@@ -130,6 +130,8 @@ jax和tensorflow后端只能在linux使用cuda
130
130
|| Yi-1.5-9B | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/Yi-1.5-9B-Keras/summary ) | BF16| AutoTokenizer|
131
131
|| Llama3-8B | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/Meta-Llama-3-8B-Keras/summary ) | BF16| AutoTokenizer|
132
132
|| Llama3-8B-it | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/Meta-Llama-3-8B-Instruct-Keras/summary ) | BF16| AutoTokenizer|
133
+ || Llama3.1-8B | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/Meta-Llama-3.1-8B-Keras/summary ) | BF16| AutoTokenizer|
134
+ || Llama3.1-8B-it | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/Meta-Llama-3.1-8B-Instruct-Keras/summary ) | BF16| AutoTokenizer|
133
135
| [ 千问] ( https://github.com/pass-lin/bert4keras3/blob/main/examples/test-Qwen-generate.py ) | Qwen-0.5B | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/Qwen1.5-0.5B-Keras/summary ) | BF16| AutoTokenizer|
134
136
|| Qwen-0.5B-it| [ ModelScope] ( https://www.modelscope.cn/models/q935499957/Qwen1.5-0.5B-Chat-Keras/summary ) | BF16| AutoTokenizer|
135
137
|| Qwen-1.8B| [ ModelScope] ( https://www.modelscope.cn/models/q935499957/Qwen1.5-1.8B-Keras/summary ) | BF16| AutoTokenizer|
@@ -150,9 +152,16 @@ jax和tensorflow后端只能在linux使用cuda
150
152
|| RWKV6-7B| [ ModelScope] ( https://www.modelscope.cn/models/q935499957/RWKV6-7B-Keras ) | BF16| RWKV_TOKENIZER|
151
153
|| RWKV6-12B-it| [ ModelScope] ( https://www.modelscope.cn/models/q935499957/RWKV6-12B-it-Keras ) | BF16| RWKV_TOKENIZER|
152
154
|| RWKV6-14B| [ ModelScope] ( https://www.modelscope.cn/models/q935499957/RWKV6-14B-Keras ) | BF16| RWKV_TOKENIZER|
153
- | [ Gemma2] ( https://github.com/pass-lin/bert4keras3/blob/main/examples/test-gemma2-generate.py ) | gemma2_9b_en | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/gemma2_9b_en-Keras ) | BF16| AutoTokenizer|
155
+ | [ Gemma2] ( https://github.com/pass-lin/bert4keras3/blob/main/examples/test-gemma2-generate.py ) | gemma2-2b | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/gemma2_2b_en-Keras ) | BF16| AutoTokenizer|
156
+ || gemma2-2b-it | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/gemma2_instruct_2b_en-Keras ) | BF16| AutoTokenizer|
157
+ || gemma2-9b | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/gemma2_9b_en-Keras ) | BF16| AutoTokenizer|
158
+ || gemma2-9b-it | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/gemma2_instruct_9b_en-Keras ) | BF16| AutoTokenizer|
159
+ || gemma2-27b | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/gemma2_27b_en-Keras ) | BF16| AutoTokenizer|
160
+ || gemma2-27b-it | [ ModelScope] ( https://www.modelscope.cn/models/q935499957/gemma2_instruct_27b_en-Keras ) | BF16| AutoTokenizer|
154
161
<!-- || | [百度网盘]() | BF16|AutoTokenizer| -->
155
162
163
+
164
+
156
165
<strong >注意事项</strong >
157
166
- 注1:brightmart版albert的开源时间早于Google版albert,这导致早期brightmart版albert的权重与Google版的不完全一致,换言之两者不能直接相互替换。为了减少代码冗余,bert4keras的0.2.4及后续版本均只支持加载<u >Google版</u >以brightmart版中<u >带Google字眼</u >的权重。如果要加载早期版本的权重,请用<a href =" https://github.com/bojone/bert4keras/releases/tag/v0.2.3 " >0.2.3版本</a >,或者考虑作者转换过的<a href =" https://github.com/bojone/albert_zh " >albert_zh</a >。(苏神注)
158
167
- 注2:下载下来的ELECTRA权重,如果没有json配置文件的话,参考<a href =" https://github.com/ymcui/Chinese-ELECTRA/issues/3 " >这里</a >自己改一个(需要加上` type_vocab_size ` 字段)。(苏神注)
0 commit comments