forked from suyash2702/gesture_play_RPSLS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifiers1.py
187 lines (130 loc) · 5.63 KB
/
classifiers1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import cv2
import numpy as np
from abc import ABCMeta, abstractmethod
#from matplotlib import pyplot as plt
class Classifier:
__metaclass__ = ABCMeta
@abstractmethod
def fit(self, X_train, y_train):
pass
@abstractmethod
def evaluate(self, X_test, y_test, visualize=False):
pass
def _accuracy(self, y_test, Y_vote):
# predicted classes
y_hat = np.argmax(Y_vote, axis=1)
# all cases where predicted class was correct
mask = y_hat == y_test
return np.count_nonzero(mask)*1. / len(y_test)
def _precision(self, y_test, Y_vote):
# predicted classes
y_hat = np.argmax(Y_vote, axis=1)
if self.mode == "one-vs-one":
# need confusion matrix
conf = self._confusion(y_test, Y_vote)
# consider each class separately
prec = np.zeros(self.num_classes)
for c in xrange(self.num_classes):
# true positives: label is c, classifier predicted c
tp = conf[c, c]
# false positives: label is c, classifier predicted not c
fp = np.sum(conf[:, c]) - conf[c, c]
# precision
if tp + fp != 0:
prec[c] = tp * 1. / (tp + fp)
elif self.mode == "one-vs-all":
# consider each class separately
prec = np.zeros(self.num_classes)
for c in xrange(self.num_classes):
# true positives: label is c, classifier predicted c
tp = np.count_nonzero((y_test == c) * (y_hat == c))
# false positives: label is c, classifier predicted not c
fp = np.count_nonzero((y_test == c) * (y_hat != c))
if tp + fp != 0:
prec[c] = tp * 1. / (tp + fp)
return prec
def _recall(self, y_test, Y_vote):
# predicted classes
y_hat = np.argmax(Y_vote, axis=1)
if self.mode == "one-vs-one":
# need confusion matrix
conf = self._confusion(y_test, Y_vote)
# consider each class separately
recall = np.zeros(self.num_classes)
for c in xrange(self.num_classes):
# true positives: label is c, classifier predicted c
tp = conf[c, c]
# false negatives: label is not c, classifier predicted c
fn = np.sum(conf[c, :]) - conf[c, c]
if tp + fn != 0:
recall[c] = tp * 1. / (tp + fn)
elif self.mode == "one-vs-all":
# consider each class separately
recall = np.zeros(self.num_classes)
for c in xrange(self.num_classes):
# true positives: label is c, classifier predicted c
tp = np.count_nonzero((y_test == c) * (y_hat == c))
# false negatives: label is not c, classifier predicted c
fn = np.count_nonzero((y_test != c) * (y_hat == c))
if tp + fn != 0:
recall[c] = tp * 1. / (tp + fn)
return recall
def _confusion(self, y_test, Y_vote):
y_hat = np.argmax(Y_vote, axis=1)
conf = np.zeros((self.num_classes, self.num_classes)).astype(np.int32)
for c_true in xrange(self.num_classes):
# looking at all samples of a given class, c_true
# how many were classified as c_true? how many as others?
for c_pred in xrange(self.num_classes):
y_this = np.where((y_test == c_true) * (y_hat == c_pred))
conf[c_pred, c_true] = np.count_nonzero(y_this)
return conf
class MultiLayerPerceptron(Classifier):
def __init__(self, layer_sizes, class_labels, params=None,
class_mode="one-vs-all"):
self.num_features = layer_sizes[0]
self.num_classes = layer_sizes[-1]
self.class_labels = class_labels
self.params = params or dict()
self.mode = class_mode
# initialize MLP
self.model = cv2.ANN_MLP()
self.model.create(layer_sizes)
def load(self, file):
self.model.load(file)
def save(self, file):
self.model.save(file)
def fit(self, X_train, y_train, params=None):
if params is None:
params = self.params
# need int labels as 1-hot code
y_train = self._labels_str_to_num(y_train)
y_train = self._one_hot(y_train).reshape(-1, self.num_classes)
# train model
self.model.train(X_train, y_train, None, params=params)
def predict(self, X_test):
ret, y_hat = self.model.predict(X_test)
# find the most active cell in the output layer
y_hat = np.argmax(y_hat, 1)
# return string labels
return self.__labels_num_to_str(y_hat)
def evaluate(self, X_test, y_test):
# need int labels
y_test = self._labels_str_to_num(y_test)
# predict labels
ret, Y_vote = self.model.predict(X_test)
accuracy = self._accuracy(y_test, Y_vote)
precision = self._precision(y_test, Y_vote)
recall = self._recall(y_test, Y_vote)
return (accuracy, precision, recall)
def _one_hot(self, y_train):
numSamples = len(y_train)
new_responses = np.zeros(numSamples*self.num_classes, np.float32)
resp_idx = np.int32(y_train + np.arange(numSamples)*self.num_classes)
new_responses[resp_idx] = 1
return new_responses
def _labels_str_to_num(self, labels):
return np.array([int(np.where(self.class_labels == l)[0])
for l in labels])
def __labels_num_to_str(self, labels):
return self.class_labels[labels]