Skip to content

Latest commit

 

History

History
266 lines (192 loc) · 5.49 KB

customModels.md

File metadata and controls

266 lines (192 loc) · 5.49 KB

How to use custom models on deepstream-app

Directory tree

1. Download the repo

git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo

2. Copy the class names file to DeepStream-Yolo folder and remane it to labels.txt

3. Copy the cfg and weights/wts files to DeepStream-Yolo folder

NOTE: It is important to keep the YOLO model reference (yolov4_, yolov5_, yolor_, etc) in you cfg and weights/wts filenames to generate the engine correctly.

Compile the lib

  • DeepStream 6.1 on x86 platform

    CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.0.1 / 6.0 on x86 platform

    CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.1 on Jetson platform

    CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.0.1 / 6.0 on Jetson platform

    CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
    

Understanding and editing deepstream_app_config file

To understand and edit deepstream_app_config.txt file, read the DeepStream Reference Application - Configuration Groups

  • tiled-display

    [tiled-display]
    enable=1
    # If you have 1 stream use 1/1 (rows/columns), if you have 4 streams use 2/2 or 4/1 or 1/4 (rows/columns)
    rows=1
    columns=1
    # Resolution of tiled display
    width=1280
    height=720
    gpu-id=0
    nvbuf-memory-type=0
    
  • source

    • Example for 1 source:

      [source0]
      enable=1
      # 1=Camera (V4L2), 2=URI, 3=MultiURI, 4=RTSP, 5=Camera (CSI; Jetson only)
      type=3
      # Stream URL
      uri=rtsp://192.168.1.2/Streaming/Channels/101/httppreview
      # Number of sources copy (if > 1, edit rows/columns in tiled-display section; use type=3 for more than 1 source)
      num-sources=1
      gpu-id=0
      cudadec-memtype=0
      
    • Example for 1 duplcated source:

      [source0]
      enable=1
      type=3
      uri=rtsp://192.168.1.2/Streaming/Channels/101/
      num-sources=2
      gpu-id=0
      cudadec-memtype=0
      
    • Example for 2 sources:

      [source0]
      enable=1
      type=3
      uri=rtsp://192.168.1.2/Streaming/Channels/101/
      num-sources=1
      gpu-id=0
      cudadec-memtype=0
      
      [source1]
      enable=1
      type=3
      uri=rtsp://192.168.1.3/Streaming/Channels/101/
      num-sources=1
      gpu-id=0
      cudadec-memtype=0
      
  • sink

    [sink0]
    enable=1
    # 1=Fakesink, 2=EGL (nveglglessink), 3=Filesink, 4=RTSP, 5=Overlay (Jetson only)
    type=2
    # Indicates how fast the stream is to be rendered (0=As fast as possible, 1=Synchronously)
    sync=0
    gpu-id=0
    nvbuf-memory-type=0
    
  • streammux

    [streammux]
    gpu-id=0
    # Boolean property to inform muxer that sources are live
    live-source=1
    batch-size=1
    batched-push-timeout=40000
    # Resolution of streammux
    width=1920
    height=1080
    enable-padding=0
    nvbuf-memory-type=0
    
  • primary-gie

    [primary-gie]
    enable=1
    gpu-id=0
    gie-unique-id=1
    nvbuf-memory-type=0
    config-file=config_infer_primary.txt
    

    NOTE: Edit the config-file according to your YOLO model.

Understanding and editing config_infer_primary file

To understand and edit config_infer_primary.txt file, read the DeepStream Plugin Guide - Gst-nvinfer File Configuration Specifications

  • model-color-format

    # 0=RGB, 1=BGR, 2=GRAYSCALE
    model-color-format=0
    

    NOTE: Set it according to the number of channels in the cfg file (1=GRAYSCALE, 3=RGB).

  • custom-network-config

    • Example for custom YOLOv4 model

      custom-network-config=yolov4_custom.cfg
      
  • model-file

    • Example for custom YOLOv4 model

      model-file=yolov4_custom.weights
      
  • model-engine-file

    • Example for batch-size=1 and network-mode=2

      model-engine-file=model_b1_gpu0_fp16.engine
      
    • Example for batch-size=1 and network-mode=1

      model-engine-file=model_b1_gpu0_int8.engine
      
    • Example for batch-size=1 and network-mode=0

      model-engine-file=model_b1_gpu0_fp32.engine
      
    • Example for batch-size=2 and network-mode=0

      model-engine-file=model_b2_gpu0_fp32.engine
      

    NOTE: To change the generated engine filename, you need to edit and rebuild the nvdsinfer_model_builder.cpp file (/opt/nvidia/deepstream/deepstream/sources/libs/nvdsinfer/nvdsinfer_model_builder.cpp, lines 825-827)

    suggestedPathName =
        modelPath + "_b" + std::to_string(initParams.maxBatchSize) + "_" +
        devId + "_" + networkMode2Str(networkMode) + ".engine";
    
  • batch-size

    batch-size=1
    
  • network-mode

    # 0=FP32, 1=INT8, 2=FP16
    network-mode=0
    
  • num-detected-classes

    num-detected-classes=80
    

    NOTE: Set it according to number of classes in cfg file.

  • interval

    # Number of consecutive batches to be skipped
    interval=0
    

Testing the model

deepstream-app -c deepstream_app_config.txt