-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEngineBatch.py
executable file
·255 lines (221 loc) · 8.34 KB
/
EngineBatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import random
from Util import NumbersDict
class BatchSeqCopyPart:
"""
A batch used for training in CRNN can consist of several parts from sequences,
ordered in various ways. The dataset, depending on the configuration, can
generate these. For the non-recurrent case, we usually concatenate
them together into one slice. For the recurrent case, we have a single
slice per sequence, or even multiple slices for a sequence in case of chunking.
This class represents one single such part and where it is going to
be stored in the batch.
"""
def __init__(self, seq_idx, seq_start_frame, seq_end_frame,
batch_slice, batch_frame_offset):
"""
:type seq_idx: int
:type seq_start_frame: NumbersDict | int
:type seq_end_frame: NumbersDict | int
Frame idx are input seq, output seq.
:type batch_slice: int
:type batch_frame_offset: int | NumbersDict
"""
self.seq_idx = seq_idx
self.seq_start_frame = NumbersDict(seq_start_frame)
self.seq_end_frame = NumbersDict(seq_end_frame)
self.batch_slice = batch_slice
self.batch_frame_offset = NumbersDict(batch_frame_offset)
assert self.seq_start_frame.has_values()
assert self.seq_end_frame.has_values()
assert self.batch_frame_offset.has_values()
@property
def frame_length(self):
return self.seq_end_frame - self.seq_start_frame
def __repr__(self):
keys = ("seq_idx", "seq_start_frame", "seq_end_frame", "batch_slice", "batch_frame_offset")
return "<BatchSeqCopyPart %s>" % " ".join(["%s=%r" % (k, getattr(self, k)) for k in keys])
class Batch:
"""
A batch can consists of several sequences (= segments).
This is basically just a list of BatchSeqCopyPart.
"""
def __init__(self):
self.max_num_frames_per_slice = NumbersDict(0)
self.num_slices = 0
# original data_shape = [0, 0], format (time,batch/slice)
# data_shape = [max_num_frames_per_slice, num_slices]
self.seqs = [] # type: list[BatchSeqCopyPart]
def __repr__(self):
return "<Batch start_seq:%r, #seqs:%i>" % (self.start_seq, len(self.seqs))
def try_sequence_as_slice(self, length):
"""
:param NumbersDict length: number of (time) frames
:return: new shape which covers the old shape and one more data-batch, format (time,batch)
:rtype: (NumbersDict,int)
"""
return [NumbersDict.max([self.max_num_frames_per_slice, length]), self.num_slices + 1]
def add_sequence_as_slice(self, seq_idx, seq_start_frame, length):
"""
Adds one data-batch in an additional slice.
:param int seq_idx:
:param NumbersDict seq_start_frame:
:param NumbersDict length: number of (time) frames
"""
self.max_num_frames_per_slice, self.num_slices = self.try_sequence_as_slice(length)
self.seqs += [BatchSeqCopyPart(seq_idx=seq_idx,
seq_start_frame=seq_start_frame,
seq_end_frame=seq_start_frame + length,
batch_slice=self.num_slices - 1,
batch_frame_offset=0)]
def add_frames(self, seq_idx, seq_start_frame, length, frame_dim_corresponds=True):
"""
Adds frames to all data-batches.
Will add one data-batch if we don't have one yet.
:param int seq_idx:
:param NumbersDict|int seq_start_frame:
:param NumbersDict length: number of (time) frames
:param bool frame_dim_corresponds: if the batch frame offset should always be the same (max value) for all keys
"""
batch_frame_offset = self.max_num_frames_per_slice
if frame_dim_corresponds:
batch_frame_offset = NumbersDict(batch_frame_offset.max_value())
self.max_num_frames_per_slice = NumbersDict(self.max_num_frames_per_slice.max_value())
self.max_num_frames_per_slice += length
self.num_slices = max(self.num_slices, 1)
self.seqs += [BatchSeqCopyPart(seq_idx=seq_idx,
seq_start_frame=seq_start_frame,
seq_end_frame=seq_start_frame + length,
batch_slice=0,
batch_frame_offset=batch_frame_offset)]
def init_with_one_full_sequence(self, seq_idx, dataset):
"""
:param int seq_idx:
:param Dataset.Dataset dataset:
"""
assert not self.seqs
start, end = dataset.get_start_end_frames_full_seq(seq_idx)
self.add_frames(seq_idx=seq_idx, seq_start_frame=start, length=end - start)
def get_all_slices_num_frames(self):
"""
Note that this is only an upper limit in case of data_shape[1] > 1
because data_shape[0] is the max frame len of all seqs.
