve(ExitBlocks.size()); + for (auto *ExitBB : ExitBlocks) + if (auto *ClonedExitBB = cast_or_null(VMap.lookup(ExitBB))) + if (Loop *ExitL = LI.getLoopFor(ExitBB)) { + ExitLoopMap[ClonedExitBB] = ExitL; + ClonedExitsInLoops.push_back(ClonedExitBB); + if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) + ParentL = ExitL; + } + assert((!ParentL || ParentL == OrigL.getParentLoop() || + ParentL->contains(OrigL.getParentLoop())) && + "The computed parent loop should always contain (or be) the parent of " + "the original loop."); + + // We build the set of blocks dominated by the cloned header from the set of + // cloned blocks out of the original loop. While not all of these will + // necessarily be in the cloned loop, it is enough to establish that they + // aren't in unreachable cycles, etc. + SmallSetVector ClonedLoopBlocks; + for (auto *BB : OrigL.blocks()) + if (auto *ClonedBB = cast_or_null(VMap.lookup(BB))) + ClonedLoopBlocks.insert(ClonedBB); + + // Rebuild the set of blocks that will end up in the cloned loop. We may have + // skipped cloning some region of this loop which can in turn skip some of + // the backedges so we have to rebuild the blocks in the loop based on the + // backedges that remain after cloning. + SmallVector Worklist; + SmallPtrSet BlocksInClonedLoop; + for (auto *Pred : predecessors(ClonedHeader)) { + // The only possible non-loop header predecessor is the preheader because + // we know we cloned the loop in simplified form. + if (Pred == ClonedPH) + continue; + + // Because the loop was in simplified form, the only non-loop predecessor + // should be the preheader. + assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " + "header other than the preheader " + "that is not part of the loop!"); + + // Insert this block into the loop set and on the first visit (and if it + // isn't the header we're currently walking) put it into the worklist to + // recurse through. + if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) + Worklist.push_back(Pred); + } + + // If we had any backedges then there *is* a cloned loop. Put the header into + // the loop set and then walk the worklist backwards to find all the blocks + // that remain within the loop after cloning. + if (!BlocksInClonedLoop.empty()) { + BlocksInClonedLoop.insert(ClonedHeader); + + while (!Worklist.empty()) { + BasicBlock *BB = Worklist.pop_back_val(); + assert(BlocksInClonedLoop.count(BB) && + "Didn't put block into the loop set!"); + + // Insert any predecessors that are in the possible set into the cloned + // set, and if the insert is successful, add them to the worklist. Note + // that we filter on the blocks that are definitely reachable via the + // backedge to the loop header so we may prune out dead code within the + // cloned loop. + for (auto *Pred : predecessors(BB)) + if (ClonedLoopBlocks.count(Pred) && + BlocksInClonedLoop.insert(Pred).second) + Worklist.push_back(Pred); + } + + ClonedL = LI.AllocateLoop(); + if (ParentL) { + ParentL->addBasicBlockToLoop(ClonedPH, LI); + ParentL->addChildLoop(ClonedL); + } else { + LI.addTopLevelLoop(ClonedL); + } + + ClonedL->reserveBlocks(BlocksInClonedLoop.size()); + // We don't want to just add the cloned loop blocks based on how we + // discovered them. The original order of blocks was carefully built in + // a way that doesn't rely on predecessor ordering. Rather than re-invent + // that logic, we just re-walk the original blocks (and those of the child + // loops) and filter them as we add them into the cloned loop. + for (auto *BB : OrigL.blocks()) { + auto *ClonedBB = cast_or_null(VMap.lookup(BB)); + if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) + continue; + + // Directly add the blocks that are only in this loop. + if (LI.getLoopFor(BB) == &OrigL) { + ClonedL->addBasicBlockToLoop(ClonedBB, LI); + continue; + } + + // We want to manually add it to this loop and parents. + // Registering it with LoopInfo will happen when we clone the top + // loop for this block. + for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) + PL->addBlockEntry(ClonedBB); + } + + // Now add each child loop whose header remains within the cloned loop. All + // of the blocks within the loop must satisfy the same constraints as the + // header so once we pass the header checks we can just clone the entire + // child loop nest. + for (Loop *ChildL : OrigL) { + auto *ClonedChildHeader = + cast_or_null(VMap.lookup(ChildL->getHeader())); + if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) + continue; + +#ifndef NDEBUG + // We should never have a cloned child loop header but fail to have + // all of the blocks for that child loop. + for (auto *ChildLoopBB : ChildL->blocks()) + assert(BlocksInClonedLoop.count( + cast(VMap.lookup(ChildLoopBB))) && + "Child cloned loop has a header within the cloned outer " + "loop but not all of its blocks!"); +#endif + + cloneLoopNest(*ChildL, ClonedL, VMap, LI); + } + } + + // Now that we've handled all the components of the original loop that were + // cloned into a new loop, we still need to handle anything from the original + // loop that wasn't in a cloned loop. + + // Figure out what blocks are left to place within any loop nest containing + // the unswitched loop. If we never formed a loop, the cloned PH is one of + // them. + SmallPtrSet UnloopedBlockSet; + if (BlocksInClonedLoop.empty()) + UnloopedBlockSet.insert(ClonedPH); + for (auto *ClonedBB : ClonedLoopBlocks) + if (!BlocksInClonedLoop.count(ClonedBB)) + UnloopedBlockSet.insert(ClonedBB); + + // Copy the cloned exits and sort them in ascending loop depth, we'll work + // backwards across these to process them inside out. The order shouldn't + // matter as we're just trying to build up the map from inside-out; we use + // the map in a more stably ordered way below. + auto OrderedClonedExitsInLoops = ClonedExitsInLoops; + std::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(), + [&](BasicBlock *LHS, BasicBlock *RHS) { + return ExitLoopMap.lookup(LHS)->getLoopDepth() < + ExitLoopMap.lookup(RHS)->getLoopDepth(); + }); + + // Populate the existing ExitLoopMap with everything reachable from each + // exit, starting from the inner most exit. + while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { + assert(Worklist.empty() && "Didn't clear worklist!"); + + BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); + Loop *ExitL = ExitLoopMap.lookup(ExitBB); + + // Walk the CFG back until we hit the cloned PH adding everything reachable + // and in the unlooped set to this exit block's loop. + Worklist.push_back(ExitBB); + do { + BasicBlock *BB = Worklist.pop_back_val(); + // We can stop recursing at the cloned preheader (if we get there). + if (BB == ClonedPH) + continue; + + for (BasicBlock *PredBB : predecessors(BB)) { + // If this pred has already been moved to our set or is part of some + // (inner) loop, no update needed. + if (!UnloopedBlockSet.erase(PredBB)) { + assert( + (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && + "Predecessor not mapped to a loop!"); + continue; + } + + // We just insert into the loop set here. We'll add these blocks to the + // exit loop after we build up the set in an order that doesn't rely on + // predecessor order (which in turn relies on use list order). + bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; + (void)Inserted; + assert(Inserted && "Should only visit an unlooped block once!"); + + // And recurse through to its predecessors. + Worklist.push_back(PredBB); + } + } while (!Worklist.empty()); + } + + // Now that the ExitLoopMap gives as mapping for all the non-looping cloned + // blocks to their outer loops, walk the cloned blocks and the cloned exits + // in their original order adding them to the correct loop. + + // We need a stable insertion order. We use the order of the original loop + // order and map into the correct parent loop. + for (auto *BB : llvm::concat( + makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) + if (Loop *OuterL = ExitLoopMap.lookup(BB)) + OuterL->addBasicBlockToLoop(BB, LI); + +#ifndef NDEBUG + for (auto &BBAndL : ExitLoopMap) { + auto *BB = BBAndL.first; + auto *OuterL = BBAndL.second; + assert(LI.getLoopFor(BB) == OuterL && + "Failed to put all blocks into outer loops!"); + } +#endif + + // Now that all the blocks are placed into the correct containing loop in the + // absence of child loops, find all the potentially cloned child loops and + // clone them into whatever outer loop we placed their header into. + for (Loop *ChildL : OrigL) { + auto *ClonedChildHeader = + cast_or_null(VMap.lookup(ChildL->getHeader())); + if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) + continue; + +#ifndef NDEBUG + for (auto *ChildLoopBB : ChildL->blocks()) + assert(VMap.count(ChildLoopBB) && + "Cloned a child loop header but not all of that loops blocks!"); +#endif + + NonChildClonedLoops.push_back(cloneLoopNest( + *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); + } + + // Return the main cloned loop if any. + return ClonedL; +} + +static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot, + SmallVectorImpl &ExitBlocks, + DominatorTree &DT, LoopInfo &LI) { + // Walk the dominator tree to build up the set of blocks we will delete here. + // The order is designed to allow us to always delete bottom-up and avoid any + // dangling uses. + SmallSetVector DeadBlocks; + DeadBlocks.insert(DeadSubtreeRoot); + for (int i = 0; i < (int)DeadBlocks.size(); ++i) + for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) { + // FIXME: This assert should pass and that means we don't change nearly + // as much below! Consider rewriting all of this to avoid deleting + // blocks. They are always cloned before being deleted, and so instead + // could just be moved. + // FIXME: This in turn means that we might actually be more able to + // update the domtree. + assert((L.contains(ChildN->getBlock()) || + llvm::find(ExitBlocks, ChildN->getBlock()) != ExitBlocks.end()) && + "Should never reach beyond the loop and exits when deleting!"); + DeadBlocks.insert(ChildN->getBlock()); + } + + // Filter out the dead blocks from the exit blocks list so that it can be + // used in the caller. + llvm::erase_if(ExitBlocks, + [&](BasicBlock *BB) { return DeadBlocks.count(BB); }); + + // Remove these blocks from their successors. + for (auto *BB : DeadBlocks) + for (BasicBlock *SuccBB : successors(BB)) + SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true); + + // Walk from this loop up through its parents removing all of the dead blocks. + for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { + for (auto *BB : DeadBlocks) + ParentL->getBlocksSet().erase(BB); + llvm::erase_if(ParentL->getBlocksVector(), + [&](BasicBlock *BB) { return DeadBlocks.count(BB); }); + } + + // Now delete the dead child loops. This raw delete will clear them + // recursively. + llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { + if (!DeadBlocks.count(ChildL->getHeader())) + return false; + + assert(llvm::all_of(ChildL->blocks(), + [&](BasicBlock *ChildBB) { + return DeadBlocks.count(ChildBB); + }) && + "If the child loop header is dead all blocks in the child loop must " + "be dead as well!"); + LI.destroy(ChildL); + return true; + }); + + // Remove the mappings for the dead blocks. + for (auto *BB : DeadBlocks) + LI.changeLoopFor(BB, nullptr); + + // Drop all the references from these blocks to others to handle cyclic + // references as we start deleting the blocks themselves. + for (auto *BB : DeadBlocks) + BB->dropAllReferences(); + + for (auto *BB : llvm::reverse(DeadBlocks)) { + DT.eraseNode(BB); + BB->eraseFromParent(); + } +} + +/// Recompute the set of blocks in a loop after unswitching. +/// +/// This walks from the original headers predecessors to rebuild the loop. We +/// take advantage of the fact that new blocks can't have been added, and so we +/// filter by the original loop's blocks. This also handles potentially +/// unreachable code that we don't want to explore but might be found examining +/// the predecessors of the header. +/// +/// If the original loop is no longer a loop, this will return an empty set. If +/// it remains a loop, all the blocks within it will be added to the set +/// (including those blocks in inner loops). +static SmallPtrSet recomputeLoopBlockSet(Loop &L, + LoopInfo &LI) { + SmallPtrSet LoopBlockSet; + + auto *PH = L.getLoopPreheader(); + auto *Header = L.getHeader(); + + // A worklist to use while walking backwards from the header. + SmallVector Worklist; + + // First walk the predecessors of the header to find the backedges. This will + // form the basis of our walk. + for (auto *Pred : predecessors(Header)) { + // Skip the preheader. + if (Pred == PH) + continue; + + // Because the loop was in simplified form, the only non-loop predecessor + // is the preheader. + assert(L.contains(Pred) && "Found a predecessor of the loop header other " + "than the preheader that is not part of the " + "loop!"); + + // Insert this block into the loop set and on the first visit and, if it + // isn't the header we're currently walking, put it into the worklist to + // recurse through. + if (LoopBlockSet.insert(Pred).second && Pred != Header) + Worklist.push_back(Pred); + } + + // If no backedges were found, we're done. + if (LoopBlockSet.empty()) + return LoopBlockSet; + + // Add the loop header to the set. + LoopBlockSet.insert(Header); + + // We found backedges, recurse through them to identify the loop blocks. + while (!Worklist.empty()) { + BasicBlock *BB = Worklist.pop_back_val(); + assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); + + // Because we know the inner loop structure remains valid we can use the + // loop structure to jump immediately across the entire nested loop. + // Further, because it is in loop simplified form, we can directly jump + // to its preheader afterward. + if (Loop *InnerL = LI.getLoopFor(BB)) + if (InnerL != &L) { + assert(L.contains(InnerL) && + "Should not reach a loop *outside* this loop!"); + // The preheader is the only possible predecessor of the loop so + // insert it into the set and check whether it was already handled. + auto *InnerPH = InnerL->getLoopPreheader(); + assert(L.contains(InnerPH) && "Cannot contain an inner loop block " + "but not contain the inner loop " + "preheader!"); + if (!LoopBlockSet.insert(InnerPH).second) + // The only way to reach the preheader is through the loop body + // itself so if it has been visited the loop is already handled. + continue; + + // Insert all of the blocks (other than those already present) into + // the loop set. The only block we expect to already be in the set is + // the one we used to find this loop as we immediately handle the + // others the first time we encounter the loop. + for (auto *InnerBB : InnerL->blocks()) { + if (InnerBB == BB) { + assert(LoopBlockSet.count(InnerBB) && + "Block should already be in the set!"); + continue; + } + + bool Inserted = LoopBlockSet.insert(InnerBB).second; + (void)Inserted; + assert(Inserted && "Should only insert an inner loop once!"); + } + + // Add the preheader to the worklist so we will continue past the + // loop body. + Worklist.push_back(InnerPH); + continue; + } + + // Insert any predecessors