|
| 1 | +import os |
| 2 | +import logging |
| 3 | +import qdrant_client |
| 4 | +from llama_index.core.workflow import ( |
| 5 | + Workflow, |
| 6 | + Context, |
| 7 | + StartEvent, |
| 8 | + StopEvent, |
| 9 | + step |
| 10 | +) |
| 11 | +from llama_index.core.base.base_query_engine import BaseQueryEngine |
| 12 | +from llama_index.core.query_engine import RetryGuidelineQueryEngine |
| 13 | +from llama_index.core import (VectorStoreIndex, Settings, StorageContext, SimpleDirectoryReader) |
| 14 | +from llama_index.core.evaluation import GuidelineEvaluator |
| 15 | +from llama_index.vector_stores.qdrant import QdrantVectorStore |
| 16 | +from llama_index.llms.ollama import Ollama |
| 17 | +from llama_index.embeddings.ollama import OllamaEmbedding |
| 18 | +from llama_index.core.evaluation.guideline import DEFAULT_GUIDELINES |
| 19 | +from dotenv import load_dotenv, find_dotenv |
| 20 | +from events import QueryEngineEvent |
| 21 | + |
| 22 | +_ = load_dotenv(find_dotenv()) |
| 23 | + |
| 24 | +logging.basicConfig(level=int(os.environ['INFO'])) |
| 25 | +logger = logging.getLogger(__name__) |
| 26 | + |
| 27 | + |
| 28 | +class RAGWorkflowWithRetryGuidelineQueryEngine(Workflow): |
| 29 | + def __init__(self, index: VectorStoreIndex, *args, **kwargs): |
| 30 | + super().__init__(*args, **kwargs) |
| 31 | + self.index: VectorStoreIndex = index |
| 32 | + |
| 33 | + @step |
| 34 | + async def create_retry_query_engine(self, ctx: Context, ev: StartEvent) -> QueryEngineEvent | None: |
| 35 | + "Entry point for RAG, triggered by a StartEvent with `query`." |
| 36 | + logger.info(f"creating query engine for query: {ev.get('query')}") |
| 37 | + query = ev.get("query") |
| 38 | + no_of_retries = ev.get("no_of_retries", default=3) |
| 39 | + |
| 40 | + if not query: |
| 41 | + raise ValueError("Query is required!") |
| 42 | + |
| 43 | + # store the settings in the global context |
| 44 | + await ctx.set("query", query) |
| 45 | + await ctx.set("no_of_retries", no_of_retries) |
| 46 | + |
| 47 | + base_query_engine = self.index.as_query_engine(llm=Settings.llm, similarity_top_k=2, sparse_top_k=12, |
| 48 | + vector_store_query_mode="hybrid") |
| 49 | + return QueryEngineEvent(base_query_engine=base_query_engine) |
| 50 | + |
| 51 | + @step |
| 52 | + async def query_with_retry_source_query_engine(self, ctx: Context, ev: QueryEngineEvent) -> StopEvent: |
| 53 | + """Return a response using reranked nodes.""" |
| 54 | + query = await ctx.get("query") |
| 55 | + no_of_retries = await ctx.get("no_of_retries") |
| 56 | + base_query_engine: BaseQueryEngine = ev.base_query_engine |
| 57 | + |
| 58 | + # Guideline eval |
| 59 | + guideline_eval = GuidelineEvaluator( |
| 60 | + guidelines=DEFAULT_GUIDELINES + "\nThe response should not be overly long.\n" |
| 61 | + "The response should try to summarize where possible.\n" |
| 62 | + ) # just for example |
| 63 | + retry_guideline_query_engine = RetryGuidelineQueryEngine(base_query_engine, guideline_eval, |
| 64 | + resynthesize_query=True, max_retries=no_of_retries) |
| 65 | + retry_guideline_response = retry_guideline_query_engine.query(query) |
| 66 | + logger.info(f"response for query is: {retry_guideline_response}") |
| 67 | + return StopEvent(result=str(retry_guideline_response)) |
| 68 | + |
| 69 | + |
| 70 | +def build_rag_workflow_with_retry_guideline_query_engine() -> RAGWorkflowWithRetryGuidelineQueryEngine: |
| 71 | + index_loaded = False |
| 72 | + # host points to qdrant in docker-compose.yml |
| 73 | + client = qdrant_client.QdrantClient(url=os.environ['DB_URL'], api_key=os.environ['DB_API_KEY']) |
| 74 | + aclient = qdrant_client.AsyncQdrantClient(url=os.environ['DB_URL'], api_key=os.environ['DB_API_KEY']) |
| 75 | + vector_store = QdrantVectorStore(collection_name=os.environ['COLLECTION_NAME'], client=client, aclient=aclient, |
| 76 | + enable_hybrid=True, batch_size=50) |
| 77 | + |
| 78 | + Settings.llm = Ollama(model=os.environ['OLLAMA_LLM_MODEL'], base_url=os.environ['OLLAMA_BASE_URL'], |
| 79 | + request_timeout=600) |
| 80 | + Settings.embed_model = OllamaEmbedding(model_name=os.environ['OLLAMA_EMBED_MODEL'], |
| 81 | + base_url=os.environ['OLLAMA_BASE_URL']) |
| 82 | + |
| 83 | + # index = VectorStoreIndex.from_vector_store(vector_store=vector_store, embed_model=Settings.embed_model) |
| 84 | + index: VectorStoreIndex = None |
| 85 | + |
| 86 | + if client.collection_exists(collection_name=os.environ['COLLECTION_NAME']): |
| 87 | + try: |
| 88 | + index = VectorStoreIndex.from_vector_store(vector_store=vector_store) |
| 89 | + index_loaded = True |
| 90 | + except Exception as e: |
| 91 | + index_loaded = False |
| 92 | + |
| 93 | + if not index_loaded: |
| 94 | + # load data |
| 95 | + _docs = (SimpleDirectoryReader(input_dir='data', required_exts=['.pdf']).load_data(show_progress=True)) |
| 96 | + |
| 97 | + # build and persist index |
| 98 | + storage_context = StorageContext.from_defaults(vector_store=vector_store) |
| 99 | + logger.info("indexing the docs in VectorStoreIndex") |
| 100 | + index = VectorStoreIndex.from_documents(documents=_docs, storage_context=storage_context, show_progress=True) |
| 101 | + |
| 102 | + return RAGWorkflowWithRetryGuidelineQueryEngine(index=index, timeout=120.0) |
0 commit comments