diff --git a/modules/cudaarithm/include/opencv2/cudaarithm.hpp b/modules/cudaarithm/include/opencv2/cudaarithm.hpp index a16c271881e..032a4c9bc68 100644 --- a/modules/cudaarithm/include/opencv2/cudaarithm.hpp +++ b/modules/cudaarithm/include/opencv2/cudaarithm.hpp @@ -75,61 +75,134 @@ namespace cv { namespace cuda { @param src1 First source matrix or scalar. @param src2 Second source matrix or scalar. Matrix should have the same size and type as src1 . @param dst Destination matrix that has the same size and number of channels as the input array(s). -The depth is defined by dtype or src1 depth. +The depth is defined by dtype or @p src1 depth. @param mask Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed. The mask can be used only with single channel images. @param dtype Optional depth of the output array. @param stream Stream for the asynchronous version. -@sa add +@warning In python both @p src1 and @p src2 have to be matrices, see @ref addWithScalar for scalar overload. + +@sa cv::add, addWithScalar */ CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null()); +/** @brief Computes a matrix-scalar sum. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and number of channels as the input array. +The depth is defined by dtype or @p src1 depth. +@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the +destination array to be changed. The mask can be used only with single channel images. +@param dtype Optional depth of the output array. +@param stream Stream for the asynchronous version. + +@sa add + */ +CV_EXPORTS_W void inline addWithScalar(InputArray src1, Scalar src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null()) { + add(src1, src2, dst, mask, dtype, stream); +} /** @brief Computes a matrix-matrix or matrix-scalar difference. @param src1 First source matrix or scalar. -@param src2 Second source matrix or scalar. Matrix should have the same size and type as src1 . +@param src2 Second source matrix or scalar. Matrix should have the same size and type as @p src1. @param dst Destination matrix that has the same size and number of channels as the input array(s). -The depth is defined by dtype or src1 depth. +The depth is defined by dtype or @p src1 depth. @param mask Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed. The mask can be used only with single channel images. @param dtype Optional depth of the output array. @param stream Stream for the asynchronous version. -@sa subtract +@warning In python both @p src1 and @p src2 have to be matrices, see @ref subtractWithScalar for scalar overload. + +@sa cv::subtract, subtractWithScalar */ CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null()); +/** @brief Computes matrix-scalar difference. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and number of channels as the input array. +The depth is defined by dtype or @p src1 depth. +@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the +destination array to be changed. The mask can be used only with single channel images. +@param dtype Optional depth of the output array. +@param stream Stream for the asynchronous version. + +@sa cv::subtract + */ +CV_EXPORTS_W void inline subtractWithScalar(InputArray src1, Scalar src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null()) { + subtract(src1, src2, dst, mask, dtype, stream); +} /** @brief Computes a matrix-matrix or matrix-scalar per-element product. @param src1 First source matrix or scalar. @param src2 Second source matrix or scalar. @param dst Destination matrix that has the same size and number of channels as the input array(s). -The depth is defined by dtype or src1 depth. +The depth is defined by dtype or @p src1 depth. @param scale Optional scale factor. @param dtype Optional depth of the output array. @param stream Stream for the asynchronous version. -@sa multiply +@warning In python both @p src1 and @p src2 have to be matrices, see @ref multiplyWithScalar for scalar overload. + +@sa cv::multiply, multiplyWithScalar */ CV_EXPORTS_W void multiply(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); +/** @brief Computes a matrix-scalar per-element product. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and number of channels as the input array. +The depth is defined by dtype or @p src1 depth. +@param scale Optional scale factor. +@param dtype Optional depth of the output array. +@param stream Stream for the asynchronous version. + +@sa multiply + */ +CV_EXPORTS_W void inline multiplyWithScalar(InputArray src1, Scalar src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()) { + multiply(src1, src2, dst, scale, dtype, stream); +} /** @brief Computes a matrix-matrix or matrix-scalar division. -@param src1 First source matrix or a scalar. +@param src1 First source matrix or scalar. @param src2 Second source matrix or scalar. @param dst Destination matrix that has the same size and number of channels as the input array(s). -The depth is defined by dtype or src1 depth. +The depth is defined by dtype or @p src1 depth. @param scale Optional scale factor. @param dtype Optional depth of the output array. @param stream Stream for the asynchronous version. This function, in contrast to divide, uses a round-down rounding mode. -@sa divide +@warning In python both @p src1 and @p src2 have to be matrices, see @ref divideWithScalar for scalar overload. + +@sa cv::divide, divideWithScalar */ CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); +/** @brief Computes a matrix-scalar division. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and number of channels as the input array. +The depth is defined by dtype or @p src1 depth. +@param scale Optional scale factor. +@param dtype Optional depth of the output array. +@param stream Stream for the asynchronous version. + +This function, in contrast to divide, uses a round-down rounding mode. + +@sa divide + */ +CV_EXPORTS_W void inline divideWithScalar(InputArray src1, Scalar src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()) { + divide(src1, src2, dst, scale, dtype, stream); +} + /** @brief Computes per-element absolute difference of two matrices (or of a matrix and scalar). @param src1 First source matrix or scalar. @@ -137,9 +210,23 @@ CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst, doub @param dst Destination matrix that has the same size and type as the input array(s). @param stream Stream for the asynchronous version. -@sa absdiff +@warning In python both @p src1 and @p src2 have to be matrices, see @ref absdiffWithScalar for scalar overload. + +@sa cv::absdiff, absdiffWithScalar */ CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); +/** @brief Computes per-element absolute difference of a matrix and scalar. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and type as the input array. +@param stream Stream for the asynchronous version. + +@sa absdiff + */ +CV_EXPORTS_W void inline absdiffWithScalar(InputArray src1, Scalar src2, OutputArray dst, Stream& stream = Stream::Null()) { + absdiff(src1, src2, dst, stream); +} /** @brief Computes an absolute value of each matrix element. @@ -218,9 +305,30 @@ CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst, Stream& str - **CMP_NE:** a(.) != b(.) @param stream Stream for the asynchronous version. -@sa compare +@warning In python both @p src1 and @p src2 have to be matrices, see @ref compareWithScalar for scalar overload. + +@sa cv::compare, compareWithScalar */ CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop, Stream& stream = Stream::Null()); +/** @brief Compares elements of a matrix and scalar. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size as the input array and type \ref CV_8U. +@param cmpop Flag specifying the relation between the elements to be checked: +- **CMP_EQ:** a(.) == b(.) +- **CMP_GT:** a(.) \> b(.) +- **CMP_GE:** a(.) \>= b(.) +- **CMP_LT:** a(.) \< b(.) +- **CMP_LE:** a(.) \<= b(.) +- **CMP_NE:** a(.) != b(.) +@param stream Stream for the asynchronous version. + +@sa compare + */ +CV_EXPORTS_W void inline compareWithScalar(InputArray src1, Scalar src2, OutputArray dst, int cmpop, Stream& stream = Stream::Null()) { + compare(src1, src2, dst, cmpop, stream); +} /** @brief Performs a per-element bitwise inversion. @@ -240,8 +348,26 @@ CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst, InputArray mask = @param mask Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed. The mask can be used only with single channel images. @param stream Stream for the asynchronous version. + +@warning In python both @p src1 and @p src2 have to be matrices, see @ref bitwise_or_with_scalar for scalar overload. + +@sa cv::bitwise_or, bitwise_or_with_scalar */ CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); +/** @brief Performs a per-element bitwise disjunction of a matrix and scalar. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and type as the input array. +@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the +destination array to be changed. The mask can be used only with single channel images. +@param stream Stream for the asynchronous version. + +@sa bitwise_or + */ +CV_EXPORTS_W void inline bitwise_or_with_scalar(InputArray src1, Scalar src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()) { + bitwise_or(src1, src2, dst, mask, stream); +} /** @brief Performs a per-element bitwise conjunction of two matrices (or of matrix and scalar). @@ -251,19 +377,55 @@ CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, @param mask Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed. The mask can be used only with single channel images. @param stream Stream for the asynchronous version. + +@warning In python both @p src1 and @p src2 have to be matrices, see @ref bitwise_and_with_scalar for scalar overload. + +@sa bitwise_and_with_scalar */ CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); +/** @brief Performs a per-element bitwise conjunction of a matrix and a scalar. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and type as the input array. +@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the +destination array to be changed. The mask can be used only with single channel images. +@param stream Stream for the asynchronous version. + +@sa bitwise_and + */ +CV_EXPORTS_W void inline bitwise_and_with_scalar(InputArray src1, Scalar src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()) { + bitwise_and(src1, src2, dst, mask, stream); +} /** @brief Performs a per-element bitwise exclusive or operation of two matrices (or of matrix and scalar). @param src1 First source matrix or scalar. @param src2 Second source matrix or scalar. -@param dst Destination matrix that has the same size and type as the input array(s). +@param dst Destination matrix that has the same size and type as the input array. @param mask Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed. The mask can be used only with single channel images. @param stream Stream for the asynchronous version. + +@warning In python both @p src1 and @p src2 have to be matrices, see @ref bitwise_xor_with_scalar for scalar overload. + +@sa cv::bitwise_xor, bitwise_xor_with_scalar */ CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); +/** @brief Performs a per-element bitwise exclusive or operation of a matrix and a scalar. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and type as the input array(s). +@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the +destination array to be changed. The mask can be used only with single channel images. +@param stream Stream for the asynchronous version. + +@sa bitwise_xor + */ +CV_EXPORTS_W void inline bitwise_xor_with_scalar(InputArray src1, Scalar src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()) { + bitwise_xor(src1, src2, dst, mask, stream); +} /** @brief Performs pixel by pixel right shift of an image by a constant value. @@ -299,9 +461,23 @@ CV_WRAP inline void lshift(InputArray src, Scalar val, OutputArray dst, Stream& @param dst Destination matrix that has the same size and type as the input array(s). @param stream Stream for the asynchronous version. -@sa min +@warning In python both @p src1 and @p src2 have to be matrices, see @ref minWithScalar for scalar overload. + +@sa cv::min, minWithScalar */ CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); +/** @brief Computes the per-element minimum or a matrix and a scalar. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and type as the input array. +@param stream Stream for the asynchronous version. + +@sa min + */ +CV_EXPORTS_W void inline minWithScalar(InputArray src1, Scalar src2, OutputArray dst, Stream& stream = Stream::Null()) { + min(src1, src2, dst, stream); +} /** @brief Computes the per-element maximum of two matrices (or a matrix and a scalar). @@ -310,9 +486,23 @@ CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst, Stream& @param dst Destination matrix that has the same size and type as the input array(s). @param stream Stream for the asynchronous version. -@sa max +@warning In python both @p src1 and @p src2 have to be matrices, see @ref maxWithScalar for scalar overload. + +@sa cv::max, maxWithScalar */ CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); +/** @brief Computes the per-element maximum of a matrix and a scalar. + +@param src1 First source matrix. +@param src2 Second source scalar. +@param dst Destination matrix that has the same size and type as the input array. +@param stream Stream for the asynchronous version. + +@sa max + */ +CV_EXPORTS_W void inline maxWithScalar(InputArray src1, Scalar src2, OutputArray dst, Stream& stream = Stream::Null()) { + max(src1, src2, dst, stream); +} /** @brief Computes the weighted