-
Notifications
You must be signed in to change notification settings - Fork 9.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
How to build a semi-supervised data set #12126
Comments
when I run train.py,I get an error where the program breaks at 150 iterations or 300 iterations with an error that it can't find loss_cla. Then I use tools/analysis_tools/browse_dataset.py and it also reports the error: warnings.warn(f'Failed to add {vis_backend.class}, '). |
大佬,求帮助 |
god,help please! |
I also used the raw dataset (not converted to semi-supervised format) for browse_dataset.py It works, but with some warnings: UserWarning: Warning: polygon out of bounds, plotted polygons may not be in the image and UserWarning: Warning: box out of bounds, plotted boxes may not be in the image |
Where does the unlabeled2017 data of semi-supervised data set come from? Is it independent of the train data
At the beginning coco’s dataset:
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ │ ├── image_info_unlabeled2017.json
│ │ │ ├── instances_train2017.json
│ │ │ ├── instances_val2017.json
│ │ ├── test2017
│ │ ├── train2017
│ │ ├── unlabeled2017
│ │ ├── val2017
After processing the semi-supervised json:
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ │ ├── image_info_unlabeled2017.json
│ │ │ ├── instances_train2017.json
│ │ │ ├── instances_val2017.json
│ │ ├── semi_anns
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ │ ├── [email protected]
│ │ ├── test2017
│ │ ├── train2017
│ │ ├── unlabeled2017
│ │ ├── val2017
The data set used at the end:
mmdetection
├── data
│ ├── coco
│ │ ├── annotations
│ │ │ ├── image_info_unlabeled2017.json
│ │ │ ├── instances_train2017.json
│ │ │ ├── instances_unlabeled2017.json
│ │ │ ├── instances_val2017.json
│ │ ├── test2017
│ │ ├── train2017
│ │ ├── unlabeled2017
│ │ ├── val2017
among unlabeled2017,image_info_unlabeled2017.json,instances_unlabeled2017.json,how these file make? And why the semi_anns file disappear?
The text was updated successfully, but these errors were encountered: