From 517ad68d0eff35d03c9993b00296accd3ab4a591 Mon Sep 17 00:00:00 2001 From: Nashez Zubair <35090095+nashez@users.noreply.github.com> Date: Tue, 31 Dec 2024 03:46:39 +0530 Subject: [PATCH 1/2] [OV][JS] Expose the Tensor.isContinuous to Node.js API (#27710) ### Details: * Add a TensorWrap::is_continuous function: Calls the underlying Tensor.isContinous function * Update the addon.ts file with the isContinuous method * Add unit tests for the isContinuous Api ### Tickets: Closes: #27701 Signed-off-by: Nashez Zubair Co-authored-by: Vishniakov Nikolai --- src/bindings/js/node/include/tensor.hpp | 5 +++++ src/bindings/js/node/lib/addon.ts | 4 ++++ src/bindings/js/node/src/tensor.cpp | 12 +++++++++++- src/bindings/js/node/tests/unit/tensor.test.js | 14 ++++++++++++++ 4 files changed, 34 insertions(+), 1 deletion(-) diff --git a/src/bindings/js/node/include/tensor.hpp b/src/bindings/js/node/include/tensor.hpp index 4b827f82860c4c..b0ca9f5d9ed0bb 100644 --- a/src/bindings/js/node/include/tensor.hpp +++ b/src/bindings/js/node/include/tensor.hpp @@ -59,6 +59,11 @@ class TensorWrap : public Napi::ObjectWrap { Napi::Value get_element_type(const Napi::CallbackInfo& info); /** @return Napi::Number containing tensor size as total number of elements. */ Napi::Value get_size(const Napi::CallbackInfo& info); + /** + * @brief Getter to check if tensor is continuous + * @return Napi::Boolean + */ + Napi::Value is_continuous(const Napi::CallbackInfo& info); private: ov::Tensor _tensor; diff --git a/src/bindings/js/node/lib/addon.ts b/src/bindings/js/node/lib/addon.ts index 6e57e10c4173b6..65fb0cf39b57a2 100644 --- a/src/bindings/js/node/lib/addon.ts +++ b/src/bindings/js/node/lib/addon.ts @@ -419,6 +419,10 @@ interface Tensor { * It gets the tensor size as a total number of elements. */ getSize(): number; + /** + * Reports whether the tensor is continuous or not. + */ + isContinuous(): boolean; } /** diff --git a/src/bindings/js/node/src/tensor.cpp b/src/bindings/js/node/src/tensor.cpp index 14a68286e5372c..dc140dde483512 100644 --- a/src/bindings/js/node/src/tensor.cpp +++ b/src/bindings/js/node/src/tensor.cpp @@ -43,7 +43,8 @@ Napi::Function TensorWrap::get_class(Napi::Env env) { InstanceMethod("getData", &TensorWrap::get_data), InstanceMethod("getShape", &TensorWrap::get_shape), InstanceMethod("getElementType", &TensorWrap::get_element_type), - InstanceMethod("getSize", &TensorWrap::get_size)}); + InstanceMethod("getSize", &TensorWrap::get_size), + InstanceMethod("isContinuous", &TensorWrap::is_continuous)}); } ov::Tensor TensorWrap::get_tensor() const { @@ -181,3 +182,12 @@ Napi::Value TensorWrap::get_size(const Napi::CallbackInfo& info) { const auto size = static_cast(_tensor.get_size()); return Napi::Number::New(env, size); } + +Napi::Value TensorWrap::is_continuous(const Napi::CallbackInfo& info) { + Napi::Env env = info.Env(); + if (info.Length() > 0) { + reportError(env, "isContinuous() does not accept any arguments."); + return env.Undefined(); + } + return Napi::Boolean::New(env, _tensor.is_continuous()); +} diff --git a/src/bindings/js/node/tests/unit/tensor.test.js b/src/bindings/js/node/tests/unit/tensor.test.js index 2cd5115b5af2a8..91f85905f80b28 100644 --- a/src/bindings/js/node/tests/unit/tensor.test.js +++ b/src/bindings/js/node/tests/unit/tensor.test.js @@ -297,4 +297,18 @@ describe('ov.Tensor tests', () => { assert.strictEqual(tensor.getSize(), expectedSize); }); }); + + describe('Tensor isContinuous', () => { + it('isContinuous returns true if tensor is continuous', () => { + const tensor = new ov.Tensor(ov.element.f32, [3, 2, 2]); + assert.strictEqual(tensor.isContinuous(), true); + }); + + it('isContinuous should throw an error if arguments are provided', () => { + const tensor = new ov.Tensor(ov.element.f32, shape, data); + assert.throws(() => tensor.isContinuous(1), { + message: 