diff --git a/modules/ccalib/src/ccalib.cpp b/modules/ccalib/src/ccalib.cpp index 3c6658c1126..bb1c79fabd0 100644 --- a/modules/ccalib/src/ccalib.cpp +++ b/modules/ccalib/src/ccalib.cpp @@ -47,7 +47,6 @@ #include "opencv2/ccalib.hpp" #include -#include // CV_TERM #include #include #include @@ -222,7 +221,7 @@ void CustomPattern::refinePointsPos(const Mat& img, vector& p) Mat gray; cvtColor(img, gray, COLOR_RGB2GRAY); cornerSubPix(gray, p, Size(10, 10), Size(-1, -1), - TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 30, 0.1)); + TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 30, 0.1)); } diff --git a/modules/cudalegacy/src/cuda/NCVHaarObjectDetection.cu b/modules/cudalegacy/src/cuda/NCVHaarObjectDetection.cu index f701a8c06f7..bdb34efc6e1 100644 --- a/modules/cudalegacy/src/cuda/NCVHaarObjectDetection.cu +++ b/modules/cudalegacy/src/cuda/NCVHaarObjectDetection.cu @@ -66,7 +66,6 @@ #ifdef HAVE_OPENCV_XOBJDETECT # include "opencv2/xobjdetect.hpp" -//# include "opencv2/objdetect/objdetect_c.h" #endif #include "opencv2/cudalegacy/NCV.hpp" diff --git a/modules/cvv/samples/cvv_demo.cpp b/modules/cvv/samples/cvv_demo.cpp index 991b649fff4..3ad3328c910 100644 --- a/modules/cvv/samples/cvv_demo.cpp +++ b/modules/cvv/samples/cvv_demo.cpp @@ -5,7 +5,6 @@ #include #include #include -#include #define CVVISUAL_DEBUGMODE #include @@ -55,8 +54,8 @@ main(int argc, char** argv) if (res_w>0 && res_h>0) { printf("Setting resolution to %dx%d\n", res_w, res_h); - capture.set(CV_CAP_PROP_FRAME_WIDTH, res_w); - capture.set(CV_CAP_PROP_FRAME_HEIGHT, res_h); + capture.set(cv::CAP_PROP_FRAME_WIDTH, res_w); + capture.set(cv::CAP_PROP_FRAME_HEIGHT, res_h); } diff --git a/modules/dpm/src/dpm_feature.hpp b/modules/dpm/src/dpm_feature.hpp index 1c06d95af99..0a83507ea8c 100644 --- a/modules/dpm/src/dpm_feature.hpp +++ b/modules/dpm/src/dpm_feature.hpp @@ -43,7 +43,6 @@ #define __DPM_FEATURE__ #include "opencv2/core.hpp" -#include "opencv2/core/core_c.h" #include "opencv2/imgproc.hpp" #include diff --git a/modules/ml/src/ann_mlp.cpp b/modules/ml/src/ann_mlp.cpp index 01bb86a8fdd..59294fb24a8 100644 --- a/modules/ml/src/ann_mlp.cpp +++ b/modules/ml/src/ann_mlp.cpp @@ -865,8 +865,8 @@ class ANN_MLPImpl CV_FINAL : public ANN_MLP TermCriteria termcrit; termcrit.type = TermCriteria::COUNT + TermCriteria::EPS; - termcrit.maxCount = std::max((params.termCrit.type & CV_TERMCRIT_ITER ? params.termCrit.maxCount : MAX_ITER), 1); - termcrit.epsilon = std::max((params.termCrit.type & CV_TERMCRIT_EPS ? params.termCrit.epsilon : DEFAULT_EPSILON), DBL_EPSILON); + termcrit.maxCount = std::max((params.termCrit.type & TermCriteria::COUNT ? params.termCrit.maxCount : MAX_ITER), 1); + termcrit.epsilon = std::max((params.termCrit.type & TermCriteria::EPS ? params.termCrit.epsilon : DEFAULT_EPSILON), DBL_EPSILON); int iter = 0; switch(params.trainMethod){ @@ -902,7 +902,7 @@ class ANN_MLPImpl CV_FINAL : public ANN_MLP int count = inputs.rows; int iter = -1, max_iter = termCrit.maxCount*count; - double epsilon = (termCrit.type & CV_TERMCRIT_EPS) ? termCrit.epsilon*count : 0; + double epsilon = (termCrit.type & cv::TermCriteria::EPS) ? termCrit.epsilon*count : 0; int l_count = layer_count(); int ivcount = layer_sizes[0]; diff --git a/modules/ml/src/em.cpp