-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddqn_agent.py
204 lines (160 loc) · 8.01 KB
/
ddqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
import random
from collections import namedtuple, deque
from model import QNetwork
import torch
import torch.nn.functional as F
import torch.optim as optim
from utils import load_cfg
# Load configuration from YAML
cfg = load_cfg()
# Define global configuration variables
BUFFER_SIZE = cfg["Agent"]["Buffer_size"]
BATCH_SIZE = cfg["Agent"]["Batch_size"]
GAMMA = cfg["Agent"]["Gamma"]
TAU = cfg["Agent"]["Tau"]
LR = cfg["Agent"]["Lr"]
UPDATE_EVERY = cfg["Agent"]["Update_every"]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
# Q-Network
self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device)
self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
# Epsilon-greedy action selection
if random.random() > eps:
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences, gamma):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
## TODO: compute and minimize the loss
# Formula is:
# L(theta_i) = ExpectedValue_(s,a,r,s') [ (r + gamma * max_a' Q(s',a')) - Q(s,a) ]
# First let's calculate max_a' Q(s',a')
# next_states is s'
# detatch tensor from computational graph.
# Find max value for Q(s',:) according to qnetwork_target.
# unsqueeze so it has appropriate shape.
# To implement double dqn with the target network we need to change this line.
# q_next_state = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
# We randomly select whether we evaluate qnetwork_target actions with qnetwork_local
if np.random.rand() >= 0.5:
# So we pick our next actions according to qnetwork_target
next_actions = self.qnetwork_target(next_states).detach().max(1)[1].unsqueeze(1)
# Now evaluate those choices with qnetwork_local
q_next_state = self.qnetwork_local(next_states).gather(1,next_actions)
# Or if we evaluate qnetwork_local action with qnetwork_target
else:
# Pick the actions with qnetwork_local
next_actions = self.qnetwork_local(next_states).detach().max(1)[1].unsqueeze(1)
# Evaluate the state-action pairs with qnetwork_target
q_next_state = self.qnetwork_target(next_states).gather(1, next_actions)
# Okay now let's do the first half of the formula
# When the rollout is complete, then 1 - dones means q_target is just r
# which makes sense because there's no next state if rollout is done.
q_target = rewards + gamma * q_next_state * (1 - dones)
# This is just the value of Q(s,a) where s is contained in states
# and a is contained in actions.
# REMEMBER!!! THERE'S NO SOFTMAX AT THE END OF qnetwork_*. It's not a
# categorical classifier but a state-action value function approximator!
q_current = self.qnetwork_local(states).gather(1, actions)
# All the squares and summations are inside mse_loss
# The expected value is just an average because we use replay buffer to
# ensure the samples are i.i.d.
loss = F.mse_loss(q_current, q_target)
# Zero out the gradient buffers of the optimizer
self.optimizer.zero_grad()
# Compute the gradient of loss wrt qnetwork_local.parameters()
loss.backward()
# This updates the qnetwork_local.parameters()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)