-
Notifications
You must be signed in to change notification settings - Fork 1
/
alarmClock.sol
2157 lines (1816 loc) · 82.6 KB
/
alarmClock.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Grove v0.2
/// @title GroveLib - Library for queriable indexed ordered data.
/// @author PiperMerriam -
library GroveLib {
/*
* Indexes for ordered data
*
* Address: 0x7c1eb207c07e7ab13cf245585bd03d0fa478d034
*/
struct Index {
bytes32 root;
mapping (bytes32 => Node) nodes;
}
struct Node {
bytes32 id;
int value;
bytes32 parent;
bytes32 left;
bytes32 right;
uint height;
}
function max(uint a, uint b) internal returns (uint) {
if (a >= b) {
return a;
}
return b;
}
/*
* Node getters
*/
/// @dev Retrieve the unique identifier for the node.
/// @param index The index that the node is part of.
/// @param id The id for the node to be looked up.
function getNodeId(Index storage index, bytes32 id) constant returns (bytes32) {
return index.nodes[id].id;
}
/// @dev Retrieve the value for the node.
/// @param index The index that the node is part of.
/// @param id The id for the node to be looked up.
function getNodeValue(Index storage index, bytes32 id) constant returns (int) {
return index.nodes[id].value;
}
/// @dev Retrieve the height of the node.
/// @param index The index that the node is part of.
/// @param id The id for the node to be looked up.
function getNodeHeight(Index storage index, bytes32 id) constant returns (uint) {
return index.nodes[id].height;
}
/// @dev Retrieve the parent id of the node.
/// @param index The index that the node is part of.
/// @param id The id for the node to be looked up.
function getNodeParent(Index storage index, bytes32 id) constant returns (bytes32) {
return index.nodes[id].parent;
}
/// @dev Retrieve the left child id of the node.
/// @param index The index that the node is part of.
/// @param id The id for the node to be looked up.
function getNodeLeftChild(Index storage index, bytes32 id) constant returns (bytes32) {
return index.nodes[id].left;
}
/// @dev Retrieve the right child id of the node.
/// @param index The index that the node is part of.
/// @param id The id for the node to be looked up.
function getNodeRightChild(Index storage index, bytes32 id) constant returns (bytes32) {
return index.nodes[id].right;
}
/// @dev Retrieve the node id of the next node in the tree.
/// @param index The index that the node is part of.
/// @param id The id for the node to be looked up.
function getPreviousNode(Index storage index, bytes32 id) constant returns (bytes32) {
Node storage currentNode = index.nodes[id];
if (currentNode.id == 0x0) {
// Unknown node, just return 0x0;
return 0x0;
}
Node memory child;
if (currentNode.left != 0x0) {
// Trace left to latest child in left tree.
child = index.nodes[currentNode.left];
while (child.right != 0) {
child = index.nodes[child.right];
}
return child.id;
}
if (currentNode.parent != 0x0) {
// Now we trace back up through parent relationships, looking
// for a link where the child is the right child of it's
// parent.
Node storage parent = index.nodes[currentNode.parent];
child = currentNode;
while (true) {
if (parent.right == child.id) {
return parent.id;
}
if (parent.parent == 0x0) {
break;
}
child = parent;
parent = index.nodes[parent.parent];
}
}
// This is the first node, and has no previous node.
return 0x0;
}
/// @dev Retrieve the node id of the previous node in the tree.
/// @param index The index that the node is part of.
/// @param id The id for the node to be looked up.
function getNextNode(Index storage index, bytes32 id) constant returns (bytes32) {
Node storage currentNode = index.nodes[id];
if (currentNode.id == 0x0) {
// Unknown node, just return 0x0;
return 0x0;
}
Node memory child;
if (currentNode.right != 0x0) {
// Trace right to earliest child in right tree.
child = index.nodes[currentNode.right];
while (child.left != 0) {
child = index.nodes[child.left];
}
return child.id;
}
if (currentNode.parent != 0x0) {
// if the node is the left child of it's parent, then the
// parent is the next one.
Node storage parent = index.nodes[currentNode.parent];
child = currentNode;
while (true) {
if (parent.left == child.id) {
return parent.id;
}
if (parent.parent == 0x0) {
break;
}
child = parent;
parent = index.nodes[parent.parent];
}
// Now we need to trace all the way up checking to see if any parent is the
}
// This is the final node.
return 0x0;
}
/// @dev Updates or Inserts the id into the index at its appropriate location based on the value provided.
/// @param index The index that the node is part of.
/// @param id The unique identifier of the data element the index node will represent.
/// @param value The value of the data element that represents it's total ordering with respect to other elementes.
function insert(Index storage index, bytes32 id, int value) public {
if (index.nodes[id].id == id) {
// A node with this id already exists. If the value is
// the same, then just return early, otherwise, remove it
// and reinsert it.
if (index.nodes[id].value == value) {
return;
}
remove(index, id);
}
uint leftHeight;
uint rightHeight;
bytes32 previousNodeId = 0x0;
if (index.root == 0x0) {
index.root = id;
}
Node storage currentNode = index.nodes[index.root];
// Do insertion
while (true) {
if (currentNode.id == 0x0) {
// This is a new unpopulated node.
currentNode.id = id;
currentNode.parent = previousNodeId;
currentNode.value = value;
break;
}
// Set the previous node id.
previousNodeId = currentNode.id;
// The new node belongs in the right subtree
if (value >= currentNode.value) {
if (currentNode.right == 0x0) {
currentNode.right = id;
}
currentNode = index.nodes[currentNode.right];
continue;
}
// The new node belongs in the left subtree.
if (currentNode.left == 0x0) {
currentNode.left = id;
}
currentNode = index.nodes[currentNode.left];
}
// Rebalance the tree
_rebalanceTree(index, currentNode.id);
}
/// @dev Checks whether a node for the given unique identifier exists within the given index.
/// @param index The index that should be searched
/// @param id The unique identifier of the data element to check for.
function exists(Index storage index, bytes32 id) constant returns (bool) {
return (index.nodes[id].height > 0);
}
/// @dev Remove the node for the given unique identifier from the index.
/// @param index The index that should be removed
/// @param id The unique identifier of the data element to remove.
function remove(Index storage index, bytes32 id) public {
Node storage replacementNode;
Node storage parent;
Node storage child;
bytes32 rebalanceOrigin;
Node storage nodeToDelete = index.nodes[id];
if (nodeToDelete.id != id) {
// The id does not exist in the tree.
return;
}
if (nodeToDelete.left != 0x0 || nodeToDelete.right != 0x0) {
// This node is not a leaf node and thus must replace itself in
// it's tree by either the previous or next node.
if (nodeToDelete.left != 0x0) {
// This node is guaranteed to not have a right child.
replacementNode = index.nodes[getPreviousNode(index, nodeToDelete.id)];
}
else {
// This node is guaranteed to not have a left child.
replacementNode = index.nodes[getNextNode(index, nodeToDelete.id)];
}
// The replacementNode is guaranteed to have a parent.
parent = index.nodes[replacementNode.parent];
// Keep note of the location that our tree rebalancing should
// start at.
rebalanceOrigin = replacementNode.id;
// Join the parent of the replacement node with any subtree of
// the replacement node. We can guarantee that the replacement
// node has at most one subtree because of how getNextNode and
// getPreviousNode are used.
if (parent.left == replacementNode.id) {
parent.left = replacementNode.right;
if (replacementNode.right != 0x0) {
child = index.nodes[replacementNode.right];
child.parent = parent.id;
}
}
if (parent.right == replacementNode.id) {
parent.right = replacementNode.left;
if (replacementNode.left != 0x0) {
child = index.nodes[replacementNode.left];
child.parent = parent.id;
}
}
// Now we replace the nodeToDelete with the replacementNode.
