-
Notifications
You must be signed in to change notification settings - Fork 562
/
Copy patheval_gl.py
366 lines (329 loc) · 11.6 KB
/
eval_gl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""
Script for evaluating trained model on MXNet/Gluon (validate/test).
"""
import os
import time
import logging
import argparse
from sys import version_info
# from common.logger_utils import initialize_logging
from cvutil.logger import initialize_logging
from gluon.utils import prepare_mx_context, prepare_model
from gluon.utils import calc_net_weight_count, validate
from gluon.utils import validate_asr
from gluon.utils import get_composite_metric
from gluon.utils import report_accuracy
from gluon.dataset_utils import get_dataset_metainfo
from gluon.dataset_utils import get_batch_fn
from gluon.dataset_utils import get_val_data_source, get_test_data_source
from gluon.model_stats import measure_model
from gluon.gluoncv2.models.model_store import _model_sha1
def add_eval_parser_arguments(parser):
"""
Create python script parameters (for eval specific subpart).
Parameters
----------
parser : ArgumentParser
ArgumentParser instance.
"""
parser.add_argument(
"--model",
type=str,
required=True,
help="type of model to use. see model_provider for options")
parser.add_argument(
"--use-pretrained",
action="store_true",
help="enable using pretrained model from github repo")
parser.add_argument(
"--dtype",
type=str,
default="float32",
help="base data type for tensors")
parser.add_argument(
"--resume",
type=str,
default="",
help="resume from previously saved parameters")
parser.add_argument(
"--calc-flops",
dest="calc_flops",
action="store_true",
help="calculate FLOPs")
parser.add_argument(
"--calc-flops-only",
dest="calc_flops_only",
action="store_true",
help="calculate FLOPs without quality estimation")
parser.add_argument(
"--data-subset",
type=str,
default="val",
help="data subset. options are val and test")
parser.add_argument(
"--num-gpus",
type=int,
default=0,
help="number of gpus to use")
parser.add_argument(
"-j",
"--num-data-workers",
dest="num_workers",
default=4,
type=int,
help="number of preprocessing workers")
parser.add_argument(
"--batch-size",
type=int,
default=512,
help="training batch size per device (CPU/GPU)")
parser.add_argument(
"--save-dir",
type=str,
default="",
help="directory of saved models and log-files")
parser.add_argument(
"--logging-file-name",
type=str,
default="train.log",
help="filename of training log")
parser.add_argument(
"--log-packages",
type=str,
default="mxnet, numpy",
help="list of python packages for logging")
parser.add_argument(
"--log-pip-packages",
type=str,
default="mxnet-cu110, mxnet-cu112",
help="list of pip packages for logging")
parser.add_argument(
"--disable-cudnn-autotune",
action="store_true",
help="disable cudnn autotune for segmentation models")
parser.add_argument(
"--not-show-progress",
action="store_true",
help="do not show progress bar")
parser.add_argument(
"--all",
action="store_true",
help="test all pretrained models for partucular dataset")
def parse_args():
"""
Create python script parameters (common part).
Returns
-------
ArgumentParser
Resulted args.
"""
parser = argparse.ArgumentParser(
description="Evaluate a model for image classification/segmentation (Gluon)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--dataset",
type=str,
default="ImageNet1K_rec",
help="dataset name. options are ImageNet1K, ImageNet1K_rec, CUB200_2011, CIFAR10, CIFAR100, SVHN, VOC2012, "
"ADE20K, Cityscapes, COCO, LibriSpeech")
parser.add_argument(
"--work-dir",
type=str,
default=os.path.join("..", "imgclsmob_data"),
help="path to working directory only for dataset root path preset")
args, _ = parser.parse_known_args()
dataset_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
dataset_metainfo.add_dataset_parser_arguments(
parser=parser,
work_dir_path=args.work_dir)
add_eval_parser_arguments(parser)
args = parser.parse_args()
return args
def calc_model_accuracy(net,
test_data,
batch_fn,
data_source_needs_reset,
metric,
dtype,
ctx,
input_image_size,
in_channels,
calc_weight_count=False,
calc_flops=False,
calc_flops_only=True,
extended_log=False,
ml_type="cls"):
"""
Main test routine.
Parameters
----------
net : HybridBlock
Model.
test_data : DataLoader or ImageRecordIter
Data loader or ImRec-iterator.
batch_fn : func
Function for splitting data after extraction from data loader.
data_source_needs_reset : bool
Whether to reset data (if test_data is ImageRecordIter).
metric : EvalMetric
Metric object instance.
dtype : str
Base data type for tensors.
ctx : Context
MXNet context.
input_image_size : tuple(int, int)
Spatial size of the expected input image.
in_channels : int
Number of input channels.
calc_weight_count : bool, default False
Whether to calculate count of weights.
calc_flops : bool, default False
Whether to calculate FLOPs.
calc_flops_only : bool, default True
Whether to only calculate FLOPs without testing.
extended_log : bool, default False
Whether to log more precise accuracy values.
ml_type : str, default 'cls'
Machine learning type.
