From c9d3913fa20a447fe710d50d8ef9aec3a14f5f16 Mon Sep 17 00:00:00 2001 From: reveurmichael Date: Tue, 17 Oct 2023 13:06:50 +0000 Subject: [PATCH] deploy: d0c8435f794061246f003f1298ed94bcf65518c3 --- _images/LSTM_cell.png | Bin 140314 -> 0 bytes _images/cell_state.png | Bin 106860 -> 0 bytes _images/kernel-method_11_0.png | Bin 28201 -> 28237 bytes _images/kernel-method_15_0.png | Bin 83948 -> 84028 bytes _images/kernel-method_19_0.png | Bin 38232 -> 36183 bytes _images/kernel-method_26_0.png | Bin 51763 -> 50787 bytes ...ssion-implementation-from-scratch_12_1.png | Bin 0 -> 19554 bytes ...ession-implementation-from-scratch_4_0.png | Bin 0 -> 15066 bytes ...ession-implementation-from-scratch_6_1.png | Bin 0 -> 15066 bytes _images/linear-regression-metrics_30_0.png | Bin 0 -> 20108 bytes ...on_8_4.png => logistic-regression_8_3.png} | Bin _images/lstm_36_0.png | Bin 0 -> 35043 bytes _images/tools-of-the-trade_13_0.png | Bin 36698 -> 36999 bytes _images/visualization-relationships_12_0.png | Bin 34017 -> 33632 bytes _images/visualization-relationships_16_0.png | Bin 30895 -> 30223 bytes _images/visualization-relationships_18_1.png | Bin 299833 -> 299862 bytes _images/visualization-relationships_20_0.png | Bin 89232 -> 89234 bytes .../create-a-regression-model.ipynb | 2 +- .../exploring-visualizations.ipynb | 2 +- ...gression-implementation-from-scratch.ipynb | 371 ++ .../linear-regression/gradient-descent.ipynb | 261 + .../linear-regression-metrics.ipynb | 702 +++ .../linear-regression/loss-function.ipynb | 553 ++ .../ml-fundamentals/parameter-play.ipynb | 2 +- .../regression-with-scikit-learn.ipynb | 2 +- .../retrying-some-regression.ipynb | 2 +- .../data-science-in-the-wild.ipynb | 2 +- .../data-science-lifecycle/analyzing.ipynb | 2 +- .../communication.ipynb | 2 +- .../data-science-lifecycle.ipynb | 2 +- .../data-science-lifecycle/introduction.ipynb | 2 +- .../introduction/data-science-ethics.ipynb | 2 +- .../introduction/defining-data-science.ipynb | 2 +- .../introduction/defining-data.ipynb | 2 +- ...uction-to-statistics-and-probability.ipynb | 2 +- .../introduction/introduction.ipynb | 2 +- .../working-with-data/data-preparation.ipynb | 82 +- .../working-with-data/numpy.ipynb | 696 +-- .../working-with-data/pandas.ipynb | 1722 +++---- .../relational-databases.ipynb | 2 +- .../working-with-data/working-with-data.ipynb | 2 +- _sources/deep-learning/autoencoder.ipynb | 58 +- _sources/deep-learning/cnn.ipynb | 26 +- _sources/deep-learning/difussion-model.ipynb | 54 +- _sources/deep-learning/dqn.ipynb | 10 +- _sources/deep-learning/gan.ipynb | 26 +- .../deep-learning/image-classification.ipynb | 26 +- .../deep-learning/image-segmentation.ipynb | 74 +- _sources/deep-learning/lstm.ipynb | 4429 ++++++++++++++++- _sources/deep-learning/lstm.md | 377 -- _sources/deep-learning/object-detection.ipynb | 22 +- _sources/deep-learning/rnn.ipynb | 6 +- _sources/deep-learning/time-series.ipynb | 82 +- .../data-engineering.ipynb | 2 +- .../model-deployment.ipynb | 2 +- .../model-training-and-evaluation.ipynb | 2 +- .../overview.ipynb | 10 +- .../problem-framing.ipynb | 2 +- .../ensemble-learning/bagging.ipynb | 14 +- .../feature-importance.ipynb | 36 +- ...tting-started-with-ensemble-learning.ipynb | 2 +- .../ensemble-learning/random-forest.ipynb | 42 +- .../gradient-boosting-example.ipynb | 36 +- .../gradient-boosting/gradient-boosting.ipynb | 2 +- .../introduction-to-gradient-boosting.ipynb | 2 +- ...xgboost-k-fold-cv-feature-importance.ipynb | 82 +- .../gradient-boosting/xgboost.ipynb | 24 +- _sources/ml-advanced/kernel-method.ipynb | 428 +- ...-app-to-use-a-machine-learning-model.ipynb | 30 +- .../regression/logistic-regression.ipynb | 58 +- .../regression/managing-data.ipynb | 42 +- ...gression-models-for-machine-learning.ipynb | 2 +- .../regression/tools-of-the-trade.ipynb | 32 +- .../python-programming-advanced.ipynb | 346 +- .../fibonacci_module.cpython-39.pyc | Bin 1207 -> 1207 bytes .../__pycache__/__init__.cpython-39.pyc | Bin 246 -> 246 bytes .../__pycache__/__init__.cpython-39.pyc | Bin 254 -> 254 bytes .../effects/__pycache__/echo.cpython-39.pyc | Bin 417 -> 417 bytes assignments/README.html | 130 +- .../analyzing-COVID-19-papers.html | 130 +- assignments/data-science/analyzing-data.html | 130 +- .../analyzing-text-about-data-science.html | 130 +- .../data-science/apply-your-skills.html | 130 +- .../build-your-own-custom-vis.html | 130 +- .../data-science/classifying-datasets.html | 130 +- .../data-science/data-preparation.html | 130 +- .../data-processing-in-python.html | 130 +- ...nce-in-the-cloud-the-azure-ml-sdk-way.html | 130 +- ...ta-science-project-using-azure-ml-sdk.html | 130 +- .../data-science/data-science-scenarios.html | 130 +- .../data-science/displaying-airport-data.html | 130 +- .../data-science/dive-into-the-beehive.html | 130 +- .../estimation-of-COVID-19-pandemic.html | 130 +- .../evaluating-data-from-a-form.html | 130 +- .../explore-a-planetary-computer-dataset.html | 130 +- .../data-science/exploring-for-anwser.html | 130 +- ...duction-to-statistics-and-probability.html | 130 +- .../data-science/lines-scatters-and-bars.html | 130 +- ...code-data-science-project-on-azure-ml.html | 130 +- assignments/data-science/market-research.html | 130 +- .../data-science/matplotlib-applied.html | 130 +- .../nyc-taxi-data-in-winter-and-summer.html | 130 +- .../data-science/small-diabetes-study.html | 130 +- assignments/data-science/soda-profits.html | 130 +- assignments/data-science/tell-a-story.html | 130 +- assignments/data-science/try-it-in-excel.html | 130 +- .../write-a-data-ethics-case-study.html | 130 +- .../autoencoder/autoencoder.html | 220 +- ...ising-autoencoder-dimension-reduction.html | 262 +- ...onal-autoencoder-and-faces-generation.html | 214 +- .../how-to-choose-cnn-architecture-mnist.html | 374 +- ...bject-recognition-in-images-using-cnn.html | 208 +- ...nguage-digits-classification-with-cnn.html | 218 +- .../dqn/dqn-on-foreign-exchange-market.html | 172 +- assignments/deep-learning/gan/art-by-gan.html | 230 +- .../deep-learning/gan/gan-introduction.html | 244 +- ...model-with-tweet-volume-and-sentiment.html | 176 +- .../nn-classify-15-fruits-assignment.html | 188 +- .../nn-for-classification-assignment.html | 256 +- ...ification-classify-images-of-clothing.html | 234 +- .../google-stock-price-prediction-rnn.html | 158 +- .../intro_to_tensorflow_for_deeplearning.html | 230 +- .../time-series-forecasting-assignment.html | 272 +- ...rintuitive-challenges-in-ml-debugging.html | 196 +- .../data-engineering.html | 178 +- .../debugging-in-classification.html | 256 +- .../debugging-in-regression.html | 280 +- ...d-random-forests-more-ensemble-models.html | 238 +- .../ensemble-learning/decision-trees.html | 274 +- ...-forest-classifier-feature-importance.html | 350 +- .../random-forests-for-classification.html | 208 +- .../random-forests-intro-and-regression.html | 232 +- .../boosting-with-tuning.html | 382 +- .../gradient-boosting-assignment.html | 172 +- ...perparameter-tuning-gradient-boosting.html | 400 +- .../decision_trees_for_classification.html | 238 +- .../decision_trees_for_regression.html | 202 +- .../kernel-method-assignment-1.html | 588 +-- ...rt_vector_machines_for_classification.html | 196 +- ...upport_vector_machines_for_regression.html | 196 +- .../dropout-and-batch-normalization.html | 184 +- .../lasso-and-ridge-regression.html | 196 +- ...ng-curve-to-identify-overfit-underfit.html | 256 +- .../model-selection-assignment-1.html | 196 +- .../regularized-linear-models.html | 172 +- .../build-classification-model.html | 148 +- .../build-classification-models.html | 232 +- .../create-a-regression-model.html | 160 +- .../delicious-asian-and-indian-cuisines.html | 142 +- .../explore-classification-methods.html | 162 +- .../exploring-visualizations.html | 154 +- .../linear-and-polynomial-regression.html | 142 +- ...egression-implementation-from-scratch.html | 1895 +++++++ .../linear-regression/gradient-descent.html | 1906 +++++++ .../linear-regression-metrics.html | 2230 +++++++++ .../linear-regression/loss-function.html | 2227 +++++++++ .../ml-fundamentals/managing-data.html | 142 +- .../ml-linear-regression-1.html | 130 +- .../ml-linear-regression-2.html | 136 +- .../ml-logistic-regression-1.html | 240 +- .../ml-logistic-regression-2.html | 148 +- .../ml-fundamentals/ml-neural-network-1.html | 196 +- .../ml-fundamentals/ml-overview-iris.html | 130 +- .../ml-overview-mnist-digits.html | 130 +- .../ml-fundamentals/parameter-play.html | 160 +- .../pumpkin-varieties-and-color.html | 148 +- .../ml-fundamentals/regression-tools.html | 142 +- .../regression-with-scikit-learn.html | 130 +- .../retrying-some-regression.html | 160 +- .../ml-fundamentals/study-the-solvers.html | 160 +- .../try-a-different-model.html | 160 +- .../python-programming-advanced.html | 130 +- .../python-programming-basics.html | 130 +- .../python-programming-introduction.html | 130 +- assignments/project-plan-template.html | 130 +- assignments/set-up-env/first-assignment.html | 130 +- assignments/set-up-env/second-assignment.html | 130 +- .../fibonacci_module.cpython-39.pyc | Bin 1207 -> 1207 bytes .../__pycache__/__init__.cpython-39.pyc | Bin 246 -> 246 bytes .../__pycache__/__init__.cpython-39.pyc | Bin 254 -> 254 bytes .../effects/__pycache__/echo.cpython-39.pyc | Bin 417 -> 417 bytes .../data-science-in-the-cloud.html | 130 +- .../introduction.html | 130 +- .../the-azure-ml-sdk-way.html | 130 +- .../the-low-code-no-code-way.html | 130 +- data-science/data-science-in-the-wild.html | 130 +- .../data-science-lifecycle/analyzing.html | 130 +- .../data-science-lifecycle/communication.html | 130 +- .../data-science-lifecycle.html | 130 +- .../data-science-lifecycle/introduction.html | 130 +- .../data-visualization.html | 130 +- .../meaningful-visualizations.html | 130 +- .../visualization-distributions.html | 136 +- .../visualization-proportions.html | 130 +- .../visualization-relationships.html | 132 +- .../introduction/data-science-ethics.html | 130 +- .../introduction/defining-data-science.html | 130 +- data-science/introduction/defining-data.html | 130 +- ...duction-to-statistics-and-probability.html | 130 +- data-science/introduction/introduction.html | 130 +- .../working-with-data/data-preparation.html | 130 +- .../non-relational-data.html | 130 +- data-science/working-with-data/numpy.html | 132 +- data-science/working-with-data/pandas.html | 1090 ++-- .../relational-databases.html | 130 +- .../working-with-data/working-with-data.html | 130 +- deep-learning/autoencoder.html | 130 +- deep-learning/cnn.html | 130 +- deep-learning/difussion-model.html | 130 +- deep-learning/dl-overview.html | 130 +- deep-learning/dqn.html | 130 +- deep-learning/gan.html | 130 +- deep-learning/image-classification.html | 130 +- deep-learning/image-segmentation.html | 130 +- deep-learning/lstm.html | 4420 +++++++++++++++- deep-learning/object-detection.html | 130 +- deep-learning/rnn.html | 130 +- deep-learning/time-series.html | 130 +- genindex.html | 130 +- intro.html | 130 +- .../data-engineering.html | 130 +- .../model-deployment.html | 130 +- .../model-training-and-evaluation.html | 130 +- .../overview.html | 130 +- .../problem-framing.html | 130 +- ...lustering-models-for-machine-learning.html | 130 +- .../introduction-to-clustering.html | 130 +- .../clustering/k-means-clustering.html | 130 +- ml-advanced/ensemble-learning/bagging.html | 130 +- .../ensemble-learning/feature-importance.html | 130 +- ...etting-started-with-ensemble-learning.html | 130 +- .../ensemble-learning/random-forest.html | 130 +- .../gradient-boosting-example.html | 130 +- .../gradient-boosting/gradient-boosting.html | 130 +- .../introduction-to-gradient-boosting.html | 130 +- .../xgboost-k-fold-cv-feature-importance.html | 130 +- ml-advanced/gradient-boosting/xgboost.html | 132 +- ml-advanced/kernel-method.html | 136 +- ml-advanced/model-selection.html | 130 +- ml-advanced/unsupervised-learning.html | 130 +- ...b-app-to-use-a-machine-learning-model.html | 130 +- .../applied-ml-build-a-web-app.html | 130 +- .../getting-started-with-classification.html | 130 +- .../introduction-to-classification.html | 130 +- .../classification/more-classifiers.html | 173 +- .../classification/yet-other-classifiers.html | 296 +- ml-fundamentals/ml-overview.html | 130 +- .../linear-and-polynomial-regression.html | 138 +- .../regression/logistic-regression.html | 140 +- ml-fundamentals/regression/managing-data.html | 130 +- ...egression-models-for-machine-learning.html | 130 +- .../regression/tools-of-the-trade.html | 130 +- objects.inv | Bin 9546 -> 9592 bytes .../python-programming-advanced.html | 130 +- prerequisites/python-programming-basics.html | 130 +- .../python-programming-introduction.html | 130 +- search.html | 130 +- searchindex.js | 2 +- .../data-science-in-real-world.html | 130 +- .../data-science-in-the-cloud.html | 130 +- .../data-science-introduction.html | 130 +- .../data-science/data-science-lifecycle.html | 130 +- slides/data-science/data-visualization.html | 130 +- slides/data-science/numpy-and-pandas.html | 130 +- ...relational-vs-non-relational-database.html | 130 +- slides/deep-learning/cnn.html | 130 +- slides/deep-learning/gan.html | 130 +- slides/introduction.html | 134 +- slides/ml-advanced/kernel-method.html | 130 +- slides/ml-advanced/model-selection.html | 130 +- slides/ml-advanced/unsupervised-learning.html | 130 +- .../ml-fundamentals/build-an-ml-web-app.html | 130 +- slides/ml-fundamentals/linear-regression.html | 130 +- .../logistic-regression-condensed.html | 130 +- .../ml-fundamentals/logistic-regression.html | 130 +- slides/ml-fundamentals/ml-overview.html | 130 +- slides/ml-fundamentals/neural-network.html | 130 +- .../python-programming-advanced.html | 130 +- .../python-programming-basics.html | 130 +- .../python-programming-introduction.html | 130 +- 280 files changed, 38172 insertions(+), 16252 deletions(-) delete mode 100644 _images/LSTM_cell.png delete mode 100644 _images/cell_state.png create mode 100644 _images/linear-regression-implementation-from-scratch_12_1.png create mode 100644 _images/linear-regression-implementation-from-scratch_4_0.png create mode 100644 _images/linear-regression-implementation-from-scratch_6_1.png create mode 100644 _images/linear-regression-metrics_30_0.png rename _images/{logistic-regression_8_4.png => logistic-regression_8_3.png} (100%) create mode 100644 _images/lstm_36_0.png create mode 100644 _sources/assignments/ml-fundamentals/linear-regression-implementation-from-scratch.ipynb create mode 100644 _sources/assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb create mode 100644 _sources/assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb create mode 100644 _sources/assignments/ml-fundamentals/linear-regression/loss-function.ipynb delete mode 100644 _sources/deep-learning/lstm.md create mode 100644 assignments/ml-fundamentals/linear-regression-implementation-from-scratch.html create mode 100644 assignments/ml-fundamentals/linear-regression/gradient-descent.html create mode 100644 assignments/ml-fundamentals/linear-regression/linear-regression-metrics.html create mode 100644 assignments/ml-fundamentals/linear-regression/loss-function.html diff --git a/_images/LSTM_cell.png b/_images/LSTM_cell.png deleted file mode 100644 index 2bd2424bc9f61769318993918223ddfcf32d91a7..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 140314 zcmeFZ`8(9_-#}XezO1i3H+^n_vF%l|2Rc`1^Pd)^&tMK{NMitF?zR2_1`}Q z{O{YqUi|NtfKB+{Qvx>O|M$h|rExO(_S@Aioq}d^&sBZ%Hp~B9zaK2u>Rt3YNSd;@ zgE;d$mMV|>p*{VIKg}M$Lo)o&)vI3mxYx~C;66#0M;u(VB9%7RQX=Yc+yDK4za-=b z7o)MbmZN~DmLm_TVb@-BA+cB8yiB6|=Hyg=X`SAVl&`@0Q-uz4V|RVK3;)+G54^eL zuV=?rpOI~`lcN%*M9=GwP$Aocj=i8}?FI`${{y>uIK>wd5Z4Pg3ZK?hYyc)x6At%1oO4Xh$ zTz+zLQh>cs-DgOsu|WO4&YXL-+;1=e8{XgL@7C2jfVZNiEK&C#qwqC;GiAtVa9a2g zp=iy;_FB^*%qTYM$f&O z%l`iU;2lbJZfj-Sb?zIO<$ff5v5V2}Zg_EVF|Q>$=XnrmuG92S4$Zvi6-;6N+~03? zjZZJoR{C}ckueJ!@d+jmD3VaQ|Cax%IZngWE7<*TAhKCNbFOf(cCnRPZE+?0kmMsS z;iY?JqoeNN!P|&+;n&$S54+Mohhg*NBZdYGW~jEqj+BGi?o1HmsdnX8pGTgk)>vs^$6|ZhI|f#qG|7 z@^HvTJxF!9N!e9u*2Zs%zU{j|?yf2!nDSVcSHPz4Lkr}^jN83Nt(ofw@ z-3oiNkf`mmP z`zi~c6_=FBVK(VKW_?B>C&?GV`oMNkg4nm+rf7&Afu+Fp7MZXs5q>iGq$r#Z9N99K?(Q z6s{I$_Z4qTsF@)N=^1C29?hWn8v7RVvuPM>bL8tja?H?f-|^)C*{uT8E!dF$GH|;; zHh=$4#luuJi{i`$#=1PaU{;RE)LXa0Z}`p;ncSM^Yxxyt*cESE=x8}>6ctwDR)pP^$^ua8M|+` zf?Sfshno+k6mR{z$cp3r4P1Lx6MXu_li+z&v9~(*JtaxdW(ZYSd)f`XAyMSEHoDT6 z6{^Y0?{{+Wbl7yt7_=&hOBbo~(SMd~J=~weV|RY5m_s^0vMfl3qEH@n03s&8K({duiiBt%bRD z*43FLgbSq?C`QQ1IMotP2MKyYCV|pnDMf=aMUQ3{4j=h_9?Ls5C4sL^7~wxBsOCs| z1R}WMFOC<H9mcz9jeShk*i79kzZ-iF9+<|hi(H}hRi{-cj1yhL zbHjFhOrXO0*S4AqnFoc|IQ6E^oMt1EL&d7o#jiE>|B0OC_Z>7LxJ>q*Wati9oZcXd z_@0*(qMtKQXHn(qgV$*ooYQS+c;tFGKvG4sv=+;3Gtrz+zG7DQp=nQfB~2vdCkaAH z+-qDWZz!!!noBs7!NJ;4ffwGVkFvKJl%QbnIm%MZcOXpk{%&dG$HfV(9Q;0u7WMZd zcl*zZ1BBWYv}2Hx7X)DVyhcQwWYg+czMHrgdkn%j2d|VOl10ualH-M65%Jp13Dyg3 z3%V-djbEAHo9bWcM@C40xjmgDu-)XW@8L1g zU)KR;>N5>jo=tytP_4LQ^Lu(BpJ)uTP`c4ZWAT@S3_X&6pR=UFR~BWa2JtsvpD~GK z^E5K%&sem7to83q6ab|eMJW3 zRWfIeV7o+b(=&ZrUy2x<%+U;b>$R0cc7$!-bVP!FW9&_{)WKb;A*9VNfD_fiorMtC zmj?5-@uPOdxl$i4i};_`uk95GzqKAi3+t76)+IJ!q(6Ooa`Nx0JnqE1yi+uC$P%{0 z*e&qbX;gb$#rmF}o~~f4ireFOiV4U2-X$@c(sn~dnoWL$WIaLE^p{@qG1})98#Y=Y zd)~uR#l0(Bm(}cwM!(SUiBvN3u@xOAg-89U6RAk6;+W?y@EZSUyZqhGi}EnT^p9Z* z_9R2X9$!HkYnPE5T*Rr>${WIWKi&w#r=Xm~A``yU`iTld@>O>akJlWnu+hv>xtAp$ z$Nf?7t+u~ILgCXE8QY%)#&FiC8!>0A$r-u0?#q?#$kQu)?IKT>$mXWD9R*J8pW6vb z<;~dc%28W{ORxI4pWVW*oJvh&=7$)L{Lqj&FFwn8dw=DjljE#tS^H`ON=Nu1ly-mw-}< zS?bMIN9K9&uh+V*CAO?_>6HASA2F!39elEX@W^K6mfRAHXqF=pd;`&<$G=U+MR%Ml zH(*oPC0@5YZ(DQg*NBKA%Tzk5lMXq}(q@PG_^o#N?perUlC)p0nPzK{PAgl_EyNyW zIS!l%eG9oxlFmloC1G6eRyxAgFW*$>HM-96mvJf zmP;(%F;zZ?<%3<`AN_oI_b0>5u0h2eit9ssy{~T+cl+q->YwD;nIzHjWR+Qj6_+E6 z0$09AZsm5v{mc+osur8JU@--IHRR(io5-neI>POOYS<$2fzn^!+UJg!*4(LGRQmEX zIqlST-XxTn4_ak3YG$nnhz;}pyT_%ye=}t8O8eZS^(GB#&zPB+$?gdC&v4rjOZ(qJoRQ1g=oKD{(s<( za7&-)M=;ev7@@Wn?yWia_UXaZJ!=9W4)h#s%~ry&&w`tg&YpRhs0Nj5teE@50g+geJ=iILrXZVCh8N*taB&m4idQT@_ulg@H>XV zSBHB!m`TMxDE<1Cs>eifgPU^&+8l7Y1)xNPb!En7pLiCSQQA82qP!sBN@VR~QFOq)kvh`lq zwaFP?>h!Ja)6RZ-O7T@kJ68kzClEhut-mm=?UH9?@{?x4|+^EjcT}c_? z!LE@eO+uDh_d;f$r?)2+9?kR0l_8)_>Prx!%5hSwJ5^jWUyCb6+#6$o707s{==fPK zhGY3>(6vbD-LY$S3E?MHZ_dE2t|T4uGc@kT=4Oy+SIAY<0R-bvCbl;(XTYk;3>I)-^z2_gN4^z zqD}_bMKUd<9&z-j11WvZvEW%x-o}J_Ij^VYfEUqdA*X``cL}YJpQvxPt$_8?1S8RZ zj^idrjGb7%aQ+adcaZ@K%c`7e9|j@QbtZTENLMf)!tQP-$0^emaDk{`El@K}@EjnI9ZZ2*BZdF$J}O64kwCZiaguRYNu9#ZeEoaRy=tIxh-(=!v zCp)7hCLi?ozd`-|&RG{7pXHY~VQI8lP1|`}zqrTYDtx1Y@C$=pH6M&N`lP#Q_gqBo zxxIqfS&bzR$>Uj%^I{S_4iZ+qbl!?eCQTNn$srsl1kS9@UHnA$B;)o81y@<5ZO1A! zMd+ne?6+joe!>=Qum`o=S4~?!KRWQqw&W6A{Z~`_F*|iqQ*Nud;h7@zw$%;mz0rVF zmN;zvQ25-yRBj?$88KlJB*&LBnWLJK-cWpm$Ke2M%`>PegFhu|x!?6N{l26>Ea{)7 zd4diTaluJdKmNgHqz8|O%bC$b(V|RaiP@~nM!hFkisuE3NE9@s_aNKEB~nyxq_8@b z!Bc0tP4)1RZtS+#cSAw=#+ZTy-z(mcM^lm)-8X)GLG!m%k2CtvXMb@3NT||t$MT_) zJ&)hD=(8|vtz#9R)blK!g91IbmGrLSLDhFUV_|o7GrsFFRz^+rQYzbg=2zM1CEH#2 z;hPBc1JFIGNI<6e){a)rhhqjqtp;smT<&f0|*=%JxI{}Tm28t;neq*(r z3YA**9?k-G7<5bF3xg8Z<-XU*1@D2kRVJMX=p@JZs@K)%QiW^2n=h{687p+5zM={& zZ0O$D@+uZ4N{dg(1Cu-2z|?#|K=9B9=GZ4Ga)Ms!vwp%kE&5g~-=1AUI5Ac=%2{?MW&r>oTIn#D zr&;*Pqu8J(eYPz^KSQtzhRs$-D%lJb8Di>FN6M|-ZS}L)@ss{%Yd$ZCHdcDxPvk|{ zm8`%S^0I=9YAkk54cr$`XcU*v@>1K4l^C;Ehq$U}6;8GH*T>xvurE+n%6G;><+rOz=$DE9Q7O1)p{%?>p`nuJHMhR)vuskusW@YNoqxu| z;|M$KShKA$SDb;M&D~9&s+a}=<|~d3c&$u8b-(>i46HJ0@N(PO-`Xl|zZNeKDBfU} zJgs5^@2}}+#fEj+5zy1&t}80c4;53MU;SW|G%Y`Qd1V3`TxmVWpvSwX9+T6rm(rP> z=-@L=JTaa*@i5$ABaXz()D8+wyCp`O=I-(If%xHO_=u^7WBI|01J7#xtxGtv`;yqB_$m z756|6@ib$bmfMu;-vYW9U96!?AfXsMZm8Ao0Ov;i?3952MQiL)Z4uImj`j&R?}+94 zs5iqc8&jtzLq=X3I6tfZ(n3B{tDb1_1sR98({c1Ow77+#a{QCZF2g#Whf0}wh{qa( z@izQSW)9b&O()y(b_3Zg!f)q#5(Vs{`K*+XC>t+ng+zW?I$rahulHWuDH8SCwQeBn zVS$F`5~A;mA3)kwRvq06qnFV8Mze;Q-2W-#NwIF&7k>C+z`6N~uSV^=Q8!%fka6Cw z2U$&{zi!<^#L(sqGkpK(Z0*+F8I#nlo7tM5M2c7N>*Kp`!^YkY7N55=F9LoD){(ua z*`!QTV~q>xaG0#kBC2z@+24bWmiyN2tqy0;M&5aIJ9{Ygs$^*N^{RG-F}O*j9QLXzH~e9j($p` zqkq`32tc+>ujvegT}eaY_1hQwq7nhlEIj50}ZxK7JCtNlBUJ zxw9}*!aTj?!Zo3~f18X)6Gan!`mJ0w-63W%k2FxBmM6qFBm}?6xPXR;n+c)oneXfq z6O{Z0g{9q*y&r#jw^`G$@s<=XY4tn(pWO)mQ{g_5CEw#c&FP;(%r?i3jg9oeZ!=rq z=*%V{8o5_1eXg$@oJ|TE_4cV+AYU)A+R4)LIcCpsNG2%$gT?0A(-PO9{U_pa4c10I zB(-iHxzv|v|7t#0oS-j^kvT0@r`O32s5;r!&|c(Oux|SVw4VAn+ePK&Z5qOEzp~a} z?3+SScg>*oq6A8M=TLTIQL7bm0j~v{29-6s&ZK9W?i&+fPQHB4$L=V^N6s&p7O}Zg zCK{hDG83NI2HM83f7f1-Kt6O?bh>-(pR=+VFOPWo4PfOOnCD_w3g(K+-N!PE93K)C zTJnF%XK)Y}a6cjy69rb(@oT-ZYgoA2ew9Q|oSCKVTJt!)TGEPlh_J*v%aD}Nb2Zat zu`6uzbRbt92XsU^ym5DejApLdL)ch#Z*A%$)%%(SI;xc51ouL8F`|F- z#w$^sLW&qun*jR7^GNv=uqo_2K+`omlJb ztv~N$FL8`5cq^{xK8_Okbz$_xk681_weGpY(^+){?&P<`4T<)%A$N`1Q7aKA!5PF5 z8$kC(0}5+(c$GHRtmxli8U3A0^(TirIKXBwZ^OkrcXx`DVji&fGeMOUAi{gN<|Ds3 zC&LDxk#!N)vBv=Ou9?b3#Cry=9qx2PD}9gMU|3YAo3Qs@!8p9L8CL8*sl78as*}-q z0g`GaK?Fpc@1m#f1!jT%i*J=O`Iq}Rr7l)=PW`j>TJTyeeCp5!4x`rrMB>sew!_0i zPf*nqyAV)j%cF)(iNiUnhW!cervvvP+)y*~kM2CWWv$a9*%Dr^ACxons~pbxH?>>h zRLiBb-kZ=cxo6AyR~1i@@35A3=*>uas7prIm{(d!>6@t!`n7P*)nR4C+54!kb|jYz z?fl&(u6|zecR?-r_u9cL#5bFA_1%I!<+g5G^?u{2&>Uh)!9PDlfBtmJevRgF3AkcE zrZcWcF!Pb@ud5=I7%Tkui=6foew2f!ZaZFE$!pO*xBIN~!t3!`c%l3gJ`+N<^DMu~ z&p?%ju{@`6qm8|#yk9O>c2gm$?NQ<~yMA{e0qUn$j!q`4TDe@floJj=|TYUW6hKu0D^rdF}f3o(6B{Ldl|tDD%gKA7OPl-b1lo9P(&# znX@BYF>EL_jy-=nhNEribXwT5Vln=nu}!NLQ41sGK%S<&VVzs$PkAfyN6C?F%1pj{ zBUVRC84>(;n8!dT8GV*GHeBr$lgeW(?F*%|R&;f2w;_TU;EpQojyxBx6Zp5h*Tzf7 zm)pi0Tx7gaj^*6VYDn3P-#iTk3x&q&jn5;VHT*+&1EX2o9R?kSbwVw>D`I8B=(B(d zkSyyyL1I_L@tt8s{P;~eEi{Sf)NWDtiqKQK6ga1!>MUD25jplcb7bPOVkCtRd zOp^m3zeXjPB(BEfdc43Nx@D2ynar~x!v6NytbyaS3XPj4P-7^4_x5lJ*6=$*Y1xDM z)=Nm{U{VRYft>F|Qu|!`Cx^dpnH4NPa!(Pn2V z#wX26nJ~TWOY~#5{Zfjr(MB5E&cXob_A=}TUqaX;?b@@F!Z{V~GzJU)ev5CT1J7Tw zqM`45#@bONi%f;>AjcG5CFH-d02HXprHb2ge_6;RSrYxO1$bABo$x!JhR5^9IG3{4 zD$f*nWv@Xx$Gj9s{OB?S>0?zApRngB*I#ds=U#m?>a8c5Q=g1oyw+xJ##f}wE>&Vf!%$dE!{XUoPPc+?nO;NQ6ak%+0{W57WEUd}8}(4$ zGOX30)HH~c=J9Pa7`t{+GIc;=Z`xHV){5~)&lWF%d{spm^3{k^6eK{f)(xL0;gJzc zFTPW;ppbI^3|sYL+;QRz;kCjJU+#Nl))qdPt(Y{>S36E;H_F5B^vRENMvgg4T`NuEM3^X>DI&k|Dgn0+?i z(F-~hJcEr|V^RL{97aNCNTUKm0V_Hc88zSToe6_bY7<|+tY?ufv4&+E6H8qPH6@Plc`rX%i zus~X~(tc9P(f6QKEn8_V8$o%#AyvFF%SOvRfAh#K(FmxqRabH;_6Ai1@****4kMi9 z?dtGToOdZ_-krpowV<51<&AM~R=+*`)14s`AyN-r4@QJ%suXI4MgNj2@-$wA?`aq$ z5%F6-)~ooVwLTD-+Noc)R} zL0A>RW&X2~oes~yBTYzvnP8EzcH06^j&>5}`}=Od?QD9|q%g7{YFrleGK7F&)76fE zHVH)R06J3$JMX6h1ZX%jQqMxp7FW!`GW<^|cv&zV%EN9`W{$y=P%!Dl*lt=YT(R~G zo@fn3geOD&CHhudbuH(dk9L;_%PizOlZDj<9mbsgx?OOb+1}g%pObt;Iff$!9Eto) zPlo_j|4~WdsFyt-X3s&8E7X#KS_YjY*zML}8j~kSP13;v{akl?O1fJ{;cc}#yjw?o zKapyt`QvrEboU8QHZ8^5j!HlM@q^m*LQZLG&-yL-^aj!Dq!6do?MeT9&4$HFujMF} zDj@7kByu(yH~C>It`wPyoNJ4(^R1P%1T1BBe={i~j-G8@Z- zja8hdqnf$5f?ks0`}Oxd@io`!pTx?7Z4W_dxv?y=;GM@AZ}Stq)C~-eTmV%u`xBSR z=$DQ+nuaE&CYvu@YUsXHd%!q~?so<4;mU>}TkY>KhQ)Tn-*Q#m4!twP9hLJ_HiotA z54SpURu4btn&Robc#9FH%Dvd(>Af{9CdqYkvWx9SFfPk&O?)gb-g#r)urOIr|F3$s zT5s9>TpV`;GHK3jQ3;`z@_GJw*ufnU*Br0C)#YZbSL;cRjjF{)4fY+DMx(!)9KQ$N zhrFEX=0g^C-EX5{MvYsx4~En6Ndu(h<|WD^{Y3>Z%|hI-P+CA)>yrIe=R4vCs~nBP zn4uGHNz3Ltzv7*3cTMGyRsV3Nx+<9Fw>*lbj$|R{=fW-vy9OU-o>0j@HmL5&yBsg- z?r@I6EIMK8wmZ3EMGV-5^l4-oB)a7 zi|ao0JZqd)4U3R>jDMipz8usgMXN0MApBshYVvu|!XR#7>y4eM)^lUyLF?g{5}cAM*djpzJ!#X}q120JBHmjYXf z(212E?xpgjTBGG*_TQuDm*TDir$Kt=&4)?_qG!Ygmb>?-7c)RP1RAj8JaH&34`yq& z4G;8JT}C5>&$cWzyV_hN^3_&gG`o5pF!@21bqmB5=vB%k2|8*WZqGA&LIKNg*Wn!= z+i#^(7Teyt;5fZK8kIc|&jNrq9M3&XjB*&atxM%Jmassdcr-{Iv&v=Cj>0uCW1g<- zbFy4X_;1pC{>nRSzQtz8d(xx1ce$Us6cK6{Og;s>Px=ZfT|zV~cmrF;PCxZ{_7{Mbv#@Ehg?c5WKmg4tEyYtT*Y@z~L3J>bmog^axG1*Q@Vn-SL}@$%f** z+Eup&I-gtJTxVcgnd}wEtS+jk7Y({b3!sI27)9N5T=Wu2CHj%dLxAJWq66~cjJ(+U z;OGIK2(Kb{aNsZ-tpG{Q=D!N1iKy`Xkpvp)bW#ibX-bP z#JZPVRB7?K!Zcc`Uf#rjRAp``j@emQD&|AZqJta6{qKlocTa#-8RTiO`))RqFxjgP zBz!0Xez_jdU#iCU9QKQ9y$;Jr^ob#*9kd%w`Gh*=*zC2@%6y=h-mzg5cIPwBi{sMI zzQwMl)3LyZ4?`7iF_D9X{;+x29$RiG$O63~zF?pajud{(r8}sW04_Am2VZqoNK;aQ~}2*da8xS z!Q6%u$4OMIudgqlL=SLh)xV=l3c0&?VA0#1DCCt1s{u?@ z%hQE#s@I!e}DwVQc&_214b9L?K<+NtN z5{f~OSOM1$wNS>do+F&7->-g?O=)$&Aj#MlA2V9zSd2YOVGBb8ZL1Kd^-Dv>{$Z|$ z{fD;$7=Ctxz9&?V*rYN^5cE`UysI-k^H6LkUgyW9v`z&`B46D2F%JQ5WJk+2kfSUy z@a1Vng+EpcAX2uE`gCv?|KvQzB&OJlhjZVQH7cxCDNv8RQUTCaX(*&Y#}|?1rwf`0 zLt5c++(s&hE=E{K0TYY>Qjs54R(Csykx;G_X_6bbDPaoNvAj zz*Vtf`i&cR0usq9!s93RDWE55AX$K`+i2`RB^)z$y`$?l@|Y&Z)ti_rAjd%X$p$#6 zq*tz#)OCTPd2ZUqu&Yah+Y#!T1dK*CAOU8Kn*ZQDyi{AAR7dyzv{!~%*kBP5Rc<;j z-}!3gtrBe#BNThhlH*KzP2L?I%=R34}4RW$bGC^ zR-J3nCF-%6My->$k<#@VA<=**4ERhcri#_zg{ZcBdpnK7(G>oRwkYX52Bua%N$ZLj^J7W5Oa|5eed>@NLhH zhJE`EyEvZyTq-uP;ro!yy_%KC=2zUZPd-kx(AAh8sO+Qz(%5*4EgOoo>xLp z)w!QAiuYT!+v}f#h9C}3ikV-NVj_R(PjrqB0NoO&2WGxU%SgSNw^^WHE@ab47lF80 zqJ(d4zvfqNqxu|B(sXx{8jsiO=%2g^07~(^D=-4vD19zc)QFw^K`;fg+h4yaqkApNO%*nUMjQv)_o)KhRtwOocdi~E zw^P%f9ZD*mT86mU8#s2-t;kX}Fy==7h{Qz{|=INH85ttGY3jcT1+396VKeNdO&IU zAetrHveHvZx((nx=4BB;LPIbTlzh*XmXe>`+p!<{_DJ?7C!{l)>zGA+LgC2Qe8ZuW z;8!p0x7$b^lK6(7RbmyXblWk>bu9Xm?^@;1SYvlQ2E^R3c>f}U-tKZsuMzY@TpMfj z)n|BS-xFu-XA=`+Sn}o_xPw#aS|XOCP2T$snuU6USy;vRC*K=SZg1kKhGXj-D1-_~p1j^lH_rorYv5`^LK>OX9Q?5l%CVeeY=a zS)slbyMg*m_n)*xcq|X6>smWCZ6$C0pgaw>C~3&NJ(_*IjJe+h*Fpgu$S-cRh5I}a z&qt4?1D)Nad*QEkY1LRejKNNnV-?13ojV42x z?EsK*F0=+z-!-ZaHc|iMlH?@5lhQdy24WfRfA>HOHt#I9xvZU#y8|i;GRYy87p>93 z-@lh|!9@7&%Z6HG9afd`QnTQ}t@s;=0AB~$#Pi4}NLmRSwC$pDfZ7%P0i;#US>(xf zK3b2ys}2&hYrDxNn@5vU`%)A_=63j#xX}2dypd4RlpVqJy+L0P=WvU)FC4w5U*$UY z!w*~L*;yAwr)o>Cm8X%L4#K3%<=qnHaysYGcm;1x{sw(%7W5BHz30xD*Av@zr%Tu> z7ZR7>7d#5=DQ@@yIqn;i{ojnMBMZ>?;Q~DBsPox`0HWlUFS-l+9ai_#lf&0TYXCDvk6vq~{`BpX zAwcQOEt5N0e70;YRm7{c_Ax@>#bIci3Lqgd;*O2hVZXfZI` z7(g9xp=Jixp`G5<>{R9w`shbJ8;!SfE?qqpRXE+q{HWXmCAj;wEKbKbv57NrA1_TC z-osEhi}$!aC5IXCJGX2JtVrgO3}AjiEo+jt&BceK$8m(QxeBcmz)r zzJ<`pDCT~n$Z@fhVxxTjWOzh7eo`^#naFWHcJ%gwm4D#kxKUlkNxjUb!R@U(Ck|_; zMXO>Fd;Y9JO+0gU1E`S@guC~e+kyMduto8)qwjvq6vfb!?&e9^Vf+hm%-_YXiH-K$ zwoyB?2ghYxqK9ImMM8Cc@rdy*JIwUaJ?zq|-Ls$jPug&zeiJSAT0n6Md{3mpH}wW! z1nzOvA$K*9esQMRYaBq@InOYM^||5~D-YLoi;cu_rd@_iAWkdlzFv`M4h%R=_w}*T zuC_$Cx%QY2QgOwe1Yo&`GX^|z(mzOGRip<6>NP;*uGOiYQiArwDlr_IY7tE0yJ)`d zK>AXf1rh-k6suxlCdeEIlB(S|m9vWlePk3$M5(WPVF_o*Z!tVn`*tf`zKYRlBX!Ra zYik&VRLJ^i(XJpUy{P&TUdA?&Ip`SY6(<;)q=Zu_T-B3q?M9ziyRo=BNEStV58_DfWH3Yd0D zU5(TY?L?POha(M5>I^UM^e=Z|>G7EG z&Q8!|25c0`TKEyMKpoPlY?X&?}% zkie@u>8yx(vrVqeHwo=@S9Q5Cr6=*up`g?HeLILM=wEoHVcwOj3yK2jC+SYJ$*FrR z0)YVW(Ydm(4@Ce($p&8gXl#q$Qs7B|({A(h>X}Iub?;j5NLBv63HQRrENEm^4jqXs z!4pgeBTf5f?rFDH?yfZ9B<_*#J};tL58#MGY)scqQ+WI=W-x8KQE?<(>5LW|9;)lsnr}tFUar*a%=) zJaJbHNWFg7EobUNu7>l}5Rs5qjGlssW=%ceyeDo7IlHIX-46pvz+X!~`Ifd^eDoEd zhhq+3K}wVKTa;UNqjU5s^EBV~jibMA0ghYeW7I5jKHuQG+bfgmaCu5CJJ@pld5~s> zz3@D{!LEs}q-ZLarUF|8Q)N-oq2TfEGSwQvair{(GL%pO57@~;%fk4M`eQ6S!oW6z z4y=m71Hm*8G!^b~2}rAD^R$(L%)!<3j~5bh*l2xGg(@&nl3zsq;{_*XV5gH=+NviR z?E*wyA@`}Kf4J1lOmXw7NB$2I3Rn9{BU}`K64Z}%^?tR-XfLcz+f5-PoPWACcx=sZ zkN5+jHe)=$L(C5(q7$FN66Hs4p}*{1x0LhxuW%5PWonmV(lcFJ^`l{p_k3B-2#=Yo z%7SE)R~#syWa<>yXg2TJFhO9VT#9pq0xRX*ZyZIzaN97Vka+gGI$Tv4<{`Xx7h~OX z-=dvEGqGY?PB{}C$8^JHopC5kPp)M%PGb#D-pMNCYJU{Hj>W`{wURkuUfWiC+Qm_dN+k?j`m-{bZT|XF8dTP%aHf);c?H$5f5aetT$Ss z>*2rLzJT!$o4-*Hxkt20zQV3ux#F~px^TDXiSeld8@0C4M+#;KY-8?&sg<=P`JIK% z!nHaU9pdu`SyU9dXuTHzmNJio802?EU!h@Jy!QXis0vQ}n7DHT|G z0Mnd@+O-@>A*F2zvuzdjdtX$l5^jw4!Vfm5ts{=ETcXUQqiWUuAbK^|E(KKo9`CPW;N|rzgZWm2y#NXLU9S?ey?ywpO?C83Lcw;G@U>e5K-sjfnyhhQ8^u1$ zU^m3q@>7F2Cvp zaXi;^vATA-Q2%sUPA-Kt%pM^mg%GEJ`dwt6pqV+P+#hb@X39WJBm`H|^WQY1_y`=F?IXVL0*D?HO+GZWtXaM@SZ3{ za#R{wGaR=&69tH#G}@G(p6n>&0Qs0r{QB?{S`0s_kd)iX%~4LivF-Skp%NlsV9l^C z`uqV-)XRRjMARI@D6$#m<6CFq9+C#-z{${KM6Y+HTse9{FiIbO`eS_qi;7C26!$sU zIPi4mU5YUG4VLn+USvzhw>S*_RU&s2@d#XhO?gzhml{g4cltYJd5&`7sKw&A35pzw zSn{kmPP|g?_vd)^lx+BL96Bad?IyZ!5LC}IGxU|vM8|fj^rAsq$WJk_uKVv$^7uX< z8vr1Tp6O+cvt2^>99`@E0yki8MlR$-6g$Ib7}OcP?*XJOBJ7Q?Og9VU2ORB_%DT$` z-3kP*5=4kYvc%~9K3eg;dU@C`Aw`Z)x*B=Gie{A zdXJ~0$LG%UpzKd-^dq%$acxpvX+hbtOz!b#pu%N!X!ndUBXx!p4{W4|+V)5p@4<#k zn%x>ywr*ZRgnWgY&Nh8xNS*-%?A1Ndz?Tmt!*V!YnKKe`8&{{{hKg2x)|88QZ)bL; zh%NP9EP7O1G!YD_|0xZ^X@`Ee^L9{Y4}dcj(Lyw=luNI zSFIWzoM0}D+Jok?&XX>(zKcvUr5q=_&nzoeKm?{xa4uwGn59m9&Nt$1UBg+*xVu87 z4ajjEt=DZ7%-ajQb@1i^T1qYc!xL}ZWn&8OG;`6{r2W|? zB)KS}j3*>7!zBhDUk-7Dy=jL%mW0uk(1b{D(rUwzg!mb~*~_+5}m zRt1a?=pu^=s>kPvP_DS5A7hV!;ORXg{fL;rOvUJ#`X{0Ps7Z1w3UhW^T15!nTSRj;vgxdLZo?PtXTrj0j2ls~uX0*|-5WD~FsogVbE_E$p`52Vkm`J`y0xxQl&-}?j4%%)71R2y3629k# zi_AngJCe{Py75Tr;!q>80}voU&s^sH&xy@$k@>q#UE#9BYIoSd)1(1X$g?jGnfaiV z2|Iklp|H_&`VE0ha5+b1dX-5l#uOU70xD(C9vLphYs}b6$?mX#PHBTprtu^XTNV?A zbUnRuIbgW^QYz5oTx5f4LO^1yleD5Eh7$?k$E#Bar1a)A8>I})u!?ml^yl*`7&Hrk zAO-&Z{j3gl*zYe96=5@39k!!^TNpUi^+eTzUhx|fD40GcM1VvzLZrCps<^1z>g__e zKsezD4o2yIpbYB2*vYS4l(e^;z>4nqyf8HK>(zU}o!%5b?xMC-@O3thP%`Cy!7 z(q|`3DOqTG8+LqnsLLYO`Afs)66O94zl+X2v6cCiUd>{0j)JN)4>(lHq6OOd`(3UB!VcUi3eXd47#|3p=m9tjCMq+Nq>RJU=>u5hV-ojDn6S;AAp<9gTID3 zAx0~GFZyLD+-t8Fv2;K4lgi>0pM4*DAw+TPhEF0d3V>dewC6%cT!g3C1)g(f`l&vq zpl>B;#}EY&)GVj+^nDDlf#ria<(n7SRa8EGdk}f%FK{5}IB{ofv;UE5df+pMF>B&9 z%hs%N1v*>4n|~Ene=WQP65&7J3!t)YdryAClH!O?{qV5HhZ#bdl+ZV~R=3~hEncVF z0ibJN&-WMj-wci*OSnhaYGYmjh6AidXPKA7I2V`^KyBRgkc(sgX0$pcK6=4=UIc$d z;sVcH`&9p>WFR6|N_)`o7#V;Z7`OGkfZ>q!>ymfMJS%bUyC2uQ&3EgkSs6W}67VZb z*{0>3-WGn+x%WBR=Qe-hjc0&~tN0P{+TuV`!1&!{Rj_s!cd4ss0)wMkZ&t#m`oA0` zOZXnOpklJ;xB}YLXXA`jo6~>UcYyTSAPR;Bb>aBp#ft;L$u(^78q|B1p+3p<8?&(fe~ITA=~E{XK{TxpuV}UZ|rwY?_nLAf<$U2(>$+L ztzCndmY+kw;Z}BAmE3fJl`|mi+xDghY0`^y_uiTb%8~XGaCZJvJqQ>r>{XTcg(eo)`~Ylz+x;#L|Y| z?^!67C3%XQ%`Adhjp{WoRI;#UmKLmPg9>7rKL+Ar8TTf092dhe+hC|yquf&Q917Z) z<$!rT^lQSoJbcc5#&pig@E5^oDKKWc@UBZiPl(Hjb__Wq2~sG z{Fu3U?Fwf+2Uq--qpTC(A_!>2RQepgwdhP7WP$NETLHu@;Ia7z3$yfFxJT9K?m6NP zimh1UfmE9Xb^cIK6e3%=(y#0myGFHwuwWIbqyldsS1CVSe*6c$8;-rNagk1TQL3B6v2>y!~Fd3mfJg->fuf(=;mE1nLR4_49 z@p$F!TvwrOw|McOe4I`Pv+r&s;CCEQD3qe=u^0Lz%h;b#39E7Lh%5ZI41uuQ^u%>P zg?6fe(A@4$0UZXmaLqnfEo&D*k340B1m@27b(Gth9(-lse9*9LJocWtrJ})R`8GAj z>K*~q)4R4H%i#0tvt8S7d}L7))LI-e(VQ^Vj~=&?8wFy}L}EV`Gwep9 zhph=-+7wl!5K~%XW8?e+dyb}oL=lGqcoJREA(#?gYGd}VknRSy`!B9zU@SKk@>W4l zHecjmUFQB~eA=O9w+p}HFv0^iJDo>=T`ck=g7tx7(mk{5l~)2p!6&}{M9BBZwfY#n zs|5gWhM3DG-v~1%Wk?tJLKV{lvX0oLp?Ue1@%5xfk)+X&EMh7Jj4%4k{MwPkF&PH6 zcjp}1!T4u`{pHD(5_n&QF$ijXV^tIzE0Z~Q&kA+Rf1}1KH?ZycC25QFz%|#XPwUP< z{SeF{Q#3|@;_N@ZwO{1`1%4QyQh6W`mkY|NZBN=edFl7-qm}YhtO`AVo$Yo*zsqN7 z77~&r81RLC&QW0g{jQexeVMM;L$ZmFJ(EQRFWwdNZbq_O8J3yL+C?K1y8Ew-Kmu~k z7ZF*~j1&&(Hq0sc9Lt_R7StIy-pFKcxZA+D=>jvrhjyK6H_qUPjH_5#y1(B05Uful zknL&;JU&>*E4f&;#i}EZl2;JQx`fmkSlzxx=MmZ9nSVot+aWL3wj|nI}LU*0ZGBM8jo3Bj5 zr!Nu_#XPoR*n%W`OX}-0@)=Zd6nr^iq1&9{mkL zt2_*ApKQcrCHdVJ_^D@9VI8T5vd;xd-R~nv@11C1T_}Tr@zU`32Ch{H<7Uv!Y|6dr+Cmzb7_~;d!B1<4Iy!^}_#Q>b;|y+P-MvC<<2*P!W)RuZk!L zi1Zdv1Qet<=_1lQ7&-*yidU*iuMr|GK#<;xBA~R;LZpV?LTI6v>c)kJ{talBQ*Z}E`Q3=YVaJVy5FsTbp6)&p6orH!y!o3sB z$UpV3eG>_YKxmgV?xuo+cwu<~vhje655lvHnb+vl&;KHT4I!7_ZnHn#YK1Ero<2D$ znokk4H>FbmadBiN00Te?Lj_2HpBZxtEK@hET$|ZHBM)h5y74#;)vqC9mNfg8$$4S! zovE~UcrQYMdD`ZQ$dsTl`d6cf=f@iXC{tMDzNwjlemN_DD;V3%UHfmC{Y{xkni&Co zVjgIcfWjL@q+R#)ly$*iZnYnTDen#fS0Je*t!zTlEWls+j8nnG`B%+)r$jfzWXy75JO2Dq+%>H6+VxdYXre9b%q>!scg9p3o&% zN1oI?