We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Model: "graphmodel_1"
atom (InputLayer) (None, 1) 0
squeeze_1 (Squeeze) (None,) 0 atom_index[0][0] atom[0][0] n_pro[0][0]
atom_embedding (Embedding) (None, 256) 2560 squeeze_1[1][0]
dense_1 (Dense) (None, 256) 65536 atom_embedding[0][0]
connectivity (InputLayer) (None, 2) 0
gather_atom_to_bond_1 (GatherAt (None, 256) 0 dense_1[0][0] connectivity[0][0]
gather_atom_to_bond_2 (GatherAt (None, 256) 0 dense_1[0][0] connectivity[0][0]
distance_rbf (InputLayer) (None, 256) 0
concatenate_1 (Concatenate) (None, 768) 0 gather_atom_to_bond_1[0][0] gather_atom_to_bond_2[0][0] distance_rbf[0][0]
dense_2 (Dense) (None, 512) 393728 concatenate_1[0][0]
dense_3 (Dense) (None, 256) 131328 dense_2[0][0]
dense_4 (Dense) (None, 256) 65792 dense_3[0][0]
dense_5 (Dense) (None, 256) 65792 dense_4[0][0]
add_1 (Add) (None, 256) 0 dense_5[0][0] distance_rbf[0][0]
multiply_1 (Multiply) (None, 256) 0 gather_atom_to_bond_1[0][0] add_1[0][0]
reduce_bond_to_atom_1 (ReduceBo (None, 256) 0 multiply_1[0][0] connectivity[0][0]
dense_6 (Dense) (None, 256) 65792 reduce_bond_to_atom_1[0][0]
dense_7 (Dense) (None, 256) 65792 dense_6[0][0]
add_2 (Add) (None, 256) 0 dense_1[0][0] dense_7[0][0]
dense_8 (Dense) (None, 256) 65536 add_2[0][0]
gather_atom_to_bond_3 (GatherAt (None, 256) 0 dense_8[0][0] connectivity[0][0]
gather_atom_to_bond_4 (GatherAt (None, 256) 0 dense_8[0][0] connectivity[0][0]
concatenate_2 (Concatenate) (None, 768) 0 gather_atom_to_bond_3[0][0] gather_atom_to_bond_4[0][0] add_1[0][0]
dense_9 (Dense) (None, 512) 393728 concatenate_2[0][0]
dense_10 (Dense) (None, 256) 131328 dense_9[0][0]
dense_11 (Dense) (None, 256) 65792 dense_10[0][0]
dense_12 (Dense) (None, 256) 65792 dense_11[0][0]
add_3 (Add) (None, 256) 0 dense_12[0][0] add_1[0][0]
multiply_2 (Multiply) (None, 256) 0 gather_atom_to_bond_3[0][0] add_3[0][0]
reduce_bond_to_atom_2 (ReduceBo (None, 256) 0 multiply_2[0][0] connectivity[0][0]
dense_13 (Dense) (None, 256) 65792 reduce_bond_to_atom_2[0][0]
dense_14 (Dense) (None, 256) 65792 dense_13[0][0]
add_4 (Add) (None, 256) 0 dense_8[0][0] dense_14[0][0]
dense_15 (Dense) (None, 256) 65536 add_4[0][0]
gather_atom_to_bond_5 (GatherAt (None, 256) 0 dense_15[0][0] connectivity[0][0]
gather_atom_to_bond_6 (GatherAt (None, 256) 0 dense_15[0][0] connectivity[0][0]
concatenate_3 (Concatenate) (None, 768) 0 gather_atom_to_bond_5[0][0] gather_atom_to_bond_6[0][0] add_3[0][0]
dense_16 (Dense) (None, 512) 393728 concatenate_3[0][0]
dense_17 (Dense) (None, 256) 131328 dense_16[0][0]
dense_18 (Dense) (None, 256) 65792 dense_17[0][0]
dense_19 (Dense) (None, 256) 65792 dense_18[0][0]
add_5 (Add) (None, 256) 0 dense_19[0][0] add_3[0][0]
multiply_3 (Multiply) (None, 256) 0 gather_atom_to_bond_5[0][0] add_5[0][0]
reduce_bond_to_atom_3 (ReduceBo (None, 256) 0 multiply_3[0][0] connectivity[0][0]
dense_20 (Dense) (None, 256) 65792 reduce_bond_to_atom_3[0][0]
dense_21 (Dense) (None, 256) 65792 dense_20[0][0]
atom_index (InputLayer) (None, 1) 0
n_pro (InputLayer) (None, 1) 0
add_6 (Add) (None, 256) 0 dense_15[0][0] dense_21[0][0]
reduce_atom_to_pro_1 (ReduceAto (None, 256) 0 add_6[0][0] squeeze_1[0][0] squeeze_1[2][0]
dense_22 (Dense) (None, 256) 65792 reduce_atom_to_pro_1[0][0]
dense_23 (Dense) (None, 256) 65792 dense_22[0][0]
dense_24 (Dense) (None, 128) 32896 dense_23[0][0]
atomwise_shift (Embedding) (None, 1) 10 squeeze_1[1][0]
dense_25 (Dense) (None, 1) 129 dense_24[0][0]
reduce_atom_to_pro_2 (ReduceAto (None, 1) 0 atomwise_shift[0][0] squeeze_1[0][0] squeeze_1[2][0]
Total params: 2,728,459 Trainable params: 2,728,459 Non-trainable params: 0
