Large Language Models (LLMs) have revolutionized the way we interact with text. These models can be used to create summaries of news articles, research papers, technical documents, legal documents, multimedia documents, and other types of documents. Suppose you have a set of documents (PDFs, Notion pages, customer questions, multimedia files, etc.) and you want to summarize the content. In this example use case, we utilize LangChain to implement summarization strategies and facilitate LLM inference using Text Generation Inference.
The architecture of the Document Summarization Application is illustrated below:
The DocSum example is implemented using the component-level microservices defined in GenAIComps. The flow chart below shows the information flow between different microservices for this example.
---
config:
flowchart:
nodeSpacing: 400
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 50px
---
flowchart LR
%% Colors %%
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
style DocSum-MegaService stroke:#000000
%% Subgraphs %%
subgraph DocSum-MegaService["DocSum MegaService "]
direction LR
M2T([Multimedia2text MicroService]):::blue
LLM([LLM MicroService]):::blue
end
subgraph UserInterface[" User Interface "]
direction LR
a([User Input Query]):::orchid
UI([UI server<br>]):::orchid
end
A2T_SRV{{Audio2Text service<br>}}
V2A_SRV{{Video2Audio service<br>}}
WSP_SRV{{whisper service<br>}}
GW([DocSum GateWay<br>]):::orange
%% Questions interaction
direction LR
a[User Document for Summarization] --> UI
UI --> GW
GW <==> DocSum-MegaService
M2T ==> LLM
%% Embedding service flow
direction LR
M2T .-> V2A_SRV
M2T <-.-> A2T_SRV <-.-> WSP_SRV
V2A_SRV .-> A2T_SRV
The table below lists currently available deployment options. They outline in detail the implementation of this example on selected hardware.
Category | Deployment Option | Description |
---|---|---|
On-premise Deployments | Docker Compose (Xeon) | DocSum deployment on Xeon |
Docker Compose (Gaudi) | DocSum deployment on Gaudi | |
Docker Compose (ROCm) | DocSum deployment on AMD ROCm |