b/modules/ml/src/em.cpp index 3e0eeb560a4..9bb3faefc4a 100644 --- a/modules/ml/src/em.cpp +++ b/modules/ml/src/em.cpp @@ -446,7 +446,7 @@ class CV_EXPORTS EMImpl CV_FINAL : public EM CV_Assert(!clusterSamples.empty()); calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex), - CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_64FC1); + cv::COVAR_NORMAL + cv::COVAR_ROWS + cv::COVAR_USE_AVG + cv::COVAR_SCALE, CV_64FC1); weights.at(clusterIndex) = static_cast(clusterSamples.rows)/static_cast(nsamples); } diff --git a/modules/ml/src/precomp.hpp b/modules/ml/src/precomp.hpp index 6a91ef98f07..9c3ec06300a 100644 --- a/modules/ml/src/precomp.hpp +++ b/modules/ml/src/precomp.hpp @@ -43,7 +43,6 @@ #include "opencv2/core.hpp" #include "opencv2/ml.hpp" -#include "opencv2/core/core_c.h" #include "opencv2/core/utility.hpp" #include "opencv2/core/private.hpp" diff --git a/modules/ml/src/svm.cpp b/modules/ml/src/svm.cpp index 06324d5d5f7..63ef4fd4f2a 100644 --- a/modules/ml/src/svm.cpp +++ b/modules/ml/src/svm.cpp @@ -126,7 +126,7 @@ struct SvmParams C = 1; nu = 0; p = 0; - termCrit = TermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON ); + termCrit = TermCriteria( cv::TermCriteria::MAX_ITER + cv::TermCriteria::EPS, 1000, FLT_EPSILON ); } SvmParams( int _svmType, int _kernelType, diff --git a/modules/reg/samples/map_test.cpp b/modules/reg/samples/map_test.cpp index ca3bc43d8fd..1cb8347c8aa 100644 --- a/modules/reg/samples/map_test.cpp +++ b/modules/reg/samples/map_test.cpp @@ -43,7 +43,6 @@ #ifdef COMPARE_FEATURES #include #include -#include using namespace cv::xfeatures2d; #endif diff --git a/modules/rgbd/samples/linemod.cpp b/modules/rgbd/samples/linemod.cpp deleted file mode 100644 index 0f6996c3ca9..00000000000 --- a/modules/rgbd/samples/linemod.cpp +++ /dev/null @@ -1,681 +0,0 @@ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -using namespace cv; -using namespace std; - -// Function prototypes -void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector& chain, double f); - -vector maskFromTemplate(const std::vector& templates, - int num_modalities, cv::Point offset, cv::Size size, - cv::Mat& mask, cv::Mat& dst); - -void templateConvexHull(const std::vector& templates, - int num_modalities, cv::Point offset, cv::Size size, - cv::Mat& dst); - -void drawResponse(const std::vector& templates, - int num_modalities, cv::Mat& dst, cv::Point offset, int T); - -cv::Mat displayQuantized(const cv::Mat& quantized); - -// Copy of cv_mouse from cv_utilities -class Mouse -{ -public: - static void start(const std::string& a_img_name) - { - cv::setMouseCallback(a_img_name.c_str(), Mouse::cv_on_mouse, 0); - } - static int event(void) - { - int l_event = m_event; - m_event = -1; - return l_event; - } - static int x(void) - { - return m_x; - } - static int y(void) - { - return m_y; - } - -private: - static void cv_on_mouse(int a_event, int a_x, int a_y, int, void *) - { - m_event = a_event; - m_x = a_x; - m_y = a_y; - } - - static int m_event; - static int m_x; - static int m_y; -}; -int Mouse::m_event; -int Mouse::m_x; -int Mouse::m_y; - -static void help() -{ - printf("Usage: example_rgbd_linemod [templates.yml]\n\n" - "Place your object on a planar, featureless surface. With the mouse,\n" - "frame it in the 'color' window and right click to learn a first template.\n" - "Then press 'l' to enter online learning mode, and move the camera around.\n" - "When the match score falls between 90-95%% the demo will add a new template.\n\n" - "Keys:\n" - "\t h -- This help page\n" - "\t l -- Toggle online learning\n" - "\t m -- Toggle printing match result\n" - "\t t -- Toggle printing timings\n" - "\t w -- Write learned templates to disk\n" - "\t [ ] -- Adjust matching threshold: '[' down, ']' up\n" - "\t q -- Quit\n\n"); -} - -// Adapted from cv_timer in cv_utilities -class Timer -{ -public: - Timer() : start_(0), time_(0) {} - - void start() - { - start_ = cv::getTickCount(); - } - - void stop() - { - CV_Assert(start_ != 0); - int64 end = cv::getTickCount(); - time_ += end - start_; - start_ = 0; - } - - double time() - { - double ret = time_ / cv::getTickFrequency(); - time_ = 0; - return ret; - } - -private: - int64 start_, time_; -}; - -// Functions to store detector and templates in single XML/YAML file -static cv::Ptr readLinemod(const std::string& filename) -{ - cv::Ptr detector = cv::makePtr(); - cv::FileStorage fs(filename, cv::FileStorage::READ); - detector->read(fs.root()); - - cv::FileNode fn = fs["classes"]; - for (cv::FileNodeIterator i = fn.begin(), iend = fn.end(); i != iend; ++i) - detector->readClass(*i); - - return detector; -} - -static void writeLinemod(const cv::Ptr& detector, const std::string& filename) -{ - cv::FileStorage fs(filename, cv::FileStorage::WRITE); - detector->write(fs); - - std::vector ids = detector->classIds(); - fs << "classes" << "["; - for (int i = 0; i < (int)ids.size(); ++i) - { - fs << "{"; - detector->writeClass(ids[i], fs); - fs << "}"; // current class - } - fs << "]"; // classes -} - - -int main(int argc, char * argv[]) -{ - // Various settings and flags - bool show_match_result = true; - bool show_timings = false; - bool learn_online = false; - int num_classes = 0; - int matching_threshold = 80; - /// @todo Keys for changing these? - cv::Size roi_size(200, 200); - int learning_lower_bound = 90; - int learning_upper_bound = 95; - - // Timers - Timer extract_timer; - Timer match_timer; - - // Initialize HighGUI - help(); - cv::namedWindow("color"); - cv::namedWindow("normals"); - Mouse::start("color"); - - // Initialize LINEMOD data structures - cv::Ptr detector; - std::string filename; - if (argc == 1) - { - filename = "linemod_templates.yml"; - detector = cv::linemod::getDefaultLINEMOD(); - } - else - { - detector = readLinemod(argv[1]); - - std::vector ids = detector->classIds(); - num_classes = detector->numClasses(); - printf("Loaded %s with %d classes and %d templates\n", - argv[1], num_classes, detector->numTemplates()); - if (!ids.empty()) - { - printf("Class ids:\n"); - std::copy(ids.begin(), ids.end(), std::ostream_iterator(std::cout, "\n")); - } - } - int num_modalities = (int)detector->getModalities().size(); - - // Open Kinect sensor - cv::VideoCapture capture( cv::CAP_OPENNI2 ); - if (!capture.isOpened()) - { - printf("Could not open OpenNI-capable sensor\n"); - return -1; - } - capture.set(cv::CAP_PROP_OPENNI_REGISTRATION, 1); - double focal_length = capture.get(cv::CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH); - //printf("Focal length = %f\n", focal_length); - - // Main loop - cv::Mat color, depth; - for(;;) - { - // Capture next color/depth pair - capture.grab(); - capture.retrieve(depth, cv::CAP_OPENNI_DEPTH_MAP); - capture.retrieve(color, cv::CAP_OPENNI_BGR_IMAGE); - - std::vector sources; - sources.push_back(color); - sources.push_back(depth); - cv::Mat display = color.clone(); - - if (!learn_online) - { - cv::Point mouse(Mouse::x(), Mouse::y()); - int event = Mouse::event(); - - // Compute ROI centered on current mouse location - cv::Point roi_offset(roi_size.width / 2, roi_size.height / 2); - cv::Point pt1 = mouse - roi_offset; // top left - cv::Point pt2 = mouse + roi_offset; // bottom right - - if (event == cv::EVENT_RBUTTONDOWN) - { - // Compute object mask by subtracting the plane within the ROI - vector chain; - chain.push_back(pt1); - chain.push_back(Point(pt2.x, pt1.y)); - chain.push_back(pt2); - chain.push_back(Point(pt1.x, pt2.y)); - Mat mask; - subtractPlane(depth, mask, chain, focal_length); - - cv::imshow("mask", mask); - - // Extract template - std::string class_id = cv::format("class%d", num_classes); - cv::Rect bb; - extract_timer.start(); - int template_id = detector->addTemplate(sources, class_id, mask, &bb); - extract_timer.stop(); - if (template_id != -1) - { - printf("*** Added template (id %d) for new object class %d***\n", - template_id, num_classes); - //printf("Extracted at (%d, %d) size %dx%d\n", bb.x, bb.y, bb.width, bb.height); - } - - ++num_classes; - } - - // Draw ROI for display - cv::rectangle(display, pt1, pt2, CV_RGB(0,0,0), 3); - cv::rectangle(display, pt1, pt2, CV_RGB(255,255,0), 1); - } - - // Perform matching - std::vector matches; - std::vector class_ids; - std::vector quantized_images; - match_timer.start(); - detector->match(sources, (float)matching_threshold, matches, class_ids, quantized_images); - match_timer.stop(); - - int classes_visited = 0; - std::set visited; - - for (int i = 0; (i < (int)matches.size()) && (classes_visited < num_classes); ++i) - { - cv::linemod::Match m = matches[i]; - - if (visited.insert(m.class_id).second) - { - ++classes_visited; - - if (show_match_result) - { - printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n", - m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id); - } - - // Draw matching template - const std::vector& templates = detector->getTemplates(m.class_id, m.template_id); - drawResponse(templates, num_modalities, display, cv::Point(m.x, m.y), detector->getT(0)); - - if (learn_online == true) - { - /// @todo Online learning possibly broken by new gradient feature extraction, - /// which assumes an accurate object outline. - - // Compute masks based on convex hull of matched template - cv::Mat color_mask, depth_mask; - std::vector chain = maskFromTemplate(templates, num_modalities, - cv::Point(m.x, m.y), color.size(), - color_mask, display); - subtractPlane(depth, depth_mask, chain, focal_length); - - cv::imshow("mask", depth_mask); - - // If pretty sure (but not TOO sure), add new template - if (learning_lower_bound < m.similarity && m.similarity < learning_upper_bound) - { - extract_timer.start(); - int template_id = detector->addTemplate(sources, m.class_id, depth_mask); - extract_timer.stop(); - if (template_id != -1) - { - printf("*** Added template (id %d) for existing object class %s***\n", - template_id, m.class_id.c_str()); - } - } - } - } - } - - if (show_match_result && matches.empty()) - printf("No matches found...