diff --git a/README.md b/README.md
index 695f84f1628118..7e9b173530de61 100644
--- a/README.md
+++ b/README.md
@@ -1,6 +1,14 @@
+
+Open-source software toolkit for optimizing and deploying deep learning models.
+
+
+
+ Documentation • Blog • Key Features • Tutorials • Integrations • Benchmarks • Generative AI
+
+
[![PyPI Status](https://badge.fury.io/py/openvino.svg)](https://badge.fury.io/py/openvino)
[![Anaconda Status](https://anaconda.org/conda-forge/openvino/badges/version.svg)](https://anaconda.org/conda-forge/openvino)
[![brew Status](https://img.shields.io/homebrew/v/openvino)](https://formulae.brew.sh/formula/openvino)
@@ -10,14 +18,14 @@
[![brew Downloads](https://img.shields.io/homebrew/installs/dy/openvino)](https://formulae.brew.sh/formula/openvino)
-Welcome to OpenVINO™, an open-source software toolkit for optimizing and deploying deep learning models.
- **Inference Optimization**: Boost deep learning performance in computer vision, automatic speech recognition, generative AI, natural language processing with large and small language models, and many other common tasks.
-- **Flexible Model Support**: Use models trained with popular frameworks such as TensorFlow, PyTorch, ONNX, Keras, and PaddlePaddle. Convert and deploy models without original frameworks.
+- **Flexible Model Support**: Use models trained with popular frameworks such as PyTorch, TensorFlow, ONNX, Keras, PaddlePaddle, and JAX/Flax. Directly integrate models built with transformers and diffusers from the Hugging Face Hub using Optimum Intel. Convert and deploy models without original frameworks.
- **Broad Platform Compatibility**: Reduce resource demands and efficiently deploy on a range of platforms from edge to cloud. OpenVINO™ supports inference on CPU (x86, ARM), GPU (OpenCL capable, integrated and discrete) and AI accelerators (Intel NPU).
- **Community and Ecosystem**: Join an active community contributing to the enhancement of deep learning performance across various domains.
-Check out the [OpenVINO Cheat Sheet](https://docs.openvino.ai/2024/_static/download/OpenVINO_Quick_Start_Guide.pdf) for a quick reference.
+Check out the [OpenVINO Cheat Sheet](https://docs.openvino.ai/2024/_static/download/OpenVINO_Quick_Start_Guide.pdf) and [Key Features](https://docs.openvino.ai/2024/about-openvino/key-features.html) for a quick reference.
+
## Installation
@@ -40,6 +48,8 @@ Learn how to optimize and deploy popular models with the [OpenVINO Notebooks](ht
- [Multimodal assistant with LLaVa and OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llava-multimodal-chatbot/llava-multimodal-chatbot-genai.ipynb)
- [Automatic speech recognition using Whisper and OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/whisper-asr-genai/whisper-asr-genai.ipynb)
+Discover more examples in the [OpenVINO Samples (Python & C++)](https://docs.openvino.ai/2024/learn-openvino/openvino-samples.html) and [Notebooks (Python)](https://docs.openvino.ai/2024/learn-openvino/interactive-tutorials-python.html).
+
Here are easy-to-follow code examples demonstrating how to run PyTorch and TensorFlow model inference using OpenVINO:
**PyTorch Model**
@@ -86,25 +96,43 @@ data = np.random.rand(1, 224, 224, 3)
output = compiled_model({0: data})
```
-OpenVINO also supports CPU, GPU, and NPU devices and works with models in TensorFlow, PyTorch, ONNX, TensorFlow Lite, PaddlePaddle model formats.
-With OpenVINO you can do automatic performance enhancements at runtime customized to your hardware (preserving model accuracy), including:
-asynchronous execution, batch processing, tensor fusion, load balancing, dynamic inference parallelism, automatic BF16 conversion, and more.
+OpenVINO supports the CPU, GPU, and NPU [devices](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes.html) and works with models from PyTorch, TensorFlow, ONNX, TensorFlow Lite, PaddlePaddle, and JAX/Flax [frameworks](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html). It includes [APIs](https://docs.openvino.ai/2024/api/api_reference.html) in C++, Python, C, NodeJS, and offers the GenAI API for optimized model pipelines and performance.
+
+## Generative AI with OpenVINO
+
+Get started with the OpenVINO GenAI [installation](https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html) and refer to the [detailed guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide/genai-guide.html) to explore the capabilities of Generative AI using OpenVINO.
