-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHDFDataset.py
executable file
·471 lines (395 loc) · 17.5 KB
/
HDFDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from __future__ import print_function
import collections
import functools as fun
import gc
import h5py
import numpy
import theano
from CachedDataset import CachedDataset
from CachedDataset2 import CachedDataset2
from Dataset import Dataset, DatasetSeq
from Log import log
import Util
# Common attribute names for HDF dataset, which should be used in order to be proceed with HDFDataset class.
attr_seqLengths = 'seqLengths'
attr_inputPattSize = 'inputPattSize'
attr_numLabels = 'numLabels'
attr_times = 'times'
attr_ctcIndexTranscription = 'ctcIndexTranscription'
class HDFDataset(CachedDataset):
def __init__(self, files=None, use_cache_manager=False, **kwargs):
"""
:param None|list[str] files:
:param bool use_cache_manager: uses :func:`Util.cf` for files
"""
super(HDFDataset, self).__init__(**kwargs)
self._use_cache_manager = use_cache_manager
self.files = []; """ :type: list[str] """ # file names
self.file_start = [0]
self.file_seq_start = []; """ :type: list[numpy.ndarray] """
self.file_index = []; """ :type: list[int] """
self.data_dtype = {}; ":type: dict[str,str]"
self.data_sparse = {}; ":type: dict[str,bool]"
if files:
for fn in files:
self.add_file(fn)
@staticmethod
def _decode(s):
if not isinstance(s, str):
s = s.decode("utf-8")
s = s.split('\0')[0]
return s
def add_file(self, filename):
"""
Setups data:
self.seq_lengths
self.file_index
self.file_start
self.file_seq_start
Use load_seqs() to load the actual data.
:type filename: str
"""
if self._use_cache_manager:
filename = Util.cf(filename)
fin = h5py.File(filename, "r")
if 'targets' in fin:
self.labels = {
k: [self._decode(item) for item in fin["targets/labels"][k][...].tolist()]
for k in fin['targets/labels']}
if not self.labels:
labels = [item.split('\0')[0] for item in fin["labels"][...].tolist()]; """ :type: list[str] """
self.labels = {'classes': labels}
assert len(self.labels['classes']) == len(labels), "expected " + str(len(self.labels['classes'])) + " got " + str(len(labels))
self.files.append(filename)
print("parsing file", filename, file=log.v5)
if 'times' in fin:
if self.timestamps is None:
self.timestamps = fin[attr_times][...]
else:
self.timestamps = numpy.concatenate([self.timestamps, fin[attr_times][...]], axis=0)
seq_lengths = fin[attr_seqLengths][...]
if 'targets' in fin:
self.target_keys = sorted(fin['targets/labels'].keys())
else:
self.target_keys = ['classes']
if len(seq_lengths.shape) == 1:
seq_lengths = numpy.array(zip(*[seq_lengths.tolist() for i in range(len(self.target_keys)+1)]))
if len(self._seq_lengths) == 0:
self._seq_lengths = numpy.array(seq_lengths)
else:
self._seq_lengths = numpy.concatenate((self._seq_lengths, seq_lengths), axis=0)
if not self._seq_start:
self._seq_start = [numpy.zeros((seq_lengths.shape[1],), 'int64')]
seq_start = numpy.zeros((seq_lengths.shape[0] + 1, seq_lengths.shape[1]), dtype="int64")
numpy.cumsum(seq_lengths, axis=0, dtype="int64", out=seq_start[1:])
self._tags += fin["seqTags"][...].tolist()
self.file_seq_start.append(seq_start)
nseqs = len(seq_start) - 1
self._num_seqs += nseqs
self.file_index.extend([len(self.files) - 1] * nseqs)
self.file_start.append(self.file_start[-1] + nseqs)
self._num_timesteps += numpy.sum(seq_lengths[:, 0])
if self._num_codesteps is None:
self._num_codesteps = [0 for i in range(1, len(seq_lengths[0]))]
for i in range(1, len(seq_lengths[0])):
self._num_codesteps[i - 1] += numpy.sum(seq_lengths[:, i])
if 'maxCTCIndexTranscriptionLength' in fin.attrs:
self.max_ctc_length = max(self.max_ctc_length, fin.attrs['maxCTCIndexTranscriptionLength'])
if len(fin['inputs'].shape) == 1: # sparse
num_inputs = [fin.attrs[attr_inputPattSize], 1]
else:
num_inputs = [fin['inputs'].shape[1], len(fin['inputs'].shape)] #fin.attrs[attr_inputPattSize]
if self.num_inputs == 0:
self.num_inputs = num_inputs[0]
assert self.num_inputs == num_inputs[0], "wrong input dimension in file %s (expected %s got %s)" % (
filename, self.num_inputs, num_inputs[0])
if 'targets/size' in fin:
num_outputs = {}
for k in fin['targets/size'].attrs:
if numpy.isscalar(fin['targets/size'].attrs[k]):
num_outputs[k] = (fin['targets/size'].attrs[k], len(fin['targets/data'][k].shape))
else: # hdf_dump will give directly as tuple
assert fin['targets/size'].attrs[k].shape == (2,)
num_outputs[k] = tuple(fin['targets/size'].attrs[k])
else:
num_outputs = {'classes': fin.attrs[attr_numLabels]}
num_outputs["data"] = num_inputs
if not self.num_outputs:
self.num_outputs = num_outputs
assert self.num_outputs == num_outputs, "wrong dimensions in file %s (expected %s got %s)" % (
filename, self.num_outputs, num_outputs)
if 'ctcIndexTranscription' in fin:
if self.ctc_targets is None:
self.ctc_targets = fin['ctcIndexTranscription'][...]
