-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathregularization.py
128 lines (106 loc) · 4.21 KB
/
regularization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
__author__="Joachim Ott"
# -*- coding: utf-8 -*-
import numpy as np
import theano
import theano.tensor as T
from round_op import GradPreserveRoundTensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
def dual_copy_rounding(W,integer_bits=0,fractional_bits=1):
"""
Rounding as described in as in "Robustness of spiking Deep Belief Networks to noise and reduced bit precision
of neuro-inspired hardware platforms"
by Stromatidis et al. See http://dx.doi.org/10.3389/fnins.2015.00222
:param W: Weights
:param integer_bits: number of bits to represent the integer part
:param fractional_bits: number of bits to represent the fractional part
:return:quantized weights
"""
#print "Dual copy rounding!"
power = T.cast(2.**fractional_bits, theano.config.floatX) # float !
max_val = T.cast((2.**(fractional_bits+integer_bits))-1, theano.config.floatX)
value = W*power
value = GradPreserveRoundTensor(value) # rounding
value = T.clip(value, -max_val, max_val) # saturation arithmetic
Wb = value/power
return Wb
def binarize_weights(W,H,srng=None,deterministic=False):
"""
Copied from BinaryNet by Matthieu Courbariaux, https://github.com/MatthieuCourbariaux/BinaryNet
:param W:
:param H:
:param srng:
:param deterministic:
:return: quantized weights
"""
if srng is None:
rng = np.random.RandomState(666)
srng = theano.sandbox.rng_mrg.MRG_RandomStreams(rng.randint(999999))
# [-1,1] -> [0,1]
Wb=T.clip(((W / H)+1.)/2.,0,1)
# Deterministic BinaryConnect (round to nearest)
if deterministic:
# print("det")
Wb = T.cast(GradPreserveRoundTensor(Wb), theano.config.floatX)
# Stochastic BinaryConnect
else:
# print("stoch")
Wb = T.cast(srng.binomial(n=1, p=Wb, size=T.shape(Wb)), theano.config.floatX)
Wb = T.cast(T.switch(Wb, H, -H), theano.config.floatX)
return Wb
def ternarize_weights(W,W0,deterministic=False,srng=None):
"""
Changed copy of the code from TernaryConnect by Zhouhan Lin, Matthieu Courbariaux,
https://github.com/hantek/BinaryConnect/tree/ternary
:param W: Weights
:param W0: W0=0.5
:param deterministic: deterministic rounding
:param srng: random number generator
:return: quantized weights
"""
Wb=None
#print 'Current W0: ',W0
if srng is None:
rng = np.random.RandomState(666)
srng = theano.sandbox.rng_mrg.MRG_RandomStreams(rng.randint(999999))
if deterministic:
#print 'Deterministic Ternarization!'
larger_than_neg_0_5 = T.gt(W, -W0/2.)
larger_than_pos_0_5 = T.gt(W, W0/2.)
W_val = larger_than_neg_0_5 * 1 + larger_than_pos_0_5 * 1 - 1
Wb = W_val * W0
else:
#print 'Stochastic Ternarization!'
w_sign = T.gt(W, 0) * 2 - 1
p = T.clip(T.abs_(W / (W0)), 0, 1)
Wb = W0 * w_sign * T.cast(srng.binomial(n=1, p=p, size=T.shape(W)), theano.config.floatX)
return Wb
def quantize_weights(W,srng=None,bitlimit=None,deterministic=False):
"""
Exponential quantization
:param W: Weights
:param srng: random number generator
:param bitlimit: limit values to be in power of 2 range, e.g. for values in 2^-22 to 2^9 set it to [-22, 9]
:param deterministic: deterministic rounding
:return: quantized weights
"""
bitlimit=[-22, 9] #hardcoded for experiments
if srng is None:
rng = np.random.RandomState(666)
srng = theano.sandbox.rng_mrg.MRG_RandomStreams(rng.randint(999999))
if bitlimit:
index_low = T.clip(
T.switch(W > 0., T.floor(T.log2(W)), T.floor(T.log2(-W))),
bitlimit[0], bitlimit[1])
else:
index_low = T.switch(
W > 0., T.floor(T.log2(W)), T.floor(T.log2(-W)))
sign = T.switch(W > 0., 1., -1.)
p_up = sign * W / 2 ** (index_low) - 1 # percentage of upper index.
if deterministic:
index_deterministic = index_low + T.switch(p_up > 0.5, 1, 0)
quantized_W = sign * 2 ** index_deterministic
else:
index_random = index_low + srng.binomial(
n=1, p=p_up, size=T.shape(W), dtype=theano.config.floatX)
quantized_W = sign * 2 ** index_random
return quantized_W