forked from go-llvm/llgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssa.go
894 lines (806 loc) · 27.7 KB
/
ssa.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
// Copyright 2013 The llgo Authors.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package llgo
import (
"fmt"
"go/token"
"sort"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/ssa"
"code.google.com/p/go.tools/ssa/ssautil"
"github.com/axw/gollvm/llvm"
)
type unit struct {
*compiler
pkg *ssa.Package
globals map[ssa.Value]*LLVMValue
// undefinedFuncs contains functions that have been resolved
// (declared) but not defined.
undefinedFuncs map[*ssa.Function]bool
// funcvals is a map of *ssa.Function to LLVM functions that
// may be stored. Non-receiver functions in this map will have
// an additional context parameter, to enable non-branching
// calls with a pair-of-pointer function representation,
// without forcing the additional parameter on all functions.
funcvals map[*ssa.Function]*LLVMValue
}
func newUnit(c *compiler, pkg *ssa.Package) *unit {
u := &unit{
compiler: c,
pkg: pkg,
globals: make(map[ssa.Value]*LLVMValue),
undefinedFuncs: make(map[*ssa.Function]bool),
funcvals: make(map[*ssa.Function]*LLVMValue),
}
return u
}
// translatePackage translates an *ssa.Package into an LLVM module, and returns
// the translation unit information.
func (u *unit) translatePackage(pkg *ssa.Package) {
// Initialize global storage.
for _, m := range pkg.Members {
switch v := m.(type) {
case *ssa.Global:
llelemtyp := u.llvmtypes.ToLLVM(deref(v.Type()))
global := llvm.AddGlobal(u.module.Module, llelemtyp, v.String())
global.SetInitializer(llvm.ConstNull(llelemtyp))
u.globals[v] = u.NewValue(global, v.Type())
}
}
// Define functions.
// Sort if flag is set for deterministic behaviour (for debugging)
functions := ssautil.AllFunctions(pkg.Prog)
if !u.compiler.OrderedCompilation {
for f, _ := range functions {
u.defineFunction(f)
}
} else {
fns := []*ssa.Function{}
for f, _ := range functions {
fns = append(fns, f)
}
sort.Sort(byName(fns))
for _, f := range fns {
u.defineFunction(f)
}
}
// Define remaining functions that were resolved during
// runtime type mapping, but not defined.
for f, _ := range u.undefinedFuncs {
u.defineFunction(f)
}
}
// ResolveMethod implements MethodResolver.ResolveMethod.
func (u *unit) ResolveMethod(s *types.Selection) *LLVMValue {
return u.resolveFunction(u.pkg.Prog.Method(s))
}
// ResolveFunc implements FuncResolver.ResolveFunc.
func (u *unit) ResolveFunc(f *types.Func) *LLVMValue {
return u.resolveFunction(u.pkg.Prog.FuncValue(f))
}
func (u *unit) resolveFunction(f *ssa.Function) *LLVMValue {
if v, ok := u.globals[f]; ok {
return v
}
name := f.String()
// It's possible that the function already exists in the module;
// for example, if it's a runtime intrinsic that the compiler
// has already referenced.
llvmFunction := u.module.Module.NamedFunction(name)
if llvmFunction.IsNil() {
llvmType := u.llvmtypes.ToLLVM(f.Signature)
llvmType = llvmType.StructElementTypes()[0].ElementType()
if len(f.FreeVars) > 0 {
// Add an implicit first argument.
returnType := llvmType.ReturnType()
paramTypes := llvmType.ParamTypes()
vararg := llvmType.IsFunctionVarArg()
blockElementTypes := make([]llvm.Type, len(f.FreeVars))
for i, fv := range f.FreeVars {
blockElementTypes[i] = u.llvmtypes.ToLLVM(fv.Type())
}
blockType := llvm.StructType(blockElementTypes, false)
blockPtrType := llvm.PointerType(blockType, 0)
paramTypes = append([]llvm.Type{blockPtrType}, paramTypes...)
llvmType = llvm.FunctionType(returnType, paramTypes, vararg)
}
llvmFunction = llvm.AddFunction(u.module.Module, name, llvmType)
if f.Enclosing != nil {
llvmFunction.SetLinkage(llvm.PrivateLinkage)
}
u.undefinedFuncs[f] = true
}
v := u.NewValue(llvmFunction, f.Signature)
u.globals[f] = v
return v
}
func (u *unit) defineFunction(f *ssa.Function) {
// Nothing to do for functions without bodies.
if len(f.Blocks) == 0 {
return
}
// Only define functions from this package.
if f.Pkg == nil {
if r := f.Signature.Recv(); r != nil && r.Pkg() != nil && r.Pkg() != u.pkg.Object {
return
}
} else if f.Pkg != u.pkg {
return
}
fr := frame{
unit: u,
blocks: make([]llvm.BasicBlock, len(f.Blocks)),
env: make(map[ssa.Value]*LLVMValue),
}
fr.logf("Define function: %s", f.String())
llvmFunction := fr.resolveFunction(f).LLVMValue()
delete(u.undefinedFuncs, f)
// Functions that call recover must not be inlined, or we
// can't tell whether the recover call is valid at runtime.
if f.Recover != nil {
llvmFunction.AddFunctionAttr(llvm.NoInlineAttribute)
}
for i, block := range f.Blocks {
fr.blocks[i] = llvm.AddBasicBlock(llvmFunction, fmt.Sprintf(".%d.%s", i, block.Comment))
}
fr.builder.SetInsertPointAtEnd(fr.blocks[0])
var paramOffset int
if len(f.FreeVars) > 0 {
// Extract captures from the first implicit parameter.
arg0 := llvmFunction.Param(0)
for i, fv := range f.FreeVars {
addressPtr := fr.builder.CreateStructGEP(arg0, i, "")
address := fr.builder.CreateLoad(addressPtr, "")
fr.env[fv] = fr.NewValue(address, fv.Type())
}
paramOffset++
}
for i, param := range f.Params {
fr.env[param] = fr.NewValue(llvmFunction.Param(i+paramOffset), param.Type())
}
// Allocate stack space for locals in the prologue block.
prologueBlock := llvm.InsertBasicBlock(fr.blocks[0], "prologue")
fr.builder.SetInsertPointAtEnd(prologueBlock)
for _, local := range f.Locals {
typ := fr.llvmtypes.ToLLVM(deref(local.Type()))
alloca := fr.builder.CreateAlloca(typ, local.Comment)
u.memsetZero(alloca, llvm.SizeOf(typ))
value := fr.NewValue(alloca, local.Type())
fr.env[local] = value
}
// Move any allocs relating to named results from the entry block
// to the prologue block, so they dominate the rundefers and recover
// blocks.
//
// TODO(axw) ask adonovan for a cleaner way of doing this, e.g.
// have ssa generate an entry block that defines Allocs and related
// stores, and then a separate block for function body instructions.
if f.Synthetic == "" {
if results := f.Signature.Results(); results != nil {
for i := 0; i < results.Len(); i++ {
result := results.At(i)
if result.Name() == "" {
break
}
for i, instr := range f.Blocks[0].Instrs {
if instr, ok := instr.(*ssa.Alloc); ok && instr.Heap && instr.Pos() == result.Pos() {
fr.instruction(instr)
instrs := f.Blocks[0].Instrs
instrs = append(instrs[:i], instrs[i+1:]...)
f.Blocks[0].Instrs = instrs
break
}
}
}
}
}
// If the function contains any defers, we must first call
// setjmp so we can call rundefers in response to a panic.
// We can short-circuit the check for defers with
// f.Recover != nil.
if f.Recover != nil || hasDefer(f) {
rdblock := llvm.AddBasicBlock(llvmFunction, "rundefers")
defers := fr.builder.CreateAlloca(fr.runtime.defers.llvm, "")
fr.builder.CreateCall(fr.runtime.initdefers.LLVMValue(), []llvm.Value{defers}, "")
jb := fr.builder.CreateStructGEP(defers, 0, "")
jb = fr.builder.CreateBitCast(jb, llvm.PointerType(llvm.Int8Type(), 0), "")
result := fr.builder.CreateCall(fr.runtime.setjmp.LLVMValue(), []llvm.Value{jb}, "")
result = fr.builder.CreateIsNotNull(result, "")
fr.builder.CreateCondBr(result, rdblock, fr.blocks[0])
// We'll only get here via a panic, which must either be
// recovered or continue panicking up the stack without
// returning from "rundefers". The recover block may be
// nil even if we can recover, in which case we just need
// to return the zero value for each result (if any).
