From 15427e60e9a8c154ab4b89d0cec87af766a9fca8 Mon Sep 17 00:00:00 2001 From: Pavel Esir Date: Wed, 15 May 2024 16:36:21 +0200 Subject: [PATCH] fix different outputs --- .github/workflows/causal_lm_cpp.yml | 18 +++++++++--------- .../causal_lm/cpp/beam_search_causal_lm.cpp | 2 +- 2 files changed, 10 insertions(+), 10 deletions(-) diff --git a/.github/workflows/causal_lm_cpp.yml b/.github/workflows/causal_lm_cpp.yml index 7c34ca7f66..23d9006d07 100644 --- a/.github/workflows/causal_lm_cpp.yml +++ b/.github/workflows/causal_lm_cpp.yml @@ -74,7 +74,7 @@ jobs: tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('Why is the Sun yellow?', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): - ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' + ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) idx = predictions.find(ref) if -1 == idx: raise RuntimeError(f'Missing "{ref=}" from predictions') @@ -90,7 +90,7 @@ jobs: tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('69', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): - ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' + ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) idx = predictions.find(ref) if -1 == idx: raise RuntimeError(f'Missing "{ref=}" from predictions') @@ -106,7 +106,7 @@ jobs: tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('Hi', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): - ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' + ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) idx = predictions.find(ref) if -1 == idx: raise RuntimeError(f'Missing "{ref=}" from predictions') @@ -122,7 +122,7 @@ jobs: tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('return 0', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): - ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' + ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) idx = predictions.find(ref) if -1 == idx: raise RuntimeError(f'Missing "{ref=}" from predictions') @@ -138,7 +138,7 @@ jobs: tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') tokenized = tokenizer('你好! 你好嗎?', return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): - ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' + ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) idx = predictions.find(ref) if -1 == idx: raise RuntimeError(f'Missing "{ref=}" from predictions') @@ -160,7 +160,7 @@ jobs: for prompt in prompts: tokenized = tokenizer(prompt, return_tensors='pt') for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): - ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' + ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) idx = predictions.find(ref) if -1 == idx: raise RuntimeError(f'Missing "{ref=}" from predictions') @@ -201,7 +201,7 @@ jobs: echo tokenizer = transformers.LlamaTokenizer.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0') >> ref.py echo tokenized = tokenizer('69', return_tensors='pt') >> ref.py echo for beam in transformers.LlamaForCausalLM.from_pretrained('TinyLlama/TinyLlama-1.1B-Chat-v1.0').generate(**tokenized, num_beam_groups=3, num_beams=15, num_return_sequences=15, diversity_penalty=1.0, max_new_tokens=20, early_stopping=False, length_penalty=1.0, no_repeat_ngram_size=9**9, do_sample=False): >> ref.py - echo ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' >> ref.py + echo ref = ': ' + tokenizer.decode(beam[tokenized['input_ids'].numel():], skip_special_tokens=True) >> ref.py echo idx = predictions.find(ref) >> ref.py echo if -1 == idx: >> ref.py echo raise RuntimeError(f'Missing "{ref=}" from predictions') >> ref.py @@ -441,7 +441,7 @@ jobs: tokenizer = transformers.AutoTokenizer.from_pretrained('microsoft/phi-1_5') tokenized = tokenizer('Alan Turing was a', return_tensors='pt') for output in transformers.AutoModelForCausalLM.from_pretrained('microsoft/phi-1_5').generate(**tokenized, max_length=100, do_sample=False): - ref = tokenizer.decode(output[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' + ref = tokenizer.decode(output[tokenized['input_ids'].numel():], skip_special_tokens=True) idx = predictions.find(ref) if -1 == idx: raise RuntimeError(f'Missing "{ref=}" from predictions') @@ -486,7 +486,7 @@ jobs: tokenizer = transformers.AutoTokenizer.from_pretrained('ikala/redpajama-3b-chat') tokenized = tokenizer('Alan Turing was a', return_tensors='pt') for output in transformers.AutoModelForCausalLM.from_pretrained('ikala/redpajama-3b-chat').generate(**tokenized, max_length=100, do_sample=False): - ref = tokenizer.decode(output[tokenized['input_ids'].numel():], skip_special_tokens=True) + '\n' + ref = tokenizer.decode(output[tokenized['input_ids'].numel():], skip_special_tokens=True) idx = predictions.find(ref) if -1 == idx: raise RuntimeError(f'Missing "{ref}" from predictions') diff --git a/text_generation/causal_lm/cpp/beam_search_causal_lm.cpp b/text_generation/causal_lm/cpp/beam_search_causal_lm.cpp index 3b40529f38..056c923224 100644 --- a/text_generation/causal_lm/cpp/beam_search_causal_lm.cpp +++ b/text_generation/causal_lm/cpp/beam_search_causal_lm.cpp @@ -14,7 +14,7 @@ int main(int argc, char* argv[]) try { ov::LLMPipeline pipe(model_path, device); ov::GenerationConfig config = pipe.get_generation_config(); - config.max_new_tokens = 100; + config.max_new_tokens = 20; config.num_beam_groups = 3; config.num_beams = 15; config.num_return_sequences = config.num_beams * prompts.size();