// This includes parent/child relationships for all of the
// parent, the left child, and the right child.
replacementNode.parent = nodeToDelete.parent;
if (nodeToDelete.parent != 0x0) {
parent = index.nodes[nodeToDelete.parent];
if (parent.left == nodeToDelete.id) {
parent.left = replacementNode.id;
}
if (parent.right == nodeToDelete.id) {
parent.right = replacementNode.id;
}
}
else {
// If the node we are deleting is the root node update the
// index root node pointer.
index.root = replacementNode.id;
}
replacementNode.left = nodeToDelete.left;
if (nodeToDelete.left != 0x0) {
child = index.nodes[nodeToDelete.left];
child.parent = replacementNode.id;
}
replacementNode.right = nodeToDelete.right;
if (nodeToDelete.right != 0x0) {
child = index.nodes[nodeToDelete.right];
child.parent = replacementNode.id;
}
}
else if (nodeToDelete.parent != 0x0) {
// The node being deleted is a leaf node so we only erase it's
// parent linkage.
parent = index.nodes[nodeToDelete.parent];
if (parent.left == nodeToDelete.id) {
parent.left = 0x0;
}
if (parent.right == nodeToDelete.id) {
parent.right = 0x0;
}
// keep note of where the rebalancing should begin.
rebalanceOrigin = parent.id;
}
else {
// This is both a leaf node and the root node, so we need to
// unset the root node pointer.
index.root = 0x0;
}
// Now we zero out all of the fields on the nodeToDelete.
nodeToDelete.id = 0x0;
nodeToDelete.value = 0;
nodeToDelete.parent = 0x0;
nodeToDelete.left = 0x0;
nodeToDelete.right = 0x0;
nodeToDelete.height = 0;
// Walk back up the tree rebalancing
if (rebalanceOrigin != 0x0) {
_rebalanceTree(index, rebalanceOrigin);
}
}
bytes2 constant GT = ">";
bytes2 constant LT = "<";
bytes2 constant GTE = ">=";
bytes2 constant LTE = "<=";
bytes2 constant EQ = "==";
function _compare(int left, bytes2 operator, int right) internal returns (bool) {
if (operator == GT) {
return (left > right);
}
if (operator == LT) {
return (left < right);
}
if (operator == GTE) {
return (left >= right);
}
if (operator == LTE) {
return (left <= right);
}
if (operator == EQ) {
return (left == right);
}
// Invalid operator.
throw;
}
function _getMaximum(Index storage index, bytes32 id) internal returns (int) {
Node storage currentNode = index.nodes[id];
while (true) {
if (currentNode.right == 0x0) {
return currentNode.value;
}
currentNode = index.nodes[currentNode.right];
}
}
function _getMinimum(Index storage index, bytes32 id) internal returns (int) {
Node storage currentNode = index.nodes[id];
while (true) {
if (currentNode.left == 0x0) {
return currentNode.value;
}
currentNode = index.nodes[currentNode.left];
}
}
/** @dev Query the index for the edge-most node that satisfies the
* given query. For >, >=, and ==, this will be the left-most node
* that satisfies the comparison. For < and <= this will be the
* right-most node that satisfies the comparison.
*/
/// @param index The index that should be queried
/** @param operator One of '>', '>=', '<', '<=', '==' to specify what
* type of comparison operator should be used.
*/
function query(Index storage index, bytes2 operator, int value) public returns (bytes32) {
bytes32 rootNodeId = index.root;
if (rootNodeId == 0x0) {
// Empty tree.
return 0x0;
}
Node storage currentNode = index.nodes[rootNodeId];
while (true) {
if (_compare(currentNode.value, operator, value)) {
// We have found a match but it might not be the
// *correct* match.
if ((operator == LT) || (operator == LTE)) {
// Need to keep traversing right until this is no
// longer true.
if (currentNode.right == 0x0) {
return currentNode.id;
}
if (_compare(_getMinimum(index, currentNode.right), operator, value)) {
// There are still nodes to the right that
// match.
currentNode = index.nodes[currentNode.right];
continue;
}
return currentNode.id;
}
if ((operator == GT) || (operator == GTE) || (operator == EQ)) {
// Need to keep traversing left until this is no
// longer true.
if (currentNode.left == 0x0) {
return currentNode.id;
}
if (_compare(_getMaximum(index, currentNode.left), operator, value)) {
currentNode = index.nodes[currentNode.left];
continue;
}
return currentNode.id;
}
}
if ((operator == LT) || (operator == LTE)) {
if (currentNode.left == 0x0) {
// There are no nodes that are less than the value
// so return null.