\n"); - if (show_timings) - { - printf("Training: %.2fs\n", extract_timer.time()); - printf("Matching: %.2fs\n", match_timer.time()); - } - if (show_match_result || show_timings) - printf("------------------------------------------------------------\n"); - - cv::imshow("color", display); - cv::imshow("normals", quantized_images[1]); - - cv::FileStorage fs; - char key = (char)cv::waitKey(10); - if( key == 'q' ) - break; - - switch (key) - { - case 'h': - help(); - break; - case 'm': - // toggle printing match result - show_match_result = !show_match_result; - printf("Show match result %s\n", show_match_result ? "ON" : "OFF"); - break; - case 't': - // toggle printing timings - show_timings = !show_timings; - printf("Show timings %s\n", show_timings ? "ON" : "OFF"); - break; - case 'l': - // toggle online learning - learn_online = !learn_online; - printf("Online learning %s\n", learn_online ? "ON" : "OFF"); - break; - case '[': - // decrement threshold - matching_threshold = std::max(matching_threshold - 1, -100); - printf("New threshold: %d\n", matching_threshold); - break; - case ']': - // increment threshold - matching_threshold = std::min(matching_threshold + 1, +100); - printf("New threshold: %d\n", matching_threshold); - break; - case 'w': - // write model to disk - writeLinemod(detector, filename); - printf("Wrote detector and templates to %s\n", filename.c_str()); - break; - default: - ; - } - } - return 0; -} - -static void reprojectPoints(const std::vector& proj, std::vector& real, double f) -{ - real.resize(proj.size()); - double f_inv = 1.0 / f; - - for (int i = 0; i < (int)proj.size(); ++i) - { - double Z = proj[i].z; - real[i].x = (proj[i].x - 320.) * (f_inv * Z); - real[i].y = (proj[i].y - 240.) * (f_inv * Z); - real[i].z = Z; - } -} - -static void filterPlane(IplImage * ap_depth, std::vector & a_masks, std::vector & a_chain, double f) -{ - const int l_num_cost_pts = 200; - - float l_thres = 4; - - IplImage * lp_mask = cvCreateImage(cvGetSize(ap_depth), IPL_DEPTH_8U, 1); - cvSet(lp_mask, cvRealScalar(0)); - - std::vector l_chain_vector; - - float l_chain_length = 0; - float * lp_seg_length = new float[a_chain.size()]; - - for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i) - { - float x_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x); - float y_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y); - lp_seg_length[l_i] = sqrt(x_diff*x_diff + y_diff*y_diff); - l_chain_length += lp_seg_length[l_i]; - } - for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i) - { - if (lp_seg_length[l_i] > 0) - { - int l_cur_num = cvRound(l_num_cost_pts * lp_seg_length[l_i] / l_chain_length); - float l_cur_len = lp_seg_length[l_i] / l_cur_num; - - for (int l_j = 0; l_j < l_cur_num; ++l_j) - { - float l_ratio = (l_cur_len * l_j / lp_seg_length[l_i]); - - CvPoint l_pts; - - l_pts.x = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x) + a_chain[l_i].x); - l_pts.y = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y) + a_chain[l_i].y); - - l_chain_vector.push_back(l_pts); - } - } - } - std::vector