-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsterimol.f
883 lines (882 loc) · 54.7 KB
/
sterimol.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
C ----
C ---- Minute changes to sterimol.for to make program compiled under GNU g77
C ---- by Jan Labanowski, Feb. 28, 2009
C ----
C ***** STERIMOL PROGRAM (DATE: SEPT. 1976) *****
C ***** INPUT CARDS *****
C THE FIRST CARD CONTAINS THE 33 USED SYMBOLS; STARTING WITH 1
C IN COLUMN 1. SYMBOL NR 27 IS A SPACE.
C 1234567890ABCDEFHINOPRSTXZ (&*),=
C NEXT FOLLOW (IF WANTED) THE FORMULAE FOR THE 'RADICALS',
C OF THE FOLLOWING GENERAL TYPE:
C ZKK=FORMULA*
C WHERE KK IS A TWO-DIGIT INTEGER NUMBER (01 - 99).
C A RADICAL MAY BE ANY SYMBOL STRING WHICH IS PART OF
C A VALID FORMULA. IF NECESSARY, IT MAY BE CONTINUED
C LIKE A FORMULA CARD. CLOSE OR REPLACE THE
C RADICAL-CARD SET BY A BLANK CARD.
C FOR EACH MOLECULE THE FOLLOWING CARDS ARE GIVEN:
C (1) THE INTEGER IPR (I4): THE OUTPUT INDEX (1 OR 2);
C (2) THE FORMULA. IF ONE CARD IS NOT SUFFICIENT, END
C THIS CARD WITH A & SIGN AND CONTINUE ON THE NEXT CARD.
C (3) NUMBER OF THE TORSION ANGLES (I4). IF NONE ARE TO BE
C GIVEN, REPLACE THIS CARD BY A BLANK ONE.
C (4) THE TORSION ANGLES (1X,F7.2; DECIMAL POINTS AT
C COLUMNS 6, 14, 22, ....) .
C AFTER THE SETS OF MOLECULE-INPUT CARDS: ONE BLANK CARD.
C ***** OUTPUT *****
C FOR IPR = 1 :
C THE RADICAL FORMULAE (IF PRESENT);
C THE MOLECULE FORMULA AS IT WAS INPUT;
C SERIAL NUMBER, NUMBER OF ATOMS, OUTPUT INDEX;
C FULLY WRITTEN FORMULA, WITH 'TRANSLATION' OF THE RADICALS;
C LIST OF THE TORSION ANGLES;
C TABLE OF THE VANDERWAALS RADII AND COORDINATES OF THE ATOMS;
C LIST OF THE STERIC PARAMETERS: L; B(1) - B(4) AND
C B(5) (MAXIMUM WIDTH)
C A WARNING IF NEIGHBOURING ATOMS HAVE OVERLAPPING VANDERWAALS SPHERES
C FOR IPR = 2 IN ADDITION:
C AN X, Y AND A Y, Z PROJECTION OF THE MOLECULE;
C A LIST OF THE ATOMS, ORDERED BY INCREASING X COORDINATES,
C SERVING TO RAPIDLY IDENTIFY THE PLOTTED ATOMS.
C
INTEGER DD
COMMON/ALG/NR,N,IPR,DD(99,100),NA(99),KH(500)
COMMON/CHAR/ICH(33)
COMMON/ZDD/NNVZ,ZDAT(30)
NR=0
C READ THE RADICAL FORMULAE, IF PRESENT.
1 CALL RECHA(KH,IA)
IF (IA.EQ.0) GOTO 5
J1=MOD(KH(2),10)
J2=MOD(KH(3),10)
J=10*J1+J2
IF(J.GT.0) GOTO 3
C THE RADICAL Z00 REPRESENTS A SPECIAL ATOM;
C THIS IS CALLED Z, WHICH SYMBOL IS FOLLOWED BY THE NUMBER OF BONDS.
NNVZ=KH(6)
K=4*NNVZ+1
C READ THE V.D.WAALS RADIUS (*100) AND THE BOND VALUES,
C EACH FOLLOWED BY THE CORRESPONDING BOND VECTOR.
READ(5,*) (ZDAT(I), I=1,K)
GOTO 1
3 CONTINUE
N=IA-4
NA(J)=N
DO 2 I=1,N
2 DD(J,I)=KH(I+4)
GOTO 1
5 CALL STRML
CALL PARAM
IF(IPR.EQ.2) CALL TRANSP
END
BLOCK DATA
C THE ARRAYS IDAT AND VDAT CONTAIN THE ATOMIC DATA.
C IDAT CONSISTS OF SEQUENCES OF THE FOLLOWING KIND:
C 100 + K , W , N , N * (B, -J) , IN WHICH:
C K = ATOM-TYPE NUMBER:
C W = 100 * VANDERWAALS RADIUS;
C N = NUMBER OF BONDS;
C B = BOND VALUE;
C J = FIRST SUBSCRIPT NUMBER OF A TRIPLE OF ARRAY ELEMENTS
C OF ARRAY VDAT, GIVING THE COORDINATES OF THE PARTIAL BOND.
