【English|中文】
The AI agent script CLI for Programmable Prompt Engine.
Enjoying this project? Please star it! 🌟
Features:
- Programmable Prompt Engineering (PPE) language is a simple and natural scripting language designed for handling prompt information. This language is used to develop various agents that can be reused, inherited, combined, or called.
- Achieve or approximate the performance of ChatGPT 4 with open-source LLMs of medium to small scale (35B-4B parameters).
- User-friendly for ai development and creation of intelligent applications...
- Low-code or even no-code solutions for rapid ai development...
- Flexible, adding custom instructions within scripts, and inter-script calls...
- The data is completely open to the script, and the input and output data, even the internal data, can be freely accessed in the script
- Powerful, enabling event transmission seamlessly between client and server with numerous utility functions...
- Secure, supporting encrypted execution and usage limits for scripts(TODO)...
- Enable the local deployment and execution of large language models (LLMs) such as LLaMA, Qwen, Gemma, Phi, GLM, Mistral, and more.
- The AI Agent Script follows the Programmable Prompt Engine Specification.
- Visit the site for the detailed AI Agent script usage.
- PPE Fixtures Unit Test
- Unit Test Fixture Demo: https://github.com/offline-ai/cli/tree/main/examples/split-text-paragraphs
Developing an intelligent application with AI Agent Script Engine involves just three steps:
- Choose an appropriate brain🧠 (LLM Large Language Model)
- Select a parameter size based on your application's requirements; larger sizes offer better quality but consume more resources and increase response time...
- Choose the model's expertise: Different models are trained with distinct methods and datasets, resulting in unique capabilities...
- Optimize quantization: Higher levels of quantization (compression) result in faster speed and smaller size, but potentially lower accuracy...
- Decide on the optimal context window size (
content_size
): Typically, 2048 is sufficient; this parameter also influences model performance... - Use the client (
@offline-ai/cli
) directly to download the AI brain:ai brain download
- Create the ai application's agent script file and debug prompts using the client (
@offline-ai/cli
):ai run -f your_script --interactive --loglevel info
. - Integrate the script into your ai application.
- One-click packaging into standalone intelligent applications (TODO)
- Offline AI PPE CLI(WIP)
- Quick Start
- API mode, translate the TODO file to English
- interactive mode
- Usage
- Commands
- Credit
- Quick Start Programming Guide
- More examples
- AI Applications written in PPE Language:
- AI Guide App For PPE Guide - WIP
ai run guide --streamEcho line
in the project root folder to run the guide
- AI Terminal Shell
- AI Guide App For PPE Guide - WIP
- LLM Inference Providers:
llamacpp
: llama.cpp server as the default local LLM provider. If noprovider
is specified,llamacpp
is used.openai
: Also supports OpenAI-compatible service API providers.--provider openai://chatgpt-4o-latest --apiKey “sk-XXX”
Note: Limitations of OpenAI-Compatible Service API Providers
- OpenAI must be a large model (
gpt-4o
) released after2024-07-18
to supportjson-schema
. Before this date, onlyjson
is guaranteed, not thejson-schema
. - All
siliconflow
models only guaranteejson
support, notjson-schema
support. [[Fruit:|Apple|Banana]]
: Syntax for forcing AI to choose either Apple or Banana will be invalid.
ai
is the shell CLI command to manage the brain(LLM) files and run a PPE agent script mainly.
- Run script file command
ai run
, eg,ai run -f calculator.ai.yaml "{content: '32+12*53'}"
-f
is used to specify the script file.{content: '32+12*53'}
is the optional json input to the script.- Scripts will display intermediate echo outputs during processing when streaming output. This can be controlled with
--streamEcho true|line|false
. To keep the displayed echo outputs, use--no-consoleClear
. - Script can be single YAML file (
.ai.yaml
) or directory.- Directory must have an entry point script file with the same name as the directory. Other scripts in the directory can call each other.
- Manage the brain files command
ai brain
includeai brain download
,ai brain list/search
. - Run
ai help
orai help [command]
to get more.
Programmable Prompt Engine (PPE) Language is a message-processing language, similar to the YAML format.
PPE is designed to define AI prompt messages and their input/output configurations. It allows for the creation of a reusable and programmable prompt system akin to software engineering practices.
- Message-Based Dialogue: Defines interactions as a series of messages with roles (system, user, assistant).
- YAML-Like: Syntax is similar to YAML, making it readable and easy to understand.
- Dialogue Separation: Uses triple dashes (
---
) or asterisks (***
) to clearly mark dialogue turns.
- Input/Output Configuration (Front-Matter): Defines input requirements (using
input
keyword) and expected output format (usingoutput
keyword with JSON Schema). - Prompt Template: Embeds variables from input configuration or prompt settings into messages using Jinja2 templates (
{{variable_name}}
). - Custom Script Types: Allows defining reusable script types (
type: type
) for code and configuration inheritance.
- Advanced AI Replacement: Use double brackets (
[[Response]]
) to trigger AI execution, store the response in a variable (prompt.Response
), and use it within the script. - AI Parameter Control: Fine-tune AI behavior by passing parameters within double brackets (e.g.,
[[Answer:temperature=0.7]]
). - Constrained AI Responses: Limit AI outputs to a predefined set of options (e.g.,
[[FRUITS:|Apple|Banana]]
).
The role messages can be formatted using Jinja2 templates and advanced replacement features.
- Jinja2 Templates: Reference variables from input configuration or prompt settings using double curly braces (e.g.,
{{name}}
). - Advanced AI Replacement: As described above, triggers AI execution and stores the response.
- External Script Replacement: Invoke external scripts using the
@
symbol (e.g.,@say_hi_script(param1=value1)
). - Internal Instruction Replacement: Call internal instructions similarly (e.g.,
@$instruction(param1=value1)
). - Regular Expression Replacement: Use
/RegExp/[RegOpts]:Answer[:index_or_group_name]
for pattern-based replacement on theAnswer
variable.