2023-10-31 06:41:41.641883: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2023-10-31 06:41:41.773098: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2023-10-31 06:41:41.773275: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties: name: NVIDIA GeForce RTX 3090 major: 8 minor: 6 memoryClockRate(GHz): 1.725 pciBusID: 0000:05:00.0 totalMemory: 23.69GiB freeMemory: 23.43GiB 2023-10-31 06:41:41.773292: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0 2023-10-31 06:41:42.223463: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix: 2023-10-31 06:41:42.223495: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0 2023-10-31 06:41:42.223501: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N 2023-10-31 06:41:42.223603: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 22717 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce RTX 3090, pci bus id: 0000:05:00.0, compute capability: 8.6) {'n_pro': array([24, 21, 7, 27, 12, 10, 10, 20]), 'atom': array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 5, 3, 2, 2, 2, 3, 3, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 2, 6, 2, 5, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 2, 6, 2, 5, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 6, 2, 3, 2, 6, 6, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 3, 3, 2, 2, 6, 6, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]), 'bond': array([2, 3, 4, ..., 0, 0, 0]), 'connectivity': array([[ 0, 31], [ 0, 5], [ 0, 1], ..., [342, 298], [342, 310], [342, 322]]), 'atom_index': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1, -1, 12, -1, 13, 14, 15, 16, 17, 18, 19, 20, 21, -1, 22, 23, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 24, -1, 25, 26, 27, 28, 29, 30, 31, 32, -1, 33, -1, 34, 35, -1, 36, -1, 37, 38, 39, -1, 40, 41, 42, -1, 43, -1, 44, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 45, 46, 47, 48, -1, -1, 49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 52, 53, 54, 55, 56, 57, 58, -1, 59, 60, 61, 62, 63, 64, -1, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 79, -1, 80, -1, 81, 82, 83, -1, 84, 85, 86, 87, 88, -1, -1, 89, 90, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 91, -1, 92, -1, 93, 94, -1, 95, 96, 97, 98, -1, 99, 100, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 101, 102, 103, -1, 104, 105, 106, -1, -1, -1, -1, 107, -1, 108, -1, -1, 109, 110, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, -1, 123, 124, 125, 126, -1, -1, 127, 128, -1, -1, 129, 130, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]), 'node_graph_indices': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7]), 'distance_rbf': array([[8.28731687e-06, 6.52437027e-05, 4.20537142e-04, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [5.55421160e-09, 7.92017194e-08, 9.24672414e-07, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [3.65965223e-09, 5.37801536e-08, 6.47061206e-07, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [6.50888555e-97, 7.20740461e-93, 6.53419777e-89, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [4.27906304e-97, 4.78068100e-93, 4.37292421e-89, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [3.26498268e-99, 4.04323416e-95, 4.09937841e-91, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])} [[99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904] [99.590904]] (131, 1) /root/miniconda3/envs/my-rdkit-env/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:112: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory. "Converting sparse IndexedSlices to a dense Tensor of unknown shape. " Epoch 1/1200 139/807 [====>.........................] - ETA: 20s - loss: nan
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Model: "graphmodel_1"
Layer (type) Output Shape Param # Connected to
atom (InputLayer) (None, 1) 0
squeeze_1 (Squeeze) (None,) 0 atom_index[0][0]
atom[0][0]
n_pro[0][0]