COMMON/CHAR/ICH(33)
COMMON/DAT1/IDAT(184),VDAT(177)
DATA IDAT/101,150,4,1,-1,1,-4,1,-7,1,-10,103,160,3,2,-13,1,-16,
1 1,-19,104,160,2,3,-22,1,-25,105,150,3,4,-28,2,-31,1,-34,106,
2 170,3,3,-37,3,-40,1,-43,107,170,3,2,-46,2,-49,1,-52,108,170,3,
3 3,-55,2,-58,1,-61,109,150,4,2,-64,2,-67,1,-70,1,-73,110,100,1,1,
4 -76,111,150,4,1,-79,1,-82,1,-85,1,-88,113,170,3,2,-166,2,-169,
5 2,-172,115,145,3,5,-91,4,-94,1,-97,120,135,2,1,-100,1,-103,122,
6 135,1,2,-106,123,140,4,1,-109,1,-112,1,-115,1,-118,124,170,2,1,
7 -121,1,-124,125,100,6,1,-127,1,-130,1,-133,1,-136,1,-139,1,-142,
8 126,135,1,1,-145,127,180,1,1,-148,128,140,4,1,-151,1,-154,1,
9 -157,1,-160,129,195,1,1,-163,130,215,1,1,-175/
DATA VDAT/-.77,0.,0.,.256667,.725963,0.,.256667,-.362981,
1 .628702,.256667,-.362981,-.628702,-.67,0.,0.,.421,.596,0.,
5 .421,-.596,0.,
2 -.6,0.,0.,.7,.0001,0.,-.72,0.,0.,.384,.549,0.,.317,-.68,0.,
3 -.69,0.,0.,.213222,.656229,0.,.429083,-.590582,0.,-.69,0.,0.,
4 .345,.597558,0.,.365,-.632119,0.,-.69,0.,0.,.4617,.51277,0.,
5 .213222,-.656229,0.,-.76,0.,0.,-.38,-.193,-.629,.348,.686,0.,
6 .348,-.568,.384,-.33,0.,0.,-.70,0.,0.,.23333,.659966,0.,
7 .233333,-.329983,.571548,.233333,-.329983,-.571548,-.7,0.,0.,
8 .327,.503,0.,.285,-.639,0.,-.66,0.,0.,.226,.62,0.,-.57,0.,0.,
9 -.96,0.,0.,.32,.905097,0.,.32,-.452548,.783837,.32,-.452548,
1 -.783837,-1.04,0.,0.,.252,1.009,0.,-1.0,0.,
2 0.,0.,1.0,0.,0.,0.,1.0,0.,-1.0,0.,0.,0.,-1.0,1.0,0.,0.,-.57,
3 0.,0.,-.99,0.,0.,-.77,0.,0.,.256667,.725963,0.,.256667,
4 -.362981,.628702,.256667,-.362981,-.628702,-1.14,0.,0.,
5 -.69,0.,0.,.345,.597558,0.,.345,-.597558,0.,-1.35,0.,0./
CHARACTER*4 ICH
DATA ICH/'1','2','3','4','5','6','7','8','9','10',
1 'A','B','C','D','E','F','H','I','N','O','P','R','S',
2 'T','X','Z',' ','(','&','*',')',',','='/
END
SUBROUTINE DATPR(JS)
C THIS SUBROUTINE EXTRACTS, FOR A PARTICULAR ATOM TYPE JS,
C THE ATOMIC DATA FROM THE BLOCK-DATA VALUES AND PUTS
C THEM INTO THE VARIABLES OF THE COMMON/DAT2/.
INTEGER ZZV,H
COMMON/DAT1/IDAT(184),VDAT(177)
COMMON/DAT2/NDAT,IAN,NNV,ZZV(6),VV(6,3)
JSS=JS
IS=0
IF(JSS.EQ.14.OR.JSS.EQ.16.OR.JSS.EQ.17) IS=1
IF(IS.EQ.1) JSS=JSS-10
DO 30 K=1,NDAT
IF(IDAT(K).NE.100+JSS) GOTO 30
K1=K+1
GOTO 40
30 CONTINUE
40 IAN=IDAT(K1)
NNV=IDAT(K1+1)
K3=K1+2
DO 60 J=1,NNV
ZZV(J)=IDAT(K3)
H=-1-IDAT(K3+1)
DO 65 I=1,3
65 VV(J,I)=VDAT(H+I)
60 K3=K3+2
IF(JSS.NE.10) GOTO 70
NNV=2
ZZV(2)=5
VV(2,1)=-.33
VV(2,2)=0.
VV(2,3)=0.
70 CONTINUE
RETURN
END
SUBROUTINE ORIENT(IU,NNV,VV,BV,CV,PHI)
C THIS SUBROUTINE IS CALLED BY SUBROUTINE DRAAI.