lp_src_3Dpts(l_chain_vector.size()); - - for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i) - { - lp_src_3Dpts[l_i].x = l_chain_vector[l_i].x; - lp_src_3Dpts[l_i].y = l_chain_vector[l_i].y; - lp_src_3Dpts[l_i].z = CV_IMAGE_ELEM(ap_depth, unsigned short, cvRound(lp_src_3Dpts[l_i].y), cvRound(lp_src_3Dpts[l_i].x)); - //CV_IMAGE_ELEM(lp_mask,unsigned char,(int)lp_src_3Dpts[l_i].Y,(int)lp_src_3Dpts[l_i].X)=255; - } - //cv_show_image(lp_mask,"hallo2"); - - reprojectPoints(lp_src_3Dpts, lp_src_3Dpts, f); - - CvMat * lp_pts = cvCreateMat((int)l_chain_vector.size(), 4, CV_32F); - CvMat * lp_v = cvCreateMat(4, 4, CV_32F); - CvMat * lp_w = cvCreateMat(4, 1, CV_32F); - - for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i) - { - CV_MAT_ELEM(*lp_pts, float, l_i, 0) = (float)lp_src_3Dpts[l_i].x; - CV_MAT_ELEM(*lp_pts, float, l_i, 1) = (float)lp_src_3Dpts[l_i].y; - CV_MAT_ELEM(*lp_pts, float, l_i, 2) = (float)lp_src_3Dpts[l_i].z; - CV_MAT_ELEM(*lp_pts, float, l_i, 3) = 1.0f; - } - cvSVD(lp_pts, lp_w, 0, lp_v); - - float l_n[4] = {CV_MAT_ELEM(*lp_v, float, 0, 3), - CV_MAT_ELEM(*lp_v, float, 1, 3), - CV_MAT_ELEM(*lp_v, float, 2, 3), - CV_MAT_ELEM(*lp_v, float, 3, 3)}; - - float l_norm = sqrt(l_n[0] * l_n[0] + l_n[1] * l_n[1] + l_n[2] * l_n[2]); - - l_n[0] /= l_norm; - l_n[1] /= l_norm; - l_n[2] /= l_norm; - l_n[3] /= l_norm; - - float l_max_dist = 0; - - for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i) - { - float l_dist = l_n[0] * CV_MAT_ELEM(*lp_pts, float, l_i, 0) + - l_n[1] * CV_MAT_ELEM(*lp_pts, float, l_i, 1) + - l_n[2] * CV_MAT_ELEM(*lp_pts, float, l_i, 2) + - l_n[3] * CV_MAT_ELEM(*lp_pts, float, l_i, 3); - - if (fabs(l_dist) > l_max_dist) - l_max_dist = l_dist; - } - //std::cerr << "plane: " << l_n[0] << ";" << l_n[1] << ";" << l_n[2] << ";" << l_n[3] << " maxdist: " << l_max_dist << " end" << std::endl; - int l_minx = ap_depth->width; - int l_miny = ap_depth->height; - int l_maxx = 0; - int l_maxy = 0; - - for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i) - { - l_minx = std::min(l_minx, a_chain[l_i].x); - l_miny = std::min(l_miny, a_chain[l_i].y); - l_maxx = std::max(l_maxx, a_chain[l_i].x); - l_maxy = std::max(l_maxy, a_chain[l_i].y); - } - int l_w = l_maxx - l_minx + 1; - int l_h = l_maxy - l_miny + 1; - int l_nn = (int)a_chain.size(); - - std::vector lp_chain; - - for (int l_i = 0; l_i < l_nn; ++l_i) - lp_chain.push_back(a_chain[l_i]); - - cv::fillPoly(cv::cvarrToMat(lp_mask), lp_chain, cv::Scalar::all(255)); - - //cv_show_image(lp_mask,"hallo1"); - - std::vector lp_dst_3Dpts(l_h * l_w); - - int l_ind = 0; - - for (int l_r = 0; l_r < l_h; ++l_r) - { - for (int l_c = 0; l_c < l_w; ++l_c) - { - lp_dst_3Dpts[l_ind].x = l_c + l_minx; - lp_dst_3Dpts[l_ind].y = l_r + l_miny; - lp_dst_3Dpts[l_ind].z = CV_IMAGE_ELEM(ap_depth, unsigned short, l_r + l_miny, l_c + l_minx); - ++l_ind; - } - } - reprojectPoints(lp_dst_3Dpts, lp_dst_3Dpts, f); - - l_ind = 0; - - for (int l_r = 0; l_r < l_h; ++l_r) - { - for (int l_c = 0; l_c < l_w; ++l_c) - { - float l_dist = (float)(l_n[0] * lp_dst_3Dpts[l_ind].x + l_n[1] * lp_dst_3Dpts[l_ind].y + lp_dst_3Dpts[l_ind].z * l_n[2] + l_n[3]); - - ++l_ind; - - if (CV_IMAGE_ELEM(lp_mask, unsigned char, l_r + l_miny, l_c + l_minx) != 0) - { - if (fabs(l_dist) < std::max(l_thres, (l_max_dist * 2.0f))) - { - for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p) - { - int l_col = cvRound((l_c + l_minx) / (l_p + 1.0)); - int l_row = cvRound((l_r + l_miny) / (l_p + 1.0)); - - CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 0; - } - } - else - { - for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p) - { - int l_col = cvRound((l_c + l_minx) / (l_p + 1.0)); - int l_row = cvRound((l_r + l_miny) / (l_p + 1.0)); - - CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 255; - } - } - } - } - } - cvReleaseImage(&lp_mask); - cvReleaseMat(&lp_pts); - cvReleaseMat(&lp_w); - cvReleaseMat(&lp_v); -} - -void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector& chain, double f) -{ - mask = cv::Mat::zeros(depth.size(), CV_8U); - std::vector tmp; - IplImage mask_ipl = cvIplImage(mask); - tmp.push_back(&mask_ipl); - IplImage depth_ipl = cvIplImage(depth); - filterPlane(&depth_ipl, tmp, chain, f); -} - -vector maskFromTemplate(const std::vector& templates, - int num_modalities, cv::Point offset, cv::Size size, - cv::Mat& mask, cv::Mat& dst) -{ - templateConvexHull(templates, num_modalities, offset, size, mask); - - const int OFFSET = 30; - cv::dilate(mask, mask, cv::Mat(), cv::Point(-1,-1), OFFSET); - cv::Mat mask_copy = mask.clone(); - std::vector > contours; - cv::findContours(mask_copy, contours, cv::RETR_CCOMP, cv::CHAIN_APPROX_SIMPLE); - CV_Assert(contours.size() == 1); - std::vector res = contours[0]; - CV_Assert(res.size() > 2); - std::vector::const_iterator pt1 = res.begin(), pt2 = pt1 + 1; - for(; pt2 != res.end(); ++pt1, ++pt2) - cv::line(dst, *pt1, *pt2, cv::Scalar(0, 255, 0), 2); - return res; -} - -// Adapted from cv_show_angles -cv::Mat displayQuantized(const cv::Mat& quantized) -{ - cv::Mat color(quantized.size(), CV_8UC3); - for (int r = 0; r < quantized.rows; ++r) - { - const uchar* quant_r = quantized.ptr(r); - cv::Vec3b* color_r = color.ptr(r); - - for (int c = 0; c < quantized.cols; ++c) - { - cv::Vec3b& bgr = color_r[c]; - switch (quant_r[c]) - { - case 0: bgr[0]= 0; bgr[1]= 0; bgr[2]= 0; break; - case 1: bgr[0]= 55; bgr[1]= 55; bgr[2]= 55; break; - case 2: bgr[0]= 80; bgr[1]= 80; bgr[2]= 80; break; - case 4: bgr[0]=105; bgr[1]=105; bgr[2]=105; break; - case 8: bgr[0]=130; bgr[1]=130; bgr[2]=130; break; - case 16: bgr[0]=155; bgr[1]=155; bgr[2]=155; break; - case 32: bgr[0]=180; bgr[1]=180; bgr[2]=180; break; - case 64: bgr[0]=205; bgr[1]=205; bgr[2]=205; break; - case 128: bgr[0]=230; bgr[1]=230; bgr[2]=230; break; - case 255: bgr[0]= 0; bgr[1]= 0; bgr[2]=255; break; - default: bgr[0]= 0; bgr[1]=255; bgr[2]= 0; break; - } - } - } - - return color; -} - -// Adapted from cv_line_template::convex_hull -void templateConvexHull(const std::vector& templates, - int num_modalities, cv::Point offset, cv::Size size, - cv::Mat& dst) -{ - std::vector points; - for (int m = 0; m < num_modalities; ++m) - { - for (int i = 0; i < (int)templates[m].features.size(); ++i) - { - cv::linemod::Feature f = templates[m].features[i]; - points.push_back(cv::Point(f.x, f.y) + offset); - } - } - - std::vector hull; - cv::convexHull(points, hull); - - dst = cv::Mat::zeros(size, CV_8U); - const int hull_count = (int)hull.size(); - const cv::Point* hull_pts = &hull[0]; - cv::fillPoly(dst, &hull_pts, &hull_count, 