-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenData.py
91 lines (71 loc) · 4.54 KB
/
genData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
import matplotlib.pyplot as plt
import seaborn as sns
# This class takes in the unfiltered data, and reduces it for use by extracting the total number of features the user has specified
class Data:
def __init__(self, run=False, maxFeat=3):
self.run = run
self.maxFeat = maxFeat
if (run == False) & (maxFeat !=3): # Raises error in the case when we select the number of features being not 3 and the feature updater is off
raise ValueError("You shall not pass! Cannot select number of features without making run equal to True")
def importData(self):
removeIndices = ["Rk","GP", "W", "L", "OL", "PTS", "PTS%","SOW","SOL","SRS","GA","GF", "SOS"] # Define indices that influence ranking
combinedData = pd.read_csv("The PLAYOFFS - Data.csv") # Import data
combinedData.iloc[:,1] = combinedData.iloc[:,1].map(lambda x: x.strip('*')) # Some datasets have a *, remove them
combinedData = combinedData.set_index("Team") # Set the team as the index
combinedData = combinedData.drop(removeIndices,axis=1) # Remove the indices
combinedData = combinedData.sample(frac=1, random_state=421) # Shuffle the dataset
unFilteredtrainData = combinedData.iloc[:,:-1] # Seperate the training data from the training targets
trainTargets = combinedData.iloc[:,-1]
unFilteredtestData = pd.read_csv("The PLAYOFFS - 2018.csv") # Import test set, which is this year's data
unFilteredtestData.iloc[:,1] = unFilteredtestData.iloc[:,1].map(lambda x: x.strip('*'))
unFilteredtestData = unFilteredtestData.set_index("Team")
unFilteredtestData = unFilteredtestData.drop(removeIndices,axis=1)
unFilteredtestData = unFilteredtestData.sample(frac=1, random_state=421)
return unFilteredtrainData, trainTargets, unFilteredtestData
def normalizer(self,X): # Normalize columns
return (X - X.mean(axis=0))/X.std(axis=0)
def convertOneHot(self,target): # Converts to OneHot Matrix
oneTarget = np.zeros((target.shape[0], 2))
oneTarget[np.arange(target.shape[0]), target] = 1
return oneTarget
def featureExtractor(self): # Selects the top X features
unFilteredtrainData, trainTargets, unFilteredtestData = self.importData()
np.random.seed(421)
xTrain, xValid, yTrain, yValid = train_test_split(unFilteredtrainData, trainTargets, test_size=0.2) # Splits trianing set into 80% training and 20% test
if self.run: # If we want to find the top X features, run this loop. Uses random forest classifier to find the most influential features
maxAcc = 0
for i in range(1000):
clf = RandomForestClassifier(n_estimators=19, max_depth=3)
clf = clf.fit(xTrain,yTrain)
featureImportance = pd.Series(clf.feature_importances_,index=list(xTrain)).sort_values(ascending=False)
yPred=clf.predict(xValid)
accuracy = metrics.accuracy_score(yValid, yPred)
if accuracy > maxAcc:
maxAcc = accuracy
maxImportance = featureImportance
sns.barplot(x=maxImportance, y=maxImportance.index) # Visualize the important features
plt.title("Which Features Are Important?", fontsize = 32)
plt.xlabel('Importance Scale', fontsize = 28)
plt.ylabel('Features', fontsize = 28)
plt.xticks(fontsize = 20)
plt.yticks(fontsize = 20)
plt.show()
# Narrow dataset to just the important features
trainData = xTrain.filter(maxImportance[0:self.maxFeat].index)
validData = xValid.filter(maxImportance[0:self.maxFeat].index)
testData = unFilteredtestData.filter(maxImportance[0:self.maxFeat].index)
else:
# If feature run is not True, then just return pre-selected important features set below
trainData = xTrain.filter(['SV%','EVGF','EVGA'])
validData = xValid.filter(['SV%','EVGF','EVGA'])
testData = unFilteredtestData.filter(['SV%', 'EVGF','EVGA'])
# Normalize the data before returning
trainData = self.normalizer(trainData)
validData = self.normalizer(validData)
testData = self.normalizer(testData)
return trainData, yTrain, validData, yValid, testData