-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathharris.py
82 lines (62 loc) · 2.58 KB
/
harris.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from PIL import Image
import numpy
import scipy
from scipy.ndimage import filters
# threshold = 0.0001
# eps = 0.000001
class harris(object):
def __init__(self):
self.threshold = 0.0001
self.eps = 0.000001
def corner(self,arr):
"""
takes an image array as input and return the pixels
which are corners of the image
"""
harrisim = self.compute_harris_response(arr)
filtered_coords = self.get_harris_points(harrisim, 3, self.threshold)
return filtered_coords
def compute_harris_response(self,im,sigma=1.5):
""" Compute the Harris corner detector response function
for each pixel in a graylevel image. """
# derivatives
imx = numpy.zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (0,1), imx)
imy = numpy.zeros(im.shape)
filters.gaussian_filter(im, (sigma,sigma), (1,0), imy)
# compute components of the Harris matrix
Wxx = filters.gaussian_filter(imx*imx,sigma)
Wxy = filters.gaussian_filter(imx*imy,sigma)
Wyy = filters.gaussian_filter(imy*imy,sigma)
# determinant and trace
Wdet = Wxx*Wyy - Wxy**2
Wtr = Wxx + Wyy+self.eps
return Wdet / Wtr
def get_harris_points(self,harrisim,min_dist,threshold):
"""
Return corners from a Harris response image
min_dist is the minimum number of pixels separating
corners and image boundary.
"""
# find top corner candidates above a threshold
corner_threshold = harrisim.max() * self.threshold
harrisim_t = (harrisim > corner_threshold) * 1
# get coordinates of candidates
coords = numpy.array(harrisim_t.nonzero()).T
# ...and their values
candidate_values = [harrisim[c[0],c[1]] for c in coords]
# sort candidates
index = numpy.argsort(candidate_values)
# store allowed point locations in array
allowed_locations = numpy.zeros(harrisim.shape)
allowed_locations[min_dist:-min_dist,min_dist:-min_dist] = 1
# select the best points taking min_distance into account
filtered_coords = []
for i in index:
if allowed_locations[coords[i,0],coords[i,1]] == 1:
filtered_coords.append(tuple(coords[i]))
allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),
(coords[i,1]-min_dist):(coords[i,1]+min_dist)] = 0
return tuple(filtered_coords)