INTEGER H
DIMENSION VV(6,3),BV(3),CV(3)
DIMENSION X(5),Y(5),Z(5),G(3,3)
P= .017453293
COF= COS(P*PHI)
SIF= SIN(P*PHI)
SS= 0.0
DO 230 KM= 1,3
230 SS= SS+BV(KM)**2
SS= SQRT(SS)
SSS= 0.0
DO 240 KM= 1,3
X(KM)= BV(KM)/SS
240 SSS= SSS+X(KM)*CV(KM)
SS= 0.0
DO 250 KM= 1,3
Y(KM)= CV(KM)-SSS*X(KM)
250 SS= SS+Y(KM)**2
SS= SQRT(SS)
DO 260 KM= 1,3
260 Y(KM)= Y(KM)/SS
X(4)= X(1)
X(5)= X(2)
Y(4)= Y(1)
Y(5)= Y(2)
DO 270 KM= 1,3
Z(KM)= X(KM+1)*Y(KM+2)-Y(KM+1)*X(KM+2)
IF(IU.EQ.-1) GOTO 265
G(KM,1)= X(KM)
G(KM,2)= Y(KM)
G(KM,3)= Z(KM)
GOTO 270
265 G(1,KM)=X(KM)
G(2,KM)=Y(KM)
G(3,KM)=Z(KM)
270 CONTINUE
DO 280 H= 1,NNV
SS= COF*VV(H,2)-SIF*VV(H,3)
SSS= COF*VV(H,3)+SIF*VV(H,2)
VV(H,2)= SS
VV(H,3)= SSS
DO 290 KM= 1,3
X(KM)=0.0
DO 300 J= 1,3
300 X(KM)=X(KM)+G(KM,J)*VV(H,J)
290 CONTINUE
DO 280 KM= 1,3
280 VV(H,KM)=X(KM)
RETURN
END
SUBROUTINE DRAAI(N,A,B,C,BA,CA,PHI)
C THIS SUBROUTINE GIVES TO A N-VALUED VECTOR SYSTEM A SUCH
C AN ORIENTATION, THAT
C (1) A VECTOR BA, CONNECTED TO THIS SYSTEM, WILL POINT IN AN
C OPPOSITE DIRECTION AS A GIVEN VECTOR B ;
C (2) ANOTHER VECTOR CA, CONNECTED TO THE SYSTEM, WILL MAKE A
C DIHEDRAL ANGLE PHI WITH B AND A GIVEN VECTOR C ;
C CA IS TURNED CLOCK-WISE, LOOKING IN THE DIRECTION OF B .
DIMENSION A(6,3),B(3),C(3),BA(3),CA(3)
DIMENSION BAA(3)
DO 1 K=1,3
1 BAA(K)=-BA(K)
CALL ORIENT(-1,N,A,BAA,CA,0.0)
CALL ORIENT(1,N,A,B,C,PHI)
RETURN
END
SUBROUTINE STRML
C THIS IS THE CENTRAL SUBROUTINE, WHICH TRANSLATES THE GIVEN
C INPUT FORMULA INTO THE MOLECULAR STRUCTURE, GIVEN BY
C THE ATOMIC COORDINATES OF ARRAY C.
CCCCC
CCCCC The following notes are discoveries made while attempting to figure out
CCCCC how this mess works. They are here so that you, poor soul that you are,
CCCCC don't have to reinvent the wheel (well, at least not the whole thing).
CCCCC
CCCCC Variable Description
CCCCC -------- -----------
CCCCC B(x,y) Number of bonds between atom number x and atom number
CCCCC y.
CCCCC F() Stack for keeping track of the first atom of the
CCCCC chain (this does not include the first atom of the
CCCCC main chain--only side chains).
CCCCC H Stack pointer to F().
CCCCC IC Atom number of last atom in this chain.
CCCCC IZ Number of bonds from current atom to previous atom.
CCCCC K Number of the current atom we are looking at.
CCCCC J Position in the input buffer (SY(J) is the character
CCCCC we are currently looking at).
CCCCC R(x,y) Torsion angle between atom number x and atom number y.
CCCCC SY() Input buffer.
CCCCC
CCCCC This is it. Good luck--MLR
CCCCC
IMPLICIT INTEGER(A,B,D,F,H,S,Z)
COMMON/CHAR/ICH(33)
COMMON/ALG/NR,N,IPR,DD(99,100),NA(99),SY(500)
COMMON AN(65),S(65),C(65,3),B(65,65),R(65,65)
COMMON/DAT2/NDAT,IAN,NNV,ZZV(6),VV(6,3)
COMMON/ZDD/NNVZ,ZDAT(30)
DIMENSION REST(50),BBB(9),
1 BB(9),IR(65,3),BH(65),F(20),NV(65),ZV(6,65),V(6,3,65),BK(3),
2 CK(3),BI(3),CI(3)
REAL BI,BK
NDAT=184
READ(5,*,END=9999) IPR
IF(IPR.EQ.0) GOTO 9999
WRITE(6,600)
NR= NR+1
C THE MOLECULAR FORMULA IS READ.
CALL RECHA(SY,IA)
IF(IA.EQ.0) GOTO 9999
A=0
4 IF(A.EQ.IA) GOTO 8
A=A+1
K=SY(A)
IF(K.NE.26) GOTO 4
C A RADICAL SYMBOL (Z) IS ENCOUNTERED AND MUST BE TRANSLATED.
