-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpLSTMRec.py
executable file
·603 lines (533 loc) · 25 KB
/
OpLSTMRec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import os
from FunctionLoader import make_funloader_code
import theano
import theano.gradient
import theano.tensor as T
import theano.printing
import theano.gof
from theano.gof.opt import OpSub
from theano.compile import optdb
from theano.sandbox.cuda.basic_ops import (as_cuda_ndarray_variable,
gpu_contiguous)
class LSTMRecOpGrad(theano.sandbox.cuda.GpuOp):
__props__ = ("inplace", "fun_name", "recurrent_transform")
def __init__(self, fun_name, inplace, recurrent_transform):
"""
:type recurrent_transform: RecurrentTransform.RecurrentTransformBase
"""
super(LSTMRecOpGrad, self).__init__(self)
self.inplace = inplace
self.fun_name = fun_name
self.recurrent_transform = recurrent_transform
if inplace:
# http://deeplearning.net/software/theano/extending/inplace.html
# https://github.com/Theano/Theano/issues/3506
# It's strange that we must mark which output operates on which input -
# I would expect that it must only know which inputs are destroyed.
# Anyway:
# All outputs operate inplace on inputs 1 and 6 (which are H and DY)
# but when the input is marked multiple times, we get an error.
# This is also strange, and probably a bug in Theano.
# So we could mark that output 0 destroys inputs 1 and 6.
# That also doesn't work, it will not apply the inplace-optimization anymore.
# So, we do it in some other way. From how I understand the Theano code,
# the output index is ignored, so we can use any.
# Anyway Theano knows what inputs will be destroyed, so it should be OK.
destroy_input_list = [1, 6]
self.destroy_map = {i: [i] for i in destroy_input_list} # hack, see above
def _get_num_custom_vars(self):
return len(self.recurrent_transform.custom_vars)
def _get_num_state_vars(self):
return len(self.recurrent_transform.state_vars)
def make_node(self, Y, H, c, y0, i, Dd, DY, *args):
c = gpu_contiguous(as_cuda_ndarray_variable(c))
y0 = gpu_contiguous(as_cuda_ndarray_variable(y0))
i = gpu_contiguous(as_cuda_ndarray_variable(T.cast(i,'float32')))
Dd = gpu_contiguous(as_cuda_ndarray_variable(Dd))
DY = gpu_contiguous(as_cuda_ndarray_variable(DY))
args = [gpu_contiguous(as_cuda_ndarray_variable(x)) for x in args]
# args = custom_inputs + state_vars_seqs
assert len(args) == self._get_num_custom_vars() + self._get_num_state_vars()
assert DY.dtype == 'float32'
assert Y.dtype == 'float32'
assert H.dtype == 'float32'
assert c.dtype == 'float32'
assert y0.dtype == "float32"
for x in args:
assert x.dtype == "float32"
assert DY.ndim == 3
assert Y.ndim == 3
assert H.ndim == 3
assert c.ndim == 2
assert y0.ndim == 2
assert i.ndim == 2
custom_input_grads = [var.type() for var in args[:self._get_num_custom_vars()]]
CudaNdarrayType = theano.sandbox.cuda.CudaNdarrayType
# One ndim less because initial state var grads vs whole seq state vars.
initial_state_var_grads = [CudaNdarrayType(dtype="float32", broadcastable=(False,) * (var.ndim - 1))()
for var in args[self._get_num_custom_vars():]]
return theano.Apply(self, [Y, H, c, y0, i, Dd, DY] + args,
# DZ, Dc, Dy0, custom input grads, initial state var grads
[H.type(), c.type(), y0.type()] + custom_input_grads + initial_state_var_grads)
def c_support_code(self):
crnn_path = os.path.dirname(__file__)
fun_prefix = "%s_%i" % (self.fun_name, id(self.recurrent_transform))
funloader = make_funloader_code(self.recurrent_transform, fun_prefix + "_fun_bwd", fun_prefix + "_fun_reset")
with open(crnn_path + "/c_support_code_mdlstm.cpp") as f:
return funloader + f.read()
def c_code(self, node, name, input_names, output_names, sub):
(Y, H, c, y0, i, Dd, DY), remaining_inputs = input_names[:7], input_names[7:]
assert len(remaining_inputs) == self._get_num_custom_vars() + self._get_num_state_vars()
custom_inputs = remaining_inputs[:self._get_num_custom_vars()]
seq_state_var_names = remaining_inputs[self._get_num_custom_vars():]
custom_inputs_str = ",".join(custom_inputs)
seq_state_var_names_str = ", ".join(seq_state_var_names)
(DZ, Dc, Dy0), remaining_outputs = output_names[:3], output_names[3:]
assert len(remaining_outputs) == self._get_num_custom_vars() + self._get_num_state_vars()
custom_output_names = remaining_outputs[:self._get_num_custom_vars()]
initial_state_var_grad_names = remaining_outputs[self._get_num_custom_vars():]
custom_outputs_str = ", ".join(["&" + grad for grad in custom_output_names])
initial_state_var_grad_names_str = ", ".join(["&" + grad for grad in initial_state_var_grad_names])
bwd_fun = "%s_%i_fun_bwd" % (self.fun_name, id(self.recurrent_transform))
fail = sub['fail']
inplace = "true" if self.inplace else "false"
return """
//std::cout << "LSTMRecOpGrad called" << std::endl;
if(!%(inplace)s)
{
//std::cout << "warning, inplace optimization failed, not working inplace" << std::endl;
}
if(%(DZ)s || %(Dc)s || %(Dy0)s)
{
printf("output storage already exists\\n");
//TODO check if we can reuse it
Py_XDECREF(%(DZ)s);
Py_XDECREF(%(Dc)s);
Py_XDECREF(%(Dy0)s);
}
#define ARRAY_LEN(x) (sizeof(x) / sizeof(x[0]))
CudaNdarray* custom_inputs[] = {%(custom_inputs_str)s}; // input
%(bwd_fun)s.reset_shared(custom_inputs, ARRAY_LEN(custom_inputs)); // init the custom grads with zero
CudaNdarray* seq_state_vars[] = {%(seq_state_var_names_str)s}; // input
CudaNdarray** state_var_grads[] = {%(initial_state_var_grad_names_str)s}; // output
for(int i = 0; i < ARRAY_LEN(state_var_grads); ++i) {
Py_XDECREF(*state_var_grads[i]); // in case of earlier output storage
// dims like seq_state_vars[i] without time, which is the first dim
int ndim = CudaNdarray_NDIM(seq_state_vars[i]) - 1;
const int* dims = CudaNdarray_HOST_DIMS(seq_state_vars[i]) + 1;
*state_var_grads[i] = (CudaNdarray*) CudaNdarray_ZEROS(ndim, (int*) dims);
assert(*state_var_grads[i]);
}
CudaNdarray * epsilon = 0;
CudaNdarray * delta = 0;
if(%(inplace)s)
{
epsilon = %(DY)s;
delta = %(H)s;
Py_XINCREF(delta);
}
else
{
epsilon = (CudaNdarray *) CudaNdarray_Copy(%(DY)s);
delta = (CudaNdarray *) CudaNdarray_Copy(%(H)s);
}
const int * H_dim = CudaNdarray_HOST_DIMS(%(H)s);
const int * Y_dim = CudaNdarray_HOST_DIMS(%(Y)s);
int y = 0;
for(int x = H_dim[0]-1; x >= 0; --x)
{
//add recurrent
bool rightBorder = (x == H_dim[0]-1);
bool leftBorder = (x == 0);
//call custom function here
if(!rightBorder)
{
CudaNdarray * y_p = 0;
//x-1?
PyObject * y_p_obj = PyObject_CallMethod((PyObject*) %(Y)s, "__getitem__", "(i)", x);
assert(y_p_obj);
y_p = (CudaNdarray*) y_p_obj;
PyObject * delta_x_obj = PyObject_CallMethod((PyObject*) delta, "__getitem__", "(i)", x+1);
assert(delta_x_obj);
CudaNdarray * delta_x = (CudaNdarray*) delta_x_obj;
CudaNdarray* state_vars_prev[ARRAY_LEN(seq_state_vars)];
for(int i = 0; i < ARRAY_LEN(seq_state_vars); ++i) {
state_vars_prev[i] = (CudaNdarray*) PyObject_CallMethod((PyObject*) seq_state_vars[i], "__getitem__", "(i)", x+1);
assert(state_vars_prev[i]);
}
// bwd_fun args: y_p, custom inputs, state vars prev, Dz_re, state var new grads
CudaNdarray* bwd_fun_inputs[2 + ARRAY_LEN(custom_inputs) + 2 * ARRAY_LEN(seq_state_vars)];
{
int idx = 0;
bwd_fun_inputs[idx++] = y_p;
for(int i = 0; i < ARRAY_LEN(custom_inputs); ++i)
bwd_fun_inputs[idx++] = custom_inputs[i];
for(int i = 0; i < ARRAY_LEN(state_vars_prev); ++i)
bwd_fun_inputs[idx++] = state_vars_prev[i];
bwd_fun_inputs[idx++] = delta_x;
for(int i = 0; i < ARRAY_LEN(state_var_grads); ++i)
bwd_fun_inputs[idx++] = *state_var_grads[i];
assert(idx == ARRAY_LEN(bwd_fun_inputs));
}
std::vector<CudaNdarray*> res_vec = %(bwd_fun)s.call(bwd_fun_inputs, ARRAY_LEN(bwd_fun_inputs));
// result shared vars: Dy_p, custom input grads, state var grads
assert(res_vec.size() == 1 + ARRAY_LEN(custom_inputs) + ARRAY_LEN(seq_state_vars));
Py_XDECREF(delta_x);
CudaNdarray * Dy_p = (CudaNdarray*) res_vec[0];
//copy to epsilon
float * epsilon_x_data = data_ptr(epsilon, y, x);
do_add(epsilon_x_data, CudaNdarray_DEV_DATA(Dy_p), CudaNdarray_SIZE(Dy_p));
// custom input grads will automatically be accumulated. see CustomLSTMFunctions.
// copy state var grads
{
int idx = 1 + ARRAY_LEN(custom_inputs);
for(int i = 0; i < ARRAY_LEN(seq_state_vars); ++i) {
CudaNdarray* dst = *state_var_grads[i];
CudaNdarray* src = res_vec[idx++];
assert(CudaNdarray_SIZE(dst) == CudaNdarray_SIZE(src));
cudaMemcpy(
CudaNdarray_DEV_DATA(dst), CudaNdarray_DEV_DATA(src),
CudaNdarray_SIZE(src) * sizeof(real), cudaMemcpyDeviceToDevice);
}
assert(res_vec.size() == idx);
}
for(int i = 0; i < res_vec.size(); ++i)
Py_XDECREF(res_vec[i]);
for(int i = 0; i < ARRAY_LEN(state_vars_prev); ++i)
Py_XDECREF(state_vars_prev[i]);
Py_XDECREF(y_p);
}
do_lstm_bwd(delta, epsilon, %(Y)s, %(Dd)s, %(c)s, y, x, rightBorder, %(i)s);
}
%(DZ)s = delta;
%(Dc)s = CudaNdarray_uninitialized_like(%(c)s);
HANDLE_ERROR(cudaMemcpy(CudaNdarray_DEV_DATA(%(Dc)s), CudaNdarray_DEV_DATA(epsilon),
Y_dim[1]*Y_dim[2]*sizeof(float), cudaMemcpyDeviceToDevice));
%(Dy0)s = CudaNdarray_zeros_like(%(y0)s);
//add custom function
//TODO: move to function
PyObject * delta_x_obj = PyObject_CallMethod((PyObject*) delta, "__getitem__", "(i)", 0);
assert(delta_x_obj);
CudaNdarray * delta_x = (CudaNdarray*) delta_x_obj;
CudaNdarray* state_vars_prev[ARRAY_LEN(seq_state_vars)];
for(int i = 0; i < ARRAY_LEN(seq_state_vars); ++i) {
// left border
state_vars_prev[i] = (CudaNdarray*) PyObject_CallMethod((PyObject*) seq_state_vars[i], "__getitem__", "(i)", 0);
assert(state_vars_prev[i]);
}
// bwd_fun args: y_p, custom inputs, state vars prev, Dz_re, state var new grads
CudaNdarray* bwd_fun_inputs[2 + ARRAY_LEN(custom_inputs) + 2 * ARRAY_LEN(seq_state_vars)];
{
int idx = 0;
bwd_fun_inputs[idx++] = %(y0)s;
for(int i = 0; i < ARRAY_LEN(custom_inputs); ++i)
bwd_fun_inputs[idx++] = custom_inputs[i];
for(int i = 0; i < ARRAY_LEN(state_vars_prev); ++i)
bwd_fun_inputs[idx++] = state_vars_prev[i];
bwd_fun_inputs[idx++] = delta_x;
for(int i = 0; i < ARRAY_LEN(state_var_grads); ++i)
bwd_fun_inputs[idx++] = *state_var_grads[i];
assert(idx == ARRAY_LEN(bwd_fun_inputs));
}
std::vector<CudaNdarray*> res_vec = %(bwd_fun)s.call(bwd_fun_inputs, ARRAY_LEN(bwd_fun_inputs));
// result shared vars: Dy_p, custom input grads, state var grads
assert(res_vec.size() == 1 + ARRAY_LEN(custom_inputs) + ARRAY_LEN(seq_state_vars));
Py_XDECREF(delta_x);
{
int idx = 0;
CudaNdarray * Dy_p = res_vec[idx++];
//copy to Dy0
do_add(CudaNdarray_DEV_DATA(%(Dy0)s), CudaNdarray_DEV_DATA(Dy_p), CudaNdarray_SIZE(Dy_p));
//custom grads
CudaNdarray** custom_grads[] = {%(custom_outputs_str)s}; // output
for(int i = 0; i < ARRAY_LEN(custom_grads); ++i) {
*custom_grads[i] = (CudaNdarray*) CudaNdarray_Copy(res_vec[idx++]);
assert(*custom_grads[i]);
}
// copy state var grads
for(int i = 0; i < ARRAY_LEN(seq_state_vars); ++i) {
CudaNdarray* dst = *state_var_grads[i];
CudaNdarray* src = res_vec[idx++];
assert(CudaNdarray_SIZE(dst) == CudaNdarray_SIZE(src));
cudaMemcpy(
CudaNdarray_DEV_DATA(dst), CudaNdarray_DEV_DATA(src),
CudaNdarray_SIZE(src) * sizeof(real), cudaMemcpyDeviceToDevice);
}
assert(res_vec.size() == idx);
}
for(int i = 0; i < res_vec.size(); ++i)
Py_XDECREF(res_vec[i]);
for(int i = 0; i < ARRAY_LEN(state_vars_prev); ++i)
Py_XDECREF(state_vars_prev[i]);
if(!%(inplace)s)
Py_XDECREF(epsilon);
#undef ARRAY_LEN
""" % locals()
#------------------------
class LSTMRecOp(theano.sandbox.cuda.GpuOp):
__props__ = ("inplace", "fun_name", "recurrent_transform")
def __init__(self, fun_name, inplace, recurrent_transform):
"""
:type recurrent_transform: RecurrentTransform.RecurrentTransformBase
"""
super(LSTMRecOp, self).__init__(self)
self.inplace = inplace
self.fun_name = fun_name
self.recurrent_transform = recurrent_transform
if inplace:
#all outputs operate inplace on input 0 (which is Z)
#but when the input is marked multiple times, we get an error
#so we only mark that output 0 destroys input 0
#anyway theano knows that input 0 will be destroyed, so it should be OK
self.destroy_map = {0: [0]}
def _get_num_custom_vars(self):
return len(self.recurrent_transform.custom_vars)
def _get_num_state_vars(self):
return len(self.recurrent_transform.state_vars)
def _seq_var_for_initial_state_var(self, v):
type_class = v.type.__class__
# One ndim more for time.
seq_var_type = type_class(dtype="float32", broadcastable=(False,) * (v.ndim + 1))
return seq_var_type()
def make_node(self, Z, c, y0, i, *args):
"""
:param Z: {input,output,forget} gate + cell state. 3d (time,batch,dim*4)
:param c: initial cell state. 2d (batch,dim)
:param y0: output of t = -1 (for recursion at t = 0). 2d (batch,dim)
:param i: index. 2d (time,batch) -> 0 or 1
:param args: custom_inputs + initial_state_vars: other inputs for the custom function
"""
from Device import have_gpu
assert have_gpu()
assert len(args) == self._get_num_custom_vars() + self._get_num_state_vars(), self.recurrent_transform
custom_inputs = args[:self._get_num_custom_vars()]
initial_state_vars = args[self._get_num_custom_vars():]
custom_inputs = [gpu_contiguous(as_cuda_ndarray_variable(x)) for x in custom_inputs]
initial_state_vars = [gpu_contiguous(as_cuda_ndarray_variable(x)) for x in initial_state_vars]
Z = gpu_contiguous(as_cuda_ndarray_variable(Z))
c = gpu_contiguous(as_cuda_ndarray_variable(c))
y0 = gpu_contiguous(as_cuda_ndarray_variable(y0))
i = gpu_contiguous(as_cuda_ndarray_variable(T.cast(i,'float32')))
assert Z.dtype == "float32"
assert c.dtype == "float32"
assert y0.dtype == "float32"
for x in custom_inputs:
assert x.dtype == "float32"
for x in initial_state_vars:
assert x.dtype == "float32"
assert Z.ndim == 3
assert c.ndim == 2
assert y0.ndim == 2
assert i.ndim == 2
seq_state_vars = [self._seq_var_for_initial_state_var(x) for x in initial_state_vars]
return theano.Apply(self,
[Z, c, y0, i] + custom_inputs + initial_state_vars,
# results: (output) Y, (gates and cell state) H, (final cell state) d, state vars sequences
[Z.type(), Z.type(), c.type()] + seq_state_vars)
def c_support_code(self):
fun_prefix = "%s_%i" % (self.fun_name, id(self.recurrent_transform))
funloader = make_funloader_code(self.recurrent_transform, fun_prefix + "_fun_fwd")
crnn_path = os.path.dirname(__file__)
with open(crnn_path + "/c_support_code_mdlstm.cpp") as f:
return funloader + f.read()
def c_code(self, node, name, input_names, output_names, sub):
# Y: all the outputs. 3d (time,batch,dim)
# Z/H: {input,output,forget} gate + cell state. 3d (time,batch,dim*4)
# d: last state (= Y[T-1]). 2d (batch,dim)
Z, c, y0, i = input_names[:4]
custom_inputs = input_names[4:]
assert len(custom_inputs) == self._get_num_custom_vars() + self._get_num_state_vars()
custom_inputs, initial_state_vars = custom_inputs[:self._get_num_custom_vars()], custom_inputs[self._get_num_custom_vars():]
custom_inputs_str = ", ".join(custom_inputs)
initial_state_vars_str = ", ".join(initial_state_vars)
Y, H, d = output_names[:3]
state_vars_seqs = output_names[3:]
assert len(state_vars_seqs) == self._get_num_state_vars()
state_vars_seqs_str_comma = "".join([", %s[x]" % x for x in state_vars_seqs])
state_vars_seqs_ptr_str = ", ".join(["&" + x for x in state_vars_seqs])
fwd_fun = "%s_%i_fun_fwd" % (self.fun_name, id(self.recurrent_transform))
inplace = "true" if self.inplace else "false"
fail = sub['fail']
# see https://github.com/Theano/Theano/blob/master/theano/sandbox/cuda/cuda_ndarray.cuh for some doc
return """
if(%(Y)s || %(H)s || %(d)s)
{
printf("Y or H or d already exist\\n");
//TODO check if we can reuse it
Py_XDECREF(%(Y)s);
Py_XDECREF(%(H)s);
Py_XDECREF(%(d)s);
}
// outputs
const int * Z_dim = CudaNdarray_HOST_DIMS(%(Z)s);
const int dims_Y[] = {Z_dim[0], Z_dim[1], Z_dim[2] / 4};
const int dims_H[] = {Z_dim[0], Z_dim[1], Z_dim[2]};
const int dims_d[] = {Z_dim[1], Z_dim[2] / 4};
int size_d = Z_dim[1] * Z_dim[2] / 4;
%(Y)s = (CudaNdarray*) CudaNdarray_NewDims(3, dims_Y);
%(d)s = (CudaNdarray*) CudaNdarray_NewDims(2, dims_d);
if(%(inplace)s)
{
%(H)s = %(Z)s;
Py_INCREF(%(Z)s);
}
else
{
%(H)s = (CudaNdarray*) CudaNdarray_NewDims(3,dims_H);
cudaMemcpy(CudaNdarray_DEV_DATA(%(H)s), CudaNdarray_DEV_DATA(%(Z)s),
dims_H[0]*dims_H[1]*dims_H[2]*sizeof(float), cudaMemcpyDeviceToDevice);
}
CudaNdarray* custom_inputs[] = {%(custom_inputs_str)s};
// custom state vars seqs outputs
#define ARRAY_LEN(x) (sizeof(x) / sizeof(x[0]))
CudaNdarray* initial_state_vars[] = {%(initial_state_vars_str)s};
CudaNdarray** state_vars_seqs_ptr[] = {%(state_vars_seqs_ptr_str)s};
assert(ARRAY_LEN(initial_state_vars) == ARRAY_LEN(state_vars_seqs_ptr));
for(int i = 0; i < ARRAY_LEN(initial_state_vars); ++i) {
const int initial_ndim = CudaNdarray_NDIM(initial_state_vars[i]);
int ndim = initial_ndim + 1; // add time-dim
const int* initial_dims = CudaNdarray_HOST_DIMS(initial_state_vars[i]);
int dims[] = {Z_dim[0], 0, 0, 0};
assert(ARRAY_LEN(dims) >= ndim);
for(int d = 0; d < initial_ndim; ++d)
dims[d + 1] = initial_dims[d];
*state_vars_seqs_ptr[i] = (CudaNdarray*) CudaNdarray_NewDims(ndim, dims);
// copy initial over
cudaMemcpy(
CudaNdarray_DEV_DATA(*state_vars_seqs_ptr[i]),
CudaNdarray_DEV_DATA(initial_state_vars[i]),
CudaNdarray_SIZE(initial_state_vars[i]) * sizeof(real), cudaMemcpyDeviceToDevice);
}
int y = 0;
for(int x = 0; x < Z_dim[0]; ++x)
{
bool leftBorder = (x == 0);
bool rightBorder = (x == Z_dim[0] - 1);
// call custom function here
CudaNdarray* state_vars[ARRAY_LEN(state_vars_seqs_ptr)];
for(int i = 0; i < ARRAY_LEN(state_vars_seqs_ptr); ++i) {
state_vars[i] = (CudaNdarray*) PyObject_CallMethod((PyObject*) *state_vars_seqs_ptr[i], "__getitem__", "(i)", x);
assert(state_vars[i]);
}
CudaNdarray * y_p = 0;
if(leftBorder)
{
y_p = %(y0)s;
}
else
{
PyObject * y_p_obj = PyObject_CallMethod((PyObject*) %(Y)s, "__getitem__", "(i)", x-1);
assert(y_p_obj);
y_p = (CudaNdarray*) y_p_obj;
}
//std::cerr << "t=" << x << std::endl;
// fwd fun args: y_p, custom inputs, state vars
CudaNdarray* fun_args[1 + ARRAY_LEN(custom_inputs) + ARRAY_LEN(state_vars)];
{
int idx = 0;
fun_args[idx++] = y_p;
for(int i = 0; i < ARRAY_LEN(custom_inputs); ++i)
fun_args[idx++] = custom_inputs[i];
for(int i = 0; i < ARRAY_LEN(state_vars); ++i)
fun_args[idx++] = state_vars[i];
assert(idx == ARRAY_LEN(fun_args));
}
std::vector<CudaNdarray*> res_vec = %(fwd_fun)s.call(fun_args, ARRAY_LEN(fun_args));
assert(res_vec.size() == 1 + ARRAY_LEN(initial_state_vars));
// add to H
{
CudaNdarray * res = res_vec[0];
float * H_y_x_data = data_ptr(%(H)s, y, x);
do_add(H_y_x_data, CudaNdarray_DEV_DATA(res), CudaNdarray_SIZE(res));
}
if(!rightBorder) {
// set new state vars
for(int i = 0; i < ARRAY_LEN(initial_state_vars); ++i) {
CudaNdarray* src = res_vec[i + 1];
float* src_ptr = CudaNdarray_DEV_DATA(src);
CudaNdarray* dst = *state_vars_seqs_ptr[i];
float* dst_ptr = CudaNdarray_DEV_DATA(dst) + CudaNdarray_HOST_STRIDES(dst)[0] * (x + 1);
assert(CudaNdarray_HOST_STRIDES(dst)[0] == CudaNdarray_SIZE(src));
cudaMemcpy(dst_ptr, src_ptr, CudaNdarray_SIZE(src) * sizeof(real), cudaMemcpyDeviceToDevice);
}
}
for(int i = 0; i < res_vec.size(); ++i)
Py_XDECREF(res_vec[i]);
if(!leftBorder)
Py_XDECREF(y_p);
for(int i = 0; i < ARRAY_LEN(state_vars); ++i)
Py_XDECREF(state_vars[i]);
float * d_ptr = rightBorder ? CudaNdarray_DEV_DATA(%(d)s) : 0;
do_lstm(%(H)s, %(Y)s, %(c)s, d_ptr, y, x, %(i)s);
}
#undef ARRAY_LEN
""" % locals()
def grad(self, inputs, output_grads):
(Z, c, y0, index), input_rest = inputs[:4], inputs[4:]
assert len(input_rest) == self._get_num_custom_vars() + self._get_num_state_vars()
custom_inputs = input_rest[:self._get_num_custom_vars()]
initial_state_vars = input_rest[self._get_num_custom_vars():]
(DY, DH, Dd), seq_state_var_grads = output_grads[:3], output_grads[3:]
assert len(seq_state_var_grads) == self._get_num_state_vars()
Z_raw = Z.owner.inputs[0].owner.inputs[0]
c_raw = c.owner.inputs[0].owner.inputs[0]
y0_raw = y0.owner.inputs[0].owner.inputs[0]
i_raw = index.owner.inputs[0].owner.inputs[0]
custom_inputs_raw = [x.owner.inputs[0] for x in custom_inputs]
#we have to make sure that this in only computed once!