else:
tmp = fin['ctcIndexTranscription'][...]
pad_width = self.max_ctc_length - tmp.shape[1]
tmp = numpy.pad(tmp, ((0,0),(0,pad_width)), 'constant', constant_values=-1)
pad_width = self.max_ctc_length - self.ctc_targets.shape[1]
self.ctc_targets = numpy.pad(self.ctc_targets, ((0,0),(0,pad_width)), 'constant', constant_values=-1)
self.ctc_targets = numpy.concatenate((self.ctc_targets, tmp))
self.num_running_chars = numpy.sum(self.ctc_targets != -1)
if 'targets' in fin:
for name in fin['targets/data']:
tdim = 1 if len(fin['targets/data'][name].shape) == 1 else fin['targets/data'][name].shape[1]
self.data_dtype[name] = str(fin['targets/data'][name].dtype) if tdim > 1 else 'int32'
self.targets[name] = None
else:
self.targets = { 'classes' : numpy.zeros((self._num_timesteps,), dtype=theano.config.floatX) }
self.data_dtype['classes'] = 'int32'
self.data_dtype["data"] = str(fin['inputs'].dtype)
assert len(self.target_keys) == len(self._seq_lengths[0]) - 1
fin.close()
def _load_seqs(self, start, end):
"""
Load data sequences.
As a side effect, will modify / fill-up:
self.alloc_intervals
self.targets
self.chars
:param int start: start sorted seq idx
:param int end: end sorted seq idx
"""
assert start < self.num_seqs
assert end <= self.num_seqs
selection = self.insert_alloc_interval(start, end)
assert len(selection) <= end - start, "DEBUG: more sequences requested (" + str(len(selection)) + ") as required (" + str(end-start) + ")"
self.preload_set |= set(range(start,end)) - set(selection)
file_info = [ [] for l in range(len(self.files)) ]; """ :type: list[list[int]] """
# file_info[i] is (sorted seq idx from selection, real seq idx)
for idc in selection:
ids = self._seq_index[idc]
file_info[self.file_index[ids]].append((idc,ids))
for i in range(len(self.files)):
if len(file_info[i]) == 0:
continue
print("loading file %d/%d" % (i+1, len(self.files)), self.files[i], file=log.v4)
fin = h5py.File(self.files[i], 'r')
inputs = fin['inputs']
if 'targets' in fin:
targets = {k:fin['targets/data/' + k] for k in fin['targets/data']}
if self.seq_ordering == 'default':
inputs = inputs[...]