J1=MOD(SY(A+1),10)
J2=MOD(SY(A+2),10)
J=10*J1+J2
IF(J.GT.0) GOTO 710
C THE RADICAL REPRESENTS A SPECIAL ATOM, WHICH IS
C INDICATED BY THE SYMBOL Z.
IA=IA-2
J1=A
J2=A+2
NJ=IA-A
DO 700 I=1,NJ
700 SY(J1+I)=SY(J2+I)
GOTO 4
710 CONTINUE
HA=NA(J)
IF(HA.EQ.3) GOTO 6
J1=IA+HA-2
J2=IA+1
NJ=IA-A-2
DO 5 I=1,NJ
5 SY(J1-I)=SY(J2-I)
6 A=A-1
DO 7 I=1,HA
A=A+1
7 SY(A)=DD(J,I)
IA=J1-1
GOTO 4
8 CONTINUE
C THE MOLECULAR SYMBOL SEQUENCE HAS NOW BEEN STORED IN SY.
DO 15 K=1,65
DO 15 J=1,65
B(K,J)=0
R(K,J)=0
15 CONTINUE
10 FORMAT(//,13H MOLECULE NR ,I3,//,18H NUMBER OF ATOMS =,I3,
118H OUTPUT INDEX =,I2,//)
READ(5,*) KM
IF(KM.EQ.0) GOTO 18
C.....
C.... THE INPUT OF THE ANGLES 'REST' HAS BEEN CHANGED TO FREE
C.... FORMAT. ***** NOTE **** THE NUMBER OF ANGLES TO BE
C.... INPUT IS A FUNCTION OF THE VALUES. THE INPUT IS FREE FORM
C.... SO ALL THAT NEED BE ENTERED IS THE VALUES SEPARATED BY
C.... SPACES OR COMMAS. EXAMPLE:----S
C... 180,0,65.3,180 180 0 0 60 60 45.67 33.33,76.5,0,0
C....
C.... THERE ARE 14 ANGLES ENTERED IN THE ABOVE
C.... EXAMPLE. OBVIOUSLY, THE NUMBER OF ANGLES ENTERED IS A
C.... FUNCTION OF THE LENGTH. ***** NOTE **** ONLY THE FIRST 72
C... COLS OF THE CARD MAY BE USED. IF THIS IS NOT SUFFICIENT
C.... THEN THE PROGRAM SHOULD BE CHANGED TO GO BACK TO THE
C.... ORIGINAL METHOD OF INPUT WHICH IS GIVEN IN
C.... LINES 23200 AND 23300...... PAUL D GOODWIN.....
C.....
READ(5,*)(REST(I),I=1,KM)
18 HH= 0
K= 0
H= 0
IC= 1
IZ=1
IA= 0
DO 20 J=1,9
20 BBB(J)= 0
N=65
DO 22 J=1,65
DO 21 I=1,3
21 IR(J,I)=0
22 BH(J)=0
J= 1
25 IF(J.GT.A) GOTO 35
C INTERPRETATION OF THE SYMBOL SEQUENCE SY.
C THE ARRAY B(I,J) BECOMES THE CONNECTIVITY MATRIX (0 = NO BOND);
C ARRAY IR(K,J) WILL CONTAIN FOR EACH ATOM NR K:
C FOR J = 1: THE NUMBER OF THE PRECEDING MAIN-CHAIN ATOM;
C FOR J = 2: THE NUMBER OF THE NEXT MAIN-CHAIN ATOM;
C FOR J = 3: THE NUMBER OF THE FIRST SIDE-CHAIN ATOM.
SJ= SY(J)
IF(SJ.LT.12.OR.SJ.EQ.14.OR.SJ.EQ.15.OR.SJ.EQ.22.OR.SJ.GT.23)
1 GOTO 40
K= K+1
IF(SJ.NE.12) GOTO 41
S(K)= 28
GOTO 50
41 IF(SJ.NE.13) GOTO 42
S(K)= 1
GOTO 50
42 IF(SJ.NE.16) GOTO 43
S(K)= 26
GOTO 50
43 IF(SJ.NE.17) GOTO 44
S(K)= 10
GOTO 50
44 IF(SJ.NE.19) GOTO 45
S(K)= 11
GOTO 50
45 IF(SJ.NE.20) GOTO 46
S(K)= 20
GOTO 50
46 IF(SJ.NE.21) GOTO 47
S(K)= 23
GOTO 50
47 IF(SJ.NE.23) GOTO 48
S(K)=24
GOTO 50
48 IF(SJ.NE.18) S(K)=0
S(K)=30
50 IF(IA.EQ.0) GOTO 60
HH= HH+1
R(IC,K)= REST(HH)
IA= 0
60 IF(K.EQ.1) GOTO 30
B(IC,K)= IZ
IR(K,1)=IC
IF(BH(IC).EQ.0) GOTO 400
BH(IC)=0
IR(IC,3)=K
400 IF(IR(IC,2).NE.0) GOTO 410
IR(IC,2)=K
410 CONTINUE
IZ= 1
IC= K
GOTO 30
40 IF(SJ.GT.10) GOTO 55
S(K)=S(K)+SJ
IF(S(K).EQ.2) S(K)= 27
GOTO 30