#for this we have to extract the raw variables before conversion to continuous gpu array
#so that theano can merge the nodes
all_out = self(*([Z_raw, c_raw, y0_raw, i_raw] + custom_inputs + initial_state_vars))
(Y, H, d), seq_state_vars = all_out[:3], all_out[3:]
assert isinstance(DH.type, theano.gradient.DisconnectedType) # DH is ignored.
if isinstance(DY.type, theano.gradient.DisconnectedType):
DY = T.zeros_like(Z)
if isinstance(Dd.type, theano.gradient.DisconnectedType):
Dd = T.zeros_like(c)
for i in range(len(seq_state_var_grads)):
if isinstance(seq_state_var_grads[i].type, theano.gradient.DisconnectedType):
# First dim for time. One more for -1 element.
shape = [Z.shape[0] + 1] + [initial_state_vars[i].shape[d] for d in range(initial_state_vars[i].ndim)]
seq_state_var_grads[i] = T.zeros(shape, dtype="float32")
grad_op = grad_ops[(self.fun_name, id(self.recurrent_transform))]
all_grads = grad_op(*([Y, H, c, y0, index, Dd, DY] + custom_inputs + seq_state_var_grads))
(DZ, Dc, Dy0), remaining_grads = all_grads[:3], all_grads[3:]
# remaining grads = custom_inputs grads + initial state var grads
assert len(remaining_grads) == self._get_num_custom_vars() + self._get_num_state_vars()
custom_input_grads = remaining_grads[:self._get_num_custom_vars()]
initial_state_var_grads = remaining_grads[self._get_num_custom_vars():]
Di = theano.gradient.grad_undefined(self, 3, inputs[3], 'cannot diff w.r.t. index')
return [DZ, Dc, Dy0, Di] + custom_input_grads + initial_state_var_grads
function_ops = {}; ":type: dict[(str,int),LSTMRecOp]"
grad_ops = {}; ":type: dict[(str,int),LSTMRecOpGrad]"
def register_func(recurrent_transform):
"""
:type recurrent_transform: RecurrentTransform.RecurrentTransformBase
"""
fn = recurrent_transform.name
key = (fn, id(recurrent_transform))
if key in function_ops:
return function_ops[key]
# register op
no_inpl = LSTMRecOp(fun_name=fn, inplace=False, recurrent_transform=recurrent_transform)
inpl = LSTMRecOp(fun_name=fn, inplace=True, recurrent_transform=recurrent_transform)
function_ops[key] = no_inpl
# hack to avoid being called twice
attr = 'LSTMRecOpInplaceOpt_%s_%i' % (fn, id(recurrent_transform))
if not hasattr(optdb, attr):
opt = OpSub(no_inpl, inpl)
optdb.register(attr, theano.gof.TopoOptimizer(opt),
50.0, 'fast_run', 'inplace', 'gpuarray')
setattr(optdb, attr, True)
# the same for grad
no_inpl = LSTMRecOpGrad(fun_name=fn, inplace=False, recurrent_transform=recurrent_transform)
inpl = LSTMRecOpGrad(fun_name=fn, inplace=True, recurrent_transform=recurrent_transform)
grad_ops[key] = no_inpl
# hack to avoid being called twice
attr = 'LSTMRecOpGradInplaceOpt_%s_%i' % (fn, id(recurrent_transform))
if not hasattr(optdb, attr):
opt = OpSub(no_inpl, inpl)
optdb.register(attr, theano.gof.TopoOptimizer(opt),
50.0, 'fast_run', 'inplace', 'gpuarray')
setattr(optdb, attr, True)
return function_ops[key]