if 'targets' in fin:
targets = {k:targets[k][...] for k in targets}
for idc, ids in file_info[i]:
s = ids - self.file_start[i]
p = self.file_seq_start[i][s]
l = self._seq_lengths[ids]
if 'targets' in fin:
for k in fin['targets/data']:
if self.targets[k] is None:
if self.data_dtype[k] == 'int32':
self.targets[k] = numpy.zeros((self._num_codesteps[self.target_keys.index(k)],), dtype=theano.config.floatX) - 1
else:
self.targets[k] = numpy.zeros((self._num_codesteps[self.target_keys.index(k)],tdim), dtype=theano.config.floatX) - 1
ldx = self.target_keys.index(k) + 1
self.targets[k][self.get_seq_start(idc)[ldx]:self.get_seq_start(idc)[ldx] + l[ldx]] = targets[k][p[ldx] : p[ldx] + l[ldx]]
self._set_alloc_intervals_data(idc, data=inputs[p[0] : p[0] + l[0]])
self.preload_set.add(idc)
fin.close()
gc.collect()
def _get_tag_by_real_idx(self, real_idx):
s = self._tags[real_idx]
s = self._decode(s)
return s
def get_tag(self, sorted_seq_idx):
ids = self._seq_index[self._index_map[sorted_seq_idx]]
return self._get_tag_by_real_idx(ids)
def is_data_sparse(self, key):
if key in self.num_outputs:
return self.num_outputs[key][1] == 1
if self.get_data_dtype(key).startswith("int"):
return True
return False
def get_data_dtype(self, key):
return self.data_dtype[key]
def len_info(self):
return ", ".join(["HDF dataset",
"sequences: %i" % self.num_seqs,
"frames: %i" % self.get_num_timesteps()])
# ------------------------------------------------------------------------------
class StreamParser(object):
def __init__(self, seq_names, stream):
self.seq_names = seq_names
self.stream = stream
self.num_features = None
self.feature_type = None # 1 for sparse, 2 for dense
self.dtype = None
def get_data(self, seq_name):
raise NotImplementedError()
def get_seq_length(self, seq_name):
raise NotImplementedError()
def get_dtype(self):
return self.dtype
class FeatureSequenceStreamParser(StreamParser):
def __init__(self, *args, **kwargs):
super(FeatureSequenceStreamParser, self).__init__(*args, **kwargs)
for s in self.seq_names:
seq_data = self.stream['data'][s]
assert len(seq_data.shape) == 2
if self.num_features is None:
self.num_features = seq_data.shape[1]
if self.dtype is None:
self.dtype = seq_data.dtype
assert seq_data.shape[1] == self.num_features
assert seq_data.dtype == self.dtype
self.feature_type = 2
def get_data(self, seq_name):
return self.stream['data'][seq_name][...]
def get_seq_length(self, seq_name):
return self.stream['data'][seq_name].shape[0]
class SparseStreamParser(StreamParser):
def __init__(self, *args, **kwargs):
super(SparseStreamParser, self).__init__(*args, **kwargs)
for s in self.seq_names:
seq_data = self.stream['data'][s]
assert len(seq_data.shape) == 1
if self.dtype is None:
self.dtype = seq_data.dtype
assert seq_data.dtype == self.dtype
self.num_features = self.stream['feature_names'].shape[0]
self.feature_type = 1
def get_data(self, seq_name):
return self.stream['data'][seq_name][:]
def get_seq_length(self, seq_name):
return self.stream['data'][seq_name].shape[0]
class SegmentAlignmentStreamParser(StreamParser):
def __init__(self, *args, **kwargs):
super(SegmentAlignmentStreamParser, self).__init__(*args, **kwargs)
for s in self.seq_names:
seq_data = self.stream['data'][s]
if self.dtype is None:
self.dtype = seq_data.dtype
assert seq_data.dtype == self.dtype
assert len(seq_data.shape) == 2
assert seq_data.shape[1] == 2
self.num_features = self.stream['feature_names'].shape[0]
self.feature_type = 1
def get_data(self, seq_name):
# we return flatted two-dimensional data where the 2nd dimension is 2 [classs, segment end]
length = self.get_seq_length(seq_name) // 2
segments = self.stream['data'][seq_name][:]
alignment = numpy.zeros((length,2,), dtype=self.dtype)
num_segments = segments.shape[0]
seg_end = 0
for i in range(num_segments):
next_seg_end = seg_end + segments[i,1]
alignment[seg_end:next_seg_end,0] = segments[i,0] # set class
alignment[ next_seg_end-1,1] = 1 # mark segment end
seg_end = next_seg_end
alignment = alignment.reshape((-1,))
return alignment
def get_seq_length(self, seq_name):
return 2 * sum(self.stream['data'][seq_name][:,1])
class NextGenHDFDataset(CachedDataset2):
"""
"""
parsers = { 'feature_sequence' : FeatureSequenceStreamParser,
'sparse' : SparseStreamParser,
'segment_alignment' : SegmentAlignmentStreamParser }
def __init__(self, input_stream_name, files=None, partition_epoch=1, **kwargs):
"""
:param str input_stream_name:
