-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathbroadword.hpp
185 lines (158 loc) · 5.5 KB
/
broadword.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#pragma once
#include <stdint.h>
#include "intrinsics.hpp"
#include "tables.hpp"
namespace succinct { namespace broadword {
static const uint64_t ones_step_4 = 0x1111111111111111ULL;
static const uint64_t ones_step_8 = 0x0101010101010101ULL;
static const uint64_t ones_step_9 = 1ULL << 0 | 1ULL << 9 | 1ULL << 18 | 1ULL << 27 | 1ULL << 36 | 1ULL << 45 | 1ULL << 54;
static const uint64_t msbs_step_8 = 0x80ULL * ones_step_8;
static const uint64_t msbs_step_9 = 0x100ULL * ones_step_9;
static const uint64_t incr_step_8 = 0x80ULL << 56 | 0x40ULL << 48 | 0x20ULL << 40 | 0x10ULL << 32 | 0x8ULL << 24 | 0x4ULL << 16 | 0x2ULL << 8 | 0x1;
static const uint64_t inv_count_step_9 = 1ULL << 54 | 2ULL << 45 | 3ULL << 36 | 4ULL << 27 | 5ULL << 18 | 6ULL << 9 | 7ULL;
static const uint64_t magic_mask_1 = 0x5555555555555555ULL;
static const uint64_t magic_mask_2 = 0x3333333333333333ULL;
static const uint64_t magic_mask_3 = 0x0F0F0F0F0F0F0F0FULL;
static const uint64_t magic_mask_4 = 0x00FF00FF00FF00FFULL;
static const uint64_t magic_mask_5 = 0x0000FFFF0000FFFFULL;
static const uint64_t magic_mask_6 = 0x00000000FFFFFFFFULL;
inline uint64_t leq_step_8(uint64_t x, uint64_t y)
{
return ((((y | msbs_step_8) - (x & ~msbs_step_8)) ^ (x ^ y)) & msbs_step_8) >> 7;
}
inline uint64_t uleq_step_8(uint64_t x, uint64_t y)
{
return (((((y | msbs_step_8) - (x & ~msbs_step_8)) ^ (x ^ y)) ^ (x & ~y)) & msbs_step_8) >> 7;
}
inline uint64_t zcompare_step_8(uint64_t x)
{
return ((x | ((x | msbs_step_8) - ones_step_8)) & msbs_step_8) >> 7;
}
inline uint64_t uleq_step_9(uint64_t x, uint64_t y)
{
return (((((y | msbs_step_9) - (x & ~msbs_step_9)) | (x ^ y)) ^ (x & ~y)) & msbs_step_9 ) >> 8;
}
inline uint64_t byte_counts(uint64_t x)
{
x = x - ((x & 0xa * ones_step_4) >> 1);
x = (x & 3 * ones_step_4) + ((x >> 2) & 3 * ones_step_4);
x = (x + (x >> 4)) & 0x0f * ones_step_8;
return x;
}
inline uint64_t bytes_sum(uint64_t x)
{
return x * ones_step_8 >> 56;
}
inline uint64_t popcount(uint64_t x)
{
#if SUCCINCT_USE_POPCNT
return intrinsics::popcount(x);
#else
return bytes_sum(byte_counts(x));
#endif
}
inline uint64_t reverse_bytes(uint64_t x)
{
#if SUCCINCT_USE_INTRINSICS
return intrinsics::byteswap64(x);
#else
x = ((x >> 8) & magic_mask_4) | ((x & magic_mask_4) << 8);
x = ((x >> 16) & magic_mask_5) | ((x & magic_mask_5) << 16);
x = ((x >> 32) ) | ((x ) << 32);
return x;
#endif
}
inline uint64_t reverse_bits(uint64_t x)
{
x = ((x >> 1) & magic_mask_1) | ((x & magic_mask_1) << 1);
x = ((x >> 2) & magic_mask_2) | ((x & magic_mask_2) << 2);
x = ((x >> 4) & magic_mask_3) | ((x & magic_mask_3) << 4);
return reverse_bytes(x);
}
inline uint64_t select_in_word(const uint64_t x, const uint64_t k)
{
assert(k < popcount(x));
uint64_t byte_sums = byte_counts(x) * ones_step_8;
const uint64_t k_step_8 = k * ones_step_8;
const uint64_t geq_k_step_8 = (((k_step_8 | msbs_step_8) - byte_sums) & msbs_step_8);
#if SUCCINCT_USE_POPCNT
const uint64_t place = intrinsics::popcount(geq_k_step_8) * 8;
#else
const uint64_t place = ((geq_k_step_8 >> 7) * ones_step_8 >> 53) & ~uint64_t(0x7);
#endif
const uint64_t byte_rank = k - (((byte_sums << 8 ) >> place) & uint64_t(0xFF));
return place + tables::select_in_byte[((x >> place) & 0xFF ) | (byte_rank << 8)];
}
inline uint64_t same_msb(uint64_t x, uint64_t y)
{
return (x ^ y) <= (x & y);
}
namespace detail {
// Adapted from LSB of Chess Programming Wiki
static const uint8_t debruijn64_mapping[64] = {
63, 0, 58, 1, 59, 47, 53, 2,
60, 39, 48, 27, 54, 33, 42, 3,
61, 51, 37, 40, 49, 18, 28, 20,
55, 30, 34, 11, 43, 14, 22, 4,
62, 57, 46, 52, 38, 26, 32, 41,
50, 36, 17, 19, 29, 10, 13, 21,
56, 45, 25, 31, 35, 16, 9, 12,
44, 24, 15, 8, 23, 7, 6, 5
};
static const uint64_t debruijn64 = 0x07EDD5E59A4E28C2ULL;
}
// return the position of the single bit set in the word x
inline uint8_t bit_position(uint64_t x)
{
assert(popcount(x) == 1);
return detail::debruijn64_mapping
[(x * detail::debruijn64) >> 58];
}
inline uint8_t msb(uint64_t x, unsigned long& ret)
{
#if SUCCINCT_USE_INTRINSICS
return intrinsics::bsr64(&ret, x);
#else
if (!x) {
return false;
}
// right-saturate the word
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x |= x >> 32;
// isolate the MSB
x ^= x >> 1;
ret = bit_position(x);
return true;
#endif
}
inline uint8_t msb(uint64_t x)
{
assert(x);
unsigned long ret = -1U;
msb(x, ret);
return (uint8_t)ret;
}
inline uint8_t lsb(uint64_t x, unsigned long& ret)
{
#if SUCCINCT_USE_INTRINSICS
return intrinsics::bsf64(&ret, x);
#else
if (!x) {
return false;
}
ret = bit_position(x & -x);
return true;
#endif
}
inline uint8_t lsb(uint64_t x)
{
assert(x);
unsigned long ret = -1U;
lsb(x, ret);
return (uint8_t)ret;
}
}}