+
+Learn how to run LLMs and GenAI with [Samples](https://github.com/openvinotoolkit/openvino.genai/tree/master/samples) in the [OpenVINO™ GenAI repo](https://github.com/openvinotoolkit/openvino.genai). See GenAI in action with Jupyter notebooks: [LLM-powered Chatbot](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llm-chatbot/README.md) and [LLM Instruction-following pipeline](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llm-question-answering/README.md).
+
+## Documentation
+
+[User documentation](https://docs.openvino.ai/) contains detailed information about OpenVINO and guides you from installation through optimizing and deploying models for your AI applications.
+
+[Developer documentation](./docs/dev/index.md) focuses on the OpenVINO architecture and describes [building](./docs/dev/build.md) and [contributing](./CONTRIBUTING.md) processes.
## OpenVINO Ecosystem
-- [🤗Optimum Intel](https://github.com/huggingface/optimum-intel) - a simple interface to optimize Transformers and Diffusers models.
+### OpenVINO Tools
+
- [Neural Network Compression Framework (NNCF)](https://github.com/openvinotoolkit/nncf) - advanced model optimization techniques including quantization, filter pruning, binarization, and sparsity.
- [GenAI Repository](https://github.com/openvinotoolkit/openvino.genai) and [OpenVINO Tokenizers](https://github.com/openvinotoolkit/openvino_tokenizers) - resources and tools for developing and optimizing Generative AI applications.
- [OpenVINO™ Model Server (OVMS)](https://github.com/openvinotoolkit/model_server) - a scalable, high-performance solution for serving models optimized for Intel architectures.
- [Intel® Geti™](https://geti.intel.com/) - an interactive video and image annotation tool for computer vision use cases.
-Check out the [Awesome OpenVINO](https://github.com/openvinotoolkit/awesome-openvino) repository to discover a collection of community-made AI projects based on OpenVINO!
+### Integrations
-## Documentation
+- [🤗Optimum Intel](https://github.com/huggingface/optimum-intel) - grab and use models leveraging OpenVINO within the Hugging Face API.
+- [Torch.compile](https://docs.openvino.ai/2024/openvino-workflow/torch-compile.html) - use OpenVINO for Python-native applications by JIT-compiling code into optimized kernels.
+- [OpenVINO LLMs inference and serving with vLLM](https://docs.vllm.ai/en/stable/getting_started/openvino-installation.html) - enhance vLLM's fast and easy model serving with the OpenVINO backend.
+- [OpenVINO Execution Provider for ONNX Runtime](https://onnxruntime.ai/docs/execution-providers/OpenVINO-ExecutionProvider.html) - use OpenVINO as a backend with your existing ONNX Runtime code.
+- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/openvino/) - build context-augmented GenAI applications with the LlamaIndex framework and enhance runtime performance with OpenVINO.
+- [LangChain](https://python.langchain.com/docs/integrations/llms/openvino/) - integrate OpenVINO with the LangChain framework to enhance runtime performance for GenAI applications.
-[User documentation](https://docs.openvino.ai/) contains detailed information about OpenVINO and guides you from installation through optimizing and deploying models for your AI applications.
+Check out the [Awesome OpenVINO](https://github.com/openvinotoolkit/awesome-openvino) repository to discover a collection of community-made AI projects based on OpenVINO!
-[Developer documentation](./docs/dev/index.md) focuses on how OpenVINO [components](./docs/dev/index.md#openvino-components) work and describes [building](./docs/dev/build.md) and [contributing](./CONTRIBUTING.md) processes.
+## Performance
+
+Explore [OpenVINO Performance Benchmarks](https://docs.openvino.ai/2024/about-openvino/performance-benchmarks.html) to discover the optimal hardware configurations and plan your AI deployment based on verified data.
## Contribution and Support
@@ -118,9 +146,8 @@ You can ask questions and get support on:
* The [`openvino`](https://stackoverflow.com/questions/tagged/openvino) tag on Stack Overflow\*.
-## Additional Resources
+## Resources
-* [Product Page](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html)
* [Release Notes](https://docs.openvino.ai/2024/about-openvino/release-notes-openvino.html)
* [OpenVINO Blog](https://blog.openvino.ai/)
* [OpenVINO™ toolkit on Medium](https://medium.com/@openvino)
@@ -145,4 +172,3 @@ By contributing to the project, you agree to the license and copyright terms the
---
\* Other names and brands may be claimed as the property of others.
-