return 0x0;
}
currentNode = index.nodes[currentNode.left];
continue;
}
if ((operator == GT) || (operator == GTE)) {
if (currentNode.right == 0x0) {
// There are no nodes that are greater than the value
// so return null.
return 0x0;
}
currentNode = index.nodes[currentNode.right];
continue;
}
if (operator == EQ) {
if (currentNode.value < value) {
if (currentNode.right == 0x0) {
return 0x0;
}
currentNode = index.nodes[currentNode.right];
continue;
}
if (currentNode.value > value) {
if (currentNode.left == 0x0) {
return 0x0;
}
currentNode = index.nodes[currentNode.left];
continue;
}
}
}
}
function _rebalanceTree(Index storage index, bytes32 id) internal {
// Trace back up rebalancing the tree and updating heights as
// needed..
Node storage currentNode = index.nodes[id];
while (true) {
int balanceFactor = _getBalanceFactor(index, currentNode.id);
if (balanceFactor == 2) {
// Right rotation (tree is heavy on the left)
if (_getBalanceFactor(index, currentNode.left) == -1) {
// The subtree is leaning right so it need to be
// rotated left before the current node is rotated
// right.
_rotateLeft(index, currentNode.left);
}
_rotateRight(index, currentNode.id);
}
if (balanceFactor == -2) {
// Left rotation (tree is heavy on the right)
if (_getBalanceFactor(index, currentNode.right) == 1) {
// The subtree is leaning left so it need to be
// rotated right before the current node is rotated
// left.
_rotateRight(index, currentNode.right);
}
_rotateLeft(index, currentNode.id);
}
if ((-1 <= balanceFactor) && (balanceFactor <= 1)) {
_updateNodeHeight(index, currentNode.id);
}
if (currentNode.parent == 0x0) {
// Reached the root which may be new due to tree
// rotation, so set it as the root and then break.
break;
}
currentNode = index.nodes[currentNode.parent];
}
}
function _getBalanceFactor(Index storage index, bytes32 id) internal returns (int) {
Node storage node = index.nodes[id];
return int(index.nodes[node.left].height) - int(index.nodes[node.right].height);
}
function _updateNodeHeight(Index storage index, bytes32 id) internal {
Node storage node = index.nodes[id];
node.height = max(index.nodes[node.left].height, index.nodes[node.right].height) + 1;
}
function _rotateLeft(Index storage index, bytes32 id) internal {
Node storage originalRoot = index.nodes[id];
if (originalRoot.right == 0x0) {
// Cannot rotate left if there is no right originalRoot to rotate into
// place.
throw;
}
// The right child is the new root, so it gets the original
// `originalRoot.parent` as it's parent.
Node storage newRoot = index.nodes[originalRoot.right];
newRoot.parent = originalRoot.parent;
// The original root needs to have it's right child nulled out.
originalRoot.right = 0x0;
if (originalRoot.parent != 0x0) {
// If there is a parent node, it needs to now point downward at
// the newRoot which is rotating into the place where `node` was.
Node storage parent = index.nodes[originalRoot.parent];
// figure out if we're a left or right child and have the
// parent point to the new node.
if (parent.left == originalRoot.id) {
parent.left = newRoot.id;
}
if (parent.right == originalRoot.id) {
parent.right = newRoot.id;
}
}
if (newRoot.left != 0) {
// If the new root had a left child, that moves to be the
// new right child of the original root node
Node storage leftChild = index.nodes[newRoot.left];
originalRoot.right = leftChild.id;
leftChild.parent = originalRoot.id;
}
// Update the newRoot's left node to point at the original node.
originalRoot.parent = newRoot.id;
newRoot.left = originalRoot.id;
if (newRoot.parent == 0x0) {
index.root = newRoot.id;
}
// TODO: are both of these updates necessary?
_updateNodeHeight(index, originalRoot.id);
_updateNodeHeight(index, newRoot.id);
}
function _rotateRight(Index storage index, bytes32 id) internal {
Node storage originalRoot = index.nodes[id];
if (originalRoot.left == 0x0) {
// Cannot rotate right if there is no left node to rotate into
// place.
throw;
}
// The left child is taking the place of node, so we update it's
// parent to be the original parent of the node.
