Skip to content

Releases: onnx/sklearn-onnx

1.7.1

03 Sep 22:50
7b1c5a8
Compare
Choose a tag to compare

Converters:

  • #494: add converter for BayesianGaussianMixture
  • #492: add converter for IsolationForest
  • #491: converter for trees handles decision_path

Fixes:

  • #510: support DataFrame with CastTransformer
  • #501: fix converter for CalibratedClassifierCV for scikit-learn 0.24

API:

  • #522: add CastRegressor to cast output predictions into float32 in scikit-learn pipeline
  • #505: simplification, remove parameter dtype in convert_sklearn, to_onnx
  • #504: support sub operators in algebra

v1.7.0

05 Jun 09:27
a38be4f
Compare
Choose a tag to compare

Framework and bug fixes:

  • #229: improves LabelBinarizer
  • #327: add option to remove ZipMap operator
  • #382: fix final opset in topology
  • #445: add missing cast when using operator concat
  • #447: add parameters to rename ONNX outputs
  • #451: add white list, black list of operators, the converters can use this information to change the way a model is converted into ONNX
  • #464: fix issues in ArrayFeatureExtractor, OneHotEncoder
  • #466: BaggingClassifier supports zipmap options
  • #473, #460, #458, #426, #422: sklearn-onnx works with onnx development version, works with opset 12, scikit-learn 0.23

New converters:

Patch 1.6.0 for onnx 1.7.0

04 Apr 17:54
Compare
Choose a tag to compare
  • Support for onnx 1.7.0

opset11 + onnx 1.6.0 + onnxruntime 1.0.0

08 Nov 19:20
1a0f314
Compare
Choose a tag to compare
  • #277 GaussianNB
  • #281 BaggingClassifier
  • #282 BaggingRegressor
  • #283 MultiTaskElasticNet, OrthogonalMatchingPursuit, PassiveAggressiveRegressor
  • #284 Clip opset 11
  • #290 PassiveAggressiveClassifier
  • #294 RANSACRegressor
  • #296 RidgeClassifier, RidgeClassifierCV, MultiTaskElasticNetCV and OrthogonalMatchingPursuitCV
  • #293 Batch predictions for nearest neighbors
  • #315 Multi-label support in MLPClassifier converter

v1.5.2

03 Oct 10:04
1413390
Compare
Choose a tag to compare

Bug fixes and features included in this release:

  • New converters for linear models (#269)
  • Enables batch prediction for PolynomialFeatures (#272)
  • Add converter for VotingRegressor (#268)
  • Support lightgbm and xgboost model in scikit-learn pipelines (#262)
  • Fixed column transformer converter to handle remainder=passthrough (#263)
  • Fixes #254 + discrepancies of AdaBoostRegressor (#258)
  • Fixes VotingClassifier discrepencies + enable batch predictions (#261)
  • Modifies GaussianProcessRegressor to use cdist custom operator (#256)
  • Fixed gradient boosting binary classification mismatches (#255)
  • Support transformer_weights in ColumnTransformer converter (#250)
  • Added GridSearchCV converter (#246)

v1.5.1

29 Aug 19:43
Compare
Choose a tag to compare
  1. Support Gaussian Process
  2. Fixing for working with ORT 0.5.
  3. A couple of converter bug fixings, including
    5493c0a Fix KNeighboursClassifier, KNeighboursRegressor and NearestNeighbours converters (#240)
    121b1b4 Fixed NaN probability scores in BernoulliNB converter when alpha=0 (#238)
    11ac5ef Fix a couple of mismatches for every tree in scikit-learn. (#237)
    517b0bb Added Perceptron classifier converter (#236)
    d313123 Fixed LabelEncoder converter (#224)
    f95ce23 Added support for int features in kmeans and mini-batch kmeans converters (#231)
    160200e Fixed gradient boosting classifier converter mismatch on binary dataset (#230)
    d026f89 Fixed label binariser output for binary dataset to align with scikit (#228)
    a889074 Update nightly build (#227)
    33abc90 Fixes #184, #201, fixes GradientBoostingClassifier for multi class (#226)
    aae4f7a GaussianProcessRegressor with float and double in ONNX models (#220)
    2a9399f Fixed Adaboost converter's incorrect results with non-default learning rate (#223)
    5a065b7 Handle transformer_weights hyper-parameter in FeatureUnion (#222)
    6c24406 Fixed gradient boosting converters for different values of init hyper-parameter (#219)
    111e49d Add GaussianMixture (#169)
    b5333f5 Use n_estimators_ when set in GradientBoostingClassifier (#213)
    01b37e3 Fix SVC output (#209)
    edf8eb4 Add more linear models (#216)
    8009430 Install onnxconverter-common from source (#217)
    064eb31 Extend coverage for OneHotEncoder (#188)
    a64cc5b Removed unused methods in _topology (#210)
    65951d5 Support feature input types other than float in function transformer (#208)
    ad1987d Improve OnnxOperator to support more types (#205)
    a760bf0 Support int features in BernoulliNB, MultinomialNB and SGDClassifier <80> (#185)
    6fc5a0e Fix missing node names (#187)
    200cb00 Fixed GradientBoostingRegression model conversion failure with init=zero (#164)
    1204066 Extend unit test coverage (#180)
    4eb0217 Update TfIdf converter to reflect changes in Tokenizer specifications (#178)
    4200f11 Test topology pruning (#179)
    bf5311a Add an example to create a custom converter for a NMF transformer (#167)
    f427759 Review error message raised in exceptions (#173)

v1.5.0

11 Jun 17:06
26baa65
Compare
Choose a tag to compare

skl2onnx version 1.5.0 is now available! This version features ONNX Opset 10 support, increased test and operator coverage, improved documentation, and a new way to write converters.

How do I install the latest skl2onnx package?

pip install skl2onnx --upgrade

Highlights since the last release

  • Update package version and onnxconverter-common dependency to 1.5.0 (#177)
  • New way to write converters based on OnnxOperators (#128)
  • Clean OnnxOperator before converting into ONNX (#149)
  • Increase operator coverage for SciKitLearn
    • Fixed multi-class LR with intercept set to None (#135)
    • Fixes #113, convert OneVsRestClassifier multilabel (#142)
    • Supports passthrough and remainder='passthrough' for ColumnTransformer converter (#152)
    • Support int features in linear and non-linear regressor converter(s) (#154, #157)
    • Fixes #147, fix probabilities when multi_class == 'multinomial' (#150)
  • ONNX Opset 10 updates
    • Fixed slice op to align with opset 10 changes (#116)
    • Update CountVectorizer and TfidfVectorizer (#111)
    • Updated TopK node to align with changes in opset 10 (#91)
  • Extend documentation, clarify error messages
    • Follow Pep8 conventions (#141, #143, #144, #145)
    • Better exceptions, better error message, extend documentation (#146)
  • Increase test coverage
    • Added SGDClassifier converter unit tests (#138)
    • Handle scikit-learn dev version when using StrictVersion in tests (#139)
    • Added unit tests to increase coverage (#140, #170)
    • Add unit tests for investigate.py (#161)
    • Fix issues raised by scikit-learn 0.22. (#175)

v1.4.3

27 Feb 01:39
cfca600
Compare
Choose a tag to compare

the new release for some dependencies.