var recoverBlock llvm.BasicBlock
if f.Recover != nil {
recoverBlock = fr.block(f.Recover)
} else {
recoverBlock = llvm.AddBasicBlock(llvmFunction, "recover")
fr.builder.SetInsertPointAtEnd(recoverBlock)
var nresults int
results := f.Signature.Results()
if results != nil {
nresults = results.Len()
}
switch nresults {
case 0:
fr.builder.CreateRetVoid()
case 1:
fr.builder.CreateRet(llvm.ConstNull(fr.llvmtypes.ToLLVM(results.At(0).Type())))
default:
values := make([]llvm.Value, nresults)
for i := range values {
values[i] = llvm.ConstNull(fr.llvmtypes.ToLLVM(results.At(i).Type()))
}
fr.builder.CreateAggregateRet(values)
}
}
fr.builder.SetInsertPointAtEnd(rdblock)
fr.builder.CreateCall(fr.runtime.rundefers.LLVMValue(), nil, "")
fr.builder.CreateBr(recoverBlock)
} else {
fr.builder.CreateBr(fr.blocks[0])
}
for i, block := range f.Blocks {
fr.translateBlock(block, fr.blocks[i])
}
}
type frame struct {
*unit
blocks []llvm.BasicBlock
backpatch map[ssa.Value]*LLVMValue
env map[ssa.Value]*LLVMValue
}
func (fr *frame) translateBlock(b *ssa.BasicBlock, llb llvm.BasicBlock) {
fr.builder.SetInsertPointAtEnd(llb)
for _, instr := range b.Instrs {
fr.instruction(instr)
}
}
func (fr *frame) block(b *ssa.BasicBlock) llvm.BasicBlock {
return fr.blocks[b.Index]
}
func (fr *frame) value(v ssa.Value) (result *LLVMValue) {
switch v := v.(type) {
case nil:
return nil
case *ssa.Function:
result, ok := fr.funcvals[v]
if ok {
return result
}
// fr.globals[v] has the function in raw pointer form;
// we must convert it to <f,ctx> form. If the function
// does not have a receiver, then create a wrapper
// function that has an additional "context" parameter.
f := fr.resolveFunction(v)
if v.Signature.Recv() == nil && len(v.FreeVars) == 0 {
f = contextFunction(fr.compiler, f)
}
pair := llvm.ConstNull(fr.llvmtypes.ToLLVM(f.Type()))
fnptr := llvm.ConstBitCast(f.LLVMValue(), pair.Type().StructElementTypes()[0])
pair = llvm.ConstInsertValue(pair, fnptr, []uint32{0})
result = fr.NewValue(pair, f.Type())
fr.funcvals[v] = result
return result
case *ssa.Const:
return fr.NewConstValue(v.Value, v.Type())
case *ssa.Global:
if g, ok := fr.globals[v]; ok {
return g
}
// Create an external global. Globals for this package are defined
// on entry to translatePackage, and have initialisers.
llelemtyp := fr.llvmtypes.ToLLVM(deref(v.Type()))
llglobal := llvm.AddGlobal(fr.module.Module, llelemtyp, v.String())
global := fr.NewValue(llglobal, v.Type())
fr.globals[v] = global
return global
}
if value, ok := fr.env[v]; ok {
return value
}
// Instructions are not necessarily visited before they are used (e.g. Phi
// edges) so we must "backpatch": create a value with the resultant type,
// and then replace it when we visit the instruction.
if b, ok := fr.backpatch[v]; ok {
return b
}
if fr.backpatch == nil {
fr.backpatch = make(map[ssa.Value]*LLVMValue)
}
// Note: we must not create a constant here (e.g. Undef/ConstNull), as
// it is not permissible to replace a constant with a non-constant.
