-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathinterpolate2d.m
201 lines (157 loc) · 3.79 KB
/
interpolate2d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
% interpolate2d.m
%
% illustrates scatter / gather operation using a polygonal element
% See http://www.particleincell.com/2012/quad-interpolation for additional information
% (c) 2012 Lubos Brieda, [email protected]
%
% -- tested with Octave 3.2.4 on Windows
%main function
function []=interpolate2d()
%create our polygon
px = [-1, 8, 13, -4];
py = [-1, 3, 11, 8];
%compute coefficients
A=[1 0 0 0;1 1 0 0;1 1 1 1;1 0 1 0];
AI = inv(A);
a = AI*px';
b = AI*py';
%plot random internal points
plot_points_in_poly(px,py,a,b);
%classify points as internal or external
plot_internal_and_external_points(px,py,a,b);
%scatter data
scatter_data(px,py,a,b);
%gather_data
gather_data(px,py,a,b);
end
%plots random points inside the polygon
function []=plot_points_in_poly(px,py,a,b)
%pick random logical coordinate and convert to physical
for i=1:100
l=rand();
m=rand();
x(i) = a(1) + a(2)*l + a(3)*m + a(4)*l*m;
y(i) = b(1) + b(2)*l + b(3)*m + b(4)*l*m;
end
%plot
figure(1);
hold off;
plot([px px(1)],[py py(1)]);
hold on;
plot (x,y,'x');
end
%picks random points and colors them based on internal or external
function []=plot_internal_and_external_points(px,py,a,b)
%bounding box
x0 = min(px);
lx = max(px)-min(px);
y0 = min(py);
ly = max(py)-min(py);
%convert random physical coordinates to logical
for i=1:200
%pick a random point in the bounding box
x(i) = x0+rand()*lx;
y(i) = y0+rand()*ly;
%calculate logical coordinates
[l,m] = XtoL(x(i),y(i),a,b);
%is the point outside the quad?
if (m<0 || m>1 || l<0 || l>1)
type(i)=1;
else
type(i)=0;
end
end
%plot
figure(2);
hold off;
plot([px px(1)],[py py(1)]);
hold on;
scatter(x,y,4,type,'x');
end
%scatters counts to the four grid nodes
function []=scatter_data(px,py,a,b)
%init
c = [0 0 0 0];
%pick random logical coordinate and convert to physical
for i=1:100
%random point inside the quad
l=rand();
m=rand();
%deposit counts, note here l,m=[0:1]. In a real 2d mesh
%the index we would first need to subtract the integral
%cell index to get the cell-local distance, dl = l - (int)l;
dl = l;
dm = m;
c(1) += (1-dl)*(1-dm);
c(2) += dl *(1-dm);
c(3) += dl * dm;
c(4) += (1-dl)*dm;
end
%scale data, uniform distribution = 10
c = 40*(c/i);
%output
disp(c);
%plot
figure(3);
hold off;
plot([px px(1)],[py py(1)]);
hold on;
scatter(px,py,c,[1 0 0], 'o');
end
%interpolates data from the polygon vertices onto a grid
function []=gather_data(px,py,a,b)
%bounding box
x0 = min(px);
lx = max(px)-min(px);
y0 = min(py);
ly = max(py)-min(py);
%set spacing such that we have 30x30 grid (i.e. 29 cells)
ni = 30;
nj = 15;
dx = lx/(ni-1);
dy = ly/(nj-1);
%node positions (for plotting)
for i=1:ni
x(i) = x0 + (i-1)*dx;
end
for j=1:nj
y(j) = y0 + (j-1)*dy;
end
%node values
c = [1 2 3 4];
val=zeros(nj,ni);
for i=1:ni
for j=1:nj
%convert to logical coordinates
[l m] = XtoL(x(i),y(j),a,b);
%evaluate only if we are inside
if (l>0 && l<=1 && m>=0 && m<=1)
%again, if we had multiple cells, we would set dl = l - (int)l
dl = l;
dm = m;
val(j,i) = (1-dl)*(1-dm)*c(1) + ...
dl*(1-dm)*c(2) + ...
dl*dm*c(3) +...
(1-dl)*dm*c(4);
end
end
end
%plot
figure(4);
hold off;
contourf(x,y,val);
hold on;
plot([px px(1)],[py py(1)],'w','LineWidth',4);
end
% converts physical (x,y) to logical (l,m)
function [l, m] = XtoL(x,y,a,b)
%quadratic equation coeffs, aa*mm^2+bb*m+cc=0
aa = a(4)*b(3) - a(3)*b(4);
bb = a(4)*b(1) -a(1)*b(4) + a(2)*b(3) - a(3)*b(2) + x*b(4) - y*a(4);
cc = a(2)*b(1) -a(1)*b(2) + x*b(2) - y*a(2);
%compute m = (-b+sqrt(b^2-4ac))/(2a)
det = sqrt(bb*bb - 4*aa*cc);
m = (-bb+det)/(2*aa);
%compute l
l = (x-a(1)-a(3)*m)/(a(2)+a(4)*m);
end