-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdeprecate_target_safety_spreadsheet.sc
267 lines (244 loc) · 10.3 KB
/
deprecate_target_safety_spreadsheet.sc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import org.apache.spark.sql.{Column, DataFrame, SparkSession}
import org.apache.spark.sql.functions.{
array,
array_union,
coalesce,
col,
explode,
lit,
split,
struct,
transform,
trim,
typedLit
}
/**
* The known target safety data comes from a spreadsheet (https://docs.google.com/spreadsheets/d/1EvpcnUkDASUNoBU5PzQPGD5YtZxh7cgotr2MqClJ7t0/edit#gid=650742396)
* which is rarely (not since 2019) updated.
*
* This script is to convert that spreadsheet into flat json/parquet/csv files which can be used in the platform ETL.
*
* To run this script update the paths in the 'INPUTS' section to point to where to find the data. Inputs are as follows:
* - targetBetaDF: any output of the ETL 'target' step since the rewrite of target ~ June 2021
* - tsRawDF: adverse effects table from spreadsheet
* - efoCodesRawDF: efo mapping table from spreadsheet
* - uberonDF: Uberon mapping table from spreadsheet
* - srRawDF: safety risk table from spreadsheet
*
* Also specify where the outputs should be saved. Outputs are by default parquet files.
*
* The script is separated into UTILS, INPUTS, LOGIC, OUTPUTS
*
* UTILS is present because the logic makes use of helper functions which were written for the ETL. So this can be run
* without dependencies they are pasted here so they are in scope.
*
* INPUTS points to input files
*
* LOGIC performs the manipulation of in input files into output structure.
*
* OUTPUTS saves the results of LOGIC.
*/
val ss: SparkSession = ???
import ss.implicits._
// UTILS - ignore for script
def validateDF(requiredColumns: Set[String], dataFrame: DataFrame): Unit = {
lazy val msg =
s"One or more required columns (${requiredColumns.mkString(",")}) not found in dataFrame columns: ${dataFrame.columns
.mkString(",")}"
val columnsOnDf = dataFrame.columns.toSet
assert(requiredColumns.forall(columnsOnDf.contains), msg)
}
def safeArrayUnion(columns: Column*): Column = {
columns.map(coalesce(_, typedLit(Array.empty))).reduce((c1, c2) => array_union(c1, c2))
}
def createEnsemblToUniprotLookup(dataFrame: DataFrame): DataFrame = {
import ss.implicits._
validateDF(Set("id", "approvedSymbol", "proteinIds"), dataFrame)
dataFrame
.select(col("id"), array("approvedSymbol").as("as"), col("proteinIds.id").as("pid"))
.select(col("id"), safeArrayUnion(col("as"), col("pid")).as("uniprot"))
.select(col("id").as("ensemblId"), explode(col("uniprot")).as("uniprotId"))
}
val tsvWithHeader = (str: String) => ss.read.option("sep", "\\t").option("header", true).csv(str)
// INPUTS
val output = "/home/jarrod/development/platform-etl-backend/data/target-inputs/safety-revised-again/"
val data = "/home/jarrod/development/platform-etl-backend/data/target-inputs/safety/"
val targetBetaDF = createEnsemblToUniprotLookup(
ss.read.json(
"/home/jarrod/development/platform-etl-backend/data/dataproc-out/v8/target-beta/*.json"))
val tsRawDF =
ss.read.option("sep", "\\t").option("header", true).csv(s"$data/adverse_effects.tsv")
// df: event, eventID
val efoCodesRawDF = ss.read
.option("sep", "\\t")
.option("header", true)
.csv(s"$data/EFO_mapping.tsv")
.select(col("Source term") as "event", $"Code" as "eventID")
// df: term, code
val uberonDF = tsvWithHeader(s"$data/UBERON_mapping.tsv").select(
col("Publication term") as "term",
col("UBERON code") as "code"
)
// df: ref, target, term
val srRawDF = tsvWithHeader(s"$data/safety_risk_information.tsv")
// df ref, pmid, url
val referenceRawDF = ss.read
.option("sep", "\\t")
.option("header", true)
.csv(s"$data/references.tsv")
.select(col("Reference").as("ref"), col("PMID").as("pmid"), col("Other link").as("url"))
// LOGIC
/*
Returns a dataframe with all the sheets (except safety_risk) from target safety flattened
into a single structure.