%iMK|9D+kr?8B*T+!`+#gM-J^ieu5n-Zlhc-WbJH6Ah{GCrG~O3OU|X16^Nr z0Jq+l`Vo>5I2A25sRO)o#2LgyN%Q@6VbdoY=OAwJaT&#px?}Mf2{|-!zJ3AH;K3fE zKobT6vAw^4t_6uQDsiLzq)Pa9`rNs5cJ$)_czO#8og~^&#R_Pdc!~noYSk7o2odwi za(Bh@nZe{dM#vOYwBGl&;PuvqWz}AbpHJd6{G@u;4(y?wsW2ud z;2yOU_dwqeHs)HLvgmib*%5iBSXE^u$r-mi*+KsF>C@kN2u{c|vjDR9R#szRh}rw3 zya}`G3Q~WAU#dx0p0a+hSc>J31RBvxi-Bxv*|OCbjaO*t))ZNz9~ z#|j#MlG(=$X=rH^a;N`}h`^@&ibI*?q3Kkq2nk~(5p`(=W{76Qum4qQ6r%~;=Ra|b+XjgoXn;tU7_0C>PaBaWz zIgTBR_?K$B#<^Vdzo$?EEZauF4u^Q34g4T2WP}X~Z`z4Tt#)!Xa!52hIL|UhhIC|8+Z!eRU=nQTsT z8Z!AKdC|K%x>f;`m%Fs|>cr`4|9CVKBo3i+(nGtFp|KLDAWEBl36PdNu90fBg2#*9 zePvEq)Pm5pYv0W6yEh$6pT@^gZvLzR42=0^_Vahcv}Y;pv+Y7=j&t9C@{k1}kll3Y zphveCdq>7^26Wj`#h*e2-)~M%@=$FU;(W{h^pt*8v6Ve6x?n$vv@q;}Yf&rQ5_Z-5rx>l-^smwsv*azqbPaTLHy$Kt(Q;1Lm-`@8_c1YU!|U5 z{bN<#9V2Wk^Z)h(=h9a5h_CCbK(Ly?LtuteW?Tiw7j95Dw9&2Uzl<;2>IV8WoBHTKn{Jrk;m0l^Ll$@azaan z71B~WFgWn?7DWbc?e9O@C@}y7D*_1}lM!G1|7|(Mm*5i-Erm%-x`mH4kQ)3X(JUb; z%`7|kf4jx=*74^pAeHx&>c9v&>2i6=3cbZc^6~J7)zv$BJj@UsA3jHav%kp(MZMoM zUw-{PxN}s?{B#G1Y56sBr%5KeGGyGA6Vy=KU4yNNo`TrM`7Kn;#PAAYn{v)+Ql}u} z4l8x-bOOMQ4W{U}Y;I0m{oJoW-@ZduNW)L`y^4~FatXa!K9?jaL25mIR%t%3S&`Qn z%)!j2z^PDUxeDLdfsb((UaMjK^;`kUXCWR6Hkp`-4`%9(l!Kuw+zMat@2*p)An%uR zptC_R2tjHc!6LWdsFUtAhNH}s+1T6Ltt>%J@ux$jq&@fF%XD~~JRAf=fJ{X^D}CyM z&YK52_{$rxtT=UZY~Jj1Sl!Q7yrR z>P#!MCEea{ZJ7tefa75_SRV|rIDOTH7%6Zh-`(!XxH>-l?I`S?A<60tdWc7DhE{qZX^9-HuBqiUx=A&lkpE{u2~{Oli&frj57+Mrg5_9C z%1q2{)yl;C?+ri7Bjv7zTVCFv zW9h(e^pQHGlhx`*29LoPKKPqp(oWOcq$q}e*XL5EPQ&0l{jAWb}83x9XHukV${nKVOCh_=q zl}F^pjfY~q}3TH@p_sxj4HB?Ya;jL($K zaS${k}fd{X6-8#N-;U0yT z!$^yHt-;LDY3NHGk<6{T@D{8gP7au;UT=o?vdo|DI_15!wFT_u*LXNp-trg7JX@R} zx|+MgED%|(*u7lct@?ayaigR(Epn?|$?whiRPiHA!+i6cU#^3CA6Wud9nPsSQO2>a!XnQgXgfwHS%Z}g zO4V63Q-fnW6GW_5caMA?%1A$lC^_2N+dD4i&LBt`t`x0I99ZC>ca4eF;Y!qP|BQw@ z0~eVaH5T>tBkzcP>z$U;*6)}Mj+p3}QQBv}c=hE-8A`%ARmdYuSy{xa8s6bk-o^+T zG|#h<6F$OVios&Ds@2J#Jpi$pSkd4*l$}Exi*WF*UjfwK+=9VK^A^4Ie{1w*nF9x=MZs*ecyrbDrF8yp z@nU6bobv_-^$e-2U%P%ETaz2pdbA*YF@*LEtK#Bf&ge@5I^?<<8#H%E2qKLi8O&qx zJx=a%<*0VCt-8Sk+RaPJLUKOCKMKTFX+PChxp?`d1H;?k`V)&%-G}a&RFOV#8xlKB zZw+z+qAwE(KRB~L{oV0RTRDmIu%P49KMN-(a$uQSMtnvJ4#i(%`o-)M_FIb;~8*(Mc8+fYUR8lu{${oQ2Jl=N+7~n0mpNWtRxupct>fcc1PX6 zV4Vw@!6L`Xu)$U1*6WPtLF|Dg%Z$XBGpzW{=Y7Rsv}shMb%AMC#;#~XJW`q8GToL~ zHZLVaO?exzzs8*2J*^X%kVl;e`TsW&q6}%(I**<{E!gvY(Tf?V__j&f!vU|Dkd|ha zY7ItL>a4N()dn!Qi-v8hPWOS+=9Zw?;B9bjKti3LawVfcT=IY1gUzu^chACq>0D#e zd2ppr_7{oarS4!upHn*3a;~hryh6lj%(g3oJBalQYbXa>&nljMe#o18NYy5jz(e9$ zzzZT0Y!(@GpXvNGowTfilhbZf^uqHXq4@6))vSy>mr+yYp_LHvQT4MRV1qP-HSQgT zheCdDd~U=F&4$VD=w#wcfMX1GHkZZa7KUL?t3qU-uWVmCwbV~@l#rS}H$Vc5_G$YL z>z`~297ZknCaZ4{_Z!$xL$u`(sVGpwWrMoS?R(<1GwSb5SrosIT0y%Lth_yx>5*;(HCw&u)(U0xz=;Y=9?fU(q z^wm3Q1nQZbSxta@y95aA-|_H-q+aw@w|}l3@PZ56@}(!MQ~USmB!B;k%t#gfq9@-i zh~F?UcG%%}&saLdSz$&cq)5u!E8vF7SJd63V?+%sjbbKb6brx*wMSWMN1VaJpFOoS zNgM;d{7)KL^Y8Tp#N^iKWiU2=%iE9*6B!wB<5V#?aT5|gOdEc+KXn}$IO6{Zb&nnOJ%_D|M-)me=j@>f&QFPn*aTFEd=(gg}Ma63Tq+qTcz}FHe+C!N*87>LZQ6;CB=E4#DP= zv=oADJdWu;csynX*|2>4?wzUl;`QLIUNc$GZHJT?;0g+Z`|G>M77^Y3c=ATR>XY=( z1=aWhBjTu><9F~Z54t}N<@c*Tq&`Knf2?|WwtBKpik^+?FIId&6G9(Aj#(~U$^seF zoAB^dqMO*gd);GzpvA(@4(f4Q7FFwSwqFYEZ_tp2(cWyDjVFu@oN|^~*4F6b0q`?Z zXILYN8^6s6^6M*gDsFeYs;UOl9J(jX30K8Hk3S^_?bwzQ0FbyCD8!)vifN%3R4na& zImTWJ0q}n8g$L0x4*;6QscJyzVx?`lf8hK9We~`E=C}o;eMfO%XQR2`yrKrYMW*x1 z)_+?8yjK7!4O=9V;AUw_?E(h_FLbE+c35?P`2h2YJgE6eY7ytRhGB~OG!mqo|P*9@6x#QZ`Jl&CljaDXSfRPJWDacFb z39{@?rl)q`Kmj%dfZrppEk-DWJP}i4#3A66M;};g!6JieBl!PpVpn&X(^MbBJS=RL zJJu0x^!&kt=`w(mbpR4ghkMPGVlTHQ^`P!#(TJFs;R?sWh&u?6)!71YlOMu_UyN_vC+W6P_JIZ_)ml&KFMA(~w(VoPNftyw(PtQ8AAo zpb9*0Np$S_@6z=O+b-5hV0IoO7{QQ%;K4lUA;Uk*71 zry{D$yAhaxcy<3iFiY=22guY)LQ+zm;<$H`UR+#Hhw6q5U;+Uy(Map{@)CemvV)9* z681M+5%RJL_h>Udj9P;M*Ple@F>Bzo{j>LJU`~vy{nwlG5O7n={rz|Rnbf9>yma=* z0;A$oDCO9j>HuQP?}_dFvheLAgUkh7Eoy(>N=8N!$C&`qPaM@%lGlHB(DPP1QOi#vT?BVCAJb76q)D8tedadEakZjrW$A z*kBm7t^qEk$G`pA2=J~Or`o;yKb!>atSOSUBPRpRoZ-iobUtf3UeB{l43{DY^z^xzR8N$9pY&t=wJQy8JZj$G{17_e|6AmP-B$Jdu=9=Y{D$k5gh zTj#WC1l%r*klyieb5PMsk@5vv-2j-nUIHNW$+3$5M?%q=tAW^J6L$89Sh<{k_48gX z7!=Kr+}lq;isR6-RGP`d^Lr@2LzNAg_P0~*J&7&UBytj|zO#}VKv6zC=vc4xZ1eIq zS$IP)>$4H+FZj&7Mt3$<7PZrSx58+`+3+OQxdD~1munRw+@Sb!Nk_t=uVs0$<~^km zPym{!5DaeFmp_7B&J?$sr_Z)W4^oW{NF+#~G_Z+1n0US6eYBuy*X9grs^$T`1D%ym zq?uh+UKu+d+~Cl3!5oA-7Q_(q-V5>)c5F*X_;dJp^s@Gbo0MJesX62 z*?eAq#9guL%D}=CGBR?erY~7B}dLzv^-}LI9>KJzzEJc(El95n}4z zbdY=rx4lCA=q=N^ zpZPiGM%q`qpw*vN6u5wqJtkd}M#l^t>43J5%bTNE6wKxJ|FJzkT0}n0hD>5QSN+)j zgJ%vw@0&w*1d2`T9_pG&3I-fWiXAr?U{@rDDpcqjMSYtDjL@sEKAiT*1@Y=j!a6T* zkF>bbx8_hkwm7e7{GC!_>$vS+ixe;}bTj&o%n?C8q=T(0CoT@ST{i@Vr8WuX9K^y)eq;@NpYk8Qv)W zWLvzs9ERgnQ2r$rY-x<=XJT=6IAVDbL)fghC%kP#SXH6Du&9;3%Cv)1fyc`=*9fvN394<3 z9&bcL^5k}#EO$60hH>6dy_u9jTj;_;{1tBXkz!?#iV4%7qu1||g++E>H?6eO^k(e& zIC|;8Y}pZ@Ck;j(W0wGpN<0h`^&EvK{_N}=0O*IFPh~*1NsC?k6tWBkAfO8;8DrPF zUKV{ztSl|16wbjKY+c{YQ(RyKDW%4@7bFBh%-)i4N3DysDL=3}w{F_}6^A_0KX^PZ zo3nTRtk>?cJ0(azazHq^cp>kwaUDCl?0V(eWF8GK-Fy8rg^6M**koFi&p=2I z2|{YFY$k^-6e~S@_TC8)mp?zK2p~GIT1tC)&f9~SHT@nGSw^L+z9G73wEo2!eV`a! ztCX=kQ`Mwej~|M^VwmqhX@w%+_`km7*3QBpt1((uB_5@YPs@EGrVRVz>?J!U|elszF|HE_t3La$6ex)}a1dAL_l^q;Ja5CGUnzn8d}8Hnyq zAgX%Ex=+e`leO&)ksMJg!;$P(l(y--e)PWiF}v8Wmp)yi0}j~QLfRO1<2n4F?+{Em zQA4c7r(F4r=QqkWyaAX?au~u4MhB<9I;Y< z`XssQ$5GMIhM@VC5^GcAG5vZNZ9y2?APtoC=XVzCBEtt`)-T{BBKyAl)HiI>C=nsBrPqKTdt0Q<@I8ujiN> zc>43nz*gcPJb2JOHNbvZ*r|(fK9ez9#ID2uOHw zl%Ss3%ip&A$kfw9@YtZhlp9N5F2!;`6wR;*qXWTt2z3IqVrX35qj%pMmAxbD7&uoF@d~-Ti^;N%TUtahTO}j!O zyu8|?YB*?@P16!)n$-OKye_3QmJr?B%?Z+4^o7aIbBvI9C9N3u%0>(8>&GtmoI+es zGNWHw{O21JVz4sFA`^?6)v#l;YABA-TGC|rp6w*F{-Y>jHb14>36~pfTIKga84H+{ z|0bMGzZ4<~=z8qz?6y#?SHr~_fuirE!VwdPOa|-!DECmSF4W6BMq3lI&t;WLB5fBu zB~Ds5niksZ@wjm@OquZ{%M?G_FnI=S*tBs@jiJHuUpm!!c2Kc!n#@8{W2caV%duxa zu?QMVnqfH@d7Fy-DYnx!ZsL{m44Y8fBUlfi5;tBc@jL zz1JcR6+~ROu<(K{%$*`?l$sAr;u@2fn*_Xw<=6Jc# zrq~kQqg+?!D+%~B*nxfK(CaqDvb*yxp*u%EZQ%xCLv*&vIMO%-;JVe8 z4&DW0MH^g73cY%X{eq;0m3d+wY`JhG>a%o4SF`IxrKLNZEz9iYWKoBl1ybkI>(h`a zr^yeD5T$c34nTiW^zDR*pz%^h64}+e9)5BV3zSl7y_u%@(E(jeC+!P|eP8ZMMSmBI zT73TtNT&Jss1xzEtxu;uc%Gr9EzoEtuME3~zE*w^AE2vL>$`55lbeeIz#m)Lx0gc5 z^CIxugQ8LNk3r%O1=2yKPdaLc+NSN(Vlr6z(TyCHE(JY>M!=;?R-W;ETNkZ?`%hm#3c!@;+{_g(0zp@uwVCKG@bRR<@bOc{vUQ)Y3mb z+HS9>=sxMB3COcjcylonOpG2m6NK*Z@qBsvg^xrQ3N{A+y0eB5H9Q%u=o3P^4ZPXj zzD%^L41i&s`&v|xG(l>I2P8?{9=H5=&Fh{bvodpinGQV%>&-jMg(8m4{gPwKU+oFP z7O;*u?Ltg+YxmS(U#@b;HJj+Ds5>P8sNrh(;UGeNLT?z4w*tycxb={|`g^hSdTehI zL|GW`#h~dvP>Waz82+<0RQlGK~`F0xoC~lZi@nmGg#ElnhgckRE6`Nyw z+YYy1WAJmgH!NQ{x!xm|(xA%|=e z2PY9nQ;c|9tf z`|B#Puy*rWSGiinmtK{iE8w{1EaKc>?+&0JqOsA)kht8`gC9r^Nq>}pfq>~7H-j80 zhvTvIxL&8=BakE$fRKuiC&cLt0yw39Ah|8BC^BfCdLBFHb-Lt}C<~*|jq?pe!(A+uZh3e>El{ zmDl+7-TwH({CULk$!t!_gMWD2%B%GET83HR{cor3q^L zbO|{mJ%flCsV@1kl}H>V>}V_2XA57JW)9SI4%ydw>!TL`S_Fi-#r5dg%dR3rZ$G;aZ0#9UI zE`IW5)n0{dEdBP=o$GZg3%xy9l&OCL31jHwl+DOBQd}bW@b=;H{6F@Y^PeTxv<=-d z1o-lYe+(W(;VtE86AKH!D%3gZ#MPmgpZ72S3O;tSrg{TPp**30GG-lYv@MVDKv_s~MubR{R8#fMKOB6GRdFXye9n?w_ z!(ZFogJvEcUz{xTI~tmo7b_*Ji4*W=(^Zg&^Pp}>pIAJ^=B?O|CXTTf2|o#Q=O~z@ zp-shx7{C5pe$Mo0c5k%2a<$l|>)IW8a}adv*RLte@jin$A$t`9R?^;(dX7MeGy@Pj z3+iA5S=&49!xqsapQxY7JNcz@(dxKE>Hd0lW}DdkvIu1sWNFx$q{v(so^ulwC{o>MgK z3RbQo-zp&z%H)8xoDHlPL|6t`xbupjMN3pfJG5_UV6T`CcpuI;$M8VS+!HByC|r<+tR-wC5*l5_{;oncP*hOGSjTj1*oMp*|o;;(xj$K7-U#nba%)1+e% zSZw!5;jch5?-6|7?$Y=2&N8&B<-1n%nC|o#%YJcwTNv(O_+(qSJfbETW4R*Xm)|+^ zmn)db&KrddvU^K88|CL@{UvqznK8>x0;*15B34R^-8PmlO_(tY028HWu71`z)z_`|)CYA{?`6{GC=2OO$?G zVs$x)^)H}ip1EAF>)aI6pOfUiIG=M%vcHk7^AyCR@^^gU<>m4gp_=nv${^fztfGHK z)@DuG{pxkdp6KgunuSJG=nG@zx=&6bw;bWnx)n5-v6t7)vh?_(Gh{UpO(bXAIWzah zoV?6{&I|k*1=g+Mc4zbX8_0)*&aR`KIMG=Gw~V9LyWJAK#=7?LfV7x3d>#U%Z=jit zzM5;;{;T?At312fMY8qRu0lWxwg7~Ny;pP^Gk8*m&_Bw$x4mUkE`26^b1~38G}fuy zn30QlVQ+_;D~YEW%H7jp5W2a4N2kfr8^&l>SQ6=|;#})-U-gyU&gBO4EmBFbXP7K1 zHz5>vRll{J!Jtb-m0yJ3+&dwN97Lw1>;lhf{CgHw-_V}2)Y(bNq^R0qVr~@@#(aqj z?fsCA3V>(XZav0afeQ>HXY+CSr7|KffU{0omL6PhsK0w06&s5KN{iw)?HBAX^w0J# zD#DwAHu0NS{_Yx;`EMFh|LBL=U8s# z`kZE1;3QF(x7|0n6>USuv~&W8mXML{ z$wK}mbD^01NjH4M<1|t;W^9YXTj^ikYi{80T#?~Ef^MwaskLlvk1`x&73!JK({5Xt zbku+8K!IA|YTnT@Hb35zKdi}X0!eX@rJHKDPdnF8Vyjxk>@Qtc1up~9pC)CB%gUCb z-v5m*EE*f)uoYsyjaJD5;U@mYscFVDM)m(lI29IT=pVif7Z^`h+ukbqG4pj<1hkSk ze!F$mop7O3uQHhwtKBM~_`IxOwr|=kJhQ$E5;7)^1qJGwk0sYR6I>eUE^NQsSolE> zHZAjL`pAq)JiN+MXrMbN>B>@T2P@cR5;E>h-|J7Ni2mKunfdA$t08GF{^KuPmJA;nKC(8mdv05<#od z3Og;q>eAk$<92FutT5t4hlMg7z}tOD@p`IQg#YaByE-7ErbS36R=}p9fJz%3>D6vR~I(Lq`~Q}`>U3f~-dq$nSAQ}#z~SXXc*q0woW=gi+pJ$PjdEruWMS-TOOjUFKpHUg8$+=nEMR{ zzL?`Y@VyOryD?aItYS41laQHciaH5XelV2d4u{n?mArl(Ryma+1-{gHaGCphb}-$< zU6+3ajJ=7+F{*saiueFyshw3PqdB_;e3ZW;;3lkZE=~{l0S#V2dE5Hdu_wPvSGm^L z&$oCFIwWR#(F)h_<{Az?TxY8hZ}Hk6F{8zW`&7#OqC)4$|0fe4nf+(ykG?(9LaN~> z<(p6R4k8lN_gVa6X#lA&=9~>|W~skxnB8^5emuBjEqL40@YpJcK%VGNz4!9V$IHyF zJk{LX059S3$Zf^#goyRsY5!1hxw=p&5dnWEsK|2BfkLANZ$74^Cq3j~>y+^lF9Q_> z`PMytyVD-n(m6lh`Na=mbgm)!qgjHW{3eS0NPHhAq~tt=Dz*a&pWj2iBv9I4U&LUI zdErk{Q-gn9mc#dH`$7+j0vMWfzh-5PHUt>HGer*9uE}Z!PFY8%hD3G&5KMHc#2|oj zn@!IGr1?_qVy1UjZN~C50A>fhDAWBK+c6)vl=c3<-qr7Lev%_^RG21x8SnsU^GY4? z_@sCCL&cO9y-JCg5$<9p%Fb&ou87;4O_MDS?s82O22eq4e{%*A()>{S_@wsR)ZjCD z_!C5MbjsIyETr2*(hs|Hj&8qnEqMH zGUz@~s~7Syb5CC9^XAD_nG;qC z=ds@F_%wFk38XDP1R3p&OOB;%B{k;*QFkgGX{ulwwY*8LqsTISMhr2I2+H|Ss4?bRH^0}3M`3<&kt z4h{}%k8qYaO)YsYjDMNjJ+h7V{LsJpnE53Xe%$6y-jTwV2F5Ra z?oL+{YVYE8`4ZHJL3@nCUpm#c06%GC zm$fTW)k=4P;Q{$ZGFI~~2z0nUWEpb$-m0pZ8!UN!7?WCz3l}$(pv(vtb$+OHPVJFV z%#e8kwxQt`Sz8h^by>z|bduJuZp$0Fa{x7~aLs#vQIHr6Nk-v{9AOrVJdNYhmkCi$ zSS&smDO6~j=x2o#GTu8CHguh0WS(=l)fO2af6*NVzwRP_8j~6J_Eu3k@nVO?iiE?n zUWz{@s$gO7rkvc^1tqpSPd|y;wEG44waEg`9qomypMXiR2y==*|Lhhx^$%0b3XbX6 z^yTX3_F_}#K@`hq&GXtjGQ)B_MOIZ0qf@JOGH7urv1wIq$N&aT#}T$jb@Q`z-h;G! z-!rIaQ2hh-Njavas%Xyb))`DOx|zbHJvy#9*xPoVSPzbL$g?CqqYrBOk;R8amqnjY z$~b}+x-|7?&T4EDj;Z7Wr4i9Z0J3{t(N5sH44m{wzG`L`+FfQXO=6y&ZNeqs zWLp_7SzqWk7nYEDOtOUM7*N3+zFpU2QJ^{!5sV%!7t*VjbT6xemrD{~j?HR2fqtqb za}euQd9Qd&@>1NlTK?$seV}@|Lc$ckHOPE^1_5N1MJ@+1vP;zc*jMODE+5EWYB<@< zyVBnjh9yQdN8&?d^B(PZKJ}|HIV%~rB$w%Y(Vl+YV zW%5Ml#OLqjM!5bgkbuz5^ATP;d48QK1tL^`bOAEdLFrmm$gq0zoz3JMWrkXhZNQ+4*Wv^q9bctu8S(}$k zcypOfS+!5*+0a$0M+I!|UWrMy8}*5reGw(i z4KDr<>lssbmYAJJb6wx{`a>lQ5skZLpiE|k60O%WAmc{>s=^I+lEI|#eD7)?ve@eL z5Gt5XRvd)CH~nS3#Z^UzC+ik7aUyt;LG8sz#LPdKrE4>FUjg-`@XRz={f{=t9jjB? zMj>vMq9E$Cum@3Jrar&+mHGx7oSPfZV_m9B!*R7G?hR>CqXG{DZPhUw?fk)=;GV?F zHc{c#{oTP>ku#f=SH@2~(tBy80g5o9Fo{#n#_*&Cyf2V}S$0fdT& z)7Z%gwN^(ErYhle#GFVP&wVMK-9hXrZgozPp0_tsqTYtM_cEJ-PZDd3-4g@o9nx?-~3I<^K1+0pC+GAr^gnd3%y-~VJrQEYob1CuGMuh zjG!te{iCF8#o!LP()DnY<*?Pb9(J?Zfx+JG@KUhsp6$f$psq>%9bqX!WyeX<061;- zZvnI=Fp1wl-K%r8c~!2G-!KALR6$5jQhYE4Hw^ zD)l^GcBl5MTiXgo18xA$f;X|ziFpdNjFNjhb7#48BsOv{1R`%ro0fW;Zu&t6S?3h*292u6sNY4me9f zqKNKXD%S3i$<*5eZwW%b;;n`UZP$)iKvQ(FjSWqlFn>I)GB-{Zp`^T5FYq4B0^cw9y9o(TX|4omjVm zuR>@;;uKd~2Y3JI1RZSdHSxvZ$IRUF1G=KcvR44=R(J}abAr^hs!lpF5T?pT326L; zn++O@O#MD6BzMZ{VmaKZv`ayh2_f3CVeAdP5vfS808q z2Z&RyZ!LpgF2-R{W|UV@_8`_J-&viL8vjDKtMZ>cQUK%}Pu`WPbQ#eTY25w@E_0s{ zv0G+!20++h0DMys&?d3Y!vki3{Z?y?-$((rqST~X7(5G zsm?-x1fqUzPfITEQa%}=;tYYBm<0HaYjE)6oT>cBQfXO5x_nCn)NoP3X7xnDrti4z zq!iaEx2re07f=tPlO>gd-8pPO6B!X*(rd4)Cv^bY#g@m{(bc@ZeMJ^2Q0a}a^ohMx z828R46&6vX zp{X005)zSyif2z!UFdy8#HCpJ{`C>q30eFibX|O07yvnNk&$9kC}7> zX1cK+Tcl}L*$sEQyFk}CV4+`~IZ2rjEZ(x z61ynmaDdIj27{jG0%#NJ1H514?mFI`)X-yEH4ru8>pb`QrvMwzT3HEZFls$oRLuo| zYS#%QIRsFEc^yNqoJ>Si*6)@w_)_kM!tC z6c(ns?-<*kVSV6>e`?_l`pS?`FOIt;u(M3iYyvAhcX4>lIK8rZHN@I!w5pjb?U_$& zB=tZ$@~}ETZ;`1ze@VDjwqc&FxT&CkRwg7Gpa_*NQM=RXF#zGt;}lpAo24xza7Z}k zMkEOSZcayx`1*I5h1EZJ2RJHr&KOd`ZN_zP%@bM(EETu+2b?@uZ;cBBV3tV=s%$1p$xkpAW+Uzm={i*l5HsU9}BMY_YTqh`U#c!kL z9hKHnWZqQe$(%N3TwpnoPPcvJkB}XoIq3cwceuJ^EWV5mWC_ugvoV$ndMvTt#-aA` z*93eSXC)wZy>;cVihJD5nh^j(&n_RPQBc3qEIgLp*QJUd>~TokP*qf28>&N=$|eR` zri5gnj0(zDaE{scGsX(dcD_WK_MOe2*Ni26*Nn-$@f5l4CrU9Iy>HalO-C+F;Tz%m zl3{s*;|!>bx8D}Tn~^Mu7M+d%Bca^}$O0aRz_jG|pRUs}nOfkRG>oNUXg4hAB2v}| z`-*Hek`QBmL8FbT+1a?%AInoSf;lbbDS)OV;zA2;m^@_liqLm|8R@nVoP z#oQH8S!~=yGC5dfe0Ofs2q)n-+`Z7G$~n(uS$@)Qo2ErQ!9Lx2P$)jU^y)xL zn+af%&3CAX&-iq%^`hhPCjYpe9g6_3O8%+;!rBZ%j8J+ihK0Dh>zpKV2z1eAXBB6) z!zuZ4)E~T&YMcGz*O*?ZZT;pnRm+`!>`cziE7~)$ON=(KdwF?vpP$Mwt9DwfdX(`l zvWwzd`;0cbT^4!b>hLrfc;kFl*U@~?1algx;>PaSzBuM$x~iaMJw3kz03ckWi>u4h z!JA*}Q~eevgehZbX=%=rMFr+*;xtIk2_qm5jMoDxfIxQua2FwExmsc-HwR+&B z%FC5?+`w>xqDX!fHTsn0Yn8bK#W;t_lj^+oGeD@bnwx(@vLBw%lCthRB{3m z-EgtRlJMMY+F9>;c4h;`GVQ2(`PU}ODfTxmrzIf@h)+S=K4#eXra_o08Yddo*a``w zu(fR3XpUMc`UBvuhf0;-3Y$&dxb~p5BX)U#lP=|Jp7qWEU)}pPzl2-~wq9`bRa+VZ z@Tl?_kT7+g+cx_P>ZwBbbrismCf_zqjIMnEKRnbZuPiFO`t=1+uPs7rV<;BFF}gy> z^>TL0L+@rKW8Dodg1`-Q69uV+Kg3Klz@tFy?B`eu2_0G~)OvRl;m22+ws8LDBJ%?4 z3E4F7`y5e{1tr0Z#Q3wBaO#0-dRkeyVW*vox^!y!2N$YYaD~ylV)Wksemz-NbxJ`CE)jx+jzl8hr}_)$`Ho=RGk z5iXd#oPG_9P_ub1ev+GYcpN9QFiUBme4wVLF!*ng05GbWdv~c>-$x=qG5cZ;4qB5U zi_x5lHo4TZ?)Ox+OwP1YsZt~mkq?Dhw|2eEG>=rF_W5JD<)`{~|H-mW4Z;MY467|u zdg=GCl@G{>V2(39zxyJBv%OdZ^6wAYY4LXbILEy6bIhH!zSki|Az#^yy36cmG0AK< z*%J`q{D`BshZneB^s<|$kHS_^0X?Q#yr3Elu8j)}+_G5f0I-xHwabNcN^-JA;4+FSGR2t)D7) z^)a%uD?O?t474rV{J~shQekL$bJ98o>{IPk)fh$6XTb1}u-MxsQ4B!Kc|wx41qWm# zSnC@=qF`F_JenG|b}#-avrF)Cot*2d0u&q$?=DwV8a!mm33qVVwBmBzuOa!;Jz?^c zg14oGy+A%0O>AlVs~wMzZ6a$);eF~4{0QMYM%Bb$m1%?RfBl{wc`B${2P@CGe%hV;fBG5nfI@s`gRwd~TanYQ-P6Jm_IFBN@j>sK<~`&+l!HgmA)0f>T)z~ zA4>mC8yRi2{@=~>4D=G~h?rDyWRO7IP$xfz@{n#%fuzHmQeQi(1=8birL=4^oF1LO;?u=1dtSBCYGc0Jwa z`y=^o-bnTiWz91uhZM{C2<+_teudCIY6nf9O8OGYz5KaoS7lxAcv+fC@pdYv=&C2(--QiT<)Ov!!>WAx$u4DfnXYU==)YAPA2NeMkL=jMsVgu<)F9xt6g3_CG0qISI z5PA_6rK)t0-U);ndJ(yZfJh51lu(2~=p}^CJHcC?_5J<#&eFB+J)Sd}*|TTQo?SlM z;VTDh-cI%@8PYP%bVg({yjBau7S@h1GqGRN9@IOsGg!#&%Q1s(gaw`nRDGbM6Ej

4P{DDa!el_I+<_EebI?60z;^znMXp+PDcG$BE{A(g!V~2)K(FRM z@D3Oj8tkEtBANb@xU)-1P%3=tK|yo5OPCr{pOS@dAoM0R5gd-Baa8rH?SRcWL@gWE zuBw{{j8?;#3Sh>zy>k8@!0)aG!Ir2OP2NEjg?g3Ar^6B_K7(W%C5!S>Rte894@N)= zeY#PixK#O4UL;rf)ZU7KfpNVhKMFAPbE^up>^~wI$9__OICza@{ILU3s z?bh7IG58iJnhM~ew7cF+T&!ppyTpIDbyVody?afLmoC4wuoB`cSVPcN#+}g zkqs-B^bi|Sr(8pn?FRw1+b7U4gbomtxx00^p4KZee{x_}SxE|PaQ%R1fPk$R_1DUR z-7UMDNzjGvitE{3THp?Ac=y^w`-?Z9NbZRl+x{g-JHyb`>2F<8v59srwW$+Rf)C$^ zK=Y{Q=V`+_;&?YpYFEl@4&i?LWy3wkgo7A*9P1Ze+J*sIj%2#^;4;pDGEI6gven>R z#r#MFzV_aq*8n6RKI*K}KBWEGa@p(mdpC@Y-$;qqxsAA3r6-C#IV*J*#4C0&{QXgB zfl=PeAkVl}B`JHpY^B1Bl)?%k>qrZ=eR0plS7V3DuoI+-ZZ^O60IXPL!ArPwySwH3 z2_!8F6l6O3WPSzX)-P_t3+3;`@16mbmA-`<03o~Ir;2aeTj|;DN1Q>(0qmEfl=?kL zM5)qS2(P&U<{RZ%ZN_i^V7H& zSJWv=8_kBFLmZmpiitm;9yX3ucYAczxx5~HYB|1lw~PChG!|XdI)8+$(i%J~Z9=iN zw6VKQEqD}|ypQ8uTsclQl{q4>`$YD z!$Qt|EAX#rX5dNoS+h`5c_MtJ*89-V0bA9CTZ@akRKMQT>bX%?(!Lx&?eYb&+h?*m ze23S7C_@NsIIyXHXLRTD1W39D8kCejh+{Qz##eH@d1QXlP zS(2lncbuK2%!ep_wr1_#nREH<${P9L#!9z`c+m`6v{$^d_bTl6#5(t!vj+;Er9q|P zHHiBgv{zmV1`Eai1i5)`vhcoHe)Qez50c8tqQ}Z&^(!2W#$>NSIPMR#(iRRi7+w1xkwBB8&^Q4xZPweeKr_4qxg~&$(DEBrPY1_YM`&6_?FS6&DUzAr zTqc9X+R2V>=^3FMcQhKOw^oJ=$t{Y;8geeL)Q@C(P$&7dS@es_12>zigjcSy-x|43 zy)Dc^HS5>Hcp<{eIVx|_Z#T=Pxdb@nVsl^%KJbrnFR!$BX)d@e*?9qHo;yhG<*>iB zgqyiPVvxEl8CR<-%%yz$3eK_3qs>BSFIVWKn$KyY+fNe*k!~xk^IZ{0k2WF*zy?dXE56q9VB;t1nkwL#W*hiV$*VLPKao*D65>& z#*(hN#kuFs4^uQL^3=;_@5P;m3^t@78T%d?E-hMxvNM56L;PQwRy}}242-}6)_`0> zxuN3N(;7RMS>MD%C>f+H?FYU`^PX+Z617ex3+y`cEflh!k5fE(5@P}#);;QbSu5Sml*c16ghWhnxmm{SA$m97qWl_pdQq*o9$A9SbL`91kdRzKlUX&%=pxQcscDaKF3<)Cl>yd)Z$7>3Y!CcBnSRxwb|@*aIX$HS_8S+BDaZ7)YlJzM|?YSW)F z@B`%+;!k$`v7<1pEdME1xrZ*=?>f&uFY5YT?rK4tCoMXq)=EH5yKQ$`llm5OigXel zIFIo{&F!k-L&$Rg!~mEenz^z*tDXA2y}@9S<}xzr-Sp|RGEW${AgAvu-PibBbMCgI ze7*PK-RO%<6s9EpyVyelj?n_x3;xCDACDODno`j9#QaP&m*6bCcM{e%&+uj#lA9}& z^Mx~{WeWb(M)AXdzybGTVPL3AYxUbEWsO6gzd8PK^6ssec2$m73~c<}HCa#2wkAnz z+sD&@#{ zQTn?!VHmhYIXWrjECAKQ>_>`?cPMC2nUYu!9T(aQ<_tLrPRnnPxB;!DI#4xU^P|J> zrfUe$dz`}TPX1~!Ut*9ttU@%ch0i2pkE8ys29ZMc)#MFX0lzGYB~D%ni3S6{02WEP zy4G!%b@~jnb`#GE)-^YH(b(r~E1${jl#oOS1bvT_o|KcCYD?nvFn=CdfZ^~k^QKEE zLS_Wkrg2|GgU<3~YCguof|o}Mvl0i+1x&Sv%S%qcr}y6@je(A(QxAtE&s&cF^jyH4`&p3osEJf)T8Gp1ql`3U1vnh0?Ow^wo6mRBubxFs! zm&A&HHnS3yY=D$iM-A$oImQit0Z6r6DjOPR9!dVrmAJ8y3TA=VVEsS+#c=@WdmDfk zg1t+F83)05DRP;^b#7skaUcr!lqn~~Rtfy(0UKN!zBp8V=P@bx6ZI=~Gm^v!fAj5S zE#F7#J5&#&dV4P{jn=iT#0_n`i`rvE02$QiL6n-6geC7DuxG1TT|$xYAZ`OVByc9Y zO<_ccJ{BgUJ1Z^b@cD19wGrBIK22$b^zjNSUIFY4qx!=)Rr-`9`LYPkv6}&lM8ysR zj{U66LCshCHP}0gdsGm)v3n$BiCmszIq+vY@C7Up<1dqDZ^KWck1hS*4v)E_wsV$P z6aZtt4o z=sYE-+#&n&D=KqjB`yYeAT$4g{NWo$hY^yj0Nuh zVD_$O+&4h$JsBmaz72H08W6RN10@N4z~wtr0jSRO9p zbv&R@%s5bd{yv?lv%rC;pFVVS?)|BoH(TDBf7aA|eVZQAbP-U!VMkM6<3i>z&<8Nz zlK&MOs@-fLvoaUQ-e$^PMU`KCs?DuLQbPTwx5y z&r@>6dVGh?U2@~>;Fxw7w)c9n3&wG_`}ze_CtO7#D1K>$g3_Ri(_deIXU-Y6r_rOy zNnt9M%a06BozxB0dS#nGIrRDSh3Jbcm8$Y{lHS`N_Zm}VTjX1$UTwepX!!xi6j%yDM8(k@GtB4lndA0C4#e3-E++u>(%?vy0^OG|_w>Xk>-m0>1r0Z<{q#hZiMf1^JV+tZmqtlJ=287+| z9G(n$C7_^lT;w;XR}CymQ6K4(gWaChY*aa8t+4zxz2r?A;=<_kTk=f7qhjZ2RI&wDhd=ehnLvS@8{|Nj~W zFlqcbl>Qm%?aQco*zr@6{QC2h?!wd4VNOYl|A&S&kBmtA!T%xt$oOd+kSxXF4TR~R z&neH5h<&U&{dsWz8Yg}`U-&;DQU_vJ`p9&p#W zf7v9h>BSY_3#950e*X>a4fyz2TQ>Rc+f&EmCn;us|H5g~8*&W)O__@G|30BP<~W}J zIPSs;1WDclDBu4+qsfLS{bAn!9qDr;Cq>Y||FOsN_!sX#;5eS7@Bd7j%;FCPW&ax% z<@9Fc9H7)TFf0EV>HkZ>_mr6=Js7<7KU6-Yv!gfN2R<1M9O${TRpM!Cp4XZ- z$EcSea`+-iEA~(Zh|UX|a#<;&vgZI8e8b<+Ux54UC63qOf7a$$KppGLf9CpzCMS|4 zkN$_4BBwNV6iNGfwORjh)8;up2}xp2*eVbAx!s9u zpT{d|4&qIY60#WUgFY&@Mb zsq7>Ir2JcG<+fcGu~|V*N$FNN_AN?I8n!&6jsY7q!GO@uuG-fMN2y1)bAF-?s(6}G z)bWVFci%gx$%?YJg8x}w;-ls6FI?~DWO11t8f`hz!J-R<%Qa@3o({YO*sd6ntsKbR}=B=+9g?IIvu@|5A;G^OV%eu%?nP2t;p48i)i4aS*;B#NB*>iz~6%U#)fd5m>Z+DtM|pfJM*$CANjB+~nNbOpH% z8}--DH2!Hnbax|v-p)i>Xxr!f0@?z43R_JeO`}K$2ubdvWfTI&{kFa88=By&HbQ#+ z1umLN;+cU+3El@>l@a3BpC~xAN`}bZpAzfzSyF&jPdxT_a6EV!WBV(SdUJ9-SiFR9 zxKv3O+o)y7`^i-5%+_31?4XV6O<(_BqXiMXi9vbeHzzZdrG2-6YXENr;JFCkcR9jWY zp6!C4$O@BG+-AKt5r;XyP?Av&Psi8Yjy5NI@9#_R~pplbH>BmiDaF6RjRe# zQgxQ z-0rtilB-xG;7Lrnk!1)~EGi;0W)7hoBbB-CVw73=48KBb*+W?Ue@t}em)MCeeXI-# z*MT*HO7|F3XJA?++-D%Na*77cT#bCg9mSOk3#7|q{-!GKiv&%4^bumwsy4ukT zP7m{b_qOf2$HvOj&ANwqZy7>|p!lj<{kh1> z`T0SfQF+9ZtBrhaRjCILN z8+lV*_pYRtQ`lXZZPyP@@o7xS3mIhNhivUbv~0bYK>K~FZS7LkqR`<2Z+0>TZ_A2t z-%*3r9qA|21D;d6V(a>v%eT<`GjDANuE`fhRHF)*W*kKPInLy+9-Ct(D1fBbe=+#l zsnP~9$Q#ays!a_-p5-Wi--R!zJ)Pz5^S}kOF5yeXM_*xQK8x-MV@wuVvyaA%xH{XST3jk7;>wo)Suy`A7HjyY&{L=C!CG;^Lf4 zeBS%HAk9it$DRXsr`7g{UT3rzx9T3W0U}xM*26X#W?a-m*do4$eEVaDf{0!FBYufFpHHvL&}nAG=%2x;*M)v&(n-2l zY;uw%4F6GoE8Z+e(w}0Lf<&eAr&8nrf$>_|}DNjB9jjmCFr1u)KoKo|$ z-_b9r{%hgtllwk|rHk$zd6{f9(X1A|@SDjd{=t=3&^(En%2l~!Xf{S^2rN9KN(~Xa z*!%OXMWu(di20h#5})gCoz{H03nFb1p zbFtg@2M9hRR+4(ISGcYk!N60HEAbfBF`0?6^-ITj(IVmoV(XSgH7u$7M!X-xYeS$E_ z!4!ja**>B=ImuqW4yxb|fKIJBusJJN_^Pm6W@^Fg!ToX#-p@vH1xmq0V}r@^5iPYv zDXW{DRH^#K;5^k5bBHg~5v;G(INI}#aEsMyph{}9&zFl^qjrhX*k5GWA1SsjOCQy~ z(N8a-f5AM8@vAs@NDEQ*FJlXTr;4SZ^5KqaT(KZo1udI(q7nBbq+GgdFP7HDK5B{^ z6UZ+6G$|d&?(?jJNpM{=jL~@9lumsmNO6&Da_vh+kuh4P7 zA}$Ub89C=2x=(r-2X@UC>R0nZ`xeAkB`PeMPa6p@dixw6);7i2J{B_IvrQQTNgX>0 zVnupJldXw7-lAXQq__9ydXZjf`q@md3aenj?n)40&Bq!1}&?+ zb?Q1U-k5FcEDiG0XdbY)&S!7?8&`R}c4V#84dPkd!z9olTut)QvV_R86bIzkw0hL~ zS6!oXHOT31?|sr>UE3Wu)9~~(B-ei?8C@%(Yv%wmP|Xr^a>Jrms3ekk>*`)kC?@Rp z$Fj910OXh0!#!lSph1>uPG|Qy#Nhm_I?)5#H70Ic#68`RKR^GjU~$~%Mdk1)*<5x% zf@kv?Nqb|kW?wlY!{xo7rXygO8nx+Zi{Z(*zX2{plR+zs5Zf?Gew8q@I=?*bF`s8L z6%?E8B}c^-o{jgf*-gJdnaPW*AxL}dLM>y1jOMv6ncr~rzy-u3rD<21yHL$atXrv! zFHyrG(WAl9ekr31mG^2gC*Da!?k{H_zEwi6m~JXwGyGauO2ZTR@vcm_qy^rRZ)Fc| zj8r=y1f&(W@9)>Li@X?;Z+z===gyrP3$za&I`Oaw=k>b?o?lhvSaH*) zJ2Q`2%z?9Z4B3VCG-Bbs;D35k=-eXpo4(2Jzm9w|fiJQ8sNO}T$p0IFcBLDy(t@OJ zJ%29zn1S@$L#6z;3a+{;9B5Y zrp7X-@zhEy)-|?I&pyNOA8Z(MugPcfO1yeFNZY991z%a0m_5_+D8fS*l=9j1v`>vV zfEr!Jzv+@K+^T*TB2e#Hd$i9FF+yESZ6(**xh%IePb(w4^Q;5cb>O1{weg^a$QgYl zkV8y}XNhJtBhxRe6q!WYnW!`*L2l7Ue@fSp@lC-MjUr}bFhgvu z>bYG_xAJ9w zwbd`Dd)dtl{tXA&Vg(|!awqphR*rnWGI*=(Zu;qqIsI}XiaPda%+o+m+JhDHsH%gc zGU~zB^E%OA7sOd|1|kj=%_}fxyEN*|qLWh+a4_4MZWgtft?O( zx2aRnJ(qNWni50}*LL*_8$on(AaMBq1eT=jcu7&Cu>=nj5$$s4jPXP#^dody=kzQd zNk#GdfR#&$D|9ZCjW6z-V1>hYL8UR<(#E#7`1o()8h2ivOa%W<)|jnP)W@iT0aodQ ztra9>GvtnwZFBIAkAG+TWXEcLjlm<*cCzL=8YK*%qDW z_tpwz9Y<2EBp0!t+d0%Q$JT1Y4;=y+8NFD{HAd3(q#D_vw*xS(fbWDPqGNTZ2%^?P z^4y|5N4%>)rjin1KfL;L`S%4oAuF;j0O#<`ep4P(IiWN&_j8TqcfA` zIJ@;t!=3!rS67DeC{py&3L8$SBtpNQc?tO>sFXwNh~$((KD(k<@{kEDp=mB2gS^sa*Qrz7n1teXr& z6Efe*7d~gr4Gm2%yGUGNmY!8EG-&v_V1DA({wA|T?Q-I7OU|y%Km=Q>kdQR@Rc`KL zfY$0?j5|1U19B=%uTT(Qs7?>JL62TH=2hG(dRCYypqHZ{EuzsiK&4b3Ydx|HO{mO! zECZ(!X_@~by}Pi^dFra%k8O*RX0HgOW^(MpCs{!^iF__Ld=8@a=9P`BEvO;Wx67U{ zlD|6&n3kMWL;SSuzuRQQKcm+?)jcJiv(Q!et9y=`nQg<9uYdP4uj`8D2BC#>rO1?+ z5fOtg-n-8ka0lR*D_7hQzU;P-ah3)dCK&leh2>n_k@ z4i-;YtK&LUddmX6%cm5QHkZV)+l4>x5(>)Bc1@m9J1BX!uskDfrxhjTwvv}M!*geh zY|ancyQ6DdNIN{%4$YrRAvbKoRhr8VPO)2gLdS2m`Vj;GU-Q9;eN6t{=aaHWlJBZh z7k$ZBbsMTPE_f-mgsHZ)8s`5wx+2Ewo6j8fn*67e!X}tPj>&KSm&+Tu@cr zUSHwC&C-(z5=3+0 zY17FdSFblbQ1IF8k*rzyOQePQ9PxSZlb*M5nx67jY3^qI%0|NzX`$fO7FU)z_pY`k zPr<&$q-nrYnXozyMfZ2C*eJBgbn5@MYgL25z);`Oc5e=zwzl5LRq}DX-I8NHl=MK< z90d27r>I7ic@AqZutD(~?kQwkr(Kh^EpTgDMy)Cg$-0@&ZySv~32Pps49|TD%a;oE zO1ERzzT;eL4t2Mx=BFFb-&Ptoq${4NtOP%0fwI3=}lwI!L z7o|Yi464sCU|tC8MSr}4h~e)=7kX(XIh$$19#7hyrgQW)TDKLeuh%cR zY9hTJ49gtiwtE_-v2gQNhIWnTmUXu9uBe*1{^+-_6`hGbY%VB8hu*rklah?Tl5Ykz zk2r40F0eme7=0Y8U(^8N%Q9FKy;maev~t+JqSC!h;k#H>7fYM|^tbP(rM7;28vcd@ zc*b~=E8^?wzOGH-cwHZ4PX(kB_^|PEb8qbpJ@D|@-K>Y#v6bl;)@-CH>W#p$R|@onmQ-wOlftEk)Uz2hxPJ;~ zyyy-UBL=MyQgA67o{O1%UEK~usG5UI=tI%5-2sMTOSc8%j4p7WxeuHZ$HRf(GaF^r zbEoJp++7wF;OPxfy~~-?=P`Ov){ux?5M&bwYMxxXq)P&=Ign!v$@)IaLIrLXvkm=G z6-hO>#AF)2{{r*7pMt9RyF&>2T{gdd&B=~LfyTdB-PsljV-@Vif3k~gk8X^b<{+kA zwnA6xl5q)%POz1Y%OEfDjb2bAQ0nbgbfs-)MeRVvU|n`2diP#!x352u)lgA@!o;6f5C4@i-I zq=vRZ#-RFQklhdb{O;*NJ$D_95_>?Xq0t&ey|7~)=TC!&t9n!)fD!4(qSg`)wnVTA z3(nsHb(j2CkKKW!PVjYA+wNg?lbpoP{u6M*x&@}vDnjYW69xv>!d)7c{0BIJW#`-) zaJekEA+*~+R1VbA)okt zy?##wa-HuY;0;ovbL|w;=LOsw-PKoYBi!#an#l|TZ&592J|WnC*1%ePXl+hjRYlIp zHXN9>yrp>-z~94ePf*!=l>?4mm>@HL3(+ zCw7ca$lzyin5r5e+~>aDs4w`MteT^zJbUoLgA(VpW&8tlGTM{SUjSoS8Y(Z*h;Zs} z2)v-Fk?)}c>?z?--Jj{otbSVmaW}vg#Lynk+W-CJONmkOVN#GItCYK(w3r7wOYFzg zSqDtM#c-iVqML1Zd7kuL`Ii<%yypCBWK1O`Ij0Mhropb}!`iNX*|rJzZBK!S)8n6lz%)$n1q|>T;2WwRw*FOxpfd`vMz}5Y zXM#Y?2Z0=A25{w_Da~Pr!`IhUb?l-rR&Yd`9vQ=@+(nneT>D1zU{T+uGG-`raQd;v zMx-kNcAddQv+tz8)N$cM(rC$ra+pfYrl!y` z2!zg2dG7rPyV&T$xS=8D1O_^!QaOC*sgJZvvQEKRHq;|Xdoff;!&B4Zg`4J)ri%6v z?R+VEoi9mV8ufhLT{)>tiv>Q@!IqT$NLd)Y6y+lFJJU@G`6AlRW?9Kce8-?uzx2__ z7MsS0HbR-W=7I{;wfAx$x>o!1tyJ=B?Ei4CsQGjR__)qpa(9(?mA>HdvE(1jWvE6gbdjjWW)+e zXr4QGS#0QKHb`|rWVNXcTsHZNnv~{a;IJL;O51fZuN?}W5<>Lu%4UxgKmNKAW{Xpq zhbJ+uP%Q{*mC8Sj)QpTu^sUVS*mgFPR=VW-a56c*SAW<85^AqksbkW3gghjy9_(&) z2x`3?+W0KWBbf0Z`@-iF5vGQFD9aaa1x=U9Ca1eg;jm_ZM=8QP9DyK&1-8LH^;~`z z+1`^(MD>)7Sns8n8T8Fdq zo|70&k>BBK?S#i19c6ZVf9;9p;+`K63faq>6;|hEQ2Ztc&Lhpil+PK|Y)Q+6QBJ#T zq~EL5sytRJUd*fb2E5k)G^ePuS+Qx=+@P^j* zLPUYWP39gYqLnbQ!3-eRirc`IoVwnms)kC}`IE=M~S; zc~%qAUqJEbs1}WpFzEoyZ1*8MTVHh`vWJEGl||9x`?Gv#yfbnBwWd=ylL1c!*3lv= z3W=UO&ot+RwO?oXb@<)+ahXYt3jD|^){1;~C9r&BLE3doUUfdGK8uXvP55Wl-QCFz z(S0XP*w>CW^V-n@-DHU;gt|-&0Uy+%cTaj~d%dpVtqtas= znqyDrV7jf(MvwZ`<^T2{;!Lq-#1#v-1*Dta@UmDwC~KkP`t)g-OcC$qzH{#>IAzU? zEj~%s=qk!{l>l-t?_Ol~yJ?Mue%;8J!q>O2bGS+ZC;65`hKOTMY_LM4w(={1!Dc7# zEOw@%?)4q)d}QoOZ#Qk5@d>h=Ek4hCm7~Jy9-`s~3``eu(W2^_Q39r=aE)Owz_6lT0S5uD4Ri@@W?}^(kG{(Dra%Ux2WEpZG_O2M8tQL z9?{O|(R$C{M1aJ3bcT_S9@N)9vS8k!Ul@nGgEXk!BGfOdp7|>7 zw6_k(~4m*Gxi?1pPRsIO^kF87pe?vspTS*1*6xyGQWpKppRR z|JJLUh#$$$$i?3Q@Wx4$QLFoE1A^qPo(lg6BYbAeS-$i?cnLM$)PTmOTy4cHA@tbJP>Y`>j`#5oQ}G<}lraeQQ5=2AY!(%<(v>&Q_|k~)w~C;V z@v~6>ZUM)y|9lpqAjzr_Rm;_A_(LyUkKH@FKWm0ptkV_>w(4{ZHn0nu49%-t_Ly;! zx>{m*V~Vf4?#Rd3@mv?SYta5L7iJ%AudXx7Im%D44N5uV`?5=$>)5oGwsY2-V^HWU z8HdC_v1)2u)%r7H4$)~cImy|RgT_S$Y+f3%2iVSb{FttKkMZX~$gqQ0=k_jd{a&wZ zRIOdk;2jk!<>ex#h6|CA(VvFfaL&552Klz?gTrvY!Y<22qBY#E!qWD4#$aB3if=@A zCOwQ;k3%#l2t6MhSWB_}{)ySsNvI{a>jwfo+-iW}mU<$o*T$AsfFL+bPByn56sU~6 zQjTxXn@OBZ;8S)TfH5KRBGAp4$umYi`t`56fXA6!lQ1T;5~BTd_MOzqa8FIPPeJSG zm5P&?6x=ZWZuU6G*j~zr_hA9VmhB$_!!aoDSf&pk?5@TdBV}dxtMper2TEqijIXL??RwQNf~dy$@T*;y~cUC75wjgs{j_uGL&jj7NjOoQ0v? zGru3VX_SahA4jmoA@rUoWzsD{KmS!?+8fM zAa*xZSF4V6fx<=r=)omS&lTH*`1KcS$!k#KdY*W!IJYpSYOI2n4|+7O>uQvZGfsoN z4ubw2pXvW9-P~-HAr(2&37p`WypsGteW=iGT3QPeDX<%9w>~JB7fO}y_k}boMcYu zAu5E|VokC61m1H`PUbi2A%@Xv$_XBuwa|C+R3Ds;d1RryGY*Mj)=xfIZL=g{9){5$ zkVi3!It@Qmw|Ee~6t_^0v)#ZLO8&B)6#k;jzWLs`e#t9|FnXV1XJ7QWdJuJTAGXMb z*H4z)Kj9x$8L~ZTTZYd+u>{9(bbb+0NBHS$O}g+UNgH^%*$!GOM560CqiG+O1cS3zX8F9>F?d8;s=TWp%yy zjjF!->_zk5TI$Wn5vVcC{8hhw;U;?R_T^7Mk=E;IpLFxEseOdzzt%9tW*%?ZR%`>MXW!ynml<^Pm2-Z9lok`NFV5M%ajRhs z-d3SfF9deYezcOe$iv50)Z`tca8COk8My!mwD^ zCJWuUU|FLa+N4^okct-cuoSqem3 zr-lc%_s6)@MxF)!nIA+;t{GI_-cMK%S&Z=0xKAF~KK1QBymll$lJm#>%iJ#RoazVK zv8axixk9Uy-r%r&9o?I{=gH7acUrpkQ;CqoQhD z8N=l-?t>zmqF!6}KD+ZdH2|&~HXCo1@9Wcb2KD;7!sg+^QP0PQde^pzdkJEu-eHIK zaxddAvNKI*-S5r&JatWwA#GejOY0e4bTK5DpewHD!C59BBiAl<(iElRVxX6!^duM* zK@8ebt}>~tuOF~mo!9VwS(98df3vV4-a(U03vwL#45lh~v%I5S2P9jG900Im*Ixx^ zpl$=dKVVR>kY6kws9$w+W>@k+(MXB&^!NFNqDHqPmm=eOG{DirhLeh@9^~-e za6>gGi902ad*E1!?t|m0jrtN^F-XB$k{RmU!2x-e7uA!1RWtR#M}!vxQo|9o*t7#_ zIK@R@Db{LCNlv%$qOe|ns^T<0!MfT-7n}E!yG=>xN%f5HP~7(e*jjP25^~igJ_?hA z!WRD(BYlrJx*sDJwHxx76|;3+lh?qG=0aFW@}RFPh}Z$Vtbjb9fTt;&b8 zH*C1UxAl?{wi{i3hh^{1UYs=7sMjkCb?w$cEWFbgcqN6Td zgv;JFBG%n&!tGi9dg8phkF3+%ibeigy3mEN2emSd3YGO`#ue*rIcEFX3c9;*))D!NQzccojVL&-yWhOQV zD_9es-OW$Kh9wr3gf zH#Vp>2q`EW-hjfV!n zq~?gsBCoV~){RM{ye6@**6A|si4}^HXLYAVXlpyGzFqYHH-SS=)cI{P2scoU9p7YX z;o>CUmoTu&V?5dp)adQ2XA|V-?m-L608P_ZkK#eOZ4ZOD3=Dg#{&0%Abq?Uu<-TKz9_N{@dG z+;XCJps)$DVYvNuL9Kk7tYSkwg6W&8Yd1=4*890w2r#QJ^V#sDChl@w($qfQxJJN=ZO6N zfdK~;Oxr-0Rl7FGt83i56-11biE1`Ecp6Q%c@uU_Ne;0-896cndwqd7(SSpUG#%kSP{e1i|1**BQMV0P&KJ}oWvN#p-L_UKhG9n`- z{1G-NxoO?u=<19mqfk-n^p7HT^Y8w?aT_idUNH1l2A{t})a1kK+=(uzpSojq#}W=N zTs_dfxwh?Q<`?R{Ww0pWLUnm~xaxc@J1=9zw>PT4?&~ktZfqO7PrN06pZk1IYZ4P7 zXgWW@!a$RESA6scQ~9i0{#5b;N8JYDuIokZ&@J7V@1`?-D^m||ZmA{*Q5gQbK~?4A zc)ekWIVAL_T~#rhzTuhQmFPq@s@JzEF3VEA=Aiud&$rW6p6<`_=~g{1t8|D8ga(iE z3!Iz%;j*1WXZP+qQE%U>O>KL_lF?Pe5Jvv;cd7$()`Ak!(&jC}4BMcV5=~e1{KzoVz4&p+&(lsxw}5!?8F8EL7tZ+jWZW*h+EsLv&hh$zU_BHf?wCJtTk$T1sJ zT0P&rq3umvyInQd^45SVS>lACj}%kWRPexqM{e{K4Sr-1n=5Z(IuouIk5Jw%TR&CG z>+K<5U2`X@?x4^fNK(OZSD?1&}-Yd|4g$pLZ`5t z01XTbTv$rr2~>Wvzq?Rm_y2MARZ($m!M1_m!QBb&?$AJRf(CbYcMBHW-QC?Cf?MMj z2=4AKjlVwUjC5sc%Cp;_;P#N z)p=(0N$(Jw*n1$SzoKVT)Nj1eWfe&e#W#%Pxes+PC0rec5k$#;#OiOaKoUx&9lUOx8x@ zCzT#)it3**_LtLQLwO34cV6%Ool6}%0H!;V$XLP50PyXLIIADDOvZCNi*?+K^8uq6 zAw~=Rq1(!nDAd!Fy|&+j<8%YQR{V;}{oj}O&x0ato$I$;?+bAcj~9)u^Rp;z&~c_I zPq#aF(%A3OSQ=U;U_$93UW|{ocT>nTG7;bW=;2~Ys@_lde-OtuXyV!!)l{Hqb<#@jyPl%3z_z>M_z1x^|O>sE1(!~0&W zhp7&a_r&}LM}Oc_BL=X$32k`#!++Tj%NlJQL*3wd71m)<_P6%tjQQ1a=I1S&7F$6r z`Da{`XnR}WQGvvJvz*5B81fpcrTVW2=Y_4#ph(Ag5*j-TCZ1=riZ6s>DS+JRiv zw^{rK6XTT}v9*q;{iJ6?zQ~TFi}9|laK%w@H5-gGOcaoBB;L599nih`&s3N2-MbpE zNyWVioPx?>7neEyuj^jVDxe2%bbT8?^vm^#{`k+s4opmV+-x^LD2%_lT?g4m#=u>& zqoN3SldQC>5@S$Z+yG+MeBSk#AOXJg6R-40?A9(ZLc|`{u;}Kw0~ggDj(`I?wp$7V z!nG{|)G+z&F2|37ftf<+bSJn1s<^@b8`R)^Ax5-wb`nwkCAaTllZ%}4py2Q7^yFCo z^rlbr#v{s5FB&;1dU&N!c}NzI$ETi;x;_Vh?Fxr%7SHTSuCcWk85-E@Iw(iLON1%4 zu&D@224`xR+3P{OOM+f_9x29R*_z|Pf>;hMHAR5MEagCP6GurjOY5O;(3~^&xf?aW zf?|d!>;K8X0bfsW^QD3u6(+RnalmH8CtWI9dVd|%jQ>WYpd!?4f8*M?CyAO*rD^e($rOr zKl$IEdn#gS4`0B?@nyXL9ZSV(oivvDS7hZCaZsp#krYI5H_?@cgA4XRJ&L?->bQ)!U-5~h1-1^QUUrhzYP-X#;MqUq5>dS)@#NKx;r9_g8cFo(ji7%%UQ`QA zbtcDVazWZHqo2A0CX4x;fx^e;OyZx#FB{2ttYKS~&?kz}`E*edYHe z);$#4De3Of667PK&2}ji#KP2tvLL%Ky>guFc zHbyDdE42GfG+>s09vL6 zhgUGA(7Z)IP1fuBnQy<@&Exe@^#D3-t{eq@|0fKPP{BJyjPq)3aBHOlHysk4OSXne zg4dHNrM5jtHsm%-E8Hmj_a9|C>%$i$^*HMv2jQ$PZrq4=P%ykFhtI$ICW8R-e%G_S z^Rbu(S}Htu*IZFA?2@;+$eXMv+s_SK8F(S-N;aCmkrd9x*qg}j5c*S$Q4DS5fLzJ} zx%w*+rO11tkIvVq96p##ofvSb89K2NZ~J+Sz5)xoc&m!`?+JmCQS`wsJP+lciE9Ta z43L_nQPfewFwVelbsI8}YalE!XQiQ2`&GWj;Cya!5j_+l19Tg-4XnRYtj&4`gA zgw*6aK+^kiSf{!YYQ5X5Kjmcyu5Jo@X?oR5@Byjn+ANQD6tIG_8_r{LG^yo7)E zdP5~`{UC>rSS%@@Z@Z`(@@{plgiyq3B^=zSZy#!&R*$r)IU9mVox-UYc4_tjmD;e$ zu*2PnXPW&S=7vJv_t@yi;q6{4sjzD#cj(k_6-GqJ@(_-P%jX900IW`~4h2JltlzZG z-d)+Hi_jyd+I{GWURv$h2^&L1x}&X<7jVG7*#Wh+wc8%Izd7$cIRDL2YhR+RT}4p2 zeyJX{J5vU$4t}?;gJ&28HZ-fpnI9zW7~wJ4g{vOC8B|OVaPbp<&c+XgjC^hu@i~C==L0btrgDxRA`UlqrmvdFo~I4y3_~X(vizaTtJM~I z;OKx&U0r=5gLB+$(e?gB^=zg2i_pg_yYI)FJ0Xw5Cnd|tHL?q6NlD3xZ2m=u&ilp5 zALUjjT$2BUznG7RwthevOt&>}Az@OShE0;OgX^jItB0K70*H#1sdldt5o|N=6LI~9 z?4Mn?hc+!iJ~%(^ijtTc8hH$J&OdnWgSIV;fJ_AN_#G*SNO__J9q~7Xe!58U8gynM zEMDBD<=>A_Bj}1|1ayP4t8PLwn!;{1$c-Bi)h!Uw@n(uZ8Wst1yS6lIy-bAWBBkcb~ixV;A5h~M#$d8RGvw-F@pO}7e_$s$=Nm*Xq_pJI4WgVfZHK(S0rIKM7~v!;fo*6kfj3r6 zMqiNZ;*T&-7A=s@k)pYX0$EP?i&uW;wTNly1o?5j{W=%24FZ>8|2z)qv>AZ>?v7@! zuCD4%T)~pJ&Mh_dF`WW*!Yok|_LP5W7f41Ae-a<~jjK3a*f|^Y+m}{6T zO5@ooDvQj!1GdXFLUNUywkmf0tijRGI=(eaETN!{O{8g8dosmb{0pjs9qHw_@XM$x z)I}-+PW#xp_}s(;foi!x>r>1|T2`F;?c3OROsw+dRQ063Hk!igMul9#g}1XL%qH7a z>_ln>AXpg7Q=#L0c`_OZjDBXIrR@W|r=ntGhrnY{S;X23J2@Ao(TU1 zz&4_Zf1y!>hUy|vY8G2p{;1d?qWeYm)rO4l5w8S+dWY-s)eAL@^k&T?@Y7#*>ijDw ztT*v$V{R>UAZ6clhFRK@;)cT;(DIydgyN**d1}z!N2c>z@cXBkE2F9SWe*>Rip=2oWsZq1ekoNX2_Hz!(RU7mab6num zA_z_`M3AfiIWnQ-x;jGQ3*y+}MMCln2#IjA$b&C1<=S$Ef}+%t23Czg+X(bFzTRm1 zhT;s*m4b4yn6A?uhyIC7Ri$=Q*L2n3B@6WX<6z#~z}W&vJE(~~5f>fev5L%_p^PW8 zpo1@7qI9$pX3uh>W18AZbje1C%tD5zz?qv2>e<3tS<|{g*ffom;TUcm}kY zkCk>d{Ky~PTOXv(v@fW_ht}VVOjp+G4Q|Y5rcF_=ok=`28VXU_!%gx;#^vND^dZ7e zXN!Gqk5T+e2e$4ZVs;P}!;u`26HZ9+kG7uP8fry0?0YG_+GZ{fo2dEzw>Si4bAA3t zf5}Lb)M5G9@QEsTI-dr&4%+PKsK zX*O zp7%Z4*UM1e!>k%FD90h@1DQV(EL2$w622h$(Ab>@Uf6NyFMY8J=^OfxH(DAZ+EgmimC3FBvc4m559gtF@&UW9X>ZGNPq96T$&{s$Hd8Opf-i(Kv_%w=7yR5H zFKx!ZxwUs1e!NT|k(;6P-V70;(%8L@p>}5m)?8o~o>Erl7iq1h7C0&NA3w=y%5!G$8MASMb|IYj=P9e#Nl{a(qsuTS!B!c_oU}=T*$r z1qW4vAGt$P8L~g_#Z*SlEY7pacv6`gogtBo+7P)?i5I#4StRS{hUVi z>WYLQ@Ytq0AnyGrj^}PUw6Mj71vjKw+yUuH1z3|7Sifq|yJZ3JN$t7nE;z%`XmppIhXQ2&xT(4^i(_={P!9Hm|pEiYb; z+T*c+h;G(dJS9*evl6yOjJe}~Lko~A=6!2yvyYKZa=z(w8Usj1<*Z_L;TLX)Kex*( zn(mWQt(M7Sx890-81m`;d_e7vP3_OJQedR--}noAHPeiK24X`bjc)VP@Tl28kx!;0 zt(N~>izl-Q<^-#zL?al+OY>83T~3+o&+}kBZ1KEQ?le@&CBlGqods84H;R__C+*LA z{D3G?zKE!Sy0GNQAB96)~vprT6EO(Qnu(S?RSzD6y#y`%R6A&LNqlV*Ju+G zsb`C*)I+s@XvY%GsaBycC-sQ)_4>;A$bvgV=E~0v<8IKwmFs{u#Sq&$U*(@`O~I47 z4o1D4+0JW8A1lK{bg(ywEqxSpd~O4X!rSfZW}VwTaZ$SDO0iXRF5ePgmcZKDqhmlZ^{ac5Od2%XF|NOx;g&$L`N;e3J_KuNxiU%sUzv`9&L z%`3Gh76@ulG5WjnSwk;;dk!wp`bA-TbpJS|IMSvUZf%gtwRE12GD4twbJV#@i1gV!I?cTyLD9P(Jd}Mq#e%kqtH1;s z@8*jLQdROy9mC$c8r+?U&_;|_*uNQa&RCX&_h?3rrV)T>l^})lm~h`{x$Ey>q#|O; zRKP@VN&?@htN1z&A-n1F<>~LyACuOa?V;4EZJ{rJQn}#%lOxuJ8|W&lxaGYLd6modo1?I>kA94% z3f->U^5|&!!g)P#9fMk4V`yX?|A%_Dmg=cn8xK#~?~3}_|Kwo~M4EF(VU1s*9U~N7 z*-b@k#leuUi@{ zqD1vSuZ|pyvN3MulKvF4VR?|@AnLQ=(jT;ner=V{(201XM=?IgAQ+kb_!`B5(PJ~+ zS74sWy+IKEt*DY;Rf7wmvchn9>trEv$zzBoMXWlY&Lkmr!Qt$Lf)0n0s&>AvHX3zz z0onvBSAk1nsC0Ha--cnMa^SNlGDd|OM?8?pF5iP z`|Yk{%tKTOU-#FO^W0ww(o~~DSjw~kr*A^~ytW_CS2J8y9IICi4RI%RvNEiaTfpv% zPpFYYapSJ;ka*NL|B06`Aq%BYii|d6^m7(47u%u5f8V$Kw(+5jq33Pb(Yn z-Nak3hk&OnAoE67h(otw7M~b7clG>mLwzNkaK&G=eVeCpuwGY5vw;Aw6=a;_&P2oFPFevby&sSGZjKqV$ci)hKI z{na>=?NgH4!XJJ#H`cL~3LKn)=qPs27OM@8G}T2@R`20F-UH!FcV|Q~l%iR#wrvqS z2TE8G5tHWhvl2czj9j=?pF<=K6icZzE?cA;x!Vjm+E{~!+VY=HH}VBGG*(c)Tt5Dp z9!IO=!8$PTlkNLeHAY^2|CGcX(W4y>7wY$kHH-r(eDrtKV>6(d1^}*9?yKgRp~}H zzD@9zV`e%lDQ*mnC67uie&7P~Va*sW0>1j>B5*o4H6Cm>C`U%Rl#j~&1S=FIizQoH zn)9V;(a$z0m%whY_QLRlykk=GcDC4o(^7L5_t1W5s z`Qo*Ug}c&ty}oYqJzOQAu*2=^#aa5#4j5`2oHnmx#7sLqy{oG~cs%2X*;7n4Ti0^I zM!PGVAs;f;agYn*&PdY5_haRC=b9K?JBgVIi+!