// We must create the value in its own standalone basic block, so we can
// dispose of it after replacing.
currBlock := fr.builder.GetInsertBlock()
fr.builder.SetInsertPointAtEnd(llvm.AddBasicBlock(currBlock.Parent(), ""))
placeholder := fr.compiler.builder.CreatePHI(fr.llvmtypes.ToLLVM(v.Type()), "")
fr.builder.SetInsertPointAtEnd(currBlock)
value := fr.NewValue(placeholder, v.Type())
fr.backpatch[v] = value
return value
}
// backpatcher returns, if necessary, a function that may
// be called to backpatch a placeholder value; if backpatching
// is unnecessary, the backpatcher returns nil.
//
// When the returned function is called, it is expected that
// fr.env[v] contains the value to backpatch.
func (fr *frame) backpatcher(v ssa.Value) func() {
b := fr.backpatch[v]
if b == nil {
return nil
}
return func() {
b.LLVMValue().ReplaceAllUsesWith(fr.env[v].LLVMValue())
b.LLVMValue().InstructionParent().EraseFromParent()
delete(fr.backpatch, v)
}
}
func (fr *frame) instruction(instr ssa.Instruction) {
fr.logf("[%T] %v @ %s\n", instr, instr, fr.pkg.Prog.Fset.Position(instr.Pos()))
// Check if we'll need to backpatch; see comment
// in fr.value().
if v, ok := instr.(ssa.Value); ok {
if b := fr.backpatcher(v); b != nil {
defer b()
}
}
switch instr := instr.(type) {
case *ssa.Alloc:
typ := fr.llvmtypes.ToLLVM(deref(instr.Type()))
var value llvm.Value
if instr.Heap {
value = fr.createTypeMalloc(typ)
value.SetName(instr.Comment)
fr.env[instr] = fr.NewValue(value, instr.Type())
} else {
value = fr.env[instr].LLVMValue()
}
fr.memsetZero(value, llvm.SizeOf(typ))
case *ssa.BinOp:
lhs, rhs := fr.value(instr.X), fr.value(instr.Y)
fr.env[instr] = lhs.BinaryOp(instr.Op, rhs).(*LLVMValue)
case *ssa.Call:
fn, args, result := fr.prepareCall(instr)
// Some builtins may only be used immediately, and not
// deferred; in this case, "fn" will be nil, and result
// may be non-nil (it will be nil for builtins without
// results.)
if fn == nil {
if result != nil {
fr.env[instr] = result
}
} else {
result = fr.createCall(fn, args)
fr.env[instr] = result
}
case *ssa.ChangeInterface:
x := fr.value(instr.X)
// The source type must be a non-empty interface,
// as ChangeInterface cannot fail (E2I may fail).
if instr.Type().Underlying().(*types.Interface).NumMethods() > 0 {
// TODO(axw) optimisation for I2I case where we
// know statically the methods to carry over.
x = x.convertI2E()
x, _ = x.convertE2I(instr.Type())
} else {
x = x.convertI2E()
x = fr.NewValue(x.LLVMValue(), instr.Type())
}
fr.env[instr] = x
case *ssa.ChangeType:
value := fr.value(instr.X).LLVMValue()
if _, ok := instr.Type().Underlying().(*types.Pointer); ok {
value = fr.builder.CreateBitCast(value, fr.llvmtypes.ToLLVM(instr.Type()), "")
}
v := fr.NewValue(value, instr.Type())
if _, ok := instr.X.(*ssa.Phi); ok {
v = phiValue(fr.compiler, v)
}
fr.env[instr] = v
case *ssa.Convert:
v := fr.value(instr.X)
if _, ok := instr.X.(*ssa.Phi); ok {
v = phiValue(fr.compiler, v)
}
fr.env[instr] = v.Convert(instr.Type()).(*LLVMValue)
//case *ssa.DebugRef:
case *ssa.Defer:
fn, args, result := fr.prepareCall(instr)
if result != nil {
panic("illegal use of builtin in defer statement")
}
fn = fr.indirectFunction(fn, args)
fr.createCall(fr.runtime.pushdefer, []*LLVMValue{fn})
case *ssa.Extract:
tuple := fr.value(instr.Tuple).LLVMValue()
elem := fr.builder.CreateExtractValue(tuple, instr.Index, instr.Name())
elemtyp := instr.Type()
fr.env[instr] = fr.NewValue(elem, elemtyp)
case *ssa.Field:
value := fr.value(instr.X).LLVMValue()
field := fr.builder.CreateExtractValue(value, instr.Field, instr.Name())
fieldtyp := instr.Type()
fr.env[instr] = fr.NewValue(field, fieldtyp)
case *ssa.FieldAddr:
// TODO: implement nil check and panic.
