-
Notifications
You must be signed in to change notification settings - Fork 462
/
Copy pathFour_Number_Sum.py
100 lines (83 loc) · 3.16 KB
/
Four_Number_Sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# From AlgoExpert.io solution
# Average: O(n^2) time | O(n^2) space
# Worst: O(n^3) time | O(n^2) space
def fourNumberSum(array, targetSum):
allPairSums = {}
quadruplets = []
for i in range(1, len(array) - 1):
for j in range(i + 1, len(array)):
currentSum = array[i] + array[j]
difference = targetSum - currentSum
if difference in allPairSums:
for pair in allPairSums[difference]:
quadruplets.append(pair + [array[i], array[j]])
for k in range(0, i):
currentSum = array[i] + array[k]
if currentSum not in allPairSums:
allPairSums[currentSum] = [[array[k], array[i]]]
else:
allPairSums[currentSum].append([array[k], array[i]])
return quadruplets
input = [7, 6, 4, -1, 1, 2]
output = fourNumberSum(input, 16)
print('Quadruplets: ', output)
# From Leetcode.com solution
# https://leetcode.com/problems/4sum/discuss/8545/Python-140ms-beats-100-and-works-for-N-sum-(Ngreater2)
# https://leetcode.com/problems/4sum/discuss/8759/A-conise-python-solution-based-on-ksum
# Uses 2 number sum to find K sum
def fourSum(self, nums, target):
def findNsum(l, r, target, N, result, results):
if r-l+1 < N or N < 2 or target < nums[l]*N or target > nums[r]*N: # early termination
return
if N == 2: # two pointers solve sorted 2-sum problem
while l < r:
s = nums[l] + nums[r]
if s == target:
results.append(result + [nums[l], nums[r]])
l += 1
while l < r and nums[l] == nums[l-1]:
l += 1
elif s < target:
l += 1
else:
r -= 1
else: # reduce to N-1 sum problem
for i in range(l, r+1):
if i == l or (i > l and nums[i-1] != nums[i]):
findNsum(i+1, r, target-nums[i], N-1, result+[nums[i]], results)
nums.sort()
results = []
findNsum(0, len(nums)-1, target, 4, [], results)
return results
# Uses 3 number sum to find K sum
class Solution(object):
def threeSum(self, nums, target):
results = []
nums.sort()
for i in range(len(nums)-2):
l = i + 1; r = len(nums) - 1
t = target - nums[i]
if i == 0 or nums[i] != nums[i-1]:
while l < r:
s = nums[l] + nums[r]
if s == t:
results.append([nums[i], nums[l], nums[r]])
while l < r and nums[l] == nums[l+1]: l += 1
while l < r and nums[r] == nums[r-1]: r -= 1
l += 1; r -=1
elif s < t:
l += 1
else:
r -= 1
return results
def fourSum(self, nums, target):
results = []
nums.sort()
for i in range(len(nums)-3):
if i == 0 or nums[i] != nums[i-1]:
threeResult = self.threeSum(nums[i+1:], target-nums[i])
for item in threeResult:
results.append([nums[i]] + item)
return results
# NOTE:
# Complexity of 2-sum is O(N), 3-sum is O(N^2), 4-sum would be O(N^3)....in general is complexity of k-sum O(N^k-1)?