{85$+gb0(o@eijK4@`*x{-czS@2 z)VTtx*j$L2a6lP$HZ0rerh17OTPY}xnsPf)z!S!lSo_d?wm;^Idzl_?8yL=KILCs8 zX{lueT#gv$%zU~hG$r1|!#D`$f~fU6Is9F~LW+}`3{0*s6Gs))n}@mhn?-H0LHOv7 zxvSABzg|n1L?&t_LAtK76~29JWJMD%HCYC@+!!<$S`Q*E#Gi)W%|VtVk?(=iaj_&E zS3;Kht$z|>vlW%fIY&tFsqAyd7>G8H66L^o8r|FI{fD%R z`7vDCM5`Y*vmtBdz}cOpbyt$ip^Fb$n0?3YULFj8zO#>|oO{jKGRuZ_ztAb*QomIu z|M&nJm{zeyhHt*1c@($Ke(jqh5E{4QlA&lo=pi7ue`2IQY1|)yW3Y)(%*{yO`Kd$P zz=ILOlSkhDQK8N|P>R-VPteIujq3Mt*}$}-sT#CYq{JdH!~v`Q$y!P#3=m7s|1KO} z)Q~mNEQ!;6T+VLy)3a|<*?w)FfNR+}zU=_Uy5_pJuC6Y^T}uKC#uf}Lqvu-zliusK z`aN2$1I1+{98cYaSSMNNL7ef#9`K~bYTIhO3KMFD+*=1Vy!XzEU=;2qGPkOLHYo7b z0n1uh@B3YcS+Q(6=M3H-RaT|fZaN577-(t~|J|P|vYCT8ebLHyp{hq%SkA3GRcy=) zV(EwY*b(X^O*M}NT_SHfIAy2=xz;~s>c>F7bL3YJlw(L3K{Xb;!y8;Tq zS4y!v9{2=f+C0)jq?f&rHU}nHfs?dTqIa(HXE>W!b9%?&FY6UgQ;;}-nPHs%M$6wB zQC4_%=GxQbJsV&DQ$C%=oRA5*9+3&jxkl3IfM{Vp)@TXNypVse;W~5+3uBoPpt&c%;i3r>qAkPwqCSIZBi}l9}4PVk>Z<1E6hC&g@0G& z6}Xyla*zp%RC1K=U{)q)ZQ!T;lt37y{%)TaSu%!8XliO|z*X<(=58vc{T}1-1>33> z!GBYKOQGY5K3xCU)w*l*&oP&Lt8_E+nq}eCV+!d)jO!<~!T{y16-Z_#3vJef80L@; zcJ31~e-U_d|7p5gt~9z^DkeB_3k<~rMWICqFbzsXK#Jh^*QTHNIrt?7=#pk9<%!B+ z)kTPMabYCCP76axSwg2k^};9kbf3~kI6;?IDu@wM=VTmStJ?3Vl`x_>GT8%^2&?9d zMm^>2;s^fZJVB-kg(V=DX%Ezh`LopQMWaWol0TM(2eO#!UmjdiC##nyDtQhzSxEuo zHWYAn7bSQa?I#?_`+6BMF-+NcT3 zkbSZ$#(e@->YbG>D#4c_={~sKbp}^3+gXjARZsu~R#r|JZDG95O*KsHiy&IwT(G>j zY~=!l4aGTBreN_Xj-yl*;>c)+6QvGpQzz)7y>b-(!bKk7E1#;ShLSo{@MFaBc?%+o z-y0RtxSNa%M=;l(!{!7jgZO#A$uvIm5xvG%DaB}j;mPb;$_rFvPDK+o^Zl~B-I zgME0c!p|A2t)s*EY^lE4st|BEoy+~Y$wUKZM@+0{oBMCod3BcKQ3Xm-v`KGMhq6>B zT&WsO>XuMBibS1yC!tR_C3Y&&%gD`|eP;-#Z+)2~BY(soNtyid2jK!WezK<>nxThh z8Rb|75aQmM=to9qnTjz-m}IUS?zwUPu`=Zlk$f4Xg7X(gSIY?)V`6}=c*t*MhGI5d zibQ$RqQT>6)}?IoGmJ~$^*R@WAr+~!B`#V{8r5H!-@>C&wcUOZkS;*Tkl4Teo0};S z?I`z13#)EDi~t}F7Cr=q*QtGuG;f*dM(h9d_pWaZ_Ns&&*3x!JTJ6%Og!$~v^bSU% z3=fB?t{JGG%^rJ~Zd~~|d;B|Ocy~(;GYlPUwHbW7^EsMkA4lP$?kqZE(En~9Q9){x zsj3GkA*Dy{7LiT%tDn{uRJjOjw&Ue!&(w%y%iHczAM#@CmbNUIH{`c4ZqAZK9>Da^ zap@0V7~b5X`iyJTwj6?{j$Bci6QR9{Ge9_UW5z)|PU6tmR|tP%K$_ns1vRI>Q{r8~P|MP6QGWFol(7N+oX<;GxhVRR{ z7J4jl1+T>l)eNM-ZcFIjZT)fHFj}q>v&f^x zhJb$X6wWX4NoE{bHv-wSYxS&;+U>uU@lA?>VJK9)2!ikQ7^bYO;8M^503*Q742Zrd z4y8WDYE8om#a7RGwLtAykna*Pttj{HA8ysA&xdNf(0uauwaFtfQX_lkEAuZlEit^Xics9jOE?HIL=}owhFZiMwwWRmUYG} z;s#-S>h#GpMmTL%!L<|wn{VFhTL4mo8F3%3b-Kz7rp1Xln~(#x%!Y}rqW%)tm_CI? z%#g6j7>u7rzM&DuNta|W+~bW(bc<&QF7Zcy$|x9wjH8}y*h@N=xiS!LK!g-0m+Id6 z%s|B3CW}|&hIR1Rxc}w?utFENk#kGjbo^HAn!c%%04!Xk`@Z2n3-C-7EtD+v&2Gf=G{R0di?JJRM7hC%YqJa;s~J3V zOyXQ*ATTs@Y5s?ilzZu5x!g66ip5$Qw^ts&-kDxFnJ7g7!SIiX5zIIm*Tae$y?*YG z4Ni$LXqVmussd0`_dp=AlgG@RDFhRR4C31%<_fwffRRWQF+n-{xPJLrf091io&f#7 z3b6dwgF(+~rPuEVH}c&tmVw8PgTlMAxuex#gi z4^#%X_YIy>VJ~K4TiYjAja*J1HON#UGF&&xt3s5^poig8ni(PHD~o9LgO-rxphXeV zwJe?_3MxK+#9XO@ zwesSPHR}Bsz91|LanyQ;yQs~+O7HUWvXl(iR?U6i+y38T!Wjv;8zhJ_EZE`DE^nW1 z1aHy|z=gM&!>~ug!@o00{Z_dKYH!bw$WF52+C{Wpd*Q|6MuPCHNn;a&>XVZLb731} zm9Ur|>oS?4UEcimp5j&rn0m=Sj+13*;*~#ynylu1h8MEgh$In$Yd$aG>+9Q$2atYG zTSEDQ1DmgDx=xGQHyLgmW3Ccs!T5qe_(}_pgP3zGf|!QpzkLzit{)vY5O{8YaO1$* zWfNqz$2r(~bFE4Iq?;ARiC^IX$qm(Nk4Pu?AJHWN6J0zA>({*~)h@-{b{{N#yJ@Zo zJo!FS593Zr%1mqGwRWJwq$Z_}y!yUw)vEU->NbtlGFq)X7Y6UjAS!Ob2pA>Zfh9}4 z&`Iv7W6civbN^#Tx?@JY_LV+1xm@daI%eJe2xC*@tk7Oow6xWt;Wo%wcz2}TCDNHM zx(w2ul_K-$vL*z#Y2+Mbh6HzE8E6}GY45Hd?{7cKRa84yoqoF<7jXW1et8)fEjL<* zU?Pi`%G`0=8;M_PcP{;ll*{1tc)|HPjc+2_-=X=&{%xw!KuM>O_5IN) zQNwYC$qBlRW^NRwC;~Sc%=EE8nrcZi{ozx!Fq67Sjsp_C0v2A9XHHkg4i-Bn5MN+^ zxI^wBsk=w`BOG#5Z+*+3 zUG17&BGy=IuSl{KX>*+8X^5CsYF6|7?X3_)Iu@ep&15MZG0heVE6>PTJs=9;1c#UP*Yh>`Srrr~N z1)4g;fLRrGNTE5F1UZg6sktnBoaI4e0LFI^X*ol1BV3@Fgh3j8w0TYku3eU?U`L4g z9B1d%K(opJbzibu#3Oue`90W`ug`CjftI^ml|?s!#w*Jgr11 zy19EO-E)$c9#ad^C@Zd9aLzlf#=bzJg$*K+ASAuehsw)Gv-M(~`80795&r_6ZD>%? zR{;T{4!86E!(6`@=ff$>LjGlyHk*0c7xi)#BVZJs$96DI6O6KUukX~&{y5U`8_XsO zwYgIp89q6i2{5~VRv9PGWuJ=e7J=0C)b(4+FWfXwxvdb+}H>f_78jXq7g(=hc8J{b(3(Di$h0uC*xi#`gtroCj z?`>a+H*D5v)lf83kY!2Dd)L}yO#KK>AsfaTadMD@%vF&rfh`2?HkEkQvy@I==*Y>% z6UJD%>=|i0iC|F!DsUbI*mD@83>Wj(;A%+X>AJ-){qVF{XvO-ei3xA?5%+KXfd7}t z=81*Ly0U$nNk_6`+1K%|7<*pl5HB%YJ-?;qh$QKfQ>A9DISETNu8*V$#5YLwH99yM z>Ys^!5UUt9q1+YI$%FBopaZLXu9sZI?W9oF+|5v;9%~9(p+wr8$%K|StM}CCQZC2; z@|RxC`079%G}*44psJcN88t+sdC|$~v#WOYL9t$Y&(dqWa1J{5?#>eL*+<$s`?RLLh%#{o`Q<_g@ z37eP{ZF?NdMcO=jLMc9Cg6&Lmch(gajqOE{F;!Dm_Jz0B5CTiP0vIIUL{}t19I9hB?u$0Zi45I+vGy}C8fAU8 zKSA{VxmWVt&*ypy{VwYn+INKmhg8nX5=@a{!zsWUN}&<{kdF6Bns6h@Gyx4V9=MXand2LKJxpmFS-}5H2 zm5Nz$0i1^sU;+Gb`a{@d80k=Tm}Mb!EwPYOZx< zn&hxoa`@p$@aNiF?WJ_(I4ePMz(cD8)!mIeopXUC_pd(JUo60LM&U!>mt*fkMKT zKjP8E0t2o7!4PnSTce}#dElZ%H0%vh2uCWD?iJ9&JrYX#j4Y^dJFIW=E!9z^phNi< z>LRWCE7W;L#XqShgk?l(WPmYIH3M?^U8+}H6N_HllhpU;BhP}qI&Oh2)Q0W#P7^Tq zCMEcgDuh5%ca(m#w^f@B(N!5*&$iAa271g;E&gzVsGY9pQnuGEu(bPXb@t>LGtk3V_>8N=ZuFD{hFJDc%8 ztX2JHVo`R%~X z!DOfD3y#g{_mZT;7i_jzpx!PV&f}EBfHHLFxW^I_)(D&7*iRM<>1;>^F{L$?(UURA zexY)}wsf96ZS2p_8%e|N@9^W%J9CZ&r_PXDKgsPxp_-kwdn3&9;48}u|Ct%=w5~c7 zV%tU3!LIGcTaQb?>#H{YA5|;3SIDdRLA9&KFWeYd1v}9Z#@%r!-3h{uui~=$J5ig0 zh>}5>mYZX2f3Ekvz)fJR@|fXfijP}6f@w;@rCDg4PP~=Y;5x3bU$>5qn3nh2ZxU$RK&abFNUFX{3tl=a@;P#<{0%hbZ;22+76sT7E$MyPqf@*TkoxR_H4nY zc#%V#lQJBn3>RhMSb|oxJxwgWGCn8G z*kiQb7;YnL%d&56EHJZiq^|VG{yzElkBHuCO1-qXikt$$zinREYztX*Gg8DT5I+3I zYPA(gRI8|yIaGYKn-tX~`R+bx2V?J%gBTU(oTj&B_Q@W;HYW_%p)w#N@cDLk> z%ZQk>{`|9>DQ*DhAw5hoP}ViwD)~V0c^*&|LoYVj6M(O&sBb*m4@U^{;nULe_^d_~ zV|*`dT3qfQTwsUGRr5UG4JAA;fYgUCg6igrNuXYbIv}kTKZac)oFGM z8iX9jq`^|$nTYUXy?Nolbj(RCO4&JZ<%D7G45c~^580TGNK@&&wQb_+|6>mN>|u5z z;2p&nhqEQpAa+>{6diWVhvUPHU57?wy5tXkVWKeJ6SbY8o`FWbQPTO|7OXqW=Fk}Q zqJ1^%d-ts>T}`fnRp3urB(A^<2a^=fag+33n{&sfqxJQb%^5Bp$5VNT;3u{LnF2GS ztAoT8iQb#76S8@xhh}N2X2K`az%W(sscxL1QbJg+>|uV%$b4*%t$klz*76X>d7+2% zt2lQyyjq_`#P9x-^CpBDnhlAQ!4OuFb5ow+o7dI=tDP#n=@AvURMi( zsN!8l)&ovba7Xa(G&~;wHK2iou#1QxUDCtBne(yZ8tu-)9WYzbJ^vMP>YXUs{bOQw zjejt$sp`wY{9N+4_|OrV=P)gQ`j9)c?fK)5k;sVtvf&06XDv7hNsnI1yur!6)unDu zct0R!9}mG7G*)BO4U%uoshMnZhf@Q;Yf~+ef|bfK8_lPI`J$n{humxY;5#RhvPv5< ze%|%hq<~9v2LEm_k&AM=p_rIDRZC+j;{46w6a-x5hyEIyDuwqKa z7(&?&NbJ|EwnZE}y_mVu7JMuRYfl3r7tBgwXk#t`L1#Cq zMeUc58F#pla@gMy?cQHuHda#=Ss@dt#l{8Mulgeuw)$B7%GiwS4nvu*?=NxUrx{@? z)WGB-6XbG9<1MrzvaCj*_e14@3`NhdkhOw5T?4M4m~@l^E|R6Bb7#ZA6B1=Y12ZBI zANLQa#;EOvF5|HiHfT3k@3CxRTw%Dir^Ff2Ng~L%`)Ii#zf1-Hr_il~seX;`EKt&+ zjQLEQs2B5q^w}((IvZ{s=AoCK@z&AgNp4aJBW{0hD|eG4R$6;2Uvo1D^yHUKuUVHO z8KRq+fJ(`_i$Clx(aQ1|F}+F-?lZ$fGn_fQz*XI#??#xQ-v-NYl-S~|Nunu{jo*t` z(3l+V#dGD67*3R9-}nGDXn2W%O19)iVlKCwtP$mQ2Rj9Vx-o5CB)?bX{84oAJNg?| zENuCWgtr*0c<6*JS5yJ)Ph7rjJpv)2Uj6!w<&)pX`|`;b9l1me*)I8-&cgOdg4Ovi zQ-G%AB`S}G#JaC&c9-!+4-9kBpI(y9PlX#c=V$PQ#-|azVf`4imeAg@%~cS94ceErTq!`H;|ZwbC%=!F&mbOM>N3j@!_w~;ERjpcKl;xY_+ z&wSl)N1xBH!S|n=kL`24F4})~H+U7+)%~#UWek)%ec92zT-e1z3vxBQK`|KLxCs%R z)S~u4_T_8CCzoT}3i?{`;ShCx{%b>2P_p5>K?(lQqH>>Ed|zBEvVpsx z@y!Om`Fmf^ow&wK$qsUOe9mCZTk8)&wCcd|uK>3C=usd2>ZtyT+Q&57B!n0ForKqF7_aEQ#@XFA=0qVpxpQ;F(T0nF2^iBBX#Aff&@tQQ^`^;gRWTII~0BC z(VgSUVqJ{pn(h&u#im1Hwg--MJ?>2mgM&+GMWB!_BR2()L*Qgi7r!^wKic@)DNZ`~ zi%uioxv#3g=7P{)z#X8;Huoo{cL?vL}{&W|8Plj+z99L!ymS-S<{etp4%4 zMggqR+1iI{9@gC?@BFtUWHNt$&`YCwvIyUnb;9SXf9bsaYanZ4X(uQv1f<^E+HNI@enr(9Kf?bF4Z!IqU6`u|%XWe+Ww1BYneqTx`)%V2;eK?cwc1e2h zIQ~-%zGub5=X#GzqNa)9{bPf9(>3HXK%aiAFf`z3%n<2 zi+B5MX}N5{eJFrfTXYxdJWYzb^}(6IE-Olc<>?+bu))kz3jY~scp^Gk=RR(m`1Y&w z4)NhaYPi#UMNQ)|DQhMC4e!Qj`UaK7g$>BX-Bt4E!*?J>%o18shB|lF!|N}gaC`0- z!84PtfAP!9cJuC2*6sWV-!*lMz90T{OY5E9M461-bc}7}UC;e9WJ!jC7_55etj*Tm1xrR-skYL$nIkM9EzmWg4RJKysd? zm=f&IXaprgED~tFD|0r|M_oqn1v9j4A;0b?~!}MfurvuJ5F*Sh_R>Ub?`i#>O zXWhzDjOA@{CMJ~6FK{>{QR!Uh?|vV@WD~ch(RD!PIBeLAOzP&!A#?oi;u5^Nn6a1P z{)xlM<8}FBuYJZ+m0Nk_-#Q$fuPrF?E1o`SG<4A+W^TP(~1KsO9e1D01 zaX(~8biGkhwX*BJbu^uZ5@Tn9n@!$kSkB3z6c4XvegYk&IAgVTXVLg~`4+mf+0vAB zq~^VzZ?joFe(8V4J_}i&mX&8>+E^&}sG4o|1j-8Mm z)_?iqaAAdZLHBe8e2D?#1|B=#}<{`z6WJMq2(&UOCffMXr$u zGw(DCwr+D0+F2-4bY8b4KqT?BGZ&uaO7k!|zJ9X?=_xLcEHq5G2VR~3+ycvy< zK9bcHYTS>T>ok2p&UZpbw+GzY)FnzFH6j zNwlb|cdK{1BBJ-Y`VxItiLzE(-ml!h=Y5|2!-tRAnKLtIu5-=InRB#*t-d_({)C8O zPU-lV!tqPVe_j$Xd=s6jT_F+$#hdo##61hv4Pj!I{r&Yr>8$fL8i)Hi z-*-QeFO|Kpwb1@-ZTW2PiMW@CRdiz%pnNsiy}g~1misE%TFiUH_W1003a0yJeUd#h zLwmb)pTfna`fzn11Zl>ZGkK|MZKv(;=kNF_N`AyY*;k?a_Vl(FA`Y);#1!jCIlT|YBY1{cBSN*X9Q?-Y<%2F38$JZ)kNJT3(}2(b_C5gJ6(*+ZSU3D&p!9w|8Rb? z4)w4HnPcK(7{PREMdN?w3Q8t_%vWE`QIcd2{&UOeStN6Eme(8jy|PxG*spBZm;>uOJ*LIaW}Hf=!_NicX!ChuU?>s zybba%i7{(?5z!M3{fcVqt*0zi2izNa#8G7A)!r>!}zuznZ9I*5Yc=A z@%NNm+ZvqURWcBB@2G>?XS&%r>C6n3jp!c4mOStwz=1W+85<{n|VnKbf_-otqr#7+N+oFKa##1eu$?sHZgDf9@4_^@ZRX-+y z2DnSExp7)L+g0A;!{cBJ5=LF9EYlP~`G0_rOb5Jdv)`nR2s~_tJmHSDk z7iL@RPdhqnptA^nF;=CtPdxf{Kib+Z42;Q{BtE||>&(pk)evHi@gw&czA9CWdYhFTQZ5g!JetGWTXG;hucWa~v9%z8e?Y=)8y)6uVf znyaKh_Jz9a6Y)H^>wO+CWLcch*xgg2QzBP}2tm)Tz@$GWhh$Ui*c{CUy;L>F!70tjm+16{p-N< zy=R*(@+agA8+U&`thZTVS^Hhg>voMNgyGMwZSxCjcfc=nx_RPdnvU~5lwq-&DBUBw z?e=D$yk<~VmWRe!MUdKkn%KRuqorn-PLXRiB2NNDf~{>GmJCJ>xBdEPyt8DJs`lje zjcIFl^|w>s9rdvfwk45z{*F*wy$xm9VP*Yiko2pt?;g2YjnR?c$FP&EC5?b;<4DST z&rN2G{Okw+^gNctzN8*Fp~1isnKJpc$AQOSLX5wLX$F@+(JmX(+6;)_YsC}E!0$vU zSWM#Hn=odNxe+qo{u7Msq4aXv(`67)*N&Asc2|u#A<7Oh5O>Pp8G-0@tp6I!3B)vk&oXLKPkcX!I0ABwq=NwK}4@PpRr?0b=J8GI%8mSYvfCq$n-s~aw$Qe!@w z@)kdt7g(vDE`6Kv{c`i#cT|vux+wRqWm)A@>HPWegK_z-3$*ZPm4=heTC6PNW?)u2 ze0WqdA~)pb@rOR16`KWiMfrAE4I_y?O88WNZRPVTfBn~nYM;9s2=7}Xm{IN5@M6t2 z3F&@cpWUd*nN`|WUG{j*I4UBLGbd91tslwA%0^Lns+imm{j90kx!(SE_VWJi8}YxH z*Y^yN86WXG*xZl$l4WP5v60W>G|jOq%h-QfMK5^;LpWY(yev2} zVNaH@y%y(97L_3x@um@QOBMf0x72tz%ilSgLowg^U_3r`PEv9*f*uZXKcIW} zR*YLd6(Br*KJ;k02_A+=F?%me-dh_a6Tdv?U}(rGNA*%>`$NgUUpR5O*=`f5s@}a2 zi~o#0tNv1Q5)?0D?S+XW5^oV@u)p5vOFKZ7n62yjP&lf{IRAH@#MH;#t*|rM8_OdQ zh}AlW6hx2O<2>P0nVee18vOI}`k!87`wIKwq=;`CU!92eT++idHM36)7oN$4seRJA z8}wbm;Na|f)6cS}OqZ6s5s%Ur##q=bY#VkRIh1>)GWvRv}Trnw;y+H!)QGc&RQx7pWRJ_$uktF;i? z-4xW1r>o!0f)tRCZ(2UJ>AA$~t9w!#?^%3+oQi4BK50f5b19Eq=AD<$Ekl%y2JQU$ z-0K}0YV*?iS|{r<^1RED8eJpWHvbgqrhSdPy&oPTCTX14p|1Qveg2dsq!IL*pn6z} zJ<=gx))?`w(`II9=Tb-8Vd&X0H>^YzXPnvdM!|^XZQ-r}+-)yD{Zx3qYmO0@On(v=eaW2nyGjlgM60vB_2;m~FPGG^1zgvS?}iM7V$41>^Qia*oBd z(~Z0UXf~-nlh6x45BhYQKGpqJp>7@ON?%K@HX2)1(9>sc6k?7f-m9SM4Ac_!+br9N zFEdIw#BNmwJfYOL{`o7bsnvL^(#%zb*f2m&f8MJ-Hl=DibMpAxeL4?0HRLi1%5d3n z-4*4s)prc{gutb6kn|n=?W$>v_0)X(;ov~o{Q$S{jNCrn?P8OF3mG9QyLt~ZlYHe5 zcrPsGhj;etxyIAqlCIbtL0OYWtqx{}m$)n+54Skeyo6^B6(z8qqI)0M5obs3F`+d)v z_B!cnfw&x|#sT|z+HRWyNUamEz~aQz{T4=lTSJZ@Kjto76vSGS|&f@0sO zpBQuHh1>IcTa;{w@AHh09z4h*PcqKpV@l0ps-EjYZ1qh3e3oy$J0N7!HSVZcB^3#- zijy&Lw<)3uwL20PuzB!!n;uD zv0?}J_E(?CAdi3b!9NP%@ z*A{*Hx(A&4C*zjj`ePoWIQJS$4b%=Bf=OhJ>t~rjk@TwL7J3F;c`VU8IQ%=hYiE=W zyHhe`B%xUFE3sv|iX+SUaAcwai=Kcf@UE}n^^B%gbVeRhP85*G#jhp^I5sk#J+A)q z9hOu`45iN}KAR9TY2KLJ#IY+`ru(`CNjt5r;CiiQ z_!+wz-cdqX-N8PO@>ZO*(6D9zu(bNmwA4ra!D^&~l>Qi(jKWXn>kHMfmB{rwG3 zj!EEdCf2krU(qf-Qi{js1r8Yy6$i^ONV>k${BW&vrJUFxm4$)4w`Gw8XED)8RS0kh zX%KC%+55t<;49>^8{`iTXhMiDYF#v?pPI+&!}X}~yTY|z=4&IPkfSNq(}O5xtko_h zt`x3n*m06!Q9@rlUDr0}Nun7|Cp0Oh-a2B2LzO&}^t;?Z8vAUr_~Yh17yA2_+Qa)S zO3sJEK7YOqKHbRi0UW_1{lS%T>UhkF9G$r7hrC#VLdc2U;fST)s#DT&lOd0CfQ~xC z=e_0AG_M^jyRvs)jY!2bGvSSE%zB2|T;bxyP{f?C!L)1a(ctOpF^{xjp0QCStJM3b zZ8gJ5l(KYIx1eZ|c}3D*_Ueooi>cQ^*{) zV)t*SLPwtOWD9WuaDLIAV}wG~LPm*mKnm;<){iy%_zQiW!Jl&OM$+wA;zCiQk}!r)i18q1B=+XjW3G-QP9@7 zohf*7QJt+XaBFZ^Z6dgF_s%FCzfJBXLR9xzz;UI}u+FdU7KRt5AM5YK?h*;ek7$K; zMA7*2f%WU`yk9T6j<1?ww}bB!LP_WuJ;M^Y=Zn8t>gc~!Fg)65&$}T3kJ%bSTw@b# z5TfQK(rf;wT4+RCn?mz-1m;uAmhS0Rs1U!scf_~)I(C-W#@9U%30}LSeDr+I^i8CM z15%5}xB~wXh4E^%Mp^BPK{sZNY1r)#jLegk%~+oVON&Uc-$LrsW@>dSD@x9Y<*U{| zWsyB=-LL4X9|_T}-B${3c77Dthz=+MWK=QYb#TIW4UZeu@uf)->w1e7_^d$dIvU`i2Xjkl1d{6TJX^_&jU z7^M`!>bXyrIdW1I z5Bfcq1_jNwGzu7-h2AHj&$w;Q;Fj(L{-=6EbN)eqrFH!g1ed&>ZpwNHQyNVy5OjA3qdoGZZeP%m8wL>7UF*(u`qAUrUcs+tywOyKxtIhpzHk?C_ zo-NoJE<+l^zOJVguXqfMXBzpl)b8Y$K$S@!@Pji3Wd2Z+NE1m0eOaAEQ*HMCQGD&b zJH7I8)U#uH;s9;bRMS&QVdrc2jnU8MOJ`l7`E>Xza}&vRbE`ccV?oRL{3a`_Ypra^ zmWi{PpU6Ep1o22wp~O!vkh0SD0x%=wpCY%;b3)n zrrNmg=(M+{R#63Inrz6+Bgez3PgA5GUZ<`QKiwbabMq2^(B$ys(c^ zPyLv&n@aC;TK2WJ$4pTlUc0SN(oJ`+OdSfxYu4az?hY+GpA&lml#0F;c|QKLUqJsu zOISMPx+G?}FXxR2Vj(__jkCYeyqtQ6>)ft*3>MA1VFzJoJ}}@+Bd#e@ntvymHzTYa zKUn4-HCEf@37_y*p~qGXhrAR*CefNjX~2EDlKXao*C4;yOi%w?7? zQ+edUam!r$3L0^XJ7VLEGMOVJ!b(27Z)&%vDyMM3p-3qZAd6E(M0X%XU<~j~fScR2 zo}#(7=NiX$ZP!*;tw*w@7u1@BP=3{?N82S~Wc276+wzGP?}JEtdLXvzi`Hf>6puma zfsCOBM=P^R&a|m!Yy6{v*+x|qVlVwDp=xL4PbAW9_8Jq@wyxop_etYEy(56A4@ygT zZS;Sqj4;bWAQ3-`6y*wxUD3+8mw*(D3@oUQ^p z5#H`ij)tuvt+kAI?jmJzJy`BQ6`Da$eyLA=+P%GI$=C5dDMF}0RB9ghL|U6iuvWYk z%J@g0kUSKyNv_Kf9x)C6wwc!Q`5 zqDj;RR7Ypu%3^$2g>D_c8hl~wA*;26N=X1}c>y6H1 z@NSdGF7jKpk#_pG@p8e3TaDLSXHWfhjhTP{o~W-&*oD0o5vz((VtwkNpe7r4(-c|v zzD#_>H^75u?}GdBT2ayKr!%QU%SvG;Z*D)LfJ!9gEvRZ|?DRo?;z<8EXW8(?cx=*gNlOv&I* z@oW9Z(z`AD-yjzjdX;uVz?leo*0B{U5y@{e{;smJvRJ z@k+Dc(L)zY&gE7jQ7WZ}ymuVzjx5kxP670Ln5BEuF}yqh7@z3T9G?&8ETWCc`eKvZ zBcEf9MqM58xjZ6y1)ic5OyefnOLMUSFGMlu5t~bNK+Vpt-o`F6UYTpWtr~2}Z=YjZ|SBT5<2aK+Y@@=!uyCMbXBr-$jL_N98XG(m|E0bb*KZ)-oj9VNV zHdPw4Lk0=iNq1fcsU$$NLQDMfXwB}qRY6BRrRUD-F+si-n51jc+9ZtI=ibqXDWnqe zY2{?kvoZXZs>}?;{*O`j^mvn}dTsO{&%JfE-rmnYrHa8aaNqHA^OAl8y%xXL^7|I? zKG@v*7Q?Gd7zp$h-(j^9P0wkt<$toCgi>+F#AC8RWR} zGidhMET~0YPcqMu`4V|4d&JdI-@smF9ek>P+$f-Y2lvp1 zr+FU6M@+FN;bAwQjWdRp#xD37CZFMwn(%EQ#PHZE;q9$gO-G5dEi9hVrOF_8x6Y3C zal8G#8P%6>M*XD@Pz~BN)Z(QsE8C;wW^Kl2Kf1KxW3X}ao@W~o<|28Ci?|r>BW^=K zYg^J)j+_ZxMwk16Y|i1&;(O)mJ!755M#IO(Mt^WCX62)Q`0;yCWU)XLHb^hFoqZI;js#@=%P70~N*_-PPc>ol>HgD*VAJw2qg+i9oOYZ}n@s?^LrxqYespvT z%xDhl9nSw5PhPv3l1T((?d!?^F6x2OvyLTa?AH9jYboN39krY#rTPArUjwz`lV{xR zdd@XiD!k2ZHtk$dhrJ-FA9@|qe{*Oto>?uCdz5B;DaBDi%RvfWIh?2ESP!vJmm@)3KJ%{npE*6v~? zI4x^(P59=qxZ$0p>|)0-Otd;7#?aXg2Zc7aN@Rk!q>U$}E;Bv>zT*YVp_QE2(I z(bUvil5e(Tp7o6S{B}BLqH6K)tK6lc%t=IC7a9!l6|hXWd>JCbrG_15^YsJvy=T-v4M8-t>Y~deN{`dM_a!VWgX~ zT1e*kOHJ-iXXHyA?3Sr>&9Op%tcj$UGM>K@nsW+~iDfK17!*?uA*Ps|wuF{d4~i!g!6Y`=zK<^oOX8QZb{{!V=L=B5p1H zr%&oqFaDfToE|o!ij3X%;;OsSi$qZUe|Szwk2%pEt5l*B%956;@XA3tF?l(2VVux| zKbaEHqj;Ix>LXuMcqVN&_vz$33e9g4}7xpEP!jA|NkG=k(4t zxeYImlpKp*>T9GqT;T5Do!@yzixp(yh!%V2vI|fs%7v0d){lA`|yzu?pQ zqkx+UsVT68m~4pY8oukb;zF^%-WrBjwRI7Pp^Pk{CreALOE6=WW?_LP^%YhMk;aYmZK~$ z{g#ET$n*Wu8MouI4SqQXpU03&&I8>~h50!5jr4?Wkh7qmH)1ZAuR8*K(^t9^6A#1s z5kz0}F*7ZmjK8Ncs8_8gGzT^&^+#S?IC$&%8cIbq`$B2k&#@rnU=rPKe?ey{QscDm z=(CaZGc#YcV=>ZprbMo?88S$<_GBDx_6GH<@C_eA$FpV~eY0u|I}Tk(r+)tVd0->) zq5G^iS&UN6hdf68chk9xrwxXIM-QT+X3QS=&-)VXV2oS=u^zXG>_1#69RO0X6awkG z&{LH;O&;6DKx(EU;5nQP3IQK{_+oT+Y|JK%JuujIrOpg{`gsUjKQcc)JY@N8fU#t- zeFqsIdVuZSZDK#lJ>YMU?U6Zhus=a7D$biBbU3T#A4G$>VB=Ee@6Vq{GtwHbp_ngf znz1L@$v*g?5qYIgXR4K?YsRmbbTh*DYoVX$U zc{~lc;-5;Gw_mh}cPearq!D*}LVbN4x1eI={Dua+cR*O?-dMZUZhrbZCBNxO(0jNk z_m*Xj_{1&agTp4nZ{tWusj;#esx$Xt-(9Ax9q>8MhE&nPUOzc29r43pJwxt-&rC&$ zmq$@dkN{OZ8-Z^YUgKir;#r;|GEe&T8}EC-S7T-GVWMTF(Q?Xm*80)K;T^K-4dURn zJtiVKt|(8I#_v~&W8ihB=a!Ch^4e(&Dkx=1_IfsDl;mD5@6?PkF4iH(p;F0SX|{-i z2{tTtK+ce~X|7%ki?C5QtqNXlZOGgPIOpr@P%#>#VLgh=I(gdbVrHmPZ_&&AH$KPt z4s@egG32{b<3pcTtGht|;r|RUNw(UEx5{xlx zRR~KXuC;Ps!gvh{5S%t4?b>EMNj%BJPxhleeR2|)B>JVrTTRUvNpOQJbJra&r-e@#wjHGdDt75>+cxn=E=5< zxuf|{x#8|_)TzoQif8Lncf|b@I)}u$krx9#r+9dio1d%FtuDU#A;xW`fnhCUAPqxL z#6B{3g#B5a@B~dmq*bQGg->lLcM^5kpE9j_q&hT%;H8<0#7VNeZmO#rA;K8hSNM_1nL-2vZ=QdDWeSz1ji8Eb9G$)RVvQFpgSF2?aQD&Lz_F+TIFcL zMdq|yny~YU5XJxa0xbH8c=$QOMJ@B!KKQOUf50TwTTqKfI$A`1RxObM633x7&Sat2wy1N%>@jX@vnRf=F<%Xhd%b5eBE4UcEJgk0Blh;&2S)fas&aEZ9x)YMMJGn zKT}vmRRdazLKeKe5{{@D){?ojtolRgCobcu(bN2D-e(jxZ9lGEWT;u*iIZvM+y)+L!j z%=hZUIceuE*xr1jUJE+Y@v(VMux))4r2KN87-zdjjryIfbrX%j~rUe^F*b77S==OODQM`nf>qB4*Z954}PPG5%Ay zNJ>!X-cU#MTIC|eji-+{%`av%B^ScNmQZzM^ApU6J<0fa^UE;=e|VIWK5>4`ykKOE zTo~8gZn?`@pQxk@d&bw^P_NAK9#?Ik_bp`;c$Hno*b|LcCKrkB|2p?m&FjS;8pWZZ z?RxeVS_Eutl3%#rq=PMo`s4Q{K(aO=T6OHl#N}IhF(X*6$={|3O_q z&ZK6|=rK*L(5%XvUl*2V&o0CfTlc$Kjj0yue@{JQ6*a<1ioFfkx~qPw_@Qlge)$_8 z_OLL!%EH6_osxz@0(n(kRnfpkkk4w$nk<)XL+l6JrE<*SscgyNg0ficj@9B={xRb` zcC94DO*L*gG20o&PVZX^JDZ(uDzi<`$vdp_+#M5A*TzgJPohiW&Dz9L!FtzVBHG51 zld1zTD5y8B-WG<1apVzj3V2MxEcW^60YYt*?ADH$&&U1jpntZ+K7zxUom!{5*>{A3 zhQE|ZKYKrV7_vi&piJd|PeVr5LyiQ!CQ3?@>fW)9MTZ zqwkNYCt5->e2ZIe{7Un>_E7ARuIKH-T{wsP&TQ@_dmw_s6dZYl;+h}K zu*yf01DkW-V0mZ$cso(R!?DNX=HtQi3>b@a@{8?nZZ08rGAfF)_SJD*140DGt*+Tk zREj@b`-#H=tB?m~1v5JlED?=}XgbX}5ZJ}Lx^3=J zDFEkLQQ)H541bI%IKZ2$mK(?>53>M^qM4o<L%fp_WxtunJ;oD6lNy;p z3EgWPD)S*yUT3Jwivr-_bM_3k1NXs{Ods?fp3`Lbz1Fprn2fpn_zZSL8GY1EXHIoqGBRyxJJAQ8_{j44)ei)jAP!O6WOW>S$~(*K3!n7a>>_nD zGwrywWbAXspDuX%%Fr24Mo^C#s|iYkxaZB(IcQ`-Y3}XET6MH+pSo-2AAM-NuPLdO z?!%A#LJ(ndua`DNK*z`@%%XoGi$%Z6eac!rht(PF>7tN6Uklmp+b6Fop7Z3=DzKg6 zX|>roReS|8*QgbOUc?^lOzq&#_7qdl`I2CRP-a3UxAoof2_dNeZ~WPIJqku+ELBiLW5K8_10TBJgJZMr6?t)Zhjv0gAhlH`U|U~|<~Cs=t zAjzr53tStJbTRyz%@oHg|K?vsa$w23LdeJPvkpOH$(eU#561N(h}H>BQ8$vsj7br* znFHA6@n+v_Q5KmK4yKjKnP*5${npQ$uqlZ$cO&tKKe(jbz*zBS^|qWQ;(HS4r=7OP z9oJ*gjPFQHQCZ??uoEJN$8$lwhjdR1=-K&y-01?y~g^qx#q znX6AnD>%f_#ko_4ql3E2ITt(`K%4|^SJ`|sBc%l$bIB_Oc|)%lv+u9)LyK8&Fq#L4upki`Oad1B=@S&l|Cyv(@guI(Oh zc$={!SE^oyf3Xog^0j-h+n2|Y{`4P4n*KC7ps{^^JOkKn?~OpjW%lBdC8jWU(&rq7 zcfSQ^1BPbB?fVCa+7Wf({l27U+Vb-9jX=9R`o-2C6@BN}WF)uUQveg`I0|JwmrL?+ zyz@DWFpwh{dX+IZA!>AUIowA6*ZX;F=MDQ_4*2VMaDLX{<-8PF3=uLz`M&CtKfPTg z{uF%>AviDbSQ_Qnm((0@Z&&xuUAQDX!*Auj;dt1@IVf;{&r958CDj~q@0^IUy;Qfl z2FQZEO2ZH`Vs7x^&b)1l#K|^4k3L*ZjE|f{44GGW8euanp<9sV94X4rdYd5A#(9$9 zN|oMxD3zJ>MuZu9O7THv^BZl+t!6I_9y(7`jj?N`HwjFfgv_!xzF5`i`wWbbN3BFN zG#>&j)jX(2cXe#)wTj6SyUa(H>TC1NvTht!&)Qh6KX7a`SS#G& z5$Y0WB^*`foWA9wN!jlbb|CbB(TWu%v>EXnH*2`khe{2;sj% z6?({&zv5F>{Qx0sTio-K=keD6I9d;SP5W1kugXjes;yb_Cqt#4mm0Sk0nu=0cl!c#kt1S|& z&uVJ;9b;8MBrN|k2jT6nhlbc+N(Sxs0wF}sPY(JH8RSufSC?v63JiQS#4HisfB2rf zthyybIIhIO!Lb0c(p3dUrSN~|N#uR+0v%q$UQnMZ`bMFD@0G}^r-EW)V%<3efxU13 zN9@0hSY~9GlD!-V?`6{-Mz-n$0~BgBPa#D738+x~f10k&fPOtZBkHvW)RM{vq56^r z^!ob$%$W7P^Usm22bAm-W+rXGJrn049gq%FO-oDbiwqGcA!?EB-%bSDtUu@RRaj$F zVeCufDREl-b~X1m|EH!+5{9d)j&H_y0qZ?@U-W9`IR9tn){>#|@aw&tVDP+tmEZ$* zV5l|j{52Rr6Dr&9eXqcx*A5W$l`l_hR}PCpBGEP$lv(xPLS>&bBdyoi%pHSXIyV}m z@L4LU7`p;@X0QCgpu*e#?KT(lJ2O_!$VE04YHMq2Q6S$eP!70r6Ls5AQ8A_j1xNq4 zU#t8*r~GfF)sLvzqpq|PFYs3h{-;p}@`FXor^(Pjb08qsI1nd@YqeHgO^tKao#2tq ze>~Tjg1PqK8!Be&NKY?_x%Ukv~BSo#N+o%(l=8TW_^?yWejumL14m~FcfQawHXoOf`vjzaP*MlFe_Y~^ki ztKLh?L~4Ua?sn22CSDHh}*9;T%+CY+L-Y$)YM}G#?hve6HWQvHZMFPGB zi$QYn@m2Ri7(qJHe<-DNu5d+)5sE}1K^~5c>YZ(^&6;#NRMh++q72s%R0o*zB zv6q|I>ytj@)~$NVE=d6jj#y+1tS}Xoy8@d)&YzaNcY5tS0Jt^Kzs7#8Afc*$1X#d? z$pW^CdD}9dADA>LLM8mU;gi|YQQY>#AkBZjpK>B+%?rrpqP4mkboW=w#VN*pP-MM((=7#I1O#h3#qI9;$0Wzc$5-8^ z0&zYB;AtroV5|VS3DxaAU%9G9m>Vz*GO9<^f7n!d^m78%2ZT_ifPaS1r9I0r?cKXe z_=B1;rLhTZ-uoAppDm+~g z=#k1dse<;LSYMeN>j1Ui8Tid@DsWKUo%t$+-=hCP>#W0EgDOBa%pbe}Y4BcEd#g?P z(d|221g{C18l|kNtAv9R?}2)M%1_UBzYB&+S)ZHx%gD-N2E}$Y0O#K*e|Tw|a(jhI zyBpxHb~>N21#HExFxaGH<|$cqD_d2IbW82TohoX6caXPq51ejfnRk5pW7{JGgcji4Z1 zJ&kwM`XKXvw2lNhMVlgJ2tOtQ;LOg(RxpJ`Bg@Nucj4L(Mcvr3BIcVX-r~y#msNed zW4e~h z#yxP@WYv{k3cJ`uCsmQ02+vz*Q|Sk+HLy`(n|B=oM@C2UjJbv+oap8PIY^r@u;v!p zLj8IN?9r3!foOm_Nqx@}r@88x>Lh2elOfp;Il z4#`la&lyk_T7s#obAVajctBYv{vDiK?jVrO4GD*!VT-)2vec@25cmEK)AzjOPjUb{ z7Wu)_5;Ljqh)qo6p{VY-5mt3Wl1ygPkeSjQ$j`I-fC@xJ@mJ^7{=~`A0m3|bWD8)F z_O*)6QdGfXfDbPgY5~bZ3h%p_e}GU&#Kt1clMM5jWn2~ z^{P40eeL9AC`g48P@OwkrSC`Iy&nbY1O-(T-jRAPvd{yDk`rHrZ@S0ZwtKMIHieYW8p+%Pmq$6$0Cj|62uNSF6DOY85=;GIwOo z0rs?QrjrM85TLRvOf~6HyAcsig$DX6^=JWO6K87+v;%k!=mX?HdRqUHPCt;Y0_chR zUnEH#IIrpYyCD76kBZsfk++#J1Co%W5t|Tv)R4$ zeCS_tN*1d#IDv3>D9WiA(F5U8n)EZ z1Z)qev?}pL4sdm&2F&08H3@Y6svc7p`vG?WP)QoV-mZ3LS8J~Jui@yB{}Z=w0F(*j z7^|uWdZM%91kgPhfTads8I^zAx&>$e=p#8P(=4d?>j3w`7{HA{lK}W8!3BUIuj>q; z$>i$*i0RmY9@TtpHL_i`!Hiy?@ygt=7=z_H6mT_iT&|M1vX+dIG5*`N{C*!uRpFgL zO{KVgW%&idwpEu#LI@O?u&kJOI#i-no3j3uO=YkLBdQ7by`?#9*3JXJ>U<08vfo8H zT*jyz3I{8V9!c85X@Dg?pAWlQBb-dodZ~?S!0JhT5oQSD0|d$`v3e@ymATFqI1^J< zuld7OSdr;s)f9^sP*c9FPzXX!5Vf1&PgllHccd06UOZyho@?rGqi3}SMg-(~1#H|g zesTRnSHS&z9_!j|))7aHFodWHJ)fXufo4oUMTmmId8>IR~>S8zrS9rytqlr#A+QlZ1F9W z@KL;z_%#9At7RL-Ea^0@4=7UGa-B+Y(BI))v=s49^G$fU>TDR`LE|op*Tdu5S$f%> zjgyj6xjZ%JF^zouXUSadM;*#mZ9!Gx&%m(xl(R|Zrcz^H77DnuazN#4;zE^=&pZCr zZ(t-r!5!AXTB)j+8g4LHbL|3D`VN`|lK7R+EK~yW+k$LoPPM=Qs|^=$t#&Eq{;As( zQX(+{l}#(n!ugky$#M!($DUP8o*x$PG}n}ideFnfpvlDo#EmA>UVnKV)#5TWiMPkq z;N1(C1DL{e3O(G@I=G#=_^`Hc!98#Ie%sKDQ}=2BtTVkx8X8a<>icj8 z;no@%P6nPyI;u7Dcg_<++m+ACwU^Tu*R7U5S?o>Av+R`2w3J9LPxpR>C<2@t1GXtr zymsB-=dm!+%bD53u00_uovs^gco8YGUsqrb`auYE7`Qqo2&}*S2cbKpd?nJClbeqi z#=lojwNpp}9NSeQbfc|&GUJqXTlO?(Ny*Ep(ru4>TYuX8t$D0d$vP=Q|#$pdUy3EU6zs<1j z0MRf`CTYfJ>Dgf>@pj<~H$1?-Lk4-}8O;jDt-`P1vPK27otLV}+nbqF`(*TmdpcR< zAStp}eae|Kd_2B=00xlG@g{Aa1ZO~{{s^ZljoEJi@{dn^UtAAof)pyI3MQPw=jP@( z$sj&eg6Q!24CKKxMA`1xQQwl#8f_W1Kku-6{e^1%g~O*A8DC1)63w@G#-{CP4$+g4 zYPV%e+C->jxtLmcF7L#KPzEwLX<;nZmQVBLB*tS4`Ry5Wq|6vx-gRnFi0PUynuUqT z+M5QSD}WMu{iqZE+PNQp%}!_2jCvHp(G29Ed(0_@9GvpPi~Y&Y_vKPcnx5 z=$(jDLHnFU$Vp8n*=}(|x0-_mn0#ArzwyGq?;m%}b1Ci1Rri7Uulh?UP$9?n+$$LF zp9YRCMwJKysRsQ>@x=cD(51lY?=H3GYs5Z#jdDH*CHJ>`aK;Ohj89vxRWn*%zBOR3HDizO|E$Zo)X@ zFAJY-N%g;#p4}26v=S7mWjk;|rK3 zekeGOH|*7K?vLqxQc(N&5-<=Tjq4JQK`OEUQnxKSeJ2LcFxi^$FR1@~H3jXM6EQ|F zkUC6ShU3!??cK+lE~QWL4PtJ66P6|J^FPWhtA&s(0Re_d-9^`9(~5T$h$LszaTP`Z zYo(b)#P*ejZawYgm_~irXb}&ZXo*Ups>FF;y6Lhb%5A7s4ZCVfDX^J9Az;@2s!=}i z*T8(%^zP-GzJR&>PW^@9cX49K3Ck4 zCVYJ-jvoXXzipvw4k}Ipwlx$0I(~Ou(I>gu4HJ<8e|@|b49%-5a`2;f$Bd}Mn`>0a zqP(@rKY3w=9cyHa{Sc>uQB~jG5`Sd)A8T-1i4@=pe+@CffSrEmmTEArZlx6wgUvR5rG-9 zuy*>xb}kB=Q_Q7S>=M#u&T!d%+xwxWWcTtP;Y9R6_|6D1ZIJfDuiEA}J!Zs3-mBV8 z*q)J2Tu?Ye_37W48zAmU2Z-;^@H^xB#?!Wt2*H)5h3S$q6yz9Idpgba0UTJypY5RWEFC%1Bf!JBB58}Wti z@&fj}mOz+c`N}D7wM`g|5C(RM0&yho2Vmuj-scAQCxE@)H`qIN-~9M@!enrK)_vW# zc!$ii~8^Yz4V|cBH z=bNmb?}hfC?Hmh`^ELhh|CueYpIzGC@&8Zqb(vkNcc=P(hQg4#Vy^&KwpX=Z%Dg-t zRf9LNrE@A~^3Ffua@qaN^1aoTNbwBODoDR2DVJKuFBcMEF;q41QJ7SGZBP6v9jCXX z%YIguUB6kn)iXI`2l)b}emos?({E4nn84;RH9(wMaGUh~%i(XudH3uwI)QVmI=ZS8 z?bfYiK9?beloAV{a7hnvrmJ26c79uqH6<*8E2#$y7Hk83;h_g$KD~q1!NWh>F1p2; z?Hy#de&>l|(5aWsmx@~eBFT~Kb{s<=<)g*wMWC2K^)$gPbGP`g74Ga{IjrfZ>5kHB ztALB$^|#$l#_Ev7PY3e-_|XGe-}Iq1Y1<#(rSdJ3TA#n(%(-pgf?S3&TX!zOW#H4? z5tLYfX8|kv5Bx(!1`Iww@1Nk{)75NA1uR%DJw;h^m3E!vUZ%T2+J|h3BE{?~pyWZr zgRrr+l6@cLZH9{GDCu@vw$_tqE!CCUfqu}W6B8+{Q(ein9-39p>J`VlM6IQD zDA<^H<#*{xY+!5-sQy}H0$2lV^KV#S^HJ|8tLK23$(!JxN%+rh7e99fxTSZpH^g9j zT8c#7+}!-TBxX5sko~;BkYQPj)%v0THj~my^N(_4vc%LmEwq7CDA4lrj-kuA00#T! zWRumH=bg2V!uL=$V@?UG>p3%&_6j^3PRrA|HW=7&u?$xhsW3=9JTmtGO+%z<~}AWra6`U5l~_3aH^RkJ9H!1Z@%6ygdX%h5HN&0;D! z6_hP;?0Qu8C4QyEFU3YK`^{=TuR`U?r&Yka!MUwm5>lwJ6;co!K-<95K=`adkWRAS z11kcCeGF<)%~-5JZbrI05I&y*q62Q&h+j>isj0Z~nY=f_-4^jh@)?H!Fhsn^mpq#) z`x13r31i@`W7;_6ZK@g2mAC5HHAJv?}-GoydxR|29L zZrHTCKQDLd)x-i`kgG*NTd8+ZBd6V}*5MtO?Xnu47($82S;o!lWz@|cNzp;uLwUXF z8`_fT_I#ecdnT)8_{2W8Dx469YBQzP^;XVJ$wv84S zN$Cm54WS~7?$W!RG%SdEzC7Ms5j?X$25G?Pe!;lG_Y~{N*YV>IVEs=bDm5R7XpF*T zrI|tILq+m{Eq}}fe&c|OZc#fJLr`uy6r0@mPI#@K;f>FL2RC)kvW5KT*oRkm_lHfIomA0dM0Uiw)>@a&~gL7dG#}kz&HccDcT`-BwL4as902fD0m6fbN@o zT*g0%4b|K_a_SZUH64+zlt3M7q25Nf8nQ7!$5 zz(ggaA%#p$Oz7=p1)RWMn;EXznSo#dOn6+_4MxfNWU02#g@DfY8LWG%SM*>-qHDb5 z`5Rcn&!oQ}e+h!mL6bUC(#gg+Qc45¥9^qT~+#`o#;{a8V&6fHl*GK>;$0NtcUY zw1$tTprVzp(z5fH56(%fS6sGwNg7c35JvNBncvuIqS2FM@P{;~Ey03YH2@PXPi9=$ z41y^$Vi!J1%*Rgirl+Zrruvv1-SV#i1I+h^rn#{=qs9 z5b&zsp+>RMNbfWe&dqe3K@DWn_N$= zaHZ4K(pgepF*{zduxdLN3#0X<0HaMv>YXQk4EQk5c%-yJfAWKs!7uhhiBEYlJtwHh zYE%O-FtCP@>A|uyJc|swCYOoh0B{wsS8XIe4KuzHks#<&ARtQTcFZI8+9w6%OjOIp zx%GlzsX&A}CwgOI;yO^-MA!LQwNkf5FT3j^o$}=c?dATVc)8A3_s?zpDv-k|Jh?qv zQTuNqvfALu2>V7up_X3JLs)OXul?@zx|r0-`C90uk7 z#SqEjq|jSMAH5rxk^*3iI8yFZ5o7a!&0G0eTc>54e))Q~Y;8-55ipX_=?!Qq zR`4ANfMT53-vVWp;$YSYro`l)-84ljmAbWh<;ewVJ>db%eW`mojbGCWZDTepyu7?V z#g#OpkxTC9MKSU|o>l5LS&t;rydxnFs~HLg?O(wyykKVU%*jABL0E0mi!z*i2KG}c zi!sag5fg`1@A~ycIg{1Rj{zr*i?XV+M&~2!QQy~S^d8-Xs?xt`;3bGFT(-aJL5=bR zbindIvsCfyzFnHOWVL-=Tm2XZEv!BMd`d8D%js4E;&WsP%Fdk3`qrGhRXpv2Q zWOPrz4^8{dsPmdQ8jRIAZ1&0!${#Q`Z$Rh+cc=_>?z**gh^(X-c>N}Tec1>?sRvR_ zzq-IvBP&k9!AkUiJ?+6JER@QwjOQ);MI1|y`m0XI$WwTguBQIewd!PoqH4am{uba!i^qSIv3&2yI2 zFMy8O3go8+)A+hlvzFm#RumR8#sEegGu>IN8fQ?ncr&=QTYA<}Icnc2AFupPb_e3S zipoebgMh^Zp*@dIe!7@CK8JN8R}Bx~R-z2e^&M~?2X&KzvtlR$1#d5B{yKns;_~XM z+%kA)XCd@6PWk8UL2JFwalr+%H-CRE>w{22esS8*5evRT0Eby{#3K@c=Z73exQL<^ zV(Il_?RDS$6q2_#gNH>(`weCxrfPUeZ5|BW%JKaVeVAXL$sSoPF)y1ul2jDZhO@ABo7_inUj16A$O6w{FXAX5b!sW#po z#P|A*E4yL`xbMZYjuVC$xEz;t|2N;3M>7Qgim$xYmEq0rGXm{zfaJ%Ri>@j1M+OG@ z1S-Xa`-|KiW#RWZ5K+aM%@q&H2PW`xK7-R4&@1 z&*oBG3PaJH2mr&}cH-qY33Bi79SYi9p*f?g4ir%XTd34-6bGEhZ?Z8t}N)+ze0s_XXbx{U?$H$@;G_{Kc@ zkx@Z2mY`bl;=;@;3r$N}Ub}>bsUs(aI6G&(^JQ7LwW^41u-$%f!bxbo8EApLKpjwK zM(@NtvX&e&doZ<1^7|Z`HY5Jx;oz?({S93G2=%yqdr_bAtgJ40uKiO{%-X2^28(66*ox4f7k(UBOJ z%{)335l>}z?{uYUGNa`&rR!NjQQ#(#i#mOD>vM1cVP(dxeauNp1*v;y-b33JUA4tm z1|TgAD<%ntM-FEFtW6w-^2K^BZnmRCWZm}^j{)c>0`5pbHJo3;O^$jQ71AmG?e7<& zg(ebTVK|~3Xg1d0=5OcvfWPxtkh5KHCLJb+Q2KlR?ZczdjJT~q8|8krEn%Bs=S?VA zIi~OqGd2Tm6bTWwm*oJLRo>bM#p*z1a9Erh0?xUb(W;vEmkEZ9o84JOYtRT*5;yHf z7kZug;T42BvgqhTO#@E}pzI%RretIgHUMa6vV+g>;m~4e3Tky-b81H6KM#1nM$eZa4$-mxB|FrnWZweoO$0K7kis!=pUG3T4F<iw zzwPmEy{+=bQtk3Xm4bd2^1cI~>R);TfA;?T=Ob)*cw|X4s$))bgHDtBQRAbIJIJ+u z0og{kQom8Xe4(SDhJCUjbV9iyZaNm9xbjnE|*gw=FtuvROQG14ESdhlKyFZzJ3gwparX? zLV^O%XL~R*TA#9ovX~N!cothsLIa)YS0zYxF2#U|`rSr@#R35L{kf zj;5P|2B)VZ-yJy65kHNE_|VYBVzvOzKRaS!X70-Datk~6dxIR6LZM`P;);a~txqwJ zOpfsBszce79S6x!QewwacMC3@dm@y3>CaNGPG)QR$9i!ZF7gIWn+amUf`i*ZE%p_a z^66G@#Z+A_O9Koh_<_NK6Ld}KN1;lb@6!mPMOUua!ycUzvlSDI%U!3)F{@b>Crm?E zY*s>8^d{~pZ}f(NL%F0p%L-~=AQzZkiF_qvjWvD6c_>1&w(d7fINXLod@a8wrS8tG z%J`REj!IjEM+lO_e<@Z3Hama9eY1VSnatv6@#uJD(9IQ{x2F7xhlXW#quX9tDl8Nq zvSz@T$@?vbt$0(lOJwG;(jx&Ai)M>E8=zk#zgAp$Ss@@I_5%_&7N@_`TJ5cj$r=4e zJb=D<`e!+zfEWAFiuda?kK5T=Wg0&}KRc;qhu4jfsi|r3LebD9g6 zEx2V$*)WCKw9kgpb?t5g1DV+0jC1Fy9FcU9#G6u}ioIvWYM~;nXiGM`{oaIf%7eedxF!be-AjEi90{@qGbPH4iWs508tU^&S9=Z)x)ZH!^HPLDYVF_Y z+}czp>V6cJkE_@DaX$J{ll(q$;H<0Rtvg@%^E7Jg?XrhZx_dyMS=d;jCeu&#A~vC= zKhKX0*VA5V*iC!jEkl`b!2a>-*8FBL^ykFnVeRA>Kf5!gsFUBvgK)D=RPJ2}tS_F! zCudo5_Q#)z3H12mJg_h3hLf_kCRnR^G0OQHEA?YK-o6S)s1&lR6Q>(c|GIBWTj4@W zdu$`STS=%}@2F^^O6fuXeqAd6W2bAI=lOx-{0gW1V}Hgo8Hv!~NqLX)4Hs=ZZc6ihx9^$84WarI(M?HR5bam?m(T5TB&C>%oZz(E_#zboS4xa}V z44=@D5Io-%%__a=uinGoNgdqWI3I7>$m6A_n(Ph78{U8*6VJBI{cLSs4xod=;^N{c zVQ+448LtI&DEM2V^I>8)<)(l;5d33t;H*%AR|7;E*xFaFwRi0|UW8Eq5X|kfL zKfelKI4fm1hjjJ&OsdQXsOyji<4CGKk9SltbmOu|wz09~w+3Rdgx+#WH`t+S;qyf~ znB-A)rptK?Shv@`NgMT#(?{Pn!1L{OGqhf`S6d)^#fZ~=48`BaL%i1Ko7dntV>8=j zS~xPYcn>($_UVJI-`juz)ou+am;DSYTEuZiaE1+}*a<}wA$!%F;`bM@GQdfRrx03L z9s9xlX?>2&(g5d&reDKEIf0Ua{r3Fr`Jt<$E=`>3?g3-|l2^KCb<>@7nr4SSZ0TN? z^<>84r{8z2``$u<3$3Ducd_*+nAe0Unxhn5cZ)+JO_kCO>%D*bz+Y;eXC=qCmGdR7 z%E+$LaTOv>b&E8OzR;U2Hf8d<&P4a6;ea+GxkRe9>!7I=eljl!9v>fX?Cll9i2|{* z&99ezj5cpf+O9e?CB@oL-Aj?6a!| z%oP#pAf-iScj7^keDLPhq!YbZU#(`oNpa=I!beEzY+@ST_`3vg=KstgNH7EY=^DBl z9&++1meY{97a`O85-Rch30>FS7m`UJrE7lVNo(oOR&MnLcez{!z`I{S{;5j~gf@?A z1F8B<>`#&2XfQ2q(Nw8D%M-MPtvy(pEYD-){?8XM3R(Q6Ev6EQ zkAF$?KPQ4*omyXyT%$p|Q8-N2k2W~|m_(VfIX3HlI#h<$3eEKkQe_ytpIfP1N)?w~ z6q#qg3eCfTG7=;}7`!4=St*BqRo5ddc&SobuVxx=ZkURS)o{X!CjUxLy`KBrEzo^OHgFz3Lzo>e=nbIW-QCjVX_Ge4Y9G z%>)_wx2;C`_vdWQ6B(~66{@b^f8R>h>a}0W#;cRD=;TS(T4GZ7sj1~w-N@btM1}3i zly`p#Kf!KbcqC)E0`~m_T0yw(^uIkF-;*h7H zwy>wWv%OxJhtQT5o_9~ZnbX$B7m34Ur<4)n_@cvqO2GNGd#TPs{#8&mg|QM&1aJ&- zCIgXaKK@1ULi0>PHJAChsr6$dXfk5tq~NzZd?q6!g{glkD55nH@#4lm(B%%5g;_xe zKe6`J9t_6SJo=+iwcGxI@&)2i()`F zQFzjrd~>6}iadhaezn67X=SlW5&%MgK;q zjB>*rKB3MXu}o3I1Z}UIiC)HC%}3_t01R4n0kj9-@VHtgbRgymOli! zD+zh(5eixxU2q@x*Ao3{Pv5>7AVHg6k)Lc4fyb&38EyaOvCJ)9{c>-Gc-)d2{?90Z zWn<&w@>o(i-I=l<^MKA4Pb}`g2!-*xhFhgmpO|(txZ98rPsFPYrDtYF1?*+8;B!Ka z+lkI-{U4rc3%Xw4ofJcPI2J+xYTr+*BAEU(?%+|GE)Y3=5D%Hl7s z*2;2vvxK;KS{;K1Vuv7Z1my|u7ruTU&;TWxvIcND`6fWV-2>ds1)#_@2D%1QlGt!~ zCpLFDkqLsF3>D95x_euY*Roq7SK=~Lbn;nTMJ5{k7y*gE}m?pQINV84W*=9pJ z4uf&~hZDl=>gYG4UJV)g8pSLeA1?8ZbzXUR)#|@>+S^K)d_=bEf&)FuVi8w75E`B# z&mW{~5U$j@y!50#Ec(O3!uO`V*j&i3FFSm!)?}owc}sTt6@HEqAa7QTQ}IblMR>5wNG%!)9~H3)GZBDqyv59vva9^JY2xIOw#A zm_y5Q^+`zioNjHEJUiP@77be4jo%qf*}guQ^#mdQXXa?P2!Cc?JRi)u?4{7FVpq1^ z1nBa_t=eFsDPxOENN!#CyfnK!Vyel2M%NF}x)w#xKpgsg;U&_gIt^t-x~l+V*w@=z zlQCM4SGS_8KF5ey{=k^LE<2Y_-o50FoBZ_+=`4BHZcp}S_MITF{4)-zQ{}#NjqohZ zP>sKiKJJ=*xZq=3hcAdTh1ay!YlX@3D4BCSVO=-K04Z$4F!S&;9RE|5)W-5@joeL{ zjw5#V6X#G|ib+G6U}4Fe6>*~-?zb|lwO53nk5zQMex6|QR``@TV=G;o_iHQ;i#Uj3 zcHK`%kDJvnPL(gPHPy_RHcgyEBaJ~dEaFXVx=o?8HCG#$b8>q_5?F0;FC*8zhLba| z!dgo%ePu%g(`*^0-PlkSz$r5JGvXh6p%!9REWVtb=m9_Ry6t(|rewXR$nzOrn?|#3 zz3V+^D#}xs-Tgj-NbhgFLxqMnJzuU_3secpWpE<7pRWGiUMNBRWlZ|oQcdIofgM|U zej;>r4Vg`*J4ajxZ$mW~8gi>yzzdF(JU;Y_Q#8u?CAl-TW{WCwL-mVB6&K}AH8hBa zwm&qCT!-#+jL-!YC!`Hbc0iJV6ZFR_>3S1c_NK^h^Y_?uFTrla~HubgeJ zLrh&r!aSMq@*H`m72QwcLq-V-=V{kG-0Xc+QB;KlJ}MJ6sGM=k&lF^)lO1}A5! z!RIG|{HKP5z6Twq{i-SfLmRlvV!X*oFK?&Du8PUYdvEaM5NiQ{< zj?3L=W`7vJKAe5xb*YuL0R2SWn5hwZ-ODt4q zz)PkFYBxZ{qqUkA!lP5wXLO?G&-zv;sv-(q!S*SVu{J(3tS{*0kkO9ycRTGCz@-nF z(Rt;0Www?at70TCEG(^=n}|Z#K|^g_wy-sOzohTlyG)`;b`Msi)~3s=?XOBdW-hgx zl@dD@jpo9xM0Z(`7R>=jSfaO3AQ0;2uMLvLr^KPo<{t*HjC3ZUu`561O+eVB2Ith2DymQ0`6@9ZH$K43fLRgO?6wV?3uU&8I5D|8yHOANaN zt>??2WMxOkG)F!i{@La}CaH8@re-M*bQ3r-Tehw2FBNEQa_SK}nu$#*)sXnOaV|mO zX7!`5%Kj!kFHw=9`HO>LWJNFnVZyGIjVnS$@@RZx<0a1o%xb8@Esa)=S3Y#jw4Xo- z6YZw#x&)c!<(_QDhBt$s)srpvHh ze35e2Z2vfo+1l>M2*7>P@vCbCSwDT|eGW(c_T_Ak>By2Aj30jMgT7BeMWPbVAU5c$ z0$b0Ag?TxX=JeE5SZC+$>|P8k%AInJzOdP@F!}>`iS~RRCfYugGgTiw{sWSpEwwrk z@^KrP5VC_i9`NLJr7(3OAexa#^5|sBY73vWF^OZnEV%Lu5zX?Emt`=RRk5-o{@mGk zbC|A~Ze#R&G+d=BqR{K*hJ&R+CesJw`$7ZTO}UNzq2`fTWdlmVaxA{i)m*88Vq3IM zab@+Q`X_tUq-Q_1>SX0YyJDR?{G8p6^7qeO^;DP=tPPiK<$d*L>@CXf@?GUzVxwf% z9T#~!4<=>>8JDYVny5NFONC@P{$7fYPsVx>TUYpJsPrgT>G8;KXgAsE|5;htb9KH} zSw$RdNNF|wsJpZvesYMX?%QdOWVl}T-8v-u^V^K*pLx3QZve6a|0L5!nxC$n7Q=9j zH%l8!_%yk8Ex(x=eMG=lHpDYZ+HEGR(9(kyQgWeHHAKl z;}nCc|erj1%z0}+hb#Mif@3V#tgX0AlpEOXq#;$6dIM3|1*&C9|Y8GjpMmyh8 zYklOFiP6eVl}&qsky1~Ux=ck~ZK&ug>VCG1^i#lz`rt@S`ZS*5!C!?K!2=|(TejDm z5%sk?n`%BS?%9%`pI=n2uBo|5Uzxom z$fhGC*&cd-`3VyqN+y{;ZQIw}^(8zURpJHl;2xWUGewJVZ8H6Ia zYoB4mBit*#I>HlM>vevth)3Y*Ek-Z#RxX6Y=*OD|dtN96N+R(Ldqr{$MGPn_yz49u zoDNW$Pda`z^!Mq)V72Nm3tcVuFua0-23J~)z-f|taF&eLCi8WsvE%oh>J%g)U*t;$ zSGtdoNr*|3PJ?nsEYnD0_4jRSL_QdpW={`G;;!h}!A+tShlh$TG@Zv#AkexdW{CtD z{a=uP7H^>4!I-WJn&@ktSTfz6D$ z8FUS3gUBQ;ogO{KiIQY0z*P_lQxX|EkID^pCrYy-OR4sg8z=^(&3TBgwuOd&WmiNa ziYSp=Z$c_#uZa0EGuxa$yT{1hb2xiWU9wSRaje8j8JaC#;P~2X6{L9ar8+N#tL$k( z;=$U0vK+e>fW$=WM`2D$w8o3;{zWb^KQI(N>Hou&v5fyGCIEg?+e5;@6ss+#2d1T^ znLjJAoMV<-$rBl6L>j%&HqYhBNDD&?{3_Dt6jZPureSFc4*Be41V^D_YO4jE7B9rB zZbEjwQ(8(xcDE6ALFcGxcn((^He&II%@q^7el@0co(;~6MhX`Qtsr8FdS1uhQopR2 zBvm%q3#eUQd@D?9_s@GhpP0g2x&Wb7~LOf1)uoG-YCVc=+Bx zC6Z{0NY3)iK4*3ll=@0=6*_}Kt2{MmRu{*!4M5tcwOlP#Zk_oXk z@Mx25B2=$$JYD#p0F^`H{~yo|SXwVFGqVzg4{cKGHn+KEi_;GKx8gqyl^q=iVJ4&U ztZ_0WM&u&hSM@`5jF0Gy21(nQI_7C#NwN1P4TJ2)=p|^Xt%p0%Q@;La$=9=T-Y^$U zPl4(|juE=Y5@P3Yn=gcqYxD_qq^q`xi7)eC3LEO`3(j6PdP?LqdMUO7P#$gX1R-yD z(8}vO_x*jgTme+@TNA@?7pH-MOJu*J4HlU@W5-ptB?U-9JyKd?{X6Gqcw1WoQCjtu z@ydaU78Vxr8wY!PFq)d0#21qu~&esy@wBm(ixZa#lCQg;Sc%fotdr!4H z!npNO;!vOA?m4eS{Ft;bDLyIBu3*jdF@1k5mMmF_@%%L6U`h zF&!_P$J0nbf2Z4zu6sTJ2>_eeMq^{E5Lyl!tHBF;)lShFlB8!Yxw`wIT(gv_W=9^> z%i!QKP3c08YN1((t2kY1*evajnJL^ zZe%CTnbtfLjA^kqVqAIE-mMoT6EB$*zRNAH-E9nCX&MptA}T z9Ofgq>%8zL;$D$mZ*J`fL-d8>dd{)j4MK__AlYoVljx%s65e{!Sqyk{OLed!yQqAE zyG}=4AwDC7C8r8jGcF)!MnvfZRnnSFY&M~>O&tz5oy)rSbI=rcF}9Q^_>s6cX~+a^ zQYoXkTy_f*f?5Q0k7No|JiI*nMi+6g%GAT;lHa-{D-skO@Y_MWvS%%FA(8JVMX$zx z7hBm20s^Au%Ww1&HE1N2w9xiRMUJeWe3hAKbqF8J{}63E63HAZPIusDyai*t%J) zw;4CTZZDcJnbG?