-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetworkRecurrentLayer.py
executable file
·1044 lines (971 loc) · 47.2 KB
/
NetworkRecurrentLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy
from theano import tensor as T
import theano
from NetworkHiddenLayer import HiddenLayer, CAlignmentLayer
from NetworkBaseLayer import Container, Layer
from ActivationFunctions import strtoact
from math import sqrt
from OpLSTM import LSTMOpInstance
from OpLSTM import LSTMSOpInstance
from OpBLSTM import BLSTMOpInstance
import RecurrentTransform
import json
from TheanoUtil import print_to_file
class Unit(Container):
"""
Abstract descriptor class for all kinds of recurrent units.
"""
def __init__(self, n_units, n_in, n_out, n_re, n_act):
"""
:param n_units: number of cells
:param n_in: cell fan in
:param n_out: cell fan out
:param n_re: recurrent fan in
:param n_act: number of outputs
"""
self.n_units, self.n_in, self.n_out, self.n_re, self.n_act = n_units, n_in, n_out, n_re, n_act
self.slice = T.constant(self.n_units, dtype='int32')
self.params = {}
def set_parent(self, parent):
"""
:type parent: RecurrentUnitLayer
"""
self.parent = parent
def scan(self, x, z, non_sequences, i, outputs_info, W_re, W_in, b, go_backwards=False, truncate_gradient=-1):
"""
Executes the iteration over the time axis (usually with theano.scan)
:param step: python function to be executed
:param x: unmapped input tensor in (time,batch,dim) shape
:param z: same as x but already transformed to self.n_in
:param non_sequences: see theano.scan
:param i: index vector in (time, batch) shape
:param outputs_info: see theano.scan
:param W_re: recurrent weight matrix
:param W_in: input weight matrix
:param b: input bias
:param go_backwards: whether to scan the sequence from 0 to T or from T to 0
:param truncate_gradient: see theano.scan
:return:
"""
self.outputs_info = outputs_info
self.non_sequences = non_sequences
self.W_re = W_re
self.W_in = W_in
self.b = b
self.go_backwards = go_backwards
self.truncate_gradient = truncate_gradient
try:
self.xc = z if not x else T.concatenate([s.output for s in x], axis = -1)
except Exception:
self.xc = z if not x else T.concatenate(x, axis = -1)
outputs, _ = theano.scan(self.step,
#strict = True,
truncate_gradient = truncate_gradient,
go_backwards = go_backwards,
sequences = [i,self.xc,z],
non_sequences = non_sequences,
outputs_info = outputs_info)
return outputs
def scan_seg(self, x, z, att, non_sequences, i, outputs_info, W_re, W_in, b, go_backwards=False, truncate_gradient=-1):
"""
Executes the iteration over the time axis (usually with theano.scan)
:param step: python function to be executed
:param x: unmapped input tensor in (time,batch,dim) shape
:param z: same as x but already transformed to self.n_in
:param non_sequences: see theano.scan
:param i: index vector in (time, batch) shape
:param outputs_info: see theano.scan
:param W_re: recurrent weight matrix
:param W_in: input weight matrix
:param b: input bias
:param go_backwards: whether to scan the sequence from 0 to T or from T to 0
:param truncate_gradient: see theano.scan
:return:
"""
self.outputs_info = outputs_info
self.non_sequences = non_sequences
self.W_re = W_re
self.W_in = W_in
self.b = b
self.go_backwards = go_backwards
self.truncate_gradient = truncate_gradient
try:
self.xc = z if not x else T.concatenate([s.output for s in x], axis = -1)
except Exception:
self.xc = z if not x else T.concatenate(x, axis = -1)
outputs, _ = theano.scan(self.step,
#strict = True,
truncate_gradient = truncate_gradient,
go_backwards = go_backwards,
sequences = [i,self.xc,z,att],
non_sequences = non_sequences,
outputs_info = outputs_info)
return outputs
class VANILLA(Unit):
"""
A simple tanh unit
"""
def __init__(self, n_units, **kwargs):
super(VANILLA, self).__init__(n_units, n_units, n_units, n_units, 1)
def step(self, i_t, x_t, z_t, z_p, h_p):
"""
performs one iteration of the recursion
:param i_t: index at time step t
:param x_t: raw input at time step t
:param z_t: mapped input at time step t
:param z_p: previous input from time step t-1
:param h_p: previous hidden activation from time step t-1
:return:
"""
return [ T.tanh(z_t + z_p) ]
class LSTME(Unit):
"""
A theano based LSTM implementation
"""
def __init__(self, n_units, **kwargs):
super(LSTME, self).__init__(
n_units=n_units,
n_in=n_units * 4, # input gate, forget gate, output gate, net input
n_out=n_units,
n_re=n_units * 4,
n_act=2 # output, cell state
)
self.o_output = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
self.o_h = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
def step(self, i_t, x_t, z_t, y_p, c_p, *other_args):
# See Unit.scan() for seqs.
# args: seqs (x_t = unit.xc, z_t, i_t), outputs (# unit.n_act, y_p, c_p, ...), non_seqs (none)
other_outputs = []
if self.recurrent_transform:
state_vars = other_args[:len(self.recurrent_transform.state_vars)]
self.recurrent_transform.set_sorted_state_vars(state_vars)
z_r, r_updates = self.recurrent_transform.step(y_p)
z_t += z_r
for v in self.recurrent_transform.get_sorted_state_vars():
other_outputs += [r_updates[v]]
z_t += T.dot(y_p, self.W_re)
partition = z_t.shape[1] // 4
ingate = T.nnet.sigmoid(z_t[:,:partition])
forgetgate = T.nnet.sigmoid(z_t[:,partition:2*partition])
outgate = T.nnet.sigmoid(z_t[:,2*partition:3*partition])
input = T.tanh(z_t[:,3*partition:4*partition])
c_t = forgetgate * c_p + ingate * input
y_t = outgate * T.tanh(c_t)
i_output = T.outer(i_t, self.o_output)
i_h = T.outer(i_t, self.o_h)
# return: next outputs (# unit.n_act, y_t, c_t, ...)
return (y_t * i_output, c_t * i_h + c_p * (1 - i_h)) + tuple(other_outputs)
class LSTMS(Unit):
"""
A theano based LSTM implementation
"""
def __init__(self, n_units, **kwargs):
super(LSTMS, self).__init__(
n_units=n_units,
n_in=n_units * 4, # input gate, forget gate, output gate, net input
n_out=n_units,
n_re=n_units * 4,
n_act=2 # output, cell state
)
self.o_output = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
self.o_h = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
def step(self, i_t, x_t, z_t, att_p, y_p, c_p, *other_args):
# See Unit.scan() for seqs.
# args: seqs (x_t = unit.xc, z_t, i_t), outputs (# unit.n_act, y_p, c_p, ...), non_seqs (none)
other_outputs = []
#att_p = theano.printing.Print('att in lstms', attrs=['__str__'])(att_p)
if self.recurrent_transform:
state_vars = other_args[:len(self.recurrent_transform.state_vars)]
self.recurrent_transform.set_sorted_state_vars(state_vars)
z_r, r_updates = self.recurrent_transform.step(y_p)
z_t += z_r
for v in self.recurrent_transform.get_sorted_state_vars():
other_outputs += [r_updates[v]]
maxatt = att_p.repeat(z_t.shape[1]).reshape((z_t.shape[0],z_t.shape[1]))#.dimshuffle(1,0)
#maxatt = theano.printing.Print('maxatt',attrs=['__str__','shape'])(maxatt)
z_t = T.switch(maxatt>0,z_t,z_t + T.dot(y_p, self.W_re))
#z_t += T.dot(y_p, self.W_re)
#z_t = theano.printing.Print('z_t lstms',attrs=['shape'])(z_t)
partition = z_t.shape[1] // 4
ingate = T.nnet.sigmoid(z_t[:,:partition])
forgetgate = ((T.nnet.sigmoid(z_t[:,partition:2*partition])).T * (1.-att_p)).T
outgate = T.nnet.sigmoid(z_t[:,2*partition:3*partition])
input = T.tanh(z_t[:,3*partition:4*partition])
#c_t = ((forgetgate * c_p + ingate * input).T * (1.-T.max(att_p,axis=-1))).T
c_t = forgetgate * c_p + ingate * input
y_t = outgate * T.tanh(c_t)
i_output = T.outer(i_t, self.o_output)
i_h = T.outer(i_t, self.o_h)
# return: next outputs (# unit.n_act, y_t, c_t, ...)
return (y_t * i_output, c_t * i_h + c_p * (1 - i_h)) + tuple(other_outputs)
class LEAKYLSTM(Unit):
"""
A 1D cell proposed in http://jmlr.org/papers/volume17/14-203/14-203.pdf
The simplified equations can be seen in Table 7, page 36.
Type A with gamma_3==0.
This cell has 3 units instead of 4 like LSTM
"""
def __init__(self, n_units, **kwargs):
super(LEAKYLSTM, self).__init__(
n_units=n_units,
n_in=n_units * 3, # forget gate (FG), output gate (OG), net input (IN)
n_out=n_units,
n_re=n_units * 3,
n_act=2 # output, cell state
)
self.o_output = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
self.o_h = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
def step(self, i_t, x_t, z_t, y_p, c_p, *other_args):
# See Unit.scan() for seqs.
# args: seqs (x_t = unit.xc, z_t, i_t), outputs (# unit.n_act, y_p, c_p, ...), non_seqs (none)
other_outputs = []
if self.recurrent_transform:
state_vars = other_args[:len(self.recurrent_transform.state_vars)]
self.recurrent_transform.set_sorted_state_vars(state_vars)
z_r, r_updates = self.recurrent_transform.step(y_p)
z_t += z_r
for v in self.recurrent_transform.get_sorted_state_vars():
other_outputs += [r_updates[v]]
z_t += T.dot(y_p, self.W_re)
partition = z_t.shape[1] // 3 #number of units
forgetgate = T.nnet.sigmoid(z_t[:,:partition])
outgate = T.nnet.sigmoid(z_t[:,partition:2*partition])
input = T.tanh(z_t[:,2*partition:3*partition])
# c(t) = (1 - FG(t)) * IN(t) + FG(t) * c(t-1)
c_t = (1-forgetgate) * input + forgetgate * c_p
# y(t) = OG(t) * c(t) HINT: There can be added an additional nonlinearity (substitute c_t:=T.tanh(x_t))
y_t = outgate * c_t
i_output = T.outer(i_t, self.o_output)
i_h = T.outer(i_t, self.o_h)
# return: next outputs (# unit.n_act, y_t, c_t, ...)
return (y_t * i_output, c_t * i_h + c_p * (1 - i_h)) + tuple(other_outputs)
class LEAKYLPLSTM(Unit):
"""
A 1D cell proposed in http://jmlr.org/papers/volume17/14-203/14-203.pdf
The simplified equations can be seen in Table 7, page 36.
Type A.
This cell has 4 units like the LSTM
"""
def __init__(self, n_units, **kwargs):
super(LEAKYLPLSTM, self).__init__(
n_units=n_units,
n_in=n_units * 4, # forget gate (FG), output gate 1 (OG1), output gate 2 (OG2), net input (IN)
n_out=n_units,
n_re=n_units * 4,
n_act=2 # output, cell state
)
self.o_output = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
self.o_h = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
def step(self, i_t, x_t, z_t, y_p, c_p, *other_args):
# See Unit.scan() for seqs.
# args: seqs (x_t = unit.xc, z_t, i_t), outputs (# unit.n_act, y_p, c_p, ...), non_seqs (none)
other_outputs = []
if self.recurrent_transform:
state_vars = other_args[:len(self.recurrent_transform.state_vars)]
self.recurrent_transform.set_sorted_state_vars(state_vars)
z_r, r_updates = self.recurrent_transform.step(y_p)
z_t += z_r
for v in self.recurrent_transform.get_sorted_state_vars():
other_outputs += [r_updates[v]]
z_t += T.dot(y_p, self.W_re)
partition = z_t.shape[1] // 4 #number of units
forgetgate = T.nnet.sigmoid(z_t[:,:partition])
outgate1 = T.nnet.sigmoid(z_t[:,partition:2*partition])
outgate2 = T.nnet.sigmoid(z_t[:,2*partition:3*partition])
input = T.tanh(z_t[:,3*partition:4*partition])
# c(t) = (1 - FG(t)) * IN(t) + FG(t) * c(t-1)
c_t = (1-forgetgate) * input + forgetgate * c_p
# y(t) = tanh( OG1(t) * c(t) + OG2(t) * c(t-1) ) HINT: The additional nonlinearity maybe has not a significant effect
y_t = T.tanh(outgate1 * c_t + outgate2 * c_p)
i_output = T.outer(i_t, self.o_output)
i_h = T.outer(i_t, self.o_h)
# return: next outputs (# unit.n_act, y_t, c_t, ...)
return (y_t * i_output, c_t * i_h + c_p * (1 - i_h)) + tuple(other_outputs)
class PIDLSTM(Unit):
"""
A 1D cell proposed in http://jmlr.org/papers/volume17/14-203/14-203.pdf
The simplified equations can be seen in Table 7, page 36.
Type E. This cell works as a dynamic PID filter of the input. The forget gate
determines if it has PD od PI characteristic, the Proportional gate gates the P/I part,
the Difference gate the D/P part. It can have advantages if there is no subsampling in
the layer.
This cell has 4 units like the LSTM
"""
def __init__(self, n_units, **kwargs):
super(PIDLSTM, self).__init__(
n_units=n_units,
n_in=n_units * 4, # forget gate (FG), Proportinal gate (PG), Difference gate (DG), net input (IN)
n_out=n_units,
n_re=n_units * 4,
n_act=2 # output, cell state
)
self.o_output = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
self.o_h = T.as_tensor(numpy.ones((n_units,), dtype='float32'))
def step(self, i_t, x_t, z_t, y_p, c_p, *other_args):
# See Unit.scan() for seqs.
# args: seqs (x_t = unit.xc, z_t, i_t), outputs (# unit.n_act, y_p, c_p, ...), non_seqs (none)
other_outputs = []
if self.recurrent_transform:
state_vars = other_args[:len(self.recurrent_transform.state_vars)]
self.recurrent_transform.set_sorted_state_vars(state_vars)
z_r, r_updates = self.recurrent_transform.step(y_p)
z_t += z_r
for v in self.recurrent_transform.get_sorted_state_vars():
other_outputs += [r_updates[v]]
z_t += T.dot(y_p, self.W_re)
partition = z_t.shape[1] // 4 #number of units
forgetgate = T.nnet.sigmoid(z_t[:,:partition])
propgate = T.nnet.sigmoid(z_t[:,partition:2*partition])
diffgate = T.nnet.sigmoid(z_t[:,2*partition:3*partition])
input = T.tanh(z_t[:,3*partition:4*partition])
# c(t) = (1 - FG(t)) * IN(t) + FG(t) * c(t-1)
c_t = (1-forgetgate) * input + forgetgate * c_p
# y(t) = tanh( PG(t) * c(t) + DG(t) * ( c(t) - c(t-1)) ) HINT: The additional nonlinearity maybe has not a significant effect
y_t = T.tanh(propgate * c_t + diffgate * ( c_t - c_p))
i_output = T.outer(i_t, self.o_output)
i_h = T.outer(i_t, self.o_h)
# return: next outputs (# unit.n_act, y_t, c_t, ...)
return (y_t * i_output, c_t * i_h + c_p * (1 - i_h)) + tuple(other_outputs)
class LSTMP(Unit):
"""
Very fast custom LSTM implementation
"""
def __init__(self, n_units, **kwargs):
super(LSTMP, self).__init__(n_units, n_units * 4, n_units, n_units * 4, 2)
def scan(self, x, z, non_sequences, i, outputs_info, W_re, W_in, b, go_backwards = False, truncate_gradient = -1):
z = T.inc_subtensor(z[-1 if go_backwards else 0], T.dot(outputs_info[0],W_re))
result = LSTMOpInstance(z[::-(2 * go_backwards - 1)], W_re, outputs_info[1], i[::-(2 * go_backwards - 1)])
return [ result[0], result[2].dimshuffle('x',0,1) ]
class LSTMPS(Unit):
"""
Very fast custom LSTM implementation for segment encoding
"""
def __init__(self, n_units, **kwargs):
super(LSTMPS, self).__init__(n_units, n_units * 4, n_units, n_units * 4, 2)
def scan_seg(self, x, z, non_sequences, i, att, outputs_info, W_re, W_in, b, go_backwards = False, truncate_gradient = -1):
z = T.inc_subtensor(z[-1 if go_backwards else 0], T.dot(outputs_info[0],W_re))
result = LSTMSOpInstance(z[::-(2 * go_backwards - 1)], W_re, outputs_info[1], i[::-(2 * go_backwards - 1)], att)
return [ result[0], result[2].dimshuffle('x',0,1) ]
class LSTMB(Unit):
"""
Very fast custom BLSTM implementation
"""
def __init__(self, n_units, **kwargs):
super(LSTMB, self).__init__(n_units, n_units * 8, n_units * 2, n_units * 4, 2)
def scan(self, x, z, non_sequences, i, outputs_info, W_re, W_in, b, go_backwards = False, truncate_gradient = -1):
W_re_b = self.parent.add_param(
self.parent.create_recurrent_weights(self.n_units, self.n_re, name="W_re_b_%s" % self.parent.name))
z_f = z[:,:,:z.shape[2]/2]
z_b = z[::-1,:,z.shape[2]/2:]
z_f = T.inc_subtensor(z_f[0], T.dot(outputs_info[0], W_re))
z_b = T.inc_subtensor(z_b[0], T.dot(outputs_info[0], W_re_b))
result = BLSTMOpInstance(z_f,z_b, W_re, W_re_b, outputs_info[1], T.zeros_like(outputs_info[1]), i, i[::-1])
return [ T.concatenate([result[0],result[1][::-1]],axis=2), T.concatenate([result[4],result[5][::-1]],axis=1).dimshuffle('x',0,1) ]
BLSTM = LSTMB # alternative name
class LSTMC(Unit):
"""
The same implementation as above, but it executes a theano function (recurrent transform)
in each iteration. This allows for additional dependencies in the recursion of the LSTM.
"""
def __init__(self, n_units, **kwargs):
super(LSTMC, self).__init__(n_units, n_units * 4, n_units, n_units * 4, 2)
def scan(self, x, z, non_sequences, i, outputs_info, W_re, W_in, b, go_backwards = False, truncate_gradient = -1):
assert self.parent.recurrent_transform
import OpLSTMCustom
op = OpLSTMCustom.register_func(self.parent.recurrent_transform)
custom_vars = self.parent.recurrent_transform.get_sorted_custom_vars()
initial_state_vars = self.parent.recurrent_transform.get_sorted_state_vars_initial()
# See OpLSTMCustom.LSTMCustomOp.
# Inputs args are: Z, c, y0, i, W_re, custom input vars, initial state vars
# Results: (output) Y, (gates and cell state) H, (final cell state) d, state vars sequences
op_res = op(z[::-(2 * go_backwards - 1)],
outputs_info[1], outputs_info[0], i[::-(2 * go_backwards - 1)], T.ones((i.shape[1],),'float32'), W_re, *(custom_vars + initial_state_vars))
result = [ op_res[0], op_res[2].dimshuffle('x',0,1) ] + op_res[3:]
assert len(result) == len(outputs_info)
return result
class LSTMR(Unit):
"""
Same as LSTMC but without recurrent matrix multiplication
"""
def __init__(self, n_units, **kwargs):
super(LSTMR, self).__init__(n_units, n_units * 4, n_units, n_units * 4, 2)
self.n_re = 0
def scan(self, x, z, non_sequences, i, outputs_info, W_re, W_in, b, go_backwards = False, truncate_gradient = -1):
assert self.parent.recurrent_transform
import OpLSTMRec
op = OpLSTMRec.register_func(self.parent.recurrent_transform)
custom_vars = self.parent.recurrent_transform.get_sorted_custom_vars()
initial_state_vars = self.parent.recurrent_transform.get_sorted_state_vars_initial()
# See OpLSTMRec.LSTMRecOp.
# Inputs args are: Z, c, y0, i, custom input vars, initial state vars
# Results: (output) Y, (gates and cell state) H, (final cell state) d, state vars sequences
op_res = op(z[::-(2 * go_backwards - 1)],
outputs_info[1], outputs_info[0], i[::-(2 * go_backwards - 1)], *(custom_vars + initial_state_vars))
result = [ op_res[0], op_res[2].dimshuffle('x',0,1) ] + op_res[3:]
assert len(result) == len(outputs_info)
return result
class GRU(Unit):
"""
Gated recurrent unit as described in http://arxiv.org/abs/1502.02367
"""
def __init__(self, n_units, **kwargs):
super(GRU, self).__init__(n_units, n_units * 3, n_units, n_units * 2, 2)
l = sqrt(6.) / sqrt(n_units * 3)
rng = numpy.random.RandomState(1234)
values = numpy.asarray(rng.uniform(low=-l, high=l, size=(n_units, n_units)), dtype=theano.config.floatX)
self.W_reset = theano.shared(value=values, borrow=True, name = "W_reset")
self.params['W_reset'] = self.W_reset
def step(self, i_t, x_t, z_t, z_p, h_p):
CI, GR, GU = [T.tanh, T.nnet.sigmoid, T.nnet.sigmoid]
u_t = GU(z_t[:,:self.slice] + z_p[:,:self.slice])
r_t = GR(z_t[:,self.slice:2*self.slice] + z_p[:,self.slice:2*self.slice])
h_c = CI(z_t[:,2*self.slice:] + T.dot(r_t * h_p, self.W_reset))
return z_t, u_t * h_p + (1 - u_t) * h_c
class SRU(Unit):
"""
Same as GRU but without reset weights, which allows for a faster computation on GPUs
"""
def __init__(self, n_units, **kwargs):
super(SRU, self).__init__(n_units, n_units * 3, n_units, n_units * 3, 1)
def step(self, i_t, x_t, z_t, z_p, h_p):
CI, GR, GU = [T.tanh, T.nnet.sigmoid, T.nnet.sigmoid]
u_t = GU(z_t[:,:self.slice] + z_p[:,:self.slice])
r_t = GR(z_t[:,self.slice:2*self.slice] + z_p[:,self.slice:2*self.slice])
h_c = CI(z_t[:,2*self.slice:3*self.slice] + r_t * z_p[:,2*self.slice:3*self.slice])
return u_t * h_p + (1 - u_t) * h_c
class RecurrentUnitLayer(Layer):
"""
Layer class to execute recurrent units
"""
recurrent = True
layer_class = "rec"
def __init__(self,
n_out = None,
n_units = None,
direction = 1,
truncation = -1,
sampling = 1,
encoder = None,
unit = 'lstm',
n_dec = 0,
attention = "none",
recurrent_transform = "none",
recurrent_transform_attribs = "{}",
attention_template = 128,
attention_distance = 'l2',
attention_step = "linear",
attention_beam = 0,
attention_norm = "exp",
attention_momentum = "none",
attention_sharpening = 1.0,
attention_nbest = 0,
attention_store = False,
attention_smooth = False,
attention_glimpse = 1,
attention_filters = 1,
attention_accumulator = 'sum',
attention_loss = 0,
attention_bn = 0,
attention_lm = 'none',
attention_ndec = 1,
attention_memory = 0,
attention_alnpts = 0,
attention_epoch = 1,
attention_segstep=0.01,
attention_offset=0.95,
attention_method="epoch",
attention_scale=10,
base = None,
aligner = None,
lm = False,
force_lm = False,
droplm = 1.0,
forward_weights_init=None,
bias_random_init_forget_shift=0.0,
copy_weights_from_base=False,
segment_input=False,
join_states=False,
sample_segment=None,
**kwargs):
"""
:param n_out: number of cells
:param n_units: used when initialized via Network.from_hdf_model_topology
:param direction: process sequence in forward (1) or backward (-1) direction
:param truncation: gradient truncation
