-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathhessian.py
76 lines (57 loc) · 1.77 KB
/
hessian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from PIL import Image
import numpy
import scipy
from scipy.ndimage import filters
class hessian(object):
def __init__(self):
self.eps = 0.000001
self.patternEdgeThreshold = 4.1
self.sourceEdgeThreshold = 4.1
def patEdgeDetect(self,arr):
"""
takes an image array as input, return the pixels on the edges of the
pattern image
"""
imx = numpy.zeros(arr.shape)
filters.gaussian_filter(arr, (3,3), (0,1), imx)
imy = numpy.zeros(arr.shape)
filters.gaussian_filter(arr, (3,3), (1,0), imy)
Wxx = filters.gaussian_filter(imx*imx,3)
Wxy = filters.gaussian_filter(imx*imy,3)
Wyy = filters.gaussian_filter(imy*imy,3)
# compute the determint and trace of the array
Wdet = Wxx*Wyy - Wxy**2
Wtr = Wxx + Wyy
# This threshold value is set by (r+1)**2/r and experiments
Thres = self.patternEdgeThreshold
coor = []
Hess = Wtr**2/(Wdet+self.eps)
re = numpy.where(Hess>Thres)
Num = len(re[0])
for i in range(Num):
coor.append((re[0][i],re[1][i]))
return tuple(coor)
def Srcedgedetect(self,arr):
"""
takes an image array as input, return the pixels on the edges of the
source image
"""
imx = numpy.zeros(arr.shape)
filters.gaussian_filter(arr, (3,3), (0,1), imx)
imy = numpy.zeros(arr.shape)
filters.gaussian_filter(arr, (3,3), (1,0), imy)
Wxx = filters.gaussian_filter(imx*imx,3)
Wxy = filters.gaussian_filter(imx*imy,3)
Wyy = filters.gaussian_filter(imy*imy,3)
# compute the determint and trace of the array
Wdet = Wxx*Wyy - Wxy**2
Wtr = Wxx + Wyy
# This threshold value is set by (r+1)**2/r and experiments
Thres = self.sourceEdgeThreshold
coor = []
Hess = Wtr**2/(Wdet+self.eps)
re = numpy.where(Hess>Thres)
Num = len(re[0])
for i in range(Num):
coor.append((re[0][i],re[1][i]))
return tuple(coor)