Node storage newRoot = index.nodes[originalRoot.left];
newRoot.parent = originalRoot.parent;
// Null out the originalRoot.left
originalRoot.left = 0x0;
if (originalRoot.parent != 0x0) {
// If the node has a parent, update the correct child to point
// at the newRoot now.
Node storage parent = index.nodes[originalRoot.parent];
if (parent.left == originalRoot.id) {
parent.left = newRoot.id;
}
if (parent.right == originalRoot.id) {
parent.right = newRoot.id;
}
}
if (newRoot.right != 0x0) {
Node storage rightChild = index.nodes[newRoot.right];
originalRoot.left = newRoot.right;
rightChild.parent = originalRoot.id;
}
// Update the new root's right node to point to the original node.
originalRoot.parent = newRoot.id;
newRoot.right = originalRoot.id;
if (newRoot.parent == 0x0) {
index.root = newRoot.id;
}
// Recompute heights.
_updateNodeHeight(index, originalRoot.id);
_updateNodeHeight(index, newRoot.id);
}
}
// Accounting v0.1 (not the same as the 0.1 release of this library)
/// @title Accounting Lib - Accounting utilities
/// @author Piper Merriam -
library AccountingLib {
/*
* Address: 0x89efe605e9ecbe22849cd85d5449cc946c26f8f3
*/
struct Bank {
mapping (address => uint) accountBalances;
}
/// @dev Low level method for adding funds to an account. Protects against overflow.
/// @param self The Bank instance to operate on.
/// @param accountAddress The address of the account the funds should be added to.
/// @param value The amount that should be added to the account.
function addFunds(Bank storage self, address accountAddress, uint value) public {
if (self.accountBalances[accountAddress] + value < self.accountBalances[accountAddress]) {
// Prevent Overflow.
throw;
}
self.accountBalances[accountAddress] += value;
}
event _Deposit(address indexed _from, address indexed accountAddress, uint value);
/// @dev Function wrapper around the _Deposit event so that it can be used by contracts. Can be used to log a deposit to an account.
/// @param _from The address that deposited the funds.
/// @param accountAddress The address of the account the funds were added to.
/// @param value The amount that was added to the account.
function Deposit(address _from, address accountAddress, uint value) public {
_Deposit(_from, accountAddress, value);
}
/// @dev Safe function for depositing funds. Returns boolean for whether the deposit was successful
/// @param self The Bank instance to operate on.
/// @param accountAddress The address of the account the funds should be added to.
/// @param value The amount that should be added to the account.
function deposit(Bank storage self, address accountAddress, uint value) public returns (bool) {
addFunds(self, accountAddress, value);
return true;
}
event _Withdrawal(address indexed accountAddress, uint value);
/// @dev Function wrapper around the _Withdrawal event so that it can be used by contracts. Can be used to log a withdrawl from an account.
/// @param accountAddress The address of the account the funds were withdrawn from.
/// @param value The amount that was withdrawn to the account.
function Withdrawal(address accountAddress, uint value) public {
_Withdrawal(accountAddress, value);
}
event _InsufficientFunds(address indexed accountAddress, uint value, uint balance);
/// @dev Function wrapper around the _InsufficientFunds event so that it can be used by contracts. Can be used to log a failed withdrawl from an account.
/// @param accountAddress The address of the account the funds were to be withdrawn from.
/// @param value The amount that was attempted to be withdrawn from the account.
/// @param balance The current balance of the account.
function InsufficientFunds(address accountAddress, uint value, uint balance) public {
_InsufficientFunds(accountAddress, value, balance);
}
/// @dev Low level method for removing funds from an account. Protects against underflow.
/// @param self The Bank instance to operate on.
/// @param accountAddress The address of the account the funds should be deducted from.
/// @param value The amount that should be deducted from the account.
function deductFunds(Bank storage self, address accountAddress, uint value) public {
/*
* Helper function that should be used for any reduction of
* account funds. It has error checking to prevent
* underflowing the account balance which would be REALLY bad.
*/
if (value > self.accountBalances[accountAddress]) {
// Prevent Underflow.
throw;
}
self.accountBalances[accountAddress] -= value;
}
/// @dev Safe function for withdrawing funds. Returns boolean for whether the deposit was successful as well as sending the amount in ether to the account address.
/// @param self The Bank instance to operate on.
/// @param accountAddress The address of the account the funds should be withdrawn from.
/// @param value The amount that should be withdrawn from the account.
function withdraw(Bank storage self, address accountAddress, uint value) public returns (bool) {
/*
* Public API for withdrawing funds.
*/
if (self.accountBalances[accountAddress] >= value) {
deductFunds(self, accountAddress, value);
if (!accountAddress.send(value)) {
// Potentially sending money to a contract that
// has a fallback function. So instead, try
// tranferring the funds with the call api.
if (!accountAddress.call.value(value)()) {
// Revert the entire transaction. No
// need to destroy the funds.
throw;
}
}
return true;
}
return false;
}
uint constant DEFAULT_SEND_GAS = 100000;
function sendRobust(address toAddress, uint value) public returns (bool) {
if (msg.gas < DEFAULT_SEND_GAS) {
return sendRobust(toAddress, value, msg.gas);
}
return sendRobust(toAddress, value, DEFAULT_SEND_GAS);
}
function sendRobust(address toAddress, uint value, uint maxGas) public returns (bool) {
if (value > 0 && !toAddress.send(value)) {
// Potentially sending money to a contract that
// has a fallback function. So instead, try
// tranferring the funds with the call api.
if (!toAddress.call.gas(maxGas).value(value)()) {
return false;
}
}
return true;
}
}
library CallLib {
/*
* Address: 0x1deeda36e15ec9e80f3d7414d67a4803ae45fc80
*/
struct Call {
address contractAddress;
bytes4 abiSignature;
bytes callData;
uint callValue;
uint anchorGasPrice;
uint requiredGas;
uint16 requiredStackDepth;
address claimer;
uint claimAmount;
uint claimerDeposit;
bool wasSuccessful;
bool wasCalled;
bool isCancelled;
}
enum State {
Pending,
Unclaimed,
Claimed,
Frozen,
Callable,
Executed,
Cancelled,
Missed
}
function state(Call storage self) constant returns (State) {
if (self.isCancelled) return State.Cancelled;
if (self.wasCalled) return State.Executed;
var call = FutureBlockCall(this);
if (block.number + CLAIM_GROWTH_WINDOW + MAXIMUM_CLAIM_WINDOW + BEFORE_CALL_FREEZE_WINDOW < call.targetBlock()) return State.Pending;
if (block.number + BEFORE_CALL_FREEZE_WINDOW < call.targetBlock()) {
if (self.claimer == 0x0) {
return State.Unclaimed;
}
else {
return State.Claimed;
}
}
if (block.number < call.targetBlock()) return State.Frozen;
if (block.number < call.targetBlock() + call.gracePeriod()) return State.Callable;
return State.Missed;
}
// The number of blocks that each caller in the pool has to complete their
// call.
uint constant CALL_WINDOW_SIZE = 16;
address constant creator = 0xd3cda913deb6f67967b99d67acdfa1712c293601;
function extractCallData(Call storage call, bytes data) public {
call.callData.length = data.length - 4;
if (data.length > 4) {
for (uint i = 0; i < call.callData.length; i++) {
call.callData[i] = data[i + 4];
}
}
}
uint constant GAS_PER_DEPTH = 700;
function checkDepth(uint n) constant returns (bool) {
if (n == 0) return true;
return address(this).call.gas(GAS_PER_DEPTH * n)(bytes4(sha3("__dig(uint256)")), n - 1);
}
function sendSafe(address to_address, uint value) public returns (uint) {
if (value > address(this).balance) {
value = address(this).balance;
}
if (value > 0) {
AccountingLib.sendRobust(to_address, value);
return value;
}
return 0;
}
function getGasScalar(uint base_gas_price, uint gas_price) constant returns (uint) {
/*
* Return a number between 0 - 200 to scale the donation based on the
* gas price set for the calling transaction as compared to the gas
* price of the scheduling transaction.
*
* - number approaches zero as the transaction gas price goes
* above the gas price recorded when the call was scheduled.
*
* - the number approaches 200 as the transaction gas price
* drops under the price recorded when the call was scheduled.
*
* This encourages lower gas costs as the lower the gas price
* for the executing transaction, the higher the payout to the
* caller.
*/
if (gas_price > base_gas_price) {
return 100 * base_gas_price / gas_price;
}
else {
return 200 - 100 * base_gas_price / (2 * base_gas_price - gas_price);
}
}
event CallExecuted(address indexed executor, uint gasCost, uint payment, uint donation, bool success);
bytes4 constant EMPTY_SIGNATURE = 0x0000;
event CallAborted(address executor, bytes32 reason);
function execute(Call storage self,
uint start_gas,
address executor,
uint overhead,
uint extraGas) public {
FutureCall call = FutureCall(this);
// Mark the call has having been executed.
self.wasCalled = true;
// Make the call
if (self.abiSignature == EMPTY_SIGNATURE && self.callData.length == 0) {
self.wasSuccessful = self.contractAddress.call.value(self.callValue).gas(msg.gas - overhead)();
}
else if (self.abiSignature == EMPTY_SIGNATURE) {
self.wasSuccessful = self.contractAddress.call.value(self.callValue).gas(msg.gas - overhead)(self.callData);
}
else if (self.callData.length == 0) {
self.wasSuccessful = self.contractAddress.call.value(self.callValue).gas(msg.gas - overhead)(self.abiSignature);
}
else {
self.wasSuccessful = self.contractAddress.call.value(self.callValue).gas(msg.gas - overhead)(self.abiSignature, self.callData);
}
call.origin().call(bytes4(sha3("updateDefaultPayment()")));
// Compute the scalar (0 - 200) for the donation.
uint gasScalar = getGasScalar(self.anchorGasPrice, tx.gasprice);
uint basePayment;
if (self.claimer == executor) {
basePayment = self.claimAmount;
}
else {
basePayment = call.basePayment();
}
uint payment = self.claimerDeposit + basePayment * gasScalar / 100;
uint donation = call.baseDonation() * gasScalar / 100;
// zero out the deposit
self.claimerDeposit = 0;
// Log how much gas this call used. EXTRA_CALL_GAS is a fixed
// amount that represents the gas usage of the commands that
// happen after this line.
uint gasCost = tx.gasprice * (start_gas - msg.gas + extraGas);
// Now we need to pay the executor as well as keep donation.
payment = sendSafe(executor, payment + gasCost);
donation = sendSafe(creator, donation);
// Log execution
CallExecuted(executor, gasCost, payment, donation, self.wasSuccessful);
}
event Cancelled(address indexed cancelled_by);
function cancel(Call storage self, address sender) public {
Cancelled(sender);
if (self.claimerDeposit >= 0) {
sendSafe(self.claimer, self.claimerDeposit);
}
var call = FutureCall(this);
sendSafe(call.schedulerAddress(), address(this).balance);
self.isCancelled = true;
}
/*
* Bid API
* - Gas costs for this transaction are not covered so it
* must be up to the call executors to ensure that their actions
* remain profitable. Any form of bidding war is likely to eat into
* profits.
*/
event Claimed(address executor, uint claimAmount);
// The duration (in blocks) during which the maximum claim will slowly rise
// towards the basePayment amount.
uint constant CLAIM_GROWTH_WINDOW = 240;
// The duration (in blocks) after the CLAIM_WINDOW that claiming will
// remain open.
uint constant MAXIMUM_CLAIM_WINDOW = 15;
// The duration (in blocks) before the call's target block during which
// all actions are frozen. This includes claiming, cancellation,
// registering call data.
uint constant BEFORE_CALL_FREEZE_WINDOW = 10;
/*
* The maximum allowed claim amount slowly rises across a window of
* blocks CLAIM_GROWTH_WINDOW prior to the call. No claimer is
* allowed to claim above this value. This is intended to prevent
* bidding wars in that each caller should know how much they are
* willing to execute a call for.
*/
function getClaimAmountForBlock(uint block_number) constant returns (uint) {