55 IF(SJ.NE.28) GOTO 70
H= H+1
F(H)= K
IC= K
BH(IC)=1
DO 420 JJ=1,IC
I=IR(JJ,2)
IF(I.LT.0) IR(JJ,2)=I-1
420 CONTINUE
IR(IC,2)=-1
GOTO 30
70 IF(SJ.NE.31) GOTO 80
IC= F(H)
H= H-1
DO 430 JJ=1,IC
I=IR(JJ,2)
IF(I.LT.0) IR(JJ,2)=I+1
430 CONTINUE
GOTO 30
80 IF(SJ.NE.32) GOTO 85
IC= F(H)
GOTO 30
85 IF(SJ.NE.25) GOTO 90
C RING CLOSURE X---X
J= J+1
SJ=SY(J)
IF(BBB(SJ).EQ.1) GOTO 100
BB(SJ)= IC
BBB(SJ)= 1
IF(BH(IC).EQ.0) GOTO 440
BH(IC)=0
IR(IC,3)=-SJ
440 CONTINUE
GOTO 30
100 I=BB(SJ)
B(I,IC)=IZ
IF(BH(IC).EQ.0) GOTO 450
BH(IC)=0
IR(IC,3)=I
450 CONTINUE
IF(IR(I,3).EQ.-SJ) IR(I,3)=IC
IZ= 1
IF(IA.EQ.0) GOTO 110
HH= HH+1
R(BB(SJ),IC)= REST(HH)
IA= 0
110 BBB(SJ)= 0
GOTO 30
90 IF(SJ.EQ.22) IA=1
C SPECIAL BONDS D, T, A OR E
IF(SJ.EQ.14) IZ=2
IF(SJ.EQ.24) IZ=3
IF(SJ.EQ.11) IZ=4
IF(SJ.EQ.15) IZ=5
IF(SJ.NE.26) GOTO 30
C THE SYMBOL Z INDICATES A SPECIAL ATOM, WHICH
C THE DATA ARE NOW PUT INTO THE APPROPRIATE ARRAYS.
C ITS ATOM-TYPE NUMBER S(K) IS TAKEN =0 .
K=K+1
S(K)=0
NV(K)=NNVZ
AN(K)=ZDAT(1)
DO 720 I=1,NNVZ
IK=4*I-2
ZV(I,K)=ZDAT(IK)
DO 720 II=1,3
720 V(I,II,K)=ZDAT(IK+II)
GOTO 50
30 J= J+1
GOTO 25
35 N=K
IF(KM.EQ.0) GOTO 37
WRITE(6,10) NR,N,IPR
WRITE(6,12) (ICH(SY(I)), I=1,A)
12 FORMAT(' ',120A1,/)
WRITE(6,36) (REST(I), I= 1,KM)
36 FORMAT(//,18H TORSION ANGLES:,10(1X,F7.2),//)
C - THE ATOMS ARE NOW CONNECTED -
C IN THE NOW FOLLOWING FIRST SCAN OVER ALL ATOM PAIRS, EVERY
C POSITIVE B(K,I) VALUE IS SUBSTITUTED BY THE REVERSE OF THE
C SEQUENCE NUMBER OF THE BOND VECTOR OF ATOM K , WHICH
C CONSTITUTES THE BOND K--I.
37 DO 120 K= 1,N
DO 120 J= 1,3
120 C(K,J)= 0.0
DO 130 K=1,N
C FOR THE SPECIAL ATOM Z (WITH S(K)=0), DATPR IS NOT CALLED.
IF (S(K).EQ.0) GOTO 130
CALL DATPR(S(K))
NV(K)=NNV
AN(K)=IAN
DO 140 J=1,NNV
ZV(J,K)=ZZV(J)
DO 140 I=1,3
140 V(J,I,K)=VV(J,I)
130 CONTINUE
DO 150 K=1,N
NNV=NV(K)
IF(K.EQ.N) GOTO 220
KM=K+1
DO 160 I=KM,N
BKI=B(K,I)
IF(BKI.LE.0) GOTO 160
NVI=NV(I)
DO 170 J=1,NNV
IF(ZV(J,K).NE.BKI) GOTO 170
JB=1
DO 180 H=1,N
IF(B(K,H).EQ.-J) JB=0
180 CONTINUE
IF(JB.EQ.0) GOTO 170
B(K,I)=-J
GOTO 190
170 CONTINUE
190 DO 200 J=1,NVI
IF(ZV(J,I).NE.BKI) GOTO 200
JB=1
DO 210 H=1,N
IF(B(I,H).EQ.-J) JB=0
210 CONTINUE
IF(JB.EQ.0) GOTO 200
B(I,K)=-J
GOTO 160
200 CONTINUE
160 CONTINUE
150 CONTINUE
C NOW FOLLOWS THE SECOND SCAN OVER ALL ATOM PAIRS, IN WHICH
C THE ARRAYS B AND IR PROVIDE THE DATA FROM WHICH
C THE BINDING VECTOR AND THE ORIENTATION VECTOR OF BOTH
C ATOMS OF A BOUND PAIR K, I ARE BEING CALCULATED
C (BK, CK AND BI, CI, RESPECTIVELY). TOGETHER WITH THE
C KNOWN BOND-VECTOR SET VV(1:NVI) OF ATOM I THESE ARE
C FED INTO SUBROUTINE DRAAI, WHICH GIVES THE PROPER
C ORIENTATION TO THIS ATOM.