that were in the original loop into the new + // set, and if the insert is successful, add them to the worklist. + for (auto *Pred : predecessors(BB)) + if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) + Worklist.push_back(Pred); + } + + // We've found all the blocks participating in the loop, return our completed + // set. + return LoopBlockSet; +} + +/// Rebuild a loop after unswitching removes some subset of blocks and edges. +/// +/// The removal may have removed some child loops entirely but cannot have +/// disturbed any remaining child loops. However, they may need to be hoisted +/// to the parent loop (or to be top-level loops). The original loop may be +/// completely removed. +/// +/// The sibling loops resulting from this update are returned. If the original +/// loop remains a valid loop, it will be the first entry in this list with all +/// of the newly sibling loops following it. +/// +/// Returns true if the loop remains a loop after unswitching, and false if it +/// is no longer a loop after unswitching (and should not continue to be +/// referenced). +static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef ExitBlocks, + LoopInfo &LI, + SmallVectorImpl &HoistedLoops) { + auto *PH = L.getLoopPreheader(); + + // Compute the actual parent loop from the exit blocks. Because we may have + // pruned some exits the loop may be different from the original parent. + Loop *ParentL = nullptr; + SmallVector ExitLoops; + SmallVector ExitsInLoops; + ExitsInLoops.reserve(ExitBlocks.size()); + for (auto *ExitBB : ExitBlocks) + if (Loop *ExitL = LI.getLoopFor(ExitBB)) { + ExitLoops.push_back(ExitL); + ExitsInLoops.push_back(ExitBB); + if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) + ParentL = ExitL; + } + + // Recompute the blocks participating in this loop. This may be empty if it + // is no longer a loop. + auto LoopBlockSet = recomputeLoopBlockSet(L, LI); + + // If we still have a loop, we need to re-set the loop's parent as the exit + // block set changing may have moved it within the loop nest. Note that this + // can only happen when this loop has a parent as it can only hoist the loop + // *up* the nest. + if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { + // Remove this loop's (original) blocks from all of the intervening loops. + for (Loop *IL = L.getParentLoop(); IL != ParentL; + IL = IL->getParentLoop()) { + IL->getBlocksSet().erase(PH); + for (auto *BB : L.blocks()) + IL->getBlocksSet().erase(BB); + llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { + return BB == PH || L.contains(BB); + }); + } + + LI.changeLoopFor(PH, ParentL); + L.getParentLoop()->removeChildLoop(&L); + if (ParentL) + ParentL->addChildLoop(&L); + else + LI.addTopLevelLoop(&L); + } + + // Now we update all the blocks which are no longer within the loop. + auto &Blocks = L.getBlocksVector(); + auto BlocksSplitI = + LoopBlockSet.empty() + ? Blocks.begin() + : std::stable_partition( + Blocks.begin(), Blocks.end(), + [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); + + // Before we erase the list of unlooped blocks, build a set of them. + SmallPtrSet UnloopedBlocks(BlocksSplitI, Blocks.end()); + if (LoopBlockSet.empty()) + UnloopedBlocks.insert(PH); + + // Now erase these blocks from the loop. + for (auto *BB : make_range(BlocksSplitI, Blocks.end())) + L.getBlocksSet().erase(BB); + Blocks.erase(BlocksSplitI, Blocks.end()); + + // Sort the exits in ascending loop depth, we'll work backwards across these + // to process them inside out. + std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), + [&](BasicBlock *LHS, BasicBlock *RHS) { + return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); + }); + + // We'll build up a set for each exit loop. + SmallPtrSet NewExitLoopBlocks; + Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. + + auto RemoveUnloopedBlocksFromLoop = + [](Loop &L, SmallPtrSetImpl &UnloopedBlocks) { + for (auto *BB : UnloopedBlocks) + L.getBlocksSet().erase(BB); + llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { + return UnloopedBlocks.count(BB); + }); + }; + + SmallVector Worklist; + while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { + assert(Worklist.empty() && "Didn't clear worklist!"); + assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); + + // Grab the next exit block, in decreasing loop depth order. + BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); + Loop &ExitL = *LI.getLoopFor(ExitBB); + assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); + + // Erase all of the unlooped blocks from the loops between the previous + // exit loop and this exit loop. This works because the ExitInLoops list is + // sorted in increasing order of loop depth and thus we visit loops in + // decreasing order of loop depth. + for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) + RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); + + // Walk the CFG back until we hit the cloned PH adding everything reachable + // and in the unlooped set to this exit block's loop. + Worklist.push_back(ExitBB); + do { + BasicBlock *BB = Worklist.pop_back_val(); + // We can stop recursing at the cloned preheader (if we get there). + if (BB == PH) + continue; + + for (BasicBlock *PredBB : predecessors(BB)) { + // If this pred has already been moved to our set or is part of some + // (inner) loop, no update needed. + if (!UnloopedBlocks.erase(PredBB)) { + assert((NewExitLoopBlocks.count(PredBB) || + ExitL.contains(LI.getLoopFor(PredBB))) && + "Predecessor not in a nested loop (or already visited)!"); + continue; + } + + // We just insert into the loop set here. We'll add these blocks to the + // exit loop after we build up the set in a deterministic order rather + // than the predecessor-influenced visit order. + bool Inserted = NewExitLoopBlocks.insert(PredBB).second; + (void)Inserted; + assert(Inserted && "Should only visit an unlooped block once!"); + + // And recurse through to its predecessors. + Worklist.push_back(PredBB); + } + } while (!Worklist.empty()); + + // If blocks in this exit loop were directly part of the original loop (as + // opposed to a child loop) update the map to point to this exit loop. This + // just updates a map and so the fact that the order is unstable is fine. + for (auto *BB : NewExitLoopBlocks) + if (Loop *BBL = LI.getLoopFor(BB)) + if (BBL == &L || !L.contains(BBL)) + LI.changeLoopFor(BB, &ExitL); + + // We will remove the remaining unlooped blocks from this loop in the next + // iteration or below. + NewExitLoopBlocks.clear(); + } + + // Any remaining unlooped blocks are no longer part of any loop unless they + // are part of some child loop. + for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) + RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); + for (auto *BB : UnloopedBlocks) + if (Loop *BBL = LI.getLoopFor(BB)) + if (BBL == &L || !L.contains(BBL)) + LI.changeLoopFor(BB, nullptr); + + // Sink all the child loops whose headers are no longer in the loop set to + // the parent (or to be top level loops). We reach into the loop and directly + // update its subloop vector to make this batch update efficient. + auto &SubLoops = L.getSubLoopsVector(); + auto SubLoopsSplitI = + LoopBlockSet.empty() + ? SubLoops.begin() + : std::stable_partition( + SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { + return LoopBlockSet.count(SubL->getHeader()); + }); + for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { + HoistedLoops.push_back(HoistedL); + HoistedL->setParentLoop(nullptr); + + // To compute the new parent of this hoisted loop we look at where we + // placed the preheader above. We can't lookup the header itself because we + // retained the mapping from the header to the hoisted loop. But the + // preheader and header should have the exact same new parent computed + // based on the set of exit blocks from the original loop as the preheader + // is a predecessor of the header and so reached in the reverse walk. And + // because the loops were all in simplified form the preheader of the + // hoisted loop can't be part of some *other* loop. + if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) + NewParentL->addChildLoop(HoistedL); + else + LI.addTopLevelLoop(HoistedL); + } + SubLoops.erase(SubLoopsSplitI, SubLoops.end()); + + // Actually delete the loop if nothing remained within it. + if (Blocks.empty()) { + assert(SubLoops.empty() && + "Failed to remove all subloops from the original loop!"); + if (Loop *ParentL = L.getParentLoop()) + ParentL->removeChildLoop(llvm::find(*ParentL, &L)); + else + LI.removeLoop(llvm::find(LI, &L)); + LI.destroy(&L); + return false; + } + + return true; +} + +/// Helper to visit a dominator subtree, invoking a callable on each node. +/// +/// Returning false at any point will stop walking past that node of the tree. +template +void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { + SmallVector DomWorklist; + DomWorklist.push_back(DT[BB]); +#ifndef NDEBUG + SmallPtrSet Visited; + Visited.insert(DT[BB]); +#endif + do { + DomTreeNode *N = DomWorklist.pop_back_val(); + + // Visit this node. + if (!Callable(N->getBlock())) + continue; + + // Accumulate the child nodes. + for (DomTreeNode *ChildN : *N) { + assert(Visited.insert(ChildN).second && + "Cannot visit a node twice when walking a tree!"); + DomWorklist.push_back(ChildN); + } + } while (!DomWorklist.empty()); +} + +/// Take an invariant branch that has been determined to be safe and worthwhile +/// to unswitch despite being non-trivial to do so and perform the unswitch. +/// +/// This directly updates the CFG to hoist the predicate out of the loop, and +/// clone the necessary parts of the loop to maintain behavior. +/// +/// It also updates both dominator tree and loopinfo based on the unswitching. +/// +/// Once unswitching has been performed it runs the provided callback to report +/// the new loops and no-longer valid loops to the caller. +static bool unswitchInvariantBranch( + Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI, + AssumptionCache &AC, + function_ref)> NonTrivialUnswitchCB) { + assert(BI.isConditional() && "Can only unswitch a conditional branch!"); + assert(L.isLoopInvariant(BI.getCondition()) && + "Can only unswitch an invariant branch condition!"); + + // Constant and BBs tracking the cloned and continuing successor. + const int ClonedSucc = 0; + auto *ParentBB = BI.getParent(); + auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc); + auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc); + + assert(UnswitchedSuccBB != ContinueSuccBB && + "Should not unswitch a branch that always goes to the same place!"); + + // The branch should be in this exact loop. Any inner loop's invariant branch + // should be handled by unswitching that inner loop. The caller of this + // routine should filter out any candidates that remain (but were skipped for + // whatever reason). + assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); + + SmallVector ExitBlocks; + L.getUniqueExitBlocks(ExitBlocks); + + // We cannot unswitch if exit blocks contain a cleanuppad instruction as we + // don't know how to split those exit blocks. + // FIXME: We should teach SplitBlock to handle this and remove this + // restriction. + for (auto *ExitBB : ExitBlocks) + if (isa(ExitBB->getFirstNonPHI())) + return false; + + SmallPtrSet ExitBlockSet(ExitBlocks.begin(), + ExitBlocks.end()); + + // Compute the parent loop now before we start hacking on things. + Loop *ParentL = L.getParentLoop(); + + // Compute the outer-most loop containing one of our exit blocks. This is the + // furthest up our loopnest which can be mutated, which we will use below to + // update things. + Loop *OuterExitL = &L; + for (auto *ExitBB : ExitBlocks) { + Loop *NewOuterExitL = LI.getLoopFor(ExitBB); + if (!NewOuterExitL) { + // We exited the entire nest with this block, so we're done. + OuterExitL = nullptr; + break; + } + if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) + OuterExitL = NewOuterExitL; + } + + // If the edge we *aren't* cloning in the unswitch (the continuing edge) + // dominates its target, we can skip cloning the dominated region of the loop + // and its exits. We compute this as a set of nodes to be skipped. + SmallPtrSet SkippedLoopAndExitBlocks; + if (ContinueSuccBB->getUniquePredecessor() || + llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) { + return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB); + })) { + visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) { + SkippedLoopAndExitBlocks.insert(BB); + return true; + }); + } + // Similarly, if the edge we *are* cloning in the unswitch (the unswitched + // edge) dominates its target, we will end up with dead nodes in the original + // loop and its exits that will need to be deleted. Here, we just retain that + // the property holds and will compute the deleted set later. + bool DeleteUnswitchedSucc = + UnswitchedSuccBB->getUniquePredecessor() || + llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) { + return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB); + }); + + // Split the preheader, so that we know that there is a safe place to insert + // the conditional branch. We will change the preheader to have a conditional + // branch on LoopCond. The original preheader will become the split point + // between the unswitched versions, and we will have a new preheader for the + // original loop. + BasicBlock *SplitBB = L.getLoopPreheader(); + BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); + + // Keep a mapping for the cloned values. + ValueToValueMapTy VMap; + + // Build the cloned blocks from the loop. + auto *ClonedPH = buildClonedLoopBlocks( + L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB, + ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, AC, DT, LI); + + // Build the cloned loop structure itself. This may be substantially + // different from the original structure due to the simplified CFG. This also + // handles inserting all the cloned blocks into the correct loops. + SmallVector NonChildClonedLoops; + Loop *ClonedL = + buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops); + + // Remove the parent as a predecessor of the unswitched successor. + UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true); + + // Now splice the branch from the original loop and use it to select between + // the two loops. + SplitBB->getTerminator()->eraseFromParent(); + SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI); + BI.setSuccessor(ClonedSucc, ClonedPH); + BI.setSuccessor(1 - ClonedSucc, LoopPH); + + // Create a new unconditional branch to the continuing block (as opposed to + // the one cloned). + BranchInst::Create(ContinueSuccBB, ParentBB); + + // Delete anything that was made dead in the original loop due to + // unswitching. + if (DeleteUnswitchedSucc) + deleteDeadBlocksFromLoop(L, UnswitchedSuccBB, ExitBlocks, DT, LI); + + SmallVector HoistedLoops; + bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); + + // This will have completely invalidated the dominator tree. We can't easily + // bound how much is invalid because in some cases we will refine the + // predecessor set of exit blocks of the loop which can move large unrelated + // regions of code into a new subtree. + // + // FIXME: Eventually, we should use an incremental update utility that + // leverages the existing information in the dominator tree (and potentially + // the nature of the change) to more efficiently update things. + DT.recalculate(*SplitBB->getParent()); + + // We can change which blocks are exit blocks of all the cloned sibling + // loops, the current loop, and any parent loops which shared exit blocks + // with the current loop. As a consequence, we need to re-form LCSSA for + // them. But we shouldn't need to re-form LCSSA for any child loops. + // FIXME: This could be made more efficient by tracking which exit blocks are + // new, and focusing on them, but that isn't likely to be necessary. + // + // In order to reasonably rebuild LCSSA we need to walk inside-out across the + // loop nest and update every loop that could have had its exits changed. We + // also need to cover any intervening loops. We add all of these loops to + // a list and sort them by loop depth to achieve this without updating + // unnecessary loops. + auto UpdateLCSSA = [&](Loop &UpdateL) { +#ifndef NDEBUG + for (Loop *ChildL : UpdateL) + assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && + "Perturbed a child loop's LCSSA form!"); +#endif + formLCSSA(UpdateL, DT, &LI, nullptr); + }; + + // For non-child cloned loops and hoisted loops, we just need to update LCSSA + // and we can do it in any order as they don't nest relative to each other. + for (Loop *UpdatedL : llvm::concat(NonChildClonedLoops, HoistedLoops)) + UpdateLCSSA(*UpdatedL); + + // If the original loop had exit blocks, walk up through the outer most loop + // of those exit blocks to update LCSSA and form updated dedicated exits. + if (OuterExitL != &L) { + SmallVector OuterLoops; + // We start with the cloned loop and the current loop if they are loops and + // move toward OuterExitL. Also, if either the cloned loop or the current + // loop have become top level loops we need to walk all the way out. + if (ClonedL) { + OuterLoops.push_back(ClonedL); + if (!ClonedL->getParentLoop()) + OuterExitL = nullptr; + } + if (IsStillLoop) { + OuterLoops.push_back(&L); + if (!L.getParentLoop()) + OuterExitL = nullptr; + } + // Grab all of the enclosing loops now. + for (Loop *OuterL = ParentL; OuterL != OuterExitL; + OuterL = OuterL->getParentLoop()) + OuterLoops.push_back(OuterL); + + // Finally, update our list of outer loops. This is nicely ordered to work + // inside-out. + for (Loop *OuterL : OuterLoops) { + // First build LCSSA for this loop so that we can preserve it when + // forming dedicated exits. We don't want to perturb some other loop's + // LCSSA while doing that CFG edit. + UpdateLCSSA(*OuterL); + + // For loops reached by this loop's original exit blocks we may + // introduced new, non-dedicated exits. At least try to re-form dedicated + // exits for these loops. This may fail if they couldn't have dedicated + // exits to start with. + formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true); + } + } + +#ifndef NDEBUG + // Verify the entire loop structure to catch any incorrect updates before we + // progress in the pass pipeline. + LI.verify(DT); +#endif + + // Now that we've unswitched something, make callbacks to report the changes. + // For that we need to merge together the updated loops and the cloned loops + // and check whether the original loop survived. + SmallVector SibLoops; + for (Loop *UpdatedL : llvm::concat(NonChildClonedLoops, HoistedLoops)) + if (UpdatedL->getParentLoop() == ParentL) + SibLoops.push_back(UpdatedL); + NonTrivialUnswitchCB(IsStillLoop, SibLoops); + + ++NumBranches; + return true; +} + +/// Recursively compute the cost of a dominator subtree based on the per-block +/// cost map provided. +/// +/// The recursive computation is memozied into the provided DT-indexed cost map +/// to allow querying it for most nodes in the domtree without it becoming +/// quadratic. +static int +computeDomSubtreeCost(DomTreeNode &N, + const SmallDenseMap &BBCostMap, + SmallDenseMap &DTCostMap) { + // Don't accumulate cost (or recurse through) blocks not in our block cost + // map and thus not part of the duplication cost being considered. + auto BBCostIt = BBCostMap.find(N.getBlock()); + if (BBCostIt == BBCostMap.end()) + return 0; + + // Lookup this node to see if we already computed its cost. + auto DTCostIt = DTCostMap.find(&N); + if (DTCostIt != DTCostMap.end()) + return DTCostIt->second; + + // If not, we have to compute it. We can't use insert above and update + // because computing the cost may insert more things into the map. + int Cost = std::accumulate( + N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { + return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); + }); + bool Inserted = DTCostMap.insert({&N, Cost}).second; + (void)Inserted; + assert(Inserted && "Should not insert a node while visiting children!"); + return Cost; +} + /// Unswitch control flow predicated on loop invariant conditions. /// /// This first hoists all branches or switches which are trivial (IE, do not /// require duplicating any part of the loop) out of the loop body. It then /// looks at other loop invariant control flows and tries to unswitch those as /// well by cloning the loop if the result is small enough. -static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, - AssumptionCache &AC) { - assert(L.isLCSSAForm(DT) && +static bool +unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, + TargetTransformInfo &TTI, bool NonTrivial, + function_ref)> NonTrivialUnswitchCB) { + assert(L.isRecursivelyLCSSAForm(DT, LI) && "Loops must be in LCSSA form before unswitching."); bool Changed = false; @@ -727,7 +1926,136 @@ static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, // Try trivial unswitch first before loop over other basic blocks in the loop. Changed |= unswitchAllTrivialConditions(L, DT, LI); - // FIXME: Add support for non-trivial unswitching by cloning the loop. + // If we're not doing non-trivial unswitching, we're done. We both accept + // a parameter but also check a local flag that can be used for testing + // a debugging. + if (!NonTrivial && !EnableNonTrivialUnswitch) + return Changed; + + // Collect all remaining invariant branch conditions within this loop (as + // opposed to an inner loop which would be handled when visiting that inner + // loop). + SmallVector UnswitchCandidates; + for (auto *BB : L.blocks()) + if (LI.getLoopFor(BB) == &L) + if (auto *BI = dyn_cast(BB->getTerminator())) + if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) && + BI->getSuccessor(0) != BI->getSuccessor(1)) + UnswitchCandidates.push_back(BI); + + // If we didn't find any candidates, we're done. + if (UnswitchCandidates.empty()) + return Changed; + + DEBUG(dbgs() << "Considering " << UnswitchCandidates.size() + << " non-trivial loop invariant conditions for unswitching.\n"); + + // Given that unswitching these terminators will require duplicating parts of + // the loop, so we need to be able to model that cost. Compute the ephemeral + // values and set up a data structure to hold per-BB costs. We cache each + // block's cost so that we don't recompute this when considering different + // subsets of the loop for duplication during unswitching. + SmallPtrSet EphValues; + CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); + SmallDenseMap BBCostMap; + + // Compute the cost of each block, as well as the total loop cost. Also, bail + // out if we see instructions which are incompatible with loop unswitching + // (convergent, noduplicate, or cross-basic-block tokens). + // FIXME: We might be able to safely handle some of these in non-duplicated + // regions. + int LoopCost = 0; + for (auto *BB : L.blocks()) { + int Cost = 0; + for (auto &I : *BB) { + if (EphValues.count(&I)) + continue; + + if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) + return Changed; + if (auto CS = CallSite(&I)) + if (CS.isConvergent() || CS.cannotDuplicate()) + return Changed; + + Cost += TTI.getUserCost(&I); + } + assert(Cost >= 0 && "Must not have negative costs!"); + LoopCost += Cost; + assert(LoopCost >= 0 && "Must not have negative loop costs!"); + BBCostMap[BB] = Cost; + } + DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); + + // Now we find the best candidate by searching for the one with the following + // properties in order: + // + // 1) An unswitching cost below the threshold + // 2) The smallest number of duplicated unswitch candidates (to avoid + // creating redundant subsequent unswitching) + // 3) The smallest cost after unswitching. + // + // We prioritize reducing fanout of unswitch candidates provided the cost + // remains below the threshold because this has a multiplicative effect. + // + // This requires memoizing each dominator subtree to avoid redundant work. + // + // FIXME: Need to actually do the number of candidates part above. + SmallDenseMap DTCostMap; + // Given a terminator which might be unswitched, computes the non-duplicated + // cost for that terminator. + auto ComputeUnswitchedCost = [&](TerminatorInst *TI) { + BasicBlock &BB = *TI->getParent(); + SmallPtrSet Visited; + + int Cost = LoopCost; + for (BasicBlock *SuccBB : successors(&BB)) { + // Don't count successors more than once. + if (!Visited.insert(SuccBB).second) + continue; + + // This successor's domtree will not need to be duplicated after + // unswitching if the edge to the successor dominates it (and thus the + // entire tree). This essentially means there is no other path into this + // subtree and so it will end up live in only one clone of the loop. + if (SuccBB->getUniquePredecessor() || + llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { + return PredBB == &BB || DT.dominates(SuccBB, PredBB); + })) { + Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); + assert(Cost >= 0 && + "Non-duplicated cost should never exceed total loop cost!"); + } + } + + // Now scale the cost by the number of unique successors minus one. We + // subtract one because there is already at least one copy of the entire + // loop. This is computing the new cost of unswitching a condition. + assert(Visited.size() > 1 && + "Cannot unswitch a condition without multiple distinct successors!"); + return Cost * (Visited.size() - 1); + }; + TerminatorInst *BestUnswitchTI = nullptr; + int BestUnswitchCost; + for (TerminatorInst *CandidateTI : UnswitchCandidates) { + int CandidateCost = ComputeUnswitchedCost(CandidateTI); + DEBUG(dbgs() << " Computed cost of " << CandidateCost + << " for unswitch candidate: " << *CandidateTI << "\n"); + if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { + BestUnswitchTI = CandidateTI; + BestUnswitchCost = CandidateCost; + } + } + + if (BestUnswitchCost < UnswitchThreshold) { + DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = " + << BestUnswitchCost << ") branch: " << *BestUnswitchTI + << "\n"); + Changed |= unswitchInvariantBranch(L, cast(*BestUnswitchTI), DT, + LI, AC, NonTrivialUnswitchCB); + } else { + DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost + << "\n"); + } return Changed; } @@ -740,7 +2068,25 @@ PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n"); - if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC)) + // Save the current loop name in a variable so that we can report it even + // after it has been deleted. + std::string LoopName = L.getName(); + + auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, + ArrayRef NewLoops) { + // If we did a non-trivial unswitch, we have added new (cloned) loops. + U.addSiblingLoops(NewLoops); + + // If the current loop remains valid, we should revisit it to catch any + // other unswitch opportunities. Otherwise, we need to mark it as deleted. + if (CurrentLoopValid) + U.revisitCurrentLoop(); + else + U.markLoopAsDeleted(L, LoopName); + }; + + if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, + NonTrivialUnswitchCB)) return PreservedAnalyses::all(); #ifndef NDEBUG @@ -754,10 +2100,13 @@ PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, namespace { class SimpleLoopUnswitchLegacyPass : public LoopPass { + bool NonTrivial; + public: static char ID; // Pass ID, replacement for typeid - explicit SimpleLoopUnswitchLegacyPass() : LoopPass(ID) { + explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) + : LoopPass(ID), NonTrivial(NonTrivial) { initializeSimpleLoopUnswitchLegacyPassPass( *PassRegistry::getPassRegistry()); } @@ -766,6 +2115,7 @@ class SimpleLoopUnswitchLegacyPass : public LoopPass { void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); + AU.addRequired(); getLoopAnalysisUsage(AU); } }; @@ -783,8 +2133,29 @@ bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { auto &DT = getAnalysis().getDomTree(); auto &LI = getAnalysis().getLoopInfo(); auto &AC = getAnalysis().getAssumptionCache(F); + auto &TTI = getAnalysis().getTTI(F); + + auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid, + ArrayRef NewLoops) { + // If we did a non-trivial unswitch, we have added new (cloned) loops. + for (auto *NewL : NewLoops) + LPM.addLoop(*NewL); + + // If the current loop remains valid, re-add it to the queue. This is + // a little wasteful as we'll finish processing the current loop as well, + // but it is the best we can do in the old PM. + if (CurrentLoopValid) + LPM.addLoop(*L); + else + LPM.markLoopAsDeleted(*L); + }; + + bool Changed = + unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB); - bool Changed = unswitchLoop(*L, DT, LI, AC); + // If anything was unswitched, also clear any cached information about this + // loop. + LPM.deleteSimpleAnalysisLoop(L); #ifndef NDEBUG // Historically this pass has had issues with the dominator tree so verify it @@ -798,11 +2169,13 @@ char SimpleLoopUnswitchLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", "Simple unswitch loops", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", "Simple unswitch loops", false, false) -Pass *llvm::createSimpleLoopUnswitchLegacyPass() { - return new SimpleLoopUnswitchLegacyPass(); +Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { + return new SimpleLoopUnswitchLegacyPass(NonTrivial); } diff --git a/llvm/test/Transforms/SimpleLoopUnswitch/2006-06-27-DeadSwitchCase.ll b/llvm/test/Transforms/SimpleLoopUnswitch/2006-06-27-DeadSwitchCase.ll index 04067eb05c8e..61825b6c1d85 100644 --- a/llvm/test/Transforms/SimpleLoopUnswitch/2006-06-27-DeadSwitchCase.ll +++ b/llvm/test/Transforms/SimpleLoopUnswitch/2006-06-27-DeadSwitchCase.ll @@ -2,24 +2,30 @@ define void @init_caller_save() { entry: - br label %cond_true78 -cond_next20: ; preds = %cond_true64 - br label %bb31 -bb31: ; preds = %cond_true64, %cond_true64, %cond_next20 - %iftmp.29.1 = phi i32 [ 0, %cond_next20 ], [ 0, %cond_true64 ], [ 0, %cond_true64 ] ; [#uses=0] - br label %bb54 -bb54: ; preds = %cond_true78, %bb31 - br i1 false, label %bb75, label %cond_true64 -cond_true64: ; preds = %bb54 - switch i32 %i.0.0, label %cond_next20 [ - i32 17, label %bb31 - i32 18, label %bb31 - ] -bb75: ; preds = %bb54 - %tmp74.0 = add i32 %i.0.0, 1 ; [#uses=1] - br label %cond_true78 -cond_true78: ; preds = %bb75, %entry - %i.0.0 = phi i32 [ 0, %entry ], [ %tmp74.0, %bb75 ] ; [#uses=2] - br label %bb54 + br label %cond_true78 + +cond_true78: ; preds = %bb75, %entry + %i.0.0 = phi i32 [ 0, %entry ], [ %tmp74.0, %bb75 ] ; [#uses=2] + br label %bb54 + +bb54: ; preds = %cond_true78, %bb31 + br i1 false, label %bb75, label %cond_true64 + +cond_true64: ; preds = %bb54 + switch i32 %i.0.0, label %cond_next20 [ + i32 17, label %bb31 + i32 18, label %bb31 + ] + +cond_next20: ; preds = %cond_true64 + br label %bb31 + +bb31: ; preds = %cond_true64, %cond_true64, %cond_next20 + %iftmp.29.1 = phi i32 [ 0, %cond_next20 ], [ 0, %cond_true64 ], [ 0, %cond_true64 ] ; [#uses=0] + br label %bb54 + +bb75: ; preds = %bb54 + %tmp74.0 = add i32 %i.0.0, 1 ; [#uses=1] + br label %cond_true78 } diff --git a/llvm/test/Transforms/SimpleLoopUnswitch/nontrivial-unswitch-cost.ll b/llvm/test/Transforms/SimpleLoopUnswitch/nontrivial-unswitch-cost.ll new file mode 100644 index 000000000000..2d98f148d46d --- /dev/null +++ b/llvm/test/Transforms/SimpleLoopUnswitch/nontrivial-unswitch-cost.ll @@ -0,0 +1,501 @@ +; Specifically exercise the cost modeling for non-trivial loop unswitching. +; +; RUN: opt -passes='loop(unswitch),verify' -enable-nontrivial-unswitch -unswitch-threshold=5 -S < %s | FileCheck %s +; RUN: opt -simple-loop-unswitch -enable-nontrivial-unswitch -unswitch-threshold=5 -S < %s | FileCheck %s + +declare void @a() +declare void @b() +declare void @x() + +; First establish enough code size in the duplicated 'loop_begin' block to +; suppress unswitching. +define void @test_no_unswitch(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_no_unswitch( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin +; +; We shouldn't have unswitched into any other block either. +; CHECK-NOT: br i1 %cond + +loop_begin: + call void @x() + call void @x() + call void @x() + call void @x() + br i1 %cond, label %loop_a, label %loop_b +; CHECK: loop_begin: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: call void @x() +; CHECK-NEXT: call void @x() +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br i1 %cond, label %loop_a, label %loop_b + +loop_a: + call void @a() + br label %loop_latch + +loop_b: + call void @b() + br label %loop_latch + +loop_latch: + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + ret void +} + +; Now check that the smaller formulation of 'loop_begin' does in fact unswitch +; with our low threshold. +define void @test_unswitch(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_unswitch( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + call void @x() + br i1 %cond, label %loop_a, label %loop_b + +loop_a: + call void @a() + br label %loop_latch +; The 'loop_a' unswitched loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_a.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: call void @a() +; CHECK-NEXT: br label %loop_latch.us +; +; CHECK: loop_latch.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: br label %loop_exit + +loop_b: + call void @b() + br label %loop_latch +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: call void @b() +; CHECK-NEXT: br label %loop_latch +; +; CHECK: loop_latch: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: br label %loop_exit + +loop_latch: + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + ret void +; CHECK: loop_exit: +; CHECK-NEXT: ret void +} + +; Check that even with large amounts of code on either side of the unswitched +; branch, if that code would be kept in only one of the unswitched clones it +; doesn't contribute to the cost. +define void @test_unswitch_non_dup_code(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_unswitch_non_dup_code( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + call void @x() + br i1 %cond, label %loop_a, label %loop_b + +loop_a: + call void @a() + call void @a() + call void @a() + call void @a() + br label %loop_latch +; The 'loop_a' unswitched loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_a.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: call void @a() +; CHECK-NEXT: call void @a() +; CHECK-NEXT: call void @a() +; CHECK-NEXT: call void @a() +; CHECK-NEXT: br label %loop_latch.us +; +; CHECK: loop_latch.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: br label %loop_exit + +loop_b: + call void @b() + call void @b() + call void @b() + call void @b() + br label %loop_latch +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: call void @b() +; CHECK-NEXT: call void @b() +; CHECK-NEXT: call void @b() +; CHECK-NEXT: call void @b() +; CHECK-NEXT: br label %loop_latch +; +; CHECK: loop_latch: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: br label %loop_exit + +loop_latch: + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + ret void +; CHECK: loop_exit: +; CHECK-NEXT: ret void +} + +; Much like with non-duplicated code directly in the successor, we also won't +; duplicate even interesting CFGs. +define void @test_unswitch_non_dup_code_in_cfg(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_unswitch_non_dup_code_in_cfg( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + call void @x() + br i1 %cond, label %loop_a, label %loop_b + +loop_a: + %v1 = load i1, i1* %ptr + br i1 %v1, label %loop_a_a, label %loop_a_b + +loop_a_a: + call void @a() + br label %loop_latch + +loop_a_b: + call void @a() + br label %loop_latch +; The 'loop_a' unswitched loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_a.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a_a.us, label %loop_a_b.us +; +; CHECK: loop_a_b.us: +; CHECK-NEXT: call void @a() +; CHECK-NEXT: br label %loop_latch.us +; +; CHECK: loop_a_a.us: +; CHECK-NEXT: call void @a() +; CHECK-NEXT: br label %loop_latch.us +; +; CHECK: loop_latch.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: br label %loop_exit + +loop_b: + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_b_a, label %loop_b_b + +loop_b_a: + call void @b() + br label %loop_latch + +loop_b_b: + call void @b() + br label %loop_latch +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_b_a, label %loop_b_b +; +; CHECK: loop_b_a: +; CHECK-NEXT: call void @b() +; CHECK-NEXT: br label %loop_latch +; +; CHECK: loop_b_b: +; CHECK-NEXT: call void @b() +; CHECK-NEXT: br label %loop_latch +; +; CHECK: loop_latch: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: br label %loop_exit + +loop_latch: + %v3 = load i1, i1* %ptr + br i1 %v3, label %loop_begin, label %loop_exit + +loop_exit: + ret void +; CHECK: loop_exit: +; CHECK-NEXT: ret void +} + +; Check that even if there is *some* non-duplicated code on one side of an +; unswitch, we don't count any other code in the loop that will in fact have to +; be duplicated. +define void @test_no_unswitch_non_dup_code(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_no_unswitch_non_dup_code( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin +; +; We shouldn't have unswitched into any other block either. +; CHECK-NOT: br i1 %cond + +loop_begin: + call void @x() + br i1 %cond, label %loop_a, label %loop_b +; CHECK: loop_begin: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br i1 %cond, label %loop_a, label %loop_b + +loop_a: + %v1 = load i1, i1* %ptr + br i1 %v1, label %loop_a_a, label %loop_a_b + +loop_a_a: + call void @a() + br label %loop_latch + +loop_a_b: + call void @a() + br label %loop_latch + +loop_b: + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_b_a, label %loop_b_b + +loop_b_a: + call void @b() + br label %loop_latch + +loop_b_b: + call void @b() + br label %loop_latch + +loop_latch: + call void @x() + call void @x() + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + ret void +} + +; Check that we still unswitch when the exit block contains lots of code, even +; though we do clone the exit block as part of unswitching. This should work +; because we should split the exit block before anything inside it. +define void @test_unswitch_large_exit(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_unswitch_large_exit( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + call void @x() + br i1 %cond, label %loop_a, label %loop_b + +loop_a: + call void @a() + br label %loop_latch +; The 'loop_a' unswitched loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_a.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: call void @a() +; CHECK-NEXT: br label %loop_latch.us +; +; CHECK: loop_latch.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: br label %loop_exit + +loop_b: + call void @b() + br label %loop_latch +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: call void @b() +; CHECK-NEXT: br label %loop_latch +; +; CHECK: loop_latch: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: br label %loop_exit + +loop_latch: + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + call void @x() + call void @x() + call void @x() + call void @x() + ret void +; CHECK: loop_exit: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: call void @x() +; CHECK-NEXT: call void @x() +; CHECK-NEXT: call void @x() +; CHECK-NEXT: ret void +} + +; Check that we handle a dedicated exit edge unswitch which is still +; non-trivial and has lots of code in the exit. +define void @test_unswitch_dedicated_exiting(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_unswitch_dedicated_exiting( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + call void @x() + br i1 %cond, label %loop_a, label %loop_b_exit + +loop_a: + call void @a() + br label %loop_latch +; The 'loop_a' unswitched loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_a.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: call void @a() +; CHECK-NEXT: br label %loop_latch.us +; +; CHECK: loop_latch.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: br label %loop_exit + +loop_b_exit: + call void @b() + call void @b() + call void @b() + call void @b() + ret void +; The 'loop_b_exit' unswitched exit path. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: call void @x() +; CHECK-NEXT: br label %loop_b_exit +; +; CHECK: loop_b_exit: +; CHECK-NEXT: call void @b() +; CHECK-NEXT: call void @b() +; CHECK-NEXT: call void @b() +; CHECK-NEXT: call void @b() +; CHECK-NEXT: ret void + +loop_latch: + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + ret void +; CHECK: loop_exit: +; CHECK-NEXT: ret void +} diff --git a/llvm/test/Transforms/SimpleLoopUnswitch/nontrivial-unswitch.ll b/llvm/test/Transforms/SimpleLoopUnswitch/nontrivial-unswitch.ll new file mode 100644 index 000000000000..51cdebe70e08 --- /dev/null +++ b/llvm/test/Transforms/SimpleLoopUnswitch/nontrivial-unswitch.ll @@ -0,0 +1,2352 @@ +; RUN: opt -passes='loop(unswitch),verify' -enable-nontrivial-unswitch -S < %s | FileCheck %s +; RUN: opt -simple-loop-unswitch -enable-nontrivial-unswitch -S < %s | FileCheck %s + +declare void @a() +declare void @b() +declare void @c() +declare void @d() + +declare void @sink1(i32) +declare void @sink2(i32) + +; Negative test: we cannot unswitch convergent calls. +define void @test_no_unswitch_convergent(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_no_unswitch_convergent( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin +; +; We shouldn't have unswitched into any other block either. +; CHECK-NOT: br i1 %cond + +loop_begin: + br i1 %cond, label %loop_a, label %loop_b +; CHECK: loop_begin: +; CHECK-NEXT: br i1 %cond, label %loop_a, label %loop_b + +loop_a: + call void @a() convergent + br label %loop_latch + +loop_b: + call void @b() + br label %loop_latch + +loop_latch: + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + ret void +} + +; Negative test: we cannot unswitch noduplicate calls. +define void @test_no_unswitch_noduplicate(i1* %ptr, i1 %cond) { +; CHECK-LABEL: @test_no_unswitch_noduplicate( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin +; +; We shouldn't have unswitched into any other block either. +; CHECK-NOT: br i1 %cond + +loop_begin: + br i1 %cond, label %loop_a, label %loop_b +; CHECK: loop_begin: +; CHECK-NEXT: br i1 %cond, label %loop_a, label %loop_b + +loop_a: + call void @a() noduplicate + br label %loop_latch + +loop_b: + call void @b() + br label %loop_latch + +loop_latch: + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + ret void +} + +declare i32 @__CxxFrameHandler3(...) + +; Negative test: we cannot unswitch when tokens are used across blocks as we +; might introduce PHIs. +define void @test_no_unswitch_cross_block_token(i1* %ptr, i1 %cond) nounwind personality i32 (...)* @__CxxFrameHandler3 { +; CHECK-LABEL: @test_no_unswitch_cross_block_token( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin +; +; We shouldn't have unswitched into any other block either. +; CHECK-NOT: br i1 %cond + +loop_begin: + br i1 %cond, label %loop_a, label %loop_b +; CHECK: loop_begin: +; CHECK-NEXT: br i1 %cond, label %loop_a, label %loop_b + +loop_a: + call void @a() + br label %loop_cont + +loop_b: + call void @b() + br label %loop_cont + +loop_cont: + invoke void @a() + to label %loop_latch unwind label %loop_catch + +loop_latch: + br label %loop_begin + +loop_catch: + %catch = catchswitch within none [label %loop_catch_latch, label %loop_exit] unwind to caller + +loop_catch_latch: + %catchpad_latch = catchpad within %catch [] + catchret from %catchpad_latch to label %loop_begin + +loop_exit: + %catchpad_exit = catchpad within %catch [] + catchret from %catchpad_exit to label %exit + +exit: + ret void +} + + +; Non-trivial loop unswitching where there are two distinct trivial conditions +; to unswitch within the loop. +define i32 @test1(i1* %ptr, i1 %cond1, i1 %cond2) { +; CHECK-LABEL: @test1( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %entry.split.us, label %entry.split + +loop_begin: + br i1 %cond1, label %loop_a, label %loop_b + +loop_a: + call void @a() + br label %latch +; The 'loop_a' unswitched loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: br label %loop_a.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: call void @a() +; CHECK-NEXT: br label %latch.us +; +; CHECK: latch.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: br label %loop_exit + +loop_b: + br i1 %cond2, label %loop_b_a, label %loop_b_b +; The second unswitched condition. +; +; CHECK: entry.split: +; CHECK-NEXT: br i1 %cond2, label %entry.split.split.us, label %entry.split.split + +loop_b_a: + call void @b() + br label %latch +; The 'loop_b_a' unswitched loop. +; +; CHECK: entry.split.split.us: +; CHECK-NEXT: br label %loop_begin.us1 +; +; CHECK: loop_begin.us1: +; CHECK-NEXT: br label %loop_b.us +; +; CHECK: loop_b.us: +; CHECK-NEXT: br label %loop_b_a.us +; +; CHECK: loop_b_a.us: +; CHECK-NEXT: call void @b() +; CHECK-NEXT: br label %latch.us2 +; +; CHECK: latch.us2: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us1, label %loop_exit.split.split.us +; +; CHECK: loop_exit.split.split.us: +; CHECK-NEXT: br label %loop_exit.split + +loop_b_b: + call void @c() + br label %latch +; The 'loop_b_b' unswitched loop. +; +; CHECK: entry.split.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: br label %loop_b_b +; +; CHECK: loop_b_b: +; CHECK-NEXT: call void @c() +; CHECK-NEXT: br label %latch +; +; CHECK: latch: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit.split.split +; +; CHECK: loop_exit.split.split: +; CHECK-NEXT: br label %loop_exit.split + +latch: + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit + +loop_exit: + ret i32 0 +; CHECK: loop_exit.split: +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit: +; CHECK-NEXT: ret +} + +define i32 @test2(i1* %ptr, i1 %cond1, i32* %a.ptr, i32* %b.ptr, i32* %c.ptr) { +; CHECK-LABEL: @test2( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %entry.split.us, label %entry.split + +loop_begin: + %v = load i1, i1* %ptr + br i1 %cond1, label %loop_a, label %loop_b + +loop_a: + %a = load i32, i32* %a.ptr + %ac = load i32, i32* %c.ptr + br i1 %v, label %loop_begin, label %loop_exit +; The 'loop_a' unswitched loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br label %loop_a.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[AC:.*]] = load i32, i32* %c.ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.backedge.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %loop_a.us ] +; CHECK-NEXT: %[[AC_LCSSA:.*]] = phi i32 [ %[[AC]], %loop_a.us ] +; CHECK-NEXT: br label %loop_exit + +loop_b: + %b = load i32, i32* %b.ptr + %bc = load i32, i32* %c.ptr + br i1 %v, label %loop_begin, label %loop_exit +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: %[[BC:.*]] = load i32, i32* %c.ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.backedge, label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %loop_b ] +; CHECK-NEXT: %[[BC_LCSSA:.*]] = phi i32 [ %[[BC]], %loop_b ] +; CHECK-NEXT: br label %loop_exit + +loop_exit: + %ab.phi = phi i32 [ %a, %loop_a ], [ %b, %loop_b ] + %c.phi = phi i32 [ %ac, %loop_a ], [ %bc, %loop_b ] + %result = add i32 %ab.phi, %c.phi + ret i32 %result +; CHECK: loop_exit: +; CHECK-NEXT: %[[AB_PHI:.*]] = phi i32 [ %[[B_LCSSA]], %loop_exit.split ], [ %[[A_LCSSA]], %loop_exit.split.us ] +; CHECK-NEXT: %[[C_PHI:.*]] = phi i32 [ %[[BC_LCSSA]], %loop_exit.split ], [ %[[AC_LCSSA]], %loop_exit.split.us ] +; CHECK-NEXT: %[[RESULT:.*]] = add i32 %[[AB_PHI]], %[[C_PHI]] +; CHECK-NEXT: ret i32 %[[RESULT]] +} + +; Test a non-trivial unswitch of an exiting edge to an exit block with other +; in-loop predecessors. +define i32 @test3a(i1* %ptr, i1 %cond1, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test3a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %entry.split.us, label %entry.split + +loop_begin: + %v = load i1, i1* %ptr + %a = load i32, i32* %a.ptr + br i1 %cond1, label %loop_exit, label %loop_b +; The 'loop_exit' clone. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %loop_begin.us ] +; CHECK-NEXT: br label %loop_exit + +loop_b: + %b = load i32, i32* %b.ptr + br i1 %v, label %loop_begin, label %loop_exit +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %loop_b ] +; CHECK-NEXT: br label %loop_exit + +loop_exit: + %ab.phi = phi i32 [ %a, %loop_begin ], [ %b, %loop_b ] + ret i32 %ab.phi +; CHECK: loop_exit: +; CHECK-NEXT: %[[AB_PHI:.*]] = phi i32 [ %[[B_LCSSA]], %loop_exit.split ], [ %[[A_LCSSA]], %loop_exit.split.us ] +; CHECK-NEXT: ret i32 %[[AB_PHI]] +} + +; Test a non-trivial unswitch of an exiting edge to an exit block with other +; in-loop predecessors. This is the same as @test3a but with the reversed order +; of successors so that the exiting edge is *not* the cloned edge. +define i32 @test3b(i1* %ptr, i1 %cond1, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test3b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %entry.split.us, label %entry.split + +loop_begin: + %v = load i1, i1* %ptr + %a = load i32, i32* %a.ptr + br i1 %cond1, label %loop_b, label %loop_exit +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_b.us +; +; CHECK: loop_b.us: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %loop_b.us ] +; CHECK-NEXT: br label %loop_exit + +loop_b: + %b = load i32, i32* %b.ptr + br i1 %v, label %loop_begin, label %loop_exit +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %loop_begin ] +; CHECK-NEXT: br label %loop_exit + +loop_exit: + %ab.phi = phi i32 [ %b, %loop_b ], [ %a, %loop_begin ] + ret i32 %ab.phi +; CHECK: loop_exit: +; CHECK-NEXT: %[[AB_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit.split ], [ %[[B_LCSSA]], %loop_exit.split.us ] +; CHECK-NEXT: ret i32 %[[AB_PHI]] +} + +; Test a non-trivial unswitch of an exiting edge to an exit block with no other +; in-loop predecessors. +define void @test4a(i1* %ptr, i1 %cond1, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test4a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %entry.split.us, label %entry.split + +loop_begin: + %v = load i1, i1* %ptr + %a = load i32, i32* %a.ptr + br i1 %cond1, label %loop_exit1, label %loop_b +; The 'loop_exit' clone. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_exit1.split.us +; +; CHECK: loop_exit1.split.us: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %loop_begin.us ] +; CHECK-NEXT: br label %loop_exit1 + +loop_b: + %b = load i32, i32* %b.ptr + br i1 %v, label %loop_begin, label %loop_exit2 +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit2 + +loop_exit1: + %a.phi = phi i32 [ %a, %loop_begin ] + call void @sink1(i32 %a.phi) + ret void +; CHECK: loop_exit1: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit1.split.us ] +; CHECK-NEXT: call void @sink1(i32 %[[A_PHI]]) +; CHECK-NEXT: ret void + +loop_exit2: + %b.phi = phi i32 [ %b, %loop_b ] + call void @sink2(i32 %b.phi) + ret void +; CHECK: loop_exit2: +; CHECK-NEXT: %[[B_PHI:.*]] = phi i32 [ %[[B]], %loop_b ] +; CHECK-NEXT: call void @sink2(i32 %[[B_PHI]]) +; CHECK-NEXT: ret void +} + +; Test a non-trivial unswitch of an exiting edge to an exit block with no other +; in-loop predecessors. This is the same as @test4a but with the edges reversed +; so that the exiting edge is *not* the cloned edge. +define void @test4b(i1* %ptr, i1 %cond1, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test4b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %entry.split.us, label %entry.split + +loop_begin: + %v = load i1, i1* %ptr + %a = load i32, i32* %a.ptr + br i1 %cond1, label %loop_b, label %loop_exit1 +; The 'loop_b' clone. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_b.us +; +; CHECK: loop_b.us: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit2.split.us +; +; CHECK: loop_exit2.split.us: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %loop_b.us ] +; CHECK-NEXT: br label %loop_exit2 + +loop_b: + %b = load i32, i32* %b.ptr + br i1 %v, label %loop_begin, label %loop_exit2 +; The 'loop_exit' unswitched path. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_exit1 + +loop_exit1: + %a.phi = phi i32 [ %a, %loop_begin ] + call void @sink1(i32 %a.phi) + ret void +; CHECK: loop_exit1: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A]], %loop_begin ] +; CHECK-NEXT: call void @sink1(i32 %[[A_PHI]]) +; CHECK-NEXT: ret void + +loop_exit2: + %b.phi = phi i32 [ %b, %loop_b ] + call void @sink2(i32 %b.phi) + ret void +; CHECK: loop_exit2: +; CHECK-NEXT: %[[B_PHI:.*]] = phi i32 [ %[[B_LCSSA]], %loop_exit2.split.us ] +; CHECK-NEXT: call void @sink2(i32 %[[B_PHI]]) +; CHECK-NEXT: ret void +} + +; Test a non-trivial unswitch of an exiting edge to an exit block with no other +; in-loop predecessors. This is the same as @test4a but with a common merge +; block after the independent loop exits. This requires a different structural +; update to the dominator tree. +define void @test4c(i1* %ptr, i1 %cond1, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test4c( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %entry.split.us, label %entry.split + +loop_begin: + %v = load i1, i1* %ptr + %a = load i32, i32* %a.ptr + br i1 %cond1, label %loop_exit1, label %loop_b +; The 'loop_exit' clone. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_exit1.split.us +; +; CHECK: loop_exit1.split.us: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %loop_begin.us ] +; CHECK-NEXT: br label %loop_exit1 + +loop_b: + %b = load i32, i32* %b.ptr + br i1 %v, label %loop_begin, label %loop_exit2 +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit2 + +loop_exit1: + %a.phi = phi i32 [ %a, %loop_begin ] + call void @sink1(i32 %a.phi) + br label %exit +; CHECK: loop_exit1: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit1.split.us ] +; CHECK-NEXT: call void @sink1(i32 %[[A_PHI]]) +; CHECK-NEXT: br label %exit + +loop_exit2: + %b.phi = phi i32 [ %b, %loop_b ] + call void @sink2(i32 %b.phi) + br label %exit +; CHECK: loop_exit2: +; CHECK-NEXT: %[[B_PHI:.*]] = phi i32 [ %[[B]], %loop_b ] +; CHECK-NEXT: call void @sink2(i32 %[[B_PHI]]) +; CHECK-NEXT: br label %exit + +exit: + ret void +; CHECK: exit: +; CHECK-NEXT: ret void +} + +; Test that we can unswitch a condition out of multiple layers of a loop nest. +define i32 @test5(i1* %ptr, i1 %cond1, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test5( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %loop_begin.split.us, label %entry.split +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: br label %loop_begin.split + +loop_begin: + br label %inner_loop_begin + +inner_loop_begin: + %v = load i1, i1* %ptr + %a = load i32, i32* %a.ptr + br i1 %cond1, label %loop_exit, label %inner_loop_b +; The 'loop_exit' clone. +; +; CHECK: loop_begin.split.us: +; CHECK-NEXT: br label %inner_loop_begin.us +; +; CHECK: inner_loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_exit.loopexit.split.us +; +; CHECK: loop_exit.loopexit.split.us: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %inner_loop_begin.us ] +; CHECK-NEXT: br label %loop_exit + +inner_loop_b: + %b = load i32, i32* %b.ptr + br i1 %v, label %inner_loop_begin, label %loop_latch +; The 'inner_loop_b' unswitched loop. +; +; CHECK: loop_begin.split: +; CHECK-NEXT: br label %inner_loop_begin +; +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_b +; +; CHECK: inner_loop_b: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_begin, label %loop_latch + +loop_latch: + %b.phi = phi i32 [ %b, %inner_loop_b ] + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_begin, label %loop_exit +; CHECK: loop_latch: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %inner_loop_b ] +; CHECK-NEXT: %[[V2:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V2]], label %loop_begin, label %loop_exit.loopexit1 + +loop_exit: + %ab.phi = phi i32 [ %a, %inner_loop_begin ], [ %b.phi, %loop_latch ] + ret i32 %ab.phi +; CHECK: loop_exit.loopexit: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit.loopexit.split.us ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit.loopexit1: +; CHECK-NEXT: %[[B_PHI:.*]] = phi i32 [ %[[B_LCSSA]], %loop_latch ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit: +; CHECK-NEXT: %[[AB_PHI:.*]] = phi i32 [ %[[A_PHI]], %loop_exit.loopexit ], [ %[[B_PHI]], %loop_exit.loopexit1 ] +; CHECK-NEXT: ret i32 %[[AB_PHI]] +} + +; Test that we can unswitch a condition where we end up only cloning some of +; the nested loops and needing to delete some of the nested loops. +define i32 @test6(i1* %ptr, i1 %cond1, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test6( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond1, label %entry.split.us, label %entry.split + +loop_begin: + %v = load i1, i1* %ptr + br i1 %cond1, label %loop_a, label %loop_b + +loop_a: + br label %loop_a_inner + +loop_a_inner: + %va = load i1, i1* %ptr + %a = load i32, i32* %a.ptr + br i1 %va, label %loop_a_inner, label %loop_a_inner_exit + +loop_a_inner_exit: + %a.lcssa = phi i32 [ %a, %loop_a_inner ] + br label %latch +; The 'loop_a' cloned loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br label %loop_a.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: br label %loop_a_inner.us +; +; CHECK: loop_a_inner.us +; CHECK-NEXT: %[[VA:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br i1 %[[VA]], label %loop_a_inner.us, label %loop_a_inner_exit.us +; +; CHECK: loop_a_inner_exit.us: +; CHECK-NEXT: %[[A_INNER_LCSSA:.*]] = phi i32 [ %[[A]], %loop_a_inner.us ] +; CHECK-NEXT: br label %latch.us +; +; CHECK: latch.us: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_INNER_LCSSA]], %loop_a_inner_exit.us ] +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.us, label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_PHI]], %latch.us ] +; CHECK-NEXT: br label %loop_exit + +loop_b: + br label %loop_b_inner + +loop_b_inner: + %vb = load i1, i1* %ptr + %b = load i32, i32* %b.ptr + br i1 %vb, label %loop_b_inner, label %loop_b_inner_exit + +loop_b_inner_exit: + %b.lcssa = phi i32 [ %b, %loop_b_inner ] + br label %latch + +latch: + %ab.phi = phi i32 [ %a.lcssa, %loop_a_inner_exit ], [ %b.lcssa, %loop_b_inner_exit ] + br i1 %v, label %loop_begin, label %loop_exit +; The 'loop_b' unswitched loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br label %loop_b +; +; CHECK: loop_b: +; CHECK-NEXT: br label %loop_b_inner +; +; CHECK: loop_b_inner +; CHECK-NEXT: %[[VB:.*]] = load i1, i1* %ptr +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[VB]], label %loop_b_inner, label %loop_b_inner_exit +; +; CHECK: loop_b_inner_exit: +; CHECK-NEXT: %[[B_INNER_LCSSA:.*]] = phi i32 [ %[[B]], %loop_b_inner ] +; CHECK-NEXT: br label %latch +; +; CHECK: latch: +; CHECK-NEXT: %[[B_PHI:.*]] = phi i32 [ %[[B_INNER_LCSSA]], %loop_b_inner_exit ] +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B_PHI]], %latch ] +; CHECK-NEXT: br label %loop_exit + +loop_exit: + %ab.lcssa = phi i32 [ %ab.phi, %latch ] + ret i32 %ab.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[AB_PHI:.*]] = phi i32 [ %[[B_LCSSA]], %loop_exit.split ], [ %[[A_LCSSA]], %loop_exit.split.us ] +; CHECK-NEXT: ret i32 %[[AB_PHI]] +} + +; Test that when unswitching a deeply nested loop condition in a way that +; produces a non-loop clone that can reach multiple exit blocks which are part +; of different outer loops we correctly divide the cloned loop blocks between +; the outer loops based on reachability. +define i32 @test7a(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test7a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %a = load i32, i32* %a.ptr + br label %inner_loop_begin +; CHECK: loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_begin: + %a.phi = phi i32 [ %a, %loop_begin ], [ %a2, %inner_inner_loop_exit ] + %cond = load i1, i1* %cond.ptr + %b = load i32, i32* %b.ptr + br label %inner_inner_loop_begin +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A]], %loop_begin ], [ %[[A2:.*]], %inner_inner_loop_exit ] +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[COND]], label %inner_loop_begin.split.us, label %inner_loop_begin.split + +inner_inner_loop_begin: + %v1 = load i1, i1* %ptr + br i1 %v1, label %inner_inner_loop_a, label %inner_inner_loop_b + +inner_inner_loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_exit, label %inner_inner_loop_c + +inner_inner_loop_b: + %v3 = load i1, i1* %ptr + br i1 %v3, label %inner_inner_loop_exit, label %inner_inner_loop_c + +inner_inner_loop_c: + %v4 = load i1, i1* %ptr + br i1 %v4, label %inner_loop_exit, label %inner_inner_loop_d + +inner_inner_loop_d: + br i1 %cond, label %inner_loop_exit, label %inner_inner_loop_begin +; The cloned copy that always exits with the adjustments required to fix up +; loop exits. +; +; CHECK: inner_loop_begin.split.us: +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_a.us, label %inner_inner_loop_b.us +; +; CHECK: inner_inner_loop_b.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_exit.split.us, label %inner_inner_loop_c.us.loopexit +; +; CHECK: inner_inner_loop_a.us: +; CHECK-NEXT: %[[A_NEW_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_inner_loop_begin.us ] +; CHECK-NEXT: %[[B_NEW_LCSSA:.*]] = phi i32 [ %[[B]], %inner_inner_loop_begin.us ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split.us, label %inner_inner_loop_c.us +; +; CHECK: inner_inner_loop_c.us.loopexit: +; CHECK-NEXT: br label %inner_inner_loop_c.us +; +; CHECK: inner_inner_loop_c.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.loopexit.split.us, label %inner_inner_loop_d.us +; +; CHECK: inner_inner_loop_d.us: +; CHECK-NEXT: br label %inner_loop_exit.loopexit.split +; +; CHECK: inner_inner_loop_exit.split.us: +; CHECK-NEXT: br label %inner_inner_loop_exit +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[A_LCSSA_US:.*]] = phi i32 [ %[[A_NEW_LCSSA]], %inner_inner_loop_a.us ] +; CHECK-NEXT: %[[B_LCSSA_US:.*]] = phi i32 [ %[[B_NEW_LCSSA]], %inner_inner_loop_a.us ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: inner_loop_exit.loopexit.split.us: +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; The original copy that continues to loop. +; +; CHECK: inner_loop_begin.split: +; CHECK-NEXT: br label %inner_inner_loop_begin +; +; CHECK: inner_inner_loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_a, label %inner_inner_loop_b +; +; CHECK: inner_inner_loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split, label %inner_inner_loop_c +; +; CHECK: inner_inner_loop_b: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_exit.split, label %inner_inner_loop_c +; +; CHECK: inner_inner_loop_c: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.loopexit.split, label %inner_inner_loop_d +; +; CHECK: inner_inner_loop_d: +; CHECK-NEXT: br label %inner_inner_loop_begin +; +; CHECK: inner_inner_loop_exit.split: +; CHECK-NEXT: br label %inner_inner_loop_exit + +inner_inner_loop_exit: + %a2 = load i32, i32* %a.ptr + %v5 = load i1, i1* %ptr + br i1 %v5, label %inner_loop_exit, label %inner_loop_begin +; CHECK: inner_inner_loop_exit: +; CHECK-NEXT: %[[A2]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.loopexit1, label %inner_loop_begin + +inner_loop_exit: + br label %loop_begin +; CHECK: inner_loop_exit.loopexit.split: +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; CHECK: inner_loop_exit.loopexit: +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit.loopexit1: +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit: +; CHECK-NEXT: br label %loop_begin + +loop_exit: + %a.lcssa = phi i32 [ %a.phi, %inner_inner_loop_a ] + %b.lcssa = phi i32 [ %b, %inner_inner_loop_a ] + %result = add i32 %a.lcssa, %b.lcssa + ret i32 %result +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_inner_loop_a ] +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %inner_inner_loop_a ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit.split ], [ %[[A_LCSSA_US]], %loop_exit.split.us ] +; CHECK-NEXT: %[[B_PHI:.*]] = phi i32 [ %[[B_LCSSA]], %loop_exit.split ], [ %[[B_LCSSA_US]], %loop_exit.split.us ] +; CHECK-NEXT: %[[RESULT:.*]] = add i32 %[[A_PHI]], %[[B_PHI]] +; CHECK-NEXT: ret i32 %[[RESULT]] +} + +; Same pattern as @test7a but here the original loop becomes a non-loop that +; can reach multiple exit blocks which are part of different outer loops. +define i32 @test7b(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test7b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %a = load i32, i32* %a.ptr + br label %inner_loop_begin +; CHECK: loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_begin: + %a.phi = phi i32 [ %a, %loop_begin ], [ %a2, %inner_inner_loop_exit ] + %cond = load i1, i1* %cond.ptr + %b = load i32, i32* %b.ptr + br label %inner_inner_loop_begin +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A]], %loop_begin ], [ %[[A2:.*]], %inner_inner_loop_exit ] +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[COND]], label %inner_loop_begin.split.us, label %inner_loop_begin.split + +inner_inner_loop_begin: + %v1 = load i1, i1* %ptr + br i1 %v1, label %inner_inner_loop_a, label %inner_inner_loop_b + +inner_inner_loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_exit, label %inner_inner_loop_c + +inner_inner_loop_b: + %v3 = load i1, i1* %ptr + br i1 %v3, label %inner_inner_loop_exit, label %inner_inner_loop_c + +inner_inner_loop_c: + %v4 = load i1, i1* %ptr + br i1 %v4, label %inner_loop_exit, label %inner_inner_loop_d + +inner_inner_loop_d: + br i1 %cond, label %inner_inner_loop_begin, label %inner_loop_exit +; The cloned copy that continues looping. +; +; CHECK: inner_loop_begin.split.us: +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_a.us, label %inner_inner_loop_b.us +; +; CHECK: inner_inner_loop_b.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_exit.split.us, label %inner_inner_loop_c.us +; +; CHECK: inner_inner_loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split.us, label %inner_inner_loop_c.us +; +; CHECK: inner_inner_loop_c.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.loopexit.split.us, label %inner_inner_loop_d.us +; +; CHECK: inner_inner_loop_d.us: +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_exit.split.us: +; CHECK-NEXT: br label %inner_inner_loop_exit +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[A_LCSSA_US:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_inner_loop_a.us ] +; CHECK-NEXT: %[[B_LCSSA_US:.*]] = phi i32 [ %[[B]], %inner_inner_loop_a.us ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: inner_loop_exit.loopexit.split.us: +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; The original copy that now always exits and needs adjustments for exit +; blocks. +; +; CHECK: inner_loop_begin.split: +; CHECK-NEXT: br label %inner_inner_loop_begin +; +; CHECK: inner_inner_loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_a, label %inner_inner_loop_b +; +; CHECK: inner_inner_loop_a: +; CHECK-NEXT: %[[A_NEW_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_inner_loop_begin ] +; CHECK-NEXT: %[[B_NEW_LCSSA:.*]] = phi i32 [ %[[B]], %inner_inner_loop_begin ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split, label %inner_inner_loop_c +; +; CHECK: inner_inner_loop_b: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_exit.split, label %inner_inner_loop_c.loopexit +; +; CHECK: inner_inner_loop_c.loopexit: +; CHECK-NEXT: br label %inner_inner_loop_c +; +; CHECK: inner_inner_loop_c: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.loopexit.split, label %inner_inner_loop_d +; +; CHECK: inner_inner_loop_d: +; CHECK-NEXT: br label %inner_loop_exit.loopexit.split +; +; CHECK: inner_inner_loop_exit.split: +; CHECK-NEXT: br label %inner_inner_loop_exit + +inner_inner_loop_exit: + %a2 = load i32, i32* %a.ptr + %v5 = load i1, i1* %ptr + br i1 %v5, label %inner_loop_exit, label %inner_loop_begin +; CHECK: inner_inner_loop_exit: +; CHECK-NEXT: %[[A2]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.loopexit1, label %inner_loop_begin + +inner_loop_exit: + br label %loop_begin +; CHECK: inner_loop_exit.loopexit.split: +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; CHECK: inner_loop_exit.loopexit: +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit.loopexit1: +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit: +; CHECK-NEXT: br label %loop_begin + +loop_exit: + %a.lcssa = phi i32 [ %a.phi, %inner_inner_loop_a ] + %b.lcssa = phi i32 [ %b, %inner_inner_loop_a ] + %result = add i32 %a.lcssa, %b.lcssa + ret i32 %result +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_NEW_LCSSA]], %inner_inner_loop_a ] +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B_NEW_LCSSA]], %inner_inner_loop_a ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit.split ], [ %[[A_LCSSA_US]], %loop_exit.split.us ] +; CHECK-NEXT: %[[B_PHI:.*]] = phi i32 [ %[[B_LCSSA]], %loop_exit.split ], [ %[[B_LCSSA_US]], %loop_exit.split.us ] +; CHECK-NEXT: %[[RESULT:.*]] = add i32 %[[A_PHI]], %[[B_PHI]] +; CHECK-NEXT: ret i32 %[[RESULT]] +} + +; Test that when the exit block set of an inner loop changes to start at a less +; high level of the loop nest we correctly hoist the loop up the nest. +define i32 @test8a(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test8a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %a = load i32, i32* %a.ptr + br label %inner_loop_begin +; CHECK: loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_begin: + %a.phi = phi i32 [ %a, %loop_begin ], [ %a2, %inner_inner_loop_exit ] + %cond = load i1, i1* %cond.ptr + %b = load i32, i32* %b.ptr + br label %inner_inner_loop_begin +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A]], %loop_begin ], [ %[[A2:.*]], %inner_inner_loop_exit ] +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[COND]], label %inner_loop_begin.split.us, label %inner_loop_begin.split + +inner_inner_loop_begin: + %v1 = load i1, i1* %ptr + br i1 %v1, label %inner_inner_loop_a, label %inner_inner_loop_b + +inner_inner_loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %inner_inner_loop_latch, label %inner_loop_exit + +inner_inner_loop_b: + br i1 %cond, label %inner_inner_loop_latch, label %inner_inner_loop_exit + +inner_inner_loop_latch: + br label %inner_inner_loop_begin +; The cloned region is now an exit from the inner loop. +; +; CHECK: inner_loop_begin.split.us: +; CHECK-NEXT: %[[A_INNER_INNER_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_loop_begin ] +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_a.us, label %inner_inner_loop_b.us +; +; CHECK: inner_inner_loop_b.us: +; CHECK-NEXT: br label %inner_inner_loop_latch.us +; +; CHECK: inner_inner_loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_latch.us, label %inner_loop_exit.loopexit.split.us +; +; CHECK: inner_inner_loop_latch.us: +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_loop_exit.loopexit.split.us: +; CHECK-NEXT: %[[A_INNER_LCSSA_US:.*]] = phi i32 [ %[[A_INNER_INNER_LCSSA]], %inner_inner_loop_a.us ] +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; The original region exits the loop earlier. +; +; CHECK: inner_loop_begin.split: +; CHECK-NEXT: br label %inner_inner_loop_begin +; +; CHECK: inner_inner_loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_a, label %inner_inner_loop_b +; +; CHECK: inner_inner_loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_latch, label %inner_loop_exit.loopexit.split +; +; CHECK: inner_inner_loop_b: +; CHECK-NEXT: br label %inner_inner_loop_exit +; +; CHECK: inner_inner_loop_latch: +; CHECK-NEXT: br label %inner_inner_loop_begin + +inner_inner_loop_exit: + %a2 = load i32, i32* %a.ptr + %v4 = load i1, i1* %ptr + br i1 %v4, label %inner_loop_exit, label %inner_loop_begin +; CHECK: inner_inner_loop_exit: +; CHECK-NEXT: %[[A2]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.loopexit1, label %inner_loop_begin + +inner_loop_exit: + %v5 = load i1, i1* %ptr + br i1 %v5, label %loop_exit, label %loop_begin +; CHECK: inner_loop_exit.loopexit.split: +; CHECK-NEXT: %[[A_INNER_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_inner_loop_a ] +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; CHECK: inner_loop_exit.loopexit: +; CHECK-NEXT: %[[A_INNER_US_PHI:.*]] = phi i32 [ %[[A_INNER_LCSSA]], %inner_loop_exit.loopexit.split ], [ %[[A_INNER_LCSSA_US]], %inner_loop_exit.loopexit.split.us ] +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit.loopexit1: +; CHECK-NEXT: %[[A_INNER_LCSSA2:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_inner_loop_exit ] +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A_INNER_LCSSA2]], %inner_loop_exit.loopexit1 ], [ %[[A_INNER_US_PHI]], %inner_loop_exit.loopexit ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit, label %loop_begin + +loop_exit: + %a.lcssa = phi i32 [ %a.phi, %inner_loop_exit ] + ret i32 %a.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_loop_exit ] +; CHECK-NEXT: ret i32 %[[A_LCSSA]] +} + +; Same pattern as @test8a but where the original loop looses an exit block and +; needs to be hoisted up the nest. +define i32 @test8b(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test8b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %a = load i32, i32* %a.ptr + br label %inner_loop_begin +; CHECK: loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_begin: + %a.phi = phi i32 [ %a, %loop_begin ], [ %a2, %inner_inner_loop_exit ] + %cond = load i1, i1* %cond.ptr + %b = load i32, i32* %b.ptr + br label %inner_inner_loop_begin +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A]], %loop_begin ], [ %[[A2:.*]], %inner_inner_loop_exit ] +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br i1 %[[COND]], label %inner_loop_begin.split.us, label %inner_loop_begin.split + +inner_inner_loop_begin: + %v1 = load i1, i1* %ptr + br i1 %v1, label %inner_inner_loop_a, label %inner_inner_loop_b + +inner_inner_loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %inner_inner_loop_latch, label %inner_loop_exit + +inner_inner_loop_b: + br i1 %cond, label %inner_inner_loop_exit, label %inner_inner_loop_latch + +inner_inner_loop_latch: + br label %inner_inner_loop_begin +; The cloned region is similar to before but with one earlier exit. +; +; CHECK: inner_loop_begin.split.us: +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_begin.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_a.us, label %inner_inner_loop_b.us +; +; CHECK: inner_inner_loop_b.us: +; CHECK-NEXT: br label %inner_inner_loop_exit.split.us +; +; CHECK: inner_inner_loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_latch.us, label %inner_loop_exit.loopexit.split.us +; +; CHECK: inner_inner_loop_latch.us: +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_exit.split.us: +; CHECK-NEXT: br label %inner_inner_loop_exit +; +; CHECK: inner_loop_exit.loopexit.split.us: +; CHECK-NEXT: %[[A_INNER_LCSSA_US:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_inner_loop_a.us ] +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; The original region is now an exit in the preheader. +; +; CHECK: inner_loop_begin.split: +; CHECK-NEXT: %[[A_INNER_INNER_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_loop_begin ] +; CHECK-NEXT: br label %inner_inner_loop_begin +; +; CHECK: inner_inner_loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_a, label %inner_inner_loop_b +; +; CHECK: inner_inner_loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_latch, label %inner_loop_exit.loopexit.split +; +; CHECK: inner_inner_loop_b: +; CHECK-NEXT: br label %inner_inner_loop_latch +; +; CHECK: inner_inner_loop_latch: +; CHECK-NEXT: br label %inner_inner_loop_begin + +inner_inner_loop_exit: + %a2 = load i32, i32* %a.ptr + %v4 = load i1, i1* %ptr + br i1 %v4, label %inner_loop_exit, label %inner_loop_begin +; CHECK: inner_inner_loop_exit: +; CHECK-NEXT: %[[A2]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.loopexit1, label %inner_loop_begin + +inner_loop_exit: + %v5 = load i1, i1* %ptr + br i1 %v5, label %loop_exit, label %loop_begin +; CHECK: inner_loop_exit.loopexit.split: +; CHECK-NEXT: %[[A_INNER_LCSSA:.*]] = phi i32 [ %[[A_INNER_INNER_LCSSA]], %inner_inner_loop_a ] +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; CHECK: inner_loop_exit.loopexit: +; CHECK-NEXT: %[[A_INNER_US_PHI:.*]] = phi i32 [ %[[A_INNER_LCSSA]], %inner_loop_exit.loopexit.split ], [ %[[A_INNER_LCSSA_US]], %inner_loop_exit.loopexit.split.us ] +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit.loopexit1: +; CHECK-NEXT: %[[A_INNER_LCSSA2:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_inner_loop_exit ] +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A_INNER_LCSSA2]], %inner_loop_exit.loopexit1 ], [ %[[A_INNER_US_PHI]], %inner_loop_exit.loopexit ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit, label %loop_begin + +loop_exit: + %a.lcssa = phi i32 [ %a.phi, %inner_loop_exit ] + ret i32 %a.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_loop_exit ] +; CHECK-NEXT: ret i32 %[[A_LCSSA]] +} + +; Test for when unswitching produces a clone of an inner loop but +; the clone no longer has an exiting edge *at all* and loops infinitely. +; Because it doesn't ever exit to the outer loop it is no longer an inner loop +; but needs to be hoisted up the nest to be a top-level loop. +define i32 @test9a(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test9a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %b = load i32, i32* %b.ptr + %cond = load i1, i1* %cond.ptr + br label %inner_loop_begin +; CHECK: loop_begin: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: br i1 %[[COND]], label %loop_begin.split.us, label %loop_begin.split + +inner_loop_begin: + %a = load i32, i32* %a.ptr + br i1 %cond, label %inner_loop_latch, label %inner_loop_exit + +inner_loop_latch: + call void @sink1(i32 %b) + br label %inner_loop_begin +; The cloned inner loop ends up as an infinite loop and thus being a top-level +; loop with the preheader as an exit block of the outer loop. +; +; CHECK: loop_begin.split.us +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %loop_begin ] +; CHECK-NEXT: br label %inner_loop_begin.us +; +; CHECK: inner_loop_begin.us: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_latch.us +; +; CHECK: inner_loop_latch.us: +; CHECK-NEXT: call void @sink1(i32 %[[B_LCSSA]]) +; CHECK-NEXT: br label %inner_loop_begin.us +; +; The original loop becomes boring non-loop code. +; +; CHECK: loop_begin.split +; CHECK-NEXT: br label %inner_loop_begin +; +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_exit + +inner_loop_exit: + %a.inner_lcssa = phi i32 [ %a, %inner_loop_begin ] + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit +; CHECK: inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_LCSSA:.*]] = phi i32 [ %[[A]], %inner_loop_begin ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit + +loop_exit: + %a.lcssa = phi i32 [ %a.inner_lcssa, %inner_loop_exit ] + ret i32 %a.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_INNER_LCSSA]], %inner_loop_exit ] +; CHECK-NEXT: ret i32 %[[A_LCSSA]] +} + +; The same core pattern as @test9a, but instead of the cloned loop becoming an +; infinite loop, the original loop has its only exit unswitched and the +; original loop becomes infinite and must be hoisted out of the loop nest. +define i32 @test9b(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test9b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %b = load i32, i32* %b.ptr + %cond = load i1, i1* %cond.ptr + br label %inner_loop_begin +; CHECK: loop_begin: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: br i1 %[[COND]], label %loop_begin.split.us, label %loop_begin.split + +inner_loop_begin: + %a = load i32, i32* %a.ptr + br i1 %cond, label %inner_loop_exit, label %inner_loop_latch + +inner_loop_latch: + call void @sink1(i32 %b) + br label %inner_loop_begin +; The cloned inner loop becomes a boring non-loop. +; +; CHECK: loop_begin.split.us +; CHECK-NEXT: br label %inner_loop_begin.us +; +; CHECK: inner_loop_begin.us: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_exit.split.us +; +; CHECK: inner_loop_exit.split.us +; CHECK-NEXT: %[[A_INNER_LCSSA_US:.*]] = phi i32 [ %[[A]], %inner_loop_begin.us ] +; CHECK-NEXT: br label %inner_loop_exit +; +; The original loop becomes an infinite loop and thus a top-level loop with the +; preheader as an exit block for the outer loop. +; +; CHECK: loop_begin.split +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %loop_begin ] +; CHECK-NEXT: br label %inner_loop_begin +; +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_latch +; +; CHECK: inner_loop_latch: +; CHECK-NEXT: call void @sink1(i32 %[[B_LCSSA]]) +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_exit: + %a.inner_lcssa = phi i32 [ %a, %inner_loop_begin ] + %v = load i1, i1* %ptr + br i1 %v, label %loop_begin, label %loop_exit +; CHECK: inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_LCSSA:.*]] = phi i32 [ %[[A_INNER_LCSSA_US]], %inner_loop_exit.split.us ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit + +loop_exit: + %a.lcssa = phi i32 [ %a.inner_lcssa, %inner_loop_exit ] + ret i32 %a.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_INNER_LCSSA]], %inner_loop_exit ] +; CHECK-NEXT: ret i32 %[[A_LCSSA]] +} + +; Test that requires re-forming dedicated exits for the cloned loop. +define i32 @test10a(i1* %ptr, i1 %cond, i32* %a.ptr) { +; CHECK-LABEL: @test10a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + %a = load i32, i32* %a.ptr + %v1 = load i1, i1* %ptr + br i1 %v1, label %loop_a, label %loop_b + +loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_exit, label %loop_begin + +loop_b: + br i1 %cond, label %loop_exit, label %loop_begin +; The cloned loop with one edge as a direct exit. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a.us, label %loop_b.us +; +; CHECK: loop_b.us: +; CHECK-NEXT: %[[A_LCSSA_B:.*]] = phi i32 [ %[[A]], %loop_begin.us ] +; CHECK-NEXT: br label %loop_exit.split.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split.us.loopexit, label %loop_begin.backedge.us +; +; CHECK: loop_begin.backedge.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_exit.split.us.loopexit: +; CHECK-NEXT: %[[A_LCSSA_A:.*]] = phi i32 [ %[[A]], %loop_a.us ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[A_PHI_US:.*]] = phi i32 [ %[[A_LCSSA_B]], %loop_b.us ], [ %[[A_LCSSA_A]], %loop_exit.split.us.loopexit ] +; CHECK-NEXT: br label %loop_exit + +; The original loop without one 'loop_exit' edge. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a, label %loop_b +; +; CHECK: loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split, label %loop_begin.backedge +; +; CHECK: loop_begin.backedge: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_b: +; CHECK-NEXT: br label %loop_begin.backedge +; +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %loop_a ] +; CHECK-NEXT: br label %loop_exit + +loop_exit: + %a.lcssa = phi i32 [ %a, %loop_a ], [ %a, %loop_b ] + ret i32 %a.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit.split ], [ %[[A_PHI_US]], %loop_exit.split.us ] +; CHECK-NEXT: ret i32 %[[AB_PHI]] +} + +; Test that requires re-forming dedicated exits for the original loop. +define i32 @test10b(i1* %ptr, i1 %cond, i32* %a.ptr) { +; CHECK-LABEL: @test10b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + %a = load i32, i32* %a.ptr + %v1 = load i1, i1* %ptr + br i1 %v1, label %loop_a, label %loop_b + +loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_begin, label %loop_exit + +loop_b: + br i1 %cond, label %loop_begin, label %loop_exit +; The cloned loop without one of the exits. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a.us, label %loop_b.us +; +; CHECK: loop_b.us: +; CHECK-NEXT: br label %loop_begin.backedge.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.backedge.us, label %loop_exit.split.us +; +; CHECK: loop_begin.backedge.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[A_LCSSA_US:.*]] = phi i32 [ %[[A]], %loop_a.us ] +; CHECK-NEXT: br label %loop_exit + +; The original loop without one 'loop_exit' edge. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a, label %loop_b +; +; CHECK: loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin.backedge, label %loop_exit.split.loopexit +; +; CHECK: loop_begin.backedge: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_b: +; CHECK-NEXT: %[[A_LCSSA_B:.*]] = phi i32 [ %[[A]], %loop_begin ] +; CHECK-NEXT: br label %loop_exit.split +; +; CHECK: loop_exit.split.loopexit: +; CHECK-NEXT: %[[A_LCSSA_A:.*]] = phi i32 [ %[[A]], %loop_a ] +; CHECK-NEXT: br label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[A_PHI_SPLIT:.*]] = phi i32 [ %[[A_LCSSA_B]], %loop_b ], [ %[[A_LCSSA_A]], %loop_exit.split.loopexit ] +; CHECK-NEXT: br label %loop_exit + +loop_exit: + %a.lcssa = phi i32 [ %a, %loop_a ], [ %a, %loop_b ] + ret i32 %a.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_PHI_SPLIT]], %loop_exit.split ], [ %[[A_LCSSA_US]], %loop_exit.split.us ] +; CHECK-NEXT: ret i32 %[[AB_PHI]] +} + +; Check that if a cloned inner loop after unswitching doesn't loop and directly +; exits even an outer loop, we don't add the cloned preheader to the outer +; loop and do add the needed LCSSA phi nodes for the new exit block from the +; outer loop. +define i32 @test11a(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test11a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %b = load i32, i32* %b.ptr + %v1 = load i1, i1* %ptr + br i1 %v1, label %loop_latch, label %inner_loop_ph +; CHECK: loop_begin: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_latch, label %inner_loop_ph + +inner_loop_ph: + %cond = load i1, i1* %cond.ptr + br label %inner_loop_begin +; CHECK: inner_loop_ph: +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: br i1 %[[COND]], label %inner_loop_ph.split.us, label %inner_loop_ph.split + +inner_loop_begin: + call void @sink1(i32 %b) + %a = load i32, i32* %a.ptr + br i1 %cond, label %loop_exit, label %inner_loop_a + +inner_loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %inner_loop_exit, label %inner_loop_begin +; The cloned path doesn't actually loop and is an exit from the outer loop as +; well. +; +; CHECK: inner_loop_ph.split.us: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %inner_loop_ph ] +; CHECK-NEXT: br label %inner_loop_begin.us +; +; CHECK: inner_loop_begin.us: +; CHECK-NEXT: call void @sink1(i32 %[[B_LCSSA]]) +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_exit.loopexit.split.us +; +; CHECK: loop_exit.loopexit.split.us: +; CHECK-NEXT: %[[A_INNER_LCSSA_US:.*]] = phi i32 [ %[[A]], %inner_loop_begin.us ] +; CHECK-NEXT: br label %loop_exit.loopexit +; +; The original remains a loop losing the exit edge. +; +; CHECK: inner_loop_ph.split: +; CHECK-NEXT: br label %inner_loop_begin +; +; CHECK: inner_loop_begin: +; CHECK-NEXT: call void @sink1(i32 %[[B]]) +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_a +; +; CHECK: inner_loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit, label %inner_loop_begin + +inner_loop_exit: + %a.inner_lcssa = phi i32 [ %a, %inner_loop_a ] + %v3 = load i1, i1* %ptr + br i1 %v3, label %loop_latch, label %loop_exit +; CHECK: inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_LCSSA:.*]] = phi i32 [ %[[A]], %inner_loop_a ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_latch, label %loop_exit.loopexit1 + +loop_latch: + br label %loop_begin +; CHECK: loop_latch: +; CHECK-NEXT: br label %loop_begin + +loop_exit: + %a.lcssa = phi i32 [ %a, %inner_loop_begin ], [ %a.inner_lcssa, %inner_loop_exit ] + ret i32 %a.lcssa +; CHECK: loop_exit.loopexit: +; CHECK-NEXT: %[[A_LCSSA_US:.*]] = phi i32 [ %[[A_INNER_LCSSA_US]], %loop_exit.loopexit.split.us ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit.loopexit1: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_INNER_LCSSA]], %inner_loop_exit ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_LCSSA_US]], %loop_exit.loopexit ], [ %[[A_LCSSA]], %loop_exit.loopexit1 ] +; CHECK-NEXT: ret i32 %[[A_PHI]] +} + +; Check that if the original inner loop after unswitching doesn't loop and +; directly exits even an outer loop, we remove the original preheader from the +; outer loop and add needed LCSSA phi nodes for the new exit block from the +; outer loop. +define i32 @test11b(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test11b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %b = load i32, i32* %b.ptr + %v1 = load i1, i1* %ptr + br i1 %v1, label %loop_latch, label %inner_loop_ph +; CHECK: loop_begin: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_latch, label %inner_loop_ph + +inner_loop_ph: + %cond = load i1, i1* %cond.ptr + br label %inner_loop_begin +; CHECK: inner_loop_ph: +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: br i1 %[[COND]], label %inner_loop_ph.split.us, label %inner_loop_ph.split + +inner_loop_begin: + call void @sink1(i32 %b) + %a = load i32, i32* %a.ptr + br i1 %cond, label %inner_loop_a, label %loop_exit + +inner_loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %inner_loop_exit, label %inner_loop_begin +; The cloned path continues to loop without the exit out of the entire nest. +; +; CHECK: inner_loop_ph.split.us: +; CHECK-NEXT: br label %inner_loop_begin.us +; +; CHECK: inner_loop_begin.us: +; CHECK-NEXT: call void @sink1(i32 %[[B]]) +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_a.us +; +; CHECK: inner_loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_exit.split.us, label %inner_loop_begin.us +; +; CHECK: inner_loop_exit.split.us: +; CHECK-NEXT: %[[A_INNER_LCSSA_US:.*]] = phi i32 [ %[[A]], %inner_loop_a.us ] +; CHECK-NEXT: br label %inner_loop_exit +; +; The original remains a loop losing the exit edge. +; +; CHECK: inner_loop_ph.split: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %inner_loop_ph ] +; CHECK-NEXT: br label %inner_loop_begin +; +; CHECK: inner_loop_begin: +; CHECK-NEXT: call void @sink1(i32 %[[B_LCSSA]]) +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %loop_exit.loopexit + +inner_loop_exit: + %a.inner_lcssa = phi i32 [ %a, %inner_loop_a ] + %v3 = load i1, i1* %ptr + br i1 %v3, label %loop_latch, label %loop_exit +; CHECK: inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A_INNER_LCSSA_US]], %inner_loop_exit.split.us ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_latch, label %loop_exit.loopexit1 + +loop_latch: + br label %loop_begin +; CHECK: loop_latch: +; CHECK-NEXT: br label %loop_begin + +loop_exit: + %a.lcssa = phi i32 [ %a, %inner_loop_begin ], [ %a.inner_lcssa, %inner_loop_exit ] + ret i32 %a.lcssa +; CHECK: loop_exit.loopexit: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %inner_loop_begin ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit.loopexit1: +; CHECK-NEXT: %[[A_LCSSA_US:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_loop_exit ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit.loopexit ], [ %[[A_LCSSA_US]], %loop_exit.loopexit1 ] +; CHECK-NEXT: ret i32 %[[A_PHI]] +} + +; Like test11a, but checking that when the whole thing is wrapped in yet +; another loop, we correctly attribute the cloned preheader to that outermost +; loop rather than only handling the case where the preheader is not in any loop +; at all. +define i32 @test12a(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test12a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + br label %inner_loop_begin +; CHECK: loop_begin: +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_begin: + %b = load i32, i32* %b.ptr + %v1 = load i1, i1* %ptr + br i1 %v1, label %inner_loop_latch, label %inner_inner_loop_ph +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_latch, label %inner_inner_loop_ph + +inner_inner_loop_ph: + %cond = load i1, i1* %cond.ptr + br label %inner_inner_loop_begin +; CHECK: inner_inner_loop_ph: +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: br i1 %[[COND]], label %inner_inner_loop_ph.split.us, label %inner_inner_loop_ph.split + +inner_inner_loop_begin: + call void @sink1(i32 %b) + %a = load i32, i32* %a.ptr + br i1 %cond, label %inner_loop_exit, label %inner_inner_loop_a + +inner_inner_loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %inner_inner_loop_exit, label %inner_inner_loop_begin +; The cloned path doesn't actually loop and is an exit from the outer loop as +; well. +; +; CHECK: inner_inner_loop_ph.split.us: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %inner_inner_loop_ph ] +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_begin.us: +; CHECK-NEXT: call void @sink1(i32 %[[B_LCSSA]]) +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_exit.loopexit.split.us +; +; CHECK: inner_loop_exit.loopexit.split.us: +; CHECK-NEXT: %[[A_INNER_INNER_LCSSA_US:.*]] = phi i32 [ %[[A]], %inner_inner_loop_begin.us ] +; CHECK-NEXT: br label %inner_loop_exit.loopexit +; +; The original remains a loop losing the exit edge. +; +; CHECK: inner_inner_loop_ph.split: +; CHECK-NEXT: br label %inner_inner_loop_begin +; +; CHECK: inner_inner_loop_begin: +; CHECK-NEXT: call void @sink1(i32 %[[B]]) +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_inner_loop_a +; +; CHECK: inner_inner_loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_exit, label %inner_inner_loop_begin + +inner_inner_loop_exit: + %a.inner_inner_lcssa = phi i32 [ %a, %inner_inner_loop_a ] + %v3 = load i1, i1* %ptr + br i1 %v3, label %inner_loop_latch, label %inner_loop_exit +; CHECK: inner_inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_INNER_LCSSA:.*]] = phi i32 [ %[[A]], %inner_inner_loop_a ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_latch, label %inner_loop_exit.loopexit1 + +inner_loop_latch: + br label %inner_loop_begin +; CHECK: inner_loop_latch: +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_exit: + %a.inner_lcssa = phi i32 [ %a, %inner_inner_loop_begin ], [ %a.inner_inner_lcssa, %inner_inner_loop_exit ] + %v4 = load i1, i1* %ptr + br i1 %v4, label %loop_begin, label %loop_exit +; CHECK: inner_loop_exit.loopexit: +; CHECK-NEXT: %[[A_INNER_LCSSA_US:.*]] = phi i32 [ %[[A_INNER_INNER_LCSSA_US]], %inner_loop_exit.loopexit.split.us ] +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit.loopexit1: +; CHECK-NEXT: %[[A_INNER_LCSSA:.*]] = phi i32 [ %[[A_INNER_INNER_LCSSA]], %inner_inner_loop_exit ] +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A_INNER_LCSSA_US]], %inner_loop_exit.loopexit ], [ %[[A_INNER_LCSSA]], %inner_loop_exit.loopexit1 ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit + +loop_exit: + %a.lcssa = phi i32 [ %a.inner_lcssa, %inner_loop_exit ] + ret i32 %a.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_loop_exit ] +; CHECK-NEXT: ret i32 %[[A_LCSSA]] +} + +; Like test11b, but checking that when the whole thing is wrapped in yet +; another loop, we correctly sink the preheader to the outermost loop rather +; than only handling the case where the preheader is completely removed from +; a loop. +define i32 @test12b(i1* %ptr, i1* %cond.ptr, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test12b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + br label %inner_loop_begin +; CHECK: loop_begin: +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_begin: + %b = load i32, i32* %b.ptr + %v1 = load i1, i1* %ptr + br i1 %v1, label %inner_loop_latch, label %inner_inner_loop_ph +; CHECK: inner_loop_begin: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_latch, label %inner_inner_loop_ph + +inner_inner_loop_ph: + %cond = load i1, i1* %cond.ptr + br label %inner_inner_loop_begin +; CHECK: inner_inner_loop_ph: +; CHECK-NEXT: %[[COND:.*]] = load i1, i1* %cond.ptr +; CHECK-NEXT: br i1 %[[COND]], label %inner_inner_loop_ph.split.us, label %inner_inner_loop_ph.split + +inner_inner_loop_begin: + call void @sink1(i32 %b) + %a = load i32, i32* %a.ptr + br i1 %cond, label %inner_inner_loop_a, label %inner_loop_exit + +inner_inner_loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %inner_inner_loop_exit, label %inner_inner_loop_begin +; The cloned path continues to loop without the exit out of the entire nest. +; +; CHECK: inner_inner_loop_ph.split.us: +; CHECK-NEXT: br label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_begin.us: +; CHECK-NEXT: call void @sink1(i32 %[[B]]) +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_inner_loop_a.us +; +; CHECK: inner_inner_loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_inner_loop_exit.split.us, label %inner_inner_loop_begin.us +; +; CHECK: inner_inner_loop_exit.split.us: +; CHECK-NEXT: %[[A_INNER_INNER_LCSSA_US:.*]] = phi i32 [ %[[A]], %inner_inner_loop_a.us ] +; CHECK-NEXT: br label %inner_inner_loop_exit +; +; The original remains a loop losing the exit edge. +; +; CHECK: inner_inner_loop_ph.split: +; CHECK-NEXT: %[[B_LCSSA:.*]] = phi i32 [ %[[B]], %inner_inner_loop_ph ] +; CHECK-NEXT: br label %inner_inner_loop_begin +; +; CHECK: inner_inner_loop_begin: +; CHECK-NEXT: call void @sink1(i32 %[[B_LCSSA]]) +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: br label %inner_loop_exit.loopexit + +inner_inner_loop_exit: + %a.inner_inner_lcssa = phi i32 [ %a, %inner_inner_loop_a ] + %v3 = load i1, i1* %ptr + br i1 %v3, label %inner_loop_latch, label %inner_loop_exit +; CHECK: inner_inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_INNER_PHI:.*]] = phi i32 [ %[[A_INNER_INNER_LCSSA_US]], %inner_inner_loop_exit.split.us ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %inner_loop_latch, label %inner_loop_exit.loopexit1 + +inner_loop_latch: + br label %inner_loop_begin +; CHECK: inner_loop_latch: +; CHECK-NEXT: br label %inner_loop_begin + +inner_loop_exit: + %a.inner_lcssa = phi i32 [ %a, %inner_inner_loop_begin ], [ %a.inner_inner_lcssa, %inner_inner_loop_exit ] + %v4 = load i1, i1* %ptr + br i1 %v4, label %loop_begin, label %loop_exit +; CHECK: inner_loop_exit.loopexit: +; CHECK-NEXT: %[[A_INNER_LCSSA:.*]] = phi i32 [ %[[A]], %inner_inner_loop_begin ] +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit.loopexit1: +; CHECK-NEXT: %[[A_INNER_LCSSA_US:.*]] = phi i32 [ %[[A_INNER_INNER_PHI]], %inner_inner_loop_exit ] +; CHECK-NEXT: br label %inner_loop_exit +; +; CHECK: inner_loop_exit: +; CHECK-NEXT: %[[A_INNER_PHI:.*]] = phi i32 [ %[[A_INNER_LCSSA]], %inner_loop_exit.loopexit ], [ %[[A_INNER_LCSSA_US]], %inner_loop_exit.loopexit1 ] +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_begin, label %loop_exit + +loop_exit: + %a.lcssa = phi i32 [ %a.inner_lcssa, %inner_loop_exit ] + ret i32 %a.lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A_INNER_PHI]], %inner_loop_exit ] +; CHECK-NEXT: ret i32 %[[A_LCSSA]] +} + +; Test where the cloned loop has an inner loop that has to be traversed to form +; the cloned loop, and where this inner loop has multiple blocks, and where the +; exiting block that connects the inner loop to the cloned loop is not the header +; block. This ensures that we correctly handle interesting corner cases of +; traversing back to the header when establishing the cloned loop. +define i32 @test13a(i1* %ptr, i1 %cond, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test13a( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + %a = load i32, i32* %a.ptr + %v1 = load i1, i1* %ptr + br i1 %v1, label %loop_a, label %loop_b + +loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_exit, label %loop_latch + +loop_b: + %b = load i32, i32* %b.ptr + br i1 %cond, label %loop_b_inner_ph, label %loop_exit + +loop_b_inner_ph: + br label %loop_b_inner_header + +loop_b_inner_header: + %v3 = load i1, i1* %ptr + br i1 %v3, label %loop_b_inner_latch, label %loop_b_inner_body + +loop_b_inner_body: + %v4 = load i1, i1* %ptr + br i1 %v4, label %loop_b_inner_latch, label %loop_b_inner_exit + +loop_b_inner_latch: + br label %loop_b_inner_header + +loop_b_inner_exit: + br label %loop_latch + +loop_latch: + br label %loop_begin +; The cloned loop contains an inner loop within it. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a.us, label %loop_b.us +; +; CHECK: loop_b.us: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br label %loop_b_inner_ph.us +; +; CHECK: loop_b_inner_ph.us: +; CHECK-NEXT: br label %loop_b_inner_header.us +; +; CHECK: loop_b_inner_header.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_b_inner_latch.us, label %loop_b_inner_body.us +; +; CHECK: loop_b_inner_body.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_b_inner_latch.us, label %loop_b_inner_exit.us +; +; CHECK: loop_b_inner_exit.us: +; CHECK-NEXT: br label %loop_latch.us +; +; CHECK: loop_b_inner_latch.us: +; CHECK-NEXT: br label %loop_b_inner_header.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split.us, label %loop_latch.us +; +; CHECK: loop_latch.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[A_LCSSA_US:.*]] = phi i32 [ %[[A]], %loop_a.us ] +; CHECK-NEXT: br label %loop_exit +; +; And the original loop no longer contains an inner loop. +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a, label %loop_b +; +; CHECK: loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split.loopexit, label %loop_latch +; +; CHECK: loop_b: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br label %loop_exit.split +; +; CHECK: loop_latch: +; CHECK-NEXT: br label %loop_begin + +loop_exit: + %lcssa = phi i32 [ %a, %loop_a ], [ %b, %loop_b ] + ret i32 %lcssa +; CHECK: loop_exit.split.loopexit: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %loop_a ] +; CHECK-NEXT: br label %loop_exit.split +; +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[AB_PHI:.*]] = phi i32 [ %[[B]], %loop_b ], [ %[[A_LCSSA]], %loop_exit.split.loopexit ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit: +; CHECK-NEXT: %[[AB_PHI_US:.*]] = phi i32 [ %[[AB_PHI]], %loop_exit.split ], [ %[[A_LCSSA_US]], %loop_exit.split.us ] +; CHECK-NEXT: ret i32 %[[AB_PHI_US]] +} + +; Test where the original loop has an inner loop that has to be traversed to +; rebuild the loop, and where this inner loop has multiple blocks, and where +; the exiting block that connects the inner loop to the original loop is not +; the header block. This ensures that we correctly handle interesting corner +; cases of traversing back to the header when re-establishing the original loop +; still exists after unswitching. +define i32 @test13b(i1* %ptr, i1 %cond, i32* %a.ptr, i32* %b.ptr) { +; CHECK-LABEL: @test13b( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br i1 %cond, label %entry.split.us, label %entry.split + +loop_begin: + %a = load i32, i32* %a.ptr + %v1 = load i1, i1* %ptr + br i1 %v1, label %loop_a, label %loop_b + +loop_a: + %v2 = load i1, i1* %ptr + br i1 %v2, label %loop_exit, label %loop_latch + +loop_b: + %b = load i32, i32* %b.ptr + br i1 %cond, label %loop_exit, label %loop_b_inner_ph + +loop_b_inner_ph: + br label %loop_b_inner_header + +loop_b_inner_header: + %v3 = load i1, i1* %ptr + br i1 %v3, label %loop_b_inner_latch, label %loop_b_inner_body + +loop_b_inner_body: + %v4 = load i1, i1* %ptr + br i1 %v4, label %loop_b_inner_latch, label %loop_b_inner_exit + +loop_b_inner_latch: + br label %loop_b_inner_header + +loop_b_inner_exit: + br label %loop_latch + +loop_latch: + br label %loop_begin +; The cloned loop doesn't contain an inner loop. +; +; CHECK: entry.split.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_begin.us: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a.us, label %loop_b.us +; +; CHECK: loop_b.us: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br label %loop_exit.split.us +; +; CHECK: loop_a.us: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split.us.loopexit, label %loop_latch.us +; +; CHECK: loop_latch.us: +; CHECK-NEXT: br label %loop_begin.us +; +; CHECK: loop_exit.split.us.loopexit: +; CHECK-NEXT: %[[A_LCSSA_US:.*]] = phi i32 [ %[[A]], %loop_a.us ] +; CHECK-NEXT: br label %loop_exit.split.us +; +; CHECK: loop_exit.split.us: +; CHECK-NEXT: %[[AB_PHI_US:.*]] = phi i32 [ %[[B]], %loop_b.us ], [ %[[A_LCSSA_US]], %loop_exit.split.us.loopexit ] +; CHECK-NEXT: br label %loop_exit +; +; But the original loop contains an inner loop that must be traversed.; +; +; CHECK: entry.split: +; CHECK-NEXT: br label %loop_begin +; +; CHECK: loop_begin: +; CHECK-NEXT: %[[A:.*]] = load i32, i32* %a.ptr +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_a, label %loop_b +; +; CHECK: loop_a: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_exit.split, label %loop_latch +; +; CHECK: loop_b: +; CHECK-NEXT: %[[B:.*]] = load i32, i32* %b.ptr +; CHECK-NEXT: br label %loop_b_inner_ph +; +; CHECK: loop_b_inner_ph: +; CHECK-NEXT: br label %loop_b_inner_header +; +; CHECK: loop_b_inner_header: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_b_inner_latch, label %loop_b_inner_body +; +; CHECK: loop_b_inner_body: +; CHECK-NEXT: %[[V:.*]] = load i1, i1* %ptr +; CHECK-NEXT: br i1 %[[V]], label %loop_b_inner_latch, label %loop_b_inner_exit +; +; CHECK: loop_b_inner_latch: +; CHECK-NEXT: br label %loop_b_inner_header +; +; CHECK: loop_b_inner_exit: +; CHECK-NEXT: br label %loop_latch +; +; CHECK: loop_latch: +; CHECK-NEXT: br label %loop_begin + +loop_exit: + %lcssa = phi i32 [ %a, %loop_a ], [ %b, %loop_b ] + ret i32 %lcssa +; CHECK: loop_exit.split: +; CHECK-NEXT: %[[A_LCSSA:.*]] = phi i32 [ %[[A]], %loop_a ] +; CHECK-NEXT: br label %loop_exit +; +; CHECK: loop_exit: +; CHECK-NEXT: %[[AB_PHI:.*]] = phi i32 [ %[[A_LCSSA]], %loop_exit.split ], [ %[[AB_PHI_US]], %loop_exit.split.us ] +; CHECK-NEXT: ret i32 %[[AB_PHI]] +} + +define i32 @test20(i32* %var, i32 %cond1, i32 %cond2) { +; CHECK-LABEL: @test20( +entry: + br label %loop_begin +; CHECK-NEXT: entry: +; CHECK-NEXT: br label %loop_begin + +loop_begin: + %var_val = load i32, i32* %var + switch i32 %cond2, label %loop_a [ + i32 0, label %loop_b + i32 1, label %loop_b + i32 13, label %loop_c + i32 2, label %loop_b + i32 42, label %loop_exit + ] +; CHECK: loop_begin: +; CHECK-NEXT: %[[V:.*]] = load i32, i32* %var +; CHECK-NEXT: switch i32 %cond2, label %loop_a [ +; CHECK-NEXT: i32 0, label %loop_b +; CHECK-NEXT: i32 1, label %loop_b +; CHECK-NEXT: i32 13, label %loop_c +; CHECK-NEXT: i32 2, label %loop_b +; CHECK-NEXT: i32 42, label %loop_exit +; CHECK-NEXT: ] + +loop_a: + call void @a() + br label %loop_latch +; CHECK: loop_a: +; CHECK-NEXT: call void @a() +; CHECK-NEXT: br label %loop_latch + +loop_b: + call void @b() + br label %loop_latch +; CHECK: loop_b: +; CHECK-NEXT: call void @b() +; CHECK-NEXT: br label %loop_latch + +loop_c: + call void @c() noreturn nounwind + br label %loop_latch +; CHECK: loop_c: +; CHECK-NEXT: call void @c() +; CHECK-NEXT: br label %loop_latch + +loop_latch: + br label %loop_begin +; CHECK: loop_latch: +; CHECK-NEXT: br label %loop_begin + +loop_exit: + %lcssa = phi i32 [ %var_val, %loop_begin ] + ret i32 %lcssa +; CHECK: loop_exit: +; CHECK-NEXT: %[[LCSSA:.*]] = phi i32 [ %[[V]], %loop_begin ] +; CHECK-NEXT: ret i32 %[[LCSSA]] +}