forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhuggingface_MiniLM_loadsave.py
94 lines (78 loc) · 3.9 KB
/
huggingface_MiniLM_loadsave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from iree import runtime as ireert
from iree.compiler import tf as tfc
from iree.compiler import compile_str
import sys
from absl import app
import numpy as np
import os
import tempfile
import tensorflow as tf
import time
import cProfile
from transformers import BertModel, BertTokenizer, TFBertModel
MAX_SEQUENCE_LENGTH = 128
BATCH_SIZE = 1
# Create a set of 2-dimensional inputs
bert_input = [tf.TensorSpec(shape=[BATCH_SIZE,MAX_SEQUENCE_LENGTH],dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE,MAX_SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE,MAX_SEQUENCE_LENGTH], dtype=tf.int32)]
class BertModule(tf.Module):
def __init__(self):
super(BertModule, self).__init__()
# Create a BERT trainer with the created network.
self.m = TFBertModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased", from_pt=True)
# Invoke the trainer model on the inputs. This causes the layer to be built.
self.m.predict = lambda x,y,z: self.m.call(input_ids=x, attention_mask=y, token_type_ids=z, training=False)
@tf.function(input_signature=bert_input)
def predict(self, input_ids, attention_mask, token_type_ids):
return self.m.predict(input_ids, attention_mask, token_type_ids)
if __name__ == "__main__":
# Prepping Data
tokenizer = BertTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH)
for key in encoded_input:
encoded_input[key] = tf.expand_dims(tf.convert_to_tensor(encoded_input[key]),0)
# Compile the model using IREE
compiler_module = tfc.compile_module(BertModule(), exported_names = ["predict"], import_only=True)
ARITFACTS_DIR = os.getcwd()
mlir_path = os.path.join(ARITFACTS_DIR, "model_raw.mlir")
with open(mlir_path, "wb") as output_file:
output_file.write(compiler_module)
with open(mlir_path, "rb") as input_file:
compiled_data = input_file.read()
# Compile the model using IREE
#backend = "dylib-llvm-aot"
#args = ["--iree-llvm-target-cpu-features=host"]
#backend_config = "dylib"
backend = "cuda"
backend_config = "cuda"
#args = ["--iree-cuda-llvm-target-arch=sm_75", "--iree-hal-cuda-disable-loop-nounroll-wa", "--iree-enable-fusion-with-reduction-ops"]
# FIXME: Stella's GPU is only 7.5
args = ["--iree-cuda-llvm-target-arch=sm_80", "--iree-hal-cuda-disable-loop-nounroll-wa", "--iree-enable-fusion-with-reduction-ops"]
flatbuffer_blob = compile_str(compiler_module, target_backends=[backend], extra_args=args, input_type="mhlo")
#flatbuffer_blob = compile_str(compiled_data, target_backends=["dylib-llvm-aot"])
# Save module as MLIR file in a directory
ireert.flags.FUNCTION_INPUT_VALIDATION = False
ireert.flags.parse_flags("--cuda_allow_inline_execution")
vm_module = ireert.VmModule.from_flatbuffer(flatbuffer_blob)
#tracer = ireert.Tracer(os.getcwd())
config = ireert.Config(backend_config)
ctx = ireert.SystemContext(config=config)
ctx.add_vm_module(vm_module)
# Setting up training/benchmark information.
total_iter = 15
host_inputs =[encoded_input["input_ids"], encoded_input["attention_mask"], encoded_input["token_type_ids"]]
device_inputs = [ireert.asdevicearray(config.device, a) for a in host_inputs]
BertCompiled = ctx.modules.module
predict_f = BertCompiled.predict
device_outputs = predict_f(*device_inputs)
with cProfile.Profile(timer=time.perf_counter_ns, timeunit=0.000001) as pr:
start = time.time()
for i in range(total_iter):
device_outputs = predict_f(*device_inputs)
end = time.time()
print("RESULTS:", {k:v.to_host() for k, v in device_outputs.items()})
total_time = end - start
print("time: "+str(total_time))
print("time/iter: "+str(total_time/total_iter))