-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_reqa.py
287 lines (239 loc) · 14 KB
/
benchmark_reqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import pandas as pd
import numpy as np
from tqdm.notebook import tqdm
from utils import encode_in_batch, list_to_ordered_set
import tensorflow_text
import tensorflow as tf
import tensorflow_hub as hub
from collections import defaultdict, Counter
from itertools import combinations
def evaluate(aq_id, question_id, question_all, context_id, context_all, mrr_rank=10, status=True):
top_1 = 0
top_5 = 0
top_10 = 0
mrr_score = 0
context_id = np.array(context_id)
sim_score = np.inner(question_all, context_all)
aq_id_to_score = defaultdict(list)
aq_id_to_simscore = defaultdict(list)
if status == True:
status_bar = enumerate(tqdm(zip(sim_score, aq_id)))
else:
status_bar = enumerate(zip(sim_score, aq_id))
for idx, (sim, aq) in status_bar:
index = np.argsort(sim)[::-1]
index_edit = [context_id[x] for x in index]
try:
idx_search = list_to_ordered_set(index_edit).index(question_id[idx])
except:
# print(f"Error on Question ID: {question_id[idx]}")
continue
aq_id_to_score[aq].append(idx_search)
try:
aq_id_to_simscore[aq].append(sim[idx_search])
except IndexError:
aq_id_to_simscore[aq].append(0)
for aq, idx_searches in aq_id_to_score.items():
# Get the most common index if possible
counter = Counter(idx_searches)
# Get the most common item(s) using most_common()
most_common_item = counter.most_common(1)
most_common_count = most_common_item[0][1]
# Find all items that have the same highest count as the most common item
most_common_items = [item for item, count in counter.items() if count == most_common_count]
if len(most_common_items) == 1:
idx_search = most_common_items[0]
else:
# If there are multiple most common items, get the one with the highest similarity score
# Get the similarity scores
sim_scores = aq_id_to_simscore[aq]
# Get the indices of the most common items
most_common_indices = [idx_searches.index(item) for item in most_common_items]
# Get the similarity scores of the most common items
most_common_sim_scores = [sim_scores[idx] for idx in most_common_indices]
# Get the index of the most common item with the highest similarity score
idx_search = most_common_indices[np.argmax(most_common_sim_scores)]
if idx_search == 0:
top_1 += 1
top_5 += 1
top_10 += 1
elif idx_search < 5:
top_5 += 1
top_10 += 1
# # Debugging
# print(idx_search)
# print(index_edit)
# print(question_id[idx])
# print(f"Question: {questions_data[questions_data['context_id'] == question_id[idx]]['question'].values[0]}")
# print(f"Context: {context_data[context_data['id'] == question_id[idx]]['context'].values[0]}")
# print(f"GT Retrieved Context: {context_data[context_data['id'] == index_edit[idx_search]]['context'].values[0]}")
# # Print all retrieved contexts top-15
# print("Retrieved Contexts:")
# for i in range(15):
# print(f"{i}: {context_data[context_data['id'] == index_edit[i]]['context'].values[0]}")
# print("--")
# if top_5 > 20:
# raise Exception("Debugging")
elif idx_search < 10:
top_10 += 1
if idx_search < mrr_rank:
mrr_score += 1 / (idx_search + 1)
return (
top_1 / len(question_all),
top_5 / len(question_all),
top_10 / len(question_all),
mrr_score / len(question_all),
)
def get_ds(question_data, context_data, aug_question_col=None, aug_context_col=None, aug_ratio=0., context_col="context", questions_col="question", filter_zero_dist=True):
"""Function to return the questions and contexts, and their ids for use in benchmarking"""
# Assertions to prevent race conditions
assert aug_question_col is None or aug_context_col is None, "Both aug_question_col and aug_context_col cannot be on at the same time"
assert aug_question_col is None or aug_question_col in question_data.columns, f"{aug_question_col} not in question_data"
assert aug_context_col is None or aug_context_col in context_data.columns, f"{aug_context_col} not in context_data"
if aug_question_col is not None:
