-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTorchWrapper.py
executable file
·674 lines (596 loc) · 26.6 KB
/
TorchWrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# This is a Theano Op which can wrap Lua/Torch code.
# Some related projects / code:
# https://github.com/nouiz/theano_torch_bridge
# http://stackoverflow.com/questions/24712972/interfacing-python-and-torch7lua-via-shared-library
# https://pypi.python.org/pypi/lupa
# https://github.com/sermanet/OverFeat/blob/master/API/python/overfeatmodule.cpp
# https://github.com/albanD/lunatic-python / http://labix.org/lunatic-python
# https://github.com/hughperkins/pytorch
# https://github.com/facebook/fblualib/blob/master/fblualib/python/README.md
import os, sys
import theano
import theano.tensor as T
from TheanoUtil import try_register_gpu_opt
from theano.sandbox.cuda import GpuOp
from Util import make_hashable, make_dll_name, escape_c_str
from Log import log
from pprint import pprint
_initialized = False
_torch_base_dir = None
_torch_include = "include"
_torch_lib = "lib"
_torch_share_lua = "share/lua/5.1"
_torch_lib_lua = "lib/lua/5.1"
def _init():
global _initialized, _torch_base_dir
if _initialized: return
# Not sure about the best way. Maybe try multiple things.
# We could set it in our config. get_global_config().
# We could use some env var.
# When torch-activate was called before, we should prefer that one.
# In that case, and maybe in other cases, we will find the executable th in PATH.
paths = []
for binpath in os.environ.get("PATH", "").split(":"):
if os.path.exists("%s/th" % binpath): # e.g. "~/torch/install/bin"
paths += [os.path.dirname(binpath)] # parent dir
break
# Add some standard paths.
paths += map(
os.path.expanduser,
["~/torch/install", "~/code/torch/install", "~/Programmierung/torch/install",
"/usr", "/usr/local"])
def is_torch_dir(p):
if not os.path.exists("%s/lib/%s" % (p, make_dll_name("luajit"))): return False
if not os.path.exists("%s/lib/%s" % (p, make_dll_name("TH"))): return False
if not os.path.exists("%s/include/lua.h" % p): return False
if not os.path.exists("%s/include/TH" % p): return False
return True
paths = filter(is_torch_dir, paths)
print >>log.v4, "Found Lua & Torch dirs (will use the first one):"
pprint(paths, log.v4)
if not paths:
print >>log.v2, "ERROR: Did not found Lua & Torch."
else:
_torch_base_dir = paths[0]
for p in ["%s/torch/init.lua" % _torch_share_lua, "%s/libtorch.so" % _torch_lib_lua]:
fullp = "%s/%s" % (_torch_base_dir, p)
if not os.path.exists(fullp):
print >>log.v2, "ERROR: Did not found Lua & Torch file:", fullp
_initialized = True
class TorchWrapperOp(theano.Op):
__props__ = ("in_info", "out_info", "lua_file", "lua_fw_func", "lua_bw_func", "name")
def __init__(self, in_info, out_info, lua_fw_func, lua_bw_func=None, lua_file=None, name=None):
_init()
super(TorchWrapperOp, self).__init__()
self.in_info = make_hashable(in_info)
self.out_info = make_hashable(out_info)
self.lua_file = lua_file # if none, expect inplace definition
self.lua_fw_func = lua_fw_func
self.lua_bw_func = lua_bw_func
self.name = name or "<anonymous>"
for info in self.in_info + self.out_info:
assert "ndim" in info
assert "shape" in info
assert len(info["shape"]) == info["ndim"]
for info in self.out_info:
for s in info["shape"]:
assert s, "need output shape info or reference, %r" % info
def make_node(self, *args):
args = [T.as_tensor_variable(arg) for arg in args]
assert len(args) == len(self.in_info)
outputs = [T.TensorType(info.get("dtype", "float32"), (False,) * info["ndim"])()
