-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction_model.py
executable file
·41 lines (32 loc) · 1.13 KB
/
prediction_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from nltk.corpus import stopwords
import joblib
import nltk
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
nltk.data.path.append('./nltk_data')
model = joblib.load('model2.pkl')
print('=> Pickle Loaded : Model ')
tfidfvect = joblib.load('tfidfvect2.pkl')
print('=> Pickle Loaded : Vectorizer')
class PredictionModel:
output = {}
# constructor
def __init__(self, original_text):
self.output['original'] = original_text
# predict
def predict(self):
review = self.preprocess()
text_vect = tfidfvect.transform([review]).toarray()
self.output['prediction'] = 'FAKE' if model.predict(text_vect) == 0 else 'REAL'
return self.output
# Helper methods
def preprocess(self):
review = re.sub('[^a-zA-Z]', ' ', self.output['original'])
review = review.lower()
review = review.split()
review = [ps.stem(word) for word in review if not word in stopwords.words('english')]
review = ' '.join(review)
self.output['preprocessed'] = review
return review