1, cv::Scalar(255)); -} - -void drawResponse(const std::vector& templates, - int num_modalities, cv::Mat& dst, cv::Point offset, int T) -{ - static const cv::Scalar COLORS[5] = { CV_RGB(0, 0, 255), - CV_RGB(0, 255, 0), - CV_RGB(255, 255, 0), - CV_RGB(255, 140, 0), - CV_RGB(255, 0, 0) }; - - for (int m = 0; m < num_modalities; ++m) - { - // NOTE: Original demo recalculated max response for each feature in the TxT - // box around it and chose the display color based on that response. Here - // the display color just depends on the modality. - cv::Scalar color = COLORS[m]; - - for (int i = 0; i < (int)templates[m].features.size(); ++i) - { - cv::linemod::Feature f = templates[m].features[i]; - cv::Point pt(f.x + offset.x, f.y + offset.y); - cv::circle(dst, pt, T / 2, color); - } - } -} diff --git a/modules/sfm/test/test_precomp.hpp b/modules/sfm/test/test_precomp.hpp index bdd9d2549af..fe6e3f46e36 100644 --- a/modules/sfm/test/test_precomp.hpp +++ b/modules/sfm/test/test_precomp.hpp @@ -5,7 +5,6 @@ #define __OPENCV_TEST_PRECOMP_HPP__ #include -#include #include #include diff --git a/modules/xobjdetect/tools/traincascade/imagestorage.cpp b/modules/xobjdetect/tools/traincascade/imagestorage.cpp index f220e5c2b38..6b0711fc546 100644 --- a/modules/xobjdetect/tools/traincascade/imagestorage.cpp +++ b/modules/xobjdetect/tools/traincascade/imagestorage.cpp @@ -1,5 +1,4 @@ #include "opencv2/core.hpp" -#include "opencv2/core/core_c.h" #include "opencv2/imgproc.hpp" #include "opencv2/imgcodecs.hpp" diff --git a/modules/xobjdetect/tools/traincascade/old_ml.hpp b/modules/xobjdetect/tools/traincascade/old_ml.hpp index c457dea6df9..4bb0ee52449 100644 --- a/modules/xobjdetect/tools/traincascade/old_ml.hpp +++ b/modules/xobjdetect/tools/traincascade/old_ml.hpp @@ -45,7 +45,6 @@ # include "opencv2/core.hpp" #endif -#include "opencv2/core/core_c.h" #include #ifdef __cplusplus diff --git a/modules/xobjdetect/tools/traincascade/old_ml_precomp.hpp b/modules/xobjdetect/tools/traincascade/old_ml_precomp.hpp index 6702e5b59f5..1022ac3bfb5 100644 --- a/modules/xobjdetect/tools/traincascade/old_ml_precomp.hpp +++ b/modules/xobjdetect/tools/traincascade/old_ml_precomp.hpp @@ -43,7 +43,6 @@ #include "opencv2/core.hpp" #include "old_ml.hpp" -#include "opencv2/core/core_c.h" #include "opencv2/core/utility.hpp" #include "opencv2/core/private.hpp" diff --git a/modules/xphoto/src/dct_image_denoising.cpp b/modules/xphoto/src/dct_image_denoising.cpp index ae7a0b506ff..88c5cdbd364 100644 --- a/modules/xphoto/src/dct_image_denoising.cpp +++ b/modules/xphoto/src/dct_image_denoising.cpp @@ -47,10 +47,7 @@ #include "opencv2/imgproc.hpp" #include "opencv2/core.hpp" -#include "opencv2/core/core_c.h" - #include "opencv2/core/types.hpp" -#include "opencv2/core/types_c.h" namespace cv { @@ -137,9 +134,9 @@ namespace xphoto { CV_Assert( src.type() == CV_MAKE_TYPE(CV_32F, 3) ); - cv::Matx33f mt(cvInvSqrt(3.0f), cvInvSqrt(3.0f), cvInvSqrt(3.0f), - cvInvSqrt(2.0f), 0.0f, -cvInvSqrt(2.0f), - cvInvSqrt(6.0f), -2.0f*cvInvSqrt(6.0f), cvInvSqrt(6.0f)); + cv::Matx33f mt(pow(3.0f, -0.5f), pow(3.0f, -0.5f), pow(3.0f, -0.5f), + pow(2.0f, -0.5f), 0.0f, -pow(2.0f, -0.5f), + pow(6.0f, -0.5f), -2.0f*pow(6.0f, -0.5f), pow(6.0f, -0.5f)); cv::transform(src, dst, mt);