220 DO 230 K=1,N
IF(K.EQ.N) GOTO 335
KM=K+1
DO 240 I=KM,N
IF(B(K,I).EQ.0) GOTO 240
NVI=NV(I)
DO 250 J=1,3
IRK=IR(K,J)
IF(IRK.NE.0.AND.IRK.NE.I) GOTO 260
250 CONTINUE
260 DO 270 J=2,3
IRI=IR(I,J)
IF(IRI.NE.0.AND.IRI.NE.K) GOTO 280
270 CONTINUE
280 DO 290 J=1,3
DO 300 H=1,NVI
300 VV(H,J)=V(H,J,I)
BK(J)=V(-B(K,I),J,K)
IF(IRK.EQ.0.OR.IRK.EQ.I) GOTO 302
CK(J)=V(-B(K,IRK),J,K)
GOTO 304
302 CK(J)=1.
304 CONTINUE
BI(J)=VV(-B(I,K),J)
IF(IRI.EQ.0.OR.IRI.EQ.K) GOTO 310
CI(J)=VV(-B(I,IRI),J)
GOTO 290
310 CI(J)=1.
290 CONTINUE
CALL DRAAI(NVI,VV,BK,CK,BI,CI,R(K,I))
DO 312 H=1,NVI
DO 312 J=1,3
312 V(H,J,I)=VV(H,J)
H= 1
DO 320 J= 1,3
IF(ABS(C(I,J)).GT.0.0001) H= 2
320 CONTINUE
C CALCULATION OF THE POSITION OF THE NEW ATOM.
DO 330 J= 1,3
330 C(I,J)=(C(I,J)+C(K,J)+BK(J)-VV(-B(I,K),J))/H
240 CONTINUE
230 CONTINUE
335 CONTINUE
WRITE(6,340)
340 FORMAT(43H VANDERWAALS RADII (*100) AND COORDINATES,//)
DO 345 K= 1,N
345 WRITE(6,350) K,AN(K),(C(K,I),I= 1,3)
350 FORMAT(2(3X,I3),3(3X,F6.2))
IF(IPR.LE.1) GOTO 355
C TWO PROJECTIONS OF THE MOLECULE ARE PLOTTED BY
C SUBROUTINE PLOTAT .
CALL PLOTAT(1,2)
CALL PLOTAT(2,3)
355 WRITE(6,360)
360 FORMAT(//)
600 FORMAT(1H1)
RETURN
9999 CONTINUE
END
SUBROUTINE PLOTAT(A,B)
INTEGER A,B,DD,S,SO,SY,Y
COMMON/CHAR/ICH(33)
COMMON/ALG/NR,N,IPR,DD(99,100),NA(99),SY(500)
COMMON/DAT1/IDAT(184),VDAT(177)
COMMON JAN(65),S(65),C(65,3),JB(65,65)
DIMENSION Y(65,3)
REAL MI,MA
C THIS SUBROUTINE GIVES A PROJECTION OF THE
C MOLECULE IN THE PLAIN (A,B) (1, 2, 3 = X, Y, Z, RESPECTIVELY).
C THE SCALE IS INDICATED IN MM PER ANGSTROM UNIT.
C HALOGEN ATOMS ARE INDICATED BY THE LETTER X.
C FIRST THE SCALE AND THE SCALED (INTEGER) ATOMIC
C COORDINATES Y ARE CALCULATED.
J= A
10 MI= 1000.
MA= -MI
DO 20 K= 1,N
XX= C(K,J)
IF(XX.GT.MA) MA= XX
IF(XX.LT.MI) MI= XX
20 CONTINUE
IF(J.NE.A) GOTO 30
XO= MI
BR= MA-MI
J= B
GOTO 10
30 YO= MA
HO= MA-MI
50 IF (ABS(BR*HO).LT..1) GOTO 160
MA= 300/BR
MI= 246/HO
IF(MA.GT.MI) MA= MI
WRITE(6,55) MA
55 FORMAT(8H1 1A = ,F6.1,3H MM,/)
DO 60 K= 1,N
Y(K,A)= 1+INT(.5+(C(K,A)-XO)*MA/2.54)
60 Y(K,B)= 1+INT(.5+(YO-C(K,B))*MA/4.23)
C FIND, FOR EACH LINE. IF AND WHERE ATOMS SHOULD BE PRINTED
CCCCC The following line was formerly: MA=ICH(27)
MA=32
DO 140 I= 1,59
C GENERATE AN EMPTY STRING P.
DO 150 II=1,128
150 SY(II)=MA
DO 85 K= 1,N
IF(Y(K,B).NE.I) GOTO 85
C BACK TRANSLATION OF ATOMIC INDICES INTO THE EBCDIC CODE
SO= S(K)
IF(SO.GT.0) GOTO 69
IV=26
GOTO 70
69 CONTINUE
IF(SO.GE.10.AND.SO.NE.13) GOTO 71
IV=13
GOTO 70
71 IF(SO.NE.10) GOTO 72
IV=17
GOTO 70
72 IF(SO.GE.18) GOTO 73
IV=19
GOTO 70
73 IF(SO.GE.23) GOTO 74
IV=20
GOTO 70
74 IF(SO.NE.23) GOTO 75
IV=21
GOTO 70
75 IF(SO.GE.26) GOTO 76
IV=23
GOTO 70
76 IF(SO.GE.31) GOTO 77
IV=25
GOTO 70
77 IV= 0
IF(IV.EQ.0) GOTO 85
C THE ATOMIC SYMBOLS IV ARE BEING PUT AT THE CORRECT
C POSITIONS Y(K,A) OF THE STRING P.
70 SY(Y(K,A))=ICH(IV)
85 CONTINUE
C THE FINISHED LINE IS PRINTED.
WRITE(6,80) (SY(II), II=1,128)
80 FORMAT(1X,128A1)
140 CONTINUE
160 RETURN
END
SUBROUTINE PARAM
C THIS SUBROUTINE CALCULATES THE STERIC PARAMETERS OF THE
C MOLECULE, USING THE ATOMIC COORDINATES C AND THE
C VANDERWAALS RADII AN.
INTEGER D,DD,S
COMMON/ALG/NR,N,IPR,DD(99,100),NA(99),SY(500)
COMMON JAN(65),S(65),C(65,3),JB(65,65),D(65,65)
DIMENSION XAN(65),B(4),BB(4)
C* THE FIRST STEP IS TO MEASURE THE LENGTH -- THIS IS DONE
C* BY GOING THROUGH THE COORDINATES IN THE X DIRECTION
C* MULTIPLY BY THE VAN DER WAALS RADIUS (JAN(K)*0.01) THEN
C* ASSIGNING EACH AS ONE GOES TO AN ADDRESS AMA OR AMI AND
C* COMPARING UNTIL THE LARGEST ONE IS FOUND. ACTUAL DISTANCE
C* IS ASSIGNED TO AL
DO 2 K=1,N
2 XAN(K)=JAN(K)*0.01
WRITE(6,5)
5 FORMAT(1X)
AMI=1000.
AMA=-1000.
DO 10 K=2,N
CZ=C(K,1)
RW=XAN(K)
A=CZ+RW
IF(A.GT.AMA) AMA=A
A=CZ-RW
IF(A.LT.AMI) AMI=A
10 CONTINUE
C AL IS THE LENGTH ALONG THE X AXIS, MEASURED FROM THE
C CENTRE OF THE FIRST ATOM, WHICH SHOULD BE A
C HYDROGEN. THE LENGTH IS CORRECTED BY ADDING 0.40 A TO
C BECOME THE ORIGINAL STANDARD VALUE, WHICH WAS TAKEN FROM A C6
C ATOM AS A STARTING POINT.
AL=-AMI+0.4
AMI=1000.
AMA=-1000.
C ROTATION OF THE SUBSTITUENT AROUND THE X AXIS,
C WITH STEPS OF 1.72 DEGREES, OVER SOMEWHAT MORE
C THAN 90 DEGREES.
DO 50 I=1,53
SI=SIN(0.03*I)
CO=COS(0.03*I)
B(1)=1000.
B(2)=-1000.
B(3)=1000.
B(4)=-1000.
C AT EACH POSITION, THE FOUR WIDTHS IN PERPENDICULAR
C DIRECTIONS ARE MEASURED; AT THE POSITION WHERE
C THE SMALLEST WIDTH IS ENCOUNTERED, THE FOUR VALUES ARE
C TAKEN TO BECOME THE B(1 - 4) VALUES.
DO 20 K=2,N
RW=XAN(K)
CZ=C(K,2)*CO + C(K,3)*SI
A=CZ+RW
IF(A.GT.B(2)) B(2)=A
A=CZ-RW
IF(A.LT.B(1)) B(1)=A
CZ=C(K,3)*CO - C(K,2)*SI
A=CZ+RW
IF(A.GT.B(4)) B(4)=A
A=CZ-RW
IF(A.LT.B(3)) B(3)=A
20 CONTINUE
C THE LARGEST WIDTH IS ALSO CALCULATED (AMA). IT IS PRINTED
C AS THE PARAMETER B(5).
DO 40 K=1,4
ABSBK=ABS(B(K))
IF(ABSBK.GT.AMA) AMA=ABSBK
IF(ABSBK.GE.AMI) GOTO 40
AMI=ABSBK
DO 30 KK=1,4
30 BB(KK)=ABS(B(KK))
40 CONTINUE
50 CONTINUE
WRITE(6,5)
WRITE(6,5)
WRITE(6,60) AL,(BB(J), J=1,4),AMA
60 FORMAT (' STERIC PARAMETERS: L=',F6.2//
1 ' B(1) - B(4): ' ,4(3X,F6.2),' B(5):',3X,F6.2)
WRITE(6,5)
C FINALLY, IN ORDER TO AVOID IMPOSSIBLE CONFORMATIONS,
C THE DISTANCES BETWEEN ATOMS WITH THREE
C OR MORE BONDS BETWEEN THEM ARE CALCULATED. IF OVERLAPS
C LARGER THAN 0.05 A ARE FOUND, A WARNING IS PRINTED.