sum of two arrays. diff --git a/modules/cudaarithm/misc/python/test/test_cudaarithm.py b/modules/cudaarithm/misc/python/test/test_cudaarithm.py index 1d959d791f3..897d5961dea 100644 --- a/modules/cudaarithm/misc/python/test/test_cudaarithm.py +++ b/modules/cudaarithm/misc/python/test/test_cudaarithm.py @@ -38,6 +38,7 @@ def test_cudaarithm(self): def test_arithmetic(self): npMat1 = np.random.random((128, 128, 3)) - 0.5 npMat2 = np.random.random((128, 128, 3)) - 0.5 + scalar = np.random.random() cuMat1 = cv.cuda_GpuMat() cuMat2 = cv.cuda_GpuMat() @@ -48,36 +49,54 @@ def test_arithmetic(self): self.assertTrue(np.allclose(cv.cuda.add(cuMat1, cuMat2).download(), cv.add(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.addWithScalar(cuMat1, [scalar]*3).download(), + cv.add(npMat1, scalar))) + cv.cuda.add(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.add(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.subtract(cuMat1, cuMat2).download(), cv.subtract(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.subtractWithScalar(cuMat1, [scalar]*3).download(), + cv.subtract(npMat1, scalar))) + cv.cuda.subtract(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.subtract(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.multiply(cuMat1, cuMat2).download(), cv.multiply(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.multiplyWithScalar(cuMat1, [scalar]*3).download(), + cv.multiply(npMat1, scalar))) + cv.cuda.multiply(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.multiply(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.divide(cuMat1, cuMat2).download(), cv.divide(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.divideWithScalar(cuMat1, [scalar]*3).download(), + cv.divide(npMat1, scalar))) + cv.cuda.divide(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.divide(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.absdiff(cuMat1, cuMat2).download(), cv.absdiff(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.absdiffWithScalar(cuMat1, [scalar]*3).download(), + cv.absdiff(npMat1, scalar))) + cv.cuda.absdiff(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.absdiff(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE).download(), cv.compare(npMat1, npMat2, cv.CMP_GE))) + self.assertTrue(np.allclose(cv.cuda.compareWithScalar(cuMat1, [scalar]*3, cv.CMP_GE).download(), + cv.compare(npMat1, scalar, cv.CMP_GE))) + cuMatDst1 = cv.cuda_GpuMat(cuMat1.size(),cv.CV_8UC3) cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE, cuMatDst1) self.assertTrue(np.allclose(cuMatDst1.download(),cv.compare(npMat1, npMat2, cv.CMP_GE))) @@ -111,6 +130,7 @@ def test_arithmetic(self): def test_logical(self): npMat1 = (np.random.random((128, 128)) * 255).astype(np.uint8) npMat2 = (np.random.random((128, 128)) * 255).astype(np.uint8) + scalar = np.random.random() cuMat1 = cv.cuda_GpuMat() cuMat2 = cv.cuda_GpuMat() @@ -121,18 +141,27 @@ def test_logical(self): self.assertTrue(np.allclose(cv.cuda.bitwise_or(cuMat1, cuMat2).download(), cv.bitwise_or(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.bitwise_or_with_scalar(cuMat1, scalar).download(), + cv.bitwise_or(npMat1, scalar))) + cv.cuda.bitwise_or(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_or(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.bitwise_and(cuMat1, cuMat2).download(), cv.bitwise_and(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.bitwise_and_with_scalar(cuMat1, scalar).download(), + cv.bitwise_and(npMat1, scalar))) + cv.cuda.bitwise_and(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_and(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.bitwise_xor(cuMat1, cuMat2).download(), cv.bitwise_xor(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.bitwise_xor_with_scalar(cuMat1, scalar).download(), + cv.bitwise_xor(npMat1, scalar))) + cv.cuda.bitwise_xor(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_xor(npMat1, npMat2))) @@ -145,12 +174,18 @@ def test_logical(self): self.assertTrue(np.allclose(cv.cuda.min(cuMat1, cuMat2).download(), cv.min(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.minWithScalar(cuMat1, scalar).download(), + cv.min(npMat1, scalar))) + cv.cuda.min(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.min(npMat1, npMat2))) self.assertTrue(np.allclose(cv.cuda.max(cuMat1, cuMat2).download(), cv.max(npMat1, npMat2))) + self.assertTrue(np.allclose(cv.cuda.maxWithScalar(cuMat1, scalar).download(), + cv.max(npMat1, scalar))) + cv.cuda.max(cuMat1, cuMat2, cuMatDst) self.assertTrue(np.allclose(cuMatDst.download(),cv.max(npMat1, npMat2)))