assert aug_question_col.replace("th_", "dis_") in question_data.columns, f"{aug_question_col.replace('th_', 'dis_')} not in question_data"
if aug_context_col is not None:
assert aug_context_col.replace("th_", "dis_") in context_data.columns, f"{aug_context_col.replace('th_', 'dis_')} not in context_data"
# Get the questions and contexts
questions = question_data[questions_col].values
# TODO: Refactor this later with actual arguments
question_ids = question_data["context_id"].values
# question_ids = question_data["id"].values
actual_question_ids = question_data["id"].values
# Get the contexts
context = context_data[context_col].values
context_ids = context_data["id"].values
# Get the augmented contexts
if aug_context_col:
aug_context = context_data[aug_context_col].values
distances = context_data[aug_context_col.replace("th_", "dis_")].values
if filter_zero_dist:
aug_context = aug_context[distances > 0]
aug_context_ids = context_data["id"].values[distances > 0]
# Filter out the zero distances
distances = distances[distances > 0]
else:
aug_context_ids = context_data["id"].values
# Sample bottom augmented contexts by aug_context_ratio (closest distance)
if aug_ratio > 0:
# Get the bottom indices
bottom_indices = np.argsort(distances)[:int(len(distances) * aug_ratio)]
# Get the bottom contexts
aug_context = aug_context[bottom_indices]
aug_context_ids = aug_context_ids[bottom_indices]
else:
# Raise error if aug_context_ratio is 0 but aug_context_col is not None
assert aug_ratio != 0, "aug_context_ratio cannot be 0 if aug_context_col is not None"
# Augment into context
context = np.concatenate([context, aug_context], axis=0)
context_ids = np.concatenate([context_ids, aug_context_ids], axis=0)
elif aug_question_col:
aug_question = question_data[aug_question_col].values
distances = question_data[aug_question_col.replace("th_", "dis_")].values
if filter_zero_dist:
aug_question = aug_question[distances > 0]
aug_question_ids = question_data["context_id"].values[distances > 0]
actual_aug_question_ids = question_data["id"].values[distances > 0]
# Filter out the zero distances
distances = distances[distances > 0]
else:
aug_question_ids = question_data["context_id"].values
actual_aug_question_ids = question_data["id"].values
# Sample bottom augmented contexts by aug_context_ratio (closest distance)
if aug_ratio > 0:
# Get the bottom indices
bottom_indices = np.argsort(distances)[:int(len(distances) * aug_ratio)]
# Get the bottom contexts
aug_question = aug_question[bottom_indices]
aug_question_ids = aug_question_ids[bottom_indices]
actual_aug_question_ids = actual_aug_question_ids[bottom_indices]
else:
# Raise error if aug_context_ratio is 0 but aug_context_col is not None
assert aug_ratio != 0, "aug_context_ratio cannot be 0 if aug_context_col is not None"
# Augment into context
questions = np.concatenate([questions, aug_question], axis=0)
question_ids = np.concatenate([question_ids, aug_question_ids], axis=0)
actual_question_ids = np.concatenate([actual_question_ids, actual_aug_question_ids], axis=0)
return actual_question_ids, question_ids, context_ids, questions, context
def benchmark_single(aq_ids, q_ids, c_ids, q, c, model_embed):
# Check if column has a distance counterpart
question_all = encode_in_batch(model_embed, q, progress=False)
context_all = encode_in_batch(model_embed, c, progress=False)
question_ids = q_ids
context_ids = c_ids
top_1, top_5, top_10, mrr_score = evaluate(
aq_ids, question_ids, question_all, context_ids, context_all, status=False
)
return top_1, top_5, top_10, mrr_score
if __name__ == "__main__":
import hashlib
question_data = pd.read_parquet('questions/data/06_calculate_distance.parquet')
context_data = pd.read_parquet('contexts/data/06_calculate_distance.parquet')
question_data["context_id"] = question_data["context"].apply(lambda x: hashlib.sha256(x.encode("utf-8")).hexdigest())
results = []
model_embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder-multilingual/3")
all_augment_cols = [col for col in question_data.columns if col.startswith('th_')]
unique_sources = list(question_data["source"].unique())
unique_sources = ["xquad"]
# First test out on no augmentation
# for source in tqdm(unique_sources, desc="Iterating through datasets"):
# actual_question_ids, question_ids, context_ids, questions, context = get_ds(question_data[question_data["source"] == source], context_data[context_data["source"] == source], aug_question_col=None, aug_ratio=0)
# top_1, top_5, top_10, mrr_score = benchmark_single(actual_question_ids, question_ids, context_ids, questions, context, model_embed)
# print(f"Source: {source}, Augment Col: None, Augment Ratio: 0, Top 1: {top_1}, Top 5: {top_5}, Top 10: {top_10}, MRR Score: {mrr_score}, Number of Augmentations: 0")
# results.append({
# "source": source,
# "augment_col": None,
# "augment_ratio": 0,
# "top_1": top_1,
# "top_5": top_5,
# "top_10": top_10,
# "mrr_score": mrr_score,
# "num_augmentations": 0
# })
# Test single augmentation
# for source in tqdm(unique_sources, desc="Iterating through datasets"):
# for col in tqdm(all_augment_cols, desc="Iterating through columns", leave=False):
# for ratio in tqdm(range(1, 11), desc="Iterating through ratios", leave=False, total=10, miniters=0):
# ratio = ratio / 10
# actual_question_ids, question_ids, context_ids, questions, context = get_ds(question_data[question_data["source"] == source], context_data[context_data["source"] == source], aug_question_col=col, aug_ratio=ratio)
# top_1, top_5, top_10, mrr_score = benchmark_single(actual_question_ids, question_ids, context_ids, questions, context, model_embed)
# print(f"Source: {source}, Augment Col: {col}, Augment Ratio: {ratio}, Top 1: {top_1}, Top 5: {top_5}, Top 10: {top_10}, MRR Score: {mrr_score}, Number of Augmentations: 1")
# results.append({
# "source": source,
# "augment_col": [col],
# "augment_ratio": ratio,
# "top_1": top_1,
# "top_5": top_5,
# "top_10": top_10,
# "mrr_score": mrr_score,
# "num_augmentations": 1
# })
for num_to_augment in tqdm(range(5, len(all_augment_cols) + 1), desc="Testing number of augmentations"):
for augment_cols in tqdm(list(combinations(all_augment_cols, num_to_augment)), desc="Iterating through combinations", leave=False):
for source in tqdm(unique_sources, desc="Iterating through datasets"):
for ratio in tqdm(range(1, 11), desc="Iterating through ratios", leave=False, total=10, miniters=0):
ratio = ratio / 10
# Get the data
actual_question_ids, question_ids, context_ids, questions, context = get_ds(question_data[question_data["source"] == source], context_data[context_data["source"] == source], aug_question_col=augment_cols[0], aug_ratio=ratio)
for col in augment_cols[1:]:
temp_actual_question_ids, temp_question_ids, temp_context_ids, temp_questions, temp_context = get_ds(question_data[question_data["source"] == source], context_data[context_data["source"] == source], aug_question_col=col, aug_ratio=ratio)
actual_question_ids = np.concatenate([actual_question_ids, temp_actual_question_ids], axis=0)
question_ids = np.concatenate([question_ids, temp_question_ids], axis=0)
context_ids = np.concatenate([context_ids, temp_context_ids], axis=0)
questions = np.concatenate([questions, temp_questions], axis=0)
context = np.concatenate([context, temp_context], axis=0)
top_1, top_5, top_10, mrr_score = benchmark_single(actual_question_ids, question_ids, context_ids, questions, context, model_embed)
print(f"Source: {source}, Augment Col: {augment_cols}, Augment Ratio: {ratio}, Top 1: {top_1}, Top 5: {top_5}, Top 10: {top_10}, MRR Score: {mrr_score}, Number of Augmentations: {num_to_augment}")
results.append({
"source": source,
"augment_cols": augment_cols,
"augment_ratio": ratio,
"top_1": top_1,
"top_5": top_5,
"top_10": top_10,
"mrr_score": mrr_score,
"num_augmentations": num_to_augment
})
results = pd.DataFrame(results)
print(results)
results.to_csv("benchmark_reqa_results.csv", index=False)