:param None|list[str] files:
:param int partition_epoch:
"""
super(NextGenHDFDataset, self).__init__(**kwargs)
self.input_stream_name = input_stream_name
self.partition_epoch = partition_epoch
self.files = []
self.h5_files = []
self.all_seq_names = []
self.seq_name_to_idx = {}
self.file_indices = []
self.seq_order = []
self.all_parsers = collections.defaultdict(list)
self.partitions = []
self.current_partition = 1
if files:
for fn in files:
self.add_file(fn)
def add_file(self, path):
self.files.append(path)
self.h5_files.append(h5py.File(path))
cur_file = self.h5_files[-1]
assert {'seq_names', 'streams'}.issubset(set(cur_file.keys())), "%s does not contain all required datasets/groups" % path
seqs = list(cur_file['seq_names'])
norm_seqs = [self._normalize_seq_name(s) for s in seqs]
prev_no_seqs = len(self.all_seq_names)
seqs_in_this_file = len(seqs)
self.seq_name_to_idx.update(zip(seqs, range(prev_no_seqs, prev_no_seqs + seqs_in_this_file + 1)))
self.all_seq_names.extend(seqs)
self.file_indices.extend([len(self.files) - 1] * len(seqs))
all_streams = set(cur_file['streams'].keys())
assert self.input_stream_name in all_streams, "%s does not contain the input stream %s" % (path, self.input_stream_name)
parsers = { name : NextGenHDFDataset.parsers[stream.attrs['parser']](norm_seqs, stream) for name, stream in cur_file['streams'].items()}
for k, v in parsers.items():
self.all_parsers[k].append(v)
if len(self.files) == 1:
self.num_outputs = { name : [parser.num_features, parser.feature_type] for name, parser in parsers.items() }
self.num_inputs = self.num_outputs[self.input_stream_name][0]
else:
num_features = [(name, self.num_outputs[name][0], parser.num_features) for name, parser in parsers.items()]
assert all(nf[1] == nf[2] for nf in num_features), '\n'.join("Number of features does not match for parser %s: %d (config) vs. %d (hdf-file)" % nf for nf in num_features if nf[1] != nf[2])
def initialize(self):
total_seqs = len(self.all_seq_names)
seqs_per_epoch = total_seqs // self.partition_epoch
self._num_seqs = seqs_per_epoch
self._estimated_num_seqs = seqs_per_epoch
partition_sizes = [seqs_per_epoch + 1] * (total_seqs % self.partition_epoch)\
+ [seqs_per_epoch] * (self.partition_epoch - total_seqs % self.partition_epoch)
self.partitions = fun.reduce(lambda a, x: a + [a[-1] + x], partition_sizes, [0]) # cumulative sum
super(NextGenHDFDataset, self).initialize()
def init_seq_order(self, epoch=None, seq_list=None):
"""
:type epoch: int|None
:param list[str] | None seq_list: In case we want to set a predefined order.
"""
super(NextGenHDFDataset, self).init_seq_order(epoch, seq_list)
if seq_list is not None:
self.seq_order = [self.seq_name_to_idx[s] for s in seq_list]
else:
epoch = epoch or 1
self.current_partition = (epoch - 1) % self.partition_epoch
partition_size = self.partitions[self.current_partition + 1] - self.partitions[self.current_partition]
self.seq_order = self.get_seq_order_for_epoch(epoch, partition_size, self._get_seq_length)
def _get_seq_length(self, orig_seq_idx):
"""
:type orig_seq_idx: int
:rtype int
"""
partition_offset = self.partitions[self.current_partition]
parser = self.all_parsers[self.input_stream_name][self.file_indices[partition_offset + orig_seq_idx]]
return parser.get_seq_length(self._normalize_seq_name(self.all_seq_names[partition_offset + orig_seq_idx]))
def _collect_single_seq(self, seq_idx):
"""
:type seq_idx: int
:rtype: DatasetSeq
"""
if seq_idx >= len(self.seq_order):
return None
partition_offset = self.partitions[self.current_partition]
real_seq_index = partition_offset + self.seq_order[seq_idx]
file_index = self.file_indices[real_seq_index]
seq_name = self.all_seq_names[real_seq_index]
norm_seq_name = self._normalize_seq_name(seq_name)
targets = { name : parsers[file_index].get_data(norm_seq_name) for name, parsers in self.all_parsers.items() }
features = targets[self.input_stream_name]
return DatasetSeq(seq_idx=seq_idx,
seq_tag=seq_name,
features=features,
targets=targets)
def get_data_dtype(self, key):
if key == 'data':
return self.get_data_dtype(self.input_stream_name)
return self.all_parsers[key][0].get_dtype()
@staticmethod
def _normalize_seq_name(name):
"""
HDF Datasets cannot contain '/' in their name (this would create subgroups), we do not
want this and thus replace it with '\' when asking for data from the parsers
:type name: string
:rtype: string
"""
return name.replace('/', '\\')