forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod.rs
939 lines (822 loc) · 30.8 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! An interpreter for MIR used in CTFE and by miri
#[macro_export]
macro_rules! err {
($($tt:tt)*) => { Err($crate::mir::interpret::EvalErrorKind::$($tt)*.into()) };
}
mod error;
mod value;
pub use self::error::{
EvalError, EvalResult, EvalErrorKind, AssertMessage, ConstEvalErr, struct_error,
FrameInfo, ConstEvalResult,
};
pub use self::value::{Scalar, ConstValue};
use std::fmt;
use mir;
use hir::def_id::DefId;
use ty::{self, TyCtxt, Instance, Ty, ParamEnvAnd};
use ty::layout::{self, Align, HasDataLayout, Size};
use middle::region;
use std::iter;
use std::io;
use std::ops::{Deref, DerefMut};
use std::cmp;
use std::hash::{Hash, Hasher};
use syntax::ast::Mutability;
use rustc_serialize::{Encoder, Decodable, Encodable};
use rustc_data_structures::sorted_map::SortedMap;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::{Lock as Mutex, HashMapExt};
use rustc_data_structures::tiny_list::TinyList;
use byteorder::{WriteBytesExt, ReadBytesExt, LittleEndian, BigEndian};
use ty::codec::TyDecoder;
use std::sync::atomic::{AtomicU32, Ordering};
use std::num::NonZeroU32;
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum Lock {
NoLock,
WriteLock(DynamicLifetime),
/// This should never be empty -- that would be a read lock held and nobody
/// there to release it...
ReadLock(Vec<DynamicLifetime>),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct DynamicLifetime {
pub frame: usize,
pub region: Option<region::Scope>, // "None" indicates "until the function ends"
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum AccessKind {
Read,
Write,
}
/// Uniquely identifies a specific constant or static.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, RustcEncodable, RustcDecodable)]
pub struct GlobalId<'tcx> {
/// For a constant or static, the `Instance` of the item itself.
/// For a promoted global, the `Instance` of the function they belong to.
pub instance: ty::Instance<'tcx>,
/// The index for promoted globals within their function's `Mir`.
pub promoted: Option<mir::Promoted>,
}
////////////////////////////////////////////////////////////////////////////////
// Pointer arithmetic
////////////////////////////////////////////////////////////////////////////////
pub trait PointerArithmetic: layout::HasDataLayout {
// These are not supposed to be overridden.
#[inline(always)]
fn pointer_size(self) -> Size {
self.data_layout().pointer_size
}
//// Trunace the given value to the pointer size; also return whether there was an overflow
fn truncate_to_ptr(self, val: u128) -> (u64, bool) {
let max_ptr_plus_1 = 1u128 << self.pointer_size().bits();
((val % max_ptr_plus_1) as u64, val >= max_ptr_plus_1)
}
// Overflow checking only works properly on the range from -u64 to +u64.
fn overflowing_signed_offset(self, val: u64, i: i128) -> (u64, bool) {
// FIXME: is it possible to over/underflow here?
if i < 0 {
// trickery to ensure that i64::min_value() works fine
// this formula only works for true negative values, it panics for zero!
let n = u64::max_value() - (i as u64) + 1;
val.overflowing_sub(n)
} else {
self.overflowing_offset(val, i as u64)
}
}
fn overflowing_offset(self, val: u64, i: u64) -> (u64, bool) {
let (res, over1) = val.overflowing_add(i);
let (res, over2) = self.truncate_to_ptr(res as u128);
(res, over1 || over2)
}
fn signed_offset<'tcx>(self, val: u64, i: i64) -> EvalResult<'tcx, u64> {
let (res, over) = self.overflowing_signed_offset(val, i as i128);
if over { err!(Overflow(mir::BinOp::Add)) } else { Ok(res) }
}
fn offset<'tcx>(self, val: u64, i: u64) -> EvalResult<'tcx, u64> {
let (res, over) = self.overflowing_offset(val, i);
if over { err!(Overflow(mir::BinOp::Add)) } else { Ok(res) }
}
fn wrapping_signed_offset(self, val: u64, i: i64) -> u64 {
self.overflowing_signed_offset(val, i as i128).0
}
}
impl<T: layout::HasDataLayout> PointerArithmetic for T {}
/// Pointer is generic over the type that represents a reference to Allocations,
/// thus making it possible for the most convenient representation to be used in
/// each context.
///
/// Defaults to the index based and loosely coupled AllocId.
///
/// Pointer is also generic over the `Tag` associated with each pointer,
/// which is used to do provenance tracking during execution.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, RustcEncodable, RustcDecodable, Hash)]
pub struct Pointer<Tag=(),Id=AllocId> {
pub alloc_id: Id,
pub offset: Size,
pub tag: Tag,
}
/// Produces a `Pointer` which points to the beginning of the Allocation
impl From<AllocId> for Pointer {
#[inline(always)]
fn from(alloc_id: AllocId) -> Self {
Pointer::new(alloc_id, Size::ZERO)
}
}
impl<'tcx> Pointer<()> {
#[inline(always)]
pub fn new(alloc_id: AllocId, offset: Size) -> Self {
Pointer { alloc_id, offset, tag: () }
}
#[inline(always)]
pub fn with_default_tag<Tag>(self) -> Pointer<Tag>
where Tag: Default
{
Pointer::new_with_tag(self.alloc_id, self.offset, Default::default())
}
}
impl<'tcx, Tag> Pointer<Tag> {
#[inline(always)]
pub fn new_with_tag(alloc_id: AllocId, offset: Size, tag: Tag) -> Self {
Pointer { alloc_id, offset, tag }
}
pub fn wrapping_signed_offset<C: HasDataLayout>(self, i: i64, cx: C) -> Self {
Pointer::new_with_tag(
self.alloc_id,
Size::from_bytes(cx.data_layout().wrapping_signed_offset(self.offset.bytes(), i)),
self.tag,
)
}
pub fn overflowing_signed_offset<C: HasDataLayout>(self, i: i128, cx: C) -> (Self, bool) {
let (res, over) = cx.data_layout().overflowing_signed_offset(self.offset.bytes(), i);
(Pointer::new_with_tag(self.alloc_id, Size::from_bytes(res), self.tag), over)
}
pub fn signed_offset<C: HasDataLayout>(self, i: i64, cx: C) -> EvalResult<'tcx, Self> {
Ok(Pointer::new_with_tag(
self.alloc_id,
Size::from_bytes(cx.data_layout().signed_offset(self.offset.bytes(), i)?),
self.tag,
))
}
pub fn overflowing_offset<C: HasDataLayout>(self, i: Size, cx: C) -> (Self, bool) {
let (res, over) = cx.data_layout().overflowing_offset(self.offset.bytes(), i.bytes());
(Pointer::new_with_tag(self.alloc_id, Size::from_bytes(res), self.tag), over)
}
pub fn offset<C: HasDataLayout>(self, i: Size, cx: C) -> EvalResult<'tcx, Self> {
Ok(Pointer::new_with_tag(
self.alloc_id,
Size::from_bytes(cx.data_layout().offset(self.offset.bytes(), i.bytes())?),
self.tag
))
}
#[inline]
pub fn erase_tag(self) -> Pointer {
Pointer { alloc_id: self.alloc_id, offset: self.offset, tag: () }
}
}
#[derive(Copy, Clone, Debug)]
pub struct AllocId(pub u64);
impl Eq for AllocId {}
impl Hash for AllocId {
fn hash<H: Hasher>(&self, state: &mut H) {
ty::tls::with(|tcx| {
let alloc_type = tcx.alloc_map.lock().get(*self);
match alloc_type {
Some(alloc_type) => alloc_type.hash(state),
None => self.0.hash(state),
}
})
}
}
impl PartialEq for AllocId {
fn eq(&self, other: &Self) -> bool {
ty::tls::with(|tcx| {
let (s, o) = {
let map = tcx.alloc_map.lock();
(map.get(*self), map.get(*other))
};
s == o
})
}
}
impl Ord for AllocId {
fn cmp(&self, other: &Self) -> cmp::Ordering {
match self.partial_cmp(other) {
Some(ord) => ord,
None => self.0.cmp(&other.0)
}
}
}
impl PartialOrd for AllocId {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
ty::tls::with(|tcx| {
let (s, o) = {
let map = tcx.alloc_map.lock();
(map.get(*self)?, map.get(*other)?)
};
s.partial_cmp(&o)
})
}
}
impl ::rustc_serialize::UseSpecializedEncodable for AllocId {}
impl ::rustc_serialize::UseSpecializedDecodable for AllocId {}
#[derive(RustcDecodable, RustcEncodable)]
enum AllocKind {
Alloc,
Fn,
Static,
}
pub fn specialized_encode_alloc_id<
'a, 'tcx,
E: Encoder,
>(
encoder: &mut E,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
alloc_id: AllocId,
) -> Result<(), E::Error> {
let alloc_type: AllocType<'tcx, &'tcx Allocation> =
tcx.alloc_map.lock().get(alloc_id).expect("no value for AllocId");
match alloc_type {
AllocType::Memory(alloc) => {
trace!("encoding {:?} with {:#?}", alloc_id, alloc);
AllocKind::Alloc.encode(encoder)?;
alloc.encode(encoder)?;
}
AllocType::Function(fn_instance) => {
trace!("encoding {:?} with {:#?}", alloc_id, fn_instance);
AllocKind::Fn.encode(encoder)?;
fn_instance.encode(encoder)?;
}
AllocType::Static(did) => {
// referring to statics doesn't need to know about their allocations,
// just about its DefId
AllocKind::Static.encode(encoder)?;
did.encode(encoder)?;
}
}
Ok(())
}
// Used to avoid infinite recursion when decoding cyclic allocations.
type DecodingSessionId = NonZeroU32;
#[derive(Clone)]
enum State {
Empty,
InProgressNonAlloc(TinyList<DecodingSessionId>),
InProgress(TinyList<DecodingSessionId>, AllocId),
Done(AllocId),
}
pub struct AllocDecodingState {
// For each AllocId we keep track of which decoding state it's currently in.
decoding_state: Vec<Mutex<State>>,
// The offsets of each allocation in the data stream.
data_offsets: Vec<u32>,
}
impl AllocDecodingState {
pub fn new_decoding_session(&self) -> AllocDecodingSession<'_> {
static DECODER_SESSION_ID: AtomicU32 = AtomicU32::new(0);
let counter = DECODER_SESSION_ID.fetch_add(1, Ordering::SeqCst);
// Make sure this is never zero
let session_id = DecodingSessionId::new((counter & 0x7FFFFFFF) + 1).unwrap();
AllocDecodingSession {
state: self,
session_id,
}
}
pub fn new(data_offsets: Vec<u32>) -> AllocDecodingState {
let decoding_state: Vec<_> = ::std::iter::repeat(Mutex::new(State::Empty))
.take(data_offsets.len())
.collect();
AllocDecodingState {
decoding_state: decoding_state,
data_offsets,
}
}
}
#[derive(Copy, Clone)]
pub struct AllocDecodingSession<'s> {
state: &'s AllocDecodingState,
session_id: DecodingSessionId,
}
impl<'s> AllocDecodingSession<'s> {
// Decodes an AllocId in a thread-safe way.
pub fn decode_alloc_id<'a, 'tcx, D>(&self,
decoder: &mut D)
-> Result<AllocId, D::Error>
where D: TyDecoder<'a, 'tcx>,
'tcx: 'a,
{
// Read the index of the allocation
let idx = decoder.read_u32()? as usize;
let pos = self.state.data_offsets[idx] as usize;
// Decode the AllocKind now so that we know if we have to reserve an
// AllocId.
let (alloc_kind, pos) = decoder.with_position(pos, |decoder| {
let alloc_kind = AllocKind::decode(decoder)?;
Ok((alloc_kind, decoder.position()))
})?;
// Check the decoding state, see if it's already decoded or if we should
// decode it here.
let alloc_id = {
let mut entry = self.state.decoding_state[idx].lock();
match *entry {
State::Done(alloc_id) => {
return Ok(alloc_id);
}
ref mut entry @ State::Empty => {
// We are allowed to decode
match alloc_kind {
AllocKind::Alloc => {
// If this is an allocation, we need to reserve an
// AllocId so we can decode cyclic graphs.
let alloc_id = decoder.tcx().alloc_map.lock().reserve();
*entry = State::InProgress(
TinyList::new_single(self.session_id),
alloc_id);
Some(alloc_id)
},
AllocKind::Fn | AllocKind::Static => {
// Fns and statics cannot be cyclic and their AllocId
// is determined later by interning
*entry = State::InProgressNonAlloc(
TinyList::new_single(self.session_id));
None
}
}
}
State::InProgressNonAlloc(ref mut sessions) => {
if sessions.contains(&self.session_id) {
bug!("This should be unreachable")
} else {
// Start decoding concurrently
sessions.insert(self.session_id);
None
}
}
State::InProgress(ref mut sessions, alloc_id) => {
if sessions.contains(&self.session_id) {
// Don't recurse.
return Ok(alloc_id)
} else {
// Start decoding concurrently
sessions.insert(self.session_id);
Some(alloc_id)
}
}
}
};
// Now decode the actual data
let alloc_id = decoder.with_position(pos, |decoder| {
match alloc_kind {
AllocKind::Alloc => {
let allocation = <&'tcx Allocation as Decodable>::decode(decoder)?;
// We already have a reserved AllocId.
let alloc_id = alloc_id.unwrap();
trace!("decoded alloc {:?} {:#?}", alloc_id, allocation);
decoder.tcx().alloc_map.lock().set_id_same_memory(alloc_id, allocation);
Ok(alloc_id)
},
AllocKind::Fn => {
assert!(alloc_id.is_none());
trace!("creating fn alloc id");
let instance = ty::Instance::decode(decoder)?;
trace!("decoded fn alloc instance: {:?}", instance);
let alloc_id = decoder.tcx().alloc_map.lock().create_fn_alloc(instance);
Ok(alloc_id)
},
AllocKind::Static => {
assert!(alloc_id.is_none());
trace!("creating extern static alloc id at");
let did = DefId::decode(decoder)?;
let alloc_id = decoder.tcx().alloc_map.lock().intern_static(did);
Ok(alloc_id)
}
}
})?;
self.state.decoding_state[idx].with_lock(|entry| {
*entry = State::Done(alloc_id);
});
Ok(alloc_id)
}
}
impl fmt::Display for AllocId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, RustcDecodable, RustcEncodable)]
pub enum AllocType<'tcx, M> {
/// The alloc id is used as a function pointer
Function(Instance<'tcx>),
/// The alloc id points to a "lazy" static variable that did not get computed (yet).
/// This is also used to break the cycle in recursive statics.
Static(DefId),
/// The alloc id points to memory
Memory(M)
}
pub struct AllocMap<'tcx, M> {
/// Lets you know what an AllocId refers to
id_to_type: FxHashMap<u64, AllocType<'tcx, M>>,
/// Used to ensure that functions and statics only get one associated AllocId
type_interner: FxHashMap<AllocType<'tcx, M>, AllocId>,
/// The AllocId to assign to the next requested id.
/// Always incremented, never gets smaller.
next_id: AllocId,
}
impl<'tcx, M: fmt::Debug + Eq + Hash + Clone> AllocMap<'tcx, M> {
pub fn new() -> Self {
AllocMap {
id_to_type: Default::default(),
type_interner: Default::default(),
next_id: AllocId(0),
}
}
/// obtains a new allocation ID that can be referenced but does not
/// yet have an allocation backing it.
pub fn reserve(
&mut self,
) -> AllocId {
let next = self.next_id;
self.next_id.0 = self.next_id.0
.checked_add(1)
.expect("You overflowed a u64 by incrementing by 1... \
You've just earned yourself a free drink if we ever meet. \
Seriously, how did you do that?!");
next
}
fn intern(&mut self, alloc_type: AllocType<'tcx, M>) -> AllocId {
if let Some(&alloc_id) = self.type_interner.get(&alloc_type) {
return alloc_id;
}
let id = self.reserve();
debug!("creating alloc_type {:?} with id {}", alloc_type, id);
self.id_to_type.insert(id.0, alloc_type.clone());
self.type_interner.insert(alloc_type, id);
id
}
// FIXME: Check if functions have identity. If not, we should not intern these,
// but instead create a new id per use.
// Alternatively we could just make comparing function pointers an error.
pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> AllocId {
self.intern(AllocType::Function(instance))
}
pub fn get(&self, id: AllocId) -> Option<AllocType<'tcx, M>> {
self.id_to_type.get(&id.0).cloned()
}
pub fn unwrap_memory(&self, id: AllocId) -> M {
match self.get(id) {
Some(AllocType::Memory(mem)) => mem,
_ => bug!("expected allocation id {} to point to memory", id),
}
}
pub fn intern_static(&mut self, static_id: DefId) -> AllocId {
self.intern(AllocType::Static(static_id))
}
pub fn allocate(&mut self, mem: M) -> AllocId {
let id = self.reserve();
self.set_id_memory(id, mem);
id
}
pub fn set_id_memory(&mut self, id: AllocId, mem: M) {
if let Some(old) = self.id_to_type.insert(id.0, AllocType::Memory(mem)) {
bug!("tried to set allocation id {}, but it was already existing as {:#?}", id, old);
}
}
pub fn set_id_same_memory(&mut self, id: AllocId, mem: M) {
self.id_to_type.insert_same(id.0, AllocType::Memory(mem));
}
}
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct Allocation<Tag=(),Extra=()> {
/// The actual bytes of the allocation.
/// Note that the bytes of a pointer represent the offset of the pointer
pub bytes: Vec<u8>,
/// Maps from byte addresses to extra data for each pointer.
/// Only the first byte of a pointer is inserted into the map; i.e.,
/// every entry in this map applies to `pointer_size` consecutive bytes starting
/// at the given offset.
pub relocations: Relocations<Tag>,
/// Denotes undefined memory. Reading from undefined memory is forbidden in miri
pub undef_mask: UndefMask,
/// The alignment of the allocation to detect unaligned reads.
pub align: Align,
/// Whether the allocation is mutable.
/// Also used by codegen to determine if a static should be put into mutable memory,
/// which happens for `static mut` and `static` with interior mutability.
pub mutability: Mutability,
/// Extra state for the machine.
pub extra: Extra,
}
impl<Tag: Copy, Extra: Default> Allocation<Tag, Extra> {
/// Creates a read-only allocation initialized by the given bytes
pub fn from_bytes(slice: &[u8], align: Align) -> Self {
let mut undef_mask = UndefMask::new(Size::ZERO);
undef_mask.grow(Size::from_bytes(slice.len() as u64), true);
Self {
bytes: slice.to_owned(),
relocations: Relocations::new(),
undef_mask,
align,
mutability: Mutability::Immutable,
extra: Extra::default(),
}
}
pub fn from_byte_aligned_bytes(slice: &[u8]) -> Self {
Allocation::from_bytes(slice, Align::from_bytes(1, 1).unwrap())
}
pub fn undef(size: Size, align: Align) -> Self {
assert_eq!(size.bytes() as usize as u64, size.bytes());
Allocation {
bytes: vec![0; size.bytes() as usize],
relocations: Relocations::new(),
undef_mask: UndefMask::new(size),
align,
mutability: Mutability::Mutable,
extra: Extra::default(),
}
}
#[inline]
pub fn size(&self) -> Size {
Size::from_bytes(self.bytes.len() as u64)
}
pub fn check_align(
&self,
offset: Size,
required_align: Align,
) -> EvalResult<'tcx> {
if self.align.abi() > required_align.abi() {
return err!(AlignmentCheckFailed {
has: self.align,
required: required_align,
});
}
let offset = offset.bytes();
if offset % required_align.abi() == 0 {
Ok(())
} else {
let has = offset % required_align.abi();
err!(AlignmentCheckFailed {
has: Align::from_bytes(has, has).unwrap(),
required: required_align,
})
}
}
pub fn check_bounds(
&self,
offset: Size,
size: Size,
access: bool,
) -> EvalResult<'tcx> {
let end = offset + size;
let allocation_size = self.size();
if end > allocation_size {
err!(PointerOutOfBounds { offset, access, allocation_size })
} else {
Ok(())
}
}
pub fn check_defined(
&self,
offset: Size,
size: Size,
) -> EvalResult<'tcx> {
self.undef_mask.is_range_defined(
offset,
offset + size,
).or_else(|idx| err!(ReadUndefBytes(idx)))
}
pub fn check_relocations(
&self,
hdl: impl HasDataLayout,
offset: Size,
size: Size,
) -> EvalResult<'tcx> {
if self.relocations(hdl, offset, size).len() != 0 {
err!(ReadPointerAsBytes)
} else {
Ok(())
}
}
fn relocations(
&self,
hdl: impl HasDataLayout,
offset: Size,
size: Size,
) -> &[(Size, (Tag, AllocId))] {
// We have to go back `pointer_size - 1` bytes, as that one would still overlap with
// the beginning of this range.
let start = offset.bytes().saturating_sub(hdl.data_layout().pointer_size.bytes() - 1);
let end = offset + size; // this does overflow checking
self.relocations.range(Size::from_bytes(start)..end)
}
pub fn get_bytes(
&self,
hdl: impl HasDataLayout,
offset: Size,
size: Size,
required_align: Align,
) -> EvalResult<'tcx, &[u8]> {
self.check_align(offset, required_align)?;
self.check_bounds(offset, size, true)?;
self.check_defined(offset, size)?;
self.check_relocations(hdl, offset, size)?;
Ok(self.bytes_ignoring_relocations_and_undef(offset, size))
}
pub fn read_bits(
&self,
tcx: TyCtxt<'_, '_, 'tcx>,
offset: Size,
ty: ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> EvalResult<'tcx, u128> {
let ty = tcx.lift_to_global(&ty).unwrap();
let layout = tcx.layout_of(ty).unwrap_or_else(|e| {
panic!("could not compute layout for {:?}: {:?}", ty, e)
});
let bytes = self.get_bytes(tcx, offset, layout.size, layout.align)?;
Ok(read_target_uint(tcx.data_layout.endian, bytes).unwrap())
}
pub fn read_scalar(
&self,
hdl: impl HasDataLayout,
offset: Size,
size: Size,
align: Align,
) -> EvalResult<'tcx, Scalar<Tag>> {
self.check_align(offset, align)?;
self.check_bounds(offset, size, true)?;
self.check_defined(offset, size)?;
let bytes = self.bytes_ignoring_relocations_and_undef(offset, size);
let int = read_target_uint(hdl.data_layout().endian, &bytes).unwrap();
match self.relocations(hdl, offset, size) {
&[(_, (tag, alloc_id))] if size == hdl.data_layout().pointer_size => {
Ok(Pointer::new_with_tag(alloc_id, Size::from_bytes(int as u64), tag).into())
},
&[] => Ok(Scalar::Bits {
bits: int,
size: size.bytes() as u8,
}),
_ => err!(ReadPointerAsBytes),
}
}
fn bytes_ignoring_relocations_and_undef(&self, offset: Size, size: Size) -> &[u8] {
let end = offset + size;
let offset = offset.bytes() as usize;
let end = end.bytes() as usize;
&self.bytes[offset..end]
}
}
impl<'tcx> ::serialize::UseSpecializedDecodable for &'tcx Allocation {}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct Relocations<Tag=(), Id=AllocId>(SortedMap<Size, (Tag, Id)>);
impl<Tag, Id> Relocations<Tag, Id> {
pub fn new() -> Self {
Relocations(SortedMap::new())
}
// The caller must guarantee that the given relocations are already sorted
// by address and contain no duplicates.
pub fn from_presorted(r: Vec<(Size, (Tag, Id))>) -> Self {
Relocations(SortedMap::from_presorted_elements(r))
}
}
impl<Tag> Deref for Relocations<Tag> {
type Target = SortedMap<Size, (Tag, AllocId)>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<Tag> DerefMut for Relocations<Tag> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to access integers in the target endianness
////////////////////////////////////////////////////////////////////////////////
pub fn write_target_uint(
endianness: layout::Endian,
mut target: &mut [u8],
data: u128,
) -> Result<(), io::Error> {
let len = target.len();
match endianness {
layout::Endian::Little => target.write_uint128::<LittleEndian>(data, len),
layout::Endian::Big => target.write_uint128::<BigEndian>(data, len),
}
}
pub fn read_target_uint(endianness: layout::Endian, mut source: &[u8]) -> Result<u128, io::Error> {
match endianness {
layout::Endian::Little => source.read_uint128::<LittleEndian>(source.len()),
layout::Endian::Big => source.read_uint128::<BigEndian>(source.len()),
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to faciliate working with signed integers stored in a u128
////////////////////////////////////////////////////////////////////////////////
pub fn sign_extend(value: u128, size: Size) -> u128 {
let size = size.bits();
// sign extend
let shift = 128 - size;
// shift the unsigned value to the left
// and back to the right as signed (essentially fills with FF on the left)
(((value << shift) as i128) >> shift) as u128
}
pub fn truncate(value: u128, size: Size) -> u128 {
let size = size.bits();
let shift = 128 - size;
// truncate (shift left to drop out leftover values, shift right to fill with zeroes)
(value << shift) >> shift
}
////////////////////////////////////////////////////////////////////////////////
// Undefined byte tracking
////////////////////////////////////////////////////////////////////////////////
type Block = u64;
const BLOCK_SIZE: u64 = 64;
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct UndefMask {
blocks: Vec<Block>,
len: Size,
}
impl_stable_hash_for!(struct mir::interpret::UndefMask{blocks, len});
impl UndefMask {
pub fn new(size: Size) -> Self {
let mut m = UndefMask {
blocks: vec![],
len: Size::ZERO,
};
m.grow(size, false);
m
}
/// Check whether the range `start..end` (end-exclusive) is entirely defined.
///
/// Returns `Ok(())` if it's defined. Otherwise returns the index of the byte
/// at which the first undefined access begins.
#[inline]
pub fn is_range_defined(&self, start: Size, end: Size) -> Result<(), Size> {
if end > self.len {
return Err(self.len);
}
let idx = (start.bytes()..end.bytes())
.map(|i| Size::from_bytes(i))
.find(|&i| !self.get(i));
match idx {
Some(idx) => Err(idx),
None => Ok(())
}
}
pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
let len = self.len;
if end > len {
self.grow(end - len, new_state);
}
self.set_range_inbounds(start, end, new_state);
}
pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
for i in start.bytes()..end.bytes() {
self.set(Size::from_bytes(i), new_state);
}
}
#[inline]
pub fn get(&self, i: Size) -> bool {
let (block, bit) = bit_index(i);
(self.blocks[block] & 1 << bit) != 0
}
#[inline]
pub fn set(&mut self, i: Size, new_state: bool) {
let (block, bit) = bit_index(i);
if new_state {
self.blocks[block] |= 1 << bit;
} else {
self.blocks[block] &= !(1 << bit);
}
}
pub fn grow(&mut self, amount: Size, new_state: bool) {
let unused_trailing_bits = self.blocks.len() as u64 * BLOCK_SIZE - self.len.bytes();
if amount.bytes() > unused_trailing_bits {
let additional_blocks = amount.bytes() / BLOCK_SIZE + 1;
assert_eq!(additional_blocks as usize as u64, additional_blocks);
self.blocks.extend(
iter::repeat(0).take(additional_blocks as usize),
);
}
let start = self.len;
self.len += amount;
self.set_range_inbounds(start, start + amount, new_state);
}
}
#[inline]
fn bit_index(bits: Size) -> (usize, usize) {
let bits = bits.bytes();
let a = bits / BLOCK_SIZE;
let b = bits % BLOCK_SIZE;
assert_eq!(a as usize as u64, a);
assert_eq!(b as usize as u64, b);
(a as usize, b as usize)
}