-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharbock.py
316 lines (241 loc) · 15.5 KB
/
arbock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/env python
""" arbock.py: Main script to run ARBOCK """
from arbock.config import params, paths
from arbock.model.decision_set_classifier import DecisionSetClassifier
from arbock.model.model_analytics import PredictionAnalytics, PerformanceAnalytics, ExplanationAnalytics, TrainingAnalytics
from arbock.path_traversal.metapath_extracter import MetapathExtracter
from arbock.utils.parallelizer import SparkParallelizer, MultiprocessingParallelizer
from arbock.data_selection.sample_parser import parse_gene_pair_file, parse_gene_pair
from arbock.data_selection.data_retriever import get_trainset_and_holdout, get_positive_pairs_from_kg
from arbock.kg.bock import *
from arbock.pipelines import mine_relevant_rules, train_decision_set_model
from arbock.model import performance_evaluation
from arbock.output.prediction_file_writer import write_predictions
from arbock.output.explanation_subgraph_writer import write_explanation_subgraph
import os
import argparse
import click
from pathlib import Path
from sklearn.model_selection import StratifiedKFold
import pandas as pd
import logging
__author__ = "Alexandre Renaux"
__copyright__ = "Copyright (c) 2023 Alexandre Renaux - Universite Libre de Bruxelles - Vrije Universiteit Brussel"
__license__ = "MIT"
__version__ = "1.0.1"
logger = logging.getLogger(__name__)
def parse_args():
'''
Parse command line arguments
'''
parser = argparse.ArgumentParser(description='Utility to predict gene pairs with BOCK mined rules and evaluate the model performances')
parser.add_argument('action', nargs='?', action="store")
parser.add_argument('--kg', action="store", dest="kg_path", default=paths.default_paths.kg_graphml)
parser.add_argument('--model', action="store", dest="model_path")
## Argument for oredicting given gene pairs via pretrained model
parser.add_argument('--input', action="store", dest="input_to_predict")
parser.add_argument('--gene_id_format', action="store", dest="gene_id_format", default="HGNC")
parser.add_argument('--gene_id_delim', action="store", dest="gene_id_delim", default="\t")
parser.add_argument('--prediction_output_folder', action="store", dest="prediction_output_folder", default=".")
## Arguments for retraining and evaluation
parser.add_argument('--holdout_positive_size', action="store", dest="holdout_positive_size", default=params.default_params.holdout_positive_size, type=int)
parser.add_argument('--neutral_pairs', action="store", dest="neutral_pairs_path", default=paths.default_paths.neutral_pairs_path)
# Parameters (note that you can change defaults ones via config/params.py
parser.add_argument('--minsup_ratio', action="store", dest="minsup_ratio", default=params.default_params.minsup_ratio, type=float)
parser.add_argument('--path_cutoff', action="store", dest="path_cutoff", default=params.default_params.path_cutoff, type=int)
parser.add_argument('--max_rule_length', action="store", dest="max_rule_length", default=params.default_params.max_rule_length, type=int)
parser.add_argument('--alpha', action="store", dest="alpha", default=params.default_params.alpha, type=float)
parser.add_argument('--excl_node_type', action="append", dest="excl_node_types", default=params.default_params.excl_node_types)
## QOL options
parser.add_argument("--analysis_name", action="store", dest="analysis_name")
parser.add_argument("--analytics_output", action="store", dest="analytics_output", default=paths.default_paths.model_analytics_folder)
parser.add_argument("--update_step_caches", action="store_true", dest="update_step_caches", default=False)
parser.add_argument("--update_kg_cache", action="store_true", dest="update_kg_cache", default=False)
## Parallelization options
parser.add_argument("--spark_mode", action="store", dest="spark_mode", default=False)
parser.add_argument("--cpu_cores", action="store", dest="cpu_cores", default=0)
args = parser.parse_args()
return args
def main():
'''
Main function to run ARBOCK
'''
args = parse_args()
if args.action == "predict":
predict(**vars(args))
elif args.action == "explain":
explain(**vars(args))
elif args.action == "train":
train(**vars(args))
elif args.action == "test":
test(**vars(args))
elif args.action == "evaluate":
evaluate(**vars(args))
else:
raise Exception(f"Unknown action {args.action}. Command should take the form: predictor.py <predict, train, evaluate, explain, test> [OPTIONS]")
def get_algo_params(**kwargs):
'''
Get the algorithm parameters from the command line arguments
'''
# First get the default parameters
algo_param_names = {var:value for var, value in vars(params.default_params).items() if not var.startswith("__")}
# Get command line arguments and use default if not set
param_dict = {p:kwargs.get(p,v) for p,v in algo_param_names.items()}
# Special case of excl_node_types
param_dict["excl_node_types"] = {"OligogenicCombination", "Disease"}.union(param_dict["excl_node_types"])
return param_dict
def parallel_processing_context(**kwargs):
'''
Get the parallel processing context (either based on Spark or Multiprocessing)
'''
spark_mode = kwargs.get('spark_mode', False)
cpu_cores = int(kwargs.get('cpu_cores', 0))
return SparkParallelizer(master=spark_mode) if spark_mode else MultiprocessingParallelizer(cpu_cores=cpu_cores)
def train(**kwargs):
'''
Train a decision set model
'''
kg_path = kwargs['kg_path']
model_path = kwargs['model_path']
holdout_positive_size = kwargs.get("holdout_positive_size", params.default_params.holdout_positive_size)
neutral_pairs_path = kwargs.get("neutral_pairs_path", paths.default_paths.neutral_pairs_path)
update_step_caches = kwargs.get("update_step_caches", False)
update_kg_cache = kwargs.get("update_kg_cache", False)
algo_params = get_algo_params(**kwargs)
cpu_cores = int(kwargs.get('cpu_cores', 0))
if os.path.isfile(model_path):
print(f"Model at {model_path} already exists.")
