-
Notifications
You must be signed in to change notification settings - Fork 100
/
serialize.py
361 lines (302 loc) · 13.8 KB
/
serialize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import argparse
import features
import math
import model as M
import struct
import torch
import io
from torch import nn
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from functools import reduce
import operator
import numpy as np
from numba import njit
def ascii_hist(name, x, bins=6):
N,X = np.histogram(x, bins=bins)
total = 1.0*len(x)
width = 50
nmax = N.max()
print(name)
for (xi, n) in zip(X,N):
bar = '#'*int(n*1.0*width/nmax)
xi = '{0: <8.4g}'.format(xi).ljust(10)
print('{0}| {1}'.format(xi,bar))
@njit
def encode_leb_128_array(arr):
res = []
for v in arr:
while True:
byte = v & 0x7f
v = v >> 7
if (v == 0 and byte & 0x40 == 0) or (v == -1 and byte & 0x40 != 0):
res.append(byte)
break
res.append(byte | 0x80)
return res
@njit
def decode_leb_128_array(arr, n):
ints = np.zeros(n)
k = 0
for i in range(n):
r = 0
shift = 0
while True:
byte = arr[k]
k = k + 1
r |= (byte & 0x7f) << shift
shift += 7
if (byte & 0x80) == 0:
ints[i] = r if (byte & 0x40) == 0 else r | ~((1 << shift) - 1)
break
return ints
# hardcoded for now
VERSION = 0x7AF32F20
DEFAULT_DESCRIPTION = "Network trained with the https://github.com/official-stockfish/nnue-pytorch trainer."
class NNUEWriter():
"""
All values are stored in little endian.
"""
def __init__(self, model, description=None, ft_compression='none'):
if description is None:
description = DEFAULT_DESCRIPTION
self.buf = bytearray()
# NOTE: model._clip_weights() should probably be called here. It's not necessary now
# because it doesn't have more restrictive bounds than these defined by quantization,
# but it might be necessary in the future.
fc_hash = self.fc_hash(model)
self.write_header(model, fc_hash, description)
self.int32(model.feature_set.hash ^ (M.L1*2)) # Feature transformer hash
self.write_feature_transformer(model, ft_compression)
for l1, l2, output in model.layer_stacks.get_coalesced_layer_stacks():
self.int32(fc_hash) # FC layers hash
self.write_fc_layer(model, l1)
self.write_fc_layer(model, l2)
self.write_fc_layer(model, output, is_output=True)
@staticmethod
def fc_hash(model):
# InputSlice hash
prev_hash = 0xEC42E90D
prev_hash ^= (M.L1 * 2)
# Fully connected layers
layers = [model.layer_stacks.l1, model.layer_stacks.l2, model.layer_stacks.output]
for layer in layers:
layer_hash = 0xCC03DAE4
layer_hash += layer.out_features // model.num_ls_buckets
layer_hash ^= prev_hash >> 1
layer_hash ^= (prev_hash << 31) & 0xFFFFFFFF
if layer.out_features // model.num_ls_buckets != 1:
# Clipped ReLU hash
layer_hash = (layer_hash + 0x538D24C7) & 0xFFFFFFFF
prev_hash = layer_hash
return layer_hash
def write_header(self, model, fc_hash, description):
self.int32(VERSION) # version
self.int32(fc_hash ^ model.feature_set.hash ^ (M.L1*2)) # halfkp network hash
encoded_description = description.encode('utf-8')
self.int32(len(encoded_description)) # Network definition
self.buf.extend(encoded_description)
def write_leb_128_array(self, arr):
buf = encode_leb_128_array(arr)
self.int32(len(buf))
self.buf.extend(buf)
def write_tensor(self, arr, compression='none'):
if compression == 'none':
self.buf.extend(arr.tobytes())
elif compression == 'leb128':
self.buf.extend('COMPRESSED_LEB128'.encode('utf-8'))
self.write_leb_128_array(arr)
else:
raise Exception('Invalid compression method.')
def write_feature_transformer(self, model, ft_compression):
layer = model.input
bias = layer.bias.data[:M.L1]
bias = bias.mul(model.quantized_one).round().to(torch.int16)
all_weight = M.coalesce_ft_weights(model, layer)
weight = all_weight[:, :M.L1]
psqt_weight = all_weight[:, M.L1:]
weight = weight.mul(model.quantized_one).round().to(torch.int16)
psqt_weight = psqt_weight.mul(model.nnue2score * model.weight_scale_out).round().to(torch.int32)
ascii_hist('ft bias:', bias.numpy())
ascii_hist('ft weight:', weight.numpy())
ascii_hist('ft psqt weight:', psqt_weight.numpy())
# Weights stored as [num_features][outputs]
self.write_tensor(bias.flatten().numpy(), ft_compression)
self.write_tensor(weight.flatten().numpy(), ft_compression)
self.write_tensor(psqt_weight.flatten().numpy(), ft_compression)
def write_fc_layer(self, model, layer, is_output=False):
# FC layers are stored as int8 weights, and int32 biases
kWeightScaleHidden = model.weight_scale_hidden
kWeightScaleOut = model.nnue2score * model.weight_scale_out / model.quantized_one
kWeightScale = kWeightScaleOut if is_output else kWeightScaleHidden
kBiasScaleOut = model.weight_scale_out * model.nnue2score
kBiasScaleHidden = model.weight_scale_hidden * model.quantized_one
kBiasScale = kBiasScaleOut if is_output else kBiasScaleHidden
kMaxWeight = model.quantized_one / kWeightScale
bias = layer.bias.data
bias = bias.mul(kBiasScale).round().to(torch.int32)
weight = layer.weight.data
clipped = torch.count_nonzero(weight.clamp(-kMaxWeight, kMaxWeight) - weight)
total_elements = torch.numel(weight)
clipped_max = torch.max(torch.abs(weight.clamp(-kMaxWeight, kMaxWeight) - weight))
weight = weight.clamp(-kMaxWeight, kMaxWeight).mul(kWeightScale).round().to(torch.int8)
ascii_hist('fc bias:', bias.numpy())
print("layer has {}/{} clipped weights. Exceeding by {} the maximum {}.".format(clipped, total_elements, clipped_max, kMaxWeight))
ascii_hist('fc weight:', weight.numpy())
# FC inputs are padded to 32 elements by spec.
num_input = weight.shape[1]
if num_input % 32 != 0:
num_input += 32 - (num_input % 32)
new_w = torch.zeros(weight.shape[0], num_input, dtype=torch.int8)
new_w[:, :weight.shape[1]] = weight
weight = new_w
self.buf.extend(bias.flatten().numpy().tobytes())
# Weights stored as [outputs][inputs], so we can flatten
self.buf.extend(weight.flatten().numpy().tobytes())
def int32(self, v):
self.buf.extend(struct.pack("<I", v))
class NNUEReader():
def __init__(self, f, feature_set):
self.f = f
self.feature_set = feature_set
self.model = M.NNUE(feature_set)
fc_hash = NNUEWriter.fc_hash(self.model)
self.read_header(feature_set, fc_hash)
self.read_int32(feature_set.hash ^ (M.L1*2)) # Feature transformer hash
self.read_feature_transformer(self.model.input, self.model.num_psqt_buckets)
for i in range(self.model.num_ls_buckets):
l1 = nn.Linear(2*M.L1//2, M.L2+1)
l2 = nn.Linear(M.L2*2, M.L3)
output = nn.Linear(M.L3, 1)
self.read_int32(fc_hash) # FC layers hash
self.read_fc_layer(l1)
self.read_fc_layer(l2)
self.read_fc_layer(output, is_output=True)
self.model.layer_stacks.l1.weight.data[i*(M.L2+1):(i+1)*(M.L2+1), :] = l1.weight
self.model.layer_stacks.l1.bias.data[i*(M.L2+1):(i+1)*(M.L2+1)] = l1.bias
self.model.layer_stacks.l2.weight.data[i*M.L3:(i+1)*M.L3, :] = l2.weight
self.model.layer_stacks.l2.bias.data[i*M.L3:(i+1)*M.L3] = l2.bias
self.model.layer_stacks.output.weight.data[i:(i+1), :] = output.weight
self.model.layer_stacks.output.bias.data[i:(i+1)] = output.bias
def read_header(self, feature_set, fc_hash):
self.read_int32(VERSION) # version
self.read_int32(fc_hash ^ feature_set.hash ^ (M.L1*2))
desc_len = self.read_int32()
self.description = self.f.read(desc_len).decode('utf-8')
def read_leb_128_array(self, dtype, shape):
l = self.read_int32()
d = self.f.read(l)
if len(d) != l:
raise Exception('Unexpected end of file when reading compressed data.')
res = torch.FloatTensor(decode_leb_128_array(d, reduce(operator.mul, shape, 1)))
res = res.reshape(shape)
return res
def peek(self, length=1):
pos = self.f.tell()
data = self.f.read(length)
self.f.seek(pos)
return data
def determine_compression(self):
leb128_magic = b'COMPRESSED_LEB128'
if self.peek(len(leb128_magic)) == leb128_magic:
self.f.read(len(leb128_magic)) # actually advance the file pointer
return 'leb128'
else:
return 'none'
def tensor(self, dtype, shape):
compression = self.determine_compression()
if compression == 'none':
d = np.fromfile(self.f, dtype, reduce(operator.mul, shape, 1))
d = torch.from_numpy(d.astype(np.float32))
d = d.reshape(shape)
return d
elif compression == 'leb128':
return self.read_leb_128_array(dtype, shape)
else:
raise Exception('Invalid compression method.')
def read_feature_transformer(self, layer, num_psqt_buckets):
shape = layer.weight.shape
bias = self.tensor(np.int16, [layer.bias.shape[0]-num_psqt_buckets]).divide(self.model.quantized_one)
# weights stored as [num_features][outputs]
weights = self.tensor(np.int16, [shape[0], shape[1]-num_psqt_buckets])
weights = weights.divide(self.model.quantized_one)
psqt_weights = self.tensor(np.int32, [shape[0], num_psqt_buckets])
psqt_weights = psqt_weights.divide(self.model.nnue2score * self.model.weight_scale_out)
layer.bias.data = torch.cat([bias, torch.tensor([0]*num_psqt_buckets)])
layer.weight.data = torch.cat([weights, psqt_weights], dim=1)
def read_fc_layer(self, layer, is_output=False):
kWeightScaleHidden = self.model.weight_scale_hidden
kWeightScaleOut = self.model.nnue2score * self.model.weight_scale_out / self.model.quantized_one
kWeightScale = kWeightScaleOut if is_output else kWeightScaleHidden
kBiasScaleOut = self.model.weight_scale_out * self.model.nnue2score
kBiasScaleHidden = self.model.weight_scale_hidden * self.model.quantized_one
kBiasScale = kBiasScaleOut if is_output else kBiasScaleHidden
kMaxWeight = self.model.quantized_one / kWeightScale
# FC inputs are padded to 32 elements by spec.
non_padded_shape = layer.weight.shape
padded_shape = (non_padded_shape[0], ((non_padded_shape[1]+31)//32)*32)
layer.bias.data = self.tensor(np.int32, layer.bias.shape).divide(kBiasScale)
layer.weight.data = self.tensor(np.int8, padded_shape).divide(kWeightScale)
# Strip padding.
layer.weight.data = layer.weight.data[:non_padded_shape[0], :non_padded_shape[1]]
def read_int32(self, expected=None):
v = struct.unpack("<I", self.f.read(4))[0]
if expected is not None and v != expected:
raise Exception("Expected: %x, got %x" % (expected, v))
return v
def main():
parser = argparse.ArgumentParser(description="Converts files between ckpt and nnue format.")
parser.add_argument("source", help="Source file (can be .ckpt, .pt or .nnue)")
parser.add_argument("target", help="Target file (can be .pt or .nnue)")
parser.add_argument("--description", default=None, type=str, dest='description', help="The description string to include in the network. Only works when serializing into a .nnue file.")
parser.add_argument("--ft_compression", default='leb128', type=str, dest='ft_compression', help="Compression method to use for FT weights and biases. Either 'none' or 'leb128'. Only allowed if saving to .nnue.")
parser.add_argument("--ft_perm", default=None, type=str, dest='ft_perm', help="Path to a file that defines the permutation to use on the feature transformer.")
parser.add_argument("--ft_optimize", action='store_true', dest='ft_optimize', help="Whether to perform full feature transformer optimization (ftperm.py) on the resulting network. This process is very time consuming.")
parser.add_argument("--ft_optimize_data", default=None, type=str, dest='ft_optimize_data', help="Path to the dataset to use for FT optimization.")
parser.add_argument("--ft_optimize_count", default=10000, type=int, dest='ft_optimize_count', help="Number of positions to use for FT optimization.")
features.add_argparse_args(parser)
args = parser.parse_args()
feature_set = features.get_feature_set_from_name(args.features)
print('Converting %s to %s' % (args.source, args.target))
if args.source.endswith('.ckpt'):
nnue = M.NNUE.load_from_checkpoint(args.source, feature_set=feature_set)
nnue.eval()
elif args.source.endswith('.pt'):
nnue = torch.load(args.source)
elif args.source.endswith('.nnue'):
with open(args.source, 'rb') as f:
reader = NNUEReader(f, feature_set)
nnue = reader.model
if args.description is None:
args.description = reader.description
else:
raise Exception('Invalid network input format.')
if args.ft_compression != 'none' and not args.target.endswith('.nnue'):
args.ft_compression = 'none'
# raise Exception('Compression only allowed for .nnue target.')
if args.ft_compression not in ['none', 'leb128']:
raise Exception('Invalid compression method.')
if args.ft_optimize and args.ft_perm is not None:
raise Exception('Options --ft_perm and --ft_optimize are mutually exclusive.')
if args.ft_perm is not None:
import ftperm
ftperm.ft_permute(nnue, args.ft_perm)
if args.ft_optimize:
import ftperm
if args.ft_optimize_data is None:
raise Exception('Invalid dataset path for FT optimization. (--ft_optimize_data)')
if args.ft_optimize_count is None or args.ft_optimize_count < 1:
raise Exception('Invalid number of positions to optimize FT with. (--ft_optimize_count)')
ftperm.ft_optimize(nnue, args.ft_optimize_data, args.ft_optimize_count)
if args.target.endswith('.ckpt'):
raise Exception('Cannot convert into .ckpt')
elif args.target.endswith('.pt'):
torch.save(nnue, args.target)
elif args.target.endswith('.nnue'):
writer = NNUEWriter(nnue, args.description, ft_compression=args.ft_compression)
with open(args.target, 'wb') as f:
f.write(writer.buf)
else:
raise Exception('Invalid network output format.')
if __name__ == '__main__':
main()