-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathsift.py
137 lines (107 loc) · 4.17 KB
/
sift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
author: alan
"""
import Image
import numpy
import scipy
import scipy.ndimage
import scipy.spatial
from scipy.ndimage import filters
from scipy.spatial import cKDTree
import math
import itertools
import process
import findextrema
import descriptor
import harris
import hessian
import factor
class sift(object):
def __init__(self):
self.distanceThresh = 0.00000000001
self.similarityThresh = 0.8
def match(self,patname,srcname):
"""
given a pattern image and a source image, return the match result and
the scaling factor
"""
p = Image.open(patname).convert('L')
pa = numpy.array(p)
pa *= 255.0/pa.max()
s = Image.open(srcname).convert('L')
sa = numpy.array(s)
sa *= 255.0/sa.max()
pre = process.process()
ex= findextrema.findextrema()
des = descriptor.descriptor()
scale = factor.factor()
pdata = pre.creatdog(pa)
sdata = pre.creatdog(sa)
pDes = []
sDes = []
# dict to store all the feature matching result
result = {}
pFeatures = ex.get_Patextremes(pdata,pa)
sFeatures = ex.get_Srcextremes(sdata,sa)
# assign decriptors for each feature points
pDes = des.creatDes(pFeatures,pa)
sDes = des.creatDes(sFeatures,sa)
tree = []
if sDes=={} or pDes=={}:
return False
else:
# use cKD tree struture to compute the two similar pixels
tree = scipy.spatial.cKDTree(sDes.values())
slocList = sDes.keys()
pDict = {}
sDict = {}
for p in pDes.keys():
x = pDes[p]
re = tree.query(x,k=2,eps=self.distanceThresh,p=2,
distance_upper_bound=numpy.inf)
if re[0][1]!=0 and re[0][0]/re[0][1] < self.similarityThresh:
pLoc = p
sLoc = slocList[re[1][0]]
distance = re[0][0]
# did not been compared before
if sDict.has_key(sLoc)==False:
# add the result and compared pattern pixel
# and source pixel
result[(pLoc,sLoc)] = distance
pDict[pLoc] = sLoc
sDict[sLoc] = pLoc
elif distance < result.get((sDict[sLoc],sLoc)):
# updates the result and compared pattern pixel
# and source pixel
del result[(sDict[sLoc],sLoc)]
result[(pLoc,sLoc)] = distance
del pDict[sDict[sLoc]]
pDict[pLoc] = sLoc
sDict[sLoc] = pLoc
elif re[0][1]==0:
pLoc = p
sLoc = slocList[re[1][0]]
distance = re[0][0]
# did not been compared before
if sDict.has_key(sLoc)==False:
# add the result and compared pattern pixel
# and source pixel
result[(pLoc,sLoc)] = distance
pDict[pLoc] = sLoc
sDict[sLoc] = pLoc
elif distance < result.get((sDict[sLoc],sLoc)):
# updates the result and compared pattern pixel
# and source pixel
del result[(sDict[sLoc],sLoc)]
result[(pLoc,sLoc)] = distance
del pDict[sDict[sLoc]]
pDict[pLoc] = sLoc
sDict[sLoc] = pLoc
# the list of matched pixels, sorted by the distance
finResult = sorted(result.items(), reverse=False, key=lambda d: d[1])
match1 = finResult[0][0]
match2 = finResult[1][0]
match3 = finResult[2][0]
scalingFactor = scale.cal_factor(match1,match2,match3)
return finResult,scalingFactor