-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMembership_Over_The_Years.py
300 lines (237 loc) · 12.6 KB
/
Membership_Over_The_Years.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.14.5
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %% [markdown]
# # OHBM Membership over the years
#
# Code for the plotting functions used in the [OHBM Blogpost](https://www.ohbmbrainmappingblog.com/blog/introducing-ohbm-membership-membership-over-the-years) that introduces the new OHBM membership tier MEMBERSHIP+ and looks at OHBM’s membership data, reflecting on OHBM’s development from an annual meeting to a scientific society.
# %%
from watermark import watermark
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import PIL
import country_converter as coco
import seaborn as sns
from statsmodels.nonparametric.smoothers_lowess import lowess
import io
import warnings
print(watermark(packages='pandas,numpy,plotly,matplotlib,PIL,country_converter,seaborn,statsmodels,watermark'))
# %%
def warp_continent_data_for_map(continent_data):
"""To create map using px.choropleth, there seems to be no way around specifying each country if one wants to plot
data on a per-continent basis. This slightly inefficient function does this. First by associating each continent
with all countries that are associated with a continent and second by creating duplicate rows for each conference /
continent pair.
Args:
continent_data (pd.DataFrame): Pandas Dataframe having the data on a per conference basis.
Returns:
pd.DataFrame: Dataframe with repeated rows.
"""
continent_data['Country'] = ''
countries = pd.read_csv(coco.COUNTRY_DATA_FILE, sep='\t')[['name_short', 'continent', 'UNregion', 'ISO3']]
continent_dict = {ii : [] for ii in ['Africa', 'Asia', 'Europe', 'North America', 'Oceania', 'South America']}
for co in countries.iterrows():
tmp_con = co[1]['continent']
tmp_un = co[1]['UNregion']
if tmp_con == 'America' and (tmp_un == 'Northern America' or tmp_un =='Caribbean'
or tmp_un=='Central America'):
con = 'North America'
elif tmp_un == 'South America':
con = 'South America'
else:
con = tmp_con
if con in list(continent_dict.keys()):
continent_dict[con].append(co[1]['name_short'])
continent_data_map = continent_data.copy()
for con in list(continent_dict.keys()):
continent_data.loc[continent_data['Continent']==con, 'Country'] = ','.join(continent_dict[con])
# based on the inefficient solution from here
# https://stackoverflow.com/questions/45965128/duplicating-pandas-dataframe-rows-based-on-string-split-without-iteration
map_data = continent_data.copy()
map_data = map_data.reset_index()
map_data = map_data.set_index(['index', 'Country'])
df2 = map_data.iloc[:0]
for index, row in map_data.iterrows():
stgs = index[1].split(",")
for s in stgs:
row.name = (index[0], s)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="The frame.append")
df2 = df2.append(row)
map_data = df2.reset_index().rename(columns={'level_1': 'Country'})
return map_data
# %% [markdown]
# ### Function for figure 1.
# %%
def plot_members_by_continent(continent_data, conference_continent, sns_cols,
filename='Fig1_conference_continent.png'):
continents = np.unique(continent_data['Continent'])
fig, axes = plt.subplots(2, len(continents)//2, figsize=(40, 16))
axes = axes.flatten()
n_conferences = len(np.unique(continent_data.Conference))
for nn, (ax, cn) in enumerate(zip(axes, continents)):
tmp_cn = continent_data.query('Continent == @cn')
# Colors for if conference is on continent
clrs = [sns_cols[1] if (x == cn) else sns_cols[0] for x in conference_continent]
# Grey backgrond for virtual conferences
ax.axvspan(13.45, 15.55, facecolor='black', alpha=0.15)
ax.bar(np.arange(n_conferences), tmp_cn.Members.values, color=clrs)
ax.set_title(label=cn, fontdict={'fontsize': 36})
if nn >= 3:
ax.set_xticks(np.arange(n_conferences), tmp_cn.Conference.values)
x_labels = [ii.split(' ', 1)[1] for ii in tmp_cn.Conference.values]
ax.set_xticklabels(x_labels, rotation=90, fontdict={'size': 24, 'horizontalalignment': 'center'})
else:
ax.set_xticks(np.arange(tmp_cn.shape[0]))
ax.set_xticklabels([''] * n_conferences)
if cn in ['Europe', 'North America']:
ax.set(ylim=[0, 3000])
elif cn in ['Africa', 'South America']:
ax.set(ylim=[0, 100])
if nn in [0, 3]:
ax.set_ylabel('Members', fontdict={'fontsize': 24})
ax.set_yticklabels(ax.get_yticklabels(), fontdict={'size': 20})
plt.suptitle('Conferences by Continent 2004 - 2022', fontsize=50)
if filename is not None:
plt.savefig(filename, bbox_inches='tight')
# %% [markdown]
# ### Function for figure 2.
# %%
def plot_animated_map(member_data, conference_coordinates, save_to_gif=True, file_name='Fig2_gif_map.png'):
df = pd.DataFrame(conference_coordinates)
conference_df = df.transpose().reset_index().rename(columns={0: 'lat', 1: 'long',
'index': 'Conference',
2: 'City'})
conference_df['Size'] = 5
conference_df.loc[conference_df.City == 'Virtual', 'Size'] = 0
conference_df['Color'] = 200
# taken from
# https://stackoverflow.com/questions/55460434/how-to-export-save-an-animated-bubble-chart-made-with-plotly
fig = px.choropleth(member_data, locations="Country",
color=member_data["Members"],
hover_name="Country",
locationmode="country names",
animation_frame='Conference',
range_color=[0, member_data['Members'].max()],
title='Conference',
color_continuous_scale=px.colors.sequential.deep)
fig2 = px.scatter_geo(conference_df, lon='long', lat='lat',
animation_frame='Conference', text='City', size='Size',
size_max=8, title='Conference', opacity=1.0, color='Color',
color_continuous_scale=px.colors.sequential.gray_r,
color_discrete_sequence=px.colors.sequential.gray_r)
fig.add_trace(fig2.data[0])
fig.update_layout(margin=dict(l=20,r=0,b=0,t=40,pad=0),
paper_bgcolor="white", height=500, width=900,
font_size=14,
title = {'text': "OHBM Membership", 'y':0.96, 'x':0.5,
'xanchor': 'center', 'yanchor': 'top'})
fig.update_layout(sliders=[{"currentvalue": {"prefix": ""},
'pad': {'b': 10, 't': 10},
"visible" :True}])
fig['layout'].pop('updatemenus')
frames = []
for i, frame in enumerate(fig.frames):
fig.frames[i].data += (fig2.frames[i].data[0],)
fig.frames[i]['data'][1]['textposition'] = 'bottom center'
fig.frames[i]['data'][1]['textfont'] = {'color':'black', 'size': 24}
fig.frames[i]['data'][1]['marker']['symbol'] = 'octagon-dot'
fig.frames[i]['data'][1]['marker']['line']['color'] = 'black'
if save_to_gif:
# generate images for each step in animation
for s, fr in enumerate(fig.frames):
# set main traces to appropriate traces within plotly frame
fig.update(data=fr.data)
# move slider to correct place
fig.layout.sliders[0].update(active=s)
# generate image of current state
frames.append(PIL.Image.open(io.BytesIO(fig.to_image(format="png"))))
# create animated GIF
frames[0].save(file_name, save_all=True, append_images=frames[1:],
optimize=True, duration=750, loop=0)
else:
fig.show()
# %% [markdown]
# ### Function for figure 3.
# %%
def plot_members_attendees(total_data, sns_cols, filename='members_attendees.png'):
total_attendees = total_data.copy()
low_adjs_members = lowess(total_data['Members'], np.arange(17))[:, 1]
# Reshaping for seaborn
total_attendees = total_attendees.melt(value_vars=['Members', 'Attendees'],
id_vars=['Conference', 'Year'],
value_name='Number', var_name='Group')
fig, ax = plt.subplots(1, 1, figsize=(15, 8))
h3 = ax.plot(np.arange(17), low_adjs_members, '-*',
color=sns_cols[2], linewidth=4, markersize=10)
h1 = ax.get_legend_handles_labels()
x_labels = [ii.split(' ', 1)[1] for ii in total_data.Conference.values]
sns.barplot(data=total_attendees, x='Conference', y='Number', hue='Group', ax=ax)
h2 = ax.get_legend_handles_labels()[0]
ax.legend(handles= h3 + h2, labels=['Lowess Trend', 'Members', 'Registrations'], loc='upper left')
ax.set_xticklabels(x_labels, rotation=90, fontdict={'size': 20})
ax.set_yticklabels(ax.get_yticklabels(), fontdict={'size': 20})
ax.set(ylabel='', xlabel='')
ax.set_title('Membership and Annual Meeting Registrations (2006 - 2022)', fontdict={'size': 32})
if filename is not None:
plt.savefig(filename, bbox_inches='tight')
# %% [markdown]
# ### Data preparation and setting a few default information by hand.
# %%
# Seaborn colors
sns_cols = sns.color_palette(n_colors=3)
# Handcrafting continents
conference_continent = ['Europe', 'North America', 'Oceania', 'North America', 'Europe',
'North America', 'Asia', 'North America', 'Europe',
'North America', 'Europe', 'North America',
'Asia', 'Europe', 'Virtual', 'Virtual', 'Europe']
# Handcrafting coordinates
conference_coordinates = {'2006 Florence': [43.769562, 11.255814, 'Florence'],
'2007 Chicago': [41.878113, -87.629799, 'Chicago'],
'2008 Melbourne': [-37.813629, 144.963058, 'Melbourne'],
'2009 San Francisco': [37.780079, -122.420174, 'San Francisco'],
'2010 Barcelona': [41.387920, 2.169920, 'Barcelona'],
'2011 Quebec City': [46.829853, -71.254028, 'Quebec City'],
'2012 Beijing': [39.906217,116.3912757, 'Beijing'],
'2013 Seattle': [47.6038321,-122.330062, 'Seattle'],
'2014 Hamburg': [53.550341,10.000654, 'Hamburg'],
'2015 Honolulu': [21.304547,-157.855676, 'Honolulu'],
'2016 Geneva': [46.2017559,6.1466014, 'Geneva'],
'2017 Vancouver': [49.2608724,-123.113952, 'Vancouver'],
'2018 Singapore': [1.357107,103.8194992, 'Singapore'],
'2019 Rome': [41.8933203,12.4829321, 'Rome'],
'2020 Virtual': [0, 0, 'Virtual'],
'2021 Virtual': [0, 0, 'Virtual'],
'2022 Glasgow': [55.8606182,-4.2497933, 'Glasgow']}
# %%
continent_data = pd.read_csv('continent_data.tsv', sep='\t')
total_data = pd.read_csv('total_data.tsv', sep='\t')
map_data = warp_continent_data_for_map(continent_data)
# %% [markdown]
# ## Plots
# %%
plot_members_by_continent(continent_data, conference_continent, sns_cols, None)
# %% [markdown]
# **Fig. 1**: OHBM membership data per year per continent. Bars in orange indicate if the Annual Meeting took place on the same continent, the virtual conferences are shaded in gray. Note different y-axis ranges for each plot. Numbers for North America include Central America and the Caribbean.
# %%
plot_animated_map(map_data, conference_coordinates, save_to_gif=False)
# %% [markdown]
# **Fig. 2**: Map of OHBM members by country of origin for each year (2006–2022). The location of the Annual Meeting is highlighted for each year. Note that light yellow includes 0; gray indicates countries for which no data is available (i.e., no OHBM members at any time).
# %%
plot_members_attendees(total_data, sns_cols, None)
# %% [markdown]
# **Fig. 3**: Total membership over the years, conference attendees for those years, and a LOWESS estimate of the general trend in membership numbers.