=4Mn*2hMFXWBw@Bps~c{{<9inI2F9fxhI*`NHngKM)^s3=_O|0WN&|)oj_2pqO6V0 z_xO&zLdGt2(Ff5@t|U z2<#CJYtanZ7b@k(&M0mfEEb>)Sid2ezuJ>{RkuPFYTPx&FJfRC;d8z(Dx11@U z{qpu8memthtP)CoZ9Ma2dY={uxB^nDENVhf2S)MjnY=q5f-Id{skSVJM>35e>4B{J zB=txL!2X~FC9`oYzM4w@`-KwHUBGS_ZsMVIePWJ7hBA{N3^Flq!Wt&AuNCV4E)c9cvCOCnX4<1$}yl6pk3A%C>}gdC_%+g#Ed;& zt-?D}$q=UvDNf;P_wiNE)o~sE67qH=>@&IbS=rn@_Vc($7~;P^PuY&g^Rj^QehyIj zhNg4a<0^b7t%6{}OOD%9_-?0ps)6S+?lA@^nrWEDa#A0}M~Z+zqf)FaaOuX`xu z9-2|CxiRPdTp{Lu|9ank}x%BPs7{N{=ma^ zg&SUY)W_^`?*7M@iZatp78UD(`=D#$puId#O3A{t--wJnZPUk9;q zypW&n2z%0GH656q@eKOQjm)>hXLibS-GY)WuiO|C=?gNqOHIWbPB;7rZ@Yqz+{Mry z$iQix2{7HAf{Nov(i`kzps^x%+GI3ceW(@A{sa?+F>TmsQJAPp8Z2$FM zzqX(t7Td>TxBw=ltn9O9JZRkPBFS`y8VE=Ej)ntOR4I&P*75ZlS?&5QxBQ;sSjswNUMrUgs z`%}3=l-Dl6#mTm+5hcU_JOIc$i0t4CS}r~4!~S^I0Jv6G0$5PbG+I)-&0iIp|GwX4 zS1_}Gg<(Ch>b^%EqDYU{H!Z$RX4>AKotY#F9&sXH3^%d}wt-j2z zJ7}wM>OD2#Y;4xlhO5160|^&)mGC9gc9?!Eeo)hCII-wxcmSpSZ`cL=D=f#6y`Dd< zE{wZOuNYx=k|Jq#%cY|IE&jFBLWGx72p&c14|sQ5tc?uX0Z}FgNk$Q6womyIo*-(` z%4pH^EGXP2ceu{VW#~5o9_W0S1}O>M{4NeMT9fxM<-a5C4^W?f@%-T2aYav0uT-hi zpl25^9kOrZUE_1gPp{R6!j&~TTX~*1d~9S-=cZaNxqq6?;x_Vm_=X;b1ZYkYy;ST; zFHOkuMa*9Qo~G7Sm?bSB#i>%D1k1z8jLO`%8KKL6J0|vnq|w;^-EhIkJKHmFLh}LS5sn*?-{k`vi#!nPQ=`I^x1kJecqBP|v@#=342LBvPx3bvqUkAt0a0x90&!Ec7i}?TD*&KnN zR$sh~4=?+g-JTE^e7X7qHfGf*9Ij6T6|qkS=J{}HUWZVo^6~@-A3bZhe~nSu?t7ljS#~YkKIeq} z15}@`rX-7RkX6|~mgGmYf;>+*CsM7LvUMNCozOsg`pQE8Qh{@*Q4+Y&XR);&6_?9& zm6)0oV80kwd%U5(%6-Kpc(xyZ9UC4#GXyMuBxa##+U9eLvU1BD`hRDquSAWue`v_& zHNzGi#=|{5Jj6T5kX^jdEOCF#eXr4s-7_w z>8tg*vt=3nJ5Mr4K&H`hxt<14rAJ6aVUsd5Gmk4NaM`VPXZycK+^zeQWMyUjX?8Si zyffQXf${Cqi^%7)-}-Y{y1%Un++r~V71L9h|F$)ZRC%t7>LNB<(0EATLA!ZL{FVO( z%<+*`F@k}%g9BH{mOG3<^VayZU!lZ$@;)&9SJ*nSxY`%JE|=+?9f--FoQ|^pHD#9w z<6>MNVj;iPoEhx(r(=m>4l84z2 zL$YwZIs|`yRo0wy;9Ok!R3%+g9~`n^b6HaCk)EpjNYmY_rhlFJ3xdjStv`O=FxMUQ z<2zpNjpybLXa#mMr;bOx7d-mLN#tT{U{>yvzSs6-$uZ1AqNa(%of|Iesp0oa{CAr| zHxL&X3ex35G7vnk=z`M~`}Yf8hyF=AiN<4ds*m}cK)DID<&v~UGt%vZl6-B4!#RUA zeX=LX(^vPl#4(e}l;tGrlRNd1c!$fIZ78KsEx7Dm@J zX>@Y^t>mnTC=;7-WEer~L78vv@(EH39oGcgkCtDc3mRkPKIew&jg+)HLky3$gi94r zuKk{;kKOish!#q3JOYadz6<{sG{jrcB(=JJsj8|vzr9`H@ASAJ%i{O^vB{Yw;9Z1= z;Bx$@R?;@ZNEeN0a6%+(`XW3U z7fu?jWCiL>?c`40K5;@yivC8dkoIUfvT1+YF@*K1GMduwu36C~qrDECw5UA1Y9RQA zgGPb_1eP}B|KkLx8Qk67>2(|F`;1fZx$L5W#*&-on|)q;LO%DXEG#TFwY4njY_71J zg19ZG{H?x?C@b#Sy$xY#;R%1bOVvEpsuvOMxo&7Tu(El`hube+OdvWPg zR0ghzt_scm{e@aPUm%o1J~8>DtJrL(*fe`Jfv8&Wy8(-yI1Y>PkA7jkkA}>;u(S{Cbqg*K`K0d~2F?$`x}k6dOe4Fa@c&0YS*eVo20@$&ied0p{J8JNZ34;H+?*tK zLrFB|BiS@MMXt`Dqv$9br9@R zH1&$$@GUbLtHMF;YiP!4%}*H|u7eAe8sI9vHK`~@oMf!%-`no&NjJSi&7Z-K zP`QUtNLuTWy4u}LSTH;1T~`t0iD)5-8$$8V2J%6-`$-Uj4VB@@B(K3ss%?4gA;waY z#7?kX@|ls^{=`z2KV{BRQv=6{)pc)&qzn~%xR@vlJ)iStwq%HvR&y>aQK9np->dI{YK!Q&55hLi^jr;{8`?^2FhD;nH&>NB6n3YZ7$T z4%(#o!MW`xmQL%L$>D+dR9-*YWTMV6?#wuE*2pB=Sd`9;n9>&?qm=0?_?lI?)rj!R z0GYxOx0I&Ri248F#q!h zRE4?U<@J^XJ^H*=V?c8Xlj?3UJq{5}i(PVheG7M{S$@9h_nh#)LK&l;gnzXFg>Pan zltH!U!}_2N)w*BkXp2o7qZ9U~W1&x|TqM43jI9q1z5VmAUV)Q;v1tv~`WMc;bM^1m z(SGJw#Iq-QG<(CZRn0;tB$G%;^Y#>*k494KE%Bj{wC_Z@7Zdek2%K?I%|*7|dwa04 zpI#xo@}y{=mui1tiJLG6)vtM!FIj%|&e?O9s1#m3+9sw8dyV7g9N)tr$tbzQ9TvOW zsB1dP14+p`l2K%CT+IuT+a32+pfOC{PoN)+Sc847KvK51gp98 z3M2Y~1?*tYm^RohJN#Clb7*?#a;)jWtFj;U>su>AtA8s=yd;8fzJsNVBBBA%(^`A2 z2!3-9$H=3}>O77`!+S<0_@w{dt>b()UP=kqD`zgEx#5i9`tY0vS@O$`S3Ulw_h9~P z&L>zut8Q@Rp{?gK(tX}945wJVvg_|KZ3=$EIHjq2pgnvLbfg*c>whTCRvV7Ja7I*6 zi{wCwmeFXsKBk$9i(TRade+I%P^OfrZuo1Nc*h*ec{U%$O7?-Fn4d3PC}LJzPU=^R z)I%KZ*CS!Md%6}fj$-u5$sVb?52!Zxq|9no~SoJ2`pE>5M&>gHmxY20@(Y+c>69Dps|5PaY%_fBr z*Vg;^G5KEzCnrI+S@`(;8KM||?fm8@#GXiz`!^)$Q$g%`#db!!+>DxR-Ou=pTn&-J z12*-5!YC$aIo$~TA*PSq=a8J^_<=gNj}VRx=3311n3P(%CQ%lkOsXM{(DB! z0u~+M%3uGA91CGr7sKUhT^(@!c@l4uQzE1LHYn!Ty$GdA_Y~CeU{K%m+ zk@WtquE3Um(#_;ShAg)F86yR~ex|43PP=rT`nlekAogcVFx_I+rc<}_SM5iR#|0Yj z(%Yfp*r67Qx*9%LZ;IFwExw1kijxCGP@G=CSS{J%edoiN03A;;{-jz6jE&&XVw;$& zn1M*>%ngj`uHhT$M`~D$+v))>Uzo8Sbz|HeM5i!Og<7vgHvpcXeQI7dgxm9>~0;r@Za z?vdp|%a#8Ign7?n(E8>?5-9~zWq;)NHH&awforlTe%1IOtP_F4vld!=N*v*+HFBAf ziM76E5u4LgYh2w1#i`>S#x8%`d!&VeqGQK>LTMbcMoC%ROmRoL=b(@BSYOk6Qpz%S zY@kJN3M3I-Dn(b3D!X(>V6pK|Rmh=|22Gi+304rFLPcp-t5=^!HSsll`~L|0%DB37 zpxqXCcb8J!i@P3*ySo&(;_mLH6nA%bcZ$0^#oZn5VRzfz`~I%v3m-ViKgmpz$;>lP zRCb-tW-|LtXG1(I2w-0ld|3?!jhi`TO5LGey>nR2T2D3~IqHs*e9cV1l@Fd3t$?Mj zx?!?#*7jk(@_e33OX%mSG@WC%_Z*YE)YP9su9mT%=Jq@vd$c)igcz&6QP?RpWq**- zQ9U$ICV2<@4HCr&Ibrk|D3*{?mp=W zw+z(hoF8$F_Pun&hYA}~@AkI+MDg9ShlUCEuJ#F1D^(0g9d#EjihNc{mL1qPQw!WjPBEI#C$BT-wmM!jxOC>57#7z; zR+_I|Cx2xf&3V911MGin9lSFUCg0N$sVEDvU6U5x{eeH8{R)|I*IS=ZYXbkW&v4A*ozH(_itJCUV(ndsfb_54>hSo}#C43kf` z=$=ye?s*jfYXItVa~Y=2tmcCpKr@LwZ|W984l*tgCi*La`wRbH?;C? zeKQ$s&BJJMaqh!Ae7G@^o0Zc6q%%1?x*$eeeR2Czu&1UhlbenMU1@9D#Z^lJ^@y-K zgN-R4{X?)>uXX*0^yG))WkgU7&V7H^vC)(M%zO^9MgL8kin$fjo^73T=~gEOs~t|f z=6lI}rs<-M{CRg>NY)ZNvXVdqWJ5r?*SZJb|G{rbgfD=Y(u4G#B9#b%BGo1p|-4_yko0Fj7-j%@a_ ze2FdJ&^JqpQ~#_`c7R!jA*_p#w<8viDY{1Y+mJ$*6Sbh4<9CpF);fgo#Sb-AQ8oLb znrVhlm~f~AD=ob^6Zli{YiXHHx>nCUZqt@`Qu1R*x!!|PtZxrAJdWZ-p`fHBoN&ke zkxn~$POehJ_m z!GA3ZAN>;Zt)o%ELve;cS25MQ_ytpUJ_codZwaDQi|M3cHcJ|}hNAQlHHM-+a$R>z zM`7#@`A{$p&1=0(XRTmx{RfhPyiNBWgU*T~QM-(cF{rW8YMC^qDMNALstAXyqJm)x z*V9a4xiP>kr0F_n2O)ReEO`PWhhj?`=F4JY+6DB9Hd{-UTs(LZ+(A&%zWsG_ORO+= zs|(DM@{8{n?_OY^l0>Fq0K^{efkp|BD<d`wc*SM^AF z+E?J7Lhb0~e#Y!JCkV3oeiO*~5if+Zyy)z11C&CRHMMAZIB_n`niAs*h-nf%mMkGxgzb+*d0GHw*VI_ zILbd@rz`%?x;kBqe(5oWzByQ$DW%^$v$CcFYs|>9(s?9Yb<-CjVZh!@nF62>&jdEKi^2NZ;|9X?fYL%#NxJ@BzzL_@KKOj&2gd0fXD`rW{-z7s(tw zB>r5~8b!T@k>C!pSZSf*XikO`B!8HS=*<=o%SaCB-BBttHf3yMY9QO|;eLrcf;vUP zP~#M(GWvkjVvGd&>u%l8TRUb7S%vpzmgeRc9)IQrd7CW6gK_?|H@W)HqyTfFs{>`o z-l~*A7@IR{>l*LDGI42cdnZ4nk6oCH-@6P$Pyt{z4?|3#iRBW>;LZ842!) zY5aIJU+kk)7(jeI$zMjPW}^-7?G3sOM%&2hVD0mNx(QzWm4Jd4-9{sZm8rV!y8BG6 zdV)PDGqVzEhwjXjPnFpN8eLz|&*o`d50A?hg*+0!FQfwyJOwQ@vtQLc_a z%ACkG7$?n%#Wv-LLIdS!^3+*=msvyN>GqEu_U|Pan03~T_K*6E8C>G zQTSw7Uk|jHHGc-sS?e_a8Y{E@vzdp&g}f6OS7^*v-feiCeUd&n06mp&GKg$zA@uf+ z4(|(*?AgX2I`8jGW#9C|z9s1AHysY7G(hsaWqLw9?df9~s<`~>UX+M3-*BHHwN{zH zYK?!R(-5Q)l%MHhyW(l8RK(!FJm*1}R2F#c`Rjqt7Is77u^cqF|$G3YVe;^%3v!gVV%;mYWD0ly+kNf`3D~6U9 z7_eb$B35>M`ZHVBKZtwyKeH{T{Y|ilTuzQUP8RLrN}=LRB1+(a|<%W2Zxiarx2|2UO)QsoV7cv!Htf#$- zNnP9c@CaXPVCDA9$oI;}_&8pFX(21-7rD;;$A(9c*jq85@P67!_xpw&?nS8U#FX&px%_$Lu3KVfz_K z%xz=|y1jqjYtANQ5LDtcl&k}E+h++9-?iu|rTa$T&!w3!R6$r$NB?`XG$cxtgs`)- zYmH4zZ2Kj`7b5)a#IfhIwFAj^itc+m*cJ0IaivdL>G{d5=qQdRE7d&WrtzPOP;Jd_ zWZm0%gk|_|QSv?S5pV^675-2WB0vqnQe(MO8nnW!W>UQQ+8qW!4vxt$Yf{>LSW`Hg zi3Et9PRa7}hLgr`*=w`Kx@PE$tgHzT@8A9u+@1RjFJh0DHM#J)a+YVjQ_4-lj2k{B zf|1a=o0RACm#adxg!9{0#eRl;kDmr-G@5}_@KpPX-|}Qa*7-!Y{O&Q4i;Y)XrBE65 z1uCpm=~c5F=gQ6)+yVClZ(={|v4Vixzo=6^-(+AOdlIe^7@DQfY7@*G0*6cqkdIm6 z`u_U{Qb3{B>`04(f^sDtPp8G?%mt(dmv-XXRLm7eM{Ntsl0XXWTvcY1kD-35e0Y?C zf`RWowrj53?9XL?Awk43(Z4wsHITK`FfsNSY#!r{qowyo3M z@LJ=7DNX};8lnmYg5lzAFVFbP^+?ZwEPPBWX+$v@W5E;i5B*fjP?E1b%)G1^^}h7k zRWc(q^@+bHJs1Wl5t4f_L8t*Ey$-ms(@2k=2H;%Ari+i58K^(LH#v%}9j9tX9X8k7 zL=>vb?8eiSki^X>L?O^!YdKG%G(c%!xx-R;h#!(OO4F6YB=maaWo>Ils{f^K8PXi4 zWk>!&D$r7bgf`5H98rXf=Vy9i5ai&%hlb1F^b!|f==*VW&=mmqfyjymrX>xNoXLBn6__y)gh@fRwM**dN$w#0uj5{+ih znu*uhT0se*d@y`FfBA))d%EMT-@Ut~94 z&dgKC_c@D>Z=B9s{^IwLZq-wlsI{S&7*}Zo&aQY6(%Agk@lM7-sb?{B;=9!RxjDVF zy0J%!M#wbu2zg0&pW5+8inRR4fg*$T0alyA51%E%p?b3uYS0V*Mjr8HE4Um=c27;` zD94?(uQ}=MM~kZ+H7S8aMcP$v*Pon?;}jo@>{?MEH#!I0w|4ru20St2TGJ+fI zQP__9jFP)N?si9^s;-gW@@0S!r}jXK4FaVQ4S)3z^3)ZW1ze16eP!`uQSy%=10I#w z&kuZz7=AH+4&V9$9y*JJa96+hYceQ~)N(L$zw*Y`D6b9E&|YZqJG&sNy-&8_ktz4M zel3>at3M#NUIJhD+s}=x`5M$dGqt`@i-l!gX!xBEo!HGkN?`6`A26d+Qo(8ax3}+u zAr@cNmwXf5STI;I)AS||WdWn)JM?-F=bt68^iYH^@aLumzs2gXUw zzGf6nn?Bmai+wOzD+Z?hx7r{0k6!o~Kgrd*z(NVmo-+KAZdf8@Fkd#eGe zBVL<#vtCTFoLWYL0;RL!xxn*I=|orkRWb|BqV7*WFd9Z1Lf`}w!_gBF5vwal6BFWw&mN6?1aFBNsZ_Jjz<}_KZ0(W1rgfD|b z`#@*HVMOfxW!p42-pm5vrW>h_obvYOV}+HmhOUTdTm5!IK>Ny3 z2B|&m(&`M23Ct*fn60aGogL)Pa9=sLOsf5WQgb{3#N2}IMiELdpPJ5-`t!MGU~Bw2 zl7eB_Iw#@bo1#9yfskCr^6c?jm>En54+B5MpqKma@bvt=TdJcv4k9p!&9f+@SB)24 zi3I)jF`JdzLmuGlgjJLnO7dougUQ=r#(k3BcLI_O%ULL$fj)E=TJfz_U09+ya$+$gUsW4?2tJkV~ z-4&{7A&pl_sNB^$Yvj}FlTrOPV$rQy0zV6XZ)beU;U5KH&Jb6#%3 z`+l)Jn%VI2?hUyWSzlVdv^3rGt_BFzHW@D(Nxtdn-B7lXg)sl!nw(ySB9%Nra$@4P z9x(7LMhNWJE)c9EPtf1n_e)QrfT$7KnURd9p7u*QH19EfYIxQ0Ra2{!6dZqY?P+kI z-ZUr=|69;yo82*$wx|ep>03tDU*-ENH#Dq-OUlFIM`Yw}L?9S! ztg*2%mpd{ltb1s0kJ|zs9SoQxX?xn|pt>+`;wuBd#PpkE(H)Q}fG>EGEZtZtoybza zWMt{xwll7(`Qu1Hr-|w&$mN#yuml2EE+Ex*!jKYw+&~N7Wdkaz>&LQZWd&@GH^Eg^ z)qoi0{BLTl&2*P{3UNOZ(jTVXipf66V~?h@L$qU9n>Y26{Ug_`E;2?&$|Bmos!z#4J*r9-Uv~gIMU5JuXtlT^Vj0vr#nUYO0xs?$R(4};4e9e-~y9x z8HVL+HYFJX{p8#CxtH%>jZb+qvI`zqz4?|V-A;LOKr+d{kLN;# zl7zx2^CQa&ARU@#l8T|`!iYhd`UX>E_+E_*Nsto9U8NnLo_zEN6GTB06H8ljyK6f- zG2G#EI{D?iv*2cpuPk(}Wh+O_d2;~kw)^;mIHV3Ypt!PCQ;!}{a|$Ja3w$EiV1?NX0(@mKpM0=@p!YOpm;uxlzHv2S80#q+cfRe2I^75`K+);LUISBZD0VaKqY(tBKv1xfl=jczFkA34Uqh{T+W`e)Zepd6(1KPNBLv{3{wKfBrNRIeHMEV z(9zK$ez|qJQd@lznkgDZ%J=)Kw&w_W^8``bWZ(F~!@~o}ahM%R4TKF9F+AnC3UIN# zOv&(Ry*!L*wNLA@OjpdbAar|a0S||N3Qk%pdYYPQ} z4;Mz7oL*%J#hHOctPWu73ttFnvOs9Aisb`gHwx+O88cgM=(6_10H?OUnoq9go_l>n0-!S$R#( zAapr{9C_Q3Kj5oL&(GQsgze3>+$y&xD-*!i@Hk6=t(tWK<&he?mNGax{A)4&YQT0; zZ}vYbbM`?Mmxi<_Il&T!&(Iei+BAK{mgk{z~S zv-};~^pu<5k(q+ZrR&R&E8pwcT5ng~_JFTG{{8V@;Kxg2NC8@?-n@^j0n$7Y>f5xkcme!0b&bovbk6(&7V7VY!R5^E!|) znbynWTK@wtJ~IrJw1hZfOwzwg0Vg+rIp5&bx_L+^ija>$PfyQ56{xT))Nc}agAf1- zs;InLEmv^dxeqKMGOoretbZ#s3-98(-N~==Ast8vh|S{iwxaIP;NU&aHzkuHLed4k zuXJ{PPU&Smlr#g!zn>{rt@EcU6|m}Pj)p*fZ7mCsY8VO>)Q__SSo;LBTgH`!os)AD z$QlW(6eC;MxbxfJDrX?4bk=CS#tTf=o6`eg9qik&JSPphdwT=kQ}CeR{aH2B?8~%w z7C`n!d}San#w$3m&5~u>cOJXjodc3G<=uk?#Cm_w4bv6q=op(}wx`T@A4tr+-&)Ks zdUrLZ#Wj&{DRJ~{1i)7og$Mt4YcgvfiNq6azp<=z+~2&o#d1eMX2FBw+pn}|es_I& zN$o{XO)A6&V!xbRP6}kQMJUeh#|Qku)Ut3-enXLbyfSDx6L$L0)Ays@+Ss^%JvO-D zJ+Mzvw3hF1kdb{D4f+&aU*n~4$MY?z@#Zfz@RdZPxLE$v427{w8viT8afSQKviKGxj0J9(D`RYGYHE7GCo$)1Oi?W?Ee|UMNl0ABfg6C|c&$0`A$BJOQqk~& ztCzInC58%fc8Ke}(6u_t0Kv?HY?yu9EMQ8>Kg;uKesc7{;jSFi*>3$E_e2o~>r+F^ zBr= zh}B<|AAVp?9J3$O{-Z+^TjXTtoXYes@1MICH{)JB&Tm)Os6DK#tRjIgrt0@c;@jBR z6l7C{1n=pg7TkYN$H{1E;il1QQe-2u5)>4STXKGQ$m)-Mo~RQ7e6n0XVRgKTY7j4i zy_J(A{fz}!^Ejsrg@Gwr=^I@DFONt*3#R(LZ)H8kB&SBe8cUOI?jav7JyVmg@Tv4J zF5+0XKeLKP5sZujMT!i>tHUQbCIN|S>-9%dIM`jUOlp@n**QonTE)qIhHn3}>ti49xO8&=VcAuPAgn>{0&n^JZRazyuv2VOei9v5>Bz;Z<NLhDJskK(=*H;XkR56Mp*o`o62JZd(y-tNi8Ktwd;F zx7kRt`b0J7z>#>UfLleA*P?YOKCinfTm36grnW#tAVu6@6J68+a^%JDgWQ$dBz+6G zmlJby;{ne|{(7sGjPi1wIU`_3EB@wyjM-IaSeWh2ky;A7Er^_)oS3vU-Rm2FEUW}} zBrBeNrRr@dA1-ckvsG+za@g@wJzrPR@1wYYYB45x(WtP7lruFob>r8soX6em?EqHG z#S9<-lYyDJ_>d_ixPahou}6#o;hD&om`-zJmX?-`E*HN5Z#&(e!UL6ZmJ*DUnv_?o zRHztL@Gk%ssQuAEOuSsS!j$0czsDr769h7EfuV_i_Y$DuPcytZ8Aaa^MSqH1cMmWQ z2yDAcrdItqnCcI_0(d4v0*xqS7ETbKjKwjIi$7Kda3ekcs}jC6@RstY{6AX9|Bu!1 zZ#Vv3<-q>pyk$yH??Hk2n(_Sy-X$!2<@~m4BM|=GvEF}o%$@c%9SHvxS3t0y*p4prdqvjYE~(f>_S|BM{i((h&TXMChc zP-e?O6Yk&MO>DhM4;V$qzAscRCKMq1GyTAsBKljrQ~yoH_D53rHg=ah4zO7WbA}TZeHy6hl4iNT1!<`lwlomsUN|2#aV2Ea!rQ;9sBGk;4=I zrCw&t7qNe2DCd#g5kOnbaGQXK5&~7vw}BkYbJlgW@66;${bgjRk2)+rV=Wb0@;Q4@ zpl5MEp_&DUgj|MQBUtu(8!oQ$GgQ<`H{-^!l}(X|Y?kuQ`oMv8MZXbA8{t&mLB`&D z*&zjF7ZMDTbVsNPRDsfl;Pm!Hzi-50XWLVbh_v=`S})*sUtS_mD#5Z~Fm(!}1)vR_ z9X#Q;M6Z39NTFJ+)2g3l$nILwrQ&uq-EWNDt2M(bsmZgRh4upl3(AjsTU_#ynI0e| z_vARvl&PoAcC#o|(-+^PdYK^9o82fTU&iPZ04G~JyK!x2V?;?OtNG_~I*>B!6-9E* z5nnKj?#^U_y{476BCh{A@LqwHNZTlooL4(?BD3S3wz`tyRD>pl=^d*QnsV|YwZi&j zWMe`)FA{7XFKo5=Zf?m=wOeDbc+OKT+?29bAis>JcC0vMkRWtI!*x%yPK0oQ!^orJ z2g1HQ9n|%eSB@GxB%!n$#2?a2aPj9uNPEtRWGqa7E$_mS0hxbyFGar3c#rxQz8g>t z5<~?xIKGrqaTT@BaK17Tn|8S8-Lq()Jj@aLZX9W0X*zjEd~B#@A@Z7%Sw@87o|jhBJJh*NZ+>V z#uQxowNnY3<#mNx&3^EYj{w_~z0bd#4xuk$F!^H~;rg@DD)tE?cbvjuTAf^J35Gq$ zqW6RnydVH$7+IDHwgEEVgSp)CLP$LJ;`ox{GPbE>8P!Y`_Lr%U-7rT^OGg8toBSTspI6jarUGISWBsKmPB2At9MxH3LRLxxLK z#gw!9)F$#Ok~Iztt917)f&{X80o44DO7z8OO7ybe=?w1&hLt+!7r`cb#56~%1)6p9 zt31d_4<=a*DWx`Wkf7KuLu~`$?h_j+kdr%STZ$;D;u<_(NU9=|GR@iMV6s^vHl}V} z{7>((9>+BOOUgmvhQ@N6w&G&)whjU)a;S&bk+I$xPYo^=u%!2EM~aB2;p9cGp50c8 ziErQ%DJG_d_H$PYrZx#>A%=ejD;(NdbL6 zP?hb$)qv3qiV{$(ohmaUyhuD5e}l^%+4QEbcIH?K>Yai{vKSUWR%NIR%&~@0kX;xN z>u6Kf*Einhx@=nuP1k7^bC;{TE92L46Uf>2GF)8wX!KSIe>{VO_ZbR>65EzX+s(;V zwJhNXlne087uIvc2=(t{kl)_u+IB7|(df$hK-f!VpcxkGw@e47y+bC}II0TA#mbDtR@By1o@JI2EF83#9UYSqMkbb zZ1J8Eyhc;9gXO0^b6cK5u`=^)l|awJBUnx`v^!%+Lri8D zz}ZyF(8S!&yD;s>QQ3rGU26N8sULYvFFYmj9YBojK8&lN3lyD(@EY*;B_AIXPnJ13 z>!at<&xaI{cqHr<%c>IjHNG-q-Tp-SG=)|=%n^|O(JKs}@hcWCw5+Bq2ry@#;bck$ z>3bXe>!S^7nK|SDEq(waW}n_MJ93*_b5~7$kp-Rx2R^KmmOxBfNM4{I+JGd|(-FI* zdn5R;zdWAy9RdcXqbOo8<57qLzl?%$W*3^}>KzX1quX*LhN09irU51In2^u=_5&=l z8G_0^W|H@gxccaQ3@B*X89hioW8vKZA&vdA)T(uqy5Y2di2Q0|*2$o%0xSrE*0Ymc z(s5C?++v)@__?j@+DGJaR_}})B(tG9XSYef-u_qPt8Y&C#={9!@71IL>r<679XWkC z=60KbP|(((L!e$8cRw}l_f2zQp=Snh*&S(MK=R2aI%Nr+ z`NCfR3^j`G$ZxW+E+cXzmm=oKe@LEcTgClEb4<;a-&(6ItUIx%HgNcY=O4tnWudJQ zuDOhltgyS9baO+nRD0o~bgOo(AYdd7w`o~Uun4`utYh=eM*XMbkvhmJUW&e;A#EXbNgOcI#CaAy_Q;$9 zVmY)-VatFr1LKWn8}s9d7*8|OHk}$!<0^j!GzmFH8efTgVV3MI}Snzz7T9{%cK6Y)NQ+_eOPdGPpeneZ5&X zbpMIJL}iDt)qlSfgUSwKr&8YC5HqOT zSUN@Q+zW}SH0*{b(W!@-(!Svz&bwE2V`{&O7be)dS=4aOj^aCEI)Ou2fyj#2Ah;PL zh?ooV@cwz}*)!&bu%)k$9FE7mej>}6Rjk}Um7=t|UCiKYhN5hx8CAZgm^465<^(;G%y^U(p`Qwp)`Q9{|Ebmx-g za?STNB2~3a6BjcJ2^=LO_{JZi*8CirziqtsX_jcWLzuHTNMrB$ z7aS+sQe4i~WQpt|lF;q((5O{on9mJ&QwzYPEZlQt{hHANM-Q!vjY&vQy*cI7rzhwe zTeIv@%OrHYzM2BhXPL>c4AN0~^-ak$s8Do!axiCf5=Q#w^c1Wm$239!WAnAQe%_`R z!!Q4(V4v-<(rgs>O!^hHxK7i*rQ}D$)MpbOPh?gL)u@@vK;n!KAWKdYcJw9v z-#_C1UweU6syAYbogmjA5M*;F_G!-kR{iP6 zW`N$MXP4{oeOXfEdxW{Op&hSir5CK4y4~!RPly0z_n?*iRcD91JdauHj*Fij#LZ{{ z-;%6oM$T!LYW-w>V&m~B$lm0kFa|}Du2jNzX$G(?CyNWeys(8oMD*7zWRI^lT;wAb zX}!X_*niqo+Nr4gPMTX%{;@}N^K6tXq3sFkN~7KT{m97ro-U}NG11`{wIa!#1zIE?2o1Cv#{kIRZBvzqxVVSwy70ff=i$k}6( z(`7Tsv`X9yX+qtJ#p|TDN7OHEDBdMP)Rp%Yb*<gT-UG8WZz15f29T0Ys;_= z6QX?*m7s5tz9*S@y>M>)F`aqdr5q9?A^Q^dR8LpKa*?FJkk&26WCb)fu*R>|YWfHE z(_^bQotJw!X+IsP;e&8q_i1112hI6TAtw>kHf*sZbeTIF6FscqWPYoM_`yFg#I;G&Qje$QLR*3GJ zO~d}q1bXN44E!Rt0P{tyPX!r}f-CdeJ~0am;#Un^tVTW`w$-_ABOmMx~js;XV`&cIsTN_3Aij;u?JNFr{&IIhZMf2m?XGC?Xz_5->}{W1S5= z+q>pmoeP_`pz?1b0`YoDhK|?XVjvn9#N@?wyXg$0C)#4$iRJ41*ZYskRnmorL=AfQ{z zxgn1^&>?@0ai`I-i80S?KW;FcH^Z^jOZeYMZcYf>fCm#6 zcf3GHDlJG=OFej4j}Z@ReUMsioTVSff&v3vcbnUF6_XL~nS5kU>CSYV2q-^e%To9h z%yTEy0PNCc+y%3491euORjS|BCx#rY9XtzHCej7 zP{#a7fyfQP)U>qbfx!$u+SoJ<<_fA-k|C<`t2W=ild7e{J%{Fq&O7eSnL|{B3Y?C{ zqkSCX3h1*N&M zTS+GJXjqf~7f8D<)4d;a70KBxcSiX~EumKxRHK7^%MQ+gQ}w0%ALK zYfP4)wYb=44itOpq>v2T3EeP8_$|b7m_GH3jSU1z9xJ~l3_Wxg&D9964x7Bhib$@aUHKeoz}}O9rgvZMpzMUwhw7whysO6@QF)$ zM)c4JHx*Pl6hcuNk+l1E;$~q>ExBeSLDJ7|Y!=$^`=fR<%n>;v3Br8mPetr)=#Fn4 zJq0ROZn-c(`p(}I3{`^d|bj@3MfrOe0Qh7@x z`CM>YN@*zaz`(-hClJ7Ey}9>}Ic0LXz;}@qxxMrmwQ9DTu^^z(5ik%ED$q2Kx~lEk zGuSAQ-K4ZGp`4#LwyA3GBNJJuiAt@F)H^R;y=y z0+LB~wHJ9weJ!^R_h949l|H4VtEKf8$LGWA#dnX>K-O|}eso=*VI1@5j@DgO8Ynk{ zc8Zi_zls?R`cW+4Q+?t= zYqpS2GgHk3j%K0tRy8UP2W$=5;Ngk1_Rv;%3q9f z4SDv0=^sDVv&NX_Pbqa@tEEp)RKdUdA0Ac~2$FfOMS%puh=N0=nj1QJu07$p>6gzI`s(MLY_csJ%V$SLq^&BmH~H31)r<5FweCGY9Wi* zcT@@CM4gKgqsM&ZQb(pvO}6Lq3-(C!iFt7tEA-<7VqGd23Bcd!s(aQUsB%{ZT)(#y z3;9baZ2U~`uI-))MoU^^z-M~5c<`gf`R44qw7FJVK6+zJsmEWWHwO+BORI3l+riB^ z`Gspu%8y7I^`Zr@R2G~K@UGB>Hpf^Hh%t^LgRfau4>}^Dzf5{|U^Y&+lvZx3?R%6F zY#8K;Y45S>2zVhb(_V!LZzmt+OC^OBEs%$wJvJyN+oVP8HR&W<-8U553^+Ek^@;1D zeCu100z{I`fiZLHlwx&H_+}>&{^=tJ`>z;8*CucxO~N~+KkkjdV*&s1qX8QDw4n^ z6r&=YA(`c9a)#QS*UOwz2Zn?of9I%dz)FT~ zq`|EOu<3R7DMSn6GVrAsTL}t*u6!!!6%nZ|5-`+zKXdI>X|y7(DM{}mukGE#OpX*s z8W>xQ+OuOhQJM;_e_PTM35%U%F7G}6OkKGx%*ZX2)T!uf4ND3W?#pm@eZmm2=CiF) zCa65*NEPw`i#u!CS=p0BB7l6vY41x&Qfb+5gcWEns8L*nC1C+Kk{OMU8`8kdk+WdS z-eUWnHI;5w+kSbB3|S*E%S{8e=U6*1f;?6(heqJyy!Ou4TL0LIq(-z^)(b6tKIGX{ z+5~^+{+(}q(9$c~9D<$!{9HB#Cj_O9cYM9t$orH5WQ02Yr_Oc*xz>`(uq?pf?;K>q2J6~`dR-oKGmq;TK4>0VUC=42lF;W1BtUS=`I0|cwt z-{1}~)+xc|TGCtXOnC(IgBCxESb_yGR}UzDFLV~_jII3igq){N-$_mn2UtsRQ9VCr zpqauKsYcwralY=y~9b=%c?zl+y<(oWS~fg}z8coGD(UN0=tp8}_#DBaO8<;97PS|Z;KH|&&8G7G zxChA!U%Qv9HPybmj}yU*aIQTuj3vFrC$0&VO(d4U+Q69}G8j$nRy7l8r&Oma8UZ<> z*^<$*COI(QyyV=xChQ(JnN>71S%t60u8?;WS)*R4KaX$Y=rggpf4$GbNZkZtXSL8G z>DQl3;kZ?jj}R&9+!2}OA(e*r814^oEEt|<%ExV|-1rjyQCML)YIbLrbJhlaH+LBC zogWHqe!Zk<9I{qgUydQsQn}_ljV0`d+IFb2oBZ#nQds(EC6bS=acHw@g-#&?o1U;^mkG&Mu-qKGu4KNj+v^axCbjPVO!3! z-jCV*Chys-om7`k*C~yVCs8+JlF0oA1|aANMj48;!qxF*(!zQY4hPT|I#!0>e~b&9 z{uzx<7}4VneZQNCxYG=OPsmzB~L!K@Lshq z${KCnQl9Eb{j^JXxqip4QX~=Z^s6{{&K3@! za?D>az}pzHpRwF|ZT?5(dzu|e*m3XS1rO|+H(*LdUiJfnk5DXz$-Z?MXF_J|UfNzW z8z8KSE{k9acF&J3h|SMP3{dmc*?p5PMgjK9xeI>BvlJOe*C|~ALBW9_eU)GM${T7B zqq-acXchilvH}GO9bfeJwsqzlkS6>-R3QjPy$CpH_3<#9+zkp)}T%&ni9N6(1B>;z9~y<)Rz?i3avFSp=`Yi&KbXJ?cov#YOBX zgLtq*_;+--9PCC99$}@lQ3aTX@y~}9TbBc-@&^lGY>uD6bI?{e>3#U2Dl<9ocv?3s zK2mz=#9#*~$bD_7pH2}%m$LWzKG1;UgB5_Q4#v6Od2}<&t6_FSS$L00K&iH9loA=+ z#n?c(EJ<~XS<8(cPf{kZffxRz?4vBEcK`k5&+%I;c)q2AwM3)fo)&96Z&~ zM2!-Ln|@uz#-E@WKScDG*qCjK?!jmfTvY*$UKi8tmCg@e*rT)}iShx?x=M6(C)$22 z%?MlKX1r)53JqWmozYI(fQ0T=5#rEcuk)=MDVwwgwD$;3o^&$LkP>;N{5AZDSyTip zp&xvlJv{B46}2ds5XyRn(@W1cs`yov%;?F!y{!1Jl{II-X53U@@+9#(#HuIydxU+_ z1%$qH-ApFW^A*hVRv#nC6zbb*eec<%E9I&8Cqkco><3eW#@=qkim}}q9H0QvvEwtW zrCvAIMSQn$_)<}1e3^-nwi=umCeNt*zzug@j(1CSDXn)roJ-;P1)>dq5iGPuNR?CQ zlFj4_NAk#%dR5WnVXK9HXG6A)P5bT_b4}q)40=O_5ylQdtPlzE#*StPRRA1J?R(8` z?M}$kTfaF_sAVOx-OA5)1bGH3x)%LhkD;u;BDj%ZV`R9%=6Mp@{%3qFioTW!d14NR zcw)|viWwgpMiKZN+y&N=>MQ0&4@&SA&&KwHE`i@rR(1>&oBd7elJlqc;Tmn;&~2A*7+(7(D54}MO)om zTB0W0eO(UpIGAG;ix+(p3)fbiLB&OE*>-lQ(Sk~a+lGCKdMlorhD`4}OvWp9xX$nU z;`8d<12OI>HSR`CAE_;E;svVhaV^g{UWe}Q>NB9VAC6Gr;6AnHU(=CAdN8_l+JG%T z8IX*1=B{CGBpXpz{EF9=bXnc%jCj`yYxH7Tl3t7UC3}`Ae zk@hEjd9X7}^l<-JY_T!rciW_oiVe29pq^te{B~m!4MgWYP5~wIKk%ap5s^YL0d=jHMYa9xyzB?jyyctG%B=g_b9>^>rA2AR={xa1T1nOnxM5 z&m^bdc)Y7W>mgc50SIFw>sgKN>{%dupZ3GaKX;}!sD%iY14c+Skuv5hBZ^vHr^!x1 z(MF0Q1=V|+)D>NwMW}(X;ef$;oV)>HdqcFz98nus3z%E+%)~r+`SMM9Nr-7>UZ|UD zUv6exaa0XeoY^NDnY0#6K1&(FDZRDLXYwP5<1B<4A>d&;udWIuvJXv64R|j^%}gOr zzbPL`>6_eqC@5#72UDgUF7jg%kD$|&A~@1-I1{`@vN+U397sJr0821h8=|U6A=c2p@oH1pHwK5;+^TgWaX8W}ZYPmwZQ3l#ZC&vuRYM_MkS>#ca zmb74H3@iu;%QIk(BY=US);C}T=khmZdHj6a+rSAATRE_L*&h#xTd>sd=V1FrU#~hl?Z%in_ z6YJr=-??usrz<~qE=Sk`LgUg+Y?KV+?3Cr*u@_Gu-=|$gD8z()-snxyVWXbhU#4`y zq%ENCx^|CNxrxC|&ftY2`t#0USs|ClUOLp{D^a~kTc0yVDO&-#B8f??7@dnp?c~pY zSq;cgK>Rx}x8a`)Re`6x31GX>Vxlsa97cvf(6tGMA~{J>%NZh>Ej`FQJzlSA7vzZZ zp-Zp;p2uqaEVNOzZWjgSDxCNSdWNiCaECzp#!$Rp2EJXsSX9TuDTZEuqlFlp2n8jD zPvscDJNG?0Fx!Wi^CLV+w&YO~10FzrI+`L>Hmgo>?tgXn)^AaEPy9G4p`;+4iXsgX z3(^hJOG`_4m&AgCfV70f(&fS~4a?Gqh;*}bN-y0FpY?ej-=FLHT-Wy>_?{o{J$s)y zXXc(c^O|#JDy#Pc>j0!wIIqq^02TDr_)i)l;}6yyqm7;`tP|p9Tr=Nu&n3kQWt;pI z(-s{u=cVNb#mhU`8riGZ-Fx3fK#;@56+Bc%7X}ihSFh6p{Lqe_EPBm?-?V7Fx?Xsg zAJ{&!H@=vSNrg`^HndG1o9ps>`2e)|vRKuBW$Al{&wgT_NCRu!@3_~G8d}acGZTr>0j|2m1ch^qXWACW_ZyP`h}eIK6&nYpK)2wN-`-<+de+Dc=zAI{_KPE!JaSU7z8LN*Dykm)e_LXn?swjW;lkQI@9Y6h9+_i_&?I#Rsw4 z-X00B@A*>J8%5Hq7r9xwa6}6?M@{u-esO*G$eR1+fm?^)tK_a{f({=akG`Pv6(yR0 z@^a`9=2^H%u8cg$0=(d`_a!;y&I(-(`jzu`bbzFubdA%n?X^BbR*Umvm@|Ch8e)F1 zWYfABc3QdOqIIBgAj?6Upr5P0X-9$4(M_;maS*H3MNTEnfjpLqf6&l$!uspjHT2Eb z(B_5cpV&IDrLBlxzcUVNWRwXyKVuVIoZIZxX#zLm))*HaDvymDa?Jm(u z+);{cS?zdnm17+ijxTMqcT~|=mJh*cc)bH>*gyP~9_Q9)DaGHH|;P_FO9Dy?UXmX86IhoLqWAmI3|uw8YWJUs>3azeCO%&n;ysIh)>o>G-FMC1rsI5{z%1J zuGn4Xx+}E%b1D{nt~fnD+y2CuoSpgaeqFdg*4>i>_jqooAoNKB=2TbHv(ct<$Q6h8 zx*sjMSI7C6fRgDV93oSnH#H7!x3>?->4D2>+$qab@7Ny}PE?+3J(_g=jjxG=)7E@W ztE&o*XvM!=%x5r>b->}#JVO_ExCmM-KjMD+>cv07;4%FQkUyKQ&;AFKHHOsF-Luy| z!qg8DT@T&pMvr@Td1gtOH_7 zndn}*@4oQde-+BVBp7fsMdCO~{gL@s*qqy`y_GQ9X?^B?(!7Pv9(A6XdT@fxB23WP z#Jc1v7{4^VJ9WO0;5A7+jAbEx^2I>Qzv%a4GG@65l(0(Yz<2e2C;lCl_TdXaMj{(F z&m;TS5<3J=?6#1&m=ucp2iWgzdT>7pZ#_Rjuu?X@CRw*2-7wFLdmhES9L_gDDeNWW zhx1k{*DgdKEbtj9D5JhN9izi@dSj#e9|_ExiViz4pSK>NjlIyqmVS@5c&ln=8z$aY}IKLdD`8y;u9 zS7o?kg_ zXiKj|A-#fV*d(u1HSE5XsEUH>kDgPm#|!6l=yIZ;y7+h`Iok&lHpEiT`nyNGo+5Ec zt$!}LmprCh2qY5QYY2pr#JAqXcymX0*65160@*`#Ixx=Tou*V1|T=5G#irc0U z8W+r{_>(={0E8Gp|NJHSp6C+RO)&f9LFpPjr*^(f=uMZ!;NmZjmRGqo$E&>^rD?lSo>49R{Hs1GWq-4Z zbze~J$J$*?C-{VB*mF^qBM5!Y%AL?`_mfMd|Ddnv@=SxS6G&nu?e2FYH^s7K6^W|J zdn}MMp19Y)XJ#JqpDDn3N~$Q+x+C6jG$KhuS?el%#BLP@rFv7q4!agizrD*lTv$yg z1zhf5Hqc1L`#jou3HoR%a2LW17Q@=gLx(5*InB3m%%(HeiQjR_^u@aHgM6`SeH=q4 zMA>P%BuKU(D(&1toIGn=!yA^ypT23mNWIz|d_~Xup#29!pLE+lR(#t81eZcoUlP7>jTra6TzRj zcd=x|m_*>uwbv5(>4Nx~CCZ67GKg5)WjJko8kJ6Vpd!C{8SEX|?t?})cd4Dv0}{zD zlA7PQQpHN}N<2FO9}FS2`$ps+OQNN1Ek2@V9smnup9^$8bW&&z|JYxu42joyIpL}{ z1RsT)Yhn6}*q_3F!i(OLQp10CJt}`TR$KE<+24@zVS<_U%MZtg-X-Esbu zNYBU9=|O+JQ#%wSx4|FCW`fU|o;O*@*C2592vY9XKBI}*0XN)X;u$}#?&D|S3>jja zd_YLTRHnV5HBv-(elVd@Lw&=Eji_Xu%Z?EA^Lh01R~P9E8j=;>f4AEU4D7n$klMm-QF z3dFvbJl#XLwC6;i*o1RQXn&7=t{e0FgvRG5X`688Eq{pQ&#=8`wU4BV7RWNrt$1n? znZZ(s7=E(P+e1zM4E*J0E{8P|JRW`7U+16Dh~%#3R8r3C`|q)vO<&tZAD_wB`EPzD zORxWK?6Ck#IMT?$K32Pqc&>lCA!7FQzUPrC%@5dK)O#K`L8St@I-$Nd`mThq)~qP8 z4l~NLlQ*BH?XKeKx9K=?As1I>woCXFhJUWpc%tv<{=K#$mNj3^|SCO=38y zkLP;%i-5%}uB%^SIRRvM5UL z?Dq+-Bd%b>0J`tL6=2U{ubJG}?PnW^o}gG9-!4O_x88K2*a@Fl79 zt+x~CmQhh*`$-R4Vq(i25D-v|{?L+Z^(=QyOhcMZIG${t*+ z@4Go$>q(5{?+!BFO z9ZfX>ANee0_uE+|vyN1v%qb#ySwxo@AJ1&>w_hiVOeLJIhr899CRY;UxmGpqQj(Tmb=ua4=9^eKbS|*!8smC?ceatz{~xJ&9?KWAl10IX}{gmJMVk$w=&= z<+efpAj)xxV*3NgKlz=!3hxLn|JkRtmaY`&l7}H@Z7rESG44}--cbEe=cg=UY0$w! zTtJNJcAHQMBj+C zJoqS+Qka4>O&>d+-NefA<;5p_vrCWmv|Les<~|X~rQj}2Vu?+^f7;|V`0z!`h9F98 zZjf!qhik0kb>$(=8|9TRb=2*B$4kEw{~y%)_`T-rXL-lkhgmHqLr*r_#|?smk3Cn6 zuL!n?ScZMggX)&CV>_&t?{?;J-fQdJ{yOmCEq?Lr%j5em3c_C+$1}bmmgD#wj3ujE z_&K=jEs(;eqv}?!@}3egrqp8%%=nijIUmqz43gDYa>FG3c+=AERDxf&@qZyn*jx9N zw_2O^7!>p1JM2qe5JF#}#C5OQI3CxhJ~}L!pwqdDuP^SW z1%(#>D^G3Lde|-;EMixnr=u_r1p+5)N3IZm5R9D=k(iVFg*Fu z83nM@^=K9BX9vL-YmA^v9g$|93Pm1x3x&eeBMb~}-mu@d%mIWy)G_|F z50T95FXh8^)SoS#KJG0-R|o5H=hcl`4}@8$UTtJ0*REHallgbC-R-;T@G*>4=`U=0 z9_9L-gtnpl4fWs-R3*`LhF(8~WS80ostRmavBf_7<5#w zseHrai{`VZAc~KM-FT4?b?UP7-Je*Hrf8}@GrRTeZKjWj)dAZS{Xmf&+m%m84<2g1 z`IK!*1mMt&S=>U_JLq}!`+Mp}fgxm6nOxjK<>qDL3d5%rea~gh?sZ_fkQ*Y>YJ>dP zRxW7bQSP!ZPgj0ae)GMv37w+x-i_9h~A-H7jk>8uyX0=(3I!jU)e1{ z^)G)n?g(3P9@nfUd2frdKo*njHI$XAn)M)1EY`8RxJtvM_;@B*8ylJMK*n)(vdfzu znrxTKUR;K5L-7foS4}yZWv`R*tt|C*YW$zgQrqGf#ruuhRRL$LU@l(nY{3E_1?DK^Ht8sa>dtuTT~ql zkS1MWmn%1hI(1fADoK>h!M>qld|F1N%3ooTX%Sih7&KJ^8t~_lN!2b8?_G}LNw_jj zLMfD(y2N1ob*W*4T&L4Sx_3Z%OZH*d{Ee_0;79PPLF`3W`C3x&k9J%g6STxu^=ldB z-PB!2_V=Yy(z#XiE54W7uvUxEnysw<+NkD5YP4WnTpU@z@b@f0EB8=zAdq^^yyA|l(wr;^OsBa?y1r{P@|UOl)h4=Nq+I2pmF-Z>$RBjN$EQL83284 zQ3FKhQRAR5(cyeJNI1hjzU{5vvlAGr$Al8+l$Yj|K7r_{94_k*yN5+DnL2lLn|6+P zM1)LeS~7Aj4Ec5v^NpfH>}$5Z2_T8=JNiPWGn4XXYcOy2H}$3y=nB^Q#RgepOTSs) z(CemvaZYxUup+yMr=Ui#*zFrR5fZh#%wcl;tGwg;7<$CX%~=0@K6SWL4?63X-SHc4 z95L3P4o$7(sB5*LtnL2;6ZaQvQyE^8@(rs;~kZJK>e`IxcJ=Li;qz7hm zMSvUZKmHnQG+Cy%FUP^YE}4MzkMTXQ?xBzN#fFc{-1!*^BHgqH25gy9QAG})^xAGy zzFjjZ-5e#e0POVo0@EB2I<{U{?&VixblLgBnLk!9)+d0cOo~q|_xE!5?N1}&zfdA8 zTyia~Z^{WTxXMHGZ9WU1(v`OP0NA`)-*_mMn8&TKb=GKGn3@=@077Jp=Wf<8#b#IN z2~co#2ChJv5DNA^gC^_mHTZR}6&bE`HR!QOLsN#cyl3}~p%Zg9ML+q*ztX4TWWhWhB_8Mg!8b6&FBdakMA zrhnKhpkfjfJ0}GYInin*-~kJ{)X=BdWZ%8=s&6h0KI>%V&pYpb;_=(jBhg|w!b|IT z&npNt_s%gVoVls6QOu!8>+W{?{1O5_Dpvq>-im+n8ZO#(%pA`e& z{*3Cm*$0G@H$b+ZnTF#qjFh{mj5-ZFtv~$yjzA^dLAU1zQLP2`;9T@VSJ() z*WBc|XA$0c+{0%AzCa?t72G6Xm*3;0CuzWhI_~0^jVW z0*05_p!vm@cjKUw?az(ctr;NczNJt}vY5du(hIkN;AKLDg?ZfPmgta#=hTl0x6z zC~_2-Ud(CIOF%SQwiyE0E6Oycqq^VbaV(?53Lnkx9X1So%Cjx+ zc})+gdrswk_(<=S6=-6Y-a{1WGj0*0~O55oy+E)9KABPW^IQpT`moPtxvx#V%cW$v!p{nO05tM zJ7HQfm=?733%1wMY3vQ&C>33#SdLbG*&zYG?i`9@HLM=0-)F7AbFZ}W-4B&VM*#a3 zT)^d-rPw$$3EIu*?#cE{K3p?%g@Tq%f@o$?ZcRgODu_#(y65hG5LXpKeUyf#47nAD zVDrbcA!J`#R4gw*azyjNYwH_29oXIf z_)w(O7nyMreS4A#!B(ft&kBsKvSzlQtEmLn2m$Y|-xW;z>Lg9#kfkX4OZdxkmzNag zE}Lk^H4IdNV;ycf%QxCppHU0hB{}amx#w4dNotNu4}@KhD8+_%aS01>&8G}8bYgR9 zx9BRiIsfInYcVC+?5=z$XL@0=I>ETPsi0M+DAaRsoO=HUFjze)F_F=^S&vRoZK!}5 zXOl)kU0;m>8L>T$5(xNE_I}XIqun!Pj5NMZ0Z93lyTtyd}a zrAcfk44u2?;!#dd?%|Vv-%xj$0ixarqbDdke&za=ukIY`7EW&;P>2(Z8#3*No?D2_ z6a(l}_P@O`FpNMCCGKeptv-^_C#L=H;RhJeA1;LV{OeDkpRzHZ{@KA*tTX@9N68x1hQoH)2*CKBoG@O%9E*^#EXR1-L`+k-i%1fm>{cxVV){(Lv6%$Mr3R9(dOPrMVDi8^e;_ZEDmygTH0H0 zvaeI#jQN$ zpqD#1s42)Eu*hLbOurujcRLj^Al?ra53EwHT*?OsYDUe|K={s7$6!AG4(q`_0HMNc z@k0Q z$mK|Uc>AlN=PMySH9!b*ZTuc}z=GG|OB^iMN5p~mixRe#7p8-jOI~bWpdCDP1M&zV zn^j#@DD!>=X={Vk9QMuuS)F2_6eHJ%9zTdNVHA1Z+p5E z3K*DMiZ^E*P|3H0P?^u^YEGu#gz&`2-Xg~)+xl0*Ei!xywB-zRB1H>F>MUJfav0Y7 zhW%Zrj!~2M?13-t`gFGsLoXMymQh*y=e~*NTig-z9H3nYfzrj`kHA5(6*xb10@5C^qZMM~l1Y3A{tsAPN%EC?ysza$87)B*b^~JEKXdo|4yqYY)WWDOXu z&;ERbil;q;BaZ{`|HE%1RTbV_6Qu=6)Gv_@}}3%QbHk#Kghqiu1;eHiFi zo3*Fu4YpMi&ZjL08qXAX=c3-~U5rDW8^g2 zf5A=%8*`5sFt7SiOKScZ4nS{u&E@!JK7+)se|P{MZ_ndiRXSJ?K52Uj;N2M-*?Vr4 zAO{J|%8iJMExxeWvpb!w2lE{fcnwbHHgB#jv~(A01T`ORiumPdNbTFIO%)<(h`K2! zfy8CZN$>f!eocGnAY9vu^UDK31uKcnhj-gRtqISq!p7YOWd!_D(veV9iBO$xVpNFE zCMzpjs$z9QqEk?9)^M?wqY&2O2--GCew97{SC6=Q@zPyo&j%g`$z^$XmP5wRV#mG= zh_7oLSbXt6YN7U1SiS}ciZOal$ROYTi*)+=Pt}Q1hsHovFoJ6?joTA zxuhF=X<6GM>Ly*Ug#5-3q-Fh{LF~PU?QK;vk_I~Q9N{o`da>H_JFib^8ZJA^49bmx zv>$)pFu@g|9R_p2XzlCCI4CkY)F2wX$gY#E560H9v?Qf-iWCjZa9jnM77QT2S==TbnlVJ_}v7C z-fE=Tdd5Tayz0pjIyS|$E5;JQtk9O1?)d1cG&YF|i33S~1s?fXs2R6(@yxp_Z0@qc z9BkFG8Y`N)$=`Kg7PgaK?0rb=>qp(Qi;2PY z_>V2OLszu-MP{BpuGw#Y_iE*4roZ$WuOLZp{38SZ(kcbuG-~1N>XbUd=$P*x^@E{( zPo6^O?BHwp=mnj1_kgZ<{DKdnC&Phly30|wtRqV+xrL#yja5=Ci>{oIXd9W#IaA}Y zPUw_z*OJUV16^P6SL#19m}+$qZsnoIx1x1bv;GHN^?tN|q^j$8%-DRhpg+AntJ$m| z2Aiit-T5}PZIl`SVya#+vvzanTs^miXJ{VUbwliS+_O7}TchLyhctcm<{%-ggix|+ zS-20Vh&d1jyS%rasr^8*{vWGJE#UZmYQRc0YD{o1dVGV3oRzJE<7%ODj(cY6-z^rD z-e2ApzQ!ha7H7kur2J;6n{f#ur+DC|#Ea;Ijo0)>#%fEK#Z8BfvlRMN$KLWAj|xm^ z+(G<{k1|!Ah-NDNt!-B}vTFb@&m7NviOW0R8hSa1urj?=3RiI=LnTSv{)5TAfV0?0 zjBn3@kLDda#y9hM@~?_3*Xzw-;nV=!B(FBE9dRpN(86^@_f)HbhRrP5@QZ?gb)FsM z#PS+@{Tz@0HLcd>+pap^L*;L2>sk)hW4^|8-OO0u%f!HlwCH~`M5HBOJgE8{&IsFZ zu#1x4YMUTuIdt6Dx0evwI@z1?w_EvS6{*%}+5RtHP&AfteZAr|S8jTXP=~0#%#1WB z++1*+5c10Ei8U&*!$WMzChKp82O-z9OLgtv=y^G58mvMz0QPSlZM6`Z3V z$V}I=D%oV9*mC9z&!^|KoEi}+ogbN~CCqZi?^^U7DAdOdt80t)^)&Q{CG6*Cu`W-5 z&XvuUPNt>VapOa9<1&ri+qvm_51TfNiNH(&8nPjHI9OzFSTLJI?|75eigv1iTU`I! z@;$-gPWbBe*FYQ>A;{in5BIvgQ$S?ZDB;$`1%vJG9v5m71`FsGzh@+^9eDry!WZ9n z&1)*u<%)dd4qKIu_5MUd?LiP3hq8pzz;eajWZMy#s@Ii7nBC9)k0@%CTf98}Kavi- z5E87HIrEw=VKr?j_-LwxZ6g8S@ra@hY|aI;=UC-f4z*zcF9=v#g9{~kkqXui;N zBU`#g(wO2atv}-1q_p=( z-zXlnM(ZMmM8*UbXUp&Ug{cvytZPpUjt+uq)@J!$n?NAecM5aY&LbA;bYpc9qbJ+n zi+$I<&-QYp@^|&}51lU3TG!XVD3G0udxG`{vyWSDgqTg?n`b5TE%Q-O4vdtfHhYgk zoO>90DUNj0uT8an1r?}M+e&wGLXn8oEEDfi>%JIx+iG z2<0^pc09h#0BCX}QjHwEI1<8{F~v7rIH;h%TYuu0<52-M&V&8CT`4kBQ4%MG$v{e= z8WKh)4#^dYMVrxt9rR;V7Mxh2B+J)6cva4y>$e_+vo4;bSZr#x8DHJClz%kE&eQI|57 zUshf6ZTZq_n3}F+{0*r6C}d#!23BL4o$Ysgm)-`+jEW0RKfi7kkKTnonb-EZy|u;2 znJv1;{J@*4<~R{tynJ%Nd~|a3kzZfwdW^rTH>jc|G84KRd*BCg@Mx|m6Q%K?M!NrG zbIKgj8P6c_Yq9caMhI3X-AEC*pS7C!5cx@~6E>PoOfX^nrvbLz<4TdA^j>a263Y&c zj*?c7H8Q)(N}b#9@|TRax=m8kGAoSzqY1{?zV9dzQDBr&qU|P2vc94S#a80M6M)xz z+;p}zt57sQUY*SMc z7!uMbEiwmr)}B3<(`Z;s&dT!7aOeSX8Lu%hXgus|bo)|^;$HTTL%T+xoCNM=#JRgS zVH*caaj05{rd6N{JB&#qn*dcxRJ+#YzV^X;Po1l34-%4(2u>eMfwbK+=l{4=9S^3M zPI6U?O7P)E9!D_Pp_-79LQZUjxJW60jL6n)?sNWtePeqR=$Xjyga1fy^+J;XT-Emw zu-D$&_4DzOXU)yaw+C#O-O4abR4D8Mm#I7CvO1J+n#uzh405)m2kR%c%j+XN#(Gb# zf7z?e=XZ=Uqn6cMhQJ%6Z1t~@Ps{z{P`#6OD7UQj{|3QWwAZ1tVige%T1VA21w;i^6kZts#&8*mgG=I!#7J3luySvPHD z^s5=`8q?o5va$Y=f{!5{UoKnV+7g^uMZ^d}-IK`Uh)tkYzrO^86;^9M$NT`9W8il0 z?|NhCD9c^4F<`KfDys#z_?0Cxf@h&Yfpyv%#bl7^5wM4LYoD*q17Uv68L4bmwh*$u z{{RpSbfgF)B)thL0-Kyxgy}14EI3?``apf(D4+N`Cj?Gs2i7Z`Gml0%fzK8cko8iZ zoZs62OAJ*lT$pIhwi zKM442#uDu-4;GWP7GZ!i~Ru+fHSVgwHr7I=%=(gZ_ zJq}DvXBews&K{HS6G*Ztp7;-m#E@M5vzhOxV)5PM1qlZRzYMB0sI+m{`5j)^CItv~ z83VW+ftqELf^*ZdH9hmPooOWP60(nuBE?hBZd{2*{{%%w(;>Outoca`!tHZ><5* zC<^ZJBvvh@9p)D=WXqclmFhd!H|A78rq{BdtgCW?ATb@Z%J^0;NDKUBstJVkQEm2! zp4rX3KMFHC_l4;s|5mf^*Y%Tsr1K414-1aI${qV&DQ<2?H*jFJ<*&$KKrwaSV7hip z!GzZbGT8+M5t=ilZ!4ue*7{fvP6`TM5YP$NjEP6fTbM8)VR{mKZq&36u>J?!Th(3~ zk<+h~?{*i|Zp)Z(Dnr#SQx^Cu(P$K6g=B=0HsfaObe`g5YT8!LIV1m0^v(XiE*S=f zq}w0=|6vS`AeYCcp@{$2jff}Akszn@{Uvm)_HA+J-MYk`#?|Q#w{0|5#_EFi2b1(_ zjbV)~{++_BvFSlMrj8s!XQZdIJUB5kr|zac=vGKj@GK)A-@O=V1j@=RK*m>ITHW5+ zz3arN|0_orNuR{f!&08c<)agBuX7q3f&*_ZS9K!E1%hq^=7R2S3h5`%g(6DztL0;3 zDS|p&9OQ#_2eXReTKkY+toF9XrTu-aodOg&T>_Nj~(h57Cs)a1F8Cvaov?h#BQeM21%%Pu$t{ot@ z*SdqunlSQEov%VL9ULBxobJq!k&=39bQ;npkCh|2>$2Cfg%J(alFhpeTl>&X?&YGt zuPq9AdrB@D`g>~&h6a&K`n=;LZtFC)w2q*1J68e89xhS5WmgB6n_8HZQhh_y4S8b^zRoxMhX2q zS}DwO=^t`Hgm;%t#z+zLD2n^mt36_k{4z@27vMZC9JDr4H-eQ9iL z92pr=a(qHf4Mod&_vq-6CjODA)#i{(FZ}&#d8BAkfoFZs3^$Otzf2FYOGl=gUo#E- zOCFH?4|(Ie=xQ!=UK6WWxfDNa`BCUh>H~Nhe-)|ZYUiJ!OB~AT<(GfOG%hZ8MpMcB zUy&n|Mq|;q{kOzk>zO|GnSGg zH65Pf65!)E{e1q{wqcMx>YYb-v!5s{P2;mkZoC;Q)_NrVmz1Jlw0Ikl`JHYTi|p3r z_j&K`?xJSvkE|$(|IVn$_Ma}bj#GJPw7;d#dvkM>TJ(Lz+hLmjx_p3!?>~_YO-V~D zzV`sT%aZpi>?VOp`7pWV?_y)<;Gtbz+`Ui=lOeP~4{oKRdB?`fdr0y(h=V>VBa6-M zAalRyyKb3LF};|d(NN`tu}`LeI0d1Ww^G*8Y z&8O2HG>`xGDH=lW*MQHaB*43kd*Yy*lL@9;9!h+7A0Isf1A_=BT3Xr~?;V3V*LH#w z^VGlp%DMjskO}=GN}3_+jgTxqC5FIrvtlO>@+f-0jc0`g1x9^Kf7k8+HVu0$F8q8k|@^G4!2x&6HMnwO+#M=IDA}4B205 zwK+Ka@p7bn(L&OLFRlK zcNlD+`ubGF&KE-pv9rBLzo}j+@7viB@j=wHx&El+IK&=-u-osStpMG>lmdDFKmdz1%@F1N}HYaNF3o2|H37Io_tXH gxc~pJ;eOmbi09q%*9#0{`7=R9IW^fb>36~Z2aB%m^8f$< diff --git a/_images/cell_state.png b/_images/cell_state.png deleted file mode 100644 index 8db972a6708afd37389218559a23418006722e8d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 106860 zcmc$F^J87x+I8F5cCup|jnSBm8k>!6H@0otNrT4PapT6eZGOAw-g8dx`wx8U$Gz8@ zYtFgmqcO%4DlaRJ0E-Lz?%g{CNeL0fckdv%-@OBahlT|GatQPmd-sm$our7Ml558C z3X~Sw9wFp8rM{e?C=kY4^iyBEi*};d*zRnAY# z9(i@DmwU2;VjtcMLGrGRQ@RgnpRUGi$1OXYoh1%#`G)*^Ngzo!th^)n_sSbJm=F~C z_i_&xghKiEI-rLn`1endf+lQ7Co?OfuRz(65@ zkDzM`lkn2#X~a@=R5)p(SCYt13Azd*X7*X)zHJoP z`~XJuhW()rXx3`h@^cV5uFXwfzL7U#Sk+IkaG0rd4IR}1&Z;S5<`YTs-mF^mKP#5F z8!~3;%ixa+L7+u(xMmVYaAIZ+v>Rz;I$FdMV^IFSf;;@-&oy$>u%BZJ^+$^=HGv??AI;{uqhEMQa4( zcm9a~Yz7GdiN_lvp?j0?^2rit;3}h;5}1m;%7DH;k)_YX82__+lx(3W8)O%rPfMSN zensH2`Q7;ag6Fvg|DW+{mqHUT8rQ8?(l>z%s`FpLxVVbc))BFUEBG zR6FA2n)m`sBxA5~%xa9evU%CS2?r2`M>oKvl9{PgG1-@*&TXoD3l^>4{c|D}tTEZo zn%IO9>)#9OUre(BOvfQnrD@g1wGs1o=@S{yu#iJSB56O)(+pGH{yA?{w?Xl?N==xM z2u04d=18cDuk=A8B$Kuy_E>H*@T)Fnp`33=uzS+d3Exh9>pcOE=pKIyxeD5d}V zg1*&DRqpXYpte7KZUMYD4Q(o^xaIoi$i_gW-W>mbW-b9|BnP0%G*Rn_+r$aPy+t%efq>wdy;S%vwG50)czj=6UO3;FEV0p|7WHj+)PuZ+!W!YLC?pb zLi(wS0fuvgvHr&%{MbC8QZ!Agh!Y~nB4Z>0fU@qSn6f{8k(uw*>U+%H7zwg8D|qra zwHoo@4*fqoTLHu+6R@zHYorG%p=Gbo9Gz zdn*psJ7#vjzA5fk1DMc2hyqNNi)odZBr1qr*hD?~(f6p-4lMt=h$)6ja02F6RpcL5 z1bIkj!Oy=etk`_(hDXuGepz%EXk(?YnL&is);4PX;gf&Fi1|ki_P!DIJjwN~w3QD1 zRCEpr5gEP6-y|QMg)CZm>hbK7keDjd7613Cg0HxxeCT(F5d82*ffM>(IQHA0F4ylu z&eQzYtB;5uk72Ahg8%vAA@;GBNZcgOkDFd2iy>T|M6Dd68WbMa*n}QVT>}@S#L;0h z&JO?HPK7l%n?vfkq8JcK@ZQZ-&DlE0QRaH~^F7mdsNO$Z;;{1qyI3%?eSq8xxdkor zN8i3tcqS%!xqOL__FTvq5N@W;w&Y*RL-^c;;CU|ZEByQVl-f^7|J|@hI!(W*5Q20i zL@szOEq$$O6!>9fzg$BziHfUF=K3%xnxA^U372mRt)t+)S68F@9f|ln{N|TlLwI1b)k9qqxRvBMDd7XCD>-n{~dq$^9;bTuiZ7Mrc|J~HACSlsRo-FGsu{x zq!p%s!hlo%E295B+$GjKe5vkcXE3|0V__x|_Nq?-cUnZ;8VB44Q3Qh9jR;If6WU*X zQv5S+o|edop<{q703jfdHj{BE8!3suJjSG(CJ5hMCT#!{)Bg=Bz1^FsLV@(Baj#GI zw`PuNwwXT;3TR%qjv|2h$Q07xM4QnLzJQc0D5&PufjJ_rLB2(1 zw4*(w9jl~USNjbt) znivkQol_5(qywdftOZaqX-&R@Kk8ujhSoa8M}e#$_x10!V`L7)ZN!)z4poc6T%myw z6jk`E7H0|!H58nJz=JxI(BrBFQd9WfJ>bgJ@Qa$)dz1l~cBpGE3werD_cw1^!|B{xj%*L`D=8Gr*q#o@7e%&lngYVe_Y- zCn0J7Gk}DITx0%!de~8(E-UN2d$6<>rR=0AM%M6;P$I%j{=CXBbEbhX7Rg)ta%?g9 zeT8Vs?9X*c(2``Y0rO+XI0pUfj_+=5ovi$I*|i02Gqf%Uj0w-zPvJz&3K9#B{tRKU zkfK`)KM+#p>k)?&jsl$S3{m$6cNo{3UWojJrcZl`lUD|&5HS=wtmR~uY!Rys>RW#n zjQlx*LSy_uM~~>*!Ty&{{Nb5HU+SaR-YW@mK6WJyeRM#EMzF5OjL^aq0@Hfa&*sOp zP;qOck`qW|W2{t}pl{#aX*JslwrRDwqEzd&3mF-afj&Jl0YT*n1?qp!rUJuPJ-v6V ztgI<%X+5*Em{nC(wk|GMj0_A6o4h0qA#nXCU&QT>`_#2Myr7T>1qPO)H$p-nBYx89 zY34vnC6t8>|2oPUQbpJ>GO3vTIndD>l_|Z~>k-QMd>Z_zh-xVYqW3L@@PmIg@xJh7 z4axJ($K#b+u%e6UAZG?sl_qqVI0mBRjb32^Iy|2bv_6cX{h3gD^C7RMTNy}@=3Zn4 z<=BqfrgpB5o}{loa6ag-5yvj(x)0oz#BrE7Z^w@8aC+R*HCinNUG0r;O%+N*!@x+s zMg46A8mRdA8JzSP1wRacuyz{If*BbZ@(t$7uCA^*PDitwRw6hk7w6b2qnW`w9Z+^R zqRpG%h#^XA3A8jF2V&k{klK&1M0ZJ%aQtjeftL_EYHb_3%P-i$GwI1)6C{k6Y0^Z| z2tA9j+ULPOMrDPond!mSCwrmOw+MS1J)NX_jLgETp1Uzpar_Kin?k3X6Ls0Pt~>Bb zrc)STe8Ks0M`45UtVp3#Ch*+fDKO>a=(-69!t@`jb$eOx8i|m20tKLMgH_jyiQV8M z%Jj^wqVcgDq50T6y}WAmx<6dN`Lclg;lnX(*UTu}s{te_so@3t-_~sv5*aC~q(qiS zLUM6?L)+KqiBn9(z<@YcrH#fYbg$6nY6p+Y2EFEWM*xdSR{~Ut=Z^`7GFZAMWOhFl za7E6loszHHpKETjV1PW)4iqKu>GpG5%XjvL53sC5US8}(UDXM%eVw3hi&n1j3Vm-W zJu6=PUYNPUhlg{I^&780P?ZdF=X}c-&$QVJr_D1-e`E*>S~_lfaEpI^w_Ei7b%I5P zb`G8|$ko7f4U@_+u|6ttiW0OFL?B}v#SuWPZ_)}B4L43nf}Ei zM`<|~=;it?80D5qeUR)Wuz`+^4c%}c3YaGv-e<=dXJ4(1*A9sw)=u$L&&n{r5c9ug zk767V8;e5I(j1m7+x`^N1hX*^_$I6WQb*3&d}MRM8DhKCABhK)-s+F6wOnA~)35%?&9pHJ%4 zjVp{^wg`cy;?zCAHf}g#z(}Xnh*6v!Kxr0@uWy=1Yz;zya!l;e7bBT4nAxky5a!6ZVGx?5CBbeYkP$#LyHw<#T>(5JuFJDE@iIy zy9cW*-_{dFvED>3#pS$e^F9xO*I}}7ss{Mz6;8MyJ5x7ox`EFn)+Z-xaw`cq!^Zl}9-bK9mzw^m z-f_EiT|>a5+G>d)$fX>FI4+IpKcnKjRPA)BT>JviNs!DnJloj7~aP z%->L@Kc7pGR6A(@)b_GJnQw3wrC$Fv)IZ7LIBJ;;k)y41z{cAqr^3f?rh<&Of3$y8 zVJ#;jFPFOiIS8q#QSUH@kZJ9#wCCbuz+?|2eQMB6@14G0sACk`F#qQ0W|i%m3v~+u z4&u0Xr2<2AQE!y(GEWO4KOCmP&#ZFS%5y;l+1z45ak5iF?NGO?B*Uxj5myxAFB|Kx zdwq2Sde8Tr-X)r3w1x_U$es?2NsQ+`n+R{4rvsdU4SVqPmn79cz%S>CDhL)JeD1}I zG!9pOxb4q+XK`As*#a1zc|HWP-e*O7-7qGNzTq|H$A1?x@I#GyxH#^JBlt2ro3uXixag8@Spo6LM!= zZ(mbU|2*lR3U$s7%@{`A`58iISwj=w2(ahMP-#Bmgt__X_BkX9A^PISR#)o}Wayh} zmD0GsIDM#Q)$sd_>8JTN8f-#qlHhpLwJ!>VlEAVZgWc7rL<;}t#X1H>(6v6LF&I}c zTf%IMa4TDaK#Fl@pyUmX2&vN*WcDII-iD)jdHf`Wxr3`~ms z+P5)A!+7k9nQvP)Q^V;_znWw{82iaU5%7{s5A3@9D(`yz8Q{OP*p&I%)SR z2@dh7e;`M&p)x@R^x6qQ>IUQ%`ZZU{>+iKwFkf7cTZ< zqPJ8yLmWKw9s1Dm4dX}-YNNka-SkV!PK7-zA1rqsaW;kzm-lWjTHp)n&* z-tBp&dFM;$8Eu96hDUEqh<)M!eWy$_n#@csj2O+ZQsX?%kM82A^w$4(<#eqkbQZ-$tJ2-IK7CPw zL93D@m(7n~z#AMtu-X-bV3O+6r0 zbHxb~7__0himiGA_hPAKBa*u+a(G&v+wdv<{A}%4&>btSkv>M-e$ptS6copxx}}Nrmv5F1^i2W%ZD>R{zP_GP;v4YZ2Ft^&vuH zG%RPsrQUXbQJwDe46=N*a@WBFF3){Vx8_lV=rltoIF#=wuS7kpJ&qT$`q{;Bwx(LX zyOyOzMj$}d{BcpaZpdnZ8cyFSoe7$MZP~UKC~F=4Ls7;CVG;wspPg{d`QyfeFPiC-qgkEd#jK`~+Dz?vJOBHl$5gyifa7}*2eztOuq8S~{j49q8M;5Wn*WIQ}L z8ylPXg$4c1zR*Q$+|o?=@#u$c0hJ5pFGqRw=S~FSGL`D)lh^_euVCYOzvLGtDdM4G z=@lA*Orti;;9smydcz>#YD{}Op&yacEhE;WN^hCWAC^M1M-kJCrU z6T+a)1A?w(uf9~E_Qva(q9Yy)e%6adz81iV@CIoh9pdxe&z($m&So~_pG;SQqT#-Xz&rJUvM36NJgMq% zsfn>l>&FKN2L~&T$Qcp99e&e?RiTRuA7S)LwfA3ft-rX#TV|f0q>$g=4jeRp_oCkQ zpa(XxQe(!c^-S?TFn7DWKGodBL3Px6hByd*HJvJwGC1(Y3x?chn?TF*U+m^$j3(bz z;l_6yJa->BOWC>;8%kFW>-qQ^{E^2bM>6-jPM3=9AsgCL=18tbc<%fIm6YH-@j$&H zT{ z>N9#Y^RC`njK)U^;!$t9H_QN>AESttE&yW%v1TJv~l_C z!yX}>ZiiMzV`FVM{8=D8*R`6G5t;Rq?!b+7vhCHQa)9SOwvQ&bfq{XZfjKN1+81;> zE$lICYg>CKf8m3v7^#Lep0NMK2r9}0E>md4)78Lw%4gfXF@opEqv{kskH*Gy(L>Zb zbU7U=oFyR=(e6#4)7^S?EXq2MTg6vgF9BfmWnJ1D-~@ZweS?eER5|rX32dS!x*sl^Th$u$D6?pfM~QuvFBnof z>Dyzr;Ob#tYAhc?ob8=#XLBdP4@!QSnQkm*q(u;rb|We7zE4fyF?y9we~2nQ+r5 z^|NOR6;#mYe|>@6pJ_!p4oCmlKl|Szb_cOXGO+WBPOKdFGz1!H0F-f0ba;8plztIk z`b_#UW<+P}rzTJ^Sj51Wx3Oh5TNuS~zI86xt8Pg~KHupJx<(_o90tBlnENZX+!kSD zYbgQET+_5XkL29JG4%}dD_-q|V@QwU7gRI;@2R|KCt*g%5k5=(0$Y2Hw^9H{e83Zd zV2+=czj|%UzJMVs!)j}!Kb&}XFOcC^GhyAnDre^j{B!W#-&z2qYb$xcj=6Jhf|JQP z3-?WnV=C_>glu(sz-hxsj^)Z~%Bcr~(;zXk7|I>uy)n=Ze3j4tSGe7~9r`3wOkRJgA) z;xDkq%q7y|8JwQbEb3`MtkC}+Jpv#;K9lpI&8DLeO!@h_Eqznij1XpE2$k`Gtc;#z z+H4oFVj3kBY+Vl!pKZUk71{ z&8`=Dt}yWM=x2wRId~Yr(B_&9++S=ptk4aYHDmYnQR7LdV!l0zSm8tqrw!KqfWH(-~r>13{5-Lwa(a80=zuqt~d30|XFcWo4O87a_>VB-~x1K=Res z)}r)Ai$&s+uf9IsSX5~JKn=&F?|FH;11Ky z+qJUR51gtROAIm<+sZE(sq{%?%#7jgKg*1XwfC`8M}N*G4v!Sauk`>D!a}DE>9i$VZHk(2cXhz*Peneo^A!PbI;g z563tax-H;a;_$-L_k<}zL!AV8v!Pdi*?L{N{KpO2Xy?uAcuKh%lW_ojQ%IeRISefv zITXnb%02Sv8g7EezR?8A-7))zRjPw={rzusvWGMo1^keWviHuTsQ3ubJrAF!CtI_? z6cO%7YXb`1F0GZ%p6~RJ3MpOPpU|C;e*{ERpXDoHQmxbwezpD)lA{^Ce$&}lq8IPQ z7`ro)Ov=Kdm~lE&oUOL#?>N2k?cMh(b&R7VI;plwx2xS|rz1>HPtW!3?Se)t7?afR zmJ6t@E@%DS{!qVh>I>(M^$pH(V(gh8{@5+ZC}tWmGVn>Gsgc~q(gv>8r<@OG8%iSy z)L$UiJg*|>9X=BUboS^)W6&r`D7PH;_!Kj_PrRFNDH8 z<2~RA)hC|EVp3#L4N{c@P?x3%CtUsBj;C!H9V%QZlC0c5fN1!UZ4#ux@#-4-e?9F8l_xT z-#|1W@FK|hc-|L;0*77E)6>^lEwL}RxuFpg6aS`5cE>WqX_U*zs)V8Kv3@>+(U+_G zuI2jU`dI#krV>1q%D-S0j;JCRBN1>XaOzMTP=@A$Nnx@EZt@e~RHomXP4U^1UW7GL;`*$`an=?$LHE`C87>54SQsFD4F| z`0&Ay_m|3q{$7~7bs!tNY4`-+<;LEn_|Fb&xTm}YkFE@sy|GG7gTag4U(y%uH;2D~ z>$yH}uef;lTF@#1^2dX*q=U(f*{0ZU>8` z0SNs&MaI$l4$?B7`Fv0RD(sO7f5#MSNP<|D5JklxU2}uDg9|Q4U#la@bAUROvsft- z>VLv%DHPIh=xnuaHs^}PL=0Qf3?a$}S9wO9?I$^CuGJ22a-C}B@+8+raUp8z&uEYg z0(P4so9a_dRl2<{1dFv17%0Yg`fn^X(@mSrxG({qwuTdF)qdEMo6l8c7EY+{|Jpb? zp${S#8tMS|XtWlquGS&a||OEZ9HBTo&aV+5JW*AC5T(b zK?%U=DV0S)m$z5E2@VdnUAI>%n#IRE=eX5+m?0DaTmjyDr=N=(>`$VFGcuhMt>ncE zifhThZze=?(8bdN3bf=T3U1F+PJ%zZk*e|7;CjE9(e;1Mcwha|!|rg*`I@$*BTYeN zg`HI9-eX8W+aRBD)5OHs>51*=`Qd8wZI+$AM5ie$Ni!cnxY_}nH4eAC8TAQ?m^kA; zA|~X|(S5Qx2Zi2?7F)fuE?=;k#>QFm)&NvyZ*OlZ#exu5?fr#|tC|dy1e927x3|+w zY<9AUUgCrt)Zts0CnBdPX);?!$G+8ek6O2@uiN9#JLUXnvIb=e`H)$B9u&8WI?cAk47we3QNM~u=ngr={oBGUz7HCJ z)fx_U%S6E7M|~NY-BeUMM3#Z(JI(5dMB3%%{r+x8iu)mqjfp)d7aZ2ZsZUf?=vpsyX%^rG*cr7tpU`A6(J3V&yF0*c~$g~o7t|pU7uw4+9n{hflgV+Id9Q?Z~h@kch1u3xnC zjh--`MKWETK4)Dc#d3W}QrdTC0v@$iD;jo-v$HC^y=tmLQQ$pTHK0I5sgr%)8`6gg z5?rZ&bQ*m_6^=3hhJ^~)*0F9&lxh92-|X6j5n#*a^A2G4huR13{l)tnAQcZ=hfWJk z2gvL2*jPAW);dC9lFeb6WbxH(5vmvA|>f;_aWPls>*D z(cjq&I7)#x7P@|jSWPq zd!gu?6l+~B2xqoKj7GwkmL%Cn?6U)Lm9aBCt#X)@tr5XvSUu>*U zrVY$nLB1SDxZ1lBGwJx>)jPYDhQtX=`X1z9l}kGHeY z?s&HScrTpp)TfK(mxxH9r(J;-bZtNJ(|Og*GZPmV`bM%RbURxS5ZkP0WSMb%%fXnnHJ{bF!Rkc9 z&Zr)ep3DHs$2FuYWvphmVM6&x15jx)d0b}g!>8DNUOnfRmcpl@UROhfTV2e4h>8@9 zXYsp-T=WK$>*zLG;z%XYl_oZ#Q^~(OnyZ#O#uT_pwrh5JNmE(;%X4x?Gsy-Urm}2) zXF`O4B9r?J&C}v?mPKCyluCDIx#I>{zHx+P+e?mpCecfEj8}8pt zBz->6m$5v8FMi~^7Z0+~xG+H7fl|%fZ_ym)7dWSW_WXW5CT~^2HotQfD-rWKnc<1-l$lDsv2E^C9 z^FQ?4IWrk``D;0XtA1t5NK#djd!|a%EL(J7f}~cD)`o<|jn zah)DUdEtj1U>}o(=S#c3>>>X({7V6|&GSL=xzlK&j@yTbuRM%9No3%?KSnS?Hc&*g z`)yg>@>>0yfcV?HPA`v()5P6@^mFZo50lv*$)Ma_1m9DY@Vogh*wbteNNwI1LTgGK zu%HkLWgFd2SvqxNLqk$$;W-GQiH-GjB3Z)a8x8sqhGnQV z8pxC!olh1Ulr?mye0Z!D*DXID)8NJZ_WW9-8VlQI%bg|s;RP_0JS}ujd1~8V%lkDnecFQdG zuu5xZn@PEB37?bIEbP~|@7?uR~Nt29AJ)WtbV&}}@Q$Q)m4 zhE^GWo|zTOJI<*W44$cjfxM}NM+>wOSh4SWTgU9XZ7EP=O)lKHe&>J6=+Xg)Sy z_nzB{aU9nH7vu+9onwGfiI^VFMr6mxgPWVkt}ir=)mo6*)M&P@11fE<&l1l$O3B)q zo@m9vNQ705Hys{#h_osd$gP&L8Jr6Eyjs{5(kr8*qZ8G-0(RUiuOkbunLMC^pJe#Q zDFkHL7CH**@-_K)}YVbJ=)6ZM8ipyM0)^BziFL=BrE zlb2ZM5|awLxa^nwP&;mgrDfer6$pO}d4t=sFZkG%GJa+4XVPJ%fWGK-$9Ghk$Elo zFwE0eeOuvfAZxKgyR7zxzfv2+YdTXVoPg$UK#t0xK+)S}6rT8af2Fm_HDl{|p*~e7 z+SY!*!|O?Y^MMupi{VpT?5@AZ9rgUw3szg3J2H>+OL)8q{@FXRC-wrVNPJncT=B?XY|3=)V@=*^r37am6jxd+!E+N{|** zO>V>*?ZWF5a(Z>S9`* z7Wj@60pz75`XQzH*!7k2WX_9m5ImMAqpnn@L13Jr9hVuK8#c$NyAG@`-gE?|n01~p z$7h{yVj%e$upV8}xmSi$Smd6B$nnk+gdELQsFNmz4bhmGnAq|4ER2cY9{1D5S5(J` z*hhm()!%3w&S_8;HOvW(W+PpX4*x&}vp|`*iKwqc+7AHWL4L-ahG^9GtHI}%2u1jaqZzf z=7lX~{RbnTGqxb19?)}GvF^A%HH<^VjM_tO&SAcF6t!H#`gXgdtO@|4_ zYo(I=YGT`%vS+5}f+KGAlFTVm{An*b-yBW*80-Bqb$fN(4movkypD;hoCvoJG|%Jp z0cj9H&ph6OU}hq3fV~QY_L5$Wt-_W@sAH%s6oHU&WnSiM&*n78gk3j=2$h@9NDtx0 z{Nfr=T1>LwVG<s!g?N0xX7v>g3+wD2qX1nV5oG z>KVaUPcMWwdjL|}Yi%aCXv&Jbz3TeGH_nY3pxe^zgWH{v$D~<^%znTNG2W0jCpp~3 zalnqjKR2u+Tn6=K#&;Ix|F%8S>2|BcyCHsle_;qRG|H8|FNt$$6tl6jEDH^Yq9aOG zS~%U^-3y9EPbW)y`13V_bn!d;`-AUNs0g@y(B(K%K4bR=!DyztQ*h&QFl1pdCb?a94Yj9XyKmE$w5>ijkTtBPrIWwDEhtoSYS^+((|qYfZ|fJGm?oP;M1nD~A^fgEWQ|Gn7!mz=mw7OxwL zj)V)e;P%DV05IIvQy7}pe5QmriGVV1#*u#?St4R2XZ-MmX?zLCA4|K-BNew}SYlM+ z#~#W3qbHmPJ;G4d^?GBSnHL5sYMG7X!z9#uSXM)Lv zCn}m*+-PD$%+1cd$y9!a-mW@2?$26bZUVExnMp#3g0j$T5&~_WmuhYJ3k_g}G)m~g z(Qz1=eby8D#JXd%we|HQGmn8;IN?}~m;(cY5qsm=TcfG0>Q#}tHG18B2cwODEAAy! z$rFZ9U$M%7&^z@36ZxRxl!qC`5+GDDWc5t49CyET#3@M#~$g)L@<1 z*Vm1C=8Og1u-`3Dlseqf+Ts!0F{TLADG9!Ej>Smv^{W9=bPN(hKV!f+J5zQxreZ1Ucm84lg{n%k6GZGBY#5 zog)+oYp#y;*XHfO_snw(!PsnU?(PPG_~R}XQF5fbWubAuC^`5`WwG(n^ogxG)n<1+ zO6M03R1?NW(*0M`Hdida^OE^{@vpG7nmqGZw4wHiWjQMTyZ4LvFvCkM3uLGwq9R1= zhZq6g&r~|&QiqKA*rVpQl-GxYWd-_h{vss9B{4C`ysqa&wY07((0se7uW~74VIZL) zDHRp;&T!($Wy@dKHR^*2^5hRxR%qS~4G2{;l~-(cJ9imdmQQDDA8FqPm{4d(e?cUkH>lqfr%!MDdf zE3GcT15iR+PQEYSL6k63tco>cZ1(Roc+rO_2C>%!PaS9yw4YHGd`W)&&o~HhX_?K zov79Mch;mfh}u$JS21{1hxe#m+lF;mrIu2RxDU3JF7INBGi24OrN))xcD^(!052}$ z_@fV2ICd_}_@m3(kmAOqANVC6wF-ZDPO+C=0$%KcXQJg6E@^n9L6}Yf0233lM5Qu~ zlO7x&5fRb+AXYX3ZQp4k_sq4Q%S`cN%6NTS2fi zK36CeH-y(0*&dxyhj;o;j_A99ATyMBf^%8IjuR*cx??5-uP^?LQ5=}_I~&xnRxlT8 z1<%dREm16w!d62=Iml=1mhA6|GkPD{qer{rH4VL+0G_6Mnk5FEVqH_{nzcEheBqVY z#O!un&_-|o?obAvW@gQk`H2|~P~cO( zJ+6JZ6W{px{1NET=KYGFOSno(GGvqCC`m@8yMWO6aB{w}qPg7SsIaqz*yF1xeZ*@J zy0vLM+|%_b?U1?fhPUjtMb>U@oTF^VP43D~X~!$(kuSC_k{aMq=Oy}h=5KVRhjEtOeDx9-cUQ9xp%|+;8Mgt{`wR1u7@$nk6 z=;Xtp_hS=zkO;UTU=ZXIEv%n^Oe;4U%31_xuC~+};=znyE#V>Zc9fsntu@<$RU>?s zFVk{kGyBCo^b+r*FL6V@f5lSTX-fXqLoW9$0K`g4(2YY)lDrLsgteBw#Qx$LD|Ktk z1-y;t2mKR)niLuq)>lp`SBH*TK<-2A!Kqvs6lQ%|^Y|P{UYJKNMJ5Y3{`qVFP>D`E z_vp``Krq`>;s}JPdXrfX-TS8}N?9yw9g;}$(2x$>vSW(VV359{#$itu@~Nbw$BU%l}{B~n@G6BBOuyyA}$3Iv@`#C*q!dW&>B+eL6B z;QpYQ#GrJrZn^paLZQ{nA;Hcr^o`%BqDUpaW4>0Opl$ajTCr-CRw%#MqiK_%JK4qy zdBSBDn_1kwrqD`+03ofNi;EmP1vLtFe~xf?0PFlOJIq!FSh%)`kbEeNu~zpJ+^oJ~ zg`8$E+(xtVjiiGp)$uHYU&jJ79XfCp7D^S07_z6z3OTm1j>#^ey3Tw_A=4nwJgziB zoKS_!=gvkUn-Ow;eh$CZX}>c}rQ6{dbe0@9@e0mxp$i@oqC|XcZ*gNK{@iW`rqkx? z3+gEOO;jvetK|8-K0tBUtfChmv0Hy=^$YyIOfuTvTlTjW08}GSp~KNy%$P2tpWfiE z&*Xw}KAq*VB}Yev`JEXMiUbv}po!qV;Z;q}0ZJ5$0c4W>++-xbpu1l{v>21e?Xe{c z7dU&Pn|z)1ilsV-f^450D+#^p!!->1gKMdkmso#)iBcsuHxh0bai=V1XH6NZJ#-x8 z2T6aw2vkJauSHJ#xnA)GsCae46?c)e0}-^#oR56(~d;g&=ZV|K_t{py&4WE z6k{c>VyTk3>*)?EBBFOA$&7RM;rt8rCP>fE&wU55V+>&4I;>iS`nEI6GGc`~EURo^?sruz8wPckCE$bT;qfF> zIRXSi{02u?TAYAY>BGZnFb(H{pT536KbX@ZIULW|GM<$5fSQq6toKWpIqmMhaD{;S z2*RG~U@>S+EBQct%x4u!xBY!)UGpW7NLQgMu~VLy`545gup8v%D|ckeSCvh7SzXJ8B|%NDVC zR@;O8WIIhpnUd)0heO68rE1A9%=^g00`xj!umoz-lB1ns{Y`S+K9u#RQ% zl_&bX1$Y_%?j`W~)Nn8XL*HRmec=phfQ+?9?TIQn;nvGOgG@a8QY}i0PN%_!rzx6H zZ_K_;h5Ob~u3k@3rd&>;(klV{BzaI~iTmWQgicWCsY4;v^yPM|UZ~(bBS66Kj3gVR ze<}L9OLevjSxoawe!iPnbA0n;xtI}iG=<@|NA0^Q3aGP%(m8*Wj+U0z)!p4-zDB>< zekY8xxw^($Q&Ur^QbYL!3Ly|I7RI=#Y^DN&a&FjMTL5JTkWV28{PBg-Zfn?BtJ7N> zo(I&1^%2*(ufN}*>)U$}576w|uJ&xwHRA?1pZ>eKJ`Sbd48F}9!^LJ*!bM#le!v_7 z&mu=zgezXY=ny2WR^-}7{(z9X7i3GVNOm%%gbD{2*fi2R1+WROOQxe!I^Z=P$1wwC z>3Np7&y&LU47Y-gMg>wM$xe2G@g5%&=ycyh;!1@C`nGDi><47x&254Bjrls`a90XD z6&R?U<>lp>iJtHDYBfZ5EqCk03mtqQBnMQyG5P$`_+F`rrk|TT-|oSo@!ix{yVaRk zE{k`e!z-6kGMPcU?*t|QV0X2-WSHoC@mtP9<$~;O^UG{iu`nlJES~}gFdiGik0OMq z3<<#UmTqoo2_v@!QSkYf95euHNE- zbPFNZ+M$YtHRgNPo^!bb{2l*~r>_jFs_VK|K@cRQ8w8|FxTgUr(zx~e(&p9h+j5)^KUJOVu%Vl~(HoBw_U;60VpQL85$r1Q00rT#} z0dEcU`Suee#tHnGS9j`mezx>Jdq7Q1J%iS*8O=z-l{ny?F$X7SPE#QMP3Lsz2e~ zvAa}*sMG3B9JglY=-3U&L5#+O*k|T+4k+Clr&m|q46P47k&&{xImICKuAp03(%*Z zB;A$6l!;OSvfO?c!CvB+!r;#+wr@@1x&yvV) z6%G)WZ}rOk#eloxc72SI`xb*Lc-hy1`xi0Eqe4w48XFN`@JY+%pXNWGgu6~AD5QRU zN5o_Ma=zII9A>Y=D)Eo1`>P|g8Hcm=uFi$G81z0y3y$gTWF`(g2#~7MS};ePlwFH- z%LDFLIQii-z!S2O3ja+k*5ZEKnTjX)N51TfK(z%;F_SoG922=+skl%h?ohG%Ws6z8 zL4pFzMxinn`Pks^Pro4IfT(iDevZb#4a*oxMU~uxOcg+3c=V6x41WFh9U);j2p|G| z*Y?-v_>l>D{#>tkr8#?Sw|A}Mj0y|ye?Wk4xt~<0O@5@n?9l~*jrIMNg-xXGT7V3w za&>wbWlO{=&9}bg9XnpE_nj(K4beLSYE!fwxHYHJHleeQQZ&7UuF7`ECAlsuleu?_ zB3>HIF~!iZupNtwT8GudKk&d8^~a&9ki9;P9S%WkLhKmdnre}j(A7#mKZ`&( zoW!z^x&z6oLRRjzUu1_E&%154k|u1+n37Ed1J*c>KFjB%k8nN6$31{Qlg#A+57G~; zkuTF^?dnrNY9vE@HtzA~{iNBX+CVW$X0ik}4S?)g*AI|VP7kg-Y>qeK&aNN~rQu}G z^{)AO4SeS^5Z37Lo;^Lf+2H7TRlDEX0-A^-trwXVx`T&P!J+@&-)6bK;$YE#WQaZf z4g3D3~~v*>f=$ArTdF6gAMXO6AKH$ zSrmW{wJ%;c_Dic&#cn^K7k|B-G%Cg7a-+dba4wJ7zLrF?Xkw`;Xwd*xZ>2e6sz*86 z$U=)^{4ZjOVl8sjxoNK!&jL!{Cn@)O7uR`L?21Gt6T&JDx~IlnqrE3dhUO2f!ya3) zs^+$2-n%#?KKOty@bfq%GywyzR$KswghcaQ+q8{h?&pxm)Hr`h6H@DqeGJ1KlU1P1 z%bRH@lA))+hQdGME{lgWOXw@9`VIn2=E$E}XF8A}%0@P}I`W&X$UZis1JiZfhGous2=GVHM>+`_OQ8-0>d52T=c^qA8Is z)YT`S**~l|xgk1ZHj*Z`eNLu=FFh1@b=;aRE5%eNv$hQr;4M_lL-Oy88jera|2->3 z=A*4^H5$Oo$C&|io$R05aUUu;QoWvBF7_s10e3Zy5Dm?bhTTdiApJ`SVNzfo35ksV z;sDRyB5q!aLNvqXbr-8tZ8x@X`k&O@n{V1E@!f*u^ypG3OeitT) zP&zpE-eDOXhMQI#nsa=`b7bVVdV1 z6%r92ZEPwN85M^u46j}B#B(}XrkfQtv@z#(eI+}X{5rdw1}`v> zI%<8ZU>KB@E)V`2A4nSt_>y;8p^dWq$!kVQzjZl@Q$eF zf%Al_e=M<8052&mA-q{#XgZmh9VRLQ?AH_yu%uG~yU(jvYwY5wT)5)wo@aUVcl1ol zw-ijv9&h)NyydDbp&Tkz+#b6_(m{kJrq@(#kI(^8ysnuF)}r>@C4goT7(q8gsQu+_|~A z*9*J$T*8|v93;P^#rF2u&40j61jHa4tV+M};;YygoX1sxn5-00V8veb>$)fX#GXx)*F8>5Vr*hgGWafvC+ zf-=I&v6Qk7^cTO|9O7jH^#0^AmQ_~Pp67wF&UJKCzX zTnpZ0+^&-6PjxM4FO?kj=Upk4Uym1es~jrvr#+d(s`3E#jx>Vcu5sD8x++sAg7-?=$zX5dH(D=B`=^38Kqq>Q!p zJU4T;;D+uolNDM!wmcwK=I(E3v39+B?R>=Xsz)GV&Xq$+hGzps-p`MKQ|oxg_;>ba zfuH_En!Oxga0jSH`NA&Lio#T_Z*v7vCa(n!5Fk35uh3y}z#AlfV(E1B*jll^?ctAV zc7nBawDQ{)gtnh42|>oIA=H`D&-E_=9g*hkzi&jMlpUPCK&Or^78AkfWF|yW4y+62 zT<<)CKibfD#s+Jkl%2w2}pkEy=;2N(A4V2o&84il2Y^D z#CT|lWO07=%fgIc7Gj3u^}PwB29m_UJf?R>dBU6p72?tog22>Z;zE4K6wBclV8eV+ z-J{0p@J2E;`WxJZEAiFcaMvaqbuM|J1XCF8ypkzS_p`J_=Tfg`#Zg3HFK)l4fACfz zn2tF8|2{4n5R!BjD@xv!?>dp2jjOYEXu9Mb*`{kc)+!@pn zA!~ZQLw!*${|+UZSv3Nrr%@m3u3SSMwstNv+nV%L;#h@|%H) zovjBhWT1HJr+@|r&8!1kAzF4~iCD#B8?@HHnBBhmO00o>&6N~%Gs4&Fdmlmnr%Vai zm=x5lTx!9l=@fnp>IpE0z`UIQKOtOJD13Z`l7Xd0yau;3TYUe5z#?5$9PL~ylrLRT zkz|2RFOBbkAHO5adfVP(a+2V1{R5wR48K5c|k1I?zk&g*WkJGh7GxQ6 zJ_W3Pw9OoINLcZN8zOTdht4}6-)XLwaC7h;yS##eeMxVrf{)TC%>p0M;xMtwyP~0dI9cZ-krg}o#%ui zK<0fVLPyj=Q?2p4g^B2{NU9!5ELN_2hDg9|+4<9e%{mKBxIb;18k%jkgdd7xPL_o= z)?UlBQhLX*j6@nC<0aLk)p+MBTc*9Tpp=wfkEF06oNas(7nbWQ*A$s)51@3DAJU`F z5-Nt++`z9ebFT>Cxw$!{Q!MP8ugsx;n#g=9%S!CO@q}aIe;nO)RbFr`dwXowg%Y(0 z+>FieALSm$t1E1715AyY6S>o0`82_kU%B@Rn|-0WH+f4Po9|$14Q{DP3PObwsN^jr zWb!|M4s3E%{@+ixjYGQ3F~M*_=jPj`f1MiNbsZ|t5>I7=N#w5GLEY6<1Pme;-zp70ui|ln6DV zQ7viiM8#9&LrPBaQ+GGx5p(V&YQ;&@uoe8K(qqEl?w5a)exnXWKvLLo$)6UeDOx-B zBlXjG5$(>6zy~C+7YVvvmbTovICfuV8k%E8MdEA=z`|p(v-9v- zz1(NFRM6L)@J71Vzqjf6F=w~7zb3zFGlu+uk+0E8so7D)1HgQDim?Uf<6U! zv(F#vEMxP3BTUxP3g#IuLLw=U5_X}IH||Fjj@*#w#0fb}0(Z249R!plB(G>~yX{=o zq<7ahA}h_B`;IPxKKI@|X_}#+m(aU}d|O63Z)vF8qPuPtBy;2Omm1r7kEYHiS^sp0o%bPx5NA_>l_CS%tYc-* z3*0F1{%V_{xpMidSI1c5Lyg)RWmzAaf2oaV=IuxO;L|`tvXN<_4EUdkkpZcZmiKq8 zowK76cR%9q*0p-^=L_66l*Wsz6O)8|xLxLTc6N)mIt9lP1qTaDHjSx% z2&#jyqlGT1zxk=V>#ew~bd%(?$CEZvzw#%I^4hR%irk1Pe#>CAlm0Cso;X%e^D0dRpc?~ zht3D2bqx1#{V@LDZWUQU9P;-sL&x7*e(cRWQQ+xvURr!~+&1Un;7Yv2FYfyka26Ww zKJ-dsV~m1)r#X<)I?979Fc0;eQFbVbKseHp>#yoG&^5-OGiFcJmjHz#JpP+Ib}1YaTXc%FZmM!c0@G_#hjE8cRz@E?~kO}W=Mng^qX#PAHV z98#$;BgOZt_3pfr(weib;vbmhMU7^EQw-Q+M0N|a1*B68y_b?AT$_8-ewfRyL9}E&oeEc2X*&3Ub*-2x(${t^OFAYk&RY@8sNgW>~QB@$DPakpLmP z+gBH#gGO_+1=6CBKuQvsdd*6zI9Q|M_G|MCvR{bg^7`Gisw#V4B8x9|I`3rhg1{2V z3-}hZg6VxWbEWN_m@CnRl29CeZ9?}q?DX2Se>nmJH}xq`<)Yq;wLE<3@y8fQXNZAw zqQ8J9#AX^ab)f;5GSgkd!i<;eCLsl4sFPC9lrHfk-rgbBY<&zA7tJ=dk0Irl{*A%> zC$N`I7$+Yzm<{0}7X#DE_#&oZ%VeqD?9)xB*=GwuM+;j1?WH{t0|toR%~*1v2)0>B zDM$)vgH7yuaW;ER@7Wa%3sqv!mX-;^1i;?$`Zz*YWoQ` z+RvAOq}PU%WHGY`bZE^ihycI?Sae3<%qysiMT_Q#mn8rsQSj^GTz>kE?IsQWA;-6L zI4*DxFsS2RX~9p<==n<8c}d!Mxz`pEtU)y+TGNGP`^)#)op~eAt(-PzE8)^kRdL z8QX!FRJy&A5T&nQDNJoIm?XA8IE$EsI;|lL7jTZ_q3{8W`oyw~ARbHn-;%}}kc?)iFhgPz@QBmrFmX*nepw!|9hjuP{!KiK zf5sgA-cLkHRWP!p9>^ag45+hw0ci8@nKPA+D^XCl`2ZHarVH|C0Db-Ur-P3PV;TCQ z5bK7|bAS?6#8QMJDa;zEQ!2I@h8M`;fJzaL-+QCl~v(v z%5V1Wjc(2wv+M92dUhRwV%XZ&7T`ZnwzjsB2?;@+ot-2LhQD(+Mv2_AyK)@~LQ|M9 z&~l~4d_}|P9xXtyF3$>CIB?Ma%~tB_UqU9V9ML=Le4<;rHWSMqLy0_=Cr=85A{c^=gnXt)E5#)qn$0<+&Q>7=UgeLe5~k*>Kf`kWypz#C}jK)q-vo)-8t4)YqrfU z4p5`pG&I@hu!_&9Z*2w1zOb<9N60N9;S{?Gwx1%2PB6r z=;SyM2P2w8hyXc9Ua+{dOt%+i^ABB>ClD9*PO6oCc?r=m-CZ82nm&_!AIlO$HdAkM zW{hLd4M*m?c>%y|aVhaXK2);$tEH{0M_p;@Dg-ORp4{MQ#!57bhK&}#rdZA2KP_E# z;|JIrPj)fvC*i4(zEC9K8}i`mTrR2ouXZ&)^fJ2NSSNEkAp!2RF@RpXK+nA|K!88~ zl;(ck=hNe4F(25b?fcI2{6`VQ@IamdOUNA5AvaQaE{sO?^k&sNFt~|q2}>QHMzy39 zj9Okb#;fc-Xj=1d+JQXVCP%2j_Yl}NPIx7DR5?=l=EKF2=Qx!6VZ*7c-<;c^Z4(f#sXU;&gR-oh^xrU1@S$xgMFj{f2!*HU!_4DKPir7FLodpNU2BdqbVc$=m`%*s8`xFk24gbGS|KG>EmFB1gx`1^q z5RUV_W3<$6rC$P_2m=_MjX(^BqR&}T!Es- z9(6SVc#D8CdnWrxY$Zxyy$7B~*xnZtqYC}L_}8^qv}#{EqGFZ+={Q4<^7lev%OfsV z%5eApwLh<*`?m`awC69SGIf>d0usHY<&DeU%*{&3^PlsG<(``AZ|_{K`H!_)!;=rq zHIXZSus>bPw;dH=?wZb5<)bfxbBk@M-RQ4ENY7DbQd=CLTre1FFRar{@~Dl!&FcciRYLP&_sZ-*5AT#t1R zw5NwD+<||}eJ*vX5B}78>n@Lfy3?SrvT<~%o^y7xTvoDn1EiLUqicZQ-)tvYSwB4h z6fjrvkp%_;`+E=?Mf=>GddD z0rZ4gc0Hg2on~^|d(iH#PmsYK0Y!{;DO1xu*~kQ)+~~xN9x*XuHZEM7F{kr5)4l7W znFC4llikD6whi)3qkAM3BAWlr$?Cs34eZJ(|0E=+w;@)0?h8=6osdb6=wqr26I3UP z_QL7@1S`)u`E3$gG0h9E(eoZ>2mUpBFo5uX#ub{72JbN7j~h?QJRe;TS6Ybx6kRaN__|sn z?9ZQ1_?))Ts`SZXqOM%Y+FI02xqVXYHyimO6;5M#kpG~onO}|g8Ii1%4>_*ZBVX%NNtIp z5W++~Wr9;YxT_HD%a-JV3OMBBOlLP_GZVbN9X>b^*ba>5ZftK!j{h7PUM8$Qm|=*y zU4u<)xcnXTbpFnRP9ZuvdjYult$8uNsA5LPL$xe{@OI%iF>`ZT*X!f3va*kpBloG) z5}~@#T*9Z@?l)%8m%Hj2j~H~^4*Wt{)^qt4sAO-6T+KONxn0#rsL3GH zkD{!Ul>TM%+oCYFkpug=O8pga1x%*pVq}~OdExr3AE@n(~fnuw-x(89a(DN|U z9^hHjcYg>Z#NX(NV5jMgl7;?oywn&_Z?^;KB(lZl*pi-}?z2E5*|qpd%yTZkPLP*H zDmH~0`K%G8jUJ@t>Q~?`5QYRA$tzEAqQ`YFC;VIng#3<4b-D@yz7DjQ6i$e2RCW=q zM{9~ya%*dZwI6dLr-%Pc%Ld_d1H|slnc9T`S;Jf%zu46+nX}8&If($$C+`I086R{{ zn*+ZR0m~a!YI)biMuT^Wrx-uQF+tA&y>aG|wbgJ7jvA*3+WW~p``2g}D8yduyw^p_ zn((fZm*3PzpR=4N{uahR4P&BYr}ZBM5P4G0{1rxy0Hy2qD*=_r8ZfA{A{oeR>;xwHA*8=oO65b`@T+` z6e6#ee_tt_FaIhWEz@->p+e~U^ddB4o+o^_?%vW!gm z_3I6wHo_Bd-lz#a73i+inpcA&z-RU_y-+uw8QDO^xZD0W`#;d!L zwsIZZjb`$y__HgwfpV(qUALFq5hXW=T~Tk?Y$P1*>2>F%fb(Vw`?mw#!pydsm%F{q z^-%XChB#^)KQP+}iunjLD@G4U%K!S=I2)N^kDv3KdDWudV_J08hBTzFPi)qxHtKjt zxjel-Tq+~XjUcS)XM79G)t{s+-{@#z%7XDte!fV(>s}3=&};2vU|h+i$8~oMWp}dB zDZ7^%M1Vh|=lh@#rIc$Y7riUJ|E3A*AkuSnRd8aG0@gT3aO2R^gPaAr9A~`XkAcI!7<@ zuA+_c+%?Co`$tzUrAN5!su=Vi1e`w#y)H+}SlDG5cs?3Z3JM8j-vf=;?o6p}!Zj%q zS9d6mZ}qns!NRGy+gs2k%lT@~WZ+54ESm5m9nI*fl9FdTmt#=LH9F9c` zK(f*~(|2|o=$?FzxUeN6>$dJB>&z9AS!ik6lh%&5A_S%Lr&g2r9^8=p?{YPR#gTBD z_~{PLydgEX)lLSztaJ$`dVa=FoMX&rvF!@#{#0^S-$_0Bf7_5Ab{@I#^cJr3RddiV`5)T&MKB5HqN+@YqfDPUlfC|cJbL{2jQ}7S$n~q~|wVpC(%py}$e;nx7d*E;* zopkTe5w*AGhW?41_vbU&v*C6}eyTnajT#Z;OUW^ix}O(+vl42edeXl3J2NeY>HNy; z$n{s%LzxM34(}7X4srq1JrfM+#T`2S{4JW!tSjnFWk`vnWO!H5gg$5BRx#|_#$Ly0 zqt8nWu({r85<%i@0L3Vp3DpYNJxTlX9m`WJJYl5F>1#yIQGpQ3`vRGZM9RgmKDN5y zY_k`M^QuFIDK=W`N-V2B2TU?roaa?dvBy;y!2DNYtvph9=m*e4jgZ7^K?dWdFW;eb=<3 z&HcceQ^FO#kga8s`MJ?Mdm!%9);Y;Cf;FR?A=hvH6ClsJPf_WqQr|6o=!4e{#I*?TPkk)l_s^Wd4Zv7miKt zBtYP7)`k)Y23a6!M8^hVMH z;^JQ)^#tp~$y^-{7wgdgy{R+J>nRANg1)@m!rz5h&>jIgz-Tg@Y)epB2j2UD0j&x? z8>`0PgGjefEjICenxp<%7Js=Jt)6pxyCGIvL6C>7NX;KcI%(_iAt1|hgB+6^yxK_K zAzhj$JmR@2Xq~eO{$68ut{%;G`uazsM9Ac%8;2V)LZj6Oi~)@q;&XTC;jgdW8FnAa z$Se|Q-5=DXd|STnm$4XaiF;f1nZ2Cm13row8H1K&7(&-Jcf|YjsD!kgs#^gh)_u0U z?`{K zR?C0AzcR%$Y)&N>-r9N`^*XidwLavxMxvtDy}3RNx$@kOM=Hyn{QUucz8cCToTyr@ zG;m#OiFed#_hZ!&K7!x)1*;f0V<7JK70(hTS0j+0Y6t+5e% zR|^29SH7@=B3O5mn`!&?x$;bB1jd@amj$$6Z)VqPr_e-+)4pid>puGSX5eKaN213Y z0Cc1Ni;90C*{jiHk?LX&LBZ|jX7A?wqJif$-F^Wd@ajMF(hd8kv;)P84d_G$33vrJOjlZXA-Gy; z%N_jL*;#LI?{|O|eVr;Gd(FFvj)OzRDu@N)K6wg-!E&7keHx8~i^x(O(NW0H&r4!A zBv7=$Y8SNG8w44R%cuP){o@mVV3u;MO~=u!LcfMDz`+GJIUze8lL;<4qNiRu(W!TT z-U}m6Nm{EOh5n7&2;iNOmPYJY_H1mjXiB5Z^k)%=fLA*`Bo25zI5jc zEjIsdDz!BBRF$aO=Z1S${m^TZX7bnj7nU;<^7U%(h$%RTp8r8G z(q9XTR2ugAnzxzSWx778>W95r_7*VhSLG*}3wpxi_R2#asOc(S9^(^t|-IC*D zBlm(=iaUc{A(g3d$6g@dP^&RdpzT22Dgrtl!?}1y$v9dn%BaiE3Fd4BRJ$pV3P-29 zAnnMebfzV-6Vs8+DRlgxw+bcpI_}zHUc+XxL48PMtDG$_Vu0-%bBc`o<&W=2s^zht zVM#E9YE@FXZb>4qjn$%qRKzPIEbK=qU+TgxWo5ZMJwJ$zA0fe5Mvj%hxvm(&dGcCm zcQgyxhX64)P@%on42?xaWK}SVI@$HN30{Ny;77lHWK!4K?}crt#8+?fRB5cxujMwQ zv-r@caJD^>!KwDQDFEEB=x@|n9sS-&7VS1awCQz@RIERRtPYnsdcw&iKCvo`U$ zG5sDKaj>=(tih3P3PJOr5GD%La5#v)t-tjTB@B6Xvp_lS>Mi^e)d?zIxLOsS73s|R3a=ei@WWTtpla{-BTTp(u0a61z-EDn^JO)W zH6M=kHNp3I$LCPE&?+>PC>$1?v%oq}M2ZrfwsM+yn+px}bz8((s3`#hV>=tl#do8l zJ*FH2duvEmesAQ^dBcZ4Ju?~{F5;4ug_qlvN*5~4)$PJD(<@2Emg(XyrhRJp1YNdKJyU2v7@X#tHKrbU^WyQ&-a*VE-y`Y7yQ9_IPm2{O zSh4}Jd$+?Smg6h=^@2|iP^u#-U86y=;t6ERetbLRS6+8q%a1qgS~6^G;9ZoC>ki5D zciPJp__}wlr0nD+=|3`M*50<>H7Udff@XHv8{>Y8v-p_azVW4`50)h3k~z6}>EHVY zk=fz1x!rlgtcvXIzuN`X3fwVWYF64^3-Y3E*f32t%9r|v+klX};QfE5KNrUZiJlNy zq{5qhKt{*gbRw9+Ly5Di6gwaQ(_A1YNY+*6IP0{{PZ@jDc%knmrc?Ov?#M)o+o?us z1kD52hsgPj_8ni~(SavRqxsK}BSC+Nv>|AkRk*TwUAp^LqHJTX8tkv4Gb>AuF^wMWgT>KAXpF%*#MSO27-l<8zu7 z5S98>=g)?YIjxFkgWA`~UKpN5Po8g zP)fc%V{HP>lo#Vr4XVV$f@ms;BCfQ@x-)EH#{htV$z*ditI|~I!hh9elyUg?5&oB3 znExvzYde-RK8ft2(+^SOZ73z=-C1&!h`RPF{$Bvn8ATj>A5Dg$Ock4rQ?KKMrAJ}; zXOy*;kf0$mg_j~Ruc9yN$?b7mc{9eAGs$h?OBJ0{&xVORUi-8U68{)n;*N(@Z7yy?NGS#2HLBovnSP+)u0UD-}fW@&pZGojL4Br z>h~-PMnxQc3#+%R^8mN6lx`nSjF?pWXVa_cJ9AHj{&Njow(&k7!BV|7oPS&T{$liH zK6G5Zoxsax!XD3+Fo5=b)bF=6X~|`3d%^zC$homlYT0b%uG0A@CFP6WMyt-3%WMc9ehrVjf{2!6ke33jUWD zVjz4@DZk<;`LTn~G1L=AJ{TWon?d<9FY`Z`NNUol);I#mqx*Amc<)CRcoqaCf7k;R z`E0vqsBa|!{I1BR-;3PhZLTH}f5%d)ri*UyA!nwB6|4lpnak%;Kg>ok@s?W1VOM%A7j!`?A=WlF z<-0ZmBoq{|iaAmO=H^BAUcGsY*j%nfBH?6A#$1jkLEpnutWB?Fl4q|2`i@Szx>v22 z9UsNQMZYZnMLL`%e=RYH;>C{3?|x29n8Jbs;_O(1n~E`$fQ^OR?e!gf0VKZyly1+O zSBhL%h?!R&-;2`o2G)@*(4;dp9_GA~5XAwDm$<$|NAlCJu3$zfnkyDVQq?Gp&!3r!?Cm@? zI-e=V<_H#F!H;7T>I-)>L|2L0aht;_*pIiBl_E^h=>4vyE4kIuPyQmzdx$h~#8=@i zWMR+{mJW|42`+kn_`9~BLxn1z3^H?NH&mV!h{Cxpi)XMO{Mc8zTb8(iR1pJ$<^r*7 z+?@l^=xJCWbO*lgsk7PmefFmM+_S{W%eOnBmUyn# zt>}5C`$XT{HYhT+t+CAS%~*e);PhKkQd7{pZS}lHbOq{S!be!8pM+F%9F;emw4A@> zihcy54h6LOz83O8j9HTVGdI__x_o%Jkfm+n77`i*02)ed1kXj#9Dod!C3&=E;M3sV z!t2Mx8Go^iUg7OMU&>o5F*vd;EZ{Z|0Uz#sG_iO4-K67m;_4X5-OXoVyukXrqlGMs zci^H@TMHy1k@?zQm86W7M_(>P>V|XpZV`EWaf}o)gucM%c%z8bqV%Dc_@UkiZ9Ov! zfp4T|2Ft*Bu)Qw9t_aY5l9N-;w)WHDaovbGtX}}Bo?t7pL=eG1T%KDXkP&UZ^nS=`$=2;|eqzmklpgg=}cINZQrEXTl8b&p79 ziV?1iSxhP{zxiuGnTnTJaS|xc5dI@#ZGF9Wu$QHdzcx<5bf-&nQ&{+d-Qry2Fof1~ zSTWr!B43T&;*Dr^ks=s0F9ijjI#~t(uWSfg_Fuh`vY5QFI&o+}Dp-+tM=}NxkRb&EB2AJslK8NvGJYUtdZ^6B$T^MKoJenb-P$qQIUG^Hq5C`Z2 zfx@45$*J$2lWwI9M}XIL-jHYAiTSZh6-fS~%AD+J%lUX&Uvqn@zkSrL?huiU_0HV!u#tAsUPI)ISh@V;2m4$h=JKDh7gdj>^RfkIu@G~B2cdiH2zTZFsPARF_43wg& zP^~lq|FSYesBh?}NC<+8U{zw%+fwkHf~9{I$dxK$0rf|Mrj*8W-KO1-hx(bKqoc#4 zF{@5WDc5bz$r9Dp&bz7@!~7U|J?d)QrF-N*gCeC_1`(+W9k!Z{M2EAl(^{FZfG8xC z&0>CaM%Sx)pX2Iq&KETB(*tsr@yCbvVmrsYMO@+QN-nKgt1ZY+m)r*qtyEu$LygK4@wMs{Rm+LgN3DT4^;Y8{WX z$u__49zqln3fdi?uipMV!Fc54+4bqMC4EviwVMI{Nsqj1- z=*vjffqzB6G*;PKJGQfD*KTvH-#18+-SAoi_Wo3w9R&p={ zMK_isN!PL~Kb2k|uE`!E^Q&O$<>|?x{+ZB9izi|s-{Wi%`MA#;OR4001fHg_>rjrT z9i7D{_sF`fB~4M@eJ>Uh`e;5_=hNePw?{$MxY2yQ9NnC( zEFl5UcYnxSWwk=6>v5^vwtJZi{I&0v9YU|~dMRERCaFGuR}4Vv<+I$VKxw#tfr>bY;;pD%7%oDR5x`F}(ZDvpbg2xr>Vx3~u ztIB9AH)xhJb2ExDBE6%ZBT=#HO|R`f1DJSxvxZVNn+c^iw8a4pRFh*9)j|qyyMEV| z>I!iNSTJU;UH7b%{=q8r{NYqQKWuFP_RiG;hBW6w*hCNmIxWm^scfxJao)`b;6S-r%j6 zp?NTDYB54z4)T-Gf|umHi!b?LWKp<&Q}nF6+rL7!ed42`O4(0O5G#+4;zNr+>BOO| z7YF~j(s~+XeDWHgggAfhjnur&Ba;@&EH{REx;u(-#4#qUEPOmPP#3Fn!7x|s@cw~- z_L|*&dsg23`Ih3>#88FGk}Ec&k!!x{RtU^?tJMwSqgbe5z%g(36O!^6X@^+4Wa;wF z2n~bYL_^wdxa-41bI>tfP~+k8ajg2AD$pEDN`CqBJ~<^t@{oe&WCsOkpn>EMg0?C| zZi1#QWHkru_Snl0){OhCrk(j0*7TXb7=oEAEnMZ3miYn#nDW~Z)jG@%+}|tR8WZe%6SVJ zq&zNW09K4m|DjvUcyp3X$z#U>pYwO)rCY?bv(2=I;o(2r~|Eo&ejx6?Mg4m!-k-eymXD46}^LM6Jc%@fEB zEQVr&ASbMcgzM_qNlgPLVV}fQdTq3NsczRkWfX<5@j~7Bh$;WTl#egTFcl0y!>zS2 zis~DO;;vciJx< zOwj5H39lCdm(f83knH1uW$|jiJJDFB6{JRZXmN34^b)Xs+PpEA;0+0 zE+mA4;s_rEch)=HFDm0$gFXrZr|$u|So1J2nL@ems}2@%=rn7+QLenVt6@!Z-gf}uq=v9afBK0U@Qf0ZpVO)rnPd&b1yE>QY&?zIjTA-KcNYg63>KQKQOk`6PN^^uMG?x7%cE7Nm5=q23So?sM zrzeK=*#ljIlsu+q@Rwf$B3|sh8j!d1lK5cif**LC1yQCKAgveg2IYS+G@|2JG?W}&R?i^bCFb?W9}80USHq#53<|N(#h)1wruoR zlCASxYbxqd4Qio=Sx0r<^CH_*KwcZbYHd^Y&HcoRYY+dUv4|A%I(6^}{kw0bwqfj1 z%7t|5i6THp+UU4$FWP5DS*j9Ya7e0y$-@`b#4?6uv!OHgPINqF$~os6+ue;AN|JCxiDUfCC4Q z3PcRi*A9p+l58Y1->k$3a)_>pi)Xp~DhTfwTw#uA$J!El1zE5dh!r&L1(oA*{eBtB z%ZY_;3oZBLO6F#XaLx}ewm4$o#W6&a2TGq^exr+@co@@sD~@tLn14C zy|$$clBfC|#!uAsEl$f%6wuBw?rzBm_Ak5+gX#VsVQ(GR}hu&u6+5VPCW`zAItNUb|K~ueO ziQZuRaLwLE-|tEGuqdTLgcns$8(A9*V(8N_!)zqsqT}JQA18`0H1$q-i^k_Mi1Ym+m8u*Q3VNk zdx}jzK=IadUqf}`qE|fUJl&KTZ;;T2vJz)Zqy5OvPEW1Pfr8gZtV^R+0tOgU7U#c0 zU^{)n2zc8-(KnMxG#S@t7M|(tLzgG+KEi&dJr9(>qI3*ihjsEkp1~}^>hLRigEI&^ z?Z*bcLcjItmdD&ol>Z{P+HL|n1YliMAKPEU?v2LCW z=VO}^Ub8o&QaL7B*d5jAYtvW-u3fYa0KIyFngM_lY#UqDzd+Yy6%A{eE|T^rm@@M? zoQSOYN?_BLtM18U-F}Pn^pMr{4af02-cR=VeOa1@Ra8d9jUn^tv|m&dE|&XE_rO|gc$+;hKEjDS3(X6@1@ zswX$&{o7Z;X|4|Mf>R7bwa3najA2^Oj^^CoB`i}c1n59&8h1nff(tZ%MgvvMym5U@ zx@j!izOf zPXEIs-!UPUZ7gNXSjdg2t+K_&rm@`dR;JPij8io)Xb=@9z66Cjwyw2+cbKNJbJzL{ zGFDD!9%#Yc72U@&wi=pr${qKa%wp1NK-9!TZI~ zLDo&rLpz##_24joC@H5DpVzj30joJ~i7m zRa0(hp`5xm^{hC7|4RrwDqSv)egIHeh-;}^)p#rP`= zvvc=$&(P#VM4^96!Xx1&^g6|^eG78rkCk{j^i%B>AQPITQE2|XWp&TP%+`=Px%het zZO5y8?j>uv=!ZxR_BiU(L1myKaab{v8BTpp_I6p==Yii;)#S2J23yw*3IkauVl5A%huc@GsKb`IqXl8?z~==AJ2T@dn=(jYtKx{8Kno5KOZNEFP1M z7~D1oKJGnB%St!L@Ka2}t#9&?KBo$i(wTR;3I*AjJzdv#Kqq2EiQ|hc+2K!)S~s#+ zA5(fu9+9-(x-QJC+vq=j>Bc5U{mbNsZiMkZ-nW|1rLTpGAa&tBq>8jrvNw)i@%$Xy!^2-k^r)B=SClhtbi|^8xk4iNmlHVo+68>k0>j+mA|%48d_{B>z^pVZ zqFiuwWE0V5PnVnw1dcU5&$-twsMoQ%XB!gCc+b@N-lq}QljwRP%;Q+UWl1>Ic-XIF z*Q)P}BAiEW*c`I4VRpqmQO)n|Q(yP7kk5>;GCkw^d@V!1ta0P@7E-e}r2b#dMKLyq zJiBXfI~$?J4+grG2K=TD?(q){s5tB_-_}&*I+WGYcEzHJg^ORd04X|oq)4e1+ot!xGfTnN|@e z|J2+w<75=5TcrTXE?(T)pc$9HJnIgGAzC`WXlJ}kl0lOMo#VwWDV&CAcliC<@RohU z#ZAb(nBJrMYwfyc_*-B2H(ZAPlJT;DxuCp?*PXLTA0^kHy5ooLAe>OEgdBl4+m z-rT};iN_XTG0N#SkSpj_WMM94P++sVK`TsvYdGs)7Q*l(w*psr%}g=%{xI+!#ED$t z3A-Zltj3c-m)k@^OZn1g&Hhg;-HwXD*GO&CL@qb2AYK6x(DG)k)|xrvS}4$vQ87$? zaVP+%d(3A$$Yr3X{EB1-#V1Zd+Bt~m;6+;=r`*eYKWr~SCQhzwF~0}(4#+4PIB7i{ zqVzk-Yun>qU$-7*{}BNhX)1FfzP!W*pg{xNKldZov5t(~%1ZofCAX46H4c;K=~Cql zM5x2fxfdr?BcfZ^a2R{RQYhk6)u)(m_HTT>6t4kc`44_9@~4vCc!DXd>T{=)q`rFVkxcddN!bs1 zBU_{8}%LQ+^*&)Nomg#`&@g4x|V!R>Semy zR$_Vw9`xW(QcOgmZ-CVGq6dzlZD&oCkO=me??kfjle-q(x6;0;Zp*0|nfd zxd1=xhG^b0s6C>~a$x*%1485|Sxi0M)O10RIn8+meNJZu3l`>}>eSVd_Y#RB0R?FO zw(6GdCjgN!T&4#pc0rkd$sHdSI$Y;}5EPHi-GU>G@B{5mPo)-a-D50vgLrvOIKXsZ z$~>(A?cZQ8K>y)%F|{y{fnJb>xc!4!pxe45>S%mvcc(j{&72*eeVk_T8KL>6Hk!{r zrBp!RFU^>>TtT4er+5r0Z~1toK*YDO}c4jcU)SG^+KU za44C#T^S!)c)|<27V%t_=0ko3dHIXI@|`+F148i)y0#SrFd7s({!z? z(U>*c^OwxET{-{-LDP3ODS0G9(Q_JIi8a8^$d1;-!ZB-L+>mDYK0N@S z)WThp%$(7Kyf^L2N@#Azr8|I({m_jj6QiX6m)4weU>4yrS4wpQ#9gl4>UvCoi|_se zP@qP1S@(XmZ`bGM1;JYYtQ00!{&MJN1WCY)vPEx4c?ZF-Uwp18wpmsjC4Y;SsmICUzCwZ_^96g-VleFKof4i za-yc=S2dBxV39X@@!0mxcCslk2t?4K%j2vl3Ia*LOCyxZKQyRmr@Lhk#XU@ zzTAgMmcMj4W$0V&Q30p6fBd>u)CxQmh$&k02gr;kKw?IFCs-@ z7ozYgG%QpjMyIgeVXDHSjQ@ou@DK!wWl9A|1G-EeNCwJ|-^f%57I~0Gr*KINVmMT^ zRo&p+I*_*r3Y)b(WG8O*Bm$QFi`O5G>B&ZPUZ$6_Sskxy!&QFlRj*hbtfo^SyquF` zKl+%H`6q7Q2xxVjvj%}4$r3Sk{qAt0283VmVy#8n6?WPOgsfJ`5g#J@uF* zCh-YXsVAlN9_-XgSXW=%6CA=Mq`!lFp0kfn;e_v_iJ)u%t}J?)1~+_CHH7 zT=0ob;X?C#R9Zd&Ivo2u-M38wd7SwD%C!FL+f%-xWEZM+DY8*PVB49F2n3>xybvUj z_~EUVr_lgRFQVzTYPiyM?B$-y$IV#>z?rz2q&4{XjFGwY&mRN0fz-Vkyg%KB{i~om z05aK#fLqVSoQH9h2ejaJrw3B#S!>006|XRS00k&OF*J+}u%-WEve@fPcU2vhb)2`H zr}Hh1@X_N`X$AHR?fWsyvXlns#7(U~@3KxE_iHl&jBK{#IZ($UGJ=4YtE;eAjgg1f zs0l!M$v#@H0K-9nB!8${;YtZ?60;rMox7gK&6rI;IZ@CQ{4j6%_cNuqE=!I-z>7+7 z0LnnZ{KqO{fZt~V#M6lqrtSIi5+%LV^X6vn;^psSc7S#GJHg#77j0{Bb;NsQ4EOvT%3N16JcM#U>Be-L@USej9l#^F* zF($~qd0V$@X}>Nx*_rk#2xRg0f;My)_=YuO>nW;(z5)ibM4#(j@Q?i0f?s_ckVhmN z0Isf&RzRR1p%=_LFsN*Q`&>Wmz~@Sc{OyiLf^1V>YM&4E4e&d_i*`OObQf?0l9aKM zkT6F1$?`~^<-MMrW%qjY=$AQvzTD1Y_j$?zKkc`eXHk+SVDpds0s3x&7rO^YSH_Xg_B^40@ogy zv;c2T~da;W|yT$><@G36o@V}wtBadKlI7`x5J95X}{-JmXvEX#i;N9 zUK@`|KR+!US&~R+dN?U|X(7#kb4gEb=c@}KX`uTdy_tldi*f(HlQgj9kO5-*XAu0> zT>xL`%qze<`1=S@>$}px9svv~(0@$uKmRB7gL(PypCnKJ2sE%i|M~aL0H1lfD}elg z8UgkC^XUHl!)K!ZqV)F(s4oKWMCLADyBKh4z*tK00ygl^Adzag*kMQ>{tKP5Y{RaY1@(Xtdbon;0(8UM<&6lMG0lMJq8*~PR*U@!dhBn{34D9Im7{&$Xf77f4|)&GKZ<^NLbX2``77drK4_I(fy z&~Wls8UH-E^sy)K&jJ^l?cZ1KYh1W=g#Tgz;-_Bu-v`??F6tLv*M)ugGv5BzjUjXX zAGn`Mc)5Q3$87z1M+&s9-7DPu&z{6(U9@-3tW%yUg2=y8xU|DE`9+V5@%s(CEVF`~%wmhej9k|2T&K zU}q(F!PEO5|AousVi)@3EdZ|&WNHNIshqFM>^bTW;3PDK=>`LA{Rg8aRu-P{-#@53 z+8BVj4(J{&uk}$vV$&=x%s+_jU$mv>SysOP@dW`3|1YV~5y=&Z|HJkBHxD~So?Xbn ze*_qGShReB_GNMxIpAXea1c6b+{=pU?eldERh!Mjq`5xeF&JG;?8+UwdS<$>;%ZCv zwMvIe4CsK;SYv`F>BAUUL1`y{{b;}${R92~FEytj%l8*A#NO+I zBWb^s!Pu2Xww_)B1m2hPo-nSjI0jbUyJpH|xZFGgTR>cKk92c-`4w;@sfZY*iT~BQ zG;=%8(Mr4M9BxP+td_rmhs(s1pS{5?d9wK(=BLp-;g2#Tkez4wP& zqQwy0`ow`LMqg{mvC*F16?QH)ZVc@jIt@lMC7+-}8I`IV15%KCACB>}UFPJ0fhzf9 z`?%;U#}%(_6Zh%bv@N5wh0Gdz{LS;AgAp17IpD!sUBW%yweA>f`2x{fwo6sQgCT(wlf@`5%Ut3LLVpSSlf=@G zLfmH`5V!jwn|xOTrZ~ObS3VtEEq`0kFV)(86~Nw{GvAEcI}zj9MSm8w7!_YDtJG5v zd^b3-Y$FRZw9g>Zl5?Ziuh39y*v^$O`CPQhZ262dN4-KEQE2S(J?R6OY_Be6Ew5$# zpkiI$V|Cse-bNWzew6>`lL)b%(h7Z<@d`+avT<(!bn<$lRz)}}Iiv3#ozzIF`AY8jNk$QiC3Kb9 zk%>6Kf4F=He~9&8bFD{JEq`okbm$uRVABB`S&+n4OJ3(m(=M;GH*}rYWOQA6+QZa3 zHK%A?B8@Z=ey+yDeTM%&7H!ks5i@wa&YHN+G=E??v<{(#ZK&1kmIbvx-ghTpPgEIu z*o7Vu=IR~fCljHA3aY7RgkCkeoWRT>x;y|_wp)PR4U6}F$}=UYWU~4jfADrteG~Bj zZjgm-NuvB|rS!vpi1T!#q^;&8(@0e7F75|`^nLdx1Eb?*#X=E-lhAugSikz+O_|g9 zm2=<1{90Hm*TC*VlsM|4MWKH1?r4mXAVP1h42o7jt%PlP$F1wWanaH=PRbS*_EIql zP<(9P_rhp1JfU$0Hd=Q^qlimrZSG!h<;mSP~zsES_y~ zGs<+4+II9bEJ#tl?n^bZ!VWQ#KgM)0Fj1JoDeToPp;4t=KI&KKW~N(riN0A54Env2If{Dz&)SMy^Dbyp1OW?>i`w8u;lf^t|VkXh5JLwBYU*Tn zO{8l8V}-|M>RREZG|4&^W}UnnbP7c?>dwQraqW&{CTz)k@I>yKhG2%;($G0Q>a4|aF>9^9Ec*t}qknCbNzS!V58;gAX?S`_N*0X80AT`TD zW4P2i&dHol>m61Qt#|2%WW!61CSMu~;FovWR%)P614Be_);aIZ4TBAQI!`mLWR|#( zOzqV6qE44&5qu9-35!HzC&Ye1f0OP^6j>sd7~|^Y#323}oVukM*UD^gVNHtHh1X0aK?tc2wX&d*&h79@h1oLWQHgqf)}B<2(A^V>Cz+zs#O&3b=Jls4rNP(aGYyRUbvI0~w9Y4GBFcmg zxGd?IYu$5#n4N>^7FYeGa!uVpiOV8?ebK|4Ac=X~qk_|RcAqjPnV@25;oXKrNaC#P zgtm&-fISr=zI%d&eB|m)LAzi#=t+bY644*2v9~)MK4Byi71IpErj;Otb(CjF_r+Dt zO~c*v5ATP=JM-doQxV^k9Cbzm5f!sI)1!5C+1`*+JQR#^v zJ^v#cJ#vU&VlJzbGM2X>wC2l1kG`Q-RMhZ^B%3T$7_BJ`e)4$!Ah<*)gUCJPO;Ts+ zn2Rg#dm_oalm11!fd}MWdCKUR-Fc(uikn;cgVZK!OO-C?hdooiPZ4FF6NDG~HvI(9 zx5&!_gJV?WrwW*APX^Uo-cVVCm$#ni(r}Bcfz1q;aG>r{V0~ihf*;x7%9IWU zyrpetqlE|`wSES}@34EL9aL19q@VKgvhy?PtceQu_A(X1c0|Av@xkp%Dwu-jh~4R+ zvfXA?a(eFVLSyf_D!zBP&N8g$T97H69`Ue`Au#GCB8qY@wqUaCQ}^bZrA2L?5)nqMUz{-Se{5L)`B)>kY`q#2PYwC!X}BSXn( z7TbRLeLdMcigDJvc^ROF-ft^IBLug~eMwiDjCCvgAZ6ca7`ptQB_7U_F$*! z_Ny1#g@0r5eS z<~@`0RX&Dmt*dt}EUA26?Nz7}s9TJbn>kjFUCwKyD~wk;S)qQ#J}R`_>IB>TKJjtOzVz6a__SZIUOeIP z)DE0*d)mQgA^-v6X;mq;>d=J7H#dpg$$95--W`rbixV@Cj2t#s1=5kIkK`X6Y%!wOXHE8&b;rufzc2-B zHsU^_90N%$%QBjLl9PaAbQ`>M4x977^P2D}Ggd~_ zO(#TeuoudJn)Xr|)mYUHP%N|vRy}eX*R!9hYTP)!Q|}y?nmT@M|M;{vbhO$g6AM<{ zK0YP{sp|uuXq)ZSG#QW7sPc1`upyEg35C_7$?FnpP?D>fDm-2BZ(mKX?c|`S#z*Q3 zjva*rD8ksgKNsOQk_rqTK0xF#j1vVtuSn9;jiDyDlH&^``+7qzUh3G8Zg!4@f2)X2 zJC=*XWQ4&O8PR8|xXJRMd|fo}O4~YHU9|(aVs{in^!7)5wca_s-={MHnTQF|JNkP= z$L_iPC=wCbD9MJTytwO&`6?KPE5Y;Qmq3>pBwi3~ax*K2GQ{J4k0s=gj`%6JF?99j zoUZHYzaJ{jv1}-cx&r4n3wg~Ve&trRqRJi{_B-wkv?y5pSKhmKyvD;C?*Uo=$qW(V z=rUXQ%=F+TSM9@{qi1Qk)Qcg$h40|};V|Dw6USY3=a%K0a^41Q zf>ZEhX0|+ggB=`MVQCc#t8J^RKo8-%7aZ^k$!fcO%Cgrz9>m@8nWjqxwsNl+J5E$Y zQN~x7)Gbk~kv=uywsv%iI`V^|p*n*_hVJ@>I==Wm;?YV!qff_Fo_FtP^v#fnU5^!PQ1ssCr;=dgFtcDcbGtR0<8#_oi|9~p32PQy|EKBxk-q9pD~xH!9iq&G+1m< z<6eA`OfP@F>BJ)>)vH=orF)f!1KQ{el`#Rx?m>t~xP1Af45j6B%z>lZ8fH3qp}bZzfYmPz|p;9KJl#6{0`ddS1VaDtsT$AeeU+a11-uM~jcQ7RYzqn((3- z;lzRc`;TUMO!Y#66oI~c%!bfpdEtiG9Sz?Z9H+}Wx&glvIN+1d`k|xEZ4HC%)1K_i8dr>V9DzkUpklYmJ4v##kX!eTHl*7(U|k$V{$sELg`yhHKA3wf8N&Bi>nRr*gjfbhR~g(#QnTuSkDe zybzsQd_#>gq*=e_n$*gdIdns)w`2Z^Z|&|{>f}AO4maf(W0L|$vMS7*_k*?>xSlBX z4vh@D5$C(st1h=;Y3g#(jd~`h4t07J;%9+E?Ck9Avd`@MCeaA3T~@ufEX@3hK!U^N zY-I6+mQM1Hdli}G!4vcPGpxsyOLEmTouk%B z+xoeCnzMi$+!1pbZ!A2d?0YoI&-Hto_o{8jz|Rr^*xaum2Dpd}Z0NTtma5Ix_*Lmj zFMb0X%(c#>s~jXPx)EVrjPK}xk=N2YldWq)DSVSIsnj|^R8K}I+| zzwsZUV`_~^_3!PEks)h+5m_h-;~ohBV%wL22-ksm!H6EYiE)ptwn8IuFFtp<;5cEq zm2|{EE}Y8e&B%96o~iT950N9;9)ch|EO z;;mH^b06!~zBqfCj++`O>Xb2zVA`r#Ed4M$s-tDYB>#21$gsi|{~2Nshcm@;2y1WD z*S%1JXfqlVY&+451n^tDz`T79T{9i&F9376ZjqJ=`ssg&5_NQ{OBgSr+BlV7LRG6M zh$lCoYh3&Dl;$Sld1YRGA9J(aUK$veV0)7D5WB|+be>L1unot>t@u&IxhVNHoamnj zd=zv*8&GJR*Oirx*d3XkJh3+}8?~Qez86g8)elgo^SLCpM_<6mK@B=$0HkMF>G^@p z9EhJvQFLNqnmiK|E%mwzjk(tfzt!nck=`pF=4OPuCE(Goh95vA4nOjX`*_%RYB1J& zR36WB-*k=zfB3YkS)2~pufVvA#A6x z6E~wne`#8a59yE}+_Q5>br|;Q&|u=tp%r}ckPy9k(tssTDqzc{`#je1ZSF}0?MhsN zC;~#&b(ynca!Szt`HYefUCiDV)%nZj>ATtaGv`Qi=a=_oAwstD-*_mVHd0U2_bp|Z@L!R}83yIl_9 ztsME=r7o~vID#9{H}Yz}d)Auh2MeI&pJEl5F&1~*&13IaBWuH>_(HGUs6yZ{!Qon(3{?m2~g#P02Oik-rYSR{TD zl@@pkR4jfuRtpd*&lKI?GERbG_|_(Ths}B^jO#1m+KqVWwOW|_O6trj(1kDe8 z*7ylv9P@M~>a_+^*0Wq<$%nTUR-0 zKNBu=Y9Ufm4wqkdc{PL+-K|U5J?*#Bid-ax;mexJPjG&;ld;c-rL2(I(6PH}9cnap z#%h8-`}kCS&nf6@fjAVdTz{JXymiQ!hxV#@lwzdYgty1|A_=$OkzE~trm?wPu-TM| z=0n@Qa>=^&fp`lb2CfZ)p+I4+bmqHaW+w1q&T@JtUSaHWG-Bat^Xw5vF+iNwk1xhC$ z5c2AF#-w|4?&FHP*nQz4s7)BU>DCi@ZAZZPLPibU@ey$&pW$a*GGNE9wvGio!Sh^| zQ4de|3Lz&3f`xYKB8G(B{w$>$8%%qBBG!lJYj%_VVY~2G%G>wy*VrVuYsiGSb)U5j3ukvv;L4k9#FQ0*0-WUu-8l5 z`tpsBIbCW)rCm0oz7KR2xL$Z@Rbg3M5N1n9qPez#@K5)de>^1<*9;a;(U(`au7OcH zhR&SB`o~ws!1mfT^RtO&|YC~tpZ32WV`yG4y&OEDF7Q*$CF*0N-R4)Z-{x!!Q|!D_x@$EGV- z;R}=vyy^5-D`lwLFvFF+%jlNqw@l+b`1-xf<*FyFV8?X&Bq6T}tFsMFABHB~-!r{6 zO1dy0r$@Q- z!$8G@@IPssH;Obev>YXGgRgok2-pW9^F!$h53q*zPKe7_HG}W14+JD?Ll!>@%;zNx z9>mg(QDodfcLD)YDWGoaPufKFaZpK7&AuI0=dCF+n*-9Uxk1)ex?$+MiK2sUCNTS}XcwmeOa#*QgoVo91-8xurE>jW0=1`=yM`SBBf5fUtj)rmEGw zL&7T!xUomS7IeaO{14+78IFMO2t&NhzJTsZ=v6US=T6fwhhkgF14Utc2zM@pE*Vj# zhJ8)E{lF$r^c1(U1>~`<|49-~#|k`B^-Vc^8hr!$Xy-Z7%HjAaJ{j^XTKp)&*njoz z#9(f)gP(5$|JwO@nZeHWy#sO-c1C(H$eB6Q7g>5;G~!{5f!nf{WveWj&+p_QjNuX} z_Dl7$(I4u86nkz?>R^1ff@vGh^5pAxVuW%R#T0vhDrt4VzO5 z8svqav>NLF!W3kCMShO0b5Y2TMwhD?zE_Zs_fx-+vwvVt8>j9hMQ^0{z*-8&$`3Fm z<*)kK?WbJSX%q_i6`nq>v?K)EO{&s+;Wc|4o`+p)xkW}k3d0#clqT-bAppUd|KW@J zx-y^2Ag*8RdIP)HgSYA0x!j3IP41=o*O3l*6FrZ2iRBK4A2Kh2(wzTIWaiD&b*O-C z$5fMa3OTp<4BW7sWnc5}dssoLUZA=rv+TV4j*nW?erHXJqP*+VR*MPKPByVXtqU-2 zf&d^i;Axrkz?Fm~)wUA-_Dxg$-Jhw*C|_%JP)s4tTV*MYb%LMLlsvXT3m^H|-hV)~1u@xZQPNv+!{zz3f)3c1idUO; z5q^Z|JWbtT{07IOFE;t7Mmn4X=Mf`uWEzlQIq$Z1yu~-c=McHARs)95G<%uu0vF|O zyD|nb-*eMkeoVs^)&Z>$Iiq>Y{%;~Z`GrDRX|f6N{_0RWO6Jq>!DUt<8|(>myr$yy zEL?l@5n)i{EA=sl39xOyn%`6|m&)%MHqE_C(c|+`uMsG^23A}%L3{U8mT}OBJYpN7 zfNTHiUAvJyG;D|)=ELRGIf-xzkB3g33W9Ah#)}_6hA|jtFY0}O4)I7Txk++&aeFuz zy01H9iLb;yOWE&EO^cR1H}>x|$$=Th#KnJO^R`Zg3PW?qAl?1vMxrvhHU~aA_g+>csg7ApY^{4k1KsgkiF2pQp|xQ|lY*>Pq3UPReTYdyM3tOw z>cG=aXFm6EOk77(#7E|{Jc$kFF`vnE*vIY~yeVjbj;*-7v!ri+1;Cb{0A*!29cEW^%jpJt{httFciJyz9IF$&zgeHy!9( zTJ0xHZ*UrE>}eB9cSWS-<07qdPcyVBg74Bz$;u0{xzy4Pp%FdCZh-CQn2L{YSZgb3 zO48(H{i<@Nqq*tB;9*mA*C9kbn2cW0pSRX%OxQtvyXf0!g*`%acR3#j3T8_>P*T!U zqxc;ZS_Bb2lt%0nfyqnmOjzf8Bk&xDREoU0JAZosg6>ui`I?%JJbd;K5hv z^hA2fv4|!VZFe{*4UChg4rB@lsEyy%w8|14A69F9C=UPRex@5vzLZ*Cqgh0@VVr4W za@WWAG)1CnpWb(G5)56>^kTJLTdMJ&4?6N_JCmvBje2a+BiiNUbNWOz)1=yf$4}gV zMXb4IeCp=NGcaDQ7hKG(+1-X0ewT;q_DVeK27U7(_nw5-yUme6_=KA+wBfzO5?)UG z5dIOQ?PzV!az5(_gS_p)nJ43NsAuc>T?QfLNQc^I_MJo<hN;cFM6`wSv$T+ux?VEx2*3Nz4R&lkbg7c?SPf>qupn`8Ii3O>dpH&beBfILnde z_S;Mr19ankcd5Yhm_M(Ipk4iJNDX$%s%G8drA+D{$qrS{vHzkNhqHR`cGj}JX@m0;v)5H_t6F!xRr5PuhD8{nh#@GaY zH69bEXg|?uFL7BdHOT&C6P5xvHPN=q2tmHikZs}5$|Yhu+4qg7Q{zL2ups-&IMwdr zH+%hdV(It)RNTZqlPMhSW{tg-B&0dIGe)A2?b<<|5 zFnEa5cpm0GRx|;WkxKPNb@>}+K4h&G{3S$=?WFTTvTdE9j8_`jG7L>XG@r zX~I&!HN049%EM6i!KuK4E$`6Kw8CWHEB*4-70M&Ot+z4jX6p44?$|Xx!lw_yq!fVC z;fwJ|KtASq$<|e9Z&j#)`#Rj1up2FhnaZk7@zuaUHop_S^e8F2mHr@(s9L0T7kAz; zC~VgHgfRBil1CJMPX!xrd_y<%UfTBWp~0=&dY8!#QA;YrR_0QB_ z(fe@ZZmQBf-kI>UUpkA3ILLFCxR1R{DL3yDxU7t*Gl)q?0JF263iu z*`@*}rS>dItnJ(xi>vgi$=TpSRL)znQl1zq?mqeO2&}C9NboIG*Uw?{xqlD3^soaq zxS;##d8ie+R_o8l!J6gW)WfY7&)I9av^f?FwNirXWfLO@#WK0I=u>mcq|u2{gB-=A znp~FN6j=v-e;KyW-Dj2o1pjMR5h3hTA)PW53RAwlOB`k{hWj zjmeoKM=LwP{fhdPq~RR*6n>O>x02Cs-C9*nJ*qVZPTN0PNh+?eA9x59rA8kUEHu~n z#|=GLsvWl!s?fnqZb@uVjW*=gG}r0~>J=oF`&H!Xr9Fs%#|-y&9Gwx#waQn6A4(qj zl#WGN?+i5+5k$>>c^+A}e}lv^Hp?p~CK`%<8=0h4wbSbK5Zth+QtuV&-P{%mkuh9p z!5a^GqOS^5)GY(Gbr*v@*6c7_Vu?%(DbU@Y3dnX_=Sq7=*B-6`=y)gy^2RR*QeZe5 zXDZhT}|lulCAx54H<-36>II?rannO^Lb$Q!BP!XipNCMK8`DrKY1GpITW zJH)RPthyfa3Eo6Zw^qxdD9J0Emob-7XD7)1K=2pW@*7jJtfu_;2qn%$0XQo06w?7- zjK8raS)Crd+CG9*XuCpQk{CQ<5LA-F?L9|&TKT3*V(JqI#;UJCRTza}J31zd2!Q`v z{Hb-#bY`aeM^i~1dX{G3TY511#jear@IEUpM%dVi`#rkAUTly4$+LU9MZG<#{_wqy zgq87dZf)0>FGa)yOP8vgea<>*j_g*w6D1C*kl8hK!1+k4w_NQ;N}KIdfy-RDz6xUw z_s(pK^VCpfumw`#l~w5=3n2l>JLgwrh)uO(rU%M$zeqmwDVwIRzkMr-x_4sA`-O6L z<^cHCPY=1`WLMqZ#qpBQ0@K%2TR!*weD1qt4o8#jOxy%JqP3k9vETU(4jVajO+?la zkzD$>_>Vm<;pMt(PCFpEuH^l#7fOt`;2Irijwc{zO{b4bwBlH%bk0fc`|72 zAv2oxPLA2Satn4ynR@d(Cgr{o3-zuU^Vobrfvgsi_rVE%VQ2@Sg1M~ML22lG-COE> zEN4L0-kk4@YlMZT;5rY8b#pLbGMO7s~!d}qng2LHQ=yYwbiL&6V&bFtehNdI8Q_G7e2FchY8UodtyLP zniUxPdTz5>4|tIQm$I~~+LuTHf#hbUauTrJ$Se(F`~{^k^Z$Bw0yo!vFl#fhkzFCk0}3hI{Vg zQ@36m`CSPXR<*eg%Vsy3CYvcv#+JNRpl$ZYD;h}LfL2N8jX^d#a4fpCU%ZVKQ z7>q}u`5WbJ#-meVu5KrY3Cryogo5G5%rj4ZYDB&Y;;1O{=bDbaNv+Q0XttGue%{yX zIyPfx%8b#cRVVbRD=EPZXo=#-txiMZu%qe4RxqT?`+Y>K+|NsS{iK`!I%!&7d}z4M z0T&W+tZ#K(fy#7jjZXC|*w3w2Jy}{>Siw88E#vT$+Sr-boN4}H78aJ!dDMrMQ1A7@ zzE!&=d*G^cG;sOOH>O~gRbJY9wYewoCvZw}1*2Lwu5E9T#IjVU7Mde0qPX0=?G|ix zxX-heW!ht|+RF9$d70~*^M+E-S3gW{qZ` zMY~Bk7RljNof1=|14h9e0#C))wlHbHcm|bv$Td_FHf(g;7fZaRXWA6^KF`rY3i>R{ zZrWu){|!_C?Ew7wQy)!hrbj_y*3PQWlm2G!2lNBckeNrU@R_qPgWBZ7hzA7pXUHlTdG`>)HF6z39UE}nwaCf#9Jd780FR=l za2@XQxZiIHEg;G$b4zpUUsq(y?Pe}5P1&O1*}w_c(B0*}urT&XR$QSWlDm%@xFun4 zK1NN{+o#;R@2BTj$~Q6a$@tkj`bU~fT}7BOr2C669khxjR20`B+KcAr2DeG4~+=Rax_bGIJPqXN71tCi}9>ye;tSmfm5YOa5Ex*nfTHauZhq%-Z9s+ZVbAI(nUu72j}IXTKs*lb3!k#>wq%0Tis zBB=eX9+GNcT@P!I{C?6yHLJr!RC(W33_wi$3jI?x6fC2SfbOOA-(E}0BcY7e9xOn# zcF6{vSQu5LbaXN^&BJM}Z#L;}DE*OtA`PO0l zjs3R7=~Ds!q}h|5sW>{|ekf6ksp2QIv$KL0?XkC&Obbow70rz4wHq^Kv|op;rx~L3 z3MBs@S#K2(=Nc@FCP07$4-NwaNN{(D;O_1)xVuYmx8UwBg9mpQ+}+*Xoil6id(O*! zo9F4T|E{j?uJU!$Sh$x_Oqd#(Z6y|NSV5UV*Q1*}rMFRRm7Mvr%B)oB<8l5F^t=^R zK38cIxFFDtqbXIa^X~7X`xt-DJJt{~S(9jc+<0I@)js)G1?icm>|=FZ)1;Xx(0Lj< z|3cv)RIuUaypi`ym(H^xn7F-{Ud}d#;G0X4{;Eg`Z_t6jC_hUPP zo=Rr$>K`7fg&9OLZQQs5FbDV`xT}Rl#H(n`9&577F2VD!Q@GNmx|cc*B+GEj)jt&%ZEZAUp2B#ci3m@JyN8I}#c8 zY{A(et%!sDcu_)X`B16MWY(!ms+haqB^@4Sr(~)M#%nk#>VSSOm*Sm>p~~A4N=tr^ z{n)4$Fp4Rzzdcm)Im2J`Dd5v%R7ZKekN44O(j5|u#svKMeV1OZ5X1aZZu=5w=xv)* z`+qBiieLbljPu>vgGCSA1@+nBmLk!`<-7N@)9uNz{rnQwTicB>@>j}dS&`}`E04n@ zd}kK!m8S>p^CqFUmk0Vgd$})QCd~=nhYUiWM+3;#5UKG$1SK_IQ}0NLd=Os#7L(L?V+Ytk^L~f;waErF_bX(6o{+bDMWf#cCY~=(h^NG zq2b7z?R>AasF$AAkb$a@UjAG7G=oC1bOnPmYBArQ%cTNZ=De9Ydtosay4T}BFtAu? z_0#Nsd~(c6E_G){vB})P|p+!3TPTjdIxqMykvqf0>R&JTj$oKo;PFmjh{czAx zMNs9jZQHbmsEsaDQRVR!3RN30B8}91jW<`KBj#8vO;@)=m&q&zIlrEIO4g|g9!tYM z>4=s@hA7Ad0GrF!+dY$)nq&(hc7DfYc4Fzj;F&GP6Ny+A34MkaKy+SPZ5Z z2zPr8t#l`r1^nAng3OLIxBYVR;w-5CU^7MVPjPCDxOk@T;K7HmG!+wikyDq`(dst~>!cSPoDn-P9lYX9& zS=w2Y&vLm`&U#d9#@_*wDd)?q%(cBp+VP+Ss?+j5Sd(U|Y=adTX|%rin4D*VRIpkR z_m@4M7GPC;dMGTX@O18G$@YdA#jrqP9WBBW&X=aVz;qX{e*(Q(>lO7o#VL8R7v*O= zT!YyzW=S$9&Sx?=^)wsyrtuzY5A;Z98rNV2Lboc(BC2e)SLw%qg+irLs%*Va{xOh2 z#D(LyQYLKJ^V5x7V!C66baZ-_gRowVyBLAz-IT@$yRyO7yAB7t&uA<8yVrt_YvPdl z@W|P}jdMgU03ZGfALKGEN0InYz%CqK!7B8(11y0H0k1`z%6kUtQ`*y(h0F`}u3hZ` zHSY{rKQ`-U{e@h9Rm;=m9paEkg_g&nMvI+^0_h;;a?N^;=s2zc8{Q<4Rl4uPsAiie zXzaz4=?JvKbdxdRs-T9mqUdsz2zoenQ)v2)1nWFKHYT<43Ti8?;>@E>+Tmy3*PNSc zj@DaHg{wbYL=D1vU0_tO{HKxNJgPgZ6FssHQUhD_GfJH3bEg%vlJti+s2?h2Jox@s3_LLw8a| zt@Uhgf{~%51g4*v@Vw6C&)x3_}?d&^xG;bv>D`9=0S7r$%twY z4Fm7ZkyY_}?1c0JOZ>J`Mr zV>A>NLHYbivf|pu=ZowwV97SX(%y*s-Eg4>i1oxAWwh2PG4bJc`3MI>zfMd%1Gm$f zn$FPrudo71(#7YAtL`~Fr%+l+7d#`5R(7nDcgmc- z?p~$L9{v7hb$W@(;)TTeTT@?)8h^p3I2GVARr4DLCdrErLFVfwfp{1 zUmaqVyz-LA7b{uF;jjyTzTO@&J*~*W&0Y7aMo>`jc<-&jpq2|q46c``(~2}28Ol%K z2Mca!et>?a9gLlWK33v4poqKqmohfeFnc>7;`j+C>#hUkx3YQ?#wEa%<`N(}g@YaS zeeU>V3S+ZNFmYr zr^OQirAMWP`W~RL`dFNf+7o%=>&(8hs8*c@^>MEsdSyP9X+a>NuSg@QzTy@O z%@I&5zhqzz)|80zB3|=nt3VWV9Y&QwqDm`YiwJ{2< zu<#2y!AwP;^IJ{ELqu2r;q}6RIV|QQjg3{{zzlm+s@Ze2F$2ejD%pwI{^B);gsr@2 z{tGSXj`5zNVnJM7n#zfrl1!I-McfpVs>U9fI_k#z^*C^B{aUf7Eb`6GO<84&g_oym zlZ63axYY3Da%^}ReC`2@i*pwp6$K@sv@s37FRBSxC&532#YAiQ*VfjSrd6DYDJj1~ zl3u;p;n(%`wY;!zl{!tZG+91K#rTwzjt&`O6D8c~^A?+(tyesuWMF9-v8f+~eqdsS z_>%fRAz=CPKUu+0SYFRoiP3J(dQ_e>d-$p94$*2n#+^n2F| z=dx%VE1^r78Rr?J`C9;3l@G>se58Xvu_C}%9*{pNa1Nm?C9w=2?ueQ2krCm1q33IP zu=pHz%sIeebgkdM4#h`M?Ud(<9wWLSV5H(mqXQbuC_&!sn3Y#=@tMPE-%RmpGEIAdSlzKlB5`&{c#Q%Hna{&8CB2Gks1|fe2Z6xPls%EWc3QM$!Sp=G}*2 zh3GIbK9TveND%?Sbb*$-Gsl9zQE@I09lm|piK8by;I$1in{ z`dcnk<@$cSSKQ?D9WFOezr@GwR5mSoxXb;Q38=^4?43|6(5q1Cka=YKEK`rh)ZCqT z`1rFx4E}ajjE3Pv%S&Z3qV_dmPNwZv$jLU{Zted#jU5^6Hn$6wDwtSzB4p;^(M)&J ziT=hF0_qOBK1o}e7bm%jl)?;n3x$^~wU?D>gkZTH^{d)d+~D9rbJlJwr`J=XsG6|$+B&!VPpl5+Y zqt|JHC|0s_NI}iIwm^HKj5x2Yl7P4E&eK`FKA~BGV%>1j#U)if>uOsi3aDlM0O_?cqs>Pb>B5i0tbjHY0J@gbqzDeW+$j8ls zoc83NlNiKdhnEgFB=LCeJ7RY~xDhK+K70bgH~#f&@nb~wbmbboD&tM=%{4JUhm8Rj z9~u@>zm8*1T!ovva z5Jw~XC-(Tos}3O~NExuGM^X(m-q{~>jr7bD)R={$p9bRHQPL%K*~Mn*vcbs(Qrs@{d%) zt)h8xnb;ys_Idd0SzdJT)WEnBQ6~ay>s}pP-<09im#j-eb_<@ z2W5j`7PhYw_ne#I5wAb(aQ!tgH8?;yV0^gqWjH%idOTcc6)$P|jOZ6kNqYBS%Uyl* z;*6TiE{zq!_}4K1>I4O{)un?i2F?`s_Kw3!I?>Hu32x3+%51<->VB)qEn> zlc;3Ve}O{0(K|IHw1P&4VGieZQ_Gb&piVaoeDq;Ne2HDm&}Dll^aXzZBN!*{O{6s?`6ZsF-{Fke03XeznOfF|py36MTVgCx$C(GBbc;8{_yTW+Y@# z6&OfGSH^&9UNpKNib+i>p2=YCV_MJJYlRF;s3a-EYXoeV#Jo%Vx0X!BZVV{`zfJ3N z!Ka%!j1)tWvylriX=fZo2wAq~0}6HhoS`istHa?zlMmL@0^?q1yPhtEZnulQb2ndz z455{AzB6Oe_VGmWm7`>D(G)v}_M0M6FzK|htL@fId+M=Szw8di2Is=>PoBnWhMX#X zP(t%)#w;EQRCw*qojlSo5JmVz zfJp!M0H$OzOH;=t&4g1NBXiECxY87CZBOh_o7a$BTVdkb*fJ+MiV5+4@(2`QKhiXY zW_E>``Qu%yt-aC1IP6Kkf=+>^aqX$a(x*&&JMDIlhWUf8+mpo>XUobMwQiQ5YQ$Jt zRpsfBngzcf^yOj}9%iPA%Yvl8go#oTX}6ErIjOTbucU4iBHEXZAKW3$iH6&5uO!w! zeDo#XPn;Q2yoyXNE!Rfbha-2SV^Y@~rlIr9+;PJ*=Bhx_J4^hCwoX8-Zj1~7%XJbn z5+^l56+Y_-`qO42w$~_^g(^gV@6cgPV5Hx{?Ew*7MBid)#$4Gl2NKZ-zlbqDfTZVB zL=$;>Y(uUYU8_Pga0#3@;g2q~*-6@K!zC^s2GlcD@C@APXs`AGdiUJP<{}o+IJ3Mpv+Vi&Ia0pv)5*!^dt zCtEu$JTY4;mVPg}Y zfm4&sHe%+&!>5aZ%Z(b~?An<-w@8hTht8ER*mq;8XpQ4PyK?x2OHTxhMBO zxpz2^loUZNU(xyWcYmuDsf=snPrL7rb=2Acrv-0h_2*deUohLaxPM9bJ5EVemuw>G8H$r2gGT;#oo5?AAEaAr;BkS@5| z;DpfwT@~|CaDtMVwjYcnG@Tx%ZqFcA%B>wJiv&(E36~+7_&vfwlB`Pi@H?#LLQICG zMdn0Sook?<2gyoUm9^+=v!EUzK(AC52**VEq%-{|s;0zwdl5O;1hhQuLv^(%kCQi&0YJsAJ=<)e3 z(@frh;Tb&DkG=s{N8%_^y$wH6(v#l;`a>MlO%Yo0R?hGP%5#^UeAXM=V&?Aas zJ7*g6WhDHfPdO<3_1$HryirQxrp9N6wxGP0(<5Xv5&mXuU%v*eD-5?Y5H|r(I6RGH zL8@@?4T-xZ6JKxdm0}KA?Rd9B7n{7%9xYI^bW&`keAEKN&^KxzI~9UQ_1f5G;O=A0 z&5!~RpA5#X-daLVMO88s|8OgEl05Do19rNX6!J-> z(G>}LQB{K1Ho)6y!nr@8K=*F0qRb_xk+ei4eij`H6jX+Y?JmbpWHOR{Wu$3lx8$ZF zdH)FF68A=iHUHluh-^4iliBJL`8n(0B(Cr?Ilp~K zJmGI{i8}qU26=if7U@0=`>P!xskCT_tUD)farx;wtydmZC%6WD_(Xh2rL6rVteLv- z_wP5=7}n?F^sy~g3XF&V8tU`_dvUQ}yXDZOO@iz+y3F6pJva~Nvs~=@Pxrj-Y4?Bl zxQS2v_CRrQ2v+n4VQ;V3Fz%g`j!qSVr}7dS7Rs=gUati%~A~OgcYqd`Xpns zq9uw&VWohv1Yd(X&TZu-09^{_1PbjK?{H+XRdhK`tGr^~+8>?p5iQUT$jbOd@x{c= zTvw~fJSx=^L{Zq2RBUpr%z6hjOQSl+PSS z5MNoRcM(i{W4mrK4<6B4HUe1Pb+6occ#^S&!oXRRbHu5Z^Yj&}`qo^b7kQ7d*BP}( zgV&34*lBn~!cM&WHH(4;{(^6>qz%j7Y;FE_(x4Xin~_5kC3C*9v@Nm3CyjXNS>lvkR{?q`jTjbF~Ht zws1y{zEy{82&t6=8^R(Yls?YaYE?2fV)S(ezeVrFm)_V(S2WWva`Hu3<96<7FjE&w z{yYMsqt?6_OJEK+T;4EX|5m5aB%SL%ZQzz4h4REo~V-i*#la&giAYd zEO+(P^A@3>T4$6eJwQYtMuQZ(M!k%ULLuf{zn{(+lK*UHU}1e-Pn{k31%*$ZiF3%( zV{UWIkeu%q%|2NDE@k50ySn3F@~SONiC@R`3$sY(zOuH8TW#=*-X3q=rwjmVA)mkm zwsW?A8BAwIjF>-DwaQ{GdXkLG0&RLPTGy0prGeGbw}x;?oR@HWYr1FXgL8_b-04HZ zD#}7wkN!Wh<`~^_8kE+fcHeGrdYjM$^~)k8I*(_0Tr9kq5x1PVtut0GTu=;V0BRKUf;nYXhHXqEjLEH z-nP);`_PhQ2Wyv2%%y4+m;e#10W1S z>F|_7k{^g|BiOKVq1#`Jp zu$dmNG9XUUNA+NKE$K3ENJ?Uir98!MZpwW}#m3>T(6+fk@3ZIm*-=BoHiyoE8)oaJlnWFP#{hyJU6@V$MU zPFWY)_@Ax8+y(^Ppp0g&5N2VKb38L)BnSK~&GXfd=+0yqpSfifuiCTP)zE(8=uJpY z+#byhXma1-I;l8B#VK$yX*#+cu(QLMlVTI~p6u>qwz9G&rlSYXm8)64@j=LjKQS>V zHX9u}`J$WBY=e+_E27p)OY3>V1V0B)+xUgp|CVY200B&S&`yC4d&;_34HgpT`3Gjy z*#m|`uC^ckKFzflHMAu#E`W?lS+^*%F%eULWZsBJ(Pp3xHgLNT6(Nji=a3DIIfL)r zXr;DnU9p;;TX8hTvWW(@M^Sbb(j_N8Kf=2=ixXUhLF%Ks76 zGuEWNTbnM6?A6mgRXQv~9<YZg>VA4-YRH?p^aiRaZK{%!&n!jTB7(sk!a*tLmtUA}5_W#OoDC?2h zm;y^jF<5kn7!>sP?Ob*|@UlB2|X~9W))X=D25u5mPi%gYh!qm7s!Oh#ChJX3e2|QuHTNfQ|)m;0T zhx+ClVC{R%h+!f0W+?;BWnHXuBQn!!=$H!Eq}8PDA301};cqC@Qi-xG$ilKozWs(d zMi{V>fT-LZa<=KMj{p^D9aesGRbCg1)Z<8?o8#2%{jO* z$VNkc0H3b+8aSN^b{(3z^7EVjq41=$f^Iy&|A)8biCCg0VWD!-^p9b=OIiQeJ58pO z*<;Pyw1Z@0Y_E*4+W=N((EY|E;U#0@-*NG+wLH$qd_rkdxFsMUGIT#F&sh7jHo)DY zS1Tw`Lte_>z!M;gK?zed^G69KE5Gq~7$v6Y2hB*|b0$iH@oqDG7EbV2-6T|2Ex!^s z6(Kd`l|`zfb$hj0?v;}poX1WX6BI)?vJsi5c-c%`FVi_%dXOx%1_Zy&NcL*zZ{GJ5n$T~OnmPw zEz35(-fG6-)7V{-Ym?@d-10#M^}T-8@2)5>Hq@3}c2<-5A;n80{ud=j0llJKl2X+t z#p&Xzu$f0}gq2P#8Kf$goaVo6UOzk9&d0eqC zitPr*&nilbk;r?>xl{$WX))$M3CqX#?GV59c!~l-r1c}e6~!R_8tM+#BgzSVf?gop z*@q=r6l6B&s+%&>fzW-7ygCI#|1Rfhc;*d88m{_!f(VeA+d(Zny!PzFTPDIL;JeBJ6!T2~lsJ7PAg zettm0XPZ50Ph+(l;3Al>)Pm#Z=V!C*9U2N7`)=T~ytt^}7mCK=^~eCB|5WK^k%KQf zKXl(bFFpqx@9};OT<+pP{0am08(*;{T)&+`!K4ggaWpR=YJ1IY)f~WMycEnf5eW1V z+rg)(YR_|FsN48E!@fAJ^{@Jq5_=#>edjJlZprFpUbCAwA`7CSe-mtnn^DbK_hm$Rvg#WVT_Ok( zau0tpxgh#eD3|We(t;(dssgnBkDhS;kDlmRzAYbsKWgqVvJ~Hqm7+}8v6l%3-|k#3`e>mk@8AGJ+2K^?uGccQrgu!MM5G&;`|p2owEg<5 z@I9z5Z?43ShH1NEGc-{CMI47*;@-PrC4HQW5f^UgmD76bd2!&%E$*i&spi~O)p*yDzA!GW1pRr^Ct~>?+~7_B#3qIR=X#M-R7tNCbW>~%s;=S_~0{}jvEm{ ztPD?I5)%@-`uo2a7#LjM-&cX_;JzUs)EJLo-Mfm#!2^q=D;FNfQ6q_Ed1E%%Y{7cu zbR^IFIt9kqf;7gXT#a@PcY$&%pM-C{zr~w$3h2RQIz=Z&>{Oesef}v?kB4U;2#?c% zlMfvgVm?^vl(F1~gk5K>3I4jt?u9lGw1~?g7#vC6xdW#4-MsLnC*`C?cfY+`9e}6+ ze{mAoD9-Lb&s-gA0B>!evcAt;dn^@u(6m9fV22rhm!{ zf-?QrPb!%h{9#0a1v^WVE|jMCr<}2QFxGBs>m+;K;@wY4I7v$t?_1cWi#q%OrA7MqQ40%@8rrX+mGZ2FNR_j0%GgC!&4wL}%%ZAk(ax=jV}6`2IIQIG1|~#NRepnI z7K9PHti=D#=44Jgj0V)xA;USs_%G5iAn_^i-g`FVVrCUiyJZY&+uX$ZpkMeY&fHq+ zckJy0f`4&CMabOxJv=kWQa2$(E!*YJ%Fl;b9h@2Y6uf(rP@pkOXrM?^(|yY?6Wb58 z5NIn{B)AUJ9)<~FhQIElVlLWr=hW5~$_k9<%)d2gBP*`HO;>w>p+!2eHK&P5xpPBA zv^Qw631dPI_G!DqUDplsrxqY%Yn5`5q4x4wt{)ymwUG#cLo@GSWOu)-}Q9<)mbrD~aBT z8=?O>>~<+pR&b3x($U-6<6)w!U5j))CrPzC6g9X*^Qhr^+RaMmnq>X?h=hsSX`+^e z{!7h43RrLPb&G-n=X{~6b zD(c0B@q#fM?3vhZ?`fO-o5`S2J;66TVgf|Ky1GSPWj@ipyjY7l5L~5Ql917mhqhyA^!#s-< zt`GG5Bb|el&Wfkk%{&4+)%5Foy<*;R#&Y!v1Iwhm6ACu}p$8og$C-Id@k@(?-)@#`w!%qy{*%M&MtDv$@! zP=jf{^YWWZc_si)cr3eOzZDf8;s$x@_%$%C7u^Cv1hCgIF&3`=tRK*#cT;ONFtvcQ zBq1=SPzsFgc{yUBxh?leNIe~wX?yOcU8M^cml+xOSIYW*w@0MFyhMXIiP9p+(TdT* zhr&bEqN@~6Ou$y1H95nf#xR%U(jugAroF6_GJbETRgP{O1o!<=c^4yevW69Vp^B$x z?bgu9?sRIt8I8_90Y~AhdpLz!6>ZyEb58j5<#`6_QuNk8 zxNsyYr5&%!5jp)N&{y*mfbR^`@D+fSb!<;jQ!D{!%T|J*d!p$4%ax2o=gSP7m;y;3 zA@Bf?8qE;?8~Z;(5wMTeq|L4bfUbP}`tfR}-gr)ZfbdMoQoMaSvXycyrihU|jY|eX z96^@9I%#0Y@`V~q3Lt)ZO7?K~c#~hGdSp&W!EqoLr$GnFxbb-o=f1vXzf1O`>UtOs zJFKs>(b2QFiY{4K+FB5(M3mxmV|GHW57>Z)kh7(U5Dh2DSYN-&YJq!nj~jE_JVkj)%; z&&tk@DU?cPyT(5Ug~1@fN}tG=H|jevOMpLtsA7*LL@8>!#o3-nC`781lQs zE91iiNj9nMy-Os5F`jWz#kE~A#RUd#A_>=3u)OHcvu0c~hDynvlz zjm)K&+FQ7~&^9=4eyp7LFF1&nmVV&#&-v%{fH2q$u99KC!*{eTrJl=3%R6@C+82~7 zwa7e!GD|yCFOE7^FDtVvPL6z#HKUI>jUoG#Y$gxtG*0OYW^+?gL1_JE>%X25ggrM? z_wNqVgxfpGgxijAT5g;U@_)60{lA?xgGKb3Dj}Qg|GNuNZ2wm6o^~Y8qqK8zFxls| zz~<#Fwr+Q`BsX0;_s}Z-2CEf?f=4k!X1y|Ke1!WWBnfdi4+X;!PeB-JfnY7I zj{bF)v$8L@-u<>DNuak+O3%-|LKMI6+i@~pA%{j@*X)Y*0Fr(UH9O8+C^->|j2*9u ztrVsT&ie~-g^j;^wHO(XH-O;~#8QkyDk=U*XzXuJ0SW{!z)=ppOjeVvFuBWl`k~3I z{>c;APBdGC{%dzPu1VbHDY)wU%EHIzU7@=ZiX-n+AJ1P|`1hpTSD@A#~iWeQfmb_c^o z1!&Nzx*dBQrC#(ETxmy)rU~Uxc(1sTwns8otUPW!2J1$655G*zlCaK=W>-H0QGEJDf54 z=>G7x_#Q<^D-xEE|NLMlc+F3vS~SnStKXSfu)vDgdbw>WH!O%5iOgwfSZ{%eOJ`ISzTC;|8`hkzEN4^v84r0r1(U)xn7i1PTN7WW#Y>Wy@r{=Y(9ZW*TYEq%VI(p)=NI@S- zHrc{MqHd9N;`VA+5!3p{a86^+`b+CD6jkrA!kdHI56D6ko1vlM=JE0Jps6Zun6N)C zvq?^#pn-+X>wPOcB9i599f>-RGTrvM)a3F40SeJxUgSFT&6(%s8h_(<;SUwILRy|> z=ia&zHj*3dPr6)XN8QB9yn@5f9^;}V^W$`G9>?(Yi%-ysb6@M3R=L}-llz1w^~it6 z3qllJ>~e*}}@F6Iq)pYQS=2e``qgelU_RTBj9(!9pIW&I=z{6v1jG z0}qqW!Tq%%ZxrV6K@giqXU$BKE?yCIC#NMxlQM(Fs+lI~X#cAwL#E$$eFl3iy*eJk zbc{%~Rux)4KtOTl^IahULH*vC*uNtKoGr!p5!9fPL%_Tpx!uEnQf><@|4^k>UxK35 z(%;x0*fPrL6;K*6;c;53nSGNj3OLCDTBm{`0gb;2?J&83=gD#gV-)lp_>Ue0-fdUY z!!?gF>p6|(*Dvh6??rHs8pupmbahyMQ>LeuZb?6xYMU4Pqm6M=-BO$MQm00LPaLqp z2HVNAk@wZ}A-%c+Z)h=JCg3=6zA1hF)eOq92hr^HMUkM!>8%!r!zwAkqFy^>-_6+O zZr%$JCqNFpSg6IId!Z9zg`A4fjN30hk|>~gSB_6Gk6W5W26dY{_ocTy9|#y&D)&V4 zf^4NZPorsQa1s_`lC~Bcf47H}!h%@5dwsS(a z^RqaP4{HklGfT*SANM793y0g83l@o}`#mcyE&K}tRyERaI^IYUZEqAl`{G7GOCa$5 z#1>K<(JG*-$jK_WWBTBhC@6<|1NzE2+#TSsU{&aFhql5e^Mb?=xG0mc^PA)!@W}C4 zFo7$_gnEyc@W_X($FWLF9A2AHlJ&3HfGX-|S;Eqp2$d{Hm=`(Y6C-cCC!dt7A*hCU zA@4RJ7+o#4uj^dKAcxD14s=cL=}1zHyI!#um+gRqtO0c1XM@{}y~n#lyhv1y5zR;l zrzB%3C-;L#)$Q~xbN{Jq8-E3kTuoq0Cfa9k|LBIu{Y~D!sG}z zrlO2M>K^FFSd)USbP!1Yjla}wkfjr2k>qrU!RzKX_N|LGj!@D{Q#VBp5f_Jte)sVe z4*v`BeU`M4U=a*Y94S=GqoENIJxlqpymI9gd-r!7LAeSZ7Hn!u_olP1b#a+f9Z>PC zk$F$;G>+#fHNGcP|7P=I?^u-qQZG`TnoMR98#x7~L)|d3bA3Rv&pB$d)QU^3Rvm;Du)}i-l=3y&566!1_qh< zK=%kzfLNgZ5|nS?3EZ*xP4$&8HoiBlId=)l^!Jz9SAi-5tk+klQI|HII{o#9q@kbShPale@>}s#? zzi|0c^t>ov1jLhrC{@ zy$(RRYNeqs_O~GQc6(+R{~|&wk!p^>@yol2KcM;S0udCuw^iH>E_W#KJ7?s~l*b$0 zt^*ss1b(!&oHW5j2oiPvTsM@%lK1P&!Iw}tk`Ul3;{{ky|R@senfUL23u{DPsH4xSlqr$D9FZaWcp5?@N)gZc z_Trd9N@IjVwTcOv=HHNocV=}#7>CiG8^zss9xh3LSg4`-eS9%bPhwE7RbO<8_Jl4hIzt`9~Gff|Q>lIJ6*H{#k>#n(RPRj~! z&utLqVgTw7@uO``+7c#x8~(#aPe^UVk<`S zl2W|tURki0F$tLhJ@jVC_WdamQo!o)xxrcIPKDEPi~{^hT_Y(g5tn91q}LuF>}!kI=ZC`8qb1g!wwX5lJJ2WJe+rZo zvY?9<7(CEhj(ftB!tV}Mph)TSdL_nI4%``tiaI}iyzE7}ni3;2e}9|9bGm%6?PDfU zXRgg_)+O2^h$urQGEv|M#Sh3q$5sugm}WGLO;uwFs#Gjk)Zu#bl;l%g!@n!n z0HT-(ws@h-QxN51R$Pdl3t!*#=6$%6w`3%`US{L3{$K}Eozsu2R3;}`TM(gND{nq({zrka$f?M)Jb5#1p{<+x90t^Y)QeNCH` z`Z?|&thFcdW1Y!9cdp-oxd}#lQxq$&(5XnN`%8V#Hzyk$IPNT=>F28l{d}94nfRl+ zG3~!ib2)b{{#w^;=rImmdneLeO^F0>Vt-Z&F;t8#>JAu0nY5E%&nYH` z2W<5|0xVHrw>J;HPPv?kT%S5{c5H^qQ#F4K^|ma$cdvY4Rxf1$a(R0^{|STckx?-) zHfKvcLx=z7Zkq7yw_ik0UIaAk!(;zeZA-!+C)Xcd{jj4+HoOb7uR=Onfy(4{8*IIS z_st&f$`Ajxy6BFF0L@cvnwKOr-!q@Un%LhFCIb=+EM(p+ExuZd&QxcyW;!`tY;$Ke zV!~y!UhZRi_gNj>b9lY*{ebM8`c}NJkXz0hY~L^wy)>i3U;E=&X}z=Yt$AS#eQ6nA zE@LR*_sx{AEpu4o$Gf{Xjhsw?U-&fe%8~ZRo ze8)?9-`S2oaXuE5ql1ckaS~;-tm}oX*Ty)8?d#=CL@8!i1N?0{db78E?st>Yz=~vi zYh5+d_ChfA}DXgO2PZ8+{KcGPJ)WiW+gHa}P^hbg*Ap|zDi z8&fE@ND<%yZ_dyS>=@sJ#x4di5hv&KAaUuBYc_{N%yQF-^TjI{?o2L-b1ejdrPUOF z_t+sbL*0<<+Wm5%ZVH3Hba4=YCfC$kmxqx&vD%#)@@4UU$h@G*R7jM6gRKktI1svn zdVk_1km&Hl+QQ*GTh@g?5iG^CiTqQ{<@w2hy}yrMRs=iWdkc1Ob2_N5QP!c>>CKP{ zR+rZw1qaCWCYPIzp9MIK5MclD>zVjoZ@hP`{eY3a*Kf=Mt?@=6`S@OrQ# zqAW7GudmmGF_H994yD%bJ>$*ZFCka%%3o_I`VEz|O}zkltYQ_;w3K7LX()7*h%bQ8 zEj%l5E9+;Gt5HywM1+h}hei;j;;{=4n zbUk#wMF%O7*T{7Kvs&^G41~Ea{s4~ViAzXyuQof{KVBN#ZKzi0#Dp=M@-{mDKvf=e zklS7}m@vHC(@r_n71G+UWhRl7e(2gYTiad#6%j=ghoz39iv4g5V%qs zZDzx&DZOQ4g?xRO2&1>_SLJ~(X)lOn*cWabEJMw2wZwwT+`v|VcyH4f9-ITC> zcYgzVyao=7+Z_A|E=?UqBcYg78L6`kh;xLRnhOpHk8FLk@#V7={#&>@@cOTcI66zL zvGT3jKn2I&dX(Cur4c7Fv7@F~g#5M1lxzDRN-xUAT~GK!$o3-mx0!52m?Ey{DEyl} zdV;t^&2f7~1+#x|9XPZwAGO^U!^bP+eViZ1e+Q0C|17?~t#;auMPV3k!pS+ZLktPN z=M`1UuH^gaT2|l-6Q`2nCvHBDFlYAuKV4rZe3@|QU()R>w_1jW^6sR9OJqzTuLjxc z<)N$7SFT5o`q{7_-@C?oML6Sal87%uF@qz$-^7#S$-OJvmSAD^SYU4*Yzn#2LrZD2 z%dB?a`9wet2ffgM%lD{9;cwPF1UZ%Qt`WG8-8-cDz zd_e>>xgzy0{~xN}Ixdc-2^T&I1oz<1;u73l774*6xVyvR9)dd?L4rF3f_rdXf=jUA z?(X^xIq&`Mx$_^t9cF5(o_esoJC&GfGi;uk=Q1&d;|aZwl<6z{JukM6;E zSESf&7KOBHZ`kzZ0wR_&or>+2*N?ZKNOZNF$9(Q-(45BuYH>X=4tg|^ABvyI+xvx! zr(FHqNV$+jnBV9$R@Bx?FKDrHYRD?b|jMC z!fo=EsVlUj^aHSupt49v#_N3?7Hfn02iyXD!4c%ggCUlWGwavLU!l}&R0N(WN2y02 zSzk28Q3W81v5*}ikkjy2@(@35n6FmzjhGsRq3Nr-HrF>{%J`CxhnvtyY{$G8b*yQi|I$)a%?-qE`BoKYX%ImjVLg z<55g)?Q>I~G>9JW&qS-Nf3G&ycgVgIBHR&>C~x!SmO^EnD9pjdBrhJc#;++T&1XT1 zefN~DY;qMjv5kubd(>mWUjzC>f|pwTPk>qMDvZe65O1;GY);6!+~7AJ)K{-i!izlz z-p_a}W6=$IwHk`Wix;tu%laNKIQ1v&=2`RSPR}bgc(K8GQpcNYh2eRvg<6ePr*l!} zo>wt9uupAw9cqXD(6vZ{w^RgNYiE z(r`aU4tXae5m4PbV z^dcZik*KXvsL4w+F>~*OI15s(*^=vo?;ZQj&pU<$*D((;g?;Lu&X_w$7Wuk)|E=`O z=As_|dvVlo=FXbwrmXPbpdo>2j9?!x22TA33?y{!I{YdbCg)vy!94~XZoAl&V8x3O zEb%ihS-mdWK}UGYmpGM-KkExNBxPvw~e1ifU~Mh*!@ zEeLCp%Ds@(i^W@6TO>FylXH`gcyQoi^@P5&61(2j*WF-HjFU?1J}&$f?X=d} zj~daK9+$&Z#qYKfGy!(vftOSdEn)b0*g!U!NoXmbJ*kr1I4`!B1*Eg&Cn7V)db;L3my)WM!KZ8pHc zydv^NQ;iicja5n6x#pATB<`If z__;X*1EXsy{(fwH@SE+Px~G6nMS!XWe}HJPI|xOuu6NzBHwRb1xnirDmZG7~F@n7o zzlxXURYa?LZ<$?MXY<&=a7Zgm9{Ophjw!qv2%GfAbk!jA1jrUq7i#etLncnEwd3bF zQ?sxYl$EkwOd$CCH3t})+xVB(8}FyU8P`)ZK@SX-ClL+~Y__(0&gPaD4u?5zzq^Ba z{=i3J`FDy|YwRghTIGg4Vdy06zL)mbx3^V9q);eyclx=k`X-RfoFrZ-3XIOn`!ZYb z%f@<^T)8FQQV&^}uBJ*Oz4JXJC?hx6^pkMRDyJK#%&o1_Szg4Q4bP>ewKpaI`J(SU zyc=&7xN?W{pB7=a%)z#w1Z|I>&6a=Tj$by1u1NV%7_5~`qD_S3k1k%((i0box=U;N4!$%|V!z|RlMVI_4=pqXi9%B78GkJ}Skkxin z^fPMQ`QSk$W;^|Zzo>Jj%MZF>xBx3%J|vU{wlC+^K4$%@Q~UYHPL&;E6Yg9w)8ppJPgY~Yw79EwID`Xfz&7loj&V9k`O zT7Es(K+g)UyrQg@=Bs8e0*=cyhV|08##>3EGQ(l`&tBcwg4t%w(h5u_a&cKCMQY*noHAs1T(Cf-JhPAyR} zuGhCcS`}QHP5}eVl#G1BTSN^Q4;&8qi1s&haS`h60~ z!cFJ_4^%`x{98;oh>A(J=kOx`FrVm^L;qA#Ef8akyLHaPFl3j7^9}K@PnOTxwT#)m__| zn#ybC)Q=yQ5WvkBYpNSHK>pHaLES2;iogPz88-g@ZT&rd&bwJ$;t&ME6rJwYo##aQ z?XZMGaZa7Lb3%1TYWg}b-`v0nb%(IyE{#Y-h(;H2-iXn$(=or}yd=yKbnPaF;%R=U zO*yq6n+FT9%?5L)HPc(5KT!3q)A#pb9vQYj`h|LbWnu=;i}VUY6tL3YlD(FQ~H7-FM+7e^jC$MNy`v^J|s89Y{!&Ht9Kb zY~Xhx%{blw-FeW&kqL*czbp>w^u;}OO?D3}f$r6y`zR7cEA6dfJ5|KsA{vU&8!HH@ zU&$j1-|U*6KRO@}<9;7jkNflmPJ5mn>5puj~ksb@~{sR(5_5Qck?9pP3Z< zJjED^{dCc*K>Bg&iAcv+lF3SL454}_jWDyzJd8u6BVz_r#W>l@Mz40_m-E=z#+L7p zKd;ei$i(emllEK(SGe1fRh_xEg(&5;K#gJ=3~7{@fUM71lk?V$&f z$}1)i^3&MnQf@)~0ZfK8X$*ro)6)1umdf5*8f6-I^-y`%H!^;ZMyS?Xmz_epnUpf^ z=qtiGj32XE)B`{g`5r%{KymN#;AGK?*=55J1;Z$=n}CGZ^m@kS`1I723>3C}c7ue3 z-j%1rwmjj~)@5YHwyY~J2;`E=X`~@^sBH)EgMPnC#);p)_ao^G&<))f&@z39Taz8{MwlTx)3r$e`aG3Q3`_+` zVg+nx+5P6af()1CT|Dm4(^xnHsqHT~=$HpMFEt9H1WbF5TgaA&_Unrv`c2=^rCM-N zLAfWJhYHexk%{L#wV&>{Z>qOgEFBf47(X}i7ZF^x0nN_k7#fJ9%h{sPn@hY^`2=(t z0!~QBnuuImA?7mq)N?9w-l}x(OJg)A^EL&t-({It#sBW~l-3H=n>to=X2n>N`Ksyj z_9mTXPzOS!s-TEj2A7d8wQ^$lf7Sx*gxAdxb-r&(#C5wAXV=52d-?Q;6C2%gd!`)K zEjD6$8;{u`r#ae8W=K@BJ7l5rmk^A}*_F@>Jo_4KMpk-4qd6=G3G23c2UEB>fSzy) z>4IM$1Uwi0y3IFDpJq`@KL@*bun!HtjbxHk5AV9@iTRyrR#P5pA{(;#)!9+(g;?7C zi;)Jq@+5Pw^QE>1$2<;xUz#?q0)@j4gq9sMX5tSVW-TR^qLmUb=0BBtEkVbnmL5z= zN3p8R9%c*Yyqm9Kl9b8Fik=oSl-j@ohKOO4-0f>e^6feK5ics{&N>VFV?}*|by7Vv ze^++Vy$x~Z5-e&fcbTFOaNpOlrykNwp-`_dEPBheCeH6XEHE8U4$A(X-+ED;#*2>` z$GjQ{3ThupB75u|Y^`p29xdOKcm2)&@K?T_-r>9F@ZAU!vE!sYZsI21r^?!aFgqp? zjnBHLydE1bttFPQnbkg3-i`?G_3yGX{Y69PI%%cjHJM&kJ%OuH4p!TmaH0`ISd;NT zv=aBw0m8F!3-DKFG)s_}GWI+zI9{AK=bwW`gT>XNn`GaDjNe9UfHa7zPu*FSX+bM?@P28Ca~rpu`heyoj;#t)`5H9y-uXco|C zL(>T$B)AF;D_-zJ%P3h5mGlZ%?)}w8aD104BGClGM!LY9)dcnwk?1g%(cm)tLc8|e z;n^u|zd2G`{TfIJheYuB`gX0*<{Mq%y;6Xezcp#boe*aIQ&Z3Z+qG$Hd435%RLP`y zRUQGJZm8o1MFZom&eWgLk)@q0Ryd6{Bv{Ktj0dF^K8q@URuoAkFX&Td7q?+8TT(Y~ zcSAe>kbaAd;(3|g6_be@mTu|qvz)~D=L32bIaUM#oa5@6Hpj4iOAyx@qH&i01drh) zNw2wuNpFTcVLCPZ40l&^WB5@lX%0Rkal$q%a0W;h@Ja`Hh%GN z7{Zw`?cY^*yi5XlMaZfuANF3)81A_1*AUOZwFR#C3GU%(-{^j_i>@rcYF{VmJN_fZ z2wDA9u|Je2&jzf{WIr9szIJS=7CaqU1<;Z3s-rpKJt3wJy%L6`ddLwEqU^wy#$K%l zS?}83=dRgq%J!O+F=M-5JTXd~nsaKAgOD6~BL8yEL$F zpY1z0{N9fpb)3QQ|ya4?ExPU zpb?a5CkXV_YB!ZA(S6yWz%bDJn?~Ao4C9$gaLKcAv*? zhOiLeaUwe!wnnG^vbtd%I{wAwF;n$GekxFN|FLFWD=l)P{2{!B=zJcV-|R9h|*8E7OUeI)shF*qA%MZjTGHGoD%} zq~UhKhFlNJ*H*yRx|c%_BBQ_Tw?UAxzn!@D}JUM}8jU^wFcIwwx%?OLB*sJw4{ zKMJ4rsg?$AQGdsF#r9-F`&d_KaF1jh&t?VhWp`i2!3(%JV zY&t*IL6Cr>3IDF0{D)6Whu^Jg8_fABKAqnHymSA1(H$v+$dHRK9D(ZFD~wK!TM0@m zaxq{RD5bC?=^xXrudfg?mUAv(j}1~{3RGxlQs(yBU1@rs!5`i(DHKwKW#XY9#qX~a zSXc^W@u}hX^0haLU?{``=P{A)oHTmDCTr_mq#CNqT38M+Hrrf?wBD^R3)HqhwH^jz zlh5h-U^IupuSq|dm&#$St=CznkxgShyb=60Q&CFDGB%UjaovC{A5xZl_nT|Gff^_C zs4<%PN?sxo9I?F@PRsVH%jRxLyRYU|g{SP*u>4Jb)X5)2`eSJ~#&uFEgjP;?BXpdd zLDVu|=4R1;lDpP-5{o_BrHyk$Mi=bnn|!Z9&k+>zXWm-6Kb2o9<#(QKV6yHc-zu{Vn8{)_+ z5fWxHXocyjg&sfcFChA<|Net`Y$StN6I!K}y>Gza>x7kpQ5QuSLD|)Ea>Ojv^TQqw z-aJ@A8s7YG{8R=v@&vAwa7zc=4=s~JrNY7mY!_)TlG5d4|^iCbXrho`X{-I_Q1})M^~p#^sVIt zO>L<{JvF^!ZW=k`@o}71YGaBjIn#Zju(y)J)cKvBbqlv(t@$Z`b<}OH=CrQ$#=b`b zRhzuU7~h_Z-y7i+PAMBmN?LJA1i89c_fT}@aWQU;T5EBGzaN*S|2=l%yvp`a@)uZ1 z&e67EX{N+_0pT_!2)HQML^u8M!cz0$#%c`E(NHejC%cd~qaR+ zH@Hn9cD(^{=FEw(V5s$jH4i0fX-wsaZvYv|+O=Th+h&~LQ0BGlOO$RMO|AQKSsjhb z&s1ErueRb1`{o7uD)*J>C{H9tOx#tXF9aeYP{769BDujq7^mj_{r$&RSM}Bgk)Ujh}%L$+O!^^$bPwZQlyuxG#??121f=4E_kmbnI{a|3g-)hJX!r-m_!m4RGuoS zDEk+9SUMZL8(p|)9Z8jsx}!;HM32o`v;Q7h!fw^&T}s4~n0~x8g*@d*(<)5ECP8mk z{p0CDs+sN5KYXQPlHhe+4bvXjhJt}~1|t>K3%z>B9^i-u>lOUgB8^IoDepcwb7CDP zOr(yPrK#o5b&0Q(B49imqY}?TsfhV~sJOFrFtPsqxsThHr>ZZ~2ahc_X%Uz*L`;%3 zX@y_kqmfJxswiPhK!%H$AQ#K)zg50j5B&u58(mLHymp5mNj?aC4vv7~cU!u_1agCg zM}bbb6|P%K&m}W_M`&b(^xDbTr8zwAg-n$soYT{%BH%P2UAF*)as|TJLR;LXYFTm;a7pMkvn-}_A+d$YnhbPkhsfqHOZZHM8h@a${ayZ{b%8loi6gFU3y^6ymN(aj zveZc3{*OONU%80nz7*c1;bM_?Ev}$Paab8olrugeHWWQ_X#4ndGX~?7#kQ6h5rb4* zULJ+js5RymICZz;D;kfXPK0{-Op7;o-5kvg3lL%KHRqRdikLASKAf)Uw=te6YTJDL zdz<@VSlDel>o2$|M2sBLA15lsS`4R5>GyI;fd8}xtx(R4-6Xvlw zNK~Z31g(uMsxbK%pTO@h^x`j|;*#d%rYK=qHMLK?4bV3{JeopX!4V83|AOV&HjZ*% zsW@|ki%Vd^qyiB5l#~=7z)QGvzWqT3()ypi0C}M#YEgsR3DtxG-bk@Bxk+_QBokWL zP*w!NzrsAr6C?9Ora+FK&B`sI5cpdhC}m~zO^lB_pR7vL*F;3r^pAo3P${e1D|a=zX+=75~Scb1}88iysc{?Z?fk3d2E@9X6AM8n00 z#Sy(fnDxa)B5;mROkk6fAGYITLreZQOrO;-#K1K;xNW@4bo!5}O-WU{u=n_jH^8^` z{fmX?Z%gG6dmd;Ir+TNQsl`E)TP6?=`@hfyG_-E{g=jShgUzX+40L7LZ;ufqncW_W zO0Yjq41&1-Yfj)P*o{Q4)H5yoxxw?=GBOBpUI$@vj0am z5HKni74)PJnR$8fr^^hgeS}Q#k+AU$|0|hA*bWg{>4?PP;M^?f>~OkJAE5D2!v7kC zmNU0&AoW53CQ_`yL@MgXZ}bO6BJON!U~v|Gs;(Cu%86fMgL!+0F*=6o|Wo)v?vl19!_9Q zA)o(grz8S}@xOM~=70b3+wpL$^Z!9~AqNrk;e>F#hW z-SP?x|Ck$r*G2y;HWSoz{drh9ZURjddp)&SM1Z;(uiJ7ZKVqX~I2S;g~MK&`Uk!VqrnEv9aM@pvP|HZLB5{H;+V- z_{w2<^cToX7h zpz5YI@-Npqt_&%Q_K;90dw6icddWq+J{Ywon?i1m`IaPZerb}<Z@OAKV)Zo*zeF>E8Z1l*0q9{(H{j#&h}=wV+uv%zr0ZWMes z%-Amqj)qptAT}b$$^-*C`(v>r zhd%;8kjakXq>A7Q@+%qf^*wdQwKs>W^5;v z_>B}9e4ClhhZeUN6UVi*5Gwgf)Adro-mAO6OXTF_Dh66}b8>2SN}_NXO_Ls8L+wm3 zLD&MZji?qT=6@Z7Kpfci_C99I5?m(D?T!a9S?Ww%VB5lFdP+)UwbjU+!xP{LpD|U) zL9(rKX8P@!VW4?96G;)meAJLPro|IeW9mk;1q$@0E0Pf{Wa8f3~s=FT8 zP~Yc)k|qO!P`w$op2V<4hHg!KNLSa0I2p-=nVQ0>PCh@1h`5$Gh3RYmhJud#;qpwS z*<8*_f!ppRva-mL18%2S~z`O_1axDImAgmIsu9ZTh`3@YHi&H#8^;aao zVY1&|w+F$E6)I<@9Z{Regb}7F6g<>RhN8@Izn6}}?XMp0i6*GM5RZUWKaWEtvsRhs zuLZ6+8Yrhb9#lxhl0iDj6@XdQ`MH~eKZX=r>ov&dd^`IpSM~%vJR3DvlI>(s5b|p}YjxcnL6=qV3ta{9;fMc6gEKcNVL*JV zA2!3_`9fU_$~>W{N1K;HEabtWTWf3KW>85?HfvLY_WOq(0kG(DBK3eOuUuY9Y1k?{ z@?W-BGGiTuy7L?)1MvaiuoAU*nO-2~U^OD(J@ZslWMs$1-gNC%C=pTTel+lb$@)et zqbB@zQd)9yNQV9wztaK`SMH(#ZWVs^{p;M8R&GV!REp1JCbwx@6a>hd)J{aUURGu0 zdVPJp9Lu*T9*lqvo*o&AiL(cegy@REriKJq0 zoY|Qud@~moF(1EU?g0j0K8uDekTUC|3J#4;nbahnQlW+*GeLoP3h;*sc1_MJFBg4} zM82>YEv`D8>g9H+0B3PQGcw`;3+DiF1iq6j_%N6Yz^o16$)87eZABO{)K?`cugugR z10pRs_dVd@RtIk#Yldl*YI~_oj7h63MmC;Yr=ifRljR6mejv488dOnlG+X=WHKwJSG@h$C3E+5|vREHX;uA%NDaaG$}Tfx~F^Hz;jHsgz)NS^Mo7t3mQLGKc_H zx1NI+mgnF^APGQSfed98S!+6=mzSo&DmDCAp)gtoX*I1%8ANX!J%Anl2am7TKJbQe zuXP3$>Tv<*3kShU?8BGC+my;VxW%$v#AM*SXfDAtR=nvtzxW=+@dJ;Lkif@qa=W#omabvm;2rH1P?T_)o&Mko+J9TVjqi6OV z_)ByU2EC7S0FUVI1bp@bo!K4F$?LE8<9Vb#^-uLLIriD;2+ofsUUH5rBHm2e0*C;C z^o;vhp!v_%yC??BG@!2U-_v4(c!MK>kt9a|M~0Dbb4=&BFw{ahYQET=dE_Q77j1HV zo5?I!IZ<0LSN0LY=9Ch~?m2{*;3?2f~YC>;!2g8cK$R zhO4IClBbvamO46FG8^bYG=>GI#Sx7E3!4BL#F3GRG{qDu(ZAV{I+6}~H>ZfR3?lXp z@S@F6F7AE$%@+y`-$Tzk{#4g5LvpCkWb#3#1Kj6!i|9u`+EDDw7{BK+&j=ogoZD%T z#oj4&?+3C{MPg$@aCltBUjtef_|hnjs2+_YkU72|gMlCj9sB>o)M7Edb+f&!D=Cb3M|CQpMMc|Y1rbssVaA8%=5C{A#{-x1iifv1cyte-L2 z_epLrCUh+Z15~IEz!48;^CcM&8-ttXMMtwEX2KQwa!jtr=)WRn51o;z^bBWu+tgzk z-!!Kr|Fq^B?q)ol>V!3^AeGLMqBB{wOs4Qv?4~K;?go&1})c>GK)w>l?Pd_@>1immCoeBa$mu1wD2yT?ee<4?YUR z`^(03bt89;H4;;kn+N{o#Jcu!z%jqg16W~w_X_}k(2#$jiv?w^e*$||oRKsOd!XVX z#NXk2<451s$bQYaWMD5ApUnQ9EM|uhu;fhY8M7Y#Ne)h>WP&m#z#k+dG7X(@1 zMTzPF>f>9IHI7m zvr^I|cq7N7@=?H0uJxckTH;B_sFi!mM_$=w@$N}SRch9p$5Jfw?#R`iFp)Uty-(g>7aqS)-Nfxg~b1!4_H+2K#jX{T_LtGD+;Bg1Gyh}3tSR&L`v$fOlHuFPX42hy z$MC5i#MH1hEMXIfAmIP7p$^A@A5nV-?QM4y6o^l~ae!qau4D>?p?JIV=>3^C2uiZArDX);}tNMNwJ(crC2-iZF+%o!s3RW3_vn3!x`;@NRM zzgbc(bNG5UQ%u!tljXh&LQp35YmkVfsNXLnS}34H@99l9!9_;z!0W~K5Nr{Zp>pHC z!5ER)Kwd}j=14nawsOSn$6Vr{R|ae|K?4v~);s|K~(t)s42VnrgqCmRWE)zh1uFuq`lbf(Xp+@;Q_jZ4&?nOyr zd3RIW)$-s_IM&E@l42Cj#ofxo%^#PYTgKAcQ%$$;#KtOVdZ9m80@v=4MaHsxxX^CA zs4%1p{%jS`KtY%MiT;nAb5lj3anyw-LoUIT;ozv%4zlCjb4`BtHO{)H(-*gV3_3H9 z$*>pPw$C;Kc=;3f*Q6%6EUpJuTw(kiG00?Zr%vS=^=+0LNsS;#AbnpTCCdyT?=tjx z0e9yeBQNCWz6GS%&11>C>X&zhrQ$JT#gUyIxLxX_PWtPbJBVxeU2b% zlYk$HVrSVLg;8sl({;>NA)+RXa)82V=CSriHC^?mj9s&^1!EkzaM!9P5m&-Fm4L&2 z$3(xe4zo>>JVqv;P=x+&<(Xixp|2wbca3dTL0jq;5tIKnR+>6KR)$AEq)3ggH+;Zl z?!+;6b8eu6b1~67naCr%cAcdeG|G|kcAfaPZo;Rc=kt-$ClPa{L!L(Vk|hP(LJ5@9#b zW!x4ZauNn&Ol&BRu;A#)@~E4zkU0|ujdntse6HjqG?V>Sz{q~)j&|-^&y~hW!&ZcJ zqRKH7Ox}Ll$i?9~W|@8Ql2sAay@(Pey_hW(*KYPFoFv}grR5&!ojIl?xan)NtCQb7#b_{ zN1gn!TxbN=ck1F!yL}+oXER23i8Ru5qqus*o6!-UHKu&_aRQoU;ondTPU zB(<|RIr*r?=mjgh?eSmuzZvdTOSayPDvHxW--GMPW0za5C~;?}k%?(PQP5Z}oJi_x zGU(58Nx|Ty;lHhVyvwe)?mut zw#Ni{QuF3^MOP<9z&^+#3er@a60-XWy^kr*eF9t1j-A%N(sq9moKskg=MHvtci(&i z)|W@L$Ju6=iIaKV3arNnUpaH&a}6e&lYzThGp#<)BB&4-{JRh6LWoWx9IhC*G zNWBu*4Se|VIqfAT*Nf3-D*1>o#1tha@s=`*fa|iONFprf!*5t5jHS{q^*KSr2C}FK z(w*zY1vzEK--}888^IZ|Q2()?iw(UDifA*Z9^uiyb+ zKBwBiarK`EfNUxP%^QewnidZt*Au)Lg1I& z2-)%1Vl^A5_O-r{EJWE+908;J@2fl_xsG7U3JpfY+Ax?X(8w|TT@q`G{_qhsFlrjP z1ZjG(v^(b~K1(^;;tj*-s)TA&h{!fA{eU8h&c_sw2o_Ji%ea1vR_SQL3Rj@-rAE@EHG#&VhZUtOcS$+Z{<;HSbX=)ElitHacIQiNPoEg48BaX?o|iD@iN zX+csDVwJ@naF+t^-e8dO8+(KyV+&9Kg$mXJo4dH}%R$$O z=&0^Mk|~qntxVIdoX`ehkHuWI5e6>KV@gp&H!>6WvZjRmGtjScG_K-BoFf-*96Y7^ zGQ&!*g=9UxgJ~=f0e#*Mf8c#`|Hfi#D}!cT8k`;&Y-$eio~kuN{5%kPb)NWjKzNt< z6AES}Xnl6@l_ZKJl1B^?7eaP+c7w+O@$=zkz}cu2&j)OIdGX&dM(976Qdo<0`i8g1 zk8}?FS5VJwX9VoEYyNR9yjLc<$NETln8C%#x%zz;IDr@*oZ-+}eTf$ja3{Xe!beayx;5v_O-K{GNwt(tG4$ z0i+8}?$vsF>kt7$-vgfe(*ZVMLxkV(T4ZG8Or1mOB|a%>46qqEOFA0=c}`qU?^G%` zAWeF0uiWaFV}0~MnWLb(bq01TgaZWu6W99J7f7t;EU+{xELa$ z$D6C0-h^bcsHV3jb!g!OjxT|!FgTx_zm1-1abD%0yYM3Jd6!t@3REMLRK#`6EW^IA zzh>Dn0lkbu6fDvN57XYa96eo8l++9PUSsKc97g4^dSuI+E1UGiMQxs9vS<>2{a*F? z3k8^IBk7QDI{)ShU>-R;-ZIL zd{PoYZyZ^)_u1wOFjeK9xYXqS&R6fJ#~a{u!x{<96(bXwhzUjtO!fzd)#zkT>MqNl z=nO(QC62XVC!^GZPxjL35!EG0%aE=ULekaShv2&284_r;-NX;XIkAO5=P1On9(k9W z7VnO`WRF(LEdnWTd(o4W9BAR$aPc!5kmxsMJszyK@Ua`&R$2m1mqnweMBGQut;Imf zpuEz#hHK9Q1vxv$@reqv2VJ3>C>YN|bZpPC;-2)h&3Ksz4NhdRE*Lz8_3}&v5gpG! z_S#YJY(RgWj|(mtHXHJd6IeY^>-7+hNnv_*xZq(wW+qv&2JD59eYm|)ETgV@02am0 zeSiT|2$en;w)3t2fAa4vVV})chqH}1%G8l`Tkhe2Rn^0{3P1&`F{n<&C+9$2S+Ayy zUETC%KlAvH)`W}mUE5UtzVkmT15e$LBJUksfsXnP$6*ntQBCAQfYW=UdvzY+c zIsX-F9jF)y90FTbj{NmSeS5#pk%JHAua#yhyk2}EDvSoji(=&e!3! z`Ek5r-Wu+_F_W!j%uPF3Z*B2%zAAGkvEjbZViGtC+@n+2peZ{=L8H>bTVM+OA1_R5D;mB3{`{?#kthKqG1PVNYh@qs@hf4 z=2YRhAn13!5}qvJT2NOOp)!*O!{`2vn#^%b5E_ z5*5=>(1KjdZ_8&}`eREq-|~%IUR4a z%vFn=e@Ry3!>^nKO-^X>@a-MMgG(RY7d3J|;&@}a($naGV7+od=*OZV{|dU8x1=vB z5*qly@=c9I{3nZnx$N585a>Ed(mkusxWjPlKvGS*(u1KN(PC?Si6JtNFq+utSsI8i zjhnrX+xz30Z2aXV(;hv6tDN=|ItxhK9%S!`E zs~%H5u1Sw0oqb7o1pO_@TV|36)oVIi&`p`vTU^GEqFsjT-mjq~#TvE52r^dbND{*}ClUzB|;NIRYxW_o{}iAw+YAU*xRZ?ZZ;r9kECTMTD*Up3TH%nrOok!Vg>%LWasa zNH7mgQ^_|0lj@a97G1{z5$_}tg!EH;leJ52&*qP;BP1Ht4<{k0K{a32{qS^#>D=5N zPA0C97|4qbVB@WhmVZnSj+#CU3_Tu_Es*yGU?e~2Vg1RB_Q#mH_tJSncIQ{CUPP4q zCbM!^O1W;hsI#PAu=g5im`o(5;&q=&li#Z^4C)ArqKyRpn~%Ihh)ZXs#y>YOoZfXT zdQR2%b!5W5Z)HP&i+XKXc`J0*j}TQl;#aH@wVlf6eD@2lNFxzlaOY_p2|kg@VXO%V z8i2DWJF2N=OdeK4=Oj!_Lq>u>-(4;%OkHTS6b#jH1u#z+6^qEyK;RG1<`h$Fcv$RL zmI9xo)zokhFv-!3gfLaGFU4%eX&eNf7a#c@(Tj?br}8;XErxv2?qrDvrWDob8yu=)tUoCMg=Dgb!N?KdKb-c91YxNhR|&hCq6{)+K8k%J1D=>F^9fZXYy+ItHhjYLT0J!TY8S6kH!