-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·95 lines (68 loc) · 3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import FitTransit
import numpy as np
import matplotlib.pyplot as mpl
import batman
def transit(t,t0,p,r,a,i,e,w,u,ld='quadratic'):
params=batman.TransitParams() #object to store transit parameters
params.t0=t0 #time of inferior conjunction
params.per=p #orbital period
params.rp=r #planet radius (in units of stellar radii)
params.a=a #semi-major axis (in units of stellar radii)
params.inc=i #orbital inclination (in degrees)
params.ecc=e #eccentricity
params.w=w #longitude of periastron (in degrees)
#ld_options = ["uniform", "linear", "quadratic", "nonlinear"]
#ld_coefficients = [[], [0.3], [0.1, 0.3], [0.5, 0.1, 0.1, -0.1]]
params.limb_dark=ld #limb darkening model
params.u=u #limb darkening coefficients [u1, u2, u3, u4]
#t = np.linspace(-0.025, 0.025, 1000) #times at which to calculate light curve
m=batman.TransitModel(params,t) #initializes model
flux=m.light_curve(params) #calculates light curve
return flux
t0=2.4e6
param={'t0':t0,'P':15,'Rp':1e-2,'a':18,'i':89.8,'e':0,'w':47,'c1':0.15,'c2':0.45,'p0':-1.025,'p1':9e-2,'p2':-1e-3}
#param={'t0':t0,'P':15,'Rp':1e-2,'a':18,'i':89.8,'e':0,'w':47,'c1':0.15,'c2':0.45,'p0':10,'p1':0,'p2':0}
limits={'t0':[t0-1e-2,t0+1e-2],'P':[14.5,15.5],'Rp':[5e-3,5e-2],'a':[15,20],'i':[85,90],'e':[0,0.1],'w':[0,360],'c1':[0.1,0.2],'c2':[0.4,0.5],'p0':[-1.0251,-1.0249],'p1':[8.5e-2,9.5e-2],'p2':[-1.5e-3,-0.5e-3]}
steps={'t0':1e-4,'P':1e-2,'Rp':1e-5,'a':0.1,'i':0.1,'e':1e-2,'w':0.1,'c1':1e-3,'c2':1e-3,'p0':1e-6,'p1':1e-4,'p2':1e-5}
t0+=45
t=np.linspace(-0.3,0.3,100)+t0
pp=np.polyval([param['p2'],param['p1'],param['p0']],t-param['t0'])
flux0=transit(t,param['t0'],param['P'],param['Rp'],param['a'],param['i'],param['e'],param['w'],[param['c1'],param['c2']])*pp
flux=flux0+1e-5*np.random.normal(size=t.shape)*np.mean(pp)
err=1e-5*np.ones(t.shape)*np.mean(pp)
tf=FitTransit.FitTransit(t,flux,err)
tf.Plot0()
tf.Normalise([t0-0.15,t0+0.15],reverse=True,plot=False)
param['p0']=1
param['p1']=0
param['p2']=0
tf.Plot0()
tf.params=dict(param)
tf.systemParams={'R':1.2,'R_err':0.1,'mag':8.76}
#tf.Phase(tf.params['t0'],tf.params['P'])
tf.Summary()
tf.limits=limits
tf.steps=steps
tf.fit_params=['Rp','a','i','c1','c2'] #t0,P,Rp,a,i,e,w,c1,c2,p0,p1,p2
#tf.fit_params=['p0','p1','p2']
tf.FitGA(100,100)
tf.Summary()
#tf.FitDE(100,100)
#tf.Summary()
tf.FitMCMC(1e3)
flux1=tf.Model()
tf.Summary()
#tf.Save('test')
#tf.SaveModel('model.dat')
#tf.SaveModel('phase.dat',t_min=-0.4,t_max=0.4,phase=True)
#tf.SaveRes('res.dat')
tf.Plot()
#tf.Plot(double_ax=True)
#tf.Plot(with_res=True)
#tf.Plot(model2=True,params=param)
#tf.Plot(hours=True)
#tf.Plot(hours=True,double_ax=True,with_res=True)
#tf.Plot(hours=True,detrend=True)
tf.Plot(model2=True,params=param,hours=True,double_ax=True,with_res=True)
tf.PlotRes(hours=True,double_ax=True)
mpl.show()