Skip to content

Latest commit

 

History

History
80 lines (61 loc) · 1.38 KB

framework.md

File metadata and controls

80 lines (61 loc) · 1.38 KB

NLU training pipeline

git push customer.json into customer branch on NLU project.

CI: generate rasa dir build image and push

**need to test scaling multiple customers on 1 machine

CD: argo image watcher docker/portainer? or just k8 rancher?

STT training & inferrence pipeline

upload batch files to s3 upload batch.json to s3://stt/whisper/sourceName/batchName.json

BatchReady: Boolean
Trainer: {
    controllerID: formd | nano | xavier
    output: s3 report path
    wer_filter: {
        test: above | between value,
        train: above | between value
    },
    train_worker: {
        formd: 8
        nano: 2??
        xavier: 48??
    },
    validate_workers: {
        formd: 16
        nano: 2??
        xavier: 60??
    },
    validate_exits: [
        { train: { under: 0.01 }},
        { test: { under: 0.05 }},
        { wer: { under: 5 }},
        { wer: { consequtive: {
            test_steps: { going_up: 2 }
        }}}
        { train: { consequtive: {
            test_steps: { going_up: 2 }
        }}}
        { test: { consequtive: {
            test_steps: { going_up: 2 }
        }}}

    ]
}

Infra

GPU Host machine

- docker python workers for AI stuff
-

CPU Host machine

- docker nodejs workers
- docker rasa?

Infra servers

Nats servers Minio s3 servers or cloud

Gitlab - code repo - image repo - CI solution

CI: