-
Notifications
You must be signed in to change notification settings - Fork 2
/
Hurricanes.html
760 lines (619 loc) · 239 KB
/
Hurricanes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>Hurricanes: the female of the species in no more deadly than the male</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>Hurricanes: the female of the species in no more deadly than the male</h1>
<p>(update: the colours on the plots have been fixed so you can actually see them.)</p>
<p>This is a re-analysis of the Jung <em>et al</em> paper <a href="http://dx.doi.org/10.1073/pnas.1402786111">Female hurricanes are deadlier than male hurricanes</a>, complete with the R code. The output is <a href="http://rpubs.com/oharar/19171">available on RPubs</a>, and the code on <a href="https://github.com/oharar/Hurricanes">GitHub</a> (thanks to RStudio for RPubs, and RStudio, which integrates everything so nicely)</p>
<p>First, read in the data, and do some simple arrangements, in particular selecting an ironic colour scheme, and noting which hurricanes killed more than 100 people.</p>
<pre><code class="r">library(gdata)
library(mgcv)
# Read in the data
Data = read.xls("http://www.pnas.org/content/suppl/2014/05/30/1402786111.DCSupplemental/pnas.1402786111.sd01.xlsx",
nrows = 92, as.is = TRUE)
Data$Category = factor(Data$Category)
Data$Gender_MF = factor(Data$Gender_MF)
# Data$ColourMF=c('lightblue', 'pink')[as.numeric(Data$Gender_MF)]
Data$ColourMF = c("blue", "red")[as.numeric(Data$Gender_MF)]
BigH = which(Data$alldeaths > 100) # Select hurricanes with > 100 deaths
# scale the covariates
Data$Minpressure.2014.sc = scale(Data$Minpressure_Updated.2014)
Data$NDAM.sc = scale(Data$NDAM)
Data$MasFem.sc = scale(Data$MasFem)
</code></pre>
<p>Then, plot the data</p>
<pre><code class="r">plot(Data$Year, Data$alldeaths, col = Data$ColourMF, type = "p", pch = 15, xlab = "Year",
ylab = "Number of Deaths", main = "Deaths due to hurricanes in the US")
text(Data$Year[BigH], Data$alldeaths[BigH], Data$Name[BigH], adj = c(0.8, 1.5))
legend(1984, 200, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-2"/> </p>
<p>We can see that the four most deadly hurricanes all had female names Given that 67% of hurricanes had female names, the probability that the top 4 were all female is 0.2. So, on its own this is not remarkable.</p>
<p>So, now fit the model that was used in the paper. Results might differ slightly, because I'm probably using a different package for the fitting (mgcv: for those wondering about this, I was using it to smooth the year effects):</p>
<pre><code class="r"># Fit the model used in paper
modJSVH = gam(alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sc), data = Data,
family = negbin(theta = c(0.2, 10)))
summary(modJSVH)
</code></pre>
<pre><code>##
## Family: Negative Binomial(0.786)
## Link function: log
##
## Formula:
## alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sc)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.503 0.124 20.20 < 2e-16 ***
## MasFem.sc 0.124 0.125 0.99 0.3239
## Minpressure.2014.sc -0.543 0.153 -3.54 0.0004 ***
## NDAM.sc 0.899 0.147 6.11 1.0e-09 ***
## MasFem.sc:Minpressure.2014.sc 0.376 0.156 2.42 0.0157 *
## MasFem.sc:NDAM.sc 0.663 0.152 4.37 1.3e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = -3.51e+03 Deviance explained = 42.8%
## UBRE score = 0.24794 Scale est. = 1 n = 92
</code></pre>
<p>From this we can see no main effect of gender, i.e. at average minimum perssure and normalised damage there is no difference if the name is really masculine or feminine. But there are interactions: at higher minimum pressure and normalised damage, feminine names are associated with more deaths.</p>
<p>Now we be good little statisticians, and look at how well the model fits. Because I did the 2S2 stats course at Leeds Uni (um, about a quarter of a century ago), I'll plot some residuals:</p>
<pre><code class="r">par(mfrow = c(1, 1), mar = c(4.1, 4.1, 3, 1))
plot(log(fitted(modJSVH)), resid(modJSVH), col = Data$ColourMF, ylim = c(min(resid(modJSVH)),
0.5 + max(resid(modJSVH))), pch = 15, xlab = "Fitted values", ylab = "Residuals",
main = "Residual plot against log-transformed fitted values")
text(log(fitted(modJSVH)[BigH]), resid(modJSVH)[BigH], Data$Name[BigH], adj = c(0.7,
-0.7))
legend(1984, 200, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p>
<p>(if I don't log-transform the fitted values, Sandy sits out on the right side of the plot, and the rest line up on the left side)
This looks OK, except Sandy is sticking out a bit, but removing her doesn't change things much. Now let's look at how well the covariates are fitting…</p>
<pre><code class="r">par(mfrow = c(2, 1), mar = c(4.1, 4.1, 3, 1))
plot(Data$Minpressure_Updated.2014, resid(modJSVH), col = Data$ColourMF, ylim = c(min(resid(modJSVH)),
0.5 + max(resid(modJSVH))), pch = 15, xlab = "Minimum pressure", ylab = "Residuals",
main = "Model fit of minimum pressure")
text(Data$Minpressure_Updated.2014[BigH], resid(modJSVH)[BigH], Data$Name[BigH],
adj = c(0.2, -0.7))
legend(910, 2.8, c("Male", "Female"), fill = c("blue", "red"))
plot((Data$NDAM), resid(modJSVH), col = Data$ColourMF, ylim = c(min(resid(modJSVH)),
0.5 + max(resid(modJSVH))), pch = 15, xlab = "Normalized Damage", ylab = "Residuals",
main = "Model fit of normalized damage")
text((Data$NDAM[BigH]), resid(modJSVH)[BigH], Data$Name[BigH], adj = c(0.8,
-0.7))
legend(40000, 2.8, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>
<p>Minimum pressure looks OK, but does normalized damage look like it's curved? The skew in the normalized damage makes it a bit harder to see, but we can transform the x-axis to take a better look…</p>
<pre><code class="r">par(mfrow = c(1, 1), mar = c(4.1, 4.1, 3, 1))
plot(gam(resid(modJSVH) ~ s(sqrt(Data$NDAM)), data = Data), ylim = c(min(resid(modJSVH)),
0.5 + max(resid(modJSVH))), xlab = "Normalized Damage", ylab = "Residuals",
main = "Model fit of (transformed) normalized damage", rug = FALSE, shade = TRUE)
points(sqrt(Data$NDAM), resid(modJSVH), col = Data$ColourMF, pch = 15)
text(sqrt(Data$NDAM[BigH]), resid(modJSVH)[BigH], Data$Name[BigH], adj = c(0.8,
-0.7))
legend(200, 2.8, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>
<p>The fitted line is a spline, to help visualise the relationship. It definitely looks curved downwards, and is shouting “fit a quadratic!” at me.</p>
<p>So, let's shut it up and fit a quadratic…</p>
<pre><code class="r"># Fit model with NDAM and NDAM squared
Data$NDAM.sq = Data$NDAM.sc^2
modJSVH.sq = gam(alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sc + NDAM.sq),
data = Data, family = negbin(theta = c(0.2, 10)))
summary(modJSVH.sq)
</code></pre>
<pre><code>##
## Family: Negative Binomial(0.964)
## Link function: log
##
## Formula:
## alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sc + NDAM.sq)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.6449 0.1277 20.71 < 2e-16 ***
## MasFem.sc 0.1670 0.1280 1.31 0.1917
## Minpressure.2014.sc -0.4473 0.1524 -2.93 0.0033 **
## NDAM.sc 1.5406 0.2726 5.65 1.6e-08 ***
## NDAM.sq -0.2642 0.0621 -4.26 2.1e-05 ***
## MasFem.sc:Minpressure.2014.sc 0.2822 0.1529 1.84 0.0651 .
## MasFem.sc:NDAM.sc 0.7457 0.2763 2.70 0.0070 **
## MasFem.sc:NDAM.sq -0.1042 0.0631 -1.65 0.0985 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = -1.76 Deviance explained = 52.3%
## UBRE score = 0.28544 Scale est. = 1 n = 92
</code></pre>
<p>and look at the plot…</p>
<pre><code class="r">par(mfrow = c(1, 1), mar = c(4.1, 4.1, 3, 1))
plot(gam(resid(modJSVH.sq) ~ s(sqrt(Data$NDAM)), data = Data), ylim = c(min(resid(modJSVH.sq)),
0.5 + max(resid(modJSVH.sq))), xlab = "Normalized Damage", ylab = "Residuals",
main = "Model fit of (transformed) normalized damage", rug = FALSE, shade = TRUE)
points(sqrt(Data$NDAM), resid(modJSVH.sq), col = Data$ColourMF, pch = 15)
text(sqrt(Data$NDAM[BigH]), resid(modJSVH.sq)[BigH], Data$Name[BigH], adj = c(0.8,
-0.7))
legend(200, 2.8, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-8"/> </p>
<p>This still looks a bit bendy. But the nice curve above was on the square root scale, so let's use that…</p>
<pre><code class="r"># Fit model with sqrt(NDAM) and sqrt(NDAM)^2. The latter is also
# abs(NDAM.sc)
Data$NDAM.sqrt.sc = scale(sqrt(Data$NDAM))
Data$NDAM.abs = Data$NDAM.sqrt.sc^2
modJSVH.sqrt = gam(alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sqrt.sc +
NDAM.abs), data = Data, family = negbin(theta = c(0.2, 10)))
</code></pre>
<p>and look at the plot…</p>
<pre><code class="r">par(mfrow = c(1, 1), mar = c(4.1, 4.1, 3, 1))
plot(gam(resid(modJSVH.sqrt) ~ s(sqrt(Data$NDAM)), data = Data), ylim = c(min(resid(modJSVH.sqrt)),
0.5 + max(resid(modJSVH.sqrt))), xlab = "Normalized Damage", ylab = "Residuals",
main = "Model fit of (transformed) normalized damage", rug = FALSE, shade = TRUE)
points(sqrt(Data$NDAM), resid(modJSVH.sqrt), col = Data$ColourMF, pch = 15)
text(sqrt(Data$NDAM[BigH]), resid(modJSVH.sqrt)[BigH], Data$Name[BigH], adj = c(0.8,
-0.7))
legend(200, 2.8, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>
<p>All of which looks so much better. So, this is a nicer model: the only difference from the model used in the paper is that we are assuming that any effect of normalized damage is non-linear.</p>
<p>And now what does the model look like?</p>
<pre><code class="r">summary(modJSVH.sqrt)
</code></pre>
<pre><code>##
## Family: Negative Binomial(1.119)
## Link function: log
##
## Formula:
## alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sqrt.sc +
## NDAM.abs)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.5737 0.1288 19.98 < 2e-16 ***
## MasFem.sc 0.0828 0.1300 0.64 0.52377
## Minpressure.2014.sc -0.1427 0.1610 -0.89 0.37543
## NDAM.sqrt.sc 1.4810 0.2091 7.08 1.4e-12 ***
## NDAM.abs -0.2961 0.0780 -3.80 0.00015 ***
## MasFem.sc:Minpressure.2014.sc 0.0737 0.1633 0.45 0.65171
## MasFem.sc:NDAM.sqrt.sc 0.2723 0.2116 1.29 0.19814
## MasFem.sc:NDAM.abs -0.0271 0.0771 -0.35 0.72554
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = 0.333 Deviance explained = 58.3%
## UBRE score = 0.27618 Scale est. = 1 n = 92
</code></pre>
<p>Oh look! The gender effects - any term with MasFem.sc in it - have totally disappeared! The only effect is of normalised damage.</p>
<h2>Effects of Year</h2>
<p>Finally, I added Year as a effect in various ways (linear, spline, random effect):</p>
<pre><code class="r">modJSVH.year.linear = gam(alldeaths ~ Year + MasFem.sc * (Minpressure.2014.sc +
NDAM.sqrt.sc + NDAM.abs), data = Data, family = negbin(theta = c(0.2, 10)))
round(summary(modJSVH.year.linear)$p.table, 2)
</code></pre>
<pre><code>## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.02 12.01 -0.34 0.74
## Year 0.00 0.01 0.55 0.58
## MasFem.sc 0.12 0.14 0.85 0.39
## Minpressure.2014.sc -0.13 0.16 -0.84 0.40
## NDAM.sqrt.sc 1.49 0.21 7.14 0.00
## NDAM.abs -0.30 0.08 -3.87 0.00
## MasFem.sc:Minpressure.2014.sc 0.07 0.16 0.44 0.66
## MasFem.sc:NDAM.sqrt.sc 0.28 0.21 1.33 0.18
## MasFem.sc:NDAM.abs -0.03 0.08 -0.44 0.66
</code></pre>
<pre><code class="r">modJSVH.year.spline = gam(alldeaths ~ s(Year) + MasFem.sc * (Minpressure.2014.sc +
NDAM.sqrt.sc + NDAM.abs), data = Data, family = negbin(theta = c(0.2, 10)))
summary(modJSVH.year.spline)$s.table
</code></pre>
<pre><code>## edf Ref.df Chi.sq p-value
## s(Year) 1 1 0.3019 0.5827
</code></pre>
<pre><code class="r">modJSVH.year.rf = gamm(alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sqrt.sc +
NDAM.abs), random = list(Year = ~1), data = Data, family = negbin(theta = c(0.2,
10)))
</code></pre>
<pre><code>##
## Maximum number of PQL iterations: 20
</code></pre>
<pre><code class="r">VarCorr(modJSVH.year.rf$lme)
</code></pre>
<pre><code>## Year = pdLogChol(1)
## Variance StdDev
## (Intercept) 2.370e-09 4.868e-05
## Residual 2.189e-01 4.679e-01
</code></pre>
<p>There was no effect anywhere:</p>
<ul>
<li>in the linear model, the Year effect is pretty much zero, </li>
<li>in the smoothed fit the effect gets shrunk away so there is only one degree of freedom (i.e. a straight line): it revets to the linear model</li>
<li>as a random effect, the standard deviation of the year effect is 0.01% of the residual standard deviation</li>
</ul>
<p>So the fact that only female names were used until 1979 turns out to be a red herring.</p>
<h2>Just Gender</h2>
<p>One can also look simply at the effect of gender of hurricane name, which avoids the issues of how feminine Sandy is. TL;DR version: the results are qualitatively the same.</p>
<pre><code class="r">modJSVH.gender = gam(alldeaths ~ Gender_MF * (Minpressure.2014.sc + NDAM.sc),
data = Data, family = negbin(theta = c(0.2, 10)))
summary(modJSVH)
</code></pre>
<pre><code>##
## Family: Negative Binomial(0.786)
## Link function: log
##
## Formula:
## alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sc)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.503 0.124 20.20 < 2e-16 ***
## MasFem.sc 0.124 0.125 0.99 0.3239
## Minpressure.2014.sc -0.543 0.153 -3.54 0.0004 ***
## NDAM.sc 0.899 0.147 6.11 1.0e-09 ***
## MasFem.sc:Minpressure.2014.sc 0.376 0.156 2.42 0.0157 *
## MasFem.sc:NDAM.sc 0.663 0.152 4.37 1.3e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = -3.51e+03 Deviance explained = 42.8%
## UBRE score = 0.24794 Scale est. = 1 n = 92
</code></pre>
<pre><code class="r">
par(mfrow = c(1, 1), mar = c(4.1, 4.1, 3, 1))
plot(gam(resid(modJSVH.gender) ~ s(sqrt(Data$NDAM)), data = Data), ylim = c(min(resid(modJSVH.gender)),
0.5 + max(resid(modJSVH.gender))), xlab = "Normalized Damage", ylab = "Residuals",
main = "Model fit of (transformed) normalized damage", rug = FALSE, shade = TRUE)
points(sqrt(Data$NDAM), resid(modJSVH.gender), col = Data$ColourMF, pch = 15)
text(sqrt(Data$NDAM[BigH]), resid(modJSVH.gender)[BigH], Data$Name[BigH], adj = c(0.8,
-0.7))
legend(200, 2.8, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-13"/> </p>
<p>With the quadratic on sqrt(NDAM)…</p>
<pre><code class="r"># Fit model with sqrt(NDAM) and sqrt(NDAM)^2. The latter is also
# abs(NDAM.sc)
modJSVH.sqrt.gender = gam(alldeaths ~ Gender_MF * (Minpressure.2014.sc + NDAM.sqrt.sc +
NDAM.abs), data = Data, family = negbin(theta = c(0.2, 10)))
# summary(modJSVH.sqrt)
</code></pre>
<p>The residual plot…</p>
<pre><code class="r">par(mfrow = c(1, 1), mar = c(4.1, 4.1, 3, 1))
plot(gam(resid(modJSVH.sqrt.gender) ~ s(sqrt(Data$NDAM)), data = Data), ylim = c(min(resid(modJSVH.sqrt.gender)),
0.5 + max(resid(modJSVH.sqrt.gender))), xlab = "Normalized Damage", ylab = "Residuals",
main = "Model fit of (transformed) normalized damage", rug = FALSE, shade = TRUE)
points(sqrt(Data$NDAM), resid(modJSVH.sqrt.gender), col = Data$ColourMF, pch = 15)
text(sqrt(Data$NDAM[BigH]), resid(modJSVH.sqrt.gender)[BigH], Data$Name[BigH],
adj = c(0.8, -0.7))
legend(200, 2.8, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-15"/> </p>
<p>And the model:</p>
<pre><code class="r">summary(modJSVH.sqrt)
</code></pre>
<pre><code>##
## Family: Negative Binomial(1.119)
## Link function: log
##
## Formula:
## alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sqrt.sc +
## NDAM.abs)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.5737 0.1288 19.98 < 2e-16 ***
## MasFem.sc 0.0828 0.1300 0.64 0.52377
## Minpressure.2014.sc -0.1427 0.1610 -0.89 0.37543
## NDAM.sqrt.sc 1.4810 0.2091 7.08 1.4e-12 ***
## NDAM.abs -0.2961 0.0780 -3.80 0.00015 ***
## MasFem.sc:Minpressure.2014.sc 0.0737 0.1633 0.45 0.65171
## MasFem.sc:NDAM.sqrt.sc 0.2723 0.2116 1.29 0.19814
## MasFem.sc:NDAM.abs -0.0271 0.0771 -0.35 0.72554
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = 0.333 Deviance explained = 58.3%
## UBRE score = 0.27618 Scale est. = 1 n = 92
</code></pre>
<p>Again, like a magician I have magicked away the gender effect!</p>
<hr/>
<h2>Update: Following up from comments</h2>
<h3>Influential points?</h3>
<p>On the <a href="http://discussion.theguardian.com/comment-permalink/36569266">blog post</a>, msulzer suggested the curvature could just be a result of a couple of points with laege damage. So I removed the three largest points, and re-ran the analysis:</p>
<pre><code class="r">NoBigNDAM = which(Data$NDAM < 200^2)
modJSVH.nobig = gam(alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sc),
data = Data[NoBigNDAM, ], family = negbin(theta = c(0.2, 10)))
summary(modJSVH.nobig)
</code></pre>
<pre><code>##
## Family: Negative Binomial(0.923)
## Link function: log
##
## Formula:
## alldeaths ~ MasFem.sc * (Minpressure.2014.sc + NDAM.sc)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.567 0.122 21.12 < 2e-16 ***
## MasFem.sc 0.147 0.122 1.20 0.2285
## Minpressure.2014.sc -0.497 0.152 -3.26 0.0011 **
## NDAM.sc 1.419 0.250 5.69 1.3e-08 ***
## MasFem.sc:Minpressure.2014.sc 0.300 0.153 1.96 0.0497 *
## MasFem.sc:NDAM.sc 0.788 0.250 3.15 0.0016 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = -0.782 Deviance explained = 49.2%
## UBRE score = 0.24538 Scale est. = 1 n = 89
</code></pre>
<pre><code class="r">
par(mfrow = c(1, 1), mar = c(4.1, 4.1, 3, 1))
plot(gam(resid(modJSVH.nobig) ~ s(sqrt(Data$NDAM[NoBigNDAM])), data = Data),
ylim = c(min(resid(modJSVH.nobig)), 0.5 + max(resid(modJSVH.nobig))), xlab = "Normalized Damage",
ylab = "Residuals", main = "Model fit of (transformed) normalized damage",
rug = FALSE, shade = TRUE)
points(sqrt(Data$NDAM[NoBigNDAM]), resid(modJSVH.nobig), col = Data$ColourMF,
pch = 15)
legend(0, 2.5, c("Male", "Female"), fill = c("blue", "red"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-17"/> </p>
<p>And the curvature is still there. Whew!</p>
<h3>GAM rather than quadratic?</h3>
<p>On twitter, Gavin Simpson <a href="https://twitter.com/ucfagls/status/474317573111046144">sugested using a GAM rather than a quadratic curve</a>. So, let's try it…</p>
<pre><code class="r">modJSVH.gam = gam(alldeaths ~ MasFem.sc * Minpressure.2014.sc + s(sqrt(NDAM),
by = MasFem.sc), data = Data, family = negbin(theta = c(0.2, 10)))
summary(modJSVH.gam)
</code></pre>
<pre><code>##
## Family: Negative Binomial(0.803)
## Link function: log
##
## Formula:
## alldeaths ~ MasFem.sc * Minpressure.2014.sc + s(sqrt(NDAM), by = MasFem.sc)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.552 0.130 19.70 < 2e-16 ***
## MasFem.sc -4.126 4.946 -0.83 0.4
## Minpressure.2014.sc -1.097 0.131 -8.36 < 2e-16 ***
## MasFem.sc:Minpressure.2014.sc 0.909 0.198 4.59 4.4e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(sqrt(NDAM)):MasFem.sc 5.85 7.03 32.2 3.9e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = -0.792 Deviance explained = 44.3%
## UBRE score = 0.32436 Scale est. = 1 n = 92
</code></pre>
<pre><code class="r">par(mfrow = c(1, 1), mar = c(4.1, 4.1, 3, 1), oma = c(0, 0, 0, 0))
plot(modJSVH.gam, resid = TRUE, shade = TRUE, xlab = "Normalized Damage", ylab = "Effect on mortality")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-18"/> </p>
<p>The gender effect effect is still present, and the smoothed effect doesn't look that different from a straight line, even though the model is giving the curve more than 1 degree of freedom (as it would do if we had a simple straight line).</p>
<p>We can also look at Gender as a binary variable…</p>
<pre><code class="r">modJSVH.gamMF = gam(alldeaths ~ Gender_MF * Minpressure.2014.sc + s(sqrt(NDAM),
by = Gender_MF), data = Data, family = negbin(theta = c(0.2, 10)))
summary(modJSVH.gamMF)
</code></pre>
<pre><code>##
## Family: Negative Binomial(1.131)
## Link function: log
##
## Formula:
## alldeaths ~ Gender_MF * Minpressure.2014.sc + s(sqrt(NDAM), by = Gender_MF)
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.1859 0.1894 11.54 <2e-16 ***
## Gender_MF1 0.1339 0.2306 0.58 0.56
## Minpressure.2014.sc -0.0608 0.3211 -0.19 0.85
## Gender_MF1:Minpressure.2014.sc -0.0498 0.3676 -0.14 0.89
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(sqrt(NDAM)):Gender_MF0 2.36 2.84 9.79 0.018 *
## s(sqrt(NDAM)):Gender_MF1 2.26 2.81 53.78 2.2e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.344 Deviance explained = 58.7%
## UBRE score = 0.28926 Scale est. = 1 n = 92
</code></pre>
<pre><code class="r">par(mfrow = c(1, 2), mar = c(2.6, 2.6, 3, 0.5), oma = c(2, 2, 0, 0))
plot(modJSVH.gamMF, xlab = "", ylab = "", resid = TRUE, shade = TRUE, cex = 3,
select = 1, main = "Male")
plot(modJSVH.gamMF, xlab = "", ylab = "", resid = TRUE, shade = TRUE, cex = 3,
select = 1, main = "Female")
mtext("Normalized Damage", 1, outer = TRUE)
mtext("Effect on mortality", 2, outer = TRUE)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-19"/> </p>
<p>which takes us back to the model with no gender effects, and indeed a formal comparison suggests little difference: the difference in deviance is actually negative, so the simpler model fits better, and the gender effect is gone (again):</p>
<pre><code class="r">modJSVH.gamMF2 = gam(alldeaths ~ Gender_MF * Minpressure.2014.sc + s(sqrt(NDAM)),
data = Data, family = negbin(theta = c(0.2, 10)))
anova(modJSVH.gamMF2, modJSVH.gamMF)
</code></pre>
<pre><code>## Analysis of Deviance Table
##
## Model 1: alldeaths ~ Gender_MF * Minpressure.2014.sc + s(sqrt(NDAM))
## Model 2: alldeaths ~ Gender_MF * Minpressure.2014.sc + s(sqrt(NDAM), by = Gender_MF)
## Resid. Df Resid. Dev Df Deviance
## 1 85.4 101
## 2 83.4 101 1.99 -0.436
</code></pre>
<pre><code class="r">summary(modJSVH.gamMF2)
</code></pre>
<pre><code>##
## Family: Negative Binomial(1.114)
## Link function: log
##
## Formula:
## alldeaths ~ Gender_MF * Minpressure.2014.sc + s(sqrt(NDAM))
##
## Parametric coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.179 0.190 11.47 <2e-16 ***
## Gender_MF1 0.132 0.232 0.57 0.57
## Minpressure.2014.sc 0.216 0.227 0.95 0.34
## Gender_MF1:Minpressure.2014.sc -0.331 0.230 -1.44 0.15
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df Chi.sq p-value
## s(sqrt(NDAM)) 2.63 3.23 65.5 1.2e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.376 Deviance explained = 58.4%
## UBRE score = 0.24136 Scale est. = 1 n = 92
</code></pre>
<p>So, this demonstrates the dilemma we have: either there is a gender effect, or thre is a non-linear effect of normalised damage. The choice of which one to use would depend as much on expert knowledge. I would still use normalised damage, because I think it is more plausible.</p>
</body>
</html>