-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathexp2_print_results.py
35 lines (26 loc) · 1.18 KB
/
exp2_print_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pickle
import numpy as np
def print_results_line(model_name='-', pickle_path=None):
with open(pickle_path, 'rb') as f:
results = pickle.load(f)
line = model_name + ' '
m, t1, t2 = [], [] , []
for i in range(len(results)):
res = results[i]
m.append(res['map'])
t1.append(res['raw_precision'][49])
t2.append(res['raw_precision'][199])
line += '& ${%3.2f} \\pm {%3.2f}$ ' % (100 * np.mean(m), 100 * np.std(m))
line += '& ${%3.2f} \\pm {%3.2f}$ ' % (100 * np.mean(t1), 100 * np.std(t1))
line += '& ${%3.2f} \\pm {%3.2f}$ ' % (100 * np.mean(t2), 100 * np.std(t2))
print(line, '\\\\')
def print_table():
print_results_line(model_name='LBP', pickle_path='results/baseline_lbp.pickle')
print("\\hline")
print("\\hline")
print_results_line(model_name='Hint (HoG)', pickle_path='results/hint.pickle')
print_results_line(model_name='PKT (HoG)', pickle_path='results/kt.pickle')
print_results_line(model_name='PKT (larger lr) (HoG)', pickle_path='results/kt_optimal.pickle')
print_results_line(model_name='S-PKT (HoG)', pickle_path='results/kt_supervised.pickle')
if __name__ == '__main__':
print_table()