// TODO: combine a chain of {Field,Index}Addrs into a single GEP.
ptr := fr.value(instr.X).LLVMValue()
fieldptr := fr.builder.CreateStructGEP(ptr, instr.Field, instr.Name())
fieldptrtyp := instr.Type()
fr.env[instr] = fr.NewValue(fieldptr, fieldptrtyp)
case *ssa.Go:
fn, args, result := fr.prepareCall(instr)
if result != nil {
panic("illegal use of builtin in go statement")
}
fn = fr.indirectFunction(fn, args)
fr.createCall(fr.runtime.Go, []*LLVMValue{fn})
case *ssa.If:
cond := fr.value(instr.Cond).LLVMValue()
block := instr.Block()
trueBlock := fr.block(block.Succs[0])
falseBlock := fr.block(block.Succs[1])
fr.builder.CreateCondBr(cond, trueBlock, falseBlock)
case *ssa.Index:
// FIXME Surely we should be dealing with an
// *array, so we can do a GEP?
array := fr.value(instr.X).LLVMValue()
arrayptr := fr.builder.CreateAlloca(array.Type(), "")
fr.builder.CreateStore(array, arrayptr)
index := fr.value(instr.Index).LLVMValue()
zero := llvm.ConstNull(index.Type())
addr := fr.builder.CreateGEP(arrayptr, []llvm.Value{zero, index}, "")
fr.env[instr] = fr.NewValue(fr.builder.CreateLoad(addr, ""), instr.Type())
case *ssa.IndexAddr:
// TODO: implement nil-check and panic.
// TODO: combine a chain of {Field,Index}Addrs into a single GEP.
x := fr.value(instr.X).LLVMValue()
index := fr.value(instr.Index).LLVMValue()
var addr llvm.Value
var elemtyp types.Type
zero := llvm.ConstNull(index.Type())
switch typ := instr.X.Type().Underlying().(type) {
case *types.Slice:
elemtyp = typ.Elem()
x = fr.builder.CreateExtractValue(x, 0, "")
addr = fr.builder.CreateGEP(x, []llvm.Value{index}, "")
case *types.Pointer: // *array
elemtyp = typ.Elem().Underlying().(*types.Array).Elem()
addr = fr.builder.CreateGEP(x, []llvm.Value{zero, index}, "")
}
fr.env[instr] = fr.NewValue(addr, types.NewPointer(elemtyp))
case *ssa.Jump:
succ := instr.Block().Succs[0]
fr.builder.CreateBr(fr.block(succ))
case *ssa.Lookup:
x := fr.value(instr.X)
index := fr.value(instr.Index)
if isString(x.Type().Underlying()) {
fr.env[instr] = fr.stringIndex(x, index)
} else {
fr.env[instr] = fr.mapLookup(x, index, instr.CommaOk)
}
case *ssa.MakeChan:
fr.env[instr] = fr.makeChan(instr.Type(), fr.value(instr.Size))
case *ssa.MakeClosure:
fn := fr.resolveFunction(instr.Fn.(*ssa.Function))
bindings := make([]*LLVMValue, len(instr.Bindings))
for i, binding := range instr.Bindings {
bindings[i] = fr.value(binding)
}
fr.env[instr] = fr.makeClosure(fn, bindings)
case *ssa.MakeInterface:
receiver := fr.value(instr.X)
fr.env[instr] = fr.makeInterface(receiver, instr.Type())
case *ssa.MakeMap:
fr.env[instr] = fr.makeMap(instr.Type(), fr.value(instr.Reserve))
case *ssa.MakeSlice:
length := fr.value(instr.Len)
capacity := fr.value(instr.Cap)
fr.env[instr] = fr.makeSlice(instr.Type(), length, capacity)
case *ssa.MapUpdate:
m := fr.value(instr.Map)
k := fr.value(instr.Key)
v := fr.value(instr.Value)
fr.mapUpdate(m, k, v)
case *ssa.Next:
iter := fr.value(instr.Iter)
if !instr.IsString {
fr.env[instr] = fr.mapIterNext(iter)
return
}
// String range
//
// We make some assumptions for now around the
// current state of affairs in go.tools/ssa.
//
// - Range's block is a predecessor of Next's.
// (this is currently true, but may change in the future;
// adonovan says he will expose the dominator tree
// computation in the future, which we can use here).
// - Next is the first non-Phi instruction in its block.
// (this is not strictly necessary; we can move the Phi
// to the top of the block, and defer the tuple creation
// to Extract).
assert(instr.Iter.(*ssa.Range).Block() == instr.Block().Preds[0])
for _, blockInstr := range instr.Block().Instrs {
if instr == blockInstr {
break
}
_, isphi := blockInstr.(*ssa.Phi)
assert(isphi)
}
preds := instr.Block().Preds
llpreds := make([]llvm.BasicBlock, len(preds))
for i, b := range preds {
llpreds[i] = fr.block(b)
}
fr.env[instr] = fr.stringIterNext(iter, llpreds)
case *ssa.Panic:
arg := fr.value(instr.X).LLVMValue()
fr.builder.CreateCall(fr.runtime.panic_.LLVMValue(), []llvm.Value{arg}, "")
fr.builder.CreateUnreachable()
case *ssa.Phi:
typ := instr.Type()
phi := fr.builder.CreatePHI(fr.llvmtypes.ToLLVM(typ), instr.Comment)
fr.env[instr] = fr.NewValue(phi, typ)
values := make([]llvm.Value, len(instr.Edges))
blocks := make([]llvm.BasicBlock, len(instr.Edges))
block := instr.Block()
for i, edge := range instr.Edges {
values[i] = fr.value(edge).LLVMValue()
blocks[i] = fr.block(block.Preds[i])
}
phi.AddIncoming(values, blocks)
case *ssa.Range:
x := fr.value(instr.X)
switch x.Type().Underlying().(type) {
case *types.Map:
fr.env[instr] = fr.mapIterInit(x)
case *types.Basic: // string
fr.env[instr] = x
default:
panic(fmt.Sprintf("unhandled range for type %T", x.Type()))
}
case *ssa.Return:
switch n := len(instr.Results); n {
case 0:
// https://code.google.com/p/go/issues/detail?id=7022
if r := instr.Parent().Signature.Results(); r != nil && r.Len() > 0 {
fr.builder.CreateUnreachable()
} else {
fr.builder.CreateRetVoid()
}
case 1:
fr.builder.CreateRet(fr.value(instr.Results[0]).LLVMValue())
default:
values := make([]llvm.Value, n)
for i, result := range instr.Results {
values[i] = fr.value(result).LLVMValue()
}
fr.builder.CreateAggregateRet(values)
}
case *ssa.RunDefers:
fr.builder.CreateCall(fr.runtime.rundefers.LLVMValue(), nil, "")
case *ssa.Select:
states := make([]selectState, len(instr.States))
for i, state := range instr.States {
states[i] = selectState{
Dir: state.Dir,
Chan: fr.value(state.Chan),
Send: fr.value(state.Send),
}
}
fr.env[instr] = fr.chanSelect(states, instr.Blocking)
case *ssa.Send:
fr.chanSend(fr.value(instr.Chan), fr.value(instr.X))
case *ssa.Slice:
x := fr.value(instr.X)
low := fr.value(instr.Low)
high := fr.value(instr.High)
fr.env[instr] = fr.slice(x, low, high)
case *ssa.Store:
addr := fr.value(instr.Addr).LLVMValue()
value := fr.value(instr.Val).LLVMValue()
// The bitcast is necessary to handle recursive pointer stores.