WRITE(6,5)
WRITE(6,5)
INF=10000
DO 110 I=1,N
DO 100 J=1,N
100 D(I,J)=INF
110 D(I,I)=0
DO 120 K=1,N
JB(K,K)=0
DO 120 I=K,N
IF(JB(K,I).EQ.0) GOTO 120
D(I,K)=1
D(K,I)=1
120 CONTINUE
DO 131 I=1,N
DO 131 J=1,N
IF(D(I,J).GE.INF) GOTO 131
IS=D(I,J)
DO 132 K=1,N
ISS=IS+D(J,K)
IF(ISS.GE.D(I,K)) GOTO 132
D(K,I)=ISS
D(I,K)=ISS
132 CONTINUE
131 CONTINUE
IB=0
DO 90 K=1,N
DO 90 I=K,N
IF(D(K,I).LT.3) GOTO 90
AMA=0.
DO 70 J=1,3
70 AMA=AMA+(C(K,J)-C(I,J))**2
AMA=SQRT(AMA)
AMI=XAN(K)+XAN(I)-AMA
IF(AMI.LT.0.05) GOTO 90
IF(IB.EQ.1) GOTO 80
WRITE(6,75)
75 FORMAT(51H TAKE CARE; MUTUAL PENETRATION OF FOLLOWING ATOMS:,/)
IB=1
80 WRITE(6,85) K,I,AMI
85 FORMAT(' NRS. ',I2,' AND ',I2,' ; OVERLAP IS ',F6.2)
90 CONTINUE
RETURN
END
SUBROUTINE TRANSP
C THIS SUBROUTINE TRANSPOSES THE ATOMS, ORDERING THEM ACCORDING
C TO INCREASING X COORDINATE VALUES. THIS MAKES THE IDENTIFICATION
C OF THE SYMBOLS OF THE MOLECULE PLOTS EASIER.
INTEGER AN,S,DD
COMMON/ALG/NR,N,IPR,DD(99,100),NA(99),SY(500)
COMMON AN(65),S(65),C(65,3),B(65,65),R(65,65)
J=0
2 IF(J.EQ.N-1) GOTO 4
J=J+1
SS=1000.
DO 1 K=J,N
IF(J.EQ.1) S(K)=K
IF(C(K,1).GE.SS) GOTO 1
KK=K
SS=C(K,1)
1 CONTINUE
IF(KK.EQ.J) GOTO 2
K=AN(J)
AN(J)=AN(KK)
AN(KK)=K
K=S(J)
S(J)=S(KK)
S(KK)=K
DO 3 I=1,3
SS=C(J,I)
C(J,I)=C(KK,I)
3 C(KK,I)=SS
GOTO 2
4 WRITE(6,600)
DO 5 K=1,N
5 WRITE(6,601) K,S(K),AN(K),(C(K,I), I=1,3)
WRITE(6,602)
RETURN
600 FORMAT(44H1 ATOMS ORDERED BY INCREASING X COORDINATES,///)
601 FORMAT(3(3X,I3),3(3X,F6.2))
602 FORMAT(1H1)
END
SUBROUTINE RECHA(KH,II)
COMMON/CHAR/ICH(33)
DIMENSION KH(500),KA(72)
C..........................XX.....
II=0
C.....
C.... THIS INPUT ROUTINE HAS BEEN CHANGED SO THAT
C.... THE FORMULAE CAN ONLY BE ENTERED IN THE
C.... FIRST 72 COLUMNS OF THE DATA CARDS. THE LAST 8
C.... COLUMNS ARE USED TO HOLD THE LINE NUMBERS
C.... WITH THE RESULT BEING AN EASIER TO EDIT DATA DECK.
C..... THE CHANGE TO THE ORIGINAL PROGRAM ENTAIL
C.... CHANGING THE 80 TO A 72 IN THE RIGHT PLACES.
C..... THESE CHANGES HAVE BEEN INDICATED
C.... WITH A XX UNDER THE VALUES....
C....
1 READ(5,500,END=6) (KA(J), J=1,72)
C...................................XX........
DO 5 J=1,72
C..............XX..........
KAJ=KA(J)
DO 2 I=1,33
IF(KAJ.EQ.ICH(I)) GOTO 3
2 CONTINUE
3 IF(I.EQ.30) GOTO 6
IF(I.EQ.29) GOTO 1
IF(I.EQ.27) GOTO 4
II=II+1
KH(II)=I
GOTO 5
4 IF(J.EQ.72) GOTO 6
C.............XX...............
5 CONTINUE
6 IF(II.EQ.0) RETURN
IF(I.EQ.27) GOTO 7
WRITE(6,600) (ICH(KH(I)), I=1,II)
RETURN
7 WRITE(6,601)
500 FORMAT(72A1)
C............XX........
600 FORMAT(1H ,120A1)
601 FORMAT(//,13H WRONG INPUT)
END