atom_embedding (Embedding) (None, 256) 2560 squeeze_1[1][0]
dense_1 (Dense) (None, 256) 65536 atom_embedding[0][0]
connectivity (InputLayer) (None, 2) 0
gather_atom_to_bond_1 (GatherAt (None, 256) 0 dense_1[0][0]
connectivity[0][0]
gather_atom_to_bond_2 (GatherAt (None, 256) 0 dense_1[0][0]
connectivity[0][0]
distance_rbf (InputLayer) (None, 256) 0
concatenate_1 (Concatenate) (None, 768) 0 gather_atom_to_bond_1[0][0]
gather_atom_to_bond_2[0][0]
distance_rbf[0][0]
dense_2 (Dense) (None, 512) 393728 concatenate_1[0][0]
dense_3 (Dense) (None, 256) 131328 dense_2[0][0]
dense_4 (Dense) (None, 256) 65792 dense_3[0][0]
dense_5 (Dense) (None, 256) 65792 dense_4[0][0]
add_1 (Add) (None, 256) 0 dense_5[0][0]
distance_rbf[0][0]
multiply_1 (Multiply) (None, 256) 0 gather_atom_to_bond_1[0][0]
add_1[0][0]
reduce_bond_to_atom_1 (ReduceBo (None, 256) 0 multiply_1[0][0]
connectivity[0][0]
dense_6 (Dense) (None, 256) 65792 reduce_bond_to_atom_1[0][0]
dense_7 (Dense) (None, 256) 65792 dense_6[0][0]
add_2 (Add) (None, 256) 0 dense_1[0][0]
dense_7[0][0]
dense_8 (Dense) (None, 256) 65536 add_2[0][0]
gather_atom_to_bond_3 (GatherAt (None, 256) 0 dense_8[0][0]
connectivity[0][0]
gather_atom_to_bond_4 (GatherAt (None, 256) 0 dense_8[0][0]
connectivity[0][0]
concatenate_2 (Concatenate) (None, 768) 0 gather_atom_to_bond_3[0][0]
gather_atom_to_bond_4[0][0]
add_1[0][0]
dense_9 (Dense) (None, 512) 393728 concatenate_2[0][0]
dense_10 (Dense) (None, 256) 131328 dense_9[0][0]
dense_11 (Dense) (None, 256) 65792 dense_10[0][0]
dense_12 (Dense) (None, 256) 65792 dense_11[0][0]
add_3 (Add) (None, 256) 0 dense_12[0][0]
add_1[0][0]
multiply_2 (Multiply) (None, 256) 0 gather_atom_to_bond_3[0][0]
add_3[0][0]
reduce_bond_to_atom_2 (ReduceBo (None, 256) 0 multiply_2[0][0]
connectivity[0][0]
dense_13 (Dense) (None, 256) 65792 reduce_bond_to_atom_2[0][0]
dense_14 (Dense) (None, 256) 65792 dense_13[0][0]
add_4 (Add) (None, 256) 0 dense_8[0][0]
dense_14[0][0]
dense_15 (Dense) (None, 256) 65536 add_4[0][0]
gather_atom_to_bond_5 (GatherAt (None, 256) 0 dense_15[0][0]
connectivity[0][0]
gather_atom_to_bond_6 (GatherAt (None, 256) 0 dense_15[0][0]
connectivity[0][0]
concatenate_3 (Concatenate) (None, 768) 0 gather_atom_to_bond_5[0][0]
gather_atom_to_bond_6[0][0]
add_3[0][0]
dense_16 (Dense) (None, 512) 393728 concatenate_3[0][0]
dense_17 (Dense) (None, 256) 131328 dense_16[0][0]
dense_18 (Dense) (None, 256) 65792 dense_17[0][0]
dense_19 (Dense) (None, 256) 65792 dense_18[0][0]
add_5 (Add) (None, 256) 0 dense_19[0][0]
add_3[0][0]
multiply_3 (Multiply) (None, 256) 0 gather_atom_to_bond_5[0][0]
add_5[0][0]
reduce_bond_to_atom_3 (ReduceBo (None, 256) 0 multiply_3[0][0]
connectivity[0][0]
dense_20 (Dense) (None, 256) 65792 reduce_bond_to_atom_3[0][0]
dense_21 (Dense) (None, 256) 65792 dense_20[0][0]
atom_index (InputLayer) (None, 1) 0
n_pro (InputLayer) (None, 1) 0
add_6 (Add) (None, 256) 0 dense_15[0][0]
dense_21[0][0]
reduce_atom_to_pro_1 (ReduceAto (None, 256) 0 add_6[0][0]
squeeze_1[0][0]
squeeze_1[2][0]
dense_22 (Dense) (None, 256) 65792 reduce_atom_to_pro_1[0][0]
dense_23 (Dense) (None, 256) 65792 dense_22[0][0]
dense_24 (Dense) (None, 128) 32896 dense_23[0][0]
atomwise_shift (Embedding) (None, 1) 10 squeeze_1[1][0]
dense_25 (Dense) (None, 1) 129 dense_24[0][0]
reduce_atom_to_pro_2 (ReduceAto (None, 1) 0 atomwise_shift[0][0]
squeeze_1[0][0]
squeeze_1[2][0]
add_7 (Add) (None, 1) 0 dense_25[0][0]
reduce_atom_to_pro_2[0][0]
Total params: 2,728,459
Trainable params: 2,728,459
Non-trainable params: 0
2023-10-31 06:41:41.641883: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2023-10-31 06:41:41.773098: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2023-10-31 06:41:41.773275: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: NVIDIA GeForce RTX 3090 major: 8 minor: 6 memoryClockRate(GHz): 1.725