Target safety data comes from a manually curated spreadsheet. This is not updated, and the data is
spread over multiple sheets. Most raw fields are ';' splittable strings. We want all the data
flat so we can filter restructure it easily. This method outputs a DF in the following form:
root
|-- ensemblId: string (nullable = true)
|-- uniprotId: string (nullable = true) -- raw data uses accession numbers to group
|-- ref: string (nullable = true) -- ref, pmid, url are details of source
|-- pmid: string (nullable = true)
|-- url: string (nullable = true)
|-- biologicalSystem: string (nullable = true) part of body affected: eg central nervous system
|-- uberonCode: string (nullable = true) linked to biologicalSystem
|-- symptom: string (nullable = true) - eg heart failure
|-- efoId: string (nullable = true) efo code of symptom where available
|-- effect: string (nullable = true) activation or inhibition
*/
def translateTargetSafetyAdverseEffectsDF(targetSafetyDF: DataFrame,
uberonDF: DataFrame,
efoDF: DataFrame,
ensgIdDF: DataFrame,
tsReferenceDF: DataFrame): DataFrame = {
val outputColumns = Seq("ensemblId",
"target",
"ref",
"pmid",
"url",
"biologicalSystem",
"uberonCode",
"symptom",
"efoId",
"effect")
def addEffect(dataFrame: DataFrame, effectName: String): DataFrame = {
dataFrame
.withColumn("symptom", explode(transform(split(col(effectName), ";"), s => trim(s))))
.select(col("target"),
col("ref"),
struct(
col("symptom"),
lit(effectName) as "effect"
) as effectName)
}
def addEffects(dataFrame: DataFrame): DataFrame = {
val cols = Array(
"activation_acute",
"activation_chronic",
"activation_general",
"activation_developmental toxicity",
"inhibition_acute",
"inhibition_chronic",
"inhibition_developmental toxicity",
"inhibition_general"
)
cols
.foldLeft(dataFrame)((df, c) =>
df.drop(c).join(addEffect(df, c), Seq("target", "ref"), "left_outer").distinct)
.withColumn("effect", array(cols.head, cols.tail: _*))
.drop(cols: _*)
.withColumn("e", explode(col("effect")))
.select(col("target"), col("biologicalSystem"), col("ref"), col("e.*"))
.filter(col("symptom").isNotNull && col("effect").isNotNull)
.distinct
}
def addUberon(dataFrame: DataFrame): DataFrame =
dataFrame
.join(uberonDF, col("biologicalSystem") === col("term"), "left_outer")
.drop(col("term"))
.withColumnRenamed("code", "uberonCode")
def addEfo(dataFrame: DataFrame): DataFrame =
dataFrame
.join(efoDF, col("symptom") === col("event"), "left_outer")
.drop("event")
.withColumnRenamed("eventID", "efoId")
def addEnsemblId(dataFrame: DataFrame): DataFrame =
dataFrame
.join(ensgIdDF, col("target") === col("uniprotId"), "left_outer")
.drop("uniprotId")
def addReferences(dataFrame: DataFrame): DataFrame =
dataFrame
.join(tsReferenceDF, Seq("ref"), "left_outer")
val cols = Array(
("Ref", "ref"),
("Target", "target"),
("Main organ/system affected", "biologicalSystem"),
("Agonism/Activation effects_Acute dosing", "activation_acute"),
("Agonism/Activation effects_Chronic dosing", "activation_chronic"),
("Agonism/Activation effects_Developmental toxicity", "activation_developmental toxicity"),
("Agonism/Activation effects_General", "activation_general"),
("Antagonism/Inhibition effects_Acute dosing", "inhibition_acute"),
("Antagonism/Inhibition effects_Chronic dosing", "inhibition_chronic"),
("Antagonism/Inhibition effects_Developmental toxicity", "inhibition_developmental toxicity"),
("Antagonism/Inhibition effects_General", "inhibition_general")
)
val newNames = cols.map(_._2)
val baseDF = cols
.foldLeft(targetSafetyDF)((df, names) => df.withColumnRenamed(names._1, names._2))
.select(newNames.head, newNames.tail: _*)
.withColumn("biologicalSystem", explode(transform(split(col("biologicalSystem"), ";"), s => trim(s))))
.withColumn("ref", explode(transform(split(col("ref"), ";"), s => trim(s))))
addEffects(baseDF)
.transform(addUberon)
.transform(addEfo)
.transform(addEnsemblId)
.transform(addReferences)
.select(outputColumns.map(col): _*)
.distinct
}
val aeDF = translateTargetSafetyAdverseEffectsDF(tsRawDF,
uberonDF,
efoCodesRawDF,
targetBetaDF,
referenceRawDF)
/*
Returns a dataframe with the flatten contents of 'safety risk' sheet from target safety data.
Outputs dataframe with:
root
|-- ensemblId: string (nullable = true)
|-- uniprotId: string (nullable = true)
|-- term: string (nullable = true)
|-- uberonId: string (nullable = true)
|-- ref: string (nullable = true)
|-- pmid: string (nullable = true)
|-- url: string (nullable = true)
*/
def translateTargetSafetySafetyRiskDF(dataFrame: DataFrame,
uberon: DataFrame,
references: DataFrame,
ensgIds: DataFrame): DataFrame = {
val df = dataFrame
.select(
explode(split(col("Reference"), ";")) as "ref",
col("Target") as "target",
col("Main organ/system affected") as "term",
col("Safety liability") as "liability",
)
.select(
col("target"),
col("term"),
col("liability"),
trim(col("ref")) as "ref"
)
.join(uberon, Seq("term"), "left_outer")
.withColumnRenamed("code", "uberonId")
.withColumnRenamed("term", "biologicalSystem")
.join(references, Seq("ref"), "left_outer")
.join(ensgIds, col("target") === col("uniprotId"))
.drop("uniprotId")
df.select("ensemblId", "target", "biologicalSystem", "uberonId", "liability", "ref", "pmid", "url")
}
val srDF = translateTargetSafetySafetyRiskDF(srRawDF, uberonDF, referenceRawDF, targetBetaDF)
// OUTPUTS
aeDF.distinct.write.parquet(output + "ae_safety")
srDF.distinct.write.parquet(output + "sr_safety")