for info in self.out_info]
return theano.Apply(self, args, outputs)
def infer_shape(self, node, input_shapes):
out_shapes = []
for info in self.out_info:
out_shape = list(info["shape"])
for idx, s in enumerate(out_shape):
if isinstance(s, tuple): # we interpret this as a reference to input shapes
assert len(s) == 2
out_shape[idx] = input_shapes[s[0]][s[1]]
assert not any([s is None for s in out_shape]), "out_shape %r, out_info %r" % (out_shape, self.out_info)
out_shapes += [tuple(out_shape)]
return out_shapes
def perform(self, node, inputs, output_storage):
raise NotImplementedError("TorchWrapper: no pure Python implementation, only C implementation")
def c_header_dirs(self):
_init()
return ["%s/%s" % (_torch_base_dir, _torch_include)]
def c_lib_dirs(self):
_init()
return ["%s/%s" % (_torch_base_dir, _torch_lib), "/usr/lib/atlas-base"]
def c_libraries(self):
return ["luaT", "luajit", "TH"]
def c_compile_args(self):
args = []
# Some libs may use @rpath to reference to the lib. This is needed so that it finds it. (MacOSX)
# This will also make the dynamic linker search in these paths. (Linux,Unix)
args += ["-Wl,-rpath,%s" % l for l in self.c_lib_dirs()]
return args
def c_support_code(self):
return """
extern "C" {
#include <lua.h>
#include <luaT.h>
#include <lualib.h>
#include <lauxlib.h>
#include <TH/TH.h>
#include <dlfcn.h>
#include <stdint.h>
#include <assert.h>
}
#include <vector>
#define ARRAY_LEN(x) (sizeof(x) / sizeof(x[0]))
// Some Lua versions luaL_dostring ignore the result (http://stackoverflow.com/questions/12528820).
#undef luaL_dostring
#define luaL_dostring(L,s) (luaL_loadstring(L, s) || lua_pcall(L, 0, LUA_MULTRET, 0))
static const char* safe_lua_tostring(lua_State* L, int ud) {
const char* s = lua_tostring(L, ud);
if(!s) s = lua_typename(L, lua_type(L, ud));
return s;
}
static lua_State* L = 0;
static long L_ref_counter = 0; // via c_init_code_struct/c_cleanup_code_struct
// For TH documentation, best see the C code here: https://github.com/torch/torch7/blob/master/lib/TH/generic/
// THC: https://github.com/torch/cutorch/tree/master/lib/THC
// Also some documentation here: http://torch.ch/docs/developer-docs.html
// LuaT: https://github.com/torch/torch7/blob/master/lib/luaT/luaT.c
// Note: There is https://github.com/facebook/thpp for templated THTensor. But maybe overkill...
// Some Tensor doc: https://github.com/torch/torch7/blob/master/doc/tensor.md
template<typename T> struct TTH;
template<> struct TTH<float> {
typedef float type;
typedef THFloatTensor Tensor;
typedef THFloatStorage Storage;
static Storage* Storage_newWithData(type* data, size_t size) { return THFloatStorage_newWithData(data, size); }
static void Storage_free(Storage* storage) { THFloatStorage_free(storage); }
static void Storage_clearFlag(Storage* storage, const char flag) { THFloatStorage_clearFlag(storage, flag); }
static Tensor* Tensor_newWithStorage(
Storage* storage, long storageOffset, THLongStorage* sizes, THLongStorage* strides) {
return THFloatTensor_newWithStorage(storage, storageOffset, sizes, strides);
}
static const char* luaType() { return "torch.FloatTensor"; }
static int numpyTypenum() { return NPY_FLOAT32; };
};
template<> struct TTH<int8_t> {
typedef char type;
typedef THCharTensor Tensor;
typedef THCharStorage Storage;
static Storage* Storage_newWithData(type* data, size_t size) { return THCharStorage_newWithData(data, size); }
static void Storage_free(Storage* storage) { THCharStorage_free(storage); }
static void Storage_clearFlag(Storage* storage, const char flag) { THCharStorage_clearFlag(storage, flag); }
static Tensor* Tensor_newWithStorage(
Storage* storage, long storageOffset, THLongStorage* sizes, THLongStorage* strides) {
return THCharTensor_newWithStorage(storage, storageOffset, sizes, strides);
}
static const char* luaType() { return "torch.CharTensor"; }
static int numpyTypenum() { return NPY_INT8; };
};
template<typename Base>
static bool typed_lua_push_py_array(typename Base::type* data, size_t size, int ndim, long* shapes, long* strides) {
typename Base::Storage* storage = Base::Storage_newWithData(data, size);
Base::Storage_clearFlag(storage, TH_STORAGE_RESIZABLE|TH_STORAGE_FREEMEM); // mem is owned by Python
THLongStorage* shapes_storage = THLongStorage_newWithData(shapes, ndim);
THLongStorage_clearFlag(shapes_storage, TH_STORAGE_RESIZABLE|TH_STORAGE_FREEMEM); // mem is owned by Python
THLongStorage* strides_storage = THLongStorage_newWithData(strides, ndim);
THLongStorage_clearFlag(strides_storage, TH_STORAGE_RESIZABLE|TH_STORAGE_FREEMEM); // mem is owned by Python
typename Base::Tensor* tensor = Base::Tensor_newWithStorage(storage, 0, shapes_storage, strides_storage);
luaT_pushudata(L, tensor, Base::luaType());
THLongStorage_free(shapes_storage);
THLongStorage_free(strides_storage);
Base::Storage_free(storage);
return true;
}
template<typename Base>
static bool typed_lua_push_py_array(PyArrayObject* obj) {
assert(PyArray_EquivTypenums(PyArray_TYPE(obj), Base::numpyTypenum()));
typename Base::type* data = (typename Base::type*) PyArray_DATA(obj);
size_t size = PyArray_NBYTES(obj) / sizeof(typename Base::type);
int ndim = PyArray_NDIM(obj);
std::vector<long> shapes(ndim);
std::vector<long> strides(ndim);
for(int i = 0; i < ndim; ++i) {
shapes[i] = PyArray_DIM(obj, i);
strides[i] = PyArray_STRIDE(obj, i) / sizeof(typename Base::type); // Numpy strides are in bytes
}
return typed_lua_push_py_array<Base>(data, size, ndim, &shapes[0], &strides[0]);
}
static bool lua_push_py_array(PyArrayObject* obj) {
if(PyArray_EquivTypenums(PyArray_TYPE(obj), TTH<float>::numpyTypenum()))
return typed_lua_push_py_array<TTH<float> >(obj);
if(PyArray_EquivTypenums(PyArray_TYPE(obj), TTH<int8_t>::numpyTypenum()))
return typed_lua_push_py_array<TTH<int8_t> >(obj);
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: lua_push_py_array, cannot handle Numpy dtype %%s",
PyArray_DESCR(obj)->typeobj->tp_name);
return false;
}
template<typename Tensor>
static bool isContiguous(const Tensor* tensor) {
long z = 1;
int d;
for(d = tensor->nDimension - 1; d >= 0; d--) {
if(tensor->size[d] != 1) {
if(tensor->stride[d] == z)
z *= tensor->size[d];
else
return false;
}
}
return true;
}
template<typename Base>
static bool typed_lua_pop_py_array(PyArrayObject** obj, const char* errmsg) {
typename Base::Tensor* tensor = (typename Base::Tensor*) luaT_checkudata(L, -1, Base::luaType());
if(!tensor) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: typed_lua_pop_py_array, luaT_checkudata returned NULL");
return false;
}
// Cases:
// 1. *obj == NULL. -> We need a new PyArrayObject.
// 2. *obj != NULL. not sure... reuse? overwrite?
// To give Lua the possibility to reuse it, we could pass the old as a param to the Lua func?
// Or Lua could store the last return as a global? -> Then we cannot overtake the mem here.
// To make it possible to reuse it later by Lua, we need to let Lua own the memory.
// To make sure it does not go out of scope, we must use LUA_REGISTRYINDEX.
// For now, very simple:
if(*obj) Py_CLEAR(*obj); // don't reuse any old one
if(!tensor->storage) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: %%s, typed_lua_pop_py_array, tensor->storage == NULL", errmsg);
return false;
}
if(tensor->storageOffset != 0) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: %%s, typed_lua_pop_py_array, tensor->storageOffset != 0, cannot handle that case yet", errmsg);
return false;
}
if(tensor->storage->allocator != &THDefaultAllocator) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: %%s, typed_lua_pop_py_array, storage uses unknown mem allocator, cannot overtake memory", errmsg);
return false;
}
if(!(tensor->storage->flag & TH_STORAGE_REFCOUNTED)) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: %%s, typed_lua_pop_py_array, storage not refcounted, not sure where memory came from", errmsg);
return false;
}
if(!(tensor->storage->flag & TH_STORAGE_FREEMEM)) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: %%s, typed_lua_pop_py_array, storage does not own memory, not sure where memory came from", errmsg);
return false;
}
if(tensor->storage->refcount != 1) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: %%s, typed_lua_pop_py_array, storage refcount is %%i, cannot overtake memory",
errmsg, tensor->storage->refcount);
return false;
}
tensor->storage->flag &= ~(TH_STORAGE_RESIZABLE | TH_STORAGE_FREEMEM); // we overtake the memory
typename Base::type* data = tensor->storage->data;
int ndim = tensor->nDimension;
std::vector<long> shapes(ndim);
std::vector<long> strides(ndim);
for(int i = 0; i < ndim; ++i) {
shapes[i] = tensor->size[i];
strides[i] = tensor->stride[i] * sizeof(typename Base::type); // Numpy strides are in bytes
}
int flags = NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE | NPY_ARRAY_OWNDATA;
if(isContiguous(tensor))
flags |= NPY_ARRAY_C_CONTIGUOUS;
*obj = (PyArrayObject*) PyArray_New(
/*subtype*/&PyArray_Type,
ndim, &shapes[0], Base::numpyTypenum(), &strides[0], data, /*itemsize*/0,
flags, /*obj*/NULL);
if(!*obj) {
if(!PyErr_Occurred())
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: %%s, typed_lua_pop_py_array, failed to create PyArrayObject", errmsg);
return false;
}
lua_pop(L, 1);
return true;
}
static bool lua_pop_py_array(PyArrayObject** obj, const char* errmsg) {
if(luaT_isudata(L, -1, "torch.FloatTensor"))
return typed_lua_pop_py_array<TTH<float> >(obj, errmsg);
PyErr_Format(PyExc_TypeError,
"TorchWrapper: %%s, lua_pop_py_array: got type %%s",
errmsg, lua_typename(L, lua_type(L, -1)));
return false;
}
""" % {}
def c_support_code_struct(self, node, name):
return """
int lua_user_func_ref_%(name)s;
""" % {"name": name}
def c_init_code_struct(self, node, name, sub):
assert not self.lua_file, "not yet implemented..."
return """
lua_user_func_ref_%(name)s = LUA_REFNIL;
L_ref_counter++;
if(!L) {
// workaround via https://groups.google.com/forum/#!topic/torch7/1Nl1OGEHxZw
void *hdl = dlopen("libluajit.so", RTLD_NOW | RTLD_GLOBAL);
if(hdl == 0) printf("TorchWrapper: dlopen luajit error: %%s\\n", dlerror()); // ignore...?
// http://www.lua.org/manual/5.1/manual.html
L = lua_open();
if(!L) {
PyErr_Format(PyExc_RuntimeError,
"ERROR: TorchWrapper: Cannot create Lua state.\\n"
" If you are on MacOSX 64bit, Python must be linked with:\\n"
" -pagezero_size 10000 -image_base 100000000\\n"
" See here: http://luajit.org/install.html\\n"
" And here: https://groups.google.com/forum/#!topic/torch7/dW2rotAgijY\\n"
);
%(fail)s;
}
// If only specific ones: http://stackoverflow.com/questions/966162
luaL_openlibs(L); // all standard Lua libs
// -e 'package.path="/u/zeyer/code/torch/install/share/lua/5.1/?.lua;/u/zeyer/code/torch/install/share/lua/5.1/?/init.lua;"..package.path'
// -e 'package.cpath="/u/zeyer/code/torch/install/lib/lua/5.1/?.so;"..package.cpath'
lua_getglobal(L, "package");
lua_pushstring(L,
%(_torch_base_dir)s "/" %(_torch_share_lua)s "/?.lua;"
%(_torch_base_dir)s "/" %(_torch_share_lua)s "/?/init.lua;"
"./?.lua"
);
lua_setfield(L, -2, "path");
lua_pushstring(L,
%(_torch_base_dir)s "/" %(_torch_lib_lua)s "/?.so;"
%(_torch_base_dir)s "/" %(_torch_lib)s "/?.so;"
"./?.so"
);
lua_setfield(L, -2, "cpath");
lua_pop(L, 1); // pops package
lua_getglobal(L, "require");
lua_pushstring(L, "torch");
if(lua_pcall(L, 1, 0, 0) != 0) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: Error while loading Torch module: %%s",
safe_lua_tostring(L, -1));
%(fail)s;
}
// -e 'local k,l,_=pcall(require,"luarocks.loader") _=k
// /u/zeyer/code/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th
lua_getglobal(L, "torch");
lua_getfield(L, -1, "updateerrorhandlers");
lua_replace(L, -2);
if(lua_pcall(L, 0, 0, 0) != 0) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: torch.updateerrorhandlers() error: %%s",
safe_lua_tostring(L, -1));
%(fail)s;
}
// https://github.com/torch/image/issues/107
lua_getglobal(L, "torch");
lua_getfield(L, -1, "setheaptracking");
lua_replace(L, -2);
lua_pushboolean(L, 1);
if(lua_pcall(L, 1, 0, 0) != 0) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: torch.setheaptracking(true) error: %%s",
safe_lua_tostring(L, -1));
%(fail)s;
}
}
const char* user_func_str = "return " %(user_func_str)s;
if((luaL_loadstring(L, user_func_str) || lua_pcall(L, 0, 1, 0)) != 0) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: Error while getting %%s lua_fw_func: %%s\\nCode:\\n%%s\\n",
%(op_name)s,
safe_lua_tostring(L, -1),
user_func_str);
%(fail)s;
}
if(!lua_isfunction(L, -1)) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: %%s lua_fw_func is not a function but a %%s",
%(op_name)s,
lua_typename(L, lua_type(L, -1)));
%(fail)s;
}
lua_user_func_ref_%(name)s = luaL_ref(L, LUA_REGISTRYINDEX);
""" % {
'name': name, 'fail': sub['fail'],
'op_name': escape_c_str(self.name),
"user_func_str": escape_c_str(self.lua_fw_func),
"_torch_base_dir": escape_c_str(_torch_base_dir),
"_torch_share_lua": escape_c_str(_torch_share_lua),
"_torch_lib_lua": escape_c_str(_torch_lib_lua),
"_torch_lib": escape_c_str(_torch_lib)
}
def c_cleanup_code_struct(self, node, name):
return """
if(L) {
luaL_unref(L, LUA_REGISTRYINDEX, lua_user_func_ref_%(name)s);
lua_user_func_ref_%(name)s = LUA_REFNIL;
}
L_ref_counter--;
if(L_ref_counter == 0 && L) {
lua_close(L);
L = 0;
}
""" % {'name': name}
def c_code(self, node, name, inputs, outputs, sub):
assert len(inputs) == len(self.in_info)
assert len(outputs) == len(self.out_info)
return """
PyArrayObject* inputs[] = {%(input_var_names_str)s};
PyArrayObject** outputs[] = {%(output_var_names_str)s};
int out_ndims[] = {%(output_ndims_str)s};
int out_shapes_flat[] = {%(output_shapes_flat_str)s};
int out_shape_idx = 0;
int pcall_ret = 0;
if(!L) { // should have been initialized via c_init_code_struct()
PyErr_Format(PyExc_RuntimeError, "Lua not initialized.");
%(fail)s;
}
// TODO: I don't understand this. We do the same already in c_init_code_struct.
// Is this another thread?
{
lua_getglobal(L, "torch");
lua_getfield(L, -1, "updatethreadlocals");
lua_replace(L, -2);
if(lua_pcall(L, 0, 0, 0) != 0) {
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: torch.updatethreadlocals() error: %%s",
safe_lua_tostring(L, -1));
%(fail)s;
}
}
// First push debug.traceback. This will be our pcall error handler.
lua_getglobal(L, "debug");
lua_getfield(L, -1, "traceback");
lua_replace(L, -2);
// Now the function itself which we want to call.
lua_rawgeti(L, LUA_REGISTRYINDEX, lua_user_func_ref_%(name)s);
// Now all the arguments.
for(int i = 0; i < %(n_inputs)i; ++i) {
if(!lua_push_py_array(inputs[i]))
%(fail)s;
}
// And the call itself.
pcall_ret = lua_pcall(L, %(n_inputs)i, %(n_outputs)i, /*error handler*/ - %(n_inputs)i - 2);
if(pcall_ret != 0) {
const char* errmsg = lua_tostring(L, -1);
if(!errmsg) {
errmsg = "(No Lua error message.)";
printf("Unexpected Lua stack:\\n");
luaT_stackdump(L);
}
PyErr_Format(PyExc_RuntimeError,
"TorchWrapper: Error calling %%s lua_fw_func, error code %%i:\\n%%s",
%(op_name)s, pcall_ret, errmsg);
lua_pop(L, 2); // remove error and debug.traceback from the stack
%(fail)s;
}
// We don't want that there are any references floating around to the returned objects.
// We want to overtake the memory of THStorage and we check that refcount == 1.
lua_gc(L, LUA_GCCOLLECT, 0);
// Now collect all the returned objects.
for(int i = %(n_outputs)i - 1; i >= 0; --i) {
if(!lua_pop_py_array(outputs[i], %(op_name)s))
%(fail)s;
if(PyArray_NDIM(*outputs[i]) != out_ndims[i]) {
PyErr_Format(PyExc_ValueError,
"TorchWrapper: %%s, lua_fw_func, in output %%i, got wrong ndim = %%i, expected %%i",
%(op_name)s, i, PyArray_NDIM(*outputs[i]), out_ndims[i]);
%(fail)s;
}
for(int j = 0; j < out_ndims[i]; ++j, ++out_shape_idx) {
assert(out_shape_idx < ARRAY_LEN(out_shapes_flat));
if(out_shapes_flat[out_shape_idx] >= 0) { // otherwise we could infer it via input dim. TODO...
if(PyArray_DIM(*outputs[i], j) != out_shapes_flat[out_shape_idx]) {
PyErr_Format(PyExc_ValueError,
"TorchWrapper: %%s lua_fw_func, in output %%i with ndim %%i, got wrong shape[%%i] = %%i, expected %%i",
%(op_name)s, i, out_ndims[i], j, PyArray_DIM(*outputs[i], j), out_shapes_flat[out_shape_idx]);
%(fail)s;
}
}
}
}
lua_pop(L, 1); // remove debug.traceback from the stack
""" % {
'name': name, 'fail': sub['fail'],
'op_name': escape_c_str(self.name),
'n_inputs': len(inputs), 'n_outputs': len(outputs),
'input_var_names_str': ", ".join(["%s" % inp for inp in inputs]),
'output_var_names_str': ", ".join(["&%s" % out for out in outputs]),
'output_ndims_str': ', '.join(["%i" % info["ndim"] for info in self.out_info]),
'output_shapes_flat_str':
', '.join([(("%i" % s) if isinstance(s, (int, long)) else "-1")
for info in self.out_info for s in info["shape"]])
}
def grad(self, inputs, output_grads):
if not self.lua_bw_func:
# Unknown how to calculate gradient.
return [T.DisconnectedType()() for inp in inputs]
assert len(self.in_info) == len(inputs)
assert len(self.out_info) == len(output_grads)
out_info = [info.copy() for info in self.in_info]
for idx, info in enumerate(out_info):
# Refer to input shapes. See infer_shape().
info["shape"] = [(idx, i) for i in range(info["ndim"])]
out_info = [info for info in out_info if info.get("gradient", "") != "disconnected"]
grad_op = TorchWrapperOp(
name="grad-of-%s" % self.name,
in_info=self.in_info + self.out_info, # inputs + output_grads
out_info=out_info,
lua_file=self.lua_file,
lua_fw_func=self.lua_bw_func
)
input_grads = grad_op(*(inputs + output_grads))
assert len(out_info) == len(input_grads)
results = []
for info in self.in_info:
if info.get("gradient", "") == "disconnected":
results += [T.DisconnectedType()()]
else:
results += input_grads[:1]
input_grads = input_grads[1:]
assert len(input_grads) == 0
assert len(results) == len(self.in_info)
return results
def connection_pattern(self, node):
assert len(node.inputs) == len(self.in_info)
pattern = [[info.get("gradient", "") != "disconnected"]
for info in self.in_info]
return pattern
class GpuTorchWrapperOp(GpuOp, TorchWrapperOp):
# TODO...
# Maybe helpful:
# http://pydoc.net/Python/Theano/0.6.0/theano.sandbox.cuda.basic_ops/
# http://deeplearning.net/software/theano/tutorial/aliasing.html
# http://www.deeplearning.net/software/theano/extending/extending_theano_c.html#extending-theano-c
# http://www.deeplearning.net/software/theano/extending/cop.html#Op.c_code
# http://docs.scipy.org/doc/numpy/reference/c-api.array.html
# https://docs.scipy.org/doc/numpy-1.9.2/reference/c-api.types-and-structures.html
def c_support_code(self):
cpu_code = super(GpuTorchWrapperOp, self).c_support_code()
return """
extern "C" {
#include "THC.h"
#include "THCTensor.h"
}
%(cpu_code)s
// TODO?
template<> struct THCuda {
typedef float type;
typedef THCudaTensor Tensor;
typedef THCudaStorage Storage;
static Storage* Storage_newWithData(type* data, size_t size) { return THCudaStorage_newWithData(data, size); }
static void Storage_free(Storage* storage) { THCudaStorage_free(storage); }
static void Storage_clearFlag(Storage* storage, const char flag) { THCudaStorage_clearFlag(storage, flag); }
static Tensor* Tensor_newWithStorage(
Storage* storage, long storageOffset, THLongStorage* sizes, THLongStorage* strides) {
return THCudaTensor_newWithStorage(storage, storageOffset, sizes, strides);
}
static const char* luaType() { return "torch.CudaTensor"; }
};
// Generic function. support CudaNdarray (Theano CUDA) and PyArrayObject (Numpy).
static bool lua_push_py_array(PyObject* obj) {
if(PyArray_Check(obj))
return lua_push_py_array((PyArrayObject*) obj);
// https://github.com/Theano/Theano/blob/master/theano/sandbox/cuda/cuda_ndarray.cuh
if(CudaNdarray_Check(obj)) {} // TODO...
PyErr_Format(PyExc_TypeError,
"TorchWrapper: lua_push_py_array: cannot handle type %%s",
obj->ob_type->tp_name);
return false;
}
""" % {"cpu_code": cpu_code}
def c_libraries(self):
return super(GpuTorchWrapperOp, self).c_libraries() + ["THC"]
@try_register_gpu_opt(TorchWrapperOp)
def local_gpu_TorchWrapper(node):
if isinstance(node.op, TorchWrapperOp):
from theano.sandbox.cuda import host_from_gpu, gpu_from_host
args = node.inputs
if any([(x.owner and x.owner.op == host_from_gpu) for x in args]):
gpu_op = GpuTorchWrapperOp(**{key: getattr(node.op, key) for key in node.op.__props__})
args = [x.owner.inputs[0] if (x.owner and x.owner.op == host_from_gpu) else x
for x in args]
return [host_from_gpu(gpu_op(*args))]