addr = fr.builder.CreateBitCast(addr, llvm.PointerType(value.Type(), 0), "")
fr.builder.CreateStore(value, addr)
case *ssa.TypeAssert:
x := fr.value(instr.X)
if iface, ok := x.Type().Underlying().(*types.Interface); ok && iface.NumMethods() > 0 {
x = x.convertI2E()
}
if !instr.CommaOk {
if _, ok := instr.AssertedType.Underlying().(*types.Interface); ok {
fr.env[instr] = x.mustConvertE2I(instr.AssertedType)
} else {
fr.env[instr] = x.mustConvertE2V(instr.AssertedType)
}
} else {
var result, success *LLVMValue
if _, ok := instr.AssertedType.Underlying().(*types.Interface); ok {
result, success = x.convertE2I(instr.AssertedType)
} else {
result, success = x.convertE2V(instr.AssertedType)
}
resultval := result.LLVMValue()
okval := success.LLVMValue()
pairtyp := llvm.StructType([]llvm.Type{resultval.Type(), okval.Type()}, false)
pair := llvm.Undef(pairtyp)
pair = fr.builder.CreateInsertValue(pair, resultval, 0, "")
pair = fr.builder.CreateInsertValue(pair, okval, 1, "")
fr.env[instr] = fr.NewValue(pair, instr.Type())
}
case *ssa.UnOp:
operand := fr.value(instr.X)
switch instr.Op {
case token.ARROW:
fr.env[instr] = fr.chanRecv(operand, instr.CommaOk)
case token.MUL:
// The bitcast is necessary to handle recursive pointer loads.
llptr := fr.builder.CreateBitCast(operand.LLVMValue(), llvm.PointerType(fr.llvmtypes.ToLLVM(instr.Type()), 0), "")
fr.env[instr] = fr.NewValue(fr.builder.CreateLoad(llptr, ""), instr.Type())
default:
fr.env[instr] = operand.UnaryOp(instr.Op).(*LLVMValue)
}
default:
panic(fmt.Sprintf("unhandled: %v", instr))
}
}
// prepareCall returns the evaluated function and arguments.
//
// For builtins that may not be used in go/defer, prepareCall
// will emits inline code. In this case, prepareCall returns
// nil for fn and args, and returns a non-nil value for result.
func (fr *frame) prepareCall(instr ssa.CallInstruction) (fn *LLVMValue, args []*LLVMValue, result *LLVMValue) {
call := instr.Common()
args = make([]*LLVMValue, len(call.Args))
for i, arg := range call.Args {
args[i] = fr.value(arg)
}
if call.IsInvoke() {
fn := fr.interfaceMethod(fr.value(call.Value), call.Method)
return fn, args, nil
}
switch v := call.Value.(type) {
case *ssa.Builtin:
// handled below
case *ssa.Function:
// Function handled specially; value() will convert
// a function to one with a context argument.
fn = fr.resolveFunction(v)
pair := llvm.ConstNull(fr.llvmtypes.ToLLVM(fn.Type()))
pair = llvm.ConstInsertValue(pair, fn.LLVMValue(), []uint32{0})
fn = fr.NewValue(pair, fn.Type())
return fn, args, nil
default:
fn = fr.value(call.Value)
return fn, args, nil
}
// Builtins may only be used in calls (i.e. can't be assigned),
// and only print[ln], panic and recover may be used in go/defer.
builtin := call.Value.(*ssa.Builtin)
switch builtin.Name() {
case "print", "println":
// print/println generates a call-site specific anonymous
// function to print the values. It's not inline because
// print/println may be deferred.
params := make([]*types.Var, len(call.Args))
for i, arg := range call.Args {
// make sure to use args[i].Type(), not call.Args[i].Type(),
// as the evaluated expression converts untyped.
params[i] = types.NewParam(arg.Pos(), nil, arg.Name(), args[i].Type())
}
sig := types.NewSignature(nil, nil, types.NewTuple(params...), nil, false)
llfntyp := fr.llvmtypes.ToLLVM(sig)
llfnptr := llvm.AddFunction(fr.module.Module, "", llfntyp.StructElementTypes()[0].ElementType())
currBlock := fr.builder.GetInsertBlock()
entry := llvm.AddBasicBlock(llfnptr, "entry")
fr.builder.SetInsertPointAtEnd(entry)
internalArgs := make([]Value, len(args))
for i, arg := range args {
internalArgs[i] = fr.NewValue(llfnptr.Param(i), arg.Type())
}
fr.printValues(builtin.Name() == "println", internalArgs...)