- Chaining Outputs: The
->
operator connect script outputs to subsequent instructions or scripts, creating complex workflows. - Instruction Invocation: The
$
prefix calls script instructions (e.g.,$fn: {param1:value1}
or$fn(param1=value1)
). - Control Flow: Directives like
$if
,$pipe
,$while
,$match
provide control flow mechanisms. - Event-Driven Architecture: Functions like
$on
,$once
,$emit
and$off
enable event-based programming for flexible script behavior. - Script Extension:
- The
!fn
directive allows declaring JavaScript functions to extend script functionality. import
configuration allows importing external scripts and modules.
- The
npm install -g @offline-ai/cli
ai brain download QuantFactory/Phi-3-mini-4k-instruct-GGUF-v2 -q Q4_0
Downloading to ~/.local/share/ai/brain
Downloading https://huggingface.co/QuantFactory/Phi-3-mini-4k-instruct-GGUF-v2/resolve/main/Phi-3-mini-4k-instruct.Q4_0.gguf... 5.61% 121977704 bytes
1. https://huggingface.co/QuantFactory/Phi-3-mini-4k-instruct-GGUF-v2/resolve/main/Phi-3-mini-4k-instruct.Q4_0.gguf
~/.local/share/ai/brain/phi-3-mini-4k-instruct.Q4_0.gguf
done
mkdir llamacpp
cd llamacpp
#goto https://github.com/ggerganov/llama.cpp/releases/latest download latest release
wget https://github.com/ggerganov/llama.cpp/releases/download/b3563/llama-b3563-bin-ubuntu-x64.zip
unzip llama-b3563-bin-ubuntu-x64.zip
Upgrade:
#install again
npm install -g @offline-ai/cli
First run llama.cpp server(provider)
#run llama.cpp server
cd llamacpp/build/bin
#set -ngl 0 if no gpu
./llama-server -t 4 -c 4096 -ngl 33 -m ~/.local/share/ai/brain/phi-3-mini-4k-instruct.Q4_0.gguf
Now you can run your ai agent script, eg, the Dobby
character:
$ai run --interactive --script examples/char-dobby
run the translator
script lib directly:
# API mode, translate the TODO file to English
$ai run -f translator "{file: './TODO', target: 'English'}"
# interactive mode
$ai run -if translator
Install the CLI globally:
$ npm install -g @offline-ai/cli
$ ai COMMAND
running command...
$ ai (--version)
@offline-ai/cli/0.7.0 linux-x64 node-v20.18.0
$ ai --help [COMMAND]
USAGE
$ ai COMMAND
...
Search and Download a brain(LLM) on huggingface.
Choose one to download, or type more to reduce the brain(models) list
Note:
- All quantification (compression) brain 🧠 models are uploaded by the user by themselves, so it cannot guarantee that these user quantitative (compressed) brain 🧠 models can be used
- At present, the GGUF quantitative brain 🧠 model has been tens of thousands, and many of them are repeated.
AI Brain List
Display the brain list, which is part of the list filtered by thefeatured
. If you want to display all the brain list, use--no-onlyFeatured
option.
#list the downloaded brain list
#=`ai brain list --downloaded`
$ai brain
$ai brain list --downloaded
1. name: "deepseek-v2-chat", likes: 17, downloads: 1189, hf_repo: "leafspark/DeepSeek-V2-Chat-GGUF"
* IQ2_XXS: deepseek-v2-chat.IQ2_XXS-00001-of-00003.gguf (3 files)
* IQ3_XS: deepseek-v2-chat.IQ3_XS-00001-of-00008.gguf (8 files)
* Q2_K: deepseek-v2-chat.Q2_K-00001-of-00005.gguf (5 files)
* Q3_K_M: deepseek-v2-chat.Q3_K_M-00001-of-00006.gguf (6 files)
* Q5_K_M: deepseek-v2-chat.Q5_K_M-00001-of-00008.gguf (8 files)
* Q6_K: deepseek-v2-chat.Q6_K-00001-of-00010.gguf (10 files)
* Q8_0: deepseek-v2-chat.Q8_0-00001-of-00012.gguf (12 files)
total: 1
#You can specify the keyword of the brain model to search
$ai brain list qwen1.5
1. name: "codeqwen1.5-7b-chat", likes: 84, downloads: 196977, hf_repo: "Qwen/CodeQwen1.5-7B-Chat-GGUF"
* Q2_K: codeqwen-1_5-7b-chat.Q2_K.gguf
* Q3_K_M: codeqwen-1_5-7b-chat.Q3_K_M.gguf
* Q4_0: codeqwen-1_5-7b-chat.Q4_0.gguf
* Q4_K_M: codeqwen-1_5-7b-chat.Q4_K_M.gguf
* Q5_0: codeqwen-1_5-7b-chat.Q5_0.gguf
* Q5_K_M: codeqwen-1_5-7b-chat.Q5_K_M.gguf
* Q6_K: codeqwen-1_5-7b-chat.Q6_K.gguf
* Q8_0: codeqwen-1_5-7b-chat.Q8_0.gguf
2. name: "qwen1.5-72b-chat", likes: 62, downloads: 3657, hf_repo: "Qwen/Qwen1.5-72B-Chat-GGUF"
* Q2_K: qwen1_5-72b-chat.Q2_K.gguf
* Q3_K_M: qwen1_5-72b-chat.Q3_K_M.gguf
* Q4_0: qwen1_5-72b-chat.Q4_0-00001-of-00002.gguf (2 files)
* Q4_K_M: qwen1_5-72b-chat.Q4_K_M-00001-of-00002.gguf (2 files)
* Q5_0: qwen1_5-72b-chat.Q5_0-00001-of-00002.gguf (2 files)
* Q5_K_M: qwen1_5-72b-chat.Q5_K_M-00001-of-00002.gguf (2 files)
* Q6_K: qwen1_5-72b-chat.Q6_K-00001-of-00002.gguf (2 files)
* Q8_0: qwen1_5-72b-chat.Q8_0-00001-of-00003.gguf (3 files)
...
total: 35
$ai brain list qwen1.5 --no-onlyFeatured
1. name: "codeqwen1.5-7b-chat", likes: 84, downloads: 196977, hf_repo: "Qwen/CodeQwen1.5-7B-Chat-GGUF"
...
total: 144
#Download the brain, if there are multiple choices in the input keywords, you will be required to specify
#LLAMA3-8B is the name of the brain model to be searched
#`-q q4_0` is the quantification level of download. If it is not provided, it will be prompted to specify
#`--hubUrl` is the mirror URL address of Huggingface
$ai brain download llama3-8b -q Q4_0 --hubUrl=huggingface-mirror-url-address
after download, get the brainDir from here:
ai config brainDir
{
"brainDir": "~/.local/share/ai/brain"
}
You can create your config in ~/.config/ai/.ai.yaml
or using json format: ~/.config/ai/.ai.json
.
Download and run the LLM backend Server: llama.cpp
mkdir llamacpp
cd llamacpp
wget https://github.com/ggerganov/llama.cpp/releases/download/b3091/llama-b3091-bin-ubuntu-x64.zip
unzip llama-b3091-bin-ubuntu-x64.zip
cd build/bin
#run the server
#`-ngl 33` means GPU layers to load, adjust it according to your GPU.
#`-c 4096` means max context length
#`-t 4` means thread count
./server -t 4 -c 4096 -ngl 33 -m ~/.local/share/ai/brain/your-brain-model.gguf
Now you can run your AI agent:
#the `.ai.yaml` extension is optional.
#defaults will search current working dir. you can config the search paths in `agentDirs`.
#`-f` means the agent file
#`-i` means entering the interactive mode
$ai run -if examples/char-dobby
Dobby: I am Dobby. Dobby is happy.
You: intro yourself pls.
Dobby: I am Dobby. I'm a brave and loyal house-elf, and I'm very proud to be a free elf. I love socks and wearing mismatched pairs.
#provide the content and the json schema in output field, it will output the json data.
$ai run -f examples/json '{content: "I recently purchased the Razer BlackShark V2 X Gaming Headset, and it has significantly enhanced my gaming experience. This headset offers incredible sound quality, comfort, and features that are perfect for any serious gamer. Here’s why I highly recommend it: The 7.1 surround sound feature is a game-changer. The audio quality is superb, providing a truly immersive experience. I can clearly hear directional sounds, which is crucial for competitive gaming. The depth and clarity of the sound make it feel like I’m right in the middle of the action. The 50mm drivers deliver powerful, high-quality sound. The bass is deep and punchy without being overwhelming, while the mids and highs are crisp and clear. This balance makes the headset versatile, not only for gaming but also for listening to music and watching movies.", "output":{"type":"object","properties":{"sentiment":{"type":"string","description":"Sentiment (positive or negative)"},"products":{"type":"array","items":{"type":"object","properties":{"name":{"type":"string","description":"Name of the product"},"brand":{"type":"string","description":"Company that made the product"}}},"description":"Products mentioned in the review"},"anger":{"type":"boolean","description":"Is the reviewer expressing anger?"}},"required":["sentiment","products","anger"]}}'
{
"sentiment": "positive",
"products": [
{
"name": "Razer BlackShark V2 X Gaming Headset",
"brand": "Razer"
}
],
"anger": false
}
Note:
- By default, the history after running is in the directory
~/.local/share/ai/logs/chats/[script_file_basename]/history
. You can checkseeds
,temperature
and other information here.- In interactive mode, the history will be automatically loaded by default. If you don't need it, you can use
--new-chat
- In non-interactive mode, the history will not be automatically loaded. A new history will be generated for each run.
- To completely disable the history, you can use
--no-chats
- In interactive mode, the history will be automatically loaded by default. If you don't need it, you can use
Embed the script into your own code (locally) as follows:
import { AIScriptServer } from '@isdk/ai-tool-agent';
// Configure your script search path
AIScriptEx.searchPaths = ['.']
const script = AIScriptServer.load('examples/json')
// Set the default to large model streaming response
script.llmStream = stream
const content = "I recently purchased the Razer BlackShark V2 X Gaming Headset, and it has significantly enhanced my gaming experience. This headset offers incredible sound quality, comfort, and features that are perfect for any serious gamer. Here’s why I highly recommend it: The 7.1 surround sound feature is a game-changer. The audio quality is superb, providing a truly immersive experience. I can clearly hear directional sounds, which is crucial for competitive gaming. The depth and clarity of the sound make it feel like I’m right in the middle of the action. The 50mm drivers deliver powerful, high-quality sound. The bass is deep and punchy without being overwhelming, while the mids and highs are crisp and clear. This balance makes the headset versatile, not only for gaming but also for listening to music and watching movies."
const output = {
"type":"object",
"properties":{
"sentiment":{"type":"string","description":"Sentiment (positive or negative)"},
"products":{
"type":"array",
"items":{
"type":"object",
"properties":{
"name":{"type":"string","description":"Name of the product"},
"brand":{"type":"string","description":"Company that made the product"}}
},
"description":"Products mentioned in the review"
},
"anger":{"type":"boolean","description":"Is the reviewer expressing anger?"}},
"required":["sentiment","products","anger"]
}
const result =await script.exec({content, output})
console.log(result)
// You can see the json results output by the large model:
{
"sentiment": "positive",
"products": [
{
"name": "Razer BlackShark V2 X Gaming Headset",
"brand": "Razer"
}
],
"anger": false
}
Specific script instruction manual see: Programmable Prompt Engine Specification
ai agent
ai autocomplete [SHELL]
ai brain [NAME]
ai brain dn [NAME]
ai brain down [NAME]
ai brain download [NAME]
ai brain list [NAME]
ai brain refresh
ai brain search [NAME]
ai config [ITEM_NAME]
ai config save [DATA]
ai help [COMMAND]
ai plugins
ai plugins add PLUGIN
ai plugins:inspect PLUGIN...
ai plugins install PLUGIN
ai plugins link PATH
ai plugins remove [PLUGIN]
ai plugins reset
ai plugins uninstall [PLUGIN]
ai plugins unlink [PLUGIN]
ai plugins update
ai run [FILE] [DATA]
ai test [FILE]
ai version
🤖 The AI Agent Manager(TODO)
USAGE
$ ai agent
DESCRIPTION
🤖 The AI Agent Manager(TODO)
Manage your AI Agents 🤖 here.
📜 List local or online agents
🔎 search for agents
📥 download agents
❌ delete agents
🎉 publish agents
EXAMPLES
$ ai agent list
$ ai agent download <agent-name>
$ ai agent publish <agent-name>
See code: src/commands/agent/index.ts
Display autocomplete installation instructions.
USAGE
$ ai autocomplete [SHELL] [-r]
ARGUMENTS
SHELL (zsh|bash|powershell) Shell type
FLAGS
-r, --refresh-cache Refresh cache (ignores displaying instructions)
DESCRIPTION
Display autocomplete installation instructions.
EXAMPLES
$ ai autocomplete
$ ai autocomplete bash
$ ai autocomplete zsh
$ ai autocomplete powershell
$ ai autocomplete --refresh-cache
See code: @oclif/plugin-autocomplete
🧠 The AI Brains(LLM) Manager.
USAGE
$ ai brain [NAME] [--json] [--config <value>] [--banner] [-b <value>]
[-s <value>] [-n <value>] [-u <value> -r] [-v ]
ARGUMENTS
NAME the brain name to search
FLAGS
-b, --brainDir=<value> the brains(LLM) directory
-n, --count=<value> [default: 100] the max number of brains to list, 0 means all.
-r, --refresh refresh the online brains list
-s, --search=<value> the json filter to search for brains
-u, --hubUrl=<value> the hub mirror url
-v, --verifyQuant whether verify quant when refresh
--[no-]banner show banner
--config=<value> the config file
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
🧠 The AI Brains(LLM) Manager.
Manage AI brains 🧠 here.
📜 List downloaded or online brains
🔎 search for brains
📥 download brains
❌ delete brains
EXAMPLES
$ ai brain # list download brains
$ ai brain list --online # list online brains
$ ai brain download <brain-name>
See code: @offline-ai/cli-plugin-cmd-brain
🧠 The AI Brains(LLM) Downloader.
USAGE
$ ai brain dn [NAME] [--json] [--config <value>] [--banner] [-b <value>]
[-q F32|F16|Q4_0|Q4_1|Q4_1_SOME_F16|Q8_0|Q5_0|Q5_1|Q2_K|Q3_K_S|Q3_K_M|Q3_K_L|Q4_K_S|Q4_K_M|Q5_K_S|Q5_K_M|Q6_K|IQ2_XX
S|IQ2_XS|Q2_K_S|IQ3_XS|IQ3_XXS|IQ1_S|IQ4_NL|IQ3_S|IQ3_M|IQ2_S|IQ2_M|IQ4_XS|IQ1_M|BF16|Q4_0_4_4|Q4_0_4_8|Q4_0_8_8|GUE
SSED|Q4_K_L|Q3_K_XL|Q2_K_L] [-u <value>] [-d] [-r]
ARGUMENTS
NAME the brain name to download
FLAGS
-b, --brainDir=<value> the brains(LLM) directory
-d, --dryRun dry run, do not download
-q, --quant=<option> the quantization of the model, defaults to 4bit
<options: F32|F16|Q4_0|Q4_1|Q4_1_SOME_F16|Q8_0|Q5_0|Q5_1|Q2_K|Q3_K_S|Q3_K_M|Q3_K_L|Q4_K_S|Q4_K
_M|Q5_K_S|Q5_K_M|Q6_K|IQ2_XXS|IQ2_XS|Q2_K_S|IQ3_XS|IQ3_XXS|IQ1_S|IQ4_NL|IQ3_S|IQ3_M|IQ2_S|IQ2_
M|IQ4_XS|IQ1_M|BF16|Q4_0_4_4|Q4_0_4_8|Q4_0_8_8|GUESSED|Q4_K_L|Q3_K_XL|Q2_K_L>
-r, --refresh refresh the specified brain
-u, --hubUrl=<value> the hub mirror url
--[no-]banner show banner
--config=<value> the config file
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
🧠 The AI Brains(LLM) Downloader.
📥 download 🧠 brains to brainDir.
ALIASES
$ ai brain dn
$ ai brain down
EXAMPLES
$ ai brain dn <brain-name> [-q <QUANT>]
🧠 The AI Brains(LLM) Downloader.
USAGE
$ ai brain down [NAME] [--json] [--config <value>] [--banner] [-b <value>]
[-q F32|F16|Q4_0|Q4_1|Q4_1_SOME_F16|Q8_0|Q5_0|Q5_1|Q2_K|Q3_K_S|Q3_K_M|Q3_K_L|Q4_K_S|Q4_K_M|Q5_K_S|Q5_K_M|Q6_K|IQ2_XX
S|IQ2_XS|Q2_K_S|IQ3_XS|IQ3_XXS|IQ1_S|IQ4_NL|IQ3_S|IQ3_M|IQ2_S|IQ2_M|IQ4_XS|IQ1_M|BF16|Q4_0_4_4|Q4_0_4_8|Q4_0_8_8|GUE
SSED|Q4_K_L|Q3_K_XL|Q2_K_L] [-u <value>] [-d] [-r]
ARGUMENTS
NAME the brain name to download
FLAGS
-b, --brainDir=<value> the brains(LLM) directory
-d, --dryRun dry run, do not download
-q, --quant=<option> the quantization of the model, defaults to 4bit
<options: F32|F16|Q4_0|Q4_1|Q4_1_SOME_F16|Q8_0|Q5_0|Q5_1|Q2_K|Q3_K_S|Q3_K_M|Q3_K_L|Q4_K_S|Q4_K
_M|Q5_K_S|Q5_K_M|Q6_K|IQ2_XXS|IQ2_XS|Q2_K_S|IQ3_XS|IQ3_XXS|IQ1_S|IQ4_NL|IQ3_S|IQ3_M|IQ2_S|IQ2_
M|IQ4_XS|IQ1_M|BF16|Q4_0_4_4|Q4_0_4_8|Q4_0_8_8|GUESSED|Q4_K_L|Q3_K_XL|Q2_K_L>
-r, --refresh refresh the specified brain
-u, --hubUrl=<value> the hub mirror url
--[no-]banner show banner
--config=<value> the config file
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
🧠 The AI Brains(LLM) Downloader.
📥 download 🧠 brains to brainDir.
ALIASES
$ ai brain dn
$ ai brain down
EXAMPLES
$ ai brain down <brain-name> [-q <QUANT>]
🧠 The AI Brains(LLM) Downloader.
USAGE
$ ai brain download [NAME] [--json] [--config <value>] [--banner] [-b <value>]
[-q F32|F16|Q4_0|Q4_1|Q4_1_SOME_F16|Q8_0|Q5_0|Q5_1|Q2_K|Q3_K_S|Q3_K_M|Q3_K_L|Q4_K_S|Q4_K_M|Q5_K_S|Q5_K_M|Q6_K|IQ2_XX
S|IQ2_XS|Q2_K_S|IQ3_XS|IQ3_XXS|IQ1_S|IQ4_NL|IQ3_S|IQ3_M|IQ2_S|IQ2_M|IQ4_XS|IQ1_M|BF16|Q4_0_4_4|Q4_0_4_8|Q4_0_8_8|GUE
SSED|Q4_K_L|Q3_K_XL|Q2_K_L] [-u <value>] [-d] [-r]
ARGUMENTS
NAME the brain name to download
FLAGS
-b, --brainDir=<value> the brains(LLM) directory
-d, --dryRun dry run, do not download
-q, --quant=<option> the quantization of the model, defaults to 4bit
<options: F32|F16|Q4_0|Q4_1|Q4_1_SOME_F16|Q8_0|Q5_0|Q5_1|Q2_K|Q3_K_S|Q3_K_M|Q3_K_L|Q4_K_S|Q4_K
_M|Q5_K_S|Q5_K_M|Q6_K|IQ2_XXS|IQ2_XS|Q2_K_S|IQ3_XS|IQ3_XXS|IQ1_S|IQ4_NL|IQ3_S|IQ3_M|IQ2_S|IQ2_
M|IQ4_XS|IQ1_M|BF16|Q4_0_4_4|Q4_0_4_8|Q4_0_8_8|GUESSED|Q4_K_L|Q3_K_XL|Q2_K_L>
-r, --refresh refresh the specified brain
-u, --hubUrl=<value> the hub mirror url
--[no-]banner show banner
--config=<value> the config file
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
🧠 The AI Brains(LLM) Downloader.
📥 download 🧠 brains to brainDir.
ALIASES
$ ai brain dn
$ ai brain down
EXAMPLES
$ ai brain download <brain-name> [-q <QUANT>]
See code: @offline-ai/cli-plugin-cmd-brain
📜 List downloaded or not downloaded brains, defaults to not downloaded.
USAGE
$ ai brain list [NAME] [--json] [--config <value>] [--banner] [-d] [-a] [-b
<value>] [-f] [-s <value>] [-n <value>] [-u <value> -r]
ARGUMENTS
NAME the brain name to search
FLAGS
-a, --all list all brains(include downloaded)
-b, --brainDir=<value> the brains(LLM) directory
-d, --downloaded list downloaded brains
-f, --[no-]onlyFeatured only list featured brains
-n, --count=<value> [default: 100] the max number of brains to list, 0 means all.
-r, --refresh refresh the online brains list
-s, --search=<value> the json filter to search for brains
-u, --hubUrl=<value> the hub mirror url
--[no-]banner show banner
--config=<value> the config file
GLOBAL FLAGS
--json Format output as json.
See code: @offline-ai/cli-plugin-cmd-brain
🔄 refresh/update online brains index.
USAGE
$ ai brain refresh [--json] [-b <value>] [-u <value>] [-v] [-c <value>]
FLAGS
-b, --brainDir=<value> the brains(LLM) directory
-c, --maxCount=<value> [default: -1] the max number of brains to refresh, -1 means no limits
-u, --hubUrl=<value> the hub mirror url
-v, --verifyQuant whether verify quant when refresh
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
🔄 refresh/update online brains index.
refresh/update brain index from huggingface.co
See code: @offline-ai/cli-plugin-cmd-brain
🔍 Search brains offline, defaults to all.
USAGE
$ ai brain search [NAME] [--json] [--config <value>] [--banner] [-d] [-a] [-b
<value>] [-f] [-s <value>] [-n <value>] [-u <value> -r]
ARGUMENTS
NAME the brain name to search
FLAGS
-a, --[no-]all list all brains(include downloaded)
-b, --brainDir=<value> the brains(LLM) directory
-d, --downloaded list downloaded brains
-f, --[no-]onlyFeatured only list featured brains
-n, --count=<value> [default: 100] the max number of brains to list, 0 means all.
-r, --refresh refresh the online brains list
-s, --search=<value> the json filter to search for brains
-u, --hubUrl=<value> the hub mirror url
--[no-]banner show banner
--config=<value> the config file
GLOBAL FLAGS
--json Format output as json.
See code: @offline-ai/cli-plugin-cmd-brain
🛠️ Manage the AI Configuration.
USAGE
$ ai config [ITEM_NAME] [--json] [-u <value>] [--apiKey <value>] [-s
<value>...] [--logLevelMaxLen <value> -l trace|debug|verbose|info|notice|warn|error|fatal|print|silence]
[--histories <value>] [-n] [-k] [-t <value> -i] [--no-chats] [--no-inputs ] [-m] [-f <value>] [-d <value>] [-D
<value>...] [-a <value>] [-b <value>] [-p <value>...] [-L <value>] [-A <value>] [-e true|false|line] [-C <value>]
[-P <value>]
ARGUMENTS
ITEM_NAME the config item name path to get
FLAGS
-A, --aiPreferredLanguage=<value> the ISO 639-1 code for the AI preferred language to translate the user input
automatically, eg, en, etc.
-C, --streamEchoChars=<value> [default: 80] stream echo max characters limit
-D, --data=<value>... the data which will be passed to the ai-agent script: key1=value1 key2=value2
-L, --userPreferredLanguage=<value> the ISO 639-1 code for the user preferred language to translate the AI result
automatically, eg, en, zh, ja, ko, etc.
-P, --provider=<value> the LLM provider, defaults to llamacpp
-a, --arguments=<value> the json data which will be passed to the ai-agent script
-b, --brainDir=<value> the brains(LLM) directory
-d, --dataFile=<value> the data file which will be passed to the ai-agent script
-e, --streamEcho=<option> [default: line] stream echo mode
<options: true|false|line>
-f, --script=<value> the ai-agent script file name or id
-i, --[no-]interactive interactive mode
-k, --backupChat whether to backup chat history before start, defaults to false
-l, --logLevel=<option> the log level
<options: trace|debug|verbose|info|notice|warn|error|fatal|print|silence>
-m, --[no-]stream stream mode, defaults to true
-n, --[no-]newChat whether to start a new chat history, defaults to false in interactive mode, true
in non-interactive
-p, --promptDirs=<value>... the prompts template directory
-s, --agentDirs=<value>... the search paths for ai-agent script file
-t, --inputs=<value> the input histories folder for interactive mode to record
-u, --api=<value> the api URL
--apiKey=<value> the api key (optional)
--histories=<value> the chat histories folder to record
--logLevelMaxLen=<value> the max length of log item to display
--no-chats disable chat histories, defaults to false
--no-inputs disable input histories, defaults to false
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
🛠️ Manage the AI Configuration.
show current configuration if no commands.
EXAMPLES
# list all configurations
$ ai config
# get the brainDir config item
$ ai config brainDir
AI Configuration:
{
"brainDir": "~/.local/share/ai/brain"
}
See code: @offline-ai/cli-plugin-cmd-config
💾 Save the current configuration to file which can be used to initialize config.
USAGE
$ ai config save [DATA] [--json] [--config <value>] [--banner] [-u <value>]
[--apiKey <value>] [-s <value>...] [--logLevelMaxLen <value> -l
trace|debug|verbose|info|notice|warn|error|fatal|print|silence] [--histories <value>] [-n] [-k] [-t <value> -i]
[--no-chats] [--no-inputs ] [-m] [-f <value>] [-d <value>] [-D <value>...] [-a <value>] [-b <value>] [-p <value>...]
[-L <value>] [-A <value>] [-e true|false|line] [-C <value>] [-P <value>]
ARGUMENTS
DATA the json data which will be passed to the ai-agent script
FLAGS
-A, --aiPreferredLanguage=<value> the ISO 639-1 code for the AI preferred language to translate the user input
automatically, eg, en, etc.
-C, --streamEchoChars=<value> [default: 80] stream echo max characters limit
-D, --data=<value>... the data which will be passed to the ai-agent script: key1=value1 key2=value2
-L, --userPreferredLanguage=<value> the ISO 639-1 code for the user preferred language to translate the AI result
automatically, eg, en, zh, ja, ko, etc.
-P, --provider=<value> the LLM provider, defaults to llamacpp
-a, --arguments=<value> the json data which will be passed to the ai-agent script
-b, --brainDir=<value> the brains(LLM) directory
-d, --dataFile=<value> the data file which will be passed to the ai-agent script
-e, --streamEcho=<option> [default: line] stream echo mode
<options: true|false|line>
-f, --script=<value> the ai-agent script file name or id
-i, --[no-]interactive interactive mode
-k, --backupChat whether to backup chat history before start, defaults to false
-l, --logLevel=<option> the log level
<options: trace|debug|verbose|info|notice|warn|error|fatal|print|silence>
-m, --[no-]stream stream mode, defaults to true
-n, --[no-]newChat whether to start a new chat history, defaults to false in interactive mode, true
in non-interactive
-p, --promptDirs=<value>... the prompts template directory
-s, --agentDirs=<value>... the search paths for ai-agent script file
-t, --inputs=<value> the input histories folder for interactive mode to record
-u, --api=<value> the api URL
--apiKey=<value> the api key (optional)
--[no-]banner show banner
--config=<value> the config file
--histories=<value> the chat histories folder to record
--logLevelMaxLen=<value> the max length of log item to display
--no-chats disable chat histories, defaults to false
--no-inputs disable input histories, defaults to false
GLOBAL FLAGS
--json Format output as json.
See code: @offline-ai/cli-plugin-cmd-config
Display help for ai.
USAGE
$ ai help [COMMAND...] [-n]
ARGUMENTS
COMMAND... Command to show help for.
FLAGS
-n, --nested-commands Include all nested commands in the output.
DESCRIPTION
Display help for ai.
See code: @oclif/plugin-help
List installed plugins.
USAGE
$ ai plugins [--json] [--core]
FLAGS
--core Show core plugins.
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
List installed plugins.
EXAMPLES
$ ai plugins
See code: @oclif/plugin-plugins
Installs a plugin into ai.
USAGE
$ ai plugins add PLUGIN... [--json] [-f] [-h] [-s | -v]
ARGUMENTS
PLUGIN... Plugin to install.
FLAGS
-f, --force Force npm to fetch remote resources even if a local copy exists on disk.
-h, --help Show CLI help.
-s, --silent Silences npm output.
-v, --verbose Show verbose npm output.
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
Installs a plugin into ai.
Uses npm to install plugins.
Installation of a user-installed plugin will override a core plugin.
Use the AI_NPM_LOG_LEVEL environment variable to set the npm loglevel.
Use the AI_NPM_REGISTRY environment variable to set the npm registry.
ALIASES
$ ai plugins add
EXAMPLES
Install a plugin from npm registry.
$ ai plugins add myplugin
Install a plugin from a github url.
$ ai plugins add https://github.com/someuser/someplugin
Install a plugin from a github slug.
$ ai plugins add someuser/someplugin
Displays installation properties of a plugin.
USAGE
$ ai plugins inspect PLUGIN...
ARGUMENTS
PLUGIN... [default: .] Plugin to inspect.
FLAGS
-h, --help Show CLI help.
-v, --verbose
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
Displays installation properties of a plugin.
EXAMPLES
$ ai plugins inspect myplugin
See code: @oclif/plugin-plugins
Installs a plugin into ai.
USAGE
$ ai plugins install PLUGIN... [--json] [-f] [-h] [-s | -v]
ARGUMENTS
PLUGIN... Plugin to install.
FLAGS
-f, --force Force npm to fetch remote resources even if a local copy exists on disk.
-h, --help Show CLI help.
-s, --silent Silences npm output.
-v, --verbose Show verbose npm output.
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
Installs a plugin into ai.
Uses npm to install plugins.
Installation of a user-installed plugin will override a core plugin.
Use the AI_NPM_LOG_LEVEL environment variable to set the npm loglevel.
Use the AI_NPM_REGISTRY environment variable to set the npm registry.
ALIASES
$ ai plugins add
EXAMPLES
Install a plugin from npm registry.
$ ai plugins install myplugin
Install a plugin from a github url.
$ ai plugins install https://github.com/someuser/someplugin
Install a plugin from a github slug.
$ ai plugins install someuser/someplugin
See code: @oclif/plugin-plugins
Links a plugin into the CLI for development.
USAGE
$ ai plugins link PATH [-h] [--install] [-v]
ARGUMENTS
PATH [default: .] path to plugin
FLAGS
-h, --help Show CLI help.
-v, --verbose
--[no-]install Install dependencies after linking the plugin.
DESCRIPTION
Links a plugin into the CLI for development.
Installation of a linked plugin will override a user-installed or core plugin.
e.g. If you have a user-installed or core plugin that has a 'hello' command, installing a linked plugin with a 'hello'
command will override the user-installed or core plugin implementation. This is useful for development work.
EXAMPLES
$ ai plugins link myplugin
See code: @oclif/plugin-plugins
Removes a plugin from the CLI.
USAGE
$ ai plugins remove [PLUGIN...] [-h] [-v]
ARGUMENTS
PLUGIN... plugin to uninstall
FLAGS
-h, --help Show CLI help.
-v, --verbose
DESCRIPTION
Removes a plugin from the CLI.
ALIASES
$ ai plugins unlink
$ ai plugins remove
EXAMPLES
$ ai plugins remove myplugin
Remove all user-installed and linked plugins.
USAGE
$ ai plugins reset [--hard] [--reinstall]
FLAGS
--hard Delete node_modules and package manager related files in addition to uninstalling plugins.
--reinstall Reinstall all plugins after uninstalling.
See code: @oclif/plugin-plugins
Removes a plugin from the CLI.
USAGE
$ ai plugins uninstall [PLUGIN...] [-h] [-v]
ARGUMENTS
PLUGIN... plugin to uninstall
FLAGS
-h, --help Show CLI help.
-v, --verbose
DESCRIPTION
Removes a plugin from the CLI.
ALIASES
$ ai plugins unlink
$ ai plugins remove
EXAMPLES
$ ai plugins uninstall myplugin
See code: @oclif/plugin-plugins
Removes a plugin from the CLI.
USAGE
$ ai plugins unlink [PLUGIN...] [-h] [-v]
ARGUMENTS
PLUGIN... plugin to uninstall
FLAGS
-h, --help Show CLI help.
-v, --verbose
DESCRIPTION
Removes a plugin from the CLI.
ALIASES
$ ai plugins unlink
$ ai plugins remove
EXAMPLES
$ ai plugins unlink myplugin
Update installed plugins.
USAGE
$ ai plugins update [-h] [-v]
FLAGS
-h, --help Show CLI help.
-v, --verbose
DESCRIPTION
Update installed plugins.
See code: @oclif/plugin-plugins
💻 Run ai-agent script file.
USAGE
$ ai run [FILE] [DATA] [--json] [--config <value>] [--banner] [-u
<value>] [--apiKey <value>] [-s <value>...] [--logLevelMaxLen <value> -l
trace|debug|verbose|info|notice|warn|error|fatal|print|silence] [--histories <value>] [-n] [-k] [-t <value> -i]
[--no-chats] [--no-inputs ] [-m] [-f <value>] [-d <value>] [-D <value>...] [-a <value>] [-b <value>] [-p <value>...]
[-L <value>] [-A <value>] [-e true|false|line] [-C <value>] [-P <value>] [--consoleClear]
ARGUMENTS
FILE the script file path, or the json data when `-f` switch is set
DATA the json data which will be passed to the ai-agent script
FLAGS
-A, --aiPreferredLanguage=<value> the ISO 639-1 code for the AI preferred language to translate the user input
automatically, eg, en, etc.
-C, --streamEchoChars=<value> [default: 80] stream echo max characters limit
-D, --data=<value>... the data which will be passed to the ai-agent script: key1=value1 key2=value2
-L, --userPreferredLanguage=<value> the ISO 639-1 code for the user preferred language to translate the AI result
automatically, eg, en, zh, ja, ko, etc.
-P, --provider=<value> the LLM provider, defaults to llamacpp
-a, --arguments=<value> the json data which will be passed to the ai-agent script
-b, --brainDir=<value> the brains(LLM) directory
-d, --dataFile=<value> the data file which will be passed to the ai-agent script
-e, --streamEcho=<option> [default: line] stream echo mode
<options: true|false|line>
-f, --script=<value> the ai-agent script file name or id
-i, --[no-]interactive interactive mode
-k, --backupChat whether to backup chat history before start, defaults to false
-l, --logLevel=<option> the log level
<options: trace|debug|verbose|info|notice|warn|error|fatal|print|silence>
-m, --[no-]stream stream mode, defaults to true
-n, --[no-]newChat whether to start a new chat history, defaults to false in interactive mode, true
in non-interactive
-p, --promptDirs=<value>... the prompts template directory
-s, --agentDirs=<value>... the search paths for ai-agent script file
-t, --inputs=<value> the input histories folder for interactive mode to record
-u, --api=<value> the api URL
--apiKey=<value> the api key (optional)
--[no-]banner show banner
--config=<value> the config file
--[no-]consoleClear Whether console clear after stream echo output, default to true
--histories=<value> the chat histories folder to record
--logLevelMaxLen=<value> the max length of log item to display
--no-chats disable chat histories, defaults to false
--no-inputs disable input histories, defaults to false
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
💻 Run ai-agent script file.
Execute ai-agent script file and return result. with `-i` to interactive.
EXAMPLES
$ ai run -f ./script.yaml "{content: 'hello world'}" -l info
┌────────────────────
│[info]:Start Script: ...
See code: @offline-ai/cli-plugin-core
🔬 Run simple AI fixtures to test(draft).
USAGE
$ ai test [FILE] [--json] [--config <value>] [--banner] [-u <value>]
[--apiKey <value>] [-s <value>...] [--logLevelMaxLen <value> -l
trace|debug|verbose|info|notice|warn|error|fatal|print|silence] [--histories <value>] [-n] [-k] [-t <value> ]
[--no-chats] [--no-inputs ] [-m] [-f <value>] [-d <value>] [-D <value>...] [-a <value>] [-b <value>] [-p <value>...]
[-L <value>] [-A <value>] [-e true|false|line] [-e <value>] [-P <value>] [--consoleClear] [-i <value>...] [-x
<value>...] [-g] [-c <value>] [--checkSchema]
ARGUMENTS
FILE the test fixtures file path
FLAGS
-A, --aiPreferredLanguage=<value> the ISO 639-1 code for the AI preferred language to translate the user input
automatically, eg, en, etc.
-D, --data=<value>... the data which will be passed to the ai-agent script: key1=value1 key2=value2
-L, --userPreferredLanguage=<value> the ISO 639-1 code for the user preferred language to translate the AI result
automatically, eg, en, zh, ja, ko, etc.
-P, --provider=<value> the LLM provider, defaults to llamacpp
-a, --arguments=<value> the json data which will be passed to the ai-agent script
-b, --brainDir=<value> the brains(LLM) directory
-c, --runCount=<value> [default: 1] The number of times to run the test case to check if the results are
consistent with the previous run, and to record the counts of matching and
non-matching results
-d, --dataFile=<value> the data file which will be passed to the ai-agent script
-e, --streamEcho=<option> [default: line] stream echo mode, defaults to true
<options: true|false|line>
-e, --streamEchoChars=<value> [default: 80] stream echo max characters limit, defaults to no limit
-f, --script=<value> the ai-agent script file name or id
-g, --generateOutput generate output to fixture file if no output is provided
-i, --includeIndex=<value>... the index of the fixture to run
-k, --backupChat whether to backup chat history before start, defaults to false
-l, --logLevel=<option> the log level
<options: trace|debug|verbose|info|notice|warn|error|fatal|print|silence>
-m, --[no-]stream stream mode, defaults to true
-n, --[no-]newChat whether to start a new chat history, defaults to false in interactive mode, true
in non-interactive
-p, --promptDirs=<value>... the prompts template directory
-s, --agentDirs=<value>... the search paths for ai-agent script file
-t, --inputs=<value> the input histories folder for interactive mode to record
-u, --api=<value> the api URL
-x, --excludeIndex=<value>... the index of the fixture to exclude from running
--apiKey=<value> the api key (optional)
--[no-]banner show banner
--[no-]checkSchema Whether check JSON schema of output
--config=<value> the config file
--[no-]consoleClear Whether console clear after stream output, default to true in interactive, false
to non-interactive
--histories=<value> the chat histories folder to record
--logLevelMaxLen=<value> the max length of log item to display
--no-chats disable chat histories, defaults to false
--no-inputs disable input histories, defaults to false
GLOBAL FLAGS
--json Format output as json.
DESCRIPTION
🔬 Run simple AI fixtures to test(draft).
Execute fixtures file to test AI script file and check result.
EXAMPLES
$ ai test ./named.fixture.yaml -l info
See code: @offline-ai/cli-plugin-cmd-test
USAGE
$ ai version [--json] [--verbose]
FLAGS
--verbose Show additional information about the CLI.
GLOBAL FLAGS
--json Format output as json.
FLAG DESCRIPTIONS
--verbose Show additional information about the CLI.
Additionally shows the architecture, node version, operating system, and versions of plugins that the CLI is using.
See code: @oclif/plugin-version