_ciLl&-Iy`9 zIvL}PBoN$6>XzAADDFc?3r=7N25ESqd|LZ>sIRlEJErU!+VBDQTmITjJwJDaGLbN+ zgVtp3ER$@cmvY<+gWH@TaeFYB+<|oDiXx?c*7hO+p`Mog-M+)1gA-e2Wo3~{_Q%VB zrJ&%Gi5yxFp~S-1i%may9oqXJd>!hPP0po;!l zRBncxq92E2@oRN4oiOz%6;N_f#qQ`&wmG-Gm3>Pr)fa$MB2GNHDZ}S|_{ECF~&T55fXU*6?!(!GSZMH+JtMB5Dk_K2udY<$)gT)tz8~>Ku zjeL5+bGS05Zo@^-H6vca7m`_s8=o0>ShfEkqSKe9{A%{jcYHYQVY`)ecI2#o4QFgC z;g3>o`P<7qjE4u3Iy}KX9?PyM3$MU^!h;7O0y9~MLEk^MtS70Y`Oa2ZJO^<@S7g9u z#uso1l-%4JskXl|LS~6F{Z8MuPB;=#*EHHp6wGDG0u#cnx5xVu-Zy$~NH&6e@TA6m#eq`qDhh2YI`!SNBTBUjWl6)-lTT#__@I`=9F3 zAD5{!Nw1|7au$n*_ytPnc>TDEorZ-%eCc+zU~t67=V|WA0?il-Px*PP_Y_Aa=Xa3#f;kOqnoxNZmU6JIhQlbp8 zt|+OXaW-{WmQEJ+J=;`tpl?Y)t zaZ-l=I8Q9mQl)FH+>HmumRRtTnuOSFf2xeb!+zNXU(pc@!1a z!&8~xGv?TdQ+jhkq`}h8uV)q%r%P?Mw(#YMeP?8kod7j~0J+ENC&o(Pk7z=jZz0r6 z=pAPiPtih&!W@yfU;hM#@dQ3l=#rSjD+t~T2zq9QsTVhOpd!oj`C+EU`32W0(nh< z%=_hATFe{fMB6Phw%5$1)=Fkj6^kiP5&}Alp;}Vjz*4mabWp!E}^4G4<$+vH3U(oD1 zQZq)yWgd3a6~9@IMoYUZBM|g!K#g}>rNXhX5$4;%nu;lTMMc*w9`16PdIx^5p4y-J z_IchDY;I?`xahUH0YwA0^JV2cJ`!H<&iD;YR#`QXf~ppQ)`=CsnVo+BA7@`3Rb}%v zilCsRD2Q}P3n<+wAl)EcQityDQjk)*yF)q-jf5cGap>;ObKpJ*@B91ix9(l{TX+6o zF=su`Gkf;lv-ixdIcPeYPhJjY z_%EJdvM!yQcigbR(tNmFFmgO<32IJ#pS^gjwCk5|CQC-iNf=Hht2-qIksp#=S2I<5 zs&n|vlPAu|nm~u;R+os<>22{mX{mU}V(MJm>@jjyP+x1-rrW76fj27awU-}pCl9)< ziH3anGsJH$Xa+j?zOM{XQ^G4>3#GbX11IINIYd4!u-xeSb8FEc6wI9c#>=(De#^g( zav*5likSE_HI`^BtI0Tg^3|E2SJ{$i?90gYT4J1_cJ3N-=%{!I$my|iX;|L&1mPeP zSq~#Ag(^_PuacP;DCbf%*ObQ0#S-l2OjXJ4Sszt$oQKt_)!Y^+O`P_%l?A8;W%O;E z3oE1~YctF6J4s%z>}1U{no_SAa$y5A7t#Jm^O5e`$!1hxUkC8zSncIC2@8G&(KD{r z$MLEt?k;D~`SPd+)EHfd1Xu_fAARKlpVADW%@fc1K0CG7NyH*ZJY%VcrS3_g(SXpj zzAn=twI86;Eiaj$fX-hz@(!XYh|8z$XrIKh9%$-At?%CK!Fx#DO=) z={{b7mXq33j7c7;+^R9dupDH$r!mOa{2C~$@{RLOfM7-zyIgPSY#?XW7mgN$;!rgP z@G&<0B0-WTl`qibJn_)u=yYenMboJ6p~dn=P8{P`&c-h zrvkQ2iIl^8-4K2ZHQ8RpDOPM0;B@w?@MZ*~9Jng!e zn;X2nFpNBJMcJq)56x#&e4B2IfGcnLF;L^(yzurI$$1F@OV*H%IGIm)DI+{Q0;U|# zbEbGH<7*xyEbgS==ecCOXc+tRV(Jpeqg%5f#H3@ga#dT^+$mFMlUFd~5?&)uen-pj zx&f5yny#``oF_A>7u7;Jc#Ccsd8zyo(RASnXn1Mr5Z42Gh1X21FC*VmNW=>6lQO1h zg{Rco?h#muX^O0zKHYUHX2_2sH2Y8@^^tLcWZO+EZfL01#=zOlEpfg(2aDrupXk@7 z;lTF{g>cn(MLC-c>)#7A zw6Xml9SPBX13YO&EZjOOc~A!p0pI1v{kM{2C_>lT(t10}F;`9k1L)a5oja0~1Vq%A zo)K`z`WR2+A&P#^JKd7{GwF#}S{&~Gd&S@dBMT8Lz7C&a3N!XwKmeiu{_Sp$s8S_d z2jN5xFs@Sfn_pe6T{TbPC1ZN7u2Dn)avfI@FJ4nJ&?2icCW!&YYp(NMD~Em~GO?Gz z`FoHfoE2?tYPFoVw1`NVQXLWzy@YmLbdQnuJLd#fstP~WI>{y;H$W6+xmP9u3412T zvz=5fvd%D_D93zaDfNwQBl6@Ori2J0G#GotbN<oUlM<=v+kx1t?~G;rA7ja0SbdXo(I*I5zZ+&NTkC}|;Y zOX?6^VKQpNf$!LrmZ=@6UaYY$K9ME41bJ?e5bMjr!{v15D;lt^r>Ev*{&FKik~TvD z`{l&57yOSe@B`8P2Pl$L_q2q6X~A$QnM_5L@q?+DU{-rWt+wvqe(PWr^*O3tA5fqXWFo-}z@=uR+>g2$qi@^E=13JG$N?}gpC2Q9OFiM?n;GO^9OB_C8!9ne@fSP( zJaZ9e@=HW?`jFkQ^GCnX5QDG*Ver(tavPalCc2&{p$0OwwkG$BcR%fMErPy(pdGqF zr+Bfs+%LcD0fcJKVr_0d<@Ur1u4G9>I_yy`@f9srZ)Z&V)PHC@qX#tt#osIsQw@;2 zshu4^LQO3Vw_5CV_}EX?fRT##F0bVp^CqlUwWO#KvkoOaGkYRJPlmfGqAAn7Lt+{q zka)S6qJgm}$is8Ug-LK<_Fy{#Uj^YPslMnB8tYxu-Y~&Pq~}_s&dM7+Xs=-8;Yhl# zQ7AW&tWkXhwr1009W}y<`M$7*;Fy+TXuGUpS6a-l>3HytpD+^gI6u$N&!0xWDmU!S zkcwwII6N%dd><{5&6cgW^+RoEwKuj#JT+#Lt*vZ$7&Sz8ChS1H$`YcEzwlg}IW{d= zc$U{s#`Pm1Gg0JI0QJ)6Z#5$h{c$^av z<((2M=F1qk#;RZZ{*_Z8RwlQ}mnKijKuftTLzB7PONZ7L&TrKoNg86Kkv(rk89mXq z;W9Ev5rOcc7>E@?!IXI`5zTbdwNImOU|@5$qqYl6OQ;&E7L!dR7Jhvg|NZ1+Gc*2+ zpDi+N{ryz~svjd(u!+_JT`mEj^GKh$2#rPUpgo~FU0;kaRf zC7w3ZY&}S64~;QDe?pS>n;CYt3U!3u#R`jQtxWUbb-ZZx>jWDSLWt9&b}&71DkLLU>76eF^D;BWu$H z{naE%E&kP}L4dr~-z`11IhT=YIv>lvtuPtN50Rc0`MW;@0+LsOwnI5N3M4$4(Iz3br!D0TbBR^8}F2`RQbCQ2VCf%l25(qz%tc_jgr zUl`r1e6oE{>kMh7k*t)4%ntjx>7GZMuDniABDm5cFyireKElPp$Quv7laFW=bIn1~ zcE*XJs2W1lAJl5ZUyfQ$6GRuNRLnemq^Hu20)&PXT-sFzL=-EtSJEUn?U-K&{@n=x zf7CWhn}Jv^uUoAJ7)NuS^Uc$axF;g7@;JY$0wp1!qRK2bszW|I^>!M+8 z--(-r)g^*EW}XRtPw@+^U0{*EXC*RPDgS8#p$Or)KKbV*3Q9b;!DN-<(%lmf5lbfz zO3R(e;E)1G6Z4Ehn&UZibMAyJc2yxV`hdY|wA~p^x^DRGbQwb{^X7z<<2VIEA4xr2 zfuM$t4xi7OyzT_&u!1!8D%~iQ=iA1;uAwnNvAKzPwx?&WhZk-->YR;j8F!LkQD5Qr zJFkBed>Ws~{%Oe_iSJ^~PDHoRczT2PQgqSJ(P<>ZhI!g{gaxiMV*O}nd3-GNZ!l|?%O z`F5fH#Bw8_Y`XMvLY`d1Q>es~bjuN(pBw6Pqsl$oA%~qo_?Wrp@W16?m!alO;$xocsqA@eB$^>g;#m<^OZ9&L!Z;Wm(izJACMX?M zG|@jHcIz;bM@&kp-JPLufr!dHD7b>S*VO?UQO(s`TWJYbCf3_vZE|H9*xXffXZ`%DjuIWBUssg3dJ~^9eB2s zr!4>J+6ak2YYxc+?4Oo2fuK2gL&ZiEGETq#=xZgxmHRs)Qdi!6TFoSO%-d^r6)VTU z59)XxIWTX%R;KO)TF(n}-s$EFgs+@*rUwUW#1|V7ZIdQvlAg^!3lV_TMJWyEq$kJh zd)a11Yuxi8q8l3=YZbQVg=^>{Y0^4`6F|mcWC$4N8VG+(cuTbMJUDm)+0;KGrg%qP zX;y_+rMRHDF%tT*Aj9KD0<1P}SjzVEvtcjG5g(V~LNi6U6D9;(eC77|tl0 zxsEhr&CXm?qw^#F3t%cRf=F4=2o5338e9c$n(X^df!~yK#l1WBy2w2SPZl$`!zb9! z^3|i;RakbiM`iXO&+Be29J!k2F}1Dhw%s}|_{^n7Vzol}yS~Yf9dck%ioqtlT9CH6 z^p0*GCocpbFVf9*c6m(ewnj*BUDF44rjL=%+e+lh1S8VaIO*+GYE7s1u$X#NV?Y1& zGz0D~%CK#3?rUpL9kVndr~eh6176V5rM$si8r25t=hwak%1)OgK>{WQs|i(qiv5AL zKsfR@3HnZUA+(u?v6_wRuJa!L)JBWrn(yfO`(O$NaEzG0gmRrcvY z3frOss~R*$3*5~~HBfH5+G9GR_{=91$SmS$vSH{TmhQaqc?m%@Si_lLimgI=9-k3N zIpF%@A`0}yv()3;06$S6A_K<{;Z&?uuxHqAm-=#$EPvOILzgub?|#LL6xGOb>318u zxED*wL{Eo%+p}BZi7A(QJ$EI9Cl3%C1 zZ>80J*|tSVFT|~Xfrm6cacnaMHh~FZi4E6W`l7|3eSGe?w0z~4fg+KCIal@p{RKXL z2r@RU$^JPZ$7_Ci^`(_pbvd;g)D{usysWJ2?^WN@YRfI=$}H`#dc|onME^dVW1r{# z`H$icXb;5hJ-C^CKYbnYioUHol012a1cyAU;Ds-N+xcFf%by=8Au|d_!_owoRygRX zjsAJy@CbCBC~8&g(}XIqaLYdVR_U%C+NJg~uXXLDr{MyBV4tZCMKC|rBX6-=h40CD zY6sU=OjeuHg=q)3!B|>KKZ_`p&J!fpJBha2mZ&`H-~(d5x;uV}i0Gd}>wrC&!)31_07Q@h{tE`;f>)inljfVc47q0MTO9$@BI-|$1LDHSe153B%5oxci8n+oXP z?(J%Ei2iz6$9xw7;C~=epkSnXf<$Z<^6lkdkua4pyU)E6`7#@bhha4rST3O)<*9I{ z=wd+5_xciXZ8zLsh+0|qtx>v6OW%xwQa;`nAYJKXdqOrbCm6`Iql3MudzyaWD0hkn zSkCU@!c-GZ_7A!J^XnHMY2J(@a+u)?Ll00mR)xr!VC7w1-4UvheX&nON~ytNlSv-z z^$LkCJK*$vco{QtX6TJhS2gE;nip``n?0BQb4f)&6Ms3YX2jH1Gti|mz#`g**myWT zpkYlRZZUH9A`)i3!ST=QnDLQ5W^U|@&fj_#Y@RjH)pSwGMMuyt6u- z=kQ`g=%h5u%Q)9PELg5}qd_(0qN8SI|7o%2^yLtKr9)jglIN#~Qc# zH=|b@r$-!8NgVJHkaY}FBpu*)dqCcoFMpi<37I=}q0Ja*M6qc-6<%qo*9Fv|iRIko zwHxd>emjO&R(t`q-x?OtzK#+{Yp@AL5XfoY;xqGI5n&?Q;8roAN>X{HHR|w~ycH5V z6EIZcWHDDkdnB(Kk<~v}iWuyVGI=rb#yo}jNxFx2XRY|l1EGnngNp6rHyO~o6rO*Y ztvH?tD*D??RAG&A0f86@^=H4aa(FBwJHEYmj3CszmQxzpv$zYKb{TQsynyXC z_;*!UYV+A9djoOw_!uo+D2_|Ezkr}-eHJcdG;bv*4Qa#-+2XEPgZebf(^t-mBO)9G zeO~~C|0jPO$f6g$8p=0OEJV{zDMuB{P)sMDrw()F)owrEmRX$6PL4ZY6!4Gg(ICwF z2*!OXD^H>aqmCMTrgGtY+L>{^DMyV}>t?~mb-lvdq#ED(8u}Z4r^ywqOGT#ZOW4># zF7ctjR`SbFmmSphd1H@%oWGkCTrvNzOxi0)1?hlPN+rVuJ)ZNa8Zw)$nY2ISYOB8W zbxJYwf8ki-$q*SUQbGEo%y}PMle->XQPf@_Is?(P7|Y3K-)FiBjg+k7Z&2_9>0;Mj z%DsxFMIx_tx1q8(>5(tdHmkINAd^OiY(4=Z5?TLu{PV}92`a2SdK<^{xUXMfor;8Hp!^z9HuNkKPqG6yQdyt7Ln8PRm^GQ7i;^WLV=SqSw1F{ zw_4D0aso`MiKUPsAg`lT2VXeT)!WVs_RU6iOl;Q(;b3$B8Z(>v(+n$a8ArK0vNlKq zrD`U;1*b54F-(ZD;ZeNKyZQzuG&5Q4u7Kp`rDS7#vIyRy4>Dafq?nw2klIf}t2hHm zwsMjWt2$3$6vO&+|Hn$u4Jx170VBiQz+mE|bS;WyqW&9Z{Fn9Yf&)(Mq{BOpF>oc= zi6W|+?{YX$dvm@C%%o*pnHIC)e&MVl()qUMU(c$(9L-om)>HnKybdfk-|98r7#vmw z%77dUltHcE44>dJ`gmoJzdrQxS}^&gymJLpM14w+#yufKMMif=cp1CvX;uJ083Lz& z0iTx^N)M7;38+V<4;vy*^Xply4+9;Rko8c>t8S#U%ib$!X<{(RK@IiE%)aV$By z!Qnb%x*8`VipGv6UI*HaM)NDPiM6?L3m$Wa=U=+D{sI@7uRyxx>c7EtuD?&hz|{jJ z>)*EwXl=!{B5Hg+(z9_Tq=~GB!Eh^sezojN2ZxUhbZNW2ia(DwST(1?&xz5^18wJW z3VkF$Gi}6N4hlTUju)0_>`9xl+t+I?k*sysN6YzU9u&-{!aB0Y^m4#pRhG_1&`|%f z{q`L!fb=zwvvt44#R0MP2R#N>lglq9-#KY7a@+jU=&r@cv8-7BD8<9TZ)34fdk;`kpW<5jj?5TB8zFtccWr`>zE)-?Bols?d)waNKl;sgpL1_FkA8PO(Ju!>WqP8~ZI(N<&L9oZ=$3Zf{GE(%9TsFn3DchZi z9m?>el1ggEc#jLE=M0{O(th|*9i1+>0K|HRj7!T(i+s3vGHN+G*!6dNK8 z`*~}k&|k*d^O@)4A5bC`U4LmTLa8`Fn{kZx;Bc3Qe1{u#=NMOprua98XjpbzomF7k z{4Jr+_d~RxJ0(rPuq5DBt^ zL2rLj<&@0$i*wmvZr;{75iiKAnBsTs$1A!1n0xjyb}j^-md-b07)$;`K5g0;eFL@U z9mvQE9|WFbf+s}|5VB(jg-U(><%GpQCLS4zKBM`;#{8Sx=XSr|$R#)VyaAniJH@U4 z_##&EhwcCZMb-eQs&30ETvK515y`~v^!KWAWmSUdMoD=b#sb~NHcl3DxVyGc(&D|g zHC`Av9F782Y66L1zY||qq=%ouF5Zyj1T$$CjWJ)jI9V0LR&k0UcABw8t+eusqO2gh z5cRQ>GKOVsedMC77$+4bS3H;4KFY)?sreut|1<=FlHjjlOyIipyRBBFtWRn#o zS?pMaNVRRVipxS0_i4umiwR?^rW}Vbuag|Ou{|~+$o5S|VW+1{;;ZJ{A7O9I+(76B z+2El0O!eO?{^acL8B@LCl&rmM@gez_u<(2X3NJPCn(ab0W|sZl`O4Flc`iaj1t9-n z6k1J$clGC~L!t6JQv&d+zY2X^Nj$MvCVw@t%CCUOPjCv;rlq+zntWu0?R&s;TZA281dpWuBtPCg&T|N z?US&9(={{vWWhAfw7~k%opi2}wfz9In!wV*r0|I?^WistXlK?)c}JUy{#1Xo&^bz< zOFWHNvE)xPFkXsk{_q4c2~|0DzOX@Ss!4G#jZpY1XUL-hpyh(~In0la`J5O!1TY&+e$_o!g{VDVK?aVNW!W$Sw;6r46hQ z8nY~iZQ-5u2Cxi7nV!dt7r)N#!G%J3jmAt^Hx6RXG!*zO&zj{8R4gZcjZdugBcH2P z8R&Db%m0WS&!M@D4y5_yv7S2K=6UOn5u;c!mOZQsd*$S?$*$8%q;7p=clvP))oRSg z$x=00zL_f2>ZmYBzPIfp$|D#N-C2a6xNfKXg`&VBqO1OmlWUkFd@kSGh6xk!JtAWE56Vi%H+i>qyUVlpm=Q>>IhN>y3qv(0EIsn70$> zu4VJj8^N?Z$4z)S@C9D`g;yqX)~qryPbZ7Ptm(?kFed~1oOKlRdX3|Lk4(Nx#S$x* z?P-JYZ}RPlIulJ*-IRT9R2trrUWQ#MC;3n@nqAll957frJ6m) z?Ob~y^dSF`85US%5X`Vvqk2ia2jvLpauEqlo4DK0hwHqCT*2fME|xj5l)W=~2r~OY_{O zX?!eXS6=;g4*zOTb2{3w_qP>m!$63-BN?g1PkpAkygfZtXx&)CNy|qMr(uZ5Wv@Ex zp=sZ=%WuOt16vnu&i24|NuAM(5sYqp8-acuun2g)Det^GshP{ub%HXnZK63noxEu% zKdF>*-Qh7IoNZr9u?COp?H+xip?J4_1(2r*v~J}Oujh;vzIH;AYkd5W%yjo((Z+)) zCYr519EdqS`5|#zA~;C)!41fo)%1X>dUsTXiiwjmbQ}pLvM+kMs?QK0UIsTxsg+u< zLMRUTrD-*bLvF4&xnS71nJ8i^+c2bUT8=TDkhpICDt&45f|sJ3=g$Vrh9W1iP+)6m zwDs%Fsb;;0)E(MfIj14oazVB}zx%BwIx<68^oBv%MDOX$%e*$08P9Sj1u^9+zXmql zW>yn%=DrS*j)`OD`so^}eIcv-gtGb7wMa2=6ZiJgZKD-!3FY~jEEE+nU-fu6|J7_C zt^6&+y79(E5+dqW(bkPBVsEHf4c*$2;nWT#cHW@;K%YjwpRvIU{t#jH)5GH}B~t2D zV^EFBzOljS-gMkssNxAd3prARnWM$j&d~L;zP`P#aU6)%d?g$A(O*1XkX7_R4vUUA zVBA?37RyzK+h{a+-*KpiMcZ@x<&dmu*xx_Nzx={@dOTC}hV?n)pl#Y*Vy#5;xpvx* ze9v8C_ja$7{$UDNmX-PJHL_yX&ugD8G{%&P3BJm@CPN%$#4wV@c?#lA;wY9RrL`($ zV?NWt!U8v(nr<>*h392@sk^SI9$!;|#6zL=#qFPp!>^p+&mQk;a|rXpYLfTp6B>W^ z;WcTv$x__DFIF4dBPw(Xbf}v)=gF%TQlBqXZOSKAoI!VWu#3t>OgzG-D;^Gz1?}sF zOpl((CRv$6IE@naqD0b{tG5!-sD7}%Vb9l0q+)gGES7-1UtOz0ift19;dL#6V5U`9 zPYXI;D7 zaTh(dzlemhrpOZzLnDI7acWIVnk~!AM{dA&mliiNTrpSqrE<=TfMqG&nwdUL`x$nGG)KA z?!>Y<63P`{5c!3swk$>aB2gt^Z|tz!L?jia0cQ6qc*M#(BOGBiVcC;oZG8QcW{MQz!I^3^G)d%2V? zyE2dfL|EQ&1Um+~Qf+)BkkU(Jb2WZ@KZ7?03f6VO1q-&yJaVl*`M&7Q3V+B9l&VftLOJ&13Z|S$( zbQ~^o^RGUuLNEQ)8$X9>6Q2I8XDQ9WmrzliaSPlSyQDi&wP%x!3Y%>>gBorZXyZ=2 z5AxHAzADh5HT1$Mq}S{^`ZOpQjtXO!(n^~Uym`bvx?<^9cO_B-!GFmF#?x=1|R-8{%xiP@bm49_&@0n^!B*v3E6-$)+k?=!hvbNdQ4$ zD1V`}Zal{5zWQD!{s>uWq=r1i+$K0gc5F)1QH#$`Nv!H|Hr9RFz?(G5Nl-iG2 z&r;j=pzTmA$BhOGSnYDptiG(p_^k2%;1wEk)#o8{WE&?3UiMN*%9O(sT9Q6vljy!s zuN=_~du(q4LrJL0Y~9p#c8;U@r~T9S_p&O2kTN@8Hd=Yj9U1-1-DTQRIs)v50qvbF zTIZk7@SE`*tb7j}O_!m0VyGhci>OpfCv^Cjm@s-qO@KigygKZXEZgYvhEt<5BU4fP z>+dMpOO($)(S9Le+QW6rccBx>?X2#oNc@>SJ2i`bo(fS>yr<5=v$bJb4JHyp8GU4h zaEyKqHx$rs&5SM`jkI~EK)R(CkO%8AP)pb?C_#mBk?G>+OuyM_ zh86an<#1%k1kuYTStN$6RQt*0@GX-MLcv{9o)pRjQggJ3BEbG%%mr+&YARR=?^}NWVS+voC+1U5s_(BKU^Ng z%5~s{vg)3B8Y;!p6x&^aobks>6x0KbvE}l697c;^7I-K9t{vGf#cBbCkPOm+GX?tF zsP}=tKTEtckAn>})Xcms;me){JA&yIdgl_;->E(e-YxQsKMxJd`Y0nsJ6@Ztj%`~* z8UOxH(#5rdooM*j#&^$gs5Lp-*KenrWpT&{>UjD7&Okt07a3heuApm)F=Z&e*Tqd$ zEM3EGyCj&#j8O}EZNPiltz=Ob0c3lJF}kRg!kn*Cn_fGD-@aeRI*ipKl`f=qgS-jO zlUXH!Ih;f>bj;j9a14glaAmien*(#v(9I*&Z%-8nKMobmX2FwIDU%D(5TT&Uz-Xqh z9M&rJHUE&Emq1Eh;%kqPhkNC;(|k`du}I|oK+ebc{U|~D$!L+7lky)8dakINvsAcl zMMsO@wdTs3$kFyk`$MI)7bSi?L@?Y7%VuoNQR``9~rxY@mWsRkMXwFzfH3dP_)-l4D@@wRMq=XSCc zEJxoSG1|mxCmuzp%=4=T{dn?}t(P-^UMtSIcLQRiY{D#RaIGw%$dKPHjiv;-bqk;% zX1>Xb>30?hBZa}^U|+Qbyke1lv*V}Xnc2(2!}!k$o8t)?~TR0Wsk zMMT%}lfM%_P^P>^+#0L!@g33fs^0oD-&HYH*v1~`yJfnP(c#+UfqQ9e>H*1uu3C;< zFd7%i8af#eR?yC}OG_G^D2GC))JEA0%|{j!U{lNmvGo$l8Qy`sW0`t_6Vkt5P8CsM z-<*%h(y*5_ehd|KbrLd;{=M>et)-yetMf&pol`syF5XH9Cqg#@0Y$E6U705WZQPK7<%+~bBs_nV_gJ6tNMZJo`CuZP`f#m4x zWQEXG)dD}tw_3SYRA-7K<(I=~$bWpYN0)BCUU@>CTnj|xF$VC8uEP5#>c@z;-r|=MtP1;OshhVdQsZ7d^$a_ok4j7B?Q%A5rbSk_49aI1H=*%S6w`KB(=a8u zK2fjY+iUZ0Tq>wQ_}p(d#245=9w-VE6K}w$0wn-|54}UmFbxg%a@$y6{-d@tp3@&rd!h4Ozl2bI6Z@ zHmJCTrz(FtD*R9fDwrv1jE6~i% zpN33}hxR^M?*?3jjvE8mW|fBLqyedXrM<6yz$0TR=N~C6=h|pEm}sc7e?Ckt<-N(O zzPU>F)UMH3G&abBb|^Qg6S6kf{g@tO%sdG^Jo(T0`m>0N#Hfo*vw3`0&R43cu0XS8 zS;-TPjYlF$HTl;0Jq0r*h4m0kt$?G8m@f^=aASxCjk)T2(k;m zAIrLzl2c!LF2e85l+kY<`d>J&!(62k-PmmIagzEfj|mM7vR>L%H$;A$?V5b`X3qA! zq1A9}yPEGSJL5Ot*J4o!BIR89byHHKqoOq@YqOKd61{OJy8_XGDcnT{M1w82R_C%a zp+5IEvp~8t@n)k@8e2$j~jK6z3Ah&7w8%xB*C5*9qX_={f{G|u8GaR3h( zJDI7-N6il2Jy{>vkA80v|Cip5_8a3`X0i0j?&d{ZVDZ0$)y7!NLuEHNUr1oL3f&&o!6BblE!q1!stUyIkNv^pv!wMf}ANGz9V%z+@*VJCEzS{WAU>F;L zo>-xVRqXHZ()-imu-(}SP4dNc-0|e0pHkOtDx!D8w=sbguC7~e?J{zf(U$m@M1n_R zK0*NvTt+IAsub%Nu@&Cl0;Ts9_cjxsjG-6r`aNL^M^bvnJ!YeM@(Ma(yXiX{0$1gV z^~irg|J+yIm-s#Ghw2=hcSCR*LS2b&t8al8xcb<6qPjRZJe=KG^gwxvUh7^TFxBv? z4YmS=nt=C3f1RORsM62BtZ#5Sb1sRRg657b2y6y{Hs`Q5DqgJK^v6ZBOkdCySQ6VZV4u>%l6Yjp5!LDC$sU)?q5 zw``Q6189xY;mg0NQnQ|MdYd5&BB3hhD^N576(RZ!LOL>r{D|z>I^hX+fD_Q)mr`7f z+ivYm=K0obW~wd5N`V?n#*g9VfRjQyFHoZxG@SJnpyHWD!p+(?fSo2^qKCnZMiRyn zxKFj#f$XNs(;+e9-va{!3u*u^fazHSMOPE}y_(<=5R%Vxo8OCb*I2%HRyla$i2p#{ zy?O$|V&foGsruVad@JfVZ+^AlJ`(5$=p~z{QB%?xPQ1@ktzL}BYVFPNK@^XN?se$H z$hBSa6nfB&T!)hby>(a^Avb7aFdcCK8O|0_5Xrrhd4MMqi23CT$Jm+54BFq5n6yc* zn0dzacedROV%>+$#wp{m#EjN+j7oVCYyHV|74g{ua1)eGkOgLfQ&RrRm6y>#p<5Sz zb4hBwE{A^6&HGbG`Km;B*@0ht|8>~uD>0q0o@hFJ9%i_1&c}oYG-CzIBf;2oPq`O9 z=RTlTZH;#2Q-gEaUgNp8pD`jFXGj_XU#{!v7DIbjcZD%p3a%}FcHuo-cwz%1Hkm0B zFKtgYhT0e60aTC!sIbL$oE>WT8gqM+*~%JVPQpR`0+&QTl>Ae3%g4u1mnP2fd>?5a=TvqBx*S3cU`R; z3Jwpk<5Q`z)GF4f35!5zaR>tDSNi$)_bce}!0BdgYJv0NQhyg&TljY59)zXHin#dp z7{j=NUegWOOx{gIK*EcVC-194%2+aeBB;H9KRGS$Cq! z>#F1A0Qw|*JeOJ!*BhHW0C8Rp1&T*U1KHPEX=x;W#>jA;@1`zkc#d9o=}g_#YuK4A z<8nPQ30_Bj#ZW|q!Izb2wO@1}+p{{g@9Jmfy<@ z&C5`Mq5tU}2EAt&KYg!Ie;XY7Ro>kETYoZN@lSe9TPR4O|yX350=wVbT z&O#WxClPlw+*|%UYB_&yzmV|L?cB2Q_U8I-rDkMgd`m$u&jV_QZvmyv>j$`R0xbKJ zIRBkq_;OH!7TD1Nk)USIwXlK;32uSb7hO}4LAxOjxRD(+k|Ql%0~Gdo%}bw^3G5NJ zX6q`TFqjtKexBgfV$kOP#T~qG3+hq3{N2^=_yasom_L#6X zhx1hr1`$sjmTMB9hdPiU4wUJZ*VIfJ8u7cyr%?y$K*tVnHl>6SaDE5BgunYFNi2uw zMJ%HZ-+HlJx=_D$JEr+)sZMI=5?lltAR1Az@$d?O!LqNRK!KFa?7!~-Z)stjAn4}( z*$V#N@$ggkQ$RQg8@{sV=n20!2Ehrq0*Cw8{|J9LZ>s-8m$pK5`C)YdDhLy>UU|Fdpi_ru`MzG(>F>61eb-IkYkvx%MxLkEVqZ@8ozaJtlv_7B~I z$9EF|4yO0*z6;D}@EgJXF9M=};U~P8;c##~f`gA*bKX!`q>0@ze_ss9E3f6`5eyjQz$_j4)BeCXa2f+16j@Im>( z!7&K|bFs$V-2z6rZ}+q?_-ATxfM$Ywrzy(K^)G}Z9`gdG3k(;5fB zXZwE!1>a#W%;xZWdq^H6C$RnaKSJ`~a5D4{M|t1ltPe~$NhoZ7D?UIC9k4p>Z6+1FGUs|%6An_f z$`rdf|H_ss)qTkM&+vCk-9@D>zgQjG1DJ>8wJfeeN2tuge=h;ozJfDuv@^pyPZdKV z@U~cVGn%GdC1U=}|5XeC9R;FF;3K*|IXGTBCBWubJPxLi3BQ)pSXAqc)FsoMt~c3n zRqwk8uNR*wPG61G(7t{f|A%5M%}zrZP3A@$Tr}jhdG5lvdArtJf^W5%?IVji;SIJ_ zc;B4V^x%zxn=&k?Vsd=}7eO=Q5&(OrI+D{joZGxVAyODp%J4%inoDMUzZrdKGgc!H zVy3}78;SYcI%JN!K}xtsk~?=coh>tF)3Q6*Gs9Y6Xj{6`o4zP>H zA03#EOJ1L}gWDa%ARy4FN0bq)no+u2?})A_fslACQO6(DTiTBOeK#4$vw-`EY8O)Z z=_OH}S~NDfD zXyooBrb9XCCGVBz)<=hYRb}ZtPl<{cLZwP@?&AmMe=ni>=zwPYM=z_*q>1#kXQ2#L zmZE5ZE7BQtuE*@h>BhyGA#atglfpB)W^W_B_qQ%p(lugT%4Zi(i*J_@ z8u<;vn$+!--j_7dOFyD@Q&bIgHmet%R}VaSeLqsSA;7in63`eM(6oMoV-_-})QyNT z*uV;n;LQKZsW7*w>i17j*DpuV(XcuN^!lUjLh{wY==qlFuc$?C#Xbq3{&k7kh>^+O zgqZ`6^b%$o8)L~>uxdg#KYr$evOFN*=R;gLhDT-}{E=!o9;0InT7jscaW>G%t!nV) z9iph3&7XC+?&M^+yF9$Y=Uc@E$H%z1#3sEv@)3<2W6X_zXIuoK-dl`VEj>PSU$Jl; z#$tT!g7=Tq=eyHBvhU{y1=!hXN*9!(vvr80XyPv~$iq;ZYI0 zNh*BLn@F2wB!=d(ZDzqwSQ^DU)JLnCA3e>U$^RgLbRUne!d+n92A`X3O~a-uY{OEv zhdyK@C{hun0P3mlF!U17a_T)3$P zj6pP?qBZ!^Zao@Aug^+H3!P%uQ64Ne@8Gs=;oRkZ($?UoiR+jTxAOL~dW`ZGcnPN| zh!Qz=Bu!@w=n&_fu@)9e&zGrJ-uN%^a+qoULiB*ndx8iRgmlT#1Iw9IAu`g`D!2W1a0PRuY62*z7h~7F6%a`bT93D5nDf#; zdvU&zjl-Syk@EN*HmZCqRnA7&PvPk+$Y->=#+=}b?CE7aaFL=L`nG;~RNH5X=-_Tj zjRGyaFbL^-_>SU*p+>K3eGHCcND(Vji+W{3~T zvz&-bINW9+oW81}aPW=vygOnfO)lT%BoRi@1)Rl4chn$g@yyk4prmv z3L!F0+$qgJTS{JFB{CT@smi6&SZ&|*k!D|IwV~>6s079#h#TY zpeyoK5xiGqbb7nBR`iEfyA+&~*r@4-5eOQh3(vF29tG1&(SCa870jtoq^Ex6k{1@V zKU7faHCX+bwLK4Of>cTVkvm{EWEyE#)LUR+ea&6B^tDN?yHC^b{!IRQJ0`!~~CeZK= zsC)7GYHTR26xjYT$IHPt`cuOkvbIZnxGI!Ptv=sBR&zST3VAQ-2T z4IinQ4;%Y};aJC@X2?)5)7dwCfY{2(JLM&#x`H0+Oj?oYiDXa5qsUB9=YoVMTO{0OX&wRx|5z7`9lRpy9%wC%KfE&yF{1 z9u`)H*;#@f9xR~)l=VU&6m$ti<(;Un?R}wA5(n)mT<2CiB_VwfUT}Z~7jEH|qMUGO z%H{WIoIW8m+8@nZeD6f8PV#@n{xgkI{XR_Z8Q*Q*{LN)6)kD-~aVc7bQ@zHUGhW(0 z_J5vYG?>ElMuIB4P0rv=73m^U6hW19Cj=nsOtIkbhwVo#10Y`xy0ckPPCBZ4C7P*R zeAxz^MMtW;R+ow%AlGCBR#;JDa6N0L}7jy&Kd@6-4|kjY92*YM*cK>$5G3~XC}q2W_fd( zIMJEM4{OTW132|WSj1HDZ(dUIkNWr*;Cts@=OrP+q`T>X7hSI zWmpW!Kr5z*R<0>`&UKd|+WvA^e`1qxe`~YsHdm69NA>~G38Xuo(jEC~)oHQ9EDZYu-Kjex4HeV?cMTPU!r=B*F_ z(|YRh$7w4`>7-5?Lpv*nw6h-XugU+Ykza`zg6}%o7}c)XkCwVZz|J~ zSU7!}OUD{$sDoSZDOwLtF!k1a%br^hnR#jr*W36@OB79~?h2TyxniN)e(NCK&pZFE z+8FuolDe|n%joOOP|Xg@K>j|FXS>GIf8Ppuzo-~H`G6Hu-S&Ook@a(TP1MiX_KP(S zOKWM&6$%SHZg;s`SxkFQF0A``2ecrWIqdD+uS?>7Y2GQV)C|_-?t@dYH1lKe{ayqdot%P*`7ajcwFo@qezIkoCh13^$?W8#EFb-X*~Md<-Wx z16>FO4)cILHW=rV4lt^rU_v^))6CFd1MHc>B%T0=Bw%cX^S|ng%d8p~t+dYuiFvvL KPXTpGXaWFN(t|qy diff --git a/_images/kernel-method_11_0.png b/_images/kernel-method_11_0.png index 823a9f806ed574bd6124210a0a531d1bcdf0336a..a0f1dede821cb33b64c19b677155bf1b20cee5cd 100644 GIT binary patch delta 26073 zcmYhibyQT}8#O-k&a%eT>~OYgTjX{0cq*HG$WEy(l9hCB@P183MfiAC|x4W z(4Ft)`>yx5ert*U%*?&#oadb9*?T|xRL|i2oWV&A$7xLio)HrN`0TSIo3`nO!;)@_ zBY~T(o8ExKm|lki2mgrD2XVA*6xvyiIq(Ws>eE=8wF&mL{Tu!C>5W zBWxTTsCTv_e0FKGJgPO%r6lr99fKW1GEqZ{TE-QlGZt z8v>CbeaT?Vu@xCjb-7G%CLE1K@`0m!Y{3M0-RFZDQ1ItTt6HAmK)PmZc?WRt_AOur z{$kElnF5%Yr52}!;58gRBflWsS9wUYttt`QMq$M+Zl{RzBQtJ!JyhX$VT^ zNR5a&YGvM%IOOn+!c(mbW->+ux7OJ{sWEd1eiM0-dW}GgqpAQ&{%~!C-?F3g=N*9k zjXXAg=l)>a`J$XLYcK@CMn%a0VG|-9qSNbXSRoiwK7$KMjh9k?kp-WnIp(f$v`D0S zwK2H1dhcTKOL!N*c{t*?9%baO7s`$~8M_7kb`lO;lX+UEcMu;~J1}~(QJLNis$^m#8H_?-8?Du~zwZ5xd=af0 zUG?QtmJse#exaVG=^cxcc|81R*_xVA*(XX&^FWojA!fn!%#A{TPXYXN+m3bY zW|UL7Ab>5?M-v+Gk4hl?i^!_03Rrk>Ox5GNSroXW{W8Uts_ZdV-*F+($Pt5nhfX#W z+(R zDEN~S*#~Tgr=?!+0&zKjZ~P(Ee4+tGi3=_V2l|%YRDR}*tv6O{H$luugpIp2OE-;P zoZ<`P=E7m%N=JWVVl3GJ(n*(JImbo0C8_82=6QIBJi>n&rBVoKd7rD@~ zs@|#yK`r7!%C;lCfALoV3$U)`?@pNngMK@mBTkjxyH;oNGEV>noPHm@-m8>Ol>a^= z5V&wHPIs)~mxVi9?2C*kAIkK6c-G4(1O3yb3LVZ(I*%_>!Jy=2t>d(xWDhwDS$DuY zudtr-GfKd9sDDm6=y-X6Gee84 z5;ZYqJH)h{)uLqH@O*x1F(u~E#9kH?@=XnY_>y7Epw!2V* zJ4sN;{-YZE{o8hTp49TlQBTe2uS?svj?)C0xju))` zgqqgS;s@9fJUZzwk&XY3#v}QSez8{ab&*R$I?qjxT{#4BEJ+x@UGAj-Uw)N8+Up?| zDF$w?XM-sQ8%HPJwEZkFHi;Zw)wH*#%F0yj@8Edqu|)9Q^9S5hB$YbT=p^QRub-c( z@FB!YW@L9UcwkDY{h*cMZ-~WIg7;^oBKcBrQANOGLNesoO~|YfpEc~zpgEcl^5)rg zXML9A>ayQK`Ai>a#{3)Exk8uLGuA4lEtLULxtOGh=NT2s*9K>`uk5w52o-W2WxL|lD z&`D{W5B~moB=YqkZ$ZZU^V#=KD|9JE9Z%oEMi=v&^uXwiB7`jy10A^?F&P6wZSlEu?B6dWI~pjVYf?Y;~*eKjDPImh~P=Y&8lBh$}rI!C8Ml zU?;iU&!R|ZZXL!1BxeryobBGfEw7W6l!-+{8mC>+IF`c!FTtwK%MFvzH;CL-x=;m{ z%h$dP)0Wk6D7X_YyjZUPbic#}I;=#$I7zhHM$N$?z{c&pjt>Ecig6i$px)|5IbAC} zpo1MHo}UG;iF81)SZUchBr@TNOa3T?s!*2n=iO^UU`~0SYJN=4^OGGY zK!flR-`dE1ef}TJU{SETs3r1|aCA#=^6uqT9r1kGPfLIGg_#4G(&>o8lLw02xr~cf zvtPXc#m{6M)RAsxLvBx>a_+t&g(;jUs31eLCpl}&AL*ZM9>@zZJV9SVhsnp)fGbIf znGZrA>e;#Bf`u_5i^_|E*vvH@3f@G{6t!Ka&WMk*r*34CNWRF_`!`Jbrddhv&GSNz zWHUXb)T*aR+R&6+?CLbz7zqMNNvpBnlD!guyl0UmiMHM6aOE0Gd8(-gn}${#q=izf z*P9;rF?`>}-WG*N^X>o51C+^kpQzHSnsPp1_uaLP=*PTY-AJ|z1wv|O`hM))>6rRY#8~nQ zAWM9mQ#x9x=u7{jz<- z`IIbE?ZtMSlWmi%8fKB+ZV5TGj}hS^{NzB zA0JM7Gkv&i06$ zciQvLA>a#l?+)k+bArefNjz@(=zguiwV55C@5QtW)Z z$=*AF83ciuD5^5-Tr8utwW*(YFy{JiF5EbSnIrXVSsex~`>c1hrtVw>{8@klniy4N}7&XLp*f-w{|;% zzL&g}ikbo>9BsN$lFz0yfc}Y(VfVvz%*^vfy{F_o%N5meoAOP9k1`Xji;&u^(S&pg zlXa{;A1HNOyv;Wwsk@Da2XqVy#B})P!||5eJR`|gEWXh97mlnG`lY2R=>BweTk)TE^36Avd?T+rux833KuN}EO#6;GK&|&` zkiFeXi|txn1~{JX{P@#ULI|MV4L&d|+MjK%ngpx^uaC21WU0SX&iDE(9aR-7;{EMs z#VDmnddQEppWnFzPC4IU`+AQ}xk&mf;zaLi83LyXe08TdH|Es*u z5HO%Blw?W@n43PLcyHL_)BACE?yx_G(7qvsQ+_8ZjwnkV{X?0*9KhrVG>iFsjupYg zS&}ho?8hA=T9WP#VBdUfo=5!LVqjoyJ6e`*yTnr}W&D-Y+`_;?AM>sT*SCGTuCy+k zrQ@tp#l;O-$lu_uVgRz6KG=hj^%cMua1C%6XMSZ6v=__2lU+mNlRc|{Gxi;Yy__;y zmU@=lyz9s)q5Zs$1{Lb1bPO%4P<>ON7nM;%vT8pFJ3aFBF*ake5^)f*c#`lqFY?|F zaQnex;9?Mz6W{fV7CrBe&G3i>#KINEuYiR^i1gh2Ch~g!74q?Hb4Z;!A_(X%RvlAE zl_-7qGo3)Kh@NPfg))cWs(~9?P;b@r1IhOk>m`*uXR^V?(lle z`rHLlzs)dkd>0V*jJn(qF#@(pL zdg^&Dm|^ zBa8@q<=apCcA@>8M8f)@-z_88N`?#st&3K^f@5_Z_#;zMXkseNZ{VU ztFqs&0WyUlj2)O&oHVUVCeKjuMx`)=n+5xN{|T`o?q@pHo&DeAh7H8+J&`t|XC0h1 zByD=uW9_?)4)eb@XG>g2o?8V{$oxe%^=ntsm@ApipIs)qiIN!?c+nnag*}@RUd*f^ zT=y?oEa|u1mg6t26g&bjSa0w&1DHGi@=Fa+O#$RPP2}hl|J9a*;ErG__>zFHw4lv@7;!E{}wr__Z2xYsRR7nBA9xMEf6Da7V0z z_^$!s5}v^rD87N;rA4u9K&Jz2882G%<^D`4P3k`;i^O^%9%%)Ao*<=i$4ZPPiAgSm3w2+f~q{X3ECOaL63+(lp ziI3Z0IkyGik~pz~j#+ISUnjkU zcBKxm=E{$hI`)S*1s!gPp4?3hQkG1V-q*CC# z^454XzG#hxH@3E_Par>rr(8OCp4PQWt(M1D{){N--uJehhBEv8PZVM$OfoFvgBG5B zXo@Eu6vDD1+Ev_UaZi-*7H{lE>xXrPR{;u}5^Jtc)Xh&+H3eC0%trpS&u{t>=*i-x zwVynceV|H$W4|p1Wqn~<*XhsR(9D$5`n!%J@Q*C9^2Ga5`-RSJO^KOK1!YUKSr7bS zB_itT-VS3EP&Q)s^>XQafZz_^%ZjQjAP)OU>UDWBNzv)|h@GtrvGCcNy>Wa@!2~cp zh3hF0&JPbmdKTA6SRhjuu8YC{*iC!moRmh5zV(!o#^aHnC_r~uYojh|xv9GUyo^WJ zk#rXoyy`l;oB7pI45SDW)}wlC1e zv=d?HDBHJ5Ar~Y`H+vN6y-HqEu1^fcfb8cHXObZ8YuA zm}`ueV%te$Yf$T~q_EsD(V15su}ewg5Qu;0HMB68Fsd@&;PuZjU zB2%8UXP-KyVoZVmRJHkV?@;k%`6SPCrT<88r1PlOr&(8o+i)0!NQIs$hNZlv%%{N4 z2K=ghjx1o-4(hD29SkW_IUaO-VH1!!+qrHBuXEA7@fF9vv-~C`V(DIJjz1xGlpzVY zJ}9cc@BBtRXvGV1fsNOK0atiKyhrINC7lOPK=~I1F;o-K{;u*XbosX#C4(`S#CzXt zMjAiVbmyP&>$BBQCvzctudFXo(wpqx<&O@A@5|{|MTvHt0wT`$xe;Wa+ zkn+N1-U&E6r7xa-0ggD~rMt2uSbP%(nWq8zHmWWbqnYwR0@Y1qhasa1A`QN*i4gvNS96RI1obmOuZ`?cn|D)YK z3*DZx_S?rc&)a=_&3)Rhd>vU)!2?lYqe9-y&diY2HHUQ0F564SI8Hi#Bq;@@szaL} zCLgQJ_Y?$#&*<_63nS{^1$NaFks%iT&Uee~ITUww6fPgLWKRc1?lXz^n_srl0umi( zD@+IuSboq-4)Zp+30eH-f}DiR(eK6+IKT6P+#}bclk_L3&s%?B1Tm$gn+(T=uHbCa zcM>yE=q=c5JrS;&55+Tn+U++|0?qfjzoi;|V95+CA1N;u3%?AU@f)`!ZVo#feeh|! zb<^v&$y2{J+q(wrAHadF0c%V9mYQZp9TO27E%B zKFI?CIfx8Ic2wN(YVW^q>FIOLy%h2`@yz~fnJ6UEE~b+hMAW#Bm>X14vr96M8NY z1TaIj3p>1~o6l*bHUBYG4#(FUHb)Ubs=?9#ydYc{2vz@VSnhVoI0TY<*LCV!v1X$D z_vOn3N)W^57)iUW9lB}uG+2kFEkBpLA23JoGusM>ZR)yR5oDLV*hnxDFQe;mOG7`v zI+jw@uw?}c@;j?lr$=X1g(39M1Eyg^%aki^3Ig`Gqta~^FB(s+lckD05K#k`<~^f9 zdEZXaN(9Up(dR_0c;5rVED1(Rj}wkv7uzho&H<3wU-D^ReYs@1e$i(h)6UxiJ?%&ZM5#p|DBmZ zbvwxc+ju-87O1ZeO}`;3^nx5dTsyF~pABx1f5jXq#Q)ZtMS}i1@0uiXEuDZx1NU+w z{V|II@ht@gX+ybkdK!xgDRn~qkF`)Z3cggHKEvWcUD!mi^MRFd=M$6G{mE>;>A>}L z3s!9$#q>&6ez4^>$|?)k?{wZ+(QEEM>IpkP)PXYQfQ`H7{k7P1DF?_X2rN3}9jOh> z&X1=(sh|?QqKSb>WZ2e$iS7Ae&YnFhaA|;VlwXd;@HQwX_b=hFE&8`DzGwmeUt+xo zed#3fnZbX>5qu)ALKu%*-Cb=TpUQsXY0b5PQXgYFSSBMdjV|GP?|NV9`qbWSs)-;R z@af?u?S-N$D((=m1bSUgWC|APFtDhV==ZGt{{7pl#RA(CO)8vCl$l9K+|Lqr=uO2i zwEFE(21IPojrh%lz;JFvF~jkQEtJ_`#=-I26);;o>XBJ;13}tqMi_BfP0#i?Yl%AL zu)90L7^vq+gFeQ@OwYEC&R^`*Y54eT{ZMCPS2@H^Q~IpHVaonT8^0$S%URH~dl$*5 zD&itaxC~W^KGdVRl3V4|f`7=uixz!@Gum zW5s09O&nYNK1}-jRZqQbeV<$2PC~E-7qzM=eN2W_O-;>G^UbPqU1>{8i;fpE4ynZz z)g2wr6%!vY7epGVvM)~A?LWBGpU4nBHN_(XucdHeLuE_+_ffIUV2xga&og7ELjyQc z6)$mnsar*hCisFDkR}WCIOoh@1tM}O5ZqdV_?m>-L`ru-;YjRt6jNJ0-sTQe3*t{h)A*f&SJPcuiUZ|$HdWELR* zQ!$N1-iv6GF=j}EC_bifxj$ptoD{NM{s+R&7?Vl?G`9=fZY=-D{Wx%MISqra%r)P zTpW6mabdl(2;uXg)3IEGs=}pj$CZ_(<9y?h1aD4udCl|qL1G%7EnI%Ae>Z#Zde5R4 z7hFDe)|5elPx;HAd!X2^;5dLx%OyNvel?PjQat)ZL*x7L5Mp`YVwLH292uLO!GE|_ zpBF4{kv!N^!zdMH0Mv_KGA!^OTfA0^m|kj5%_gPrvwb4-9(AfGZ9AYsN3IKHRKDB| zi{CAF`R|d8)@Ry=i|usw7_B#(;NC0V42~~u7!+=+V5ahy5AZm z1apkdxUUq@9ek!SMvw~|@xzZ*QGuSiF|{>c?z7G;F8*{aYg?!`+*}i>nfyNGCbb+l`lBEaEzX}22EOXOUhX$6GNs7l4;^CL+6I|TDkODk(H$N+4 zG44+zEWd)ks(R1=4P4fFWI-rQlFuAG0wP-_y;OxtG@zR8C#R=wdM6PxG+^t9_^PA* za;M`$%B5}HMl=G%Uv?W~VN3mB92#RDzIG?47ZqiZKpotjK_Yr~$rz(LvItV#d+%}2 z7@{g>9W&B#an{rzz;v?4)!u>J`xZ1B9ba0Z)>o_=gb7{WSqxm}*5XgM+RRLd8n7~g z6?&_%)Npa~;XS(MQ>hdha zKkvp>4Qgy+(u;mi@s`&@_%4_Zs98dKh!0Q&Lgk2`V5NjzIa_}J@S266y*%dTi&606 z+jKG>9>79Zo4Z>=$25z;=~22gKldEi(CXp(hGqrx8kC6HmoLJZ&9pt3&exKSo-AMu zzV5{(mCPjL#U?cPe4R08qO$~ry1zJ4nxZ7UB=%+6ku-9}`sR*FWnt>RX?0CK5qaDm zriDRSIg{r$3;OIAPV8^@d({Twg3TZ`d|aSDjw0H7=4Cy4Rme-gqQV93o0PHlv!W~` z5M(j0(Rmc{z4S_)a>t~#D>+|EYaf4nE{hN^`l{h9(gLUv&T>8jR$z5v2w2q_zMODpT zr*yzot*Pk?_?Th%H}>umZg*+&V)ek&h3FH*xOn{mt<%t%PkWHmrahyJEDRCc%jVa& zv@?f%Zz&F=ljw_~ub{nv`hR$pJ~3T4R_uhnc(#zqxR71~S@n+#otLbO9P=Y0q-4Qm zlha!SbBgu^^9Oesa9;QTh0>`gWOTRQw$}+7-^*;p8_dtXcfW5)eg{{>;BRD!JJJh1 z%~Xjk`(fvpG)-~as;O-gn=jXo1S>NtYP@6CSH^8&+LM3-X0tW|18oSlV8U4HF1gZ9 zSnPf9B{~kpH_^1-MzN@B^1Ce3CPlGA#UxXTnR9l}AA`*Ul(B_7!e|6RoN6@kMQvEy zI@*UpKtMpue@g}&me;W2BU^e+H7}%J($=`AzJfDfLR4R0T#U~9|E6`?77n;;izfo+ zUEH?=D&3^XA@bNSR>Fu`Q1C=3@{}X^Xtkka?*XPNaB-96xAEB+Sv)$g&>8Jaag?ku zO2z~fz()P@OG?tmykx(m!{E0xEb^{@R7WK4DLuSz(&hr0c$U}DE)mSJK^9F2ISq`H6$2`lFi_r4dU#9BUa1(@RwGRkMacv88?yD7MB;u8H0U|Juq}8s4pKXHvv-UZ2IY zhNq%j%OY)i<7`)cnC%-p{Ajl&*R12d0*SgN=U+m<9jKy^~Y% zvUxuIL$3u!N-18$_srM-rMsNEOvh_IMu;Z|aD>eIsn zm~dFra|D=ySsoqCmqC%viD$LyhdUG0gJ^IUnp~cAdRCHA#*I$B_zxQCz0}u#A=d=9 z|46CanL~F=2*xE}BcWhd&CZs7w;)KsX8K`3FkKb_ey+jUfw=z7<)BMZt@~{%hGq}O z;@}bX?U=Xh=bVB`3tJJHyttUIr=&dr6W27jL#vhZ$!O)v%Qp1pY-+3Pza|&)`xjH` zj|BOFN8FrgqAbAW=&42gvAJ^!OFQ|qpSk30Q~z9+`s(Ck;wL`Gp#`~PsNN_9k@#AA zijQ~GP*Pw+WWGG{rGjOWg7{JfJFP<$jl-v>NP$^aOLDPudvs7i6;Ted3$-q{vq<4s zm4A^TwpR`!kKfeeRp=%a(v3(kD_@_gs|D&ihnS%n8~rxj*zrLyO$euWFy)Vdh|1#6Zk74z*{?mA%Y9*Q_+}^G}uC;oSS0V?WxPv4jCyIE+Zqt03 zt}b*Rcvt9r;SB~~)V2q4n^YXW^<)f71|Pl&92xObR5CNf9G)`7Zj|)uA1%s}q2HY@ z;YTdt;(RKLG1r#)&%-@emh?}F&);-T`?$Mj)TSILyRq`(hG#z+h5l=T7KI%%T!t$X zlF>)xh&%nA@fp^UIePr{TceQM+~;cb{(%Xg9|S0UWe-Cj$XfKLosKpmrEHhnyfI02+OEt)1J?w_Dx`t+{FDbfrF{XcMd*t%l<`GY*Vv3BNaHx_r zBU5z!JL)w?Sx1s6qYADWuGG_%mge~-wf?=Vju)WF1enXkJpN7DLUXb8fl|tIjtuff z&QIX_xVf`?X|F8E__=!kN(jHf9}}qp0spb2@P?c5(UbjcSuK1uf0vAK30r}4tMqh5 z5^1(+YI49Xv7W%AbH>p-m?f{>ZlZoq^N-Kz@^yI?SSS?=oiUXY{leL#35LNp5O7(V z`~X4c(96AkC}H&J)`wxQ!F$bMNiO-clq}!c9#ZN!2?}%-%Jq31XM(g~1yyPnQ$CWb$`Uv1q0g2Jzz*qF1fnUAX>5DnNH375N%3l-=p zT-2d-Hy86aQ_Q7JlWNm6b$U=bFzDpEm4ddf+_MMilm#*VLNvVFS-xcGB%tiV-XR^7 z2%8t5{C|T=ZazH#GadrnL<#23cSxxY$W{|%&-wpl9Q+Lg!4i@npW-53E;@Z1;D{i>Mtou;D& z;eoSHVjKQ?iJ^2tchgUxp83o`rRmBe&@$;L~#V4yzAT&@erd20tc-de1796=c2&%Bm?v2fr;ORA83mEZszN>b)3Xv&ZLB% zZ?5^kVivLkD7KtL_kr5gcO{aP<=UdG?{RQ^Cmw7xtSxf}ayV%3v&AIYh|Vm3ODm|W(#k&pHI%k?_Vgd( z0zf%wCFbjbz72?_kx-RYYz0l5W?z;=T-zn%=)%a}3&ceW1s$Cg8OzMw?&4Uur>{;s z*uh3tA&#E4tsB#7ytIzelI~;=?&~JjF!-fZSHZsc!o2wYu}}aR0Eq1nL2Ts+E@~I?>=JiVt^6gb_Q$ZO+E>DQ z$;KvJ8VVz z`$8=`c;j!6R;**<<5o@F(Qj#^gN!f;XmwGzr5b!1ZJLDtf!K4N`Gfwn4oxNv7*zo% z+C5+*9rbb6*Uk$XUuwyT7pb4!rupobhupCk_^l)O4H3-X$(Jde0JQwGi^01&&)drV zo8r|sUZ!D(0hM}JE&~s6Y6hB9+eT^MF5_zP_mMe|Sk5&FNSmLM`ViS18+9xZtLg&FV*8*y&UdC8*^@45MWJ6@w2f4x$T zK1a34_SB{!jP=1qOP%(|xc91UZY2CuWWGOJsfMAIDbU5o<(U9MC<$>iK$ywJ&kg42 zjSV!ax?1)vwn9FSo`IaY5G>={13k_!ktBCP<5cW~5*_oZG*@jIvLFeGQ1g=e2<{GF z8TiAedS%aXzxrbkhyu{v^|{`isU$T`6sPgS2Z}gYOopYI4y=7wORYZEw1m{0=f3Um_Pu4YvD9DMm@zLdF2Gs`o<^5Byb&h;grbCgBQS>JGdN~gKg zH|-}l6)>=^da)J!Gngpw^ou%Y5Mv}p$HwqGJ6kYaBYEI1DsWlTZF2!rh!tq<5tzE< z2k|<}lGB9FvXGvEl%n9{n`gHlgN#cva!ng(bLoY0P_O?tuGKs}+Nc*RzRoq^kSz#G z3~id!FoP6PX9rNEs9;zxYxk|^)@mwDTGMV@r#CS%sx5R@7JISKr359s=br?6cJu8< z22|XN68_kv2HQD^(px4>Uio9Hn=u}Mc?Fn*|MOiE>UAdk-*bgC9Y?@(Sz}aJr*35A z6W^7(^+IEKT8EdE)O}UXVGdj)WR)rCP(@;m(%g;^jSEy1@e5v6mWA+dw`+~CG)h(F zGyzip4QE@co<@^v8A*IEPJD0XzpZp38AhDJ^anCrK>ceD6B<4+nU~k5jVj)2oy!2T zCKAP52IlgevM4B{a5j^;6HBVsI!drR68tE5dr(BW7?fChGYEP`7eM9v&%4Pz`{-^q zc=DkU2?>X@44lHP4f`oH8?Woc0BVj=Cnbi;}jRj z&C5$y3b^>4o#P)Rj09OT0>M0qPSPKUaGb2FszT0R56OFW@0(j(2Lrz-O9?R z4W1omn%{T9T|=Y9D(6cN%Hh9UNUZ9l7fn<8(?{uVvkUUY7c}VRfxD@vS2x!uA9gRUps^jAT>AnXX{>DJxPy$z;aAW8?)K^>vR;4^ z$KQBXG!J%X?7H#m@$?RK8l8@I@@k>(?X?Qg!7dvFkl&UMz<_kHQSOJMmyB;BTvjgp z2Mq{%J3FhF6V?B2e2v5-TC7wqV7j>kZl;l5fwI0~_sVGXX^Gh*5)x7j%r6x3b*0rx z)^ZZQrSq0Hh(Rp%W-foN`}&!}#aw=|m|Y4S3g6Z>0kaAho&x;!7cF8QGyZ!^S@+r~ zK}|D$0iuEERi7?4u(qb`?Bu_0q2dUaMb*>@EH;Qg`wXo-AP;Ppn(-h`dC;@`TAx-$ z8)rd6YdzAPHSr}4FRHe-<=?qH=xbL<&vjq~UZhZfHLZ1xFq>JrnT#+Rj9!HNI` z%FbS{qVbj6*-fEJ&^iwF3xp%91p#&gsqCNry?&%`WEB0>It;XshRaI1PsR8QD+1Ey zlHhTqt~qD0sFg2qxgjX#pq^xo^Coc%G3|J?`MR&KFKdKq7Dt|*i~}xJ>_V+3Q@>f; z)}PXTFf?tOn^ra~ZqwBjQ(VF~I!Inq7 zo86XYD<@$$^!&~r6H^n8qZ2~h1#D&X(|r&oNHX_mA^7<5z2{H{zmdMRb&CAMKP zD>V;2!vWq^T+AlQiI#%eSF-=7|9OMZO&}9W8&3zg99N}9Lt)-!|L;64^*y72ahr{GiTxMp5G21yo<>wmv?OJ=M1^PHjCMG zMXy2>nsFG&2zz|w{Z3A zUF(@r4qA=kioU$-E~}M;77VMg+W)(Mb1y72lM;eFHcO=zCBqrS6%hE(Gh~UJ2p0!n zitJ*ALAP?K*g$D7nKQ-B{qk@gl*x(Z!P+u-1aGki3_w-aRsn zQwJX8(8L7ZJIwQxqavxUe|G|VdH5(W>7Mz9!PD_6gBNQfX?uNo4c}g~=xup=_B4Q0 z=L6<^nq}Ike2*nPM~Ml*&P`2BAkPj~OIuqRN$&`)Wj-uEGnIBT^Z)k#>GosLdBN9t zYn?6szXFvGM%1QDHUef|y~?e(*&8gM-p#|QbcaKW2r ze>ZjW=?RO~4B~JnluJU&2A8!@bHUDYctJAzy!E^q0Hk2Vein5%D(nUWlp2#$_wV+` zQAs`ac_1NqMU(YWQR1FlAGmb)Eh!k|Y!}{r7*aDbqG1VKh{S#4rjE#90`Zu8^N7Dp z{;l>L;T#xvx%c4jBKxh%iI+;x5<_*ml2?~5g?!OsG1BzKb2yy`i&HdA&aSqGS^XGz z!0Xv;j&V=vrw$e&G z#(X(jElMG0l3FMX+3p5&V57-hn86=zS7~>8)j$Onw+}x}!3Emw!aMnr?Shu}U8@fq zp;EKi{Bw`EKb>7gh`Eq{G?#ATSQNp5X}$VbGPj~4qd>%8(VNi(=9_dmHzpwMyc>Zq z`vYp>)3s?zMU>N?otzPC+)3q+JoOmi;5?B8*c{-Uys_C~=v zV4Ex7vvVW<_(P!7Eb7-EP>p;3yT2-Y&N;+Ho0vpZ4xN_^67*`^y=8Wr?&B>A&G2mm@!%~>77IJS23=iu3d4?FCj9pugWOj=iP=Y*J$@_1DL3wzy)tUWs(1-dB*2l>DlEN6iKd43%2sG*;VL8tdO?V378SEPQ*$ zUYz9tj}tGl%IlVa5c4~Jb}d8QcGvKbaq;6;A;bxGOZ}{yqcd@|W9<0CpKuz^LW31 z(~0Wb;$JF`sem^#u65Ou^hz)TLvTF&U!v469;VXKWztJNmwfKE*%wLy z5q&W@18k^#@w}^Mb8|(RC>_4> zZdM{9(1#xYrDyOt8jrMJuB@z3SaOp0s>rz6j8)mv%if>Tl%poL-}^fawthg76>R-r zd=VU@LFAww-)6BLv!bI0g$J)KddU^+ZNDz?OG+f56_Awj4U_b}x(A`Iki}Wt#aU=J z<+v6p#q)-Ox*S@z>X({Zsi9|n1CH2IpfTu(n`Cs&A0kyXQWjdeOdRqaM&N4{(+ocNprwg zp2Gz^!IrgOmg8ccXNT^T$CM~4spxp-fcIX1E_iX$k-zAzyB>iK2CSCTw+WHFc25 zN#n@x1kswwUyiGtc&;{60Q7Zx4kqZ$a~0Gm2g!K4SVfVfP0>k zP{9dM6P;*S`m3sLViJ0Rm1ef8{HUzHIf<`>sXv*!=vwzJxwO@kxfQlIS5DpQ zZsZizQy`!MdDhG$PTmd0ght}lYlRqS7doB;UP!E>7yPa!JfG_R)T_AUU}NLUJ4s0= z4wVZm-lZ*PlvVF89V;IY;AX3QS1Mph4*^5HItm8QnmatMbOyi|p4*BoR_-ygYGubsaF55KAb z8f{V2h*Py2c&AG=S;Yu*4>IFY7|Z9QK_?+J*z@PT`D_0qi9|Ngfe-~+mT-}UL7z5j z$1FLSDY#iA@`u(OiP;gCiT|guuMDel?be-iry$Z{(V&QQO+u8A6p6S%Ehjg7W*Z1vj@AG4y>-a-2E?~}gKF>48xSuiZ`xZUE323$X zz*1iy`Ff*01C`R5S_%31AncJ+-o1#A1;tq;`lmP9m>&CGrJKK__uz~WQ_I-h-E`k8 zqqr%t|H@rXd+RYH;&7^!)1N+p78#LR)`G^xKG`--I4FL*JNUuZ6*_Qi*fNdM_AX*D zaVTmNo`Iv?c>i@bSyIll{*h|(R86<5_ug{^Az?OY2Y)BTOW}vZ(WJSo^0;c!gNWLM zbE{90>YZ;^WeVeCP7Xuo%@;D4MDlmjN-!Al`9u*(`=-o$4h{}fDr$O<>Zjzcgv30N z&Pq2Q*A&m>18@p`3XYwmOQ{;QUFozRcH3t)+s3G%CuDGY^;3o)||p_0Xv+|F0T6nLNy!FSA|}YtMBs&NUZBthGvb zBH+r+8%D{RT)KMmA{VBpXq@G}IWkp0aMRxu+GZVs8a@nY`~fzGc$gv z0&UhwJAZEXW$6sY11+AIthVuX=b)AZyqdPQb|7&3rKg`#Yo~;M+Ux2UVZ-h2Hn3U~ z?ND2eTv}7U9!a|!_xl2EM1)T1hZ_xh#{J&R{Q)$mbIO);ei2H0%b$mpxUKSQ>`v?^ z7$3Fo;^Uye-zKUq36wC8TOp~A*~bdgvRZC@Rygf z!r}999I@Rktg3fnyCr58x3I7>Ce20ue#c+W;J)H?qhEiOlboJGZ_vP@@Z$!ti0`xT zK+9#$2Ppf|ZIXZCt7qCT`yW?Evj8Fi{i&Fjjdg+Jf62-OBqkETr z49ijJ`<3JocvB~f(q;o?s6p?l(gokf%d^h)Y-Y*isI)!y1K$!(maMq2u;XUIoJ30K zRPB=T6q#SLY8CF$tZvAj#epXw?3>`US1oL*B+4zcc}~f96;=9ygqZO9yZWZ`ZS|$2 zbkvxTS{%|CUV8?0p!bgMfWxRjVicQDCbjkh!y(OrBBNlfC2rNx+AnE|Y?s=86%_g4 zRLXG2)9d(Pj(9S9+!9nA#54C5wHv!Fp6bPTsRT!q_f)pOEwtf0Ia|rbyus6YRO|O* z$AszXtlQKZkJdVFocFGbL0`yRbQtKbL+7i5kq5D}NSoj*=;P_Q_N1~fja2#2tg!eOA~^gJb&@IFLr9I^SElUCoBWw#dD%3`A_JGl zDBb1mF9l&Q!sX>5$p0Rm9C|9%%fNY8@|G6+GW#&e?VN^_UzJD8(3_C!)uhFE>$VoB zdo0C_o8E(|SEax8^oQZz^|*SnDm#1j?#SNDgUfEG`qh)?A+2S&=+~udq?g(vi3xjy z9NtfR4_AgaZ=92*rJqw_YH?8JY2yK%e-!e;9u-^(o%NVb>+3ITutvRdMrzi-nHc_X z5FBR5nIJ)toC<`zq(-Clo0Rkijg|07W<1Ub1_z1S6bVt>QS6TUTt9|11B**~4nF67 z2(ek8xXB*O8C(nGtOERBN9kILSc$m>l#eS!^xD1nGcKnTnI=cnEkXGogIl+p#98j= zk~B475@jI(rl|M8VP(kdSu0CN|n zmBmt*Mn4EotY2+-cvag4yQAMKi9k}F$TerlgXp+mLNBmOV?=?&&4NqvLWG_j7S`4Mh>z@xZG4tD{ z2acM@2a~#sE5jx2OZ~Z9e<$33mV29PnION08CnFLo{T>%Wl=(3gwIg#U1{i^lA$V6 z!xIe0B20r`S=&A$?qo_&y61zA_^36A^uEPN2AI4W_1M+>R?Bh=%UTh&8#0G(ZkWUP zOOx2|N=iR8=!IiCXZFvTFtu#xkZcg##oCFzv%98L z?_DKAA}S`91IPVnPtK-c9lSrr*OqiDSVE)!wS?<6)XX1hf?tT(efw6F5tz|hxjh`( zL!mmELZKv~E@jH1@39(HHByYTrJiors_M(hyYB{4=SXC)@K6T~)Lg1<#NFNHtD&n? zb(gT_CVlTtt=%Y!@*>t;RIz?^wPiNgd>n7bL{BGbo4~mE_$~J|x`Q;N^%G6xYV=g? z6^^I$Y3V}B%3tX-*%*isW1W|rc%=~4>VLeXxf(*Cd`Ov;wA0_WsmHdQo5lNDWAK)M zCyt7KQb?1U$-mlXDZO5oo$E?M2E3V3c#c(3OH*u3XmM$Vz-BY*%uX%hpiQryz}78} zoSpUDFD-L51ds(z&U`G!