-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeque.elm
171 lines (145 loc) · 4.28 KB
/
Deque.elm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
module Deque exposing
( Deque, empty, isEmpty
, addFront, removeFront, peekFront
, addBack, removeBack, peekBack
-- new functions for project:
, mapToDeque, map2ToDeque, indexedMap, squishToList
, length, repeat
)
type Deque a = D { front : List a, back : List a }
empty : Deque a
empty = D {front = [], back = []}
isEmpty : Deque a -> Bool
isEmpty q = q == empty
--------------------------------------------------------------------------------
-- FILL IN THE DEFINITIONS BELOW
{-- checking whether either list is empty and, if so,
splitting the other in half and reversing one of the halves.
Overall: Worst case O(n), since we may call a case that calls List.reverse
--}
check : List a -> List a -> Deque a
check f b =
case (List.isEmpty f, List.isEmpty b) of
(True, True) -> -- This case is constant
D {front = [], back = []}
(False, False) -> -- This case is constant
D {front = f, back = b}
(True, False) -> -- This case is linear, since we call List.reverse
let
lenb = (List.length b) // 2
in
D {front = List.reverse (List.drop lenb b)
, back = List.take lenb b
}
(False, True) -> -- This case is linear, since we call List.reverse
let
lenf = (List.length f) // 2
in
D {front = List.take lenf f
, back = List.reverse (List.drop lenf f)
}
addFront : a -> Deque a -> Deque a
addFront x (D {front, back}) =
check (x::front) back
addBack : a -> Deque a -> Deque a
addBack x (D {front, back}) =
check front (x::back)
peekFront : Deque a -> Maybe a
peekFront (D {front, back}) =
case front of
x::_ ->
Just x
_ ->
case back of
--assuming the invariant holds, there is one elt. max in back. So:
y::_ ->
Just y
_ ->
Nothing
peekBack : Deque a -> Maybe a
peekBack (D {front, back}) =
case back of
x::_ ->
Just x
_ ->
case front of
y::_ ->
Just y
_ ->
Nothing
{-- Assume the invariant is guaranteed to hold for the argument upon
which the function is INITIALLY called. ie no need to check inputs --}
removeFront : Deque a -> Maybe (Deque a)
removeFront (D {front, back}) =
case front of
[] ->
case back of
[] ->
Nothing
_ ->
--assuming the invariant holds, there is one elt. max in back. So:
Just (D { front = [], back = [] })
x :: [] ->
Just (check [] back)
x::xs ->
Just (check xs back)
{-- Assume the invariant is guaranteed to hold for the argument upon
which the function is initially called. --}
removeBack : Deque a -> Maybe (Deque a)
removeBack (D {front, back}) =
case back of
[] ->
case front of
[] ->
Nothing
_ ->
--assuming the invariant holds for the initial argument, there is one elt. max in front. So:
Just (D { front = [], back = [] })
x :: [] ->
Just (check front [])
x::xs ->
Just (check front xs)
mapToDeque : (a -> result) -> Deque a -> Deque result
mapToDeque fcn (D {front, back}) =
D { front = List.map fcn front
, back = List.map fcn back }
map2ToDeque : (a -> b -> result) -> Deque a -> Deque b -> Deque result
map2ToDeque fcn dOne dTwo =
let
(fOne, bOne) =
case dOne of
D{front, back} -> (front, back)
(fTwo, bTwo) =
case dTwo of
D{front, back} -> (front, back)
in
D {
front = List.map2 fcn fOne fTwo
, back = List.map2 fcn bOne bTwo
}
indexedMap : Deque a -> Deque (Int, a)
indexedMap (D {front, back}) =
let
addToIndex (i, elt) = ((List.length back) + (i - 1), elt)
in
D {
front = List.reverse (List.map addToIndex (List.indexedMap Tuple.pair (List.reverse front)))
--todo fix back so that it's faster...
, back = (List.indexedMap Tuple.pair back)
}
-- deal with calls to other libraries that require a list:
squishToList : Deque a -> List a
squishToList (D {front, back}) =
List.append front (List.reverse back)
repeat : Int -> a -> Deque a
repeat i elt =
let
repeat_ : Int -> Deque a -> Deque a
repeat_ i_ currD =
if i_ <= 0 then currD
else repeat_ (i_ - 1) (addFront elt currD)
in
repeat_ i empty
length : Deque a -> Int
length (D{front, back}) =
(List.length front) + (List.length back)