if click.confirm("Do you wish to overwrite it?", default=True):
logger.info(f"Model will be overwritten and saved in: {model_path}")
else:
print("Set the --model option to change the path where the model is saved.")
exit(1)
model_name = os.path.basename(Path(model_path).with_suffix(""))
kg = BOCK(kg_path, update_cache=update_kg_cache)
positives, negatives, holdout_positives, sample_to_weight, sample_to_class = get_trainset_and_holdout(kg, neutral_pairs_path, holdout_positive_size)
with parallel_processing_context(**kwargs) as pproc:
metapath_dict = MetapathExtracter(algo_params).run(positives + negatives + holdout_positives, kg, model_name, pproc=pproc, update_cache=update_step_caches)
relevant_rules, elapsed_time = mine_relevant_rules(positives, negatives, metapath_dict, sample_to_weight, algo_params, model_name, pproc=pproc, update_cache=update_step_caches)
decision_set_classifier = train_decision_set_model(relevant_rules, positives, negatives, sample_to_weight, algo_params, cpu_cores=cpu_cores)
decision_set_classifier.persist(model_path)
def predict(**kwargs):
'''
Use a decision set model to predict the pathogenicity of gene pairs
'''
kg_path = kwargs['kg_path']
pretrained_model_path = kwargs['model_path']
input_to_predict = kwargs['input_to_predict']
gene_id_format = kwargs.get('gene_id_format', "HGNC")
gene_id_delim = kwargs.get('gene_id_delim', '\t')
prediction_output_folder = kwargs['prediction_output_folder']
analysis_name = kwargs.get('analysis_name')
update_step_caches = kwargs.get("update_step_caches", False)
update_kg_cache = kwargs.get("update_kg_cache", False)
algo_params = get_algo_params(**kwargs)
kg = BOCK(kg_path, update_cache=update_kg_cache)
if analysis_name is None:
input_base_name = os.path.basename(Path(input_to_predict).with_suffix(""))
model_base_name = os.path.basename(Path(pretrained_model_path).with_suffix(""))
analysis_name = f"{input_base_name}_predicted_from_{model_base_name}"
gene_pairs_w, unresolved_gene_pairs = parse_gene_pair_file(input_to_predict, kg, input_gene_id_format=gene_id_format, delimiter=gene_id_delim, header_gene_cols=None, header_weight_col=None)
with parallel_processing_context(**kwargs) as pproc:
metapath_dict = MetapathExtracter(algo_params).run(gene_pairs_w, kg, analysis_name, pproc=pproc, update_cache=update_step_caches)
decision_set_classifier = DecisionSetClassifier.instanciate(pretrained_model_path)
ordered_samples, predict_probas, explanations = decision_set_classifier.predict_and_explain(gene_pairs_w, metapath_dict)
write_predictions(kg, ordered_samples, predict_probas, unresolved_gene_pairs, prediction_output_folder, analysis_name)
def explain(**kwargs):
'''
Explain predictions (rules and subgraphs) using a decision set model
'''
kg_path = kwargs['kg_path']
pretrained_model_path = kwargs['model_path']
input_to_predict = kwargs['input_to_predict']
gene_id_format = kwargs.get('gene_id_format', "HGNC")
prediction_output_folder = kwargs['prediction_output_folder']
update_kg_cache = kwargs.get("update_kg_cache", False)
algo_params = get_algo_params(**kwargs)
kg = BOCK(kg_path, update_cache=update_kg_cache)
gene_ensg_pair = parse_gene_pair(input_to_predict, kg, gene_id_format, separator=",")
gene_pair = "-".join(kg.convert_to_gene_name(gene_ensg_pair))
with parallel_processing_context(**kwargs) as pproc:
metapath_dict = MetapathExtracter(algo_params).run([gene_ensg_pair], kg, None, pproc=pproc, update_cache=True)
decision_set_classifier = DecisionSetClassifier.instanciate(pretrained_model_path)
ordered_samples, predict_probas, explanations = decision_set_classifier.predict_and_explain([gene_ensg_pair], metapath_dict)
positive_predicted_probability = predict_probas[0][1]
print(f"Results for {gene_pair}")
print(f"Pathogenicity prediction probability: {'%0.2f' % positive_predicted_probability}")
rules = explanations[0]
if rules:
write_explanation_subgraph(rules, gene_ensg_pair, metapath_dict, kg, prediction_output_folder)
def evaluate(**kwargs):
'''
Evaluate the ARBOCK approach (rule mining + decision set model training) using a stratified 10-fold cross validation
'''
kg_path = kwargs['kg_path']
holdout_positive_size = kwargs.get("holdout_positive_size", params.default_params.holdout_positive_size)
neutral_pairs_path = kwargs.get("neutral_pairs_path", paths.default_paths.neutral_pairs_path)
analytics_output_folder = kwargs.get('analytics_output', paths.default_paths.model_analytics_folder)
update_step_caches = kwargs.get("update_step_caches", False)
update_kg_cache = kwargs.get("update_kg_cache", False)
algo_params = get_algo_params(**kwargs)
cpu_cores = int(kwargs.get('cpu_cores', 0))
analysis_name = "evaluate_model"
n_folds = 10
test_prediction_analytics = test_performance_analytics = test_explanation_analytics = train_analytics = None
if analytics_output_folder:
train_analytics = TrainingAnalytics(analytics_output_folder, analysis_name)
test_prediction_analytics = PredictionAnalytics(analytics_output_folder, analysis_name)
test_performance_analytics = PerformanceAnalytics(analytics_output_folder, analysis_name)
test_explanation_analytics = ExplanationAnalytics(analytics_output_folder, analysis_name)
kg = BOCK(kg_path, update_cache=update_kg_cache)
positives, negatives, holdout_positives, sample_to_weight, sample_to_class = get_trainset_and_holdout(kg, neutral_pairs_path, holdout_positive_size)
training_instances = positives + negatives
training_instances_to_label = {s:c for s,c in sample_to_class.items() if s in training_instances}
with parallel_processing_context(**kwargs) as pproc:
metapath_dict = MetapathExtracter(algo_params).run(training_instances, kg, analysis_name, pproc=pproc, update_cache=update_step_caches)
sample_to_class_df = pd.DataFrame.from_dict(training_instances_to_label, orient='index', columns=['label'])
X = sample_to_class_df.drop(["label"], axis=1)
y = sample_to_class_df["label"]
skf = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=42)
for fold_idx, train_test in enumerate(skf.split(X, y)):
logger.info(f"-- Fold {fold_idx + 1} / {n_folds} ...")
fold_sample_name = f"{analysis_name}_{fold_idx}"
train_index, test_index = train_test
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
fold_train_positives = list(set(X_train.index).intersection(positives))
fold_train_negatives = list(set(X_train.index).intersection(negatives))
relevant_rules, elapsed_time = mine_relevant_rules(fold_train_positives, fold_train_negatives, metapath_dict, sample_to_weight, algo_params, fold_sample_name, pproc=pproc, update_cache=update_step_caches)
model = train_decision_set_model(relevant_rules, fold_train_positives, fold_train_negatives, sample_to_weight, algo_params, cpu_cores=cpu_cores)
sample_indices, sample_weights, predictions, sample_y, performances, explanations = performance_evaluation.apply_model(model, y_test, sample_to_weight, metapath_dict)
if analytics_output_folder:
train_analytics.extract_model_analytics(model, algo_params, fold_idx)
test_performance_analytics.extract_performances(performances, algo_params, fold_idx)
test_prediction_analytics.extract_predictions(sample_indices, sample_weights, predictions, sample_y, algo_params, fold_idx)
test_explanation_analytics.extract_explanations(sample_indices, sample_weights, explanations, algo_params, fold_idx)
def test(**kwargs):
'''
Test the ARBOCK approach (rule mining + decision set model training) on a holdout set
'''
kg_path = kwargs['kg_path']
model_path = kwargs['model_path']
holdout_positive_size = kwargs.get("holdout_positive_size", params.default_params.holdout_positive_size)
prediction_output_folder = kwargs['prediction_output_folder']
update_step_caches = kwargs.get("update_step_caches", False)
update_kg_cache = kwargs.get("update_kg_cache", False)
algo_params = get_algo_params(**kwargs)
kg = BOCK(kg_path, update_cache=update_kg_cache)
positives, holdout_positives, gene_pairs_to_disease_ids = get_positive_pairs_from_kg(kg, holdout_positive_size=holdout_positive_size)
model_base_name = os.path.basename(Path(model_path).with_suffix(""))
analysis_name = f"test_set_{model_base_name}"
with parallel_processing_context(**kwargs) as pproc:
metapath_dict = MetapathExtracter(algo_params).run(holdout_positives, kg, analysis_name, pproc=pproc, update_cache=update_step_caches)
decision_set_classifier = DecisionSetClassifier.instanciate(model_path)
ordered_samples, predict_probas, explanations = decision_set_classifier.predict_and_explain(holdout_positives, metapath_dict)
write_predictions(kg, ordered_samples, predict_probas, None, prediction_output_folder, analysis_name)
for ensg_pair, explanation in zip(ordered_samples, explanations):
if explanation:
write_explanation_subgraph(explanation, ensg_pair, metapath_dict, kg, prediction_output_folder)
if __name__ == '__main__':
logging.basicConfig(level="INFO")
main()