:param sampling: scan every nth frame only
:param encoder: list of encoder layers used as initalization for the hidden state
:param unit: cell type (one of 'lstm', 'vanilla', 'gru', 'sru')
:param n_dec: absolute number of steps to unfold the network if integer, else relative number of steps from encoder
:param recurrent_transform: name of recurrent transform
:param recurrent_transform_attribs: dictionary containing parameters for a recurrent transform
:param attention_template:
:param attention_distance:
:param attention_step:
:param attention_beam:
:param attention_norm:
:param attention_sharpening:
:param attention_nbest:
:param attention_store:
:param attention_align:
:param attention_glimpse:
:param attention_lm:
:param base: list of layers which outputs are considered as based during attention mechanisms
:param lm: activate RNNLM
:param force_lm: expect previous labels to be given during testing
:param droplm: probability to take the expected output as predecessor instead of the real one when LM=true
:param bias_random_init_forget_shift: initialize forget gate bias of lstm networks with this value
"""
source_index = None
if len(kwargs['sources']) == 1 and (kwargs['sources'][0].layer_class.endswith('length') or kwargs['sources'][0].layer_class.startswith('length')):
kwargs['sources'] = []
source_index = kwargs['index']
unit_given = unit
from Device import is_using_gpu
if unit == 'lstm': # auto selection
if not is_using_gpu():
unit = 'lstme'
elif recurrent_transform == 'none' and (not lm or droplm == 0.0):
unit = 'lstmp'
else:
unit = 'lstmc'
elif unit in ("lstmc", "lstmp") and not is_using_gpu():
unit = "lstme"
if segment_input:
if is_using_gpu():
unit = "lstmps"
else:
unit = "lstms"
if n_out is None:
assert encoder
n_out = sum([enc.attrs['n_out'] for enc in encoder])
kwargs.setdefault("n_out", n_out)
if n_units is not None:
assert n_units == n_out
self.attention_weight = T.constant(1.,'float32')
if len(kwargs['sources']) == 1 and kwargs['sources'][0].layer_class.startswith('length'):
kwargs['sources'] = []
elif len(kwargs['sources']) == 1 and kwargs['sources'][0].layer_class.startswith('signal'):
kwargs['sources'] = []
super(RecurrentUnitLayer, self).__init__(**kwargs)
self.set_attr('from', ",".join([s.name for s in self.sources]) if self.sources else "null")
self.set_attr('n_out', n_out)
self.set_attr('unit', unit_given.encode("utf8"))
self.set_attr('truncation', truncation)
self.set_attr('sampling', sampling)
self.set_attr('direction', direction)
self.set_attr('lm', lm)
self.set_attr('force_lm', force_lm)
self.set_attr('droplm', droplm)
if bias_random_init_forget_shift:
self.set_attr("bias_random_init_forget_shift", bias_random_init_forget_shift)
self.set_attr('attention_beam', attention_beam)
self.set_attr('recurrent_transform', recurrent_transform.encode("utf8"))
if isinstance(recurrent_transform_attribs, str):
recurrent_transform_attribs = json.loads(recurrent_transform_attribs)
if attention_template is not None:
self.set_attr('attention_template', attention_template)
self.set_attr('recurrent_transform_attribs', recurrent_transform_attribs)
self.set_attr('attention_distance', attention_distance.encode("utf8"))
self.set_attr('attention_step', attention_step.encode("utf8"))
self.set_attr('attention_norm', attention_norm.encode("utf8"))
self.set_attr('attention_sharpening', attention_sharpening)
self.set_attr('attention_nbest', attention_nbest)
attention_store = attention_store or attention_smooth or attention_momentum != 'none'
self.set_attr('attention_store', attention_store)
self.set_attr('attention_smooth', attention_smooth)
self.set_attr('attention_momentum', attention_momentum.encode('utf8'))
self.set_attr('attention_glimpse', attention_glimpse)
self.set_attr('attention_filters', attention_filters)
self.set_attr('attention_lm', attention_lm)
self.set_attr('attention_bn', attention_bn)
self.set_attr('attention_accumulator', attention_accumulator)
self.set_attr('attention_ndec', attention_ndec)
self.set_attr('attention_memory', attention_memory)
self.set_attr('attention_loss', attention_loss)
self.set_attr('n_dec', n_dec)
self.set_attr('segment_input', segment_input)
self.set_attr('attention_alnpts', attention_alnpts)
self.set_attr('attention_epoch', attention_epoch)
self.set_attr('attention_segstep', attention_segstep)
self.set_attr('attention_offset', attention_offset)
self.set_attr('attention_method', attention_method)
self.set_attr('attention_scale', attention_scale)
if segment_input:
if not self.eval_flag:
#if self.eval_flag:
if isinstance(self.sources[0],RecurrentUnitLayer):
self.inv_att = self.sources[0].inv_att #NBT
else:
if not join_states:
self.inv_att = self.sources[0].attention #NBT
else:
assert hasattr(self.sources[0], "nstates"), "source does not have number of states!"
ns = self.sources[0].nstates
self.inv_att = self.sources[0].attention[(ns-1)::ns]
inv_att = T.roll(self.inv_att.dimshuffle(2, 1, 0),1,axis=0)#TBN
inv_att = T.set_subtensor(inv_att[0],T.zeros((inv_att.shape[1],inv_att.shape[2])))
inv_att = T.max(inv_att,axis=-1)
else:
inv_att = T.zeros((self.sources[0].output.shape[0],self.sources[0].output.shape[1]))
if encoder and hasattr(encoder[0],'act'):
self.set_attr('encoder', ",".join([e.name for e in encoder]))
if base:
self.set_attr('base', ",".join([b.name for b in base]))
else:
base = encoder
self.base = base
self.encoder = encoder
if aligner:
self.aligner = aligner
self.set_attr('n_units', n_out)
unit = eval(unit.upper())(**self.attrs)
assert isinstance(unit, Unit)
self.unit = unit
kwargs.setdefault("n_out", unit.n_out)
n_out = unit.n_out
self.set_attr('n_out', unit.n_out)
if n_dec < 0:
source_index = self.index
n_dec *= -1
if n_dec != 0:
self.target_index = self.index
if isinstance(n_dec,float):
if not source_index:
source_index = encoder[0].index if encoder else base[0].index
lengths = T.cast(T.ceil(T.sum(T.cast(source_index,'float32'),axis=0) * n_dec), 'int32')
idx, _ = theano.map(lambda l_i, l_m:T.concatenate([T.ones((l_i,),'int8'),T.zeros((l_m-l_i,),'int8')]),
[lengths], [T.max(lengths)+1])
self.index = idx.dimshuffle(1,0)[:-1]
n_dec = T.cast(T.ceil(T.cast(source_index.shape[0],'float32') * numpy.float32(n_dec)),'int32')
else:
if encoder:
self.index = encoder[0].index
self.index = T.ones((n_dec,self.index.shape[1]),'int8')
else:
n_dec = self.index.shape[0]
# initialize recurrent weights
self.W_re = None
if unit.n_re > 0:
self.W_re = self.add_param(self.create_recurrent_weights(unit.n_units, unit.n_re, name="W_re_%s" % self.name))
# initialize forward weights
bias_init_value = self.create_bias(unit.n_in).get_value()
if bias_random_init_forget_shift:
assert unit.n_units * 4 == unit.n_in # (input gate, forget gate, output gate, net input)
bias_init_value[unit.n_units:2 * unit.n_units] += bias_random_init_forget_shift
self.b.set_value(bias_init_value)
if not forward_weights_init:
forward_weights_init = "random_uniform(p_add=%i)" % unit.n_re
else:
self.set_attr('forward_weights_init', forward_weights_init)
self.forward_weights_init = forward_weights_init
self.W_in = []
sample_mean, gamma = None, None
if copy_weights_from_base:
self.params = {}
#self.W_re = self.add_param(base[0].W_re)
#self.W_in = [ self.add_param(W) for W in base[0].W_in ]
#self.b = self.add_param(base[0].b)
self.W_re = base[0].W_re
self.W_in = base[0].W_in
self.b = base[0].b
if self.attrs.get('batch_norm', False):
sample_mean = base[0].sample_mean
gamma = base[0].gamma
#self.masks = base[0].masks
#self.mass = base[0].mass
else:
for s in self.sources:
W = self.create_forward_weights(s.attrs['n_out'], unit.n_in, name="W_in_%s_%s" % (s.name, self.name))
self.W_in.append(self.add_param(W))
# make input
z = self.b
for x_t, m, W in zip(self.sources, self.masks, self.W_in):
if x_t.attrs['sparse']:
if x_t.output.ndim == 3: out_dim = x_t.output.shape[2]
elif x_t.output.ndim == 2: out_dim = 1
else: assert False, x_t.output.ndim
if x_t.output.ndim == 3:
z += W[T.cast(x_t.output[:,:,0], 'int32')]
elif x_t.output.ndim == 2:
z += W[T.cast(x_t.output, 'int32')]
else:
assert False, x_t.output.ndim
elif m is None:
z += T.dot(x_t.output, W)
else:
z += self.dot(self.mass * m * x_t.output, W)
#if self.attrs['batch_norm']:
# z = self.batch_norm(z, unit.n_in)
num_batches = self.index.shape[1]
self.num_batches = num_batches
non_sequences = []
if self.attrs['lm'] or attention_lm != 'none':
if not 'target' in self.attrs:
self.attrs['target'] = 'classes'
if self.attrs['droplm'] > 0.0 or not (self.train_flag or force_lm):
if copy_weights_from_base:
self.W_lm_in = base[0].W_lm_in
self.b_lm_in = base[0].b_lm_in
else:
l = sqrt(6.) / sqrt(unit.n_out + self.y_in[self.attrs['target']].n_out)
values = numpy.asarray(self.rng.uniform(low=-l, high=l, size=(unit.n_out, self.y_in[self.attrs['target']].n_out)), dtype=theano.config.floatX)
self.W_lm_in = self.add_param(self.shared(value=values, borrow=True, name = "W_lm_in_"+self.name))
self.b_lm_in = self.create_bias(self.y_in[self.attrs['target']].n_out, 'b_lm_in')
l = sqrt(6.) / sqrt(unit.n_in + self.y_in[self.attrs['target']].n_out)
values = numpy.asarray(self.rng.uniform(low=-l, high=l, size=(self.y_in[self.attrs['target']].n_out, unit.n_in)), dtype=theano.config.floatX)
if copy_weights_from_base:
self.W_lm_out = base[0].W_lm_out
else:
self.W_lm_out = self.add_param(self.shared(value=values, borrow=True, name = "W_lm_out_"+self.name))
if self.attrs['droplm'] == 0.0 and (self.train_flag or force_lm):
self.lmmask = 1
#if recurrent_transform != 'none':
# recurrent_transform = recurrent_transform[:-3]
elif self.attrs['droplm'] < 1.0 and (self.train_flag or force_lm):
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
srng = RandomStreams(self.rng.randint(1234) + 1)
self.lmmask = T.cast(srng.binomial(n=1, p=1.0 - self.attrs['droplm'], size=self.index.shape), theano.config.floatX).dimshuffle(0,1,'x').repeat(unit.n_in,axis=2)
else:
self.lmmask = T.zeros_like(self.index, dtype='float32').dimshuffle(0,1,'x').repeat(unit.n_in,axis=2)
if recurrent_transform == 'input': # attention is just a sequence dependent bias (lstmp compatible)
src = []
src_names = []
n_in = 0
for e in base:
#src_base = [ s for s in e.sources if s.name not in src_names ]
#src_names += [ s.name for s in e.sources ]
src_base = [ e ]
src_names += [e.name]
src += [s.output for s in src_base]
n_in += sum([s.attrs['n_out'] for s in src_base])
self.xc = T.concatenate(src, axis=2)
l = sqrt(6.) / sqrt(self.attrs['n_out'] + n_in)
values = numpy.asarray(self.rng.uniform(low=-l, high=l, size=(n_in, 1)), dtype=theano.config.floatX)
self.W_att_xc = self.add_param(self.shared(value=values, borrow=True, name = "W_att_xc"))
values = numpy.asarray(self.rng.uniform(low=-l, high=l, size=(n_in, self.attrs['n_out'] * 4)), dtype=theano.config.floatX)
self.W_att_in = self.add_param(self.shared(value=values, borrow=True, name = "W_att_in"))
zz = T.exp(T.tanh(T.dot(self.xc, self.W_att_xc))) # TB1
self.zc = T.dot(T.sum(self.xc * (zz / T.sum(zz, axis=0, keepdims=True)).repeat(self.xc.shape[2],axis=2), axis=0, keepdims=True), self.W_att_in)
recurrent_transform = 'none'
elif recurrent_transform == 'attention_align':
max_skip = base[0].attrs['max_skip']
values = numpy.zeros((max_skip,), dtype=theano.config.floatX)
self.T_b = self.add_param(self.shared(value=values, borrow=True, name="T_b"), name="T_b")
l = sqrt(6.) / sqrt(self.attrs['n_out'] + max_skip)
values = numpy.asarray(self.rng.uniform(
low=-l, high=l, size=(self.attrs['n_out'], max_skip)), dtype=theano.config.floatX)
self.T_W = self.add_param(self.shared(value=values, borrow=True, name="T_W"), name="T_W")
y_t = T.dot(self.base[0].attention, T.arange(self.base[0].output.shape[0], dtype='float32')) # NB
y_t = T.concatenate([T.zeros_like(y_t[:1]), y_t], axis=0) # (N+1)B
y_t = y_t[1:] - y_t[:-1] # NB
self.y_t = y_t # T.clip(y_t,numpy.float32(0),numpy.float32(max_skip - 1))
self.y_t = T.cast(self.base[0].backtrace,'float32')
elif recurrent_transform == 'attention_segment':
assert aligner.attention, "Segment-wise attention requires attention points!"
recurrent_transform_inst = RecurrentTransform.transform_classes[recurrent_transform](layer=self)
assert isinstance(recurrent_transform_inst, RecurrentTransform.RecurrentTransformBase)
unit.recurrent_transform = recurrent_transform_inst
self.recurrent_transform = recurrent_transform_inst
# scan over sequence
for s in range(self.attrs['sampling']):
index = self.index[s::self.attrs['sampling']]
sequences = z
sources = self.sources
if encoder:
if recurrent_transform == "attention_segment":
if hasattr(encoder[0],'act'):
outputs_info = [T.concatenate([e.act[i][-1] for e in encoder], axis=1) for i in range(unit.n_act)]
else:
# outputs_info = [ T.concatenate([e[i] for e in encoder], axis=1) for i in range(unit.n_act) ]
outputs_info[0] = self.aligner.output[-1]
elif hasattr(encoder[0],'act'):
outputs_info = [ T.concatenate([e.act[i][-1] for e in encoder], axis=1) for i in range(unit.n_act) ]
else:
outputs_info = [ T.concatenate([e[i] for e in encoder], axis=1) for i in range(unit.n_act) ]
sequences += T.alloc(numpy.cast[theano.config.floatX](0), n_dec, num_batches, unit.n_in) + (self.zc if self.attrs['recurrent_transform'] == 'input' else numpy.float32(0))
else:
outputs_info = [ T.alloc(numpy.cast[theano.config.floatX](0), num_batches, unit.n_units) for a in range(unit.n_act) ]
if self.attrs['lm'] and self.attrs['droplm'] == 0.0 and (self.train_flag or force_lm):
if self.network.y[self.attrs['target']].ndim == 3:
sequences += T.dot(self.network.y[self.attrs['target']],self.W_lm_out)
else:
y = self.y_in[self.attrs['target']].flatten()
sequences += self.W_lm_out[y].reshape((index.shape[0],index.shape[1],unit.n_in))
if sequences == self.b:
sequences += T.alloc(numpy.cast[theano.config.floatX](0), n_dec, num_batches, unit.n_in) + (self.zc if self.attrs['recurrent_transform'] == 'input' else numpy.float32(0))
if unit.recurrent_transform:
outputs_info += unit.recurrent_transform.get_sorted_state_vars_initial()
index_f = T.cast(index, theano.config.floatX)
unit.set_parent(self)
if segment_input:
outputs = unit.scan_seg(x=sources,
z=sequences[s::self.attrs['sampling']],
att = inv_att,
non_sequences=non_sequences,
i=index_f,
outputs_info=outputs_info,
W_re=self.W_re,
W_in=self.W_in,
b=self.b,
go_backwards=direction == -1,
truncate_gradient=self.attrs['truncation'])
else:
outputs = unit.scan(x=sources,
z=sequences[s::self.attrs['sampling']],
non_sequences=non_sequences,
i=index_f,
outputs_info=outputs_info,
W_re=self.W_re,
W_in=self.W_in,
b=self.b,
go_backwards=direction == -1,
truncate_gradient=self.attrs['truncation'])
if not isinstance(outputs, list):
outputs = [outputs]
if outputs:
outputs[0].name = "%s.act[0]" % self.name
if unit.recurrent_transform:
unit.recurrent_transform_state_var_seqs = outputs[-len(unit.recurrent_transform.state_vars):]
if self.attrs['sampling'] > 1:
if s == 0:
self.act = [ T.alloc(numpy.cast['float32'](0), self.index.shape[0], self.index.shape[1], n_out) for act in outputs ]
self.act = [ T.set_subtensor(tot[s::self.attrs['sampling']], act) for tot,act in zip(self.act, outputs) ]
else:
self.act = outputs[:unit.n_act]
if len(outputs) > unit.n_act:
self.aux = outputs[unit.n_act:]
if self.attrs['attention_store']:
self.attention = [ self.aux[i].dimshuffle(0,2,1) for i,v in enumerate(sorted(unit.recurrent_transform.state_vars.keys())) if v.startswith('att_') ] # NBT
for i in range(len(self.attention)):
vec = T.eye(self.attention[i].shape[2], 1, -direction * (self.attention[i].shape[2] - 1))
last = vec.dimshuffle(1, 'x', 0).repeat(self.index.shape[1], axis=1)
self.attention[i] = T.concatenate([self.attention[i][1:],last],axis=0)[::direction]
self.cost_val = numpy.float32(0)
if recurrent_transform == 'attention_align':
back = T.ceil(self.aux[sorted(unit.recurrent_transform.state_vars.keys()).index('t')])
def make_output(base, yout, trace, length):
length = T.cast(length, 'int32')
idx = T.cast(trace[:length][::-1],'int32')
x_out = T.concatenate([base[idx],T.zeros((self.index.shape[0] + 1 - length, base.shape[1]), 'float32')],axis=0)
y_out = T.concatenate([yout[idx,T.arange(length)],T.zeros((self.index.shape[0] + 1 - length, ), 'float32')],axis=0)
return x_out, y_out
output, _ = theano.map(make_output,
sequences = [base[0].output.dimshuffle(1,0,2),
self.y_t.dimshuffle(1,2,0),
back.dimshuffle(1,0),