'isContinuous() does not accept any arguments.', + }); + }); + }); }); From ca501cabd5d6454c7d0b3ee80b5a4750bac7b52b Mon Sep 17 00:00:00 2001 From: hyunback kim Date: Tue, 31 Dec 2024 16:40:00 +0900 Subject: [PATCH 2/2] [GPU] Use onednn gemm instead of inner product (#27628) SD3 dynamic has FC unfusion pattern, and needs sub graphs. It caused bad performance. ### Tickets: - *152851, 157100* --------- Signed-off-by: hyunback --- .../graph/graph_optimizer/reorder_inputs.cpp | 14 ++- .../impls/onednn/fully_connected_onednn.cpp | 96 ++----------------- .../intel_gpu/src/graph/primitive_inst.cpp | 12 ++- .../intel_gpu/src/graph/program_node.cpp | 72 ++++++++++---- .../fusions/fully_connected_fusion_test.cpp | 12 +-- .../unit/passes/post_optimize_weights.cpp | 43 --------- 6 files changed, 91 insertions(+), 158 deletions(-) diff --git a/src/plugins/intel_gpu/src/graph/graph_optimizer/reorder_inputs.cpp b/src/plugins/intel_gpu/src/graph/graph_optimizer/reorder_inputs.cpp index b29be318593348..9f574d0c751e9a 100644 --- a/src/plugins/intel_gpu/src/graph/graph_optimizer/reorder_inputs.cpp +++ b/src/plugins/intel_gpu/src/graph/graph_optimizer/reorder_inputs.cpp @@ -1028,6 +1028,15 @@ void reorder_inputs::run(program& p, reorder_factory& rf) { if (fc_layout.is_dynamic() || data_layout.is_dynamic()) continue; + auto same_spatial = [](layout a, layout b) { + if (a.get_spatial_rank() != b.get_spatial_rank()) + return false; + for (size_t i = 0; i < a.get_spatial_rank(); i++) { + if (a.spatial(i) != b.spatial(i)) + return false; + } + return true; + }; // fc_b | fc_f | data_b | data_f | broadcast condition // ---------+-----------+-----------+-----------+-------------------- // 1 | 1 | 1 | 1 | no broadcast @@ -1043,11 +1052,12 @@ void reorder_inputs::run(program& p, reorder_factory& rf) { // N | 1 | N | 1 | no broadcast // N | 1 | N | N | N/A // N | N | 1 | 1 | implicit broadcast - // N | N | 1 | N | explicit broadcast - // N | N | N | 1 | explicit broadcast + // N | N | 1 | N | explicit broadcast when spatial different + // N | N | N | 1 | explicit broadcast when spatial different // N | N | N | N | no broadcast if ((fc_layout.batch() == 1 || fc_layout.feature() == 1) || (data_layout.batch() == 1 && data_layout.feature() == 1) || + ((data_layout.batch() == 1 || data_layout.feature() == 1) && same_spatial(fc_layout, data_layout)) || (fc_layout.count() == data_layout.count())) { continue; } diff --git a/src/plugins/intel_gpu/src/graph/impls/onednn/fully_connected_onednn.cpp b/src/plugins/intel_gpu/src/graph/impls/onednn/fully_connected_onednn.cpp index 6cca9848af3472..07fb5c99fc8aab 100644 --- a/src/plugins/intel_gpu/src/graph/impls/onednn/fully_connected_onednn.cpp +++ b/src/plugins/intel_gpu/src/graph/impls/onednn/fully_connected_onednn.cpp @@ -98,44 +98,6 @@ struct fully_connected_onednn : typed_primitive_onednn_impl { return args; } - static std::shared_ptr get_weights_reorder(const kernel_impl_params& impl_params, const dnnl::primitive_desc& pd) { - auto input_layout = impl_params.get_input_layout(0); - auto source_weights_layout = impl_params.get_input_layout(1); - auto cldnn_prim = impl_params.typed_desc(); - - auto input_pshape = input_layout.get_partial_shape(); - auto weights_pshape = source_weights_layout.get_partial_shape(); - - int64_t feature = input_pshape[std::min(cldnn_prim->input_size, static_cast(4)) - 1].get_length(); - if (cldnn_prim->input_size == 3) { - feature = std::max({input_layout.spatial(0), input_layout.spatial(1), input_layout.spatial(2)}); - } - auto target_weights_layout = source_weights_layout; - if (weights_pshape.size() != 2) { - target_weights_layout.set_partial_shape(reshape_to_2d(weights_pshape, feature)); - } - - auto target_weights_desc = pd.weights_desc(0); - - auto shape_consistent = onednn::keep_weights_reorder_shape_consistent(source_weights_layout, target_weights_desc); - OPENVINO_ASSERT(shape_consistent, "[GPU] Input shape and output shape of weight reorder should be same."); - - auto source_weights_desc = onednn::layout_to_memory_desc(source_weights_layout); - - const bool weights_format = true; - const bool grouped = false; - - auto traits = convert_memory_desc_to_traits(target_weights_desc, weights_format, grouped); - - target_weights_layout.format = format(traits); - - return std::make_shared(source_weights_layout, - target_weights_layout, - source_weights_desc, - target_weights_desc, - false); - } - static void transform_layouts(layout& input_layout, layout& weights_layout, layout& output_layout, size_t prim_input_size) { auto input_pshape = input_layout.get_partial_shape(); auto weights_pshape = weights_layout.get_partial_shape(); @@ -164,43 +126,6 @@ struct fully_connected_onednn : typed_primitive_onednn_impl { } } - static std::shared_ptr - get_inner_product_primitive_descriptor(const kernel_impl_params& impl_params, - cldnn::engine& engine, - size_t prim_input_size, - bool has_bias, - const dnnl::primitive_attr& attr = dnnl::primitive_attr()) { - auto input_layout = impl_params.get_input_layout(0); - auto weights_layout = impl_params.get_input_layout(1); - auto output_layout = impl_params.get_output_layout(); - - transform_layouts(input_layout, weights_layout, output_layout, prim_input_size); - - auto input_md = onednn::layout_to_memory_desc(input_layout, dnnl::memory::format_tag::undef, false); - auto weights_md = onednn::layout_to_memory_desc(weights_layout, dnnl::memory::format_tag::any); - auto output_md = onednn::layout_to_memory_desc(output_layout, dnnl::memory::format_tag::ab, false); - - if (has_bias) { - auto bias_md = onednn::layout_to_memory_desc(impl_params.get_input_layout(2), dnnl::memory::format_tag::any, true); - return std::make_shared( - engine.get_onednn_engine(), - dnnl::prop_kind::forward_inference, - input_md, - weights_md, - bias_md, - output_md, - attr); - } else { - return std::make_shared( - engine.get_onednn_engine(), - dnnl::prop_kind::forward_inference, - input_md, - weights_md, - output_md, - attr); - } - } - static std::shared_ptr get_matmul_primitive_descriptor(const kernel_impl_params& impl_params, cldnn::engine& engine, @@ -219,7 +144,11 @@ struct fully_connected_onednn : typed_primitive_onednn_impl { auto output_md = onednn::layout_to_memory_desc(output_layout, dnnl::memory::format_tag::ab, false); if (has_bias) { - auto bias_md = onednn::layout_to_memory_desc(impl_params.get_input_layout(2), dnnl::memory::format_tag::ab, false); + dnnl::memory::format_tag target_fmt = dnnl::memory::format_tag::ab; + auto bias_l = impl_params.get_input_layout(2); + if (bias_l.get_shape().size() == 1) + target_fmt = dnnl::memory::format_tag::ba; + auto bias_md = onednn::layout_to_memory_desc(impl_params.get_input_layout(2), target_fmt, false); return std::make_shared( engine.get_onednn_engine(), input_md, @@ -335,13 +264,8 @@ struct fully_connected_onednn : typed_primitive_onednn_impl { _attrs->set_zero_points(DNNL_ARG_SRC, GROUPED, dnnl::memory::dims{1, src_group_size}, dnnl::memory::data_type::u8); } - if (is_compressed) { - auto prim_desc = get_matmul_primitive_descriptor(*impl_params, ib.get_engine(), input_size, has_bias, *_attrs); - _pd = *prim_desc; - } else { - auto prim_desc = get_inner_product_primitive_descriptor(*impl_params, ib.get_engine(), input_size, has_bias, *_attrs); - _pd = *prim_desc; - } + auto prim_desc = get_matmul_primitive_descriptor(*impl_params, ib.get_engine(), input_size, has_bias, *_attrs); + _pd = *prim_desc; std::vector prim_cache; ib >> prim_cache; @@ -426,10 +350,10 @@ struct fully_connected_onednn : typed_primitive_onednn_impl { prim_onednn->_dzp_data_type = dzp_data_type; return