fr.builder.CreateRetVoid()
fr.builder.SetInsertPointAtEnd(currBlock)
return fr.NewValue(llfnptr, sig), args, nil
case "panic":
panic("TODO: panic")
case "recover":
// TODO(axw) determine number of frames to skip in pc check
indirect := fr.NewValue(llvm.ConstNull(llvm.Int32Type()), types.Typ[types.Int32])
return fr.runtime.recover_, []*LLVMValue{indirect}, nil
case "append":
return nil, nil, fr.callAppend(args[0], args[1])
case "close":
return fr.runtime.chanclose, args, nil
case "cap":
return nil, nil, fr.callCap(args[0])
case "len":
return nil, nil, fr.callLen(args[0])
case "copy":
return nil, nil, fr.callCopy(args[0], args[1])
case "delete":
fr.callDelete(args[0], args[1])
return nil, nil, nil
case "real":
return nil, nil, args[0].extractComplexComponent(0)
case "imag":
return nil, nil, args[0].extractComplexComponent(1)
case "complex":
r := args[0].LLVMValue()
i := args[1].LLVMValue()
typ := instr.Value().Type()
cmplx := llvm.Undef(fr.llvmtypes.ToLLVM(typ))
cmplx = fr.builder.CreateInsertValue(cmplx, r, 0, "")
cmplx = fr.builder.CreateInsertValue(cmplx, i, 1, "")
return nil, nil, fr.NewValue(cmplx, typ)
default:
panic("unimplemented: " + builtin.Name())
}
}
func hasDefer(f *ssa.Function) bool {
for _, b := range f.Blocks {
for _, instr := range b.Instrs {
if _, ok := instr.(*ssa.Defer); ok {
return true
}
}
}
return false
}
// contextFunction creates a wrapper function that
// has the same signature as the specified function,
// but has an additional first parameter that accepts
// and ignores the function context value.
//
// contextFunction must be called with a global function
// pointer.
func contextFunction(c *compiler, f *LLVMValue) *LLVMValue {
defer c.builder.SetInsertPointAtEnd(c.builder.GetInsertBlock())
resultType := c.llvmtypes.ToLLVM(f.Type())
fnptr := f.LLVMValue()
contextType := resultType.StructElementTypes()[1]
llfntyp := fnptr.Type().ElementType()
llfntyp = llvm.FunctionType(
llfntyp.ReturnType(),
append([]llvm.Type{contextType}, llfntyp.ParamTypes()...),
llfntyp.IsFunctionVarArg(),
)
wrapper := llvm.AddFunction(c.module.Module, fnptr.Name()+".ctx", llfntyp)
wrapper.SetLinkage(llvm.PrivateLinkage)
entry := llvm.AddBasicBlock(wrapper, "entry")
c.builder.SetInsertPointAtEnd(entry)
args := make([]llvm.Value, len(llfntyp.ParamTypes())-1)
for i := range args {
args[i] = wrapper.Param(i + 1)
}
result := c.builder.CreateCall(fnptr, args, "")
switch nresults := f.Type().(*types.Signature).Results().Len(); nresults {
case 0:
c.builder.CreateRetVoid()
case 1:
c.builder.CreateRet(result)
default:
results := make([]llvm.Value, nresults)
for i := range results {
results[i] = c.builder.CreateExtractValue(result, i, "")
}
c.builder.CreateAggregateRet(results)
}
return c.NewValue(wrapper, f.Type())
}
// phiValue returns a new value with the same value and type as the given Phi.
// This is used for go.tools/ssa instructions that introduce new ssa.Values,
// but would otherwise not generate a new LLVM value.
func phiValue(c *compiler, v *LLVMValue) *LLVMValue {
llv := v.LLVMValue()
llv = c.builder.CreateSelect(llvm.ConstAllOnes(llvm.Int1Type()), llv, llv, "")
return c.NewValue(llv, v.Type())
}