:return: related to the data-key with max length
:rtype: int
"""
return self.max_num_frames_per_slice.max_value() * self.num_slices
def get_total_num_frames(self):
return sum([s.frame_length for s in self.seqs])
@property
def start_seq(self):
if not self.seqs:
return None
return min([s.seq_idx for s in self.seqs])
@property
def end_seq(self):
if not self.seqs:
return None
return max([s.seq_idx for s in self.seqs]) + 1
def get_num_seqs(self):
if not self.seqs:
return 0
return self.end_seq - self.start_seq
class BatchSetGenerator:
"""
This will give you the next batches (list[Batch]) such that you can use them for assign_dev_data().
We get those batches from a generator, i.e. lazily on-the-fly. This is the whole point of BatchSetGenerator
- that we must not know the whole list of batches in advance.
As assign_dev_data() can fail for various reasons, we buffer the list of batches and
you call self.advance() explicitly to go forward to next batches.
"""
def __init__(self, dataset, generator, shuffle_batches=False, cache_whole_epoch=True):
"""
:type dataset: Dataset.Dataset
:type generator: iter[Batch]
"""
self.dataset = dataset
self.generator = generator
self.shuffle_batches = shuffle_batches
# In some cases, it might be faster to cache the list of batches.
self.cache_whole_epoch = cache_whole_epoch
self.cache = [] # type: list[Batch]
self.reached_end = False
random.seed(1234)
self._reset()
def _reset(self):
self.buffer = self.cache[:]
if self.shuffle_batches:
random.shuffle(self.buffer)
self.cache_active = self.reached_end
self.reached_end = False
self.last_batch = None # type: Batch
self.current_batch_idx = 0
def reset(self):
"""
Call this after one epoch to reuse the previously cached batches.
"""
assert self.cache_whole_epoch
self._reset()
def _read_next(self):
if self.reached_end:
return False
try:
batch = next(self.generator)
except StopIteration:
self.reached_end = True
return False
else:
self.buffer += [batch]
if self.cache_whole_epoch and not self.cache_active:
self.cache += [batch]
return True
def _read_next_up_to_n(self, n):
for i in range(n):
if len(self.buffer) >= n:
break
if not self._read_next():
break
def peek_next_n(self, n):
"""
:rtype: list[Batch]
:returns it might return less. There is no way to know in advance.
If self.has_more() is True, it will at least return one.
"""
self._read_next_up_to_n(n)
return self.buffer[:n]
def advance(self, n):
"""
:type n: int
"""
assert n > 0
self._read_next_up_to_n(n)
assert n <= len(self.buffer)
self.last_batch = self.buffer[n - 1]
self.buffer = self.buffer[n:]
self.current_batch_idx += n
def completed_frac(self):
"""
:rtype: float
:returns 0-1, >0
"""
if self.cache_active:
return self.dataset.generic_complete_frac(self.current_batch_idx, len(self.cache))
if not self.last_batch:
return self.dataset.generic_complete_frac(0, None)
# We cannot use the batch idx because we don't know the number
# of batches in advance. Thus, we use the seq idx instead.
# It's good enough.
return self.dataset.get_complete_frac(self.last_batch.start_seq)
def has_more(self):
"""
This would also try to advance further in the dataset, thus it might block.
If it returns False, no more data is available in the dataset.
:rtype: bool
"""
if len(self.buffer) > 0:
return True
return self._read_next()
def get_current_batch_idx(self):
"""
:rtype: int
"""
return self.current_batch_idx