forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusion_utils.py
195 lines (162 loc) · 8.17 KB
/
fusion_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#--------------------------------------------------------------------------
from logging import getLogger
from typing import Tuple
from onnx import helper, numpy_helper, TensorProto
from numpy import ndarray, array_equal
from onnx_model import OnnxModel
logger = getLogger(__name__)
class FusionUtils:
def __init__(self, model: OnnxModel):
self.model: OnnxModel = model
def cast_graph_input_to_int32(self, input_name: str) -> Tuple[bool, str]:
graph_input = self.model.find_graph_input(input_name)
if graph_input is not None and graph_input.type.tensor_type.elem_type != TensorProto.INT32:
cast_output, cast_node = self.cast_input_to_int32(input_name)
logger.debug(f"Casted graph input {input_name} to int32")
return True, cast_output
logger.debug(f"Did not cast graph input {input_name} to int32: found {graph_input is not None}")
return False, input_name
def cast_input_to_int32(self, input_name: str):
cast_output = input_name + '_int32'
# Avoid consequent Cast nodes.
inputs = [input_name]
output_name_to_node = self.model.output_name_to_node()
if input_name in output_name_to_node:
parent_node = output_name_to_node[input_name]
if parent_node and parent_node.op_type == 'Cast':
inputs = [parent_node.input[0]]
cast_node = helper.make_node('Cast', inputs=inputs, outputs=[cast_output])
cast_node.attribute.extend([helper.make_attribute("to", int(TensorProto.INT32))])
self.model.add_node(cast_node)
return cast_output, cast_node
def remove_cast_int32(self, input_name: str):
input_name_to_nodes = self.model.input_name_to_nodes()
nodes = input_name_to_nodes[input_name]
for node in nodes:
if node.op_type == "Cast":
is_int32 = False
for att in node.attribute:
if att.name == 'to' and att.i == int(TensorProto.INT32):
is_int32 = True
break
if is_int32:
output_name = node.output[0]
self.model.remove_node(node)
self.model.replace_input_of_all_nodes(output_name, input_name)
@staticmethod
def check_node_attribute(node, attribute_name: str, expected_value, default_value=None):
"""Verify that a node has expected value for an attribute.
Args:
node (NodeProto): a node to check
attribute_name (str): name of attribute
expected_value (Any): expected value of the attribute
default_value (Any, optional): default value if the attribute does not exist. Defaults to None.
Returns:
bool: whether the check is passed or not
"""
value = default_value
for attr in node.attribute:
if attr.name == attribute_name:
value = helper.get_attribute_value(attr)
if isinstance(expected_value, list):
return (isinstance(value, ndarray) or isinstance(value, list)) and array_equal(
expected_value, value, equal_nan=False)
else:
return value == expected_value
def check_node_input_value(self, node, input_index: int, expected_value):
"""Verify that a node has expected input value
Args:
node (NodeProto): a node to check
input_index (int): index of its input to be verified
expected_value (Any): expected value of the input
Returns:
bool: whether the check is passed or not
"""
assert len(node.input) > input_index
value = self.model.get_constant_value(node.input[input_index])
if isinstance(expected_value, list):
return (isinstance(value, ndarray) or isinstance(value, list)) and array_equal(
expected_value, value, equal_nan=False)
else:
return value == expected_value
def get_dtype(self, shape_infer_helper, input_or_output_name: str) -> int:
"""Get data type of an input or output.
Args:
shape_infer_helper (SymbolicShapeInferenceHelper): object of symbolic shape inference
input_or_output_name (str): name of input or output
Returns:
int: tensor data type
"""
dtype = self.model.get_dtype(input_or_output_name)
if dtype is not None:
return dtype
if shape_infer_helper:
tensor_proto = shape_infer_helper.known_vi_[input_or_output_name]
if tensor_proto.type.tensor_type.HasField('elem_type'):
return tensor_proto.type.tensor_type.elem_type
return None
def remove_useless_cast_nodes(self):
"""Remove cast nodes that are not needed: input and output has same data type.
"""
shape_infer = self.model.infer_runtime_shape(update=True)
if shape_infer is None:
return
nodes_to_remove = []
for node in self.model.nodes():
if node.op_type == 'Cast':
input_dtype = self.get_dtype(shape_infer, node.input[0])
output_dtype = self.get_dtype(shape_infer, node.output[0])
if input_dtype and input_dtype == output_dtype:
nodes_to_remove.append(node)
if nodes_to_remove:
graph_input_names = set(self.model.get_graphs_input_names())
graph_output_names = set(self.model.get_graphs_output_names())
for node in nodes_to_remove:
if bool(set(node.output) & graph_output_names):
if not bool(set(node.input) & graph_input_names):
self.model.replace_output_of_all_nodes(node.input[0], node.output[0])
else:
continue
else:
self.model.replace_input_of_all_nodes(node.output[0], node.input[0])
self.model.remove_node(node)
logger.info(f"Removed {len(nodes_to_remove)} Cast nodes with output type same as input")
def remove_useless_reshape_nodes(self):
"""Remove reshape node that is not needed based on symbolic shape inference: input and output has same shape
"""
shape_infer = self.model.infer_runtime_shape(update=True)
if shape_infer is None:
return
nodes_to_remove = []
for node in self.model.nodes():
if node.op_type == 'Reshape':
input_shape = shape_infer.get_edge_shape(node.input[0])
output_shape = shape_infer.get_edge_shape(node.output[0])
if input_shape and output_shape and input_shape == output_shape:
logger.info(
f"Remove reshape node {node.name} since its input shape is same as output: {input_shape}")
nodes_to_remove.append(node)
if nodes_to_remove:
graph_input_names = set(self.model.get_graphs_input_names())
graph_output_names = set(self.model.get_graphs_output_names())
for node in nodes_to_remove:
if bool(set(node.output) & graph_output_names):
if not bool(set(node.input) & graph_input_names):
self.model.replace_output_of_all_nodes(node.input[0], node.output[0])
else:
continue
else:
self.model.replace_input_of_all_nodes(node.output[0], node.input[0])
self.model.remove_node(node)
class NumpyHelper:
@staticmethod
def to_array(tensor: TensorProto, fill_zeros: bool = False) -> ndarray:
# When weights are in external data format but not presented, we can still test the optimizer with two changes:
# (1) set fill_zeros = True (2) change load_external_data=False in optimizer.py
if fill_zeros:
from onnx import mapping
return ndarray(shape=tensor.dims, dtype=mapping.TENSOR_TYPE_TO_NP_TYPE[tensor.data_type])
return numpy_helper.to_array(tensor)