pciBusID: 0000:05:00.0
totalMemory: 23.69GiB freeMemory: 23.43GiB
2023-10-31 06:41:41.773292: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2023-10-31 06:41:42.223463: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2023-10-31 06:41:42.223495: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2023-10-31 06:41:42.223501: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2023-10-31 06:41:42.223603: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 22717 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce RTX 3090, pci bus id: 0000:05:00.0, compute capability: 8.6)
{'n_pro': array([24, 21, 7, 27, 12, 10, 10, 20]), 'atom': array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2,
2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2,
2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 4, 2, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 2, 2, 2, 2, 5, 3, 2, 2, 2, 3, 3, 4, 6, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2,
2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 2, 6, 2, 5, 2, 2, 2, 5,
2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 2, 6, 2, 5, 2, 2, 3, 2, 2, 2, 2, 5,
2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 3, 2, 2,
2, 3, 3, 3, 6, 2, 3, 2, 6, 6, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
6, 2, 2, 2, 2, 3, 3, 2, 2, 6, 6, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]), 'bond': array([2, 3, 4, ..., 0, 0, 0]), 'connectivity': array([[ 0, 31],
[ 0, 5],
[ 0, 1],
...,
[342, 298],
[342, 310],
[342, 322]]), 'atom_index': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1,
-1, -1, 12, -1, 13, 14, 15, 16, 17, 18, 19, 20, 21,
-1, 22, 23, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, 24, -1, 25, 26, 27, 28, 29, 30,
31, 32, -1, 33, -1, 34, 35, -1, 36, -1, 37, 38, 39,
-1, 40, 41, 42, -1, 43, -1, 44, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 45, 46, 47,
48, -1, -1, 49, 50, 51, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 52, 53,
54, 55, 56, 57, 58, -1, 59, 60, 61, 62, 63, 64, -1,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, 79, -1, 80, -1, 81,
82, 83, -1, 84, 85, 86, 87, 88, -1, -1, 89, 90, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, 91, -1, 92, -1,
93, 94, -1, 95, 96, 97, 98, -1, 99, 100, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 101, 102,
103, -1, 104, 105, 106, -1, -1, -1, -1, 107, -1, 108, -1,
-1, 109, 110, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, -1, 123, 124, 125,
126, -1, -1, 127, 128, -1, -1, 129, 130, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1]), 'node_graph_indices': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7]), 'distance_rbf': array([[8.28731687e-06, 6.52437027e-05, 4.20537142e-04, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[5.55421160e-09, 7.92017194e-08, 9.24672414e-07, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[3.65965223e-09, 5.37801536e-08, 6.47061206e-07, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[6.50888555e-97, 7.20740461e-93, 6.53419777e-89, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[4.27906304e-97, 4.78068100e-93, 4.37292421e-89, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[3.26498268e-99, 4.04323416e-95, 4.09937841e-91, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])}
[[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]
[99.590904]] (131, 1)
/root/miniconda3/envs/my-rdkit-env/lib/python3.6/site-packages/tensorflow/python/ops/gradients_impl.py:112: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Epoch 1/1200
139/807 [====>.........................] - ETA: 20s - loss: nan
The text was updated successfully, but these errors were encountered: