The Generation Result is dedicated in the file Generation.json
. File contains:
-
model_id: the reference id for the generative model
-
prompt_template: the template for the prompt for generate the result
-
result:
- reference_index: paper index given in the dataset
- DOI: DOI reference for the paper
- generation: generated result
The Ground Truth is dedicated in the file Ground_Truth.json
. File contains:
- reference_index: paper index given in the dataset
- DOI: DOI reference for the paper
- ground_truth: annotated result
The Generation range for each item is given below:
"Light_source": ["UV", "Solar", "UV-Vis", "Monochromatic", "Solar Simulator"],
"Lamp" : ["Fluorescent", "Mercury", "Halogen", "Mercury-Xenon", "LED", "Tungsten", "Xenon", "Tungsten-Halide", "Solar Simulator"],
"Reactor_type": ["Slurry", "Fixed-bed", "Optical Fiber", "Monolithic", "Membrane", "Fluidised-bed"],
"Reaction_medium": ["Liquid", "Gas"],
"Operation_mode" : ["Batch", "Continuous", "Batch/Continuous"]
Result based on LLama-3-70B:
generation:
{
"catalyst": " TiO2",
"co_catalyst": " Ag",
"light_source": " UV",
"lamp": " Hg",
"reaction_medium": " Liquid",
"reactor_type": " Slurry",
"operation_mode": " Batch"
}
The Average accuarcy for each item, calculated according to Evaluation Process
in README
.
The evaluation result is dedicated in Evaluation.json
. File contains:
-
generation_model_id: id reference for the generation model
-
similarity_model_id: id refernce for the similarity model
-
source_ground_truth: path for the file that contains the ground_truth
-
source_generation: path for the file that contains the generation result
-
evaluation_strategy: the evaluation strategy we adopt, detailed in
Evaluation Process
inREADME
-
metric: the evaluation metric
-
result:
- item: the targeted item
- value: evaluation numerical value based on the evalution metric
Result based on LLama-3-70B:
evaluation:
{
"generation_model_id": "meta-llama/Meta-Llama-3-70B-Instruct",
"similarity_model_id": "Salesforce/SFR-Embedding-Mistral",
"source_ground_truth": "/Solar/result/LLama_3_70B/Ground_Truth.json",
"source_generation": "/Solar/result/LLama_3_70B/Generation.json",
"evaluation_strategy": "rule-based",
"metric": "accuracy",
"result": [
{"item": "catalyst",
"acc": 0.8275862068965517},
...
]
}
The context or chunks that RAG system has selected to provide the context for the generative model.
The context is dedicated in Context.json
. File contains:
-
similarity_model_id: id refernce for the similarity model
-
similarity_method: the method of calculating similarity
-
context:
-
reference_index: paper index given in the dataset
-
contexts:
- item: targeted item
- context: a list of all the selected chunks from the original paper
-
context:
{
"similarity_model_id": "Salesforce/SFR-Embedding-Mistral",
"similarity_method": "Cosine_Similarity",
"context": [
{"reference_index": "1",
"context": {
"item": ["Operation_mode"],
"chunk": ["XXXXX", "XXXXX"]
}},
...
]
}