T.sum(self.index,axis=0,dtype='float32')])
self.attrs['n_out'] = base[0].attrs['n_out']
self.params.update(unit.params)
self.output = output[0].dimshuffle(1,0,2)[:-1]
z = T.dot(self.act[0], self.T_W)[:-1] + self.T_b
z = z.reshape((z.shape[0] * z.shape[1], z.shape[2]))
idx = (self.index[1:].flatten() > 0).nonzero()
idy = (self.index[1:][::-1].flatten() > 0).nonzero()
y_out = T.cast(output[1],'int32').dimshuffle(1, 0)[:-1].flatten()
nll, _ = T.nnet.crossentropy_softmax_1hot(x=z[idx], y_idx=y_out[idy])
self.cost_val = T.sum(nll)
recog = T.argmax(z[idx], axis=1)
real = y_out[idy]
self.errors = lambda: T.sum(T.neq(recog, real))
return
back += T.arange(self.index.shape[1], dtype='float32') * T.cast(self.base[0].index.shape[0], 'float32')
idx = (self.index[:-1].flatten() > 0).nonzero()
idx = T.cast(back[::-1].flatten()[idx],'int32')
x_out = base[0].output
#x_out = x_out.dimshuffle(1,0,2).reshape((x_out.shape[0] * x_out.shape[1], x_out.shape[2]))[idx]
#x_out = x_out.reshape((self.index.shape[1], self.index.shape[0] - 1, x_out.shape[1])).dimshuffle(1,0,2)
x_out = x_out.reshape((x_out.shape[0] * x_out.shape[1], x_out.shape[2]))[idx]
x_out = x_out.reshape((self.index.shape[0] - 1, self.index.shape[1], x_out.shape[1]))
self.output = T.concatenate([x_out, base[0].output[1:]],axis=0)
self.attrs['n_out'] = base[0].attrs['n_out']
self.params.update(unit.params)
return
skips = T.dot(T.nnet.softmax(z), T.arange(z.shape[1], dtype='float32')).reshape(self.index[1:].shape)
shift = T.arange(self.index.shape[1], dtype='float32') * T.cast(self.base[0].index.shape[0], 'float32')
skips = T.concatenate([T.zeros_like(self.y_t[:1]),self.y_t[:-1]],axis=0)
idx = shift + T.cumsum(skips, axis=0)
idx = T.cast(idx[:-1].flatten(),'int32')
#idx = (idx.flatten() > 0).nonzero()
#idx = base[0].attention.flatten()
x_out = base[0].output[::-1]
x_out = x_out.reshape((x_out.shape[0] * x_out.shape[1], x_out.shape[2]))[idx]
x_out = x_out.reshape((self.index.shape[0], self.index.shape[1], x_out.shape[1]))
self.output = T.concatenate([base[0].output[-1:], x_out], axis=0)[::-1]
self.attrs['n_out'] = base[0].attrs['n_out']
self.params.update(unit.params)
return
if recurrent_transform == 'batch_norm':
self.params['sample_mean_batch_norm'].custom_update = T.dot(T.mean(self.act[0],axis=[0,1]),self.W_re)
self.params['sample_mean_batch_norm'].custom_update_normalized = True
self.make_output(self.act[0][::direction or 1], sample_mean=sample_mean, gamma=gamma)
self.params.update(unit.params)
def cost(self):
"""
:rtype: (theano.Variable | None, dict[theano.Variable,theano.Variable] | None)
:returns: cost, known_grads
"""
cost_val = self.cost_val
if self.unit.recurrent_transform:
transform_cost = self.unit.recurrent_transform.cost()
if transform_cost is not None:
cost_val += transform_cost
return cost_val, {}
def create_seg_wise_encoder_output(self, att, aligner=None):
assert aligner,"please provide an inverted aligner!"
t = self.base[0].output.shape[0]
b = self.base[0].output.shape[1]
att_with_first_index = T.concatenate([T.zeros((1,att.shape[1]))-numpy.float32(1),att],axis=0) #(N+1)B
max_diff = T.cast(T.extra_ops.diff(att_with_first_index,axis=0).flatten().sort()[-1],'int32')
reduced_index = aligner.reduced_index.repeat(max_diff).reshape((aligner.reduced_index.shape[0], aligner.reduced_index.shape[1],max_diff)) #NB(max_diff)
att_wo_last_ind = att_with_first_index[:-1] #NB
att_wo_last_ind +=numpy.int32(1)
att_rep = att_wo_last_ind.repeat(max_diff).reshape((att_wo_last_ind.shape[0],att_wo_last_ind.shape[1],max_diff))#NB(max_diff)
att_rep = T.switch(reduced_index>0, att_rep + T.arange(max_diff),T.zeros((1,),'float32')-numpy.float32(1))
att_rep = att_rep.dimshuffle(0,2,1) #N(max_diff)B
reduced_index = reduced_index.dimshuffle(0,2,1) #N(max_diff)B
att_rep = T.switch(reduced_index > 0,att_rep + (T.arange(b) * t),T.zeros((1,),'float32')-numpy.float32(1))
att_rep = att_rep.clip(0,(t*b-1))
diff_arr = att_with_first_index[1:]-att_with_first_index[:-1]
diff_arr = diff_arr.clip(0,max_diff) - numpy.float32(1)#NB
mask = diff_arr.dimshuffle(0,'x',1).repeat(max_diff,axis=1) - T.arange(max_diff).dimshuffle('x',0,'x')
ind = T.cast(T.where(T.lt(mask,numpy.float32(0)),T.zeros((1,),'float32'),numpy.float32(1)),'int8')
self.rec_transform_enc = att_rep
self.rec_transform_index = ind