prim_onednn; } else { - auto prim_desc = get_inner_product_primitive_descriptor(impl_params, impl_params.prog->get_engine(), - prim->input_size, !prim->bias.empty(), *attr); + auto prim_desc = get_matmul_primitive_descriptor(impl_params, impl_params.prog->get_engine(), + prim->input_size, !prim->bias.empty(), *attr); - return cldnn::make_unique(engine, config, attr, *prim_desc, get_weights_reorder(impl_params, *prim_desc)); + return cldnn::make_unique(engine, config, attr, *prim_desc); } } }; diff --git a/src/plugins/intel_gpu/src/graph/primitive_inst.cpp b/src/plugins/intel_gpu/src/graph/primitive_inst.cpp index 0737362405ff9c..0b8e4b739f0cf7 100644 --- a/src/plugins/intel_gpu/src/graph/primitive_inst.cpp +++ b/src/plugins/intel_gpu/src/graph/primitive_inst.cpp @@ -2671,7 +2671,6 @@ bool primitive_inst::is_valid_fusion() const { auto gemm_dims = onednn::convert_gemm_tensor(gemm_layout.get_tensor(), cldnn::format::dimension(gemm_layout.format), false); - auto data_dims = onednn::convert_gemm_tensor(data_layout.get_tensor(), cldnn::format::dimension(data_layout.format), false); @@ -2685,8 +2684,19 @@ bool primitive_inst::is_valid_fusion() const { const auto fc_dims = fc_layout.get_dims(); const auto data_dims = data_layout.get_dims(); + auto same_spatial = [](layout a, layout b) { + if (a.get_spatial_rank() != b.get_spatial_rank()) + return false; + for (size_t i = 0; i < a.get_spatial_rank(); i++) { + if (a.spatial(i) != b.spatial(i)) + return false; + } + return true; + }; + if (!(fc_dims[0] == 1 || fc_dims[1] == 1) && !(data_dims[0] == 1 && data_dims[1] == 1) && + !((data_dims[0] == 1 || data_dims[1] == 1) && same_spatial(fc_layout, data_layout)) && !(fc_layout.count() == data_layout.count())) { return false; } diff --git a/src/plugins/intel_gpu/src/graph/program_node.cpp b/src/plugins/intel_gpu/src/graph/program_node.cpp index 5161887b79e57a..f38aef64f6fe00 100644 --- a/src/plugins/intel_gpu/src/graph/program_node.cpp +++ b/src/plugins/intel_gpu/src/graph/program_node.cpp @@ -1558,30 +1558,62 @@ void program_node::create_onednn_primitive_attributes( } else if (desc.is_type()) { auto dep_idx = desc.outer_dep_start_idx; auto in = get_input_layout(dep_idx); - auto in_origin = in; - auto set_binary_op = [&](dnnl::algorithm alg, onednn_post_op_type op_type) { - if (is_type()) { - auto prim = this->as().get_primitive(); - if (prim->input_size == 3) { - cldnn::onednn::combine_bf_with_first_spatial_dim(in); + auto fc_needs_full_tensor = [&]() { + for (size_t i = 0; i < cldnn_post_ops.size(); i++) { + auto& desc = cldnn_post_ops[i]; + if (desc.is_type()) { + auto prim = this->as().get_primitive(); + auto dep_idx = desc.outer_dep_start_idx; + auto in = get_input_layout(dep_idx); + if (prim->input_size == 3 && in.batch() > 1 && in.feature() > 1) + return true; } - auto mem_desc = onednn::layout_to_memory_desc(in, dnnl::memory::format_tag::ab); - post_ops.append_binary(alg, mem_desc); - update_onednn_post_op_list(op_type, dep_idx, dnnl::memory::format_tag::ab, false, - mem_desc.get_dims(), mem_desc.get_data_type()); - } else if (is_type()) { + } + return false; + }; + auto set_binary_op = [&](dnnl::algorithm alg, onednn_post_op_type op_type) { + if (is_type() || is_type()) { size_t rank = cldnn::format::dimension(in.format); auto in_pshape = in.get_partial_shape(); auto out_pshape = get_output_layout().get_partial_shape(); - size_t ones_to_add = std::max(out_pshape.size(), static_cast(rank)) - in_pshape.size(); - if (ones_to_add > 0) { - layout new_layout = in; - ov::PartialShape new_input_pshape; - std::vector dims(in_pshape.begin(), in_pshape.begin() + in_pshape.size()); - new_input_pshape = ov::PartialShape(dims); - new_input_pshape.insert(new_input_pshape.begin(), ones_to_add, 1ul); - new_layout.set_partial_shape(new_input_pshape); - in = new_layout; + size_t ones_to_add = 0; + + if (is_type()) { + auto prim = this->as().get_primitive(); + if (prim->input_size == in_pshape.size()) { + if (prim->input_size == 3 && !fc_needs_full_tensor()) { + cldnn::onednn::combine_bf_with_first_spatial_dim(in); + in_pshape = in.get_partial_shape(); + } + ones_to_add = std::max(out_pshape.size(), static_cast(rank)) - in_pshape.size(); + } else { + if (prim->input_size == 3) + cldnn::onednn::combine_bf_with_first_spatial_dim(in); + ones_to_add = std::max(in_pshape.size(), prim->input_size) - std::min(in_pshape.size(), prim->input_size); + } + if (ones_to_add > 0) { + layout new_layout = in; + ov::PartialShape new_input_pshape; + auto last = in_pshape.begin() + in_pshape.size(); + if (in_pshape.size() > prim->input_size) + last -= ones_to_add; + std::vector dims(in_pshape.begin(), last); + new_input_pshape = ov::PartialShape(dims); + new_input_pshape.insert(new_input_pshape.begin(), ones_to_add, 1ul); + new_layout.set_partial_shape(new_input_pshape); + in = new_layout; + } + } else { + ones_to_add = std::max(out_pshape.size(), static_cast(rank)) - in_pshape.size(); + if (ones_to_add > 0) { + layout new_layout = in; + ov::PartialShape new_input_pshape; + std::vector dims(in_pshape.begin(), in_pshape.begin() + in_pshape.size()); + new_input_pshape = ov::PartialShape(dims); + new_input_pshape.insert(new_input_pshape.begin(), ones_to_add, 1ul); + new_layout.set_partial_shape(new_input_pshape); + in = new_layout; + } } size_t in_batched_size = in.count() / (in.spatial(0) * in.spatial(1)); dnnl::memory::dims dims = onednn::convert_gemm_tensor(in.get_tensor(), rank, in_batched_size == 1); diff --git a/src/plugins/intel_gpu/tests/unit/fusions/fully_connected_fusion_test.cpp b/src/plugins/intel_gpu/tests/unit/fusions/fully_connected_fusion_test.cpp index 09e164742f3fd9..9520084067c53f 100644 --- a/src/plugins/intel_gpu/tests/unit/fusions/fully_connected_fusion_test.cpp +++ b/src/plugins/intel_gpu/tests/unit/fusions/fully_connected_fusion_test.cpp @@ -162,13 +162,13 @@ class FullyConnectedFusingTestOneDNN : public BaseFusingTest weights_data(pshape[0] * pshape[1]); - std::iota(weights_data.begin(), weights_data.end(), 0.f); - set_values(weights, weights_data); - - topology topology( - input_layout("input", input->get_layout()), - input_layout("weights", weights->get_layout()), - reorder("reorder_dt", input_info("weights"), format::bfyx, data_types::f16), - fully_connected("fc", input_info("input"), { "reorder_dt" }, "", data_types::f16) - ); - - ExecutionConfig config = get_test_default_config(engine); - config.set_property(ov::intel_gpu::optimize_data(true)); - config.set_property(ov::intel_gpu::allow_new_shape_infer(true)); - - if (engine.get_device_info().supports_immad) { - ov::intel_gpu::ImplementationDesc fc_impl = { format::bfyx, "", impl_types::onednn }; - config.set_property(ov::intel_gpu::force_implementations(ov::intel_gpu::ImplForcingMap{ {"fc", fc_impl} })); - } - - auto prog = program::build_program(engine, topology, config); - - ASSERT_TRUE(has_node(*prog, "reorder_dt")); - auto& fc_node = prog->get_node("fc"); - auto weights_param = fc_node.as().get_selected_impl()->get_weights_reorder_params(); - ASSERT_TRUE(format::is_weights_format(prog->get_node("reorder_dt").get_output_layout().format)); - ASSERT_TRUE(prog->get_node("reorder_dt").get_input_layout().data_type == data_types::f32); -#ifdef ENABLE_ONEDNN_FOR_GPU - // Check onednn_weights_params->_in_desc data_type is properly updated - auto onednn_weights_params = std::dynamic_pointer_cast(weights_param); - ASSERT_TRUE(onednn_weights_params->_in_desc.get_data_type() == onednn::convert_data_type(data_types::f32)); -#endif -} - TEST(post_optimize_weights, onednn_group_conv_weights_reorder_test) { auto& engine = get_test_engine(); if (!engine.get_device_info().supports_immad)