Returns
-------
list of floats
Accuracy values.
"""
if not calc_flops_only:
validate_fn = validate_asr if ml_type == "asr" else validate
# validate_fn = validate
tic = time.time()
validate_fn(
metric=metric,
net=net,
val_data=test_data,
batch_fn=batch_fn,
data_source_needs_reset=data_source_needs_reset,
dtype=dtype,
ctx=ctx)
accuracy_msg = report_accuracy(
metric=metric,
extended_log=extended_log)
logging.info("Test: {}".format(accuracy_msg))
logging.info("Time cost: {:.4f} sec".format(
time.time() - tic))
acc_values = metric.get()[1]
acc_values = acc_values if isinstance(acc_values, list) else [acc_values]
else:
acc_values = []
if calc_weight_count:
weight_count = calc_net_weight_count(net)
if not calc_flops:
logging.info("Model: {} trainable parameters".format(weight_count))
if calc_flops:
in_shapes = [(1, 640 * 25 * 5), (1,)] if ml_type == "asr" else\
[(1, in_channels, input_image_size[0], input_image_size[1])]
num_flops, num_macs, num_params = measure_model(
model=net,
in_shapes=in_shapes,
ctx=ctx[0])
assert (not calc_weight_count) or (weight_count == num_params)
stat_msg = "Params: {params} ({params_m:.2f}M), FLOPs: {flops} ({flops_m:.2f}M)," \
" FLOPs/2: {flops2} ({flops2_m:.2f}M), MACs: {macs} ({macs_m:.2f}M)"
logging.info(stat_msg.format(
params=num_params, params_m=num_params / 1e6,
flops=num_flops, flops_m=num_flops / 1e6,
flops2=num_flops / 2, flops2_m=num_flops / 2 / 1e6,
macs=num_macs, macs_m=num_macs / 1e6))
return acc_values
def test_model(args):
"""
Main test routine.
Parameters
----------
args : ArgumentParser
Main script arguments.
Returns
-------
float
Main accuracy value.
"""
ds_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
ds_metainfo.update(args=args)
assert (ds_metainfo.ml_type != "imgseg") or (args.data_subset != "test") or (args.batch_size == 1)
assert (ds_metainfo.ml_type != "imgseg") or args.disable_cudnn_autotune
ctx, batch_size = prepare_mx_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
dtype=args.dtype,
net_extra_kwargs=ds_metainfo.test_net_extra_kwargs,
load_ignore_extra=ds_metainfo.load_ignore_extra,
classes=(args.num_classes if ds_metainfo.ml_type != "hpe" else None),
in_channels=args.in_channels,
do_hybridize=(ds_metainfo.allow_hybridize and (not args.calc_flops)),
ctx=ctx)
assert (hasattr(net, "in_size"))
input_image_size = net.in_size
get_test_data_source_class = get_val_data_source if args.data_subset == "val" else get_test_data_source
test_data = get_test_data_source_class(
ds_metainfo=ds_metainfo,
batch_size=args.batch_size,
num_workers=args.num_workers)
batch_fn = get_batch_fn(ds_metainfo=ds_metainfo)
if args.data_subset == "val":
test_metric = get_composite_metric(
metric_names=ds_metainfo.val_metric_names,
metric_extra_kwargs=ds_metainfo.val_metric_extra_kwargs)
else:
test_metric = get_composite_metric(
metric_names=ds_metainfo.test_metric_names,
metric_extra_kwargs=ds_metainfo.test_metric_extra_kwargs)
if not args.not_show_progress:
from tqdm import tqdm
test_data = tqdm(test_data)
assert (args.use_pretrained or args.resume.strip() or args.calc_flops_only)
acc_values = calc_model_accuracy(
net=net,
test_data=test_data,
batch_fn=batch_fn,
data_source_needs_reset=ds_metainfo.use_imgrec,
metric=test_metric,
dtype=args.dtype,
ctx=ctx,
input_image_size=input_image_size,
in_channels=args.in_channels,
# calc_weight_count=(not log_file_exist),
calc_weight_count=True,
calc_flops=args.calc_flops,
calc_flops_only=args.calc_flops_only,
extended_log=True,
ml_type=ds_metainfo.ml_type)
return acc_values[ds_metainfo.saver_acc_ind] if len(acc_values) > 0 else None
def main():
"""
Main body of script.
"""
args = parse_args()
if args.disable_cudnn_autotune:
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
_, _ = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
main_script_path=__file__,
script_args=args)
if args.all:
args.use_pretrained = True
for model_name, model_metainfo in (_model_sha1.items() if version_info[0] >= 3 else _model_sha1.iteritems()):
error, checksum, repo_release_tag = model_metainfo
args.model = model_name
logging.info("==============")
logging.info("Checking model: {}".format(model_name))
acc_value = test_model(args=args)
if acc_value is not None:
exp_value = int(error) * 1e-4
if abs(acc_value - exp_value) > 2e-4:
logging.info("----> Wrong value detected (expected value: {})!".format(exp_value))
else:
test_model(args=args)
if __name__ == "__main__":
main()