$E{B6GaK4peIpZx@^71^ki67;PBOPx2F|w(!Xqlk^lSVKjfXc1=-Bma} zSA>IP5SZTx5HoTdr)c)Ao@|{F96^|RxsGzbsk>%GVK7M%afNP4KhI}j)>J9bKXU2Y z=t?05_f2nXTN?*IpI=qO<9|C1%?q2Fn8ig!&1bS$D0F-lj*)8-7VI%J`D^JYp`gGk zKjAXJ>S%=X0d&)=tbS*tHnfYP{4l+Q0W<+pA&9h%+zkx1>KGGi5va;FN*m&Gc0L z)cE%yrUsTx;k2~k@ICy|zEg?!Vsz*g7LXKuAA(TTWUW`3DS?kI-lb}n9o(c91mLp;<0(CB9OkGHx+ z`t4ppGmOaA&d#R_L342x2zU2u4GMjCL6abX)9JnVO^1piV7NV;&SwMWFeuvgE+RuO3#M1(}U=6yA zG}_Ez&k3P?xxa`>%-ppzs- z&k9$4Qj+mQD@y!Ma70v4qU^0( zAFN#q73^wcjvTrwk8>N(3UPn=7rrgq(!A6rty)-d($D#{;@Q9ij=TGLm;+U(YbM>? z)hM6*DEJ; z!$IQE1r8Qj{D7P`TdjGmDoUxK2UbMrWztZ^~GfeJ0`WqO3i<212O!1&u*8_IB0K9c`cqNqr3 z^E(N6O9^mRHqUzT1hWZT1Bmf$(D#*23wGxER4pP*ki`!7+oT6$UQmi=L;?9->#-H* z8n%EOUn&kt=WB`%3)Bc4zz5;5Pjk|-)n6i%bj9(Ar+55o8- z&xTpi3JzQL?Jl}%8G4YEF^Y-~%y>+*fEVFgZVl%;Ck2geS*^s9Z3FWxWiH*>{b_t2 z<@({f>c3s-V`J6K4W$;|H*;a*^J(jv=}6vOp5Cm7P=}6a&D>5Vq4J@mO*3svP>wy| zI$R{j%C#fGA|vqVC<%7^&(^R+I7ZI_>ypfF-rq5{*!r1wfs6M7O~EpQ$%_!`i*Bdg z{DTS105>Vy)iT*GurB&QhXyL(LP2?pWttDbU#eT8hSXdro`#u?Ihpnn4w|IMb^kiP z_37=*o_5K}AQ_c=6q<{C+7p^lsRR8hIXAOmBr4h{cJJD|7}@;SB>fTU zO@mdLO$t9i{1H)LO|k`(Njq&5846KRIfbY5(o09S@0O=7k!O)`-rQK_4k2h2&rQK} zQ;n~OtJfKh?FFn}RD25PCnD;{V?F)Y@OD=`w^Ik}F(PNlH&9bq;5Z=ooXb+uTy&C5 z*?loFJ+`Wa9CTysvzs6Ie`HBz_ZdH-y%i#CbfiSRiyc+-O4goT3OJ0oJ#Kr-$z-IT zz2eloD0Pt)X|{#?6IIyro9})+N)}Pscy)8{PGBM~yuhv7Q?ZZFZ`+JtrY1eD7;wIt z7o}w_$!{0V@<3%is0e|>{7tob(g3A8dHWyuR@Ar4Kpm;>L>Y2ZA%wdCxDH4d0S8SbgmQ4Aw)<}`I#}@Lk z^urpY9g)7e$!!_fhJ#=Jl z-qF{-flUNC&&KhL#_V-HmY|PC7{9ojxN|EfrRY{qWcE9+Um+0@lJvwG@y-WtlatpX zt)g>Mis@hzamLyHc!OK`7UG{qTZ4&-iFqSz`uxtwUc|vi9e`IvIgS2+y%cvIveVy$ zOEp&xd4X`uCyPr~3fi~jBT)7}!tYiSHd+dr|9J%l;*q`Az6=V=A^-7er9`Uhfh*aO zh4F_VWvetH=^Vp3k*VJY%nZrFMLa90edqepk<`{W? zg!4?K;UhNdp*%`lvQMk`APc9tN6jHG1bcJrh|6yX2CqCE6#7aS31<$H(G!j>0e8Hw zhW_jO$haT#J9RN1`R27VB2;ShALa6B?ZzNXBNgZE#gC*t{Ty65<#W!`IGkOY@ib`k zfNVI%pR#l8+MT3bLX!78re4xWc>c%eX(q~zaQPXu64&v31yj~Pzjj&aEm`}~r-yf) z01Q>5WTydlvtOOaT@lL0*ir%|!u1i236^q_#5&H_7ivlLtn81edABLDDk;g5cXJaL z$k3{KdKpCeesWf#|E%EXjTrBjI%~f#@#u%N4n%WXtHRrdCUSK@=bcy|chR8%gHtFS z--I>86HQf9PZIh}ZX@d9LHYSc5MJFzu_k%k8jS4BnVx^758i@->>K1vLQ`f}Pd!7N z#%Jv_gJbn9VMyz&{SPn0OG;|OW>Q5-f4rhd>d_f8Kwq6;62VdQ$e(Zt@}-F*PO;5aM^J>aQf^)jZ&dB_m4 zvS<$Ivf2VB%9e{HJNoJTudQC?bh9}3Q+?>;-0?fzf#~1XGC3s0_YYlOev@A>CwcvA zr1@q{#^8@Uwd+8N;>uS~rG-)?3|5)oC23&lomXXd8KeMLl<;`@kg4tG?JFn!PZM$A z_$91-?=Zb`6Hh}!OyORC_6}m>wjN1FK>heGrTvP2wN^$P6c|U1!fUz*pLt4Wq zm|r{qZwK$f|Jzzrz%TUHGiW!VvNa9Fh%FR`r$Yv6D3d?yrkLfvY)dC=kT4yPCezSJ zfL;q}_#6#!Kl%82u(KCPkq=+Gh*z-e5o~-%)I@LJZdu%MuWrC#NGT{NCI!*j__nt7 zlm5P*z|78QdM2CnUycYzq?TQ&SzjK^>@-lC_c}J|Sj32VzHqAd`Fw(tboiYrSuh!Q)HYWc2*`QbI z1Wg7~^sVMfq88z}K!^A)gUE(r>Zv)^C(PDkJDJ7ysGOAhT(54(V5+Fw($(_Br{H8D z{keBMUq=JsFofOz04MiO{Q6)^L_{q%%zMSCYR{&V?>gfKP{c1j3PIm_Tli}O<$^?3 z(lNFHEB7pQPaL}8&R!2Fd2`T1d4|`qG=5XRU43AJw>kMNq*}p@b#KhBM3e2VQlbpn zUd4U)tgm9c5<_ueOv|23xQsl>2$AyY3{RerNnp3N2Do zm>aQ-4;^0lDzTUm4E!lZD!CJ3Y$US4m0>koLCJe=_lzWJ8!tpSVM-{3B780{V|_zw zIW6rhPHTx6rTS2XCy$he{@`@DMR;MpNSc?!q}EMGUq3WYE#>Fq<)V@{cxAkj;piII z#h*cBg5MtaDJj|9YQ=VieQ|i`t0&0-uV?1g-pjn8p`k`ieg;^KwXcGTBM%STS&PxN z7+2gj;h>KYERkdsc}Biozth8?h*tXHjyaMDQBAOTtbik%ko%YuDY_ED?TM|wOQU=8 zQ1gfYlgqo+JpCO{%0qz8Ztd&a5L?kaxm&r~BY%v=C4k&9O!#;@jUYOZjz)P5TDJa=TUgL2IV1{Ap*ozHN#x)`n&w z&2AHzObn(a3?K&h0&Etl@Yeoca}VDoKCG~&S#Q`kwV$k|pKFhAcS4ShAiduZ3*DFZ zY?t;sa)Ys16{{n%(XbC>%}@G{@qW952Gyr~<7FOek3N_+u|bTqfnY6l@A=mwHc!v` zuSaJIsZUrD0?)F>rb$*O_}gyi!~9H$VloY!1M|c6oYa_Ko!(Jn%Rgfld!K z*f+O%PWy#x=c>%YscWvV8F10_-r$LTyESCwGz;2_uM;({&wu5m{DhLwzTv+w<<(%y z0?Z&Ac4Rh`;W6B1w|W~)oo;t_KU7r2Lo{U%p8zM57C27L3*G6@Pj`n~g~^SdLt97I zqd!OaV0`*4ELyOZ800#wGW!$31DaA4@iKdtAi*Z*(zu!2ZzD&2de+?n;*(@&quPK! zoUrY*G*P=!aAqc(M(xKcx0E=k+N-|srEecp7dDxSk(cP&W_sJ+5?CE zX{3oo&cA-5!bZ2FoiU8lbJE?wdq6|%s}or$+GVW5W_!Qs-0vd7w_dXzXLyh2y+-=A zlGQ*R7{*ezq=p zJw3f1W6<%_4@vNz2_%9^tEJRwmU}Y}(Kj-odg0kh%Qy*@Ebzk~6)YJ}I$?=*7LO5| z^2%*ZjRyK3F@nVtV5pNWtv}@Y@46YZyu5ti@X4wddW&B3Nd`Ky>#(kY(;Mxpqo3xg zBv>d{o6gU?-~m4wy2QJCc70XXhNN8adU|d>rt0Ft_j1=8FLw*mNA+caO0X5+Ige)kQ zP|a`_zRR{J8JI?H&9z&0B=S_l0st%YO{`9xJ(ObBw)vgIz7n%0&35`aq0!-ldMj=O z)+|!T8=3Y$b^w7L);a0!hS2AIu}Lpj&(qKRWZ<^3GW4-k?re)n{f#Uu@US#q*sq?l zirVV6tXa0jD1Z#FEtdI{sgo1$p#&3@VN{M>%vh8kTb&$Zcxxc&u_%2u8pNO$4i%e3 z8#y)5v-@u1u=#E(EY)Tq4J{&lBO@ag#^58NKlrPfiJ2K_8ItO6w-0?^>f~f+;|Qh{ z4X>4AR)n=3_qYQ1#W&Dl;^R&*10VV9MqG9bHEgaM#|7zpjxM(y%v124|oR+?=vD zWp$tPhVFX~6ahEwjl+j$cNtkTcMw}pRz`!45JWUw3hOL2^O5tj5r?YDQpd^KDc%xux*eYh zqo}o02YdTJPY!p$vH^(&3obWFgFL#a>Eal%)W<$Z)wrV+s#&mZH3$sLNU%w`BZ)7e z*w_BpwFo@Px5n#^UHPV?Zd$Xr|Iij+F37zpd7Fh&ao8P;{&e4K#!hD~Gg;kWlzHJ6 z?oFbhp#eVK?2@botBu&WIg4kH@YjIZxN+Zm<2os+1s6E>&n0e><5^|8Urb9&18O4G zyR{On)eR?ub|YIjT0|zpTaZStH^}XsRlZ56v}h$pIi z@1s^$-;{6j^JJ&D9ipMsYwIx_Y7T5_I9==UO5jP}7fbzYH_SyF`R?RU#C}8=n{<1n zchp?|ph>F;(wfz1_ig1K@G}RvWX|_FvbxQkqV#&Q`;I zvw<{RytrZS5rS&QLVr&DYnmCvZ+gSQON|Of=*%7y&+l|)NQkg2-gRCrYyW9>e#Fot zvB;9)K4dsj?=A9QP>AH*`#w|vUl5Z%tZ})D09f z(Ud#=?Mrd}@+9jH)Uin5BwJ4V?Tag)pPiOHpHtyCt_Ev`pFec(cMm(?q$MZB%860U zAS)+pnr1&Itbp_U7926&P5qOCrV}LW*^qy-PS?f;R+!1^IYEP!gm%uifVMUUs5Y$d zW%M~q&F}AOTT8j|z>JoQky~eIIv^0NUE%@~3k%l0K8l`ibINC9cD-(+XIQKDBYzMm zlM_nKzu;mKfY(xXI2HjIyLOAR4sjbL6O32Ry#eJVA$($l9USioTZMrQf$GYXVrV*< z7s|FdJpT@e+2Ystyy~OnqUW$`&A{1NpQynG7H!-o2j=9bS0`@6f6k!FQ}*PqKfI2A z!oxPq-2V#_EhMS0P+8*bN*XT00WA3N;ZLB$Mw*>%rx3_32pCn)0L)XX7T7y9@tjl% z1-^6251)z5t&2Oy%q!kiaYLMec!JoUzno7lJ^Pv9&(+N`M delta 26169 zcmYhiby$>NwEjJWbj%P+HOLD}fm%tG61YciC;8PdJdR)E?i+z*6sm_>I`p=*S>$zs1gm?Sin~A~^V+C|VuQ)Ex7+_Q=WA;X^P-~g8u&rLz1+~DDKGQ{*2tRa~RBWtAg@h5Z0SA6n7(y zC`vQMv3++^#9j6PmdxB7X=WBWn3==oxiS}o{;<8)6MuH<>r-A&5nr4WQsDv{D)P+> zB~#qrE(??OeU#0|(L;tunosf3|MXUAye#%a!~m-yb$b;H^{wCbMy(Bd!lKj15WFwT z`}gY)w#t|8jHTqVFg7?Uk^}}%y|o<8HTQHMdo9PG>~_Yw9^pI#7>j+aCjV?FG&k_j z_TW7A(ET~HdrvB}-XU5!w|Y{?_%5e^aTX0Jt;Wb*iqu;}8`ws9F zn&Us5y5g6Diy?lM~XRYX(_0+dH z3MoWji@vTh*RQAi5b=PO1-pOzUIaJ!&5~;1wLIV&Jlq&oe0emO2Yu*os^EXB9BJRe zlFwj0$imB+9?`v(#7g}Q-OmAYS`iuxjr>Sl&SlRcX=K9>>23vc=`e|5D@Y)l!$8Z--yyj0UUYj(9I1WOi-F*wwt& zPcKGia0|=Geit((9E)MWKD~gaMh)ggc0ik?O%HJML)t9tQJQi2xi9A!39|jUGS zZ^)PDI-MM-tP*^_Rp`)sQMz$Q#QTRyPA-5OxJrupW(QcqtRvHxmeT7~!KvyJcjzu`)je@hMPwwur0Ctr5WMe~)d zcq8;RA%a8=v<+K6|C>uM%bw%|3=ffe2We}0V9I4WN>d>%L{%8NSYWR7T-E=+(@wlH z(*o6IcT_oxiZ8jo7l&o@0xw?nMA%cn z7|2BZ>zJx)bhf{{M${!dG`Sx?y6j=^iCfeKkv7^5WXEwnOr0%AkX!Q}gu&2#m-J4? z-sa{K7CkQC6;9(mENp%#%D4_*>mUmwDNr6mnZ^A%=#poj|BSVFAm_oHR-@10wwgu4 z#Z>L6!8~chDUO@7OWF^sC!8B|#7=@)Cu)sHJhp&vBfTH{5n_+&AMyAQrJg@eX4h z+h6w(y31TMARlf^SgDm`-ANQOeLaPBh}Idb*wAa8>$c7V>7RU~Kv8zye+9ylyt;Ij zv8m>ArayBkZ}l2|$6%z2M26>9hpG-Ve142K8RHsPcKP;~_arkCX zy)N2X#lkN#Cue0mq!DA^7uv8DDr5N6*QSu%JExh}#mUH^b*p!)5{X~h`r(w6fP0j`cLj&MH%>8Da5ZJBVREI1-1?+*c81QxVx-OKvuKXiYX zZTmNWTKF96#WaP?=A*I8Gv(43f6fa_m7W-~`W!uYP!@|q5h-fmk`^`#xOAfsb3#aK zx#p_wR6zZQ~peH!O*>qPX}peF{Y!kafU0 zeqdxCt$p!Gv6QzRZ3h!DB8%apOpn;v2t{NExPvXnmXEDZQLGJP0aMM2AYt)6)Y$3E zSuSDA&(@Q-Aiw;1C%5VH?lLt(Z-_UJoetJ6VxM=~KGO=FFVoM*`2PIS?AH8G79_<8Sb$tPdKcFwKH8NzlBKHMDlRlaf7iy}LdCu%F#0n&jPQ^kTI_L(pCcZw=DBqD0#oN*YM-~ zPl)LmGm=rLqnCvZ(Vg1+VRP*TZs1GSkmYQAg2ZiMzaQT`33;J_z{rOYDfi^tJvzP( zT0o?v$Natg&gz8V@R~C}(UCOw z`dM3;_1|2>wyV!=)eQ7EXduiMJCUGNTaKxxcEfwKfC35a`FYGr+x0%brmIWcD z#RvBJ1M!&F%j1?;b24mexi+DADQ|TNwxr!4okpJw1F<@{mV0U{hjLwybv|YdlE8Wr z|6!YXej<8it|u3t_P}ocVjLxr!=n z6EC?$CtDc)tcT;yGq+blGgn_-I`geglY&Mw($12%n^pR+&fE8ETR8d>bpubBvgym! z4mW7w@>lPV-h6q9$=mu{JA2*1Y~>=sR8vkg0z5^wFW#DYpvZzHTx!V&H}HrUw&EU! zd_gzso@=!lKwDnw6gR_^IOVP5NA&RN-B>0DLw$K4X6hCx@^6jMR?tLNXZ{*WdDiCw zQDe!)`FUrsH>zSC%`-+fV;l!{g#AZglO&F2R5#%waz`9ew{{)EZ8) zqMw^f&tnpOL&Ufrv#89;(W^pOwzpoSgXACZ@{~QyPukiGCEPK2Xy8n7*1X}AZlfGTBH&6U{TF{VsNuV+B z>Qjme=JebD=80ZWhveaBT*%W|{|$t?R;ZA44la)&_3y4!_MP>arIIS~@8;d+l3%Gl zh~t<{UsHi^bnLe8!&M1JP>DeEj9$X1qgv04*QKVAPj4U8Ug2CW-a&k5a62}SMD2w@ zilHTuNaX;#ueH>i4K9@)jR>hD+^~4rJfrO2m3Gw0%#eCxmVsg2R(%Zk(QbEPZawl} zaseV4NtT!)7oOm%m)5FrJz=(rmwPb`21sO6)Xj*oIls01CU9Yv7$Guw;qzP6w5#6s z!z7Qe!SM&Y3$iKt=BK`7-Gx}bAIoKlPrNIQ28Wqd0`K(i!f}dmH(%8(3s&6r|H%3R z6_LZAfpPLxT*xo1=!{<ZIa#XgWNo_twJu1&^n+ zh(kPJJJMV5;ffKaf^ z6mKzU;_Qjqz})fDDGzyhA){U_GS}SwkH^91A5WNlzxLVF-45~{Q%LO0S)MMSD_)^x zC{*vi8J*dNWdRl_sa^z`Z20|q3OBt>_T+bM4-wN|=CJi$wV((opYx;0`^Pk4WFK%O z8R|dfrFF{%%(kqSJ6v5}EBY9KlctJ&tMpLGL-n(XAAQ`d) zmC?wbL-Lz&Vb~9okJ9E(Z*BiI$~{e&w<{PvXt%l%t;hK$d4Y$VK_lWj!5)Exeh2R_ zhEa5d%(pE>kfNBk-OeJ9NTW+vPL8*%}9$L&sU10I&Yjx6FSc{BH57RCO@l`l)%`P4FCd0)D!O-R?PU2o82 zhD?9I^q6D_q1+Pq=8UH`Z#*WBVJP!& z`OZ`CLPMTK6{*&xO(zNyV1rW>_0?p~_h63UiE6SR2_2`p^AvWMh)&@(t24&^p6%cY zA<()*_FXQzFXsej{e5UN69gimtcAODRQhQJ8 z^4xxS<>8q4##%Z9)vzYWWnqX%EqQQvVF%qP>p^bCp6jd8RX6?n*h9baY3~uJGD>C# z5~bK@gY!rscab~MMR80#%(m^aR=(pLGP0Qq7imdH5@9)TN-dwiw}ynzUJEdi0ny8i zf9sq6+PcVuwmM;@my>r4YmW%nqa0IPeG(&#AHc{_&h*r2=D4s=IyzYHGgYvjQH#T^ zhvZDyPCvSu#Yblp4 z{{o;rmFSS!5AqKiKUDPnxnfzn^?dzy-E}?8Fp@cJ4d+OC5i%}TwD^y1qJdnvVIC{> zmdn(6ley7OvIuLXlei79l4HS+Mx=?(>8ekCTCydm~kNjq(>Ks8)@N#xI6 zEuOCSta-Bo>Hk)p@u;x0olc4*FZ7`wGa_Z>mkCj}_uT_A!Pebvd+Cdjd*MNEDT4O{ z!@JEN?;BV_a~?9gH2(7PI0TUeMmw;MeD675YVPq@9jb{m0-Le$NU z3dPIwB;2|!epx8C(=T7&!P#C(PP~Y5`;#M%1yfP9`Li|7^Jh^Bq;*#J-9q=T#^KTG z@IW`}kjKR-%M-i}OfK7I+y>NI*H2M{8=-UNo_q{$-|=7-=Z9)L!y<5*#n^YwMXJN* z2~tp~xP*lD(Z=}L_ctO;zALO7)oAT0UnXz7et~{*z5StQCoSV)>N8hDug6KdXRBJD zkDvog1722t1g#oGs~XnZxMH#X(eRv3!7xL|X?W={jd z;DKdTYioF_;aL)UFCa++UHk%VIa3Q#F=6YTS z-YR+K{e$WD<^6iU>(V5*mdo1@Q~BHEuXf2r#Q^uj4pz9>URtvAX_`9U6ks+|ewu3b z#K8* z1q_~ahbT%in~;q*y;i(jqR(w0Dhnl3nGH*_BB#sTUPEz*3*3s^UFcdUYuwVT+XQs2 z-D}h=@^e{3DTcHWMf5?|l0``kVouu@?n&SKiDxh%OS0BkZgQUL{~w}^Ts~}FP$GXd zCkCGGfo$&O$meLF67`p3zN?d+dC<)0J%%N{QK4K;rGlhlztAd?n}>5}T-~{B*76Xw z!o1bb-}{2LJZ28+PHx&Wyo)H*^&K68>uJ1{b7uw~V^fGnLRFoR0BZn>8(ppwX6r#F z2p;DEz$SP4FKN0Y9JTkWYWC#V!~JrdtR&|vex^W}JyX!^_s3QVG#_fKKqk^?jH}?6 zG=GL;yD++|{S|3IGvP24_DaMiw^p>G6G8uNC(TjbNx6$W4cr2vA2B_bZk9 zdtX|)XPm>fPYQIU9l1_^pFiLY43H~bW{Q}Y@(%Mj4Lub|=%KlpRnk`9ve-W-GUV(< z%pi1fjIm5$NO_tt8Z&FWoO{*Q6(pRUljna<`oc~t6uj>OrM*hVxj#@QqnpJ0Ml2~} z=3Yt$OYI_LK}XYmaPMU`v5!Tp!nWHChJW=|Ru({c;;DmM3*qItRte1@{-N|15!%@I zvzfQyPdA9P((B7(7(z7?kK`;1MslvgQ| z8Ed@U;`f@SCc*opBZYqz9lAv>LSv$QRRp7Gfc#tlv&+94F{gF*#t?i*U29emhzVTLaBa33=iZlbv=<>R{+ zuvq528|PltgTEIn&i$j*1i#aIFWG_-xnu(FI+x$k^zbMKNnLfNyTHSM8j(T=VQTWY zzmD4YU+i{`RXY-2TrGt?z8!%;YH8ggli8U)so^t{%Mg|cQ_2h5{`~nf78kTE$h~dzsCDsGUOwA>8HT`ra%Fmd4Lq zn1x9!rfuy;Z9RnmO;{1m^;3cyRo4RqAH*{Knso z^c(s*IAcK!tN2`M)hA8ec52_jB*}g3g`lSB2wGl}Z)>taB%hs~^aB>6wqFj#sAs&v zKD}EQ=BPSvq))&)*m50oa_Kbk<;4TrA*sxa;~IRjrr?CTBeDd8X9SD z>9LwAR>>b%uIoWKWC~_xB9BB43lD#y6hrqq{rXdGEa0m*PFSr?o`kUl38D4p|0Zwa z!%CwEE4f%aHwc4f$Pt9fXQePhppWwP?~vr5t#sryovOAYB}4NMgbD-KFKITgk$D0wGQ7QzNKwdw&bs1Pa15RV_}J{DAlGgt8gh4`9a(R|UC zx&sgUyR{5{O`((_o#gWVGpsTW=_3?m6gny!&F3}*tQ1R9byG|$4b!X+8&$n!j$O)M zX+*gNtB*&NY%0Eg6Vh5K|DG8djpDYBz#3(YNs5TA2~lFHTY2Jq`SX;KPCkygMcKa* z^4qE>?(e?}o6Y6McCE$v`!|3xBw}VJ8O|iCmB6f5^68U?&*i7b$D#QIb*4;pQ$vsM zq>tQ}gsGQA`rZk}Ta27KO^kJQdx$hteQ3|*aRl#%X6%XP4>p;%y# z(&%BbSVGUNI*}~^rHkQW-qPxeT>^Ve%0WS(9n?6 z4V@CZBH65b@JJOcdPBNu=29tKdGyd*qCFbHFi+MX$fYa)>f}w+ zcgN;~WB2cS6d#i{1`aiW+%NwGkRJ>AU&LZsvanp5f@YMC{3UJ!ng8|WlatG@UyDiE zQGu6d)~dbNl&rWRmT|&F|M&6JZ+fTw0hU z-Qi?XE4r{Dg$mz8-jxOgA)2kh2Y=?&of#zDXBD2N{{15+TnQFMroartuXeS6Kz=bSH8SxhC zD6L!ujAsq%9-*CA>39}mv^02jJL$_gT_hOEBJca3s5AJxJNcXpK;~*3KmQtSHmb(c zi4id+;G}XslTxb@@cA3~^0TtXAf3GbPM$-<5uU-t)^i2D`C^4acu;c1O_54D0f$!L zyGkKodwT!zGO|+TaTZ1*Y)RvOKDS~=5MZP6{r=xOS17!&xsjw2#mZI*Qv<~ui za@BnU4$u5|Nn@^3Qmp!;j5IPn1VJk@;l(+DyjEU)HFK6HI|xYfWVQo_?C6Lf&0%FA zd+n38@+s^Gnnrs2J290?6n;bvYx}sXOJ+@ya7>DrtMm=htJ~`IPgA-DxFU+k{M;Ko zR}t*iLXAQOdW5Y?wUr$zYFM5#Di_6@+CwPpI z7G*;jm#HjJ21Df*En!{1KX~AJPGQwzZkZ*N#eOJt`uCPq+3(ziC7%iWdUzrB8kYs= z`doljs9M%*sO1{AQNOGMLxy(ZkWVJ<)hp%c$~YiLv)$WjFoIc(myIn~cP-9N5KL-ENw<<1|)$R9;aW~% z#8c6m-8WPu@T~J~-}Ejhg-XFI?=NNHiFGW!Fc%c`Jai+`f{>hROWwMAT7Jv$p&Mm9i5*GU1RA| z6)HD6)?%it+W!%9c{Z!6n0$yJVdE79!y8mfn5+E+T`5KAK@VDMJ;_UkNnnO z^X5xgimmbP?|ABaS}~8%KQL}B<5p#%Ry0B+IM$ucF*szBa0OBL_diu+kA#C2SgyY1 zbJN^^&fzad&i^nNz51vw$&Z&Fizz9Mml67VR}1~4SFmNwu1xu0dyF&Hr6aVo^kf^F z(WYf0DfqTn4aZ*Sj7vE7a`5Y6yUj8obuz0=T;{}qK!6g?&vv0%>3xINnxwJ=UVdT% z(Sp5Y``oM3G_;%<#v2WUk3bqR4jxJDOzo>hkzJ6rFj_c_9UWXb{>c?=cCq=lx!(%E zEbNP-eC;yY$m%uP?TEIsIhsz=;NyYPG*#KGWUfvMcI(MD(*~Jjed+ts#po5Pf1x|$ zEM60kSH2;2DNhE?BzymO2ECg4P4RVPB&)aQ;EnmAs1j2l2i-Qu8CNM95`{NwFW(E? zdGUzS+9X{f9L9g>i=e``>&0)N!cN5B3O`J060&M1doLyCYoLJkyf|4PC!EvG+jNZT z=@}{fFC0GR)lU`V24QWod-ddmsK@Ou%F92v)H+E7_a0hC zp`!KDLORpMoGKiK*!+*i?RU;EX@o3ccE2;DJO*SX<_1Nmxq7QA-s~5VF|u15S&-9- z(j?v8#A5ON_A}skDr>L)5jqy1G_nKB(9mQ_viiswr4_P)sr|NJ0LSiPd`)30VE=te z6jsu>6)~Zf2J&C<=8~Rz0)3wHl8_=Lf*K`oDN~lTWy=Vei0PBRFNy*Jj4u7|?&Y!9 z&UprMUGZlY;z11LQpCdoi(ZyDs5y$<1n!JjV~0 z9uIFn`#OYal>`CI{9S(4kn4W`oeR1W%TW!se5Ikn-23*wGsCvIbh1ezJA%Q^Wyp|l z>kPue@rAxgMpwDer`rCMUtv!qkOMo1gORjfX2p!M)a!P|7aAz>rs zQr<9IR`;z_(7M>p)Ix?p9A-0JAC#As;RS`sK{&$?Ff|MPA7ru}MmyCxVu2#zVq%!6 z$sh|SiKUll*0Q)2m1bd{w0DZ}jvE$bRE{K5(TXFl`Pw??&I#1e&{8eLiW~o6>13MO z-R-5+P_++Fh}$Lpmh^39ziU|qL&S$YN?aW|M$ihkZ^nv1d_#ZDwKBd9a)5nKKm>Ht z9Q9rnnD8HnyZ&M9Blc2M!x3m?shS= z(~!)A33S}6oearSj+~E|-dZ_Yi%YdFsJ#C^u){SP$+kI?C-kgA^(fqSoB%J>XYCW$ zd@*19oO}C1Eyh*Gu5V2K%9Qxd^q)B~aC)Iv+uz@}uGnt=`tViD;Yh~r&S0~XO<722 zDQ}?{5@N?$6t|17JxIa)FS8So!bX36%!P5e<6>9cE6`|JoaNn~`M{&%)ndTp1dJ|9phuX>N11gdf9{Wozbi{f)JnBYn+h@cf95nl zy6`I(Wb@Fn^^>#p^2SRB{T}iDoDf1vw)5ld1aOoS!w7KGUk=D#uT^NPINihi42>w0 z9vmBkx9AxD^%2_fnOs2^>s-ibp@sa8+T5i~&ZRj_irMTgP8b^?*(acf_|>0<+)B{r zhh$4+(!z6j@#2T<@np(D^UH;rn42_1OHMmPEo4%j?Otz6Bk8Vt@iM(=4#gh-;=#nM z_S0e|bTXM4yIMTM)aF?f3dLOyz#+(Ecci!K*l!x%(t5)a@ z72hnvm@7g+90ZAD93W{s&A!5Iypq;5|`mDpe2s- z?xWUdYQ75hIVE+T`!?Nh2Crc~$;$)uoV(;7c}1d>6uG_}$XgY2=5II^$awQ+x6No9 z0}8rEA`&)7zpi~z8=3ag*}BYqx%9z)9w1X_qeod-Up=jc0)e2$;o*GrpS3&6oPX$L zQ>mrU`&aSS_7lHfIyXK^L9h0$?3(&TgU)K0IuC*@a%lLUj_=1j7k2_YQW{mbU9Ucg z*^qa<^?5|Xuhbj|>8{Fqc%)zkGSRmpkBZqR2E4#tC5R+dcg(LJU#YljC^a-Y>-s>V ztMZ%MV>;7F{qMms?`>MXNi6!Zm2ru-BxETF&R@V}cN)&;@@@5fb zqiUzXFOt`%V)<=(3#+Ij4@O?z?=&)Xf+32;56oB6eL-a#p%=B*?~VS%9ZeyBE73Jj z`2ZD48J+(zz+CI`?5+=-NbI#!`(0|#%FUL~26ws|9vpV!LM&s((sI!FDu*U`HfiwnlnHpbvzo}zkQ@Z(XVu*?C6PId@JcQj=miRxN;7D4> zMs1b5`}7SI49~;h?owtvT*#Un8d{QPZ{Haiz^R3AXr*nsUC-OMk}a%fuZ>24X8xA3 z<(&Ar2Flbn>NI0-G8b&0`(vV?Q8IkfhmKO`2q`MMD=K!1){Yg8-TL}?sCmk>;qQGB zFni>Ue=C6$RM_TDIJ#>n*^;uF!B%y6Hrl9KH6@C$r3c)X%=6onC(y!6>jvD>K}8R8 zOL=9o4Tw!E!4E7lfgg~tX`J$mEpoi4n77Zz!^_tMnx6#IGuSuiG?2H#6+;Q?T_mQ& z`K!&%62BKK7p)sOq+=JOqZC?k8&xUvSgoMJ+;<#>NFf@e+0+wIDzOL8v!`S)P;95X zem2TzOmh#RH}`xnHy>_NoWF1p@q>@&xf(lLB0N+3Yi|-eBbnNt&s_Rq!Ot5V+46sb zo>%j+nmFBV_4lyxaXtJF0;QfZQ!Rw-)U2lz$QRP4vWdKs6=3pu+w(exYt)sH7q3(X z&G=bUux|H?zB@`|)K$t`lui6WRppSSG8YJC@bHgBpQb!9Wr-ik9_Kj{jaCCq2_vDi zZ5P!#xx7j?W5*o7=KctF9n#=CjcBw%_37ig>jub1z@r;v?hD^$kaD^|b@nZ$Ef|H8 zvK-`wn>pUtWF(u}Ivup?E&Xidle=9-W(}9zoe(qjC{zg-jc66ie_%tYu{Zp2l~OhQ ztKF_N|D!t?=bVM6dQ9vci0)`bb{ya_?S(a}&Nqu554br%CO6Cb%yW*v!vPPhE<#Tr z#dZ)S29=hVD?fhhF|k-3+GhC#Z1mq=-9RaVq*KW)7nO?u=fZssj%^x88pW^NprJN}yg0-zu^jHm({_vNtwpt5iFEBmyclvLof+N|Kx;9TqytSds&B z=Txcs%=_Hpb)l1ur&dgvL?Ii{?x|9U0wE{j3`lE*vT`&aUBu`W0qNAfv zHn+d;-@XWhB0uvhv*G}^^J6ZOnRey~6w}mcnLr9{KL$!qnVU*eN~>-C@UHXvu8%Ms zXuJa}6+c$P*zycO4Y`1`&TW$>Uoml)GejWdq2&HnA8e5}i17a?2MPQ8oy+(4F>Dl3 zA5H&NeO*N#Z~q)py~#)juOwSz!hIS55@y?!=Z~+?X9n80kJ+it=n}g>qmY3?$wd54 zl4pk*QNWnqZ{7riBbqsIEWNtr@j3c7Fp%ud810Gdwna@6a=%TnZ)s{%Vt^1Jk@q0} z-Zi1Lwz{iFOe{e8zG?ZN0NHa5!Ux%;P^ap*;R*QE}780zd8oV5wodL9E zcmJcoHP_9a@Q)7kyC-`ks&g!cq*7B;k2w}+Eno!9e5FBY_0KY`5M*hoGzd=6-M4w% zno0#-HT&E!%ZX~*dzfnR@JC0qC8g`2NSaW@5Cf;sCo(WF4e9I*ZP*j1N&&(JFd|Cj z2$D9=G}Dmubh__nYoF^b_IfKF(RVWe$Q>_DM4{g4{vDWoHASd(E(oJe?A{WJeQb&8 z*fV>U1}IKV7!&~uXe;M=|rBg zr)**dk99395`fggk-t725NR$-ML{Uv_K4AQX&;$u^%EBKVcP8OBuZgc z9~Zj?>unBuzrH2_pGzl+5l3m3PmD%69_jke2Kz~e;j19r8yR;_Ur>ZZU^Z1*EV;}k zs~Q@l<{psAUv#I6ePwV=XgFRUZCS=~Q!|ub5w-cD&XZfp9IS|=PC$Eqp(~-Q%C;9y z0O3-U?Q*i^Z|wM%hhQ$rVPF<90h@>%V|C zcwdvQ%GozfJHewe@p2FCJwO_xwTODA8AUE{ItnTyPkwLBKrp~*-vS6!ZvH`7rlj=U zj)#A15SCECdZda#0kO%GyUu>|QCyq>aybKWot-TFpS@mvEP5dAY*GU8JGrT!3Wu%u zzbXcxR31w={kq7HN_5(H{oc*ZkvkUtFB775se;q#+|Ee-J`5~tx9Ab_)b3(0O5Au6 z!zXeumI-@B%~l~?e&Ui6ho;Rq2?hdOXIyLu$x>mj6htHEFBvaW^=%goC>wKF$K1zq zPFs#S`+aYW3o!<&ncMZDpp$ze!({N}W}Xv{`@Xi{e>NpRWV2_Ym=f5Lg33=0*iX6X ze+`VH;w}?m!~%7&BrcuK?{8$!@ojHH=?H?Obe<;b z&!-rfV_UXwUrQ*l0y#(@!D@-YW>-s>-0OxMB-B}hBxXEWsPwIjx7jIH({|`gYK9BS z%Dxr+8_Z*0h|77N#3`FSHZvXOay)KtSA1AIRa2~K&1}@M`kjnPXV0Ru&;YA$aO~s` z0fN6__soB5fWJ3Aqx1|9=0d20gOgRKVfce8RFu(oxXBas-_9V0Hi5_tPZIy`eHk zjw0>2Y@$!)Iic!deAdeuR+%Inl4N9E=)vm4xB6-vRT7UpYE}HxQYk@_C~};?*dOSM zAftN3=k|sBeU?opN$sYJroF@+3srGZl-T> z19ze#JLc3cEy0~Iry17C7;v7yabYl*%egE>6RE7xiUAlv-M~ZOhVR`aNVuqUxVugM(vr1PZHWZ3;h& z!SyGw2eDwLP(YV)HRx`Vi6CQ~kTyghSbas?wvS&sTu_lk<~mZOFLi>F;tjqOZeduI=C3?eaIM6n=fEXbrH&cxfoA2U+d(@0bwy+U$mv(Q@Xa zG3$Yon&Zj;s+E0EUU3^}dj%N>?r5NS!`&r^%dBlYDQwOoLP6gV6$6?51OWX+d!jEn zgh{=;+!WE~kws1TkV2~{SDWbT{@0F3Ld{xgTEt?k3kGli!G$CaOk^a;cF)&_0~Rpy zd)=Wt2{KQgtaDOD=eMrM9oae1GXS#&CW4oqI_5D8s#c1lhp`Q+z#BW(^7vyHJ-Ai$ zfO94sUic$d5edszBj@jpw%D}9h=U%Qf{#g@Acmj_6541WTJYgnwL2UC>2%a2S)`77 zU!}sa1I|^AI-I2mg>Q3A;0ICa$P_BO4~iDrKDU{FH<8JuYTyGLk!Eso)#9Eey=yJL z!U1m#fNRAaY(|ykYOyro#{cCLOB1s0%*P0RBq7(*(%LN#htmk#aEIy6dN)!`Xf;l` zLIwsL=6Le2w<>89*pmt1gL(wq2pDsRG7soY&iICO9&`w<%I zf}xT1&G7NjrMl(TbeNMo*CrHlGx(TYhKotN^87Pufi&qrP4*%e4<5FB8sMd5DqZOF z-VO<~3d2Atz@l_QRO`#L!|gEb6k+Q&ESPEnQ>gKOWH+^u^^pKrq_T<-O@s^A?*NC! ziyAn#^p+$RC$yr%J1KlVBvl1I-%uZPX8v%9ZIM=uIIU z8^j8J>1RI6bZoLnK2~J)wov`3`Q!iY`?KYL1aGL10?;6dg^!o_{)=G;m;why8xVm( zmV?0K!z_nOh5&gkXXCbcdX>|^61{>2MP;-o&@FevA{~TK+NdvIHz`}p2!bz< z<%OnCJ^}9mo9{0K7wUl5r@qI-nVyj$?HMOZ0!rz@dIb?y|GFLMSHXxNwjQ3Ef?JF6 z_@r8BL=!sc)w8n^dgwhOCVX4BWO!`w@bBPZElmCW5^h)r zevth0sFRi;qMHp4IG_}6BZTJihiZZ4bwN-r~ zD`uPA`jLuOA^;a%Ujn*#gOEf(`PrOKmYUtnBD|-^Lcvg?h98TJz^c6puNB&E0ax$J zJM;EBa}|y4jc+%fF0FsuEFxu}IB^`1h5l51jf!M8Pu;7ZI5GfFA&V@q#p2UZYFv#b z5(HE_eWxx-TS}||EQ_w089Eg4xPI_(Srk`I2{^)m%W76W|Cz*-gV}U-VgI^L1`5rJ zql|=Ytln#EBhuI)bD_1RMI7B7Fb{-_E(CgaW04;V#IAl zThZsgYR%Ov`k0JDvQ@Z9Utuu-5_@&-l*C`@(kc`}1Buv~Jj#(1xjOm#IY;Ldcp#@y zb+gg??z6dJ8gE^UdJazg2@_;NQJpp+)Qp|Sf+5~MuQWqy>Motag?l|ygjHs8Mmy+z z3ssGJtIx(j27s-C-tbA}YYvLe_3~@3JSQ7|^{1)fpt#%Bfdl)#+v&t(!A|46N%v`8 zN;M9m13+=e^|$f?LD;BC;?7vkRdQtfr|Ok6`nUQICC%Pt;%WKez`&m6!i&SE28Pu8 z8DP7)Iyoy!26OH-puHtp=UuE=RJ7Ui2dQRA;&DqCtO0%Y_%`gp8P?w39 z3n&GV+_3e?LE`JWZ~MaW)N5bCgv=5V3fJR%J3eKh`JzC{2O(9$F)pSeR?zW`znRRmk$rko4QFQ#MibAHpS^t25?)~iTJO0U|pLAD>D>f~Z_0s=1f9ep5@72&khNBb!zC}7}|jo-?(uvFB8fwH;ik;CN))hk=6C3ecP%tDcLVT zqQ-$C^K<-%Y*Nz`R~*fWgky~z>4tTPV6AA>8bW^)D3w(Gh6eQ#qN8W>D|fRus3zH6 zMJ2AWQc_wrJU=VUQmBs?qg`GN1ffs48R8*j6dV{~l7)|Kl4dGDOKd_Tk|}}}Jl@U1 zH|gp(YYK!wW_|0-G8kL@SISE!y-~dDp7;XF zihh4n|3+I;E{4NRboF-mB(o9}35fNH2w1H!0Yj4)^faBu4)Qr|o8}}uf3=qd39Q=Y ze2Aj=7@Zq;=n7~%d0_1&C3RE^xKY+r1h|1Q3bRIUKHZ}>gAj5vGTc2QsgDiCVbn|m z*fgC8hZhaEf~5QZgWHysghbdHk3kKfgRv|z0`dP9^5x-BzWv)HyXnp}#y@;^R}9${4$<%x{tGIC<)#B*SvN)$?d zIg?@D>&6KBH3_YaVSJe>c`eh}m~=kMru*j2%Ie61li1$gIdIGsHXiPiCxMJlD(k9X zB$Zw;SmbuCHX-5?3DR^F{ZW0s;*bnZ6c+A?i?!Xls(pjIztCHEWL5()23DGR@B6m% z;mw=@EgrZu8+!)N$g?W=FGlzf=>O-2Y`<;enBdd}YG z$W(AZen>Wspp}h;U`1a~+&s|TiBQZq&whOzPb z^n7a^zxc1x(iPiUI0WGu3wC4+2(BFU#CLZe(?0t>=2C4maL0T6Ab6Tp@Osu?cdF*Fffe@wG< z`z zR4PIu;ho*3hy2sCLt8LZ#X~};4O-bEQ#-KeM&HZFq|w9fekUS&%3wTeV-a}G=Tr}d z6W2|IHf|yzaNMjEmj6QkX4cV6D%Fn_s1R}CA02zEF5tshoUOqa^64xw4+dm1W}XXoxSOny9n(uF?3K z+WDFQ4~2}Ca@jRb za=l<6ZFzPzTD2bLKjnA7%a&CHlSg|}6uG+f@)eVI z%(IqNSQ276r)DAySr-rxKb)_3v5}m*2UWD5L}sV16Vcl%4c0m}mNPwuqTIz5R$5rM zofxTWfbdlo5)zBXhO)Dcfw?M@nBK5tP*6a#P;t{kV&fc*!tqW0OGj726$!ZW zF;TSi8ro%R8D*%fcqeXx=?zR?(@}fCXBbTLPZ!QQa%xHtpjB23IyFtAKgV*}LE^sQ zIKHpKjf5EDj5GWcc|<@M`I*PN_6lZIg~@+s!liL{=)JFp{25iu;%!sYleQ(lcU^vJ zWC%nLq+ulcp!Pw507yOPufiQz&~ClKW&8BZ_A>`D1|Eg9+)y#WTMxeq{eBAYq-Esz+gDc<#sraXu z?5rQ|oQV5dKXs`~UXYZ@$Y26pJ#q-iN=og->%d@fbst_c(K#l9Oyw#$(FGR&BTKjU zEE-UxM$gY0v9&~xgK+)V4?o4;N#}RIvSYRgpTUozKqJ3!eqW29NM|yLuQ?SIs*8R< zjgIbVG}EL@uH))laDWxju)k6*jWcv|uU6(V5&{KdK9Nf&OlxaqR~Qv2AT*L#kfWw@ z*vY+(!m|F1H2u2D9G`LYg$QE)Tx6BP*eMHlc4E_$ZgFE{)+Krprghm0#!{IVs z_33DLT{7selM+yROqM;54Fbn+bV&(z8%eU8Nz<+?k)R479+Bqc1(@6N!u@pFf>PV7 zSy{}Tb=?n&zrCTg7dC}yHuOU3U12B8YVGTcD>TUrd#NQyu2=pUZInqBU!`ka^Qe5>f zNmJj$7P^KR^Uhx_RN(~mmYP0pNj5x}-vIO@9y{PDK%^d^w9>v1Ksy|`KWw}3XZk|l z6iL{5YYh%39fls*^StUs@T5b+s>;RE8sguJ;0T2%7v;!eAVNLimP6{MGZE7dJ7%lH zx9*E~EF3VRTak%EeQ%A=RIO+MJ(B3rBQK0$(tlSn2nfpfFm%W-mxI=?-QGaoJEo^CGZ#f|f}ytUGME z3&%;~-*Gk)z&xD9E8XuWghH9|DwKRf#GS`nVbo?kVJy0L_#Nrt^woXxn1sH&M;jj=v%>T zvl<}>(Y}Gc^<~|E-*G#jb=H!nIP0%cm@qqakH*0%3wN&SY|AY6+jll)jxC9-tg4vQ zP^qvDV{A{!4YH;xZgfj1zh$QkY1-&Sir|OSi%^Xn3mp?NITBLV`y7j&Hyi6W92568 zF{8-ZbDz2wu}Z&@wdYAKBxDusX%$oaJ7t8Hg5$+*P}x2RJ4SRh()Ua&5l1wELX_#( z3G#;$^vAtk7;|4zYSq;WEA#LkMri9q1i zE`Lv+CIkb3Hs8tp?52ut5$CGc&_tc%#R1T=iNxB^%>j8D@L2NNG`$5M1!*cl^}c_O z`;}sfE_qHhP4_sR4vFQiUm;Z^ZjgO^)@_TFLKHsrEGm%zqQ$*6HCfcW z`YquvgJy8~g`Rid_F(hSsZ}~2ix53s;h~=t=D(iGJ1`8m2HeFoR8+!K*^h?qxhI`n zdWSm$V@9bp*$4sr#tJ`DnAgos{ucL(X9AKrhOQ|5JdHTpnsoVD(7&4>mH{ zL*A?awZ`3GrMrC>LV5~k_E|oQ{Z@g+4f;QG zlV8{uSL5~&%pPzg7yYc~P2V8o44UU}BF2NMU_SEqn2*~Eeq6|0j!X~LLUsVGqIoOA zS)b4Y#Np*9n>TE+PiZONWQ5)9Wv>rbCsDp<+AvdJP!2hJ4y*|=DfwyuM=0G`Q4e|R z-aM^%@>1^`Ue|4kQbAy)Gn%9?$iIlqf_c?j-7234&`9Veeb%0WRTXKTz#L($nvS?@ zGnZ?yJP1YI*aR%lQ7+NfzhX5rwkXKBVI~N9V3g`H^2e}NEPiV699N6AeNT7 zk_|_$tvvO9?<0lUXjRJbI{Oe$dOzM9@y=N zdVA?dk4idlZ8tcjU}{EL^L}%n8yT7>V6#-+t`rY1>DWXCFBy->>d|Wp6u+FQFURG?3{VPE z7}(Eqe%vmz|JBGbsz+vD&18hr=}{dw9A+HUG1n8ExXDeI_H5&$ps6O1RrR~@Q!fpx~)8>-DL)h zA)$L3A*4ww_e{+VZtC?L7+Tz*X=-CDZ;~T<`cNbGtD+)>U5CWLYVo6;F7z?ah z9~p7yFQ&*?PrRyr#Sc;iDd4PFHKc~f%U|%6&*=l}3Y6PuG_*k_3?$%@c9&_|bM`EJ zPC-Ik-}x(qM2!rsObd|wla7(Trgs9q_yrcHa}5ZsILAQG$)c(xQ=XP0C)RKk4y)}( z{t^#<{wJU+YCKrEX!M?$B(do(v=wkhR)1_ZI<894mo;?kXfjMGypfUwH;v9_eawnX zS-OWHkWNvwyvFwV)^EATnDfCJT>g!!%D)1=B?)K-4Gn}eHYM2dDumv3tfdz+Ygvno zjT_|#6{CyjQx2a~M;OoD@2lx!T9b46^_k08C;U_edTDapS#U)`_Y+YC_MP~1sUJ;> zem`0Adx(zmjFNM3OmM{+ZeZ@5&2aPfpHXrE_k?KWxd4h16~!_nF>4wi1;OD;h*rL; zN^GnSd^LFs^khJpe3lAxo>YUQ`(s(m2vTb}fMk(fG0U|oLihhU&R7jWI@%>M@T9;s z9AEdc)t=;^i!zG%=L%x9H8{ybu_tk4201B4gbXQ2Lel@dpsj5{#S{ug9kDVl1yA_# ziMWt%?QhKj2`@M#`#=GTb1*k=ee>hvca?VFQK?G=$X=2U!tXS?G`{-dO#tRVGU(ok zi>srv-sCH*R3Z$|$(Yh1$CFmlIP`)^nV2#zz#_FN88qPM@;NjeOZQ$TZR=3{>;F*w zv8?th_r36Ne8*mjh0ie}vLJ*Q5z3|EI$+6^U5Fn>&qBZjjZ6?!BO^;fsS&4_(?94X z3awMo>#wwe$4sqf$%46ld6p)kJqqB?KIiNB{21=26|2UA-hEj6a`u{$ktab&Tdq1n zRi{B~+y)e$E;m^DFTdwS;@OfyifHA$i&*Nf_I#~H3c8l%W!N?DAClELjM1U0j8_z1I9#0#1)z$q))E}L4gHCgH~ zWdkV-X~zHxoF(nEJN=f=k;MXftdH4q{9nGVa0Y-{<^04uJ7}#uQ{IzzZ^}h{8n{@J z#dP5lj97{{kyRM5hy1`u)e++>&3Os0mNzDvb~%VHWOSgl)OBb?Dpa3z9D=NuA%E!4 zp;)c1Yctf1)tO{bYcdgOE!54Zmz9BJ=6|Lbbbo$v1#gJpI@`iJZUZS(cC|B^TfKP8 z2FPBp8|2~_HGm<$TnUG_XrR=IaBSb>t3pFr_`PV^QuWkB-ZOMsQds#R_aYE zBt)fgSFk?CILaA5tOe8VCjwvsEVpii-%B76ak@B?k8P1 z{8Qhr5VEwi(jE+pTiA{7yXHnnWe!k<>8eBb-Sk}&rafRnRX|zWXRFza{7*WhL9oiu z&uKaM5uYjLsH1cr*8Y3)9mtfd1DDcftMF5lOiNW(c@o$+&M~;7C05oF7Bq~XTT|{ z!K(G|U!)v$5aKQ)OJZkHj3M&)KNm~xwlad~!mCO#GR8U)wnIsV zWsQB+M%s)0QTCUs!M#_>?qocP9$W$Jyq7AjZ;4*V<*g&%5uX=VXlcXZ*(q zgAbH&<#PP*5FDc8^;4mE~RK!RYMSb&T*Hc>q(t>H>*bn-#u|d6Pt%9~QKBuYI zpzIw^t5<^~5EcDA*_in+T5=>As5eOTD{mvo=sw`#FfVT}8~)7vUw%RVuYa=f6sI1F z0nI9Qz>O7!YOnj9-S$A`KlZ!-mV?-tFcR>0$Q!VzLF+g$%RxdQ)`tbS)>@-4;N@Q0LPnJ-*vMDE>%vS0<}+1Ln(_dQohX;WZ>{F;dTYd7XL66^2oZ~m`RE|#>kv>cT^Q1tl-yrBQg_|Mq^ z2Oa#vlW?1Qe;F|g^m$G#yWcJ4_ouxj{Wq+vf_@bTobHYTcZ*YM>uMHK&H&q~9-DxL zD12sn5?nq0y5CFs`w%n~o?@WF3PcwlpAcUJO0frcR~#TFG`I59EKNebccMGntH&%9 z#EW${crN1kKl8wts0-|)XuGcHB_|@}c#0%pd!@xYk16L;zUg$ayq{Q5S*v}}&xW^q zu5n{G?oHq{uRLyOUL=n5J_m*eIe?u(Cf4|qesmNXod+}ZX(_`d5%?1?OnVRN9X8m{ zU}iYP4YQBy0rwNH)ws={15&0(l{OeoK-g->U;h4=m#Im?YvrXLhf5iYKn>IVCV1l+ zld#!5xW*?SJ2Ba^t0S}^(O1OD1b&t5xjOB)5XI6v`R<|rQNwd~xn3Zl?JdoP!W3RF z`C{MJ&kFJDXA7*at^KHlLBJw7P)($5Mdb6@FRK&$U$b9ku*CED((K+O!`S_h;z= z`779^-KLkhg+MI=bk~o4EkEKZoJb@G#tpbgfoZR9 z+1BapX$3AmKo*#(9PD=@3q*6L`*U34Z3p(Ux*N3{iH%UEpw9UDYvvu5je&r83s6;w z!FDHc(O~A1)VP!XN`7jAnx$ur8IBK`p21(vVmudbg@6esKW2#yb8iIz2aj#UYR%J5 z&R453XKcXnqEIVIzajK%rX(yJNPmk$6NRf==<%FRFg}k-$Bg{8HWl__zezwRQvkia zm7RPWOju5$u%AucehT)X02Iiz4=?{cS3eiV4hYq1nwpy5j&TG z8uu9mAb2}(2YXM_XLYCu+r765I4Jb)T+$CHfw_jP`*h}RP_W6D!C@ySCm8Li#3SLo z(BEhGFH@5OC7AqguvNDXL+&>FiMqG$nuUORY5;fv8Ri~DF{tL?;1J_Upa$5+rHhYT zT>&w2RU)EyWk+4-S#&f>gH@Gvb-kRA|5r61smVxk2E0GI>vRKM{cMnMqUu?I($Q)m zaj1T?Vq74Xzd8Q9%m!T)Hmht0k15;hweb|@RRW8^*{P!2lnfrf!6bawOs9QD^aSg1 zU!WB;9--d6;nC4Z;P;|}^HVA3Ex+;OEKs2e8vXvy32DVln3PqtNll^{d zVuB3z=UDm!Fmdl({9_BK)qyl@D!J8N4dG5xI9Dr`TpGZz$Tt*NkSpl!zD35 zv42nYo%6HPTC97s9r#Eq!n#8M><`O0w{uxpS^Kk-Lm*M?egY9+RLH3?rZ}z_Ueqg@ z*xLkLR8rW4V+IoF*A?vsvTxjN^m6y6r;TGk8T)a55V0C86|gn`MCIqy zjAX`ZdHdO(rOy(S*}mT`oE|;uB&1PFMq@N;H|MGn>qmi>le(#DalIO&9|XCcqjOWx zc3mW^P1cO1DUFYA5G1ASJd%cL#e*#+Hy3A(MUKa1^s=F|!-*O@LS}L61i-W_3I*$U zZX-eNmHi~yMlN*4IBfs?a<|r= z_@6Hg26M=!Q=g_elqus(&n$8`{Pp8DRvP8Mw7`8Q!KJFPr0aTbx?=|#cd+l!ozMZ^ z55+k4r33K@E78~6AC3Hf^1?09i;03`(4K4gd9Z{7Ap_+PCv9; zS6yW!c6l(DMvyOE#De~@O$Z>cvYhZVZX^b-4&@)59dCN#K8zOtE-#4X6F}DZr_biB zZoa3*v5z?$pg;2ZPi>g>s%A|f`TY5x37NZlo&lCxTUY46X{q;&|2;j5cAZ3c4mjAr qk*V}}p#gsNj~J*bhu!C$JWFYFgJ`YVunaKpb6Zm%UZr9CG`0RFo8vk_PGSPC>dv1f{!61nKT>1f)C8-N*O+ zzTX{p+`sQ%_l$wyIr2RF*?aA^=9+VE!!*>M;$c%_Lm&`5B}F+c2n4MM0zoFhL>UoNP%De?<*09 zGnSa}e_ooEKaqw1=P!hW{3`#SeW;oFs?LtV{o-#_i`UKDxf*N!zga@|j0(}zDFHpc z>JnF|39PCe+0p?#cFR(cG@_)oO-Bk*_6IFDTx#NH&rkQ~$hv7gIBDJ13C&ZJ0z$(= z!AmP4#_jTaf6g9$cVV*nGmKowjvjG~AxU`CuR0^1P+`YSquxYzq2nH=$B64v@S$@z zpAtFgmp)$P!R`P27)3S&Uw)~@>#^lHtm%B#YQ|MrPR=a?&4Dpjj5th=$Lso3FNCnx zs2%xP3NIRK0@jqCBi{Yhkk4v%0Dec(qc=rSZ|WUbxSCJ3NJvRnH`8o?9d*;iuw{7? zxy;)?jb>y+tc@!tZS7UDu-ce@R|02h_puZ|r{(K3xWvR=7Fex8JXxS_Qv2v_8hb*lT53fv54SdY-6y-t5;_M_bKQ zuz&{+HfVP5vQ6VLMz*P2LFd$~gC^@aU^O`HAVa2Wtf?~HHYw7*&S&a2lHNcdYrmp8 zg}2fJJPw-4I)m{7a$zYx4q$?V`Fg@akNc}E##UA69IgM(*AF|>yfkoQfwUc5$YN@m z%m?F9l^J)UN76}37*J#QRt}2b$YB0>RnBPj_+L0rJOxvVAA-V_%&}9qy1HuFb)?Le zZift6o-*`_S~?#TJ)ozITK!Qu7{0`+L^LRN^6bMx1HUn0X6Uy<6TkFO*pSoSG+{xy z1NP=X+Dj{fpYQzJ>6Mk0=p%DCBZVxybmL+KC ziM*_%^SLF24AdW z8DlZ_wSC2oo&*~S(*NGEc#EBzTV2>25&pS)zmvt982;9+;eVJeLmDekFP*&SA;D(p zpW--RW3-HZMbF0AtBr`GBrg5%ow0(0iM>y186r8_1!@*y?UvPyP)wusp127cI$;N9 ziR*2qA8%^$G3Y#be!SrDo&NAiJg9T!^6p>CyW*ldKD?iWQZl$$(lDrG=qP|cRU5V0l+QZBvFn}b$5V%BGEEXjIWYxggT zU$21q2!ZClPW#mRG0cPS4Tw2*V?@lw=zAV@y=rh`2Z$8LtpV!Nu~ zLLjla7-8+AyH&BtzeJEFN!NOR&EbB&N73qa_GjWh;YNzsa<4!{K6XDfZ#wSfFb8?B zn$|z;OXbDN;Y#Px^=|3f#7o02@P!BA!9~F#;|lEC=s?1thCsF_zLPb$97MaFY#Mh2 zVrh_|K@N}mxMky+aj672cj^(@IP_S)b+Q%sr(^fu+hPB`nKfm6mYL^lUo3;{@|k6&TZHq( zAlUjkfu~p>1;T@!fvK7vxm=}URArU52D#8Mz~A+EE8}#3;Gl#RDPRp1xx)=qr@(nt zTpwMs(qa6~YDx+_B**11a-M9r-cztTmv-C%;ZH^ zR>FH`${@!-%%7J$X<|(kfBl8KEp_XW*Jjn4#fy zXEpm8BDRlDy)IOSe#~ZPvY-5 znxfHq^)N)52r;D-S$B(#Mg~U;oZb9IWH4s^koA+C?MQ7u4VWO(3kLW(NBFM{*XRBx{=duM7i!bCjaXez2^2=Q6X;)hN+@!) z(v@gG&0da!>u^M)_*zUT*QrsUpBzt(`51sjX9ZO$_esTI77lpMSfW$I#6Sox3fjd| z!bZ=(Z8h3<5aPV4eI(;(4Te==&B3WcX8O2n_JPOOhTh?+bGdrjP!j1$ah(v|nUrW2`s@h6K$j5X(@BTpn#@y35m5=#P)Oc}wL>)yP zbr)+MXbGjyPV0;M8I>7ql}iZX$Y}nd2KVXbNRnM_Dl`DkXEE_KR?EWJguJY&hWXJJ zGXO3{t8m;$4apyFDoHH%EA9AZ$Q$q@y zn%cKiFgB(PjdUBxwUn^r>>pQ^7a(Dr4gI?+=;ZUY-)$e2alXM-8v8?SR<|&GzMGK$ zEj7iQGA7cF&jk_+hD_!??r^?GNgj9tM$1G-*_aR*%$MYwhgRr2 za?BW-pqA#U2E(R``pphw3@7P+GCNMKlLFCUyeVb72M@g>d-WnAC>!r zcU6wvHC$(&yjpbU6Bsi{LhAH&x}a(6iHoImBeEmec%lGqvpD@W2o~k9UBII19>mEc zc3 zFjvZU0ewaL*Zaq1uN8^>$@J1aKbJ7Mw#%PMM17Pp#AK_s1)2sp8*7u@B6>ZkX)4s%P+i6k>-M>+%o;k!2BV)tluUHdPwyH_;#AGN=YTe~o>! z;POsT4KZNWpFVf0q0~M^sBaS_i-^LJHMiw<=7T(zR+&*`5(Z`8_1HtT_UXKWm>Hhf zATu(lTeJy(l^RV@j}OBaf?nTSyp}J5Vd}Yv6ZxnjVaf+hHe+;jKF!}sXOC5GE*o$q z3L<+JeA48o@x%gooX$sa-d|xV=f@pGjnYGqy`vRn#vQ-^6K%&|}?>C6_(E#jTG z@vteyV=&4PM?oW4#4x?7SrAMcz|3&N@3n0vwi9w7enXt=ea;>}D2j7jqFM7IpvSiCe*o8ww#hT zIG|kM5Q>=b`j2si)k1zpOpPd_p2HWhcKP_|U#1j(sMEtV@DxUVX+ULlqiHD9=63G- zdC7w+Uh_m4TM79cMLtdvgZpLNnWXxotw(hiT+?)Q7&4k`^6m^uzEGY9ry!RVD;^PN zwI$(QqZCn$Ab1^is2oHod}HguAI^0ZqR8kBjpK>b>9ub&eGyZ5y(&!t-?;F859!hu zu(FgIaPs4Qjd>xn*nrltB6YfL!Vs=kA5|EpG3iNgak%DdUNuR;P?Nh!Afydnyu1M)*nHYWz5i8C!_1;W!;c0DJV@WSdsS;lzY9N4cjtOeH&op)9 zLa38>VX4eF`tay#l|nOnYN-z>>L36aEz1=6uzuP+eRtW@Pu-XeF|9O|S`OhaYdIB5 zjG{vN{vggIgwbi%wasRz-wnwegEp`Ng`ju(C;=n8-TMR&?_o5`KiDqZ2`EGUhoC~Y z-!6)V-9#2h!LX~mF4Rq)Ba)e%ueX%pFEO z%;M;gDa%ELAD^h>aYcuO!~~j;u|{bkY9b-Odat_VuXEHQZe0cQ-XOeP6m^iYA?ea; za#0cUzUyx^A!&GiR5nV6V*lM*jB9tkQyRb||%>3YpRtP%imY5dojDC1Zk z<_w?Dko5*cg?}j1QfZ`Ka5`oX)3uw}h8hy2T9Qe|DLm zz8eEm47RhVni{@6M{FJ2qx_AJp_+Leh&2^aXgojU@*xXK)<-=l_)fnbzFPaW%RSQ2 zodtPHKkNAD%Q5fgB?BajDK*SwsyJdbf0%>mUo4GlOr(?Wjj{nx?5{d>GQ7Ck)^iL` z+#dRGsRe;vDzBiHGo9eZ8jfMQJ2}1iTt! z66|Iv4{AO8?(Z!?qDubM*+~LpnH6QEUU6corQ^aMxj#Ks;CwQQgL4|kLU%$MZ_-L(|NhEad{D`xURCe^t)!PPS zQoS<*RPGks*z^7-n4#i^DNMwKbDUceLy%lU4_%oJdNvPJ zZ}kGnbnwIq<22x6{}Ve+!ZGpEOBf+(kJaiB)cMQRb_=Pe(F5R(=lNsT(g z((Z#ds#z=~o6k1Lko48vy~qC8=6J*PXaB|N_&CYDi%SN$2F&%^{+pp^X4f~E&hbHO z`|;}krKj7^9TeaeRG%|&a5oKR?%UXCbv{JbDx7c!jMFB?0GU)?fR`?m0 zx-m87flL}}-|fmxta#=>pv!x(QI)lHI>T1(9n7AN_`yO_5@bfrgw=~qk*zC{i0=^k z=MQRT#wtlj_VIReUz*&=urQE3NJ2Xq_4XbsilN_mJ!-E7Lp=-ONBkqO&zu*gm`cKZ9F5Syy+ z`U%nlDy_m^!7?s=RBJejhKLJNWX=94p#);S3}(LHdUA)SC5m_KJagNyu22=(m7Q~u z{44?IY4?Q&WA5A4i&GW4Fk(^XlLPj;HtReX`Q_h%U# z_Ux5n3Vz%n$(yBP7dBB7K@Xw~-SAECL`b4&u)gqAh9e44`ADO4h@!DTNv!Gi&0a!K zsJU&>({yAdm7K1yuMA>;62V2C7SVo3tcCj{61Mpg!_HBEA8FpMS}X^cVwlf#aNL1qP^jrr&>JCFV*AWndaOStK## zJ-@PTLK|U<_K*ES8DyCQ^X&>B6+U604x$kDxe|xVZl^oCWD%5i)WtHleNX@;g+Xky z>PvUr$35SxsHylt#SmtDZ3LBRS%D0{mXvxyq~;3^N4ADbQ0USq?q~|!>5|ikOkPu{ zz_250tXDiXyZTT63Z!UU_sYm&(2mk>dOfa9j6sIAE z99WrzV577#v8J~X0b*CneSZPdzeNup6nfBW=p)mE%`6)NScqVxJRPgVL48aF^%0^R z_No}><%R^hn@)ifc5p2$2$YqtqaaFl`S^RzMej0^UINwzftdetS8^vvQX1a(SQ@IK zv>#DrhzI=@%cEkByAPC-1CYyWIC^bc1)f+UP(afcJRxX4_dv)=Q>EYW@nt5bj3)h# zNL9<7riht@QT3+CxPtm@HO^*jlI*#w5eXR+?+2m4?<+Uw`Uxqs{9Cpkn0JuvcU|Lje}PDJ^Vm*YSNpxUGG(PgnEMw z=^vJ~HYhgWpKWE05{eLRkR#Ug!;ZK|&U&S-F~Est zHFk5R?YC_~s_(}DRXK1_3}YlO8Y#X?@e4CD66pVtCX)>#tv?pQd`r3={wQfLx1Qm* zy|ox-4{RjAPqPVtX9>z&i3<419}E|^cdMo_ON+Yl^b*kO!A(97C`GJEb^XzFOv)r9 zG<^;jR-k+Q#1ov?SUbnzs)J1FyXb#aSC@M(n1B_hSwJ7}7xfkv@s2`ai>p35*Pv?g zrXA)W&2=^@tOk3S`;;yrBRlk)k_jNZubv5E6Q+ti$oaj;pZQ{iCwx#04^;JqX7}=n zE<`#Gl z&Wq=j0>NZP1hCwi_Z6?8A}-h;V#INOE6#`Ljq;-wsP(-yk{cg?EXk%!43foWK$&PA za@=v!{?!bR*SS(h%1FF%+wJ09S$|f=_~>wPJzj8qME1mgf#JNmxy(x{kJxu`0+O9Qw2FyiWA4& zV9m*U$lREETZ0|#7e!Q=Btl_(a(^=Y;O&*Cn<8Sl3xU4YzqEgM|K|O`muY#9<^X{; z9x&8};2|liSgmg%`=Vy=Wn$1@Zt!X*w4ob-01#%S4m#x0k3O_mV|bWU1zJN0xx75A zbw?m^=|nPnRRHXR-bW`DEOvB0BtK5JWWwbj&->fFJkS6(?mWL_5{`~F7qsZchf(>c zx9of|ZaeL~kfM*x?>SB$siqR^Tly{_&61hrvWL2KY6eYpGAQX_%6-x|i+dc$^t5B` zDBBC{7D;chK}onLEIht=3}_x3{41O?GbZYJw>9v#+rMvOd;5&5tYUiX+1}Y|Gcj7e z0Lq9CoAna@?rpt>z&*ZkH6!mkSZ+7%OA`~tjjb~~HBkbdNJ_Ns-juJ=K1-<0F1B*f zlI&JT#4L;!Bh9o~o)NuYhqfna@=ubb?)P7QmefU)V;uH44}UOFZ_KHg5PyX1_Web% z-PJ~No)7#!mKh7E#I&^T+YAVm1Bh!X0nx=UPwCu04@TyzJx&&PYExr24L4Z~f%K{;UiMsmwzT6_IiC3GDE>Ph)}& zO^pKQJ80Hf21l*Dl0zBbudvc5>!vD1jK3+GeyN|niRlz)79Qgmf%_Rk@on& z(Owk~U(C^ITjPc%z9C%btIQ6%A~Q z(>ieE{md88TPoRPU2la$?F2Us5t7C2bTvcW>wCPkia4_|AnTAbbcOY4rC+w-Z~m8y8sdPTp9THY)Z9Z_)Jp~dIO!mt6rUd-oEHZ*|beIxHl zu&OC+E>&#Nf=QNQ1o|#o(P1WwPBHMmR^6Y?J~dbL&P=f22F@XL68ZM~n}e)~F=GBu z01TEX#c?+Y7QaurXe^e~pj|9P<=PiOay0Onz66&oIiT!a++t|)U}BZySw1v-^=-)u z2k<~|D|-POm_c0cgaJic;)W!y1#(YhaiBykd>7xGlDrvvx6P`lvm;d1--LZcvL8R+d@O>QSV7Ng9-6Y_AZ zfK8dhVopGa`-fMz`@g1$TO#1D)uqE{E<-ppmQv>KUX*f2_ z&s{wLxQ>Qg3G=gjRe#YA+F;1rdRLuKR}K61x}mi0EZ6q3qv79{C07; zG=3^2ihWn9d>{+*c-?BQ`j`P>;qOzDeot(_??)4R9DnNI zJuv+&c@4!3$p#p8SU4f)pwX~I76sBnO;~HJ|wW0Y=w+>#e35X8kKc=|qsBuT1<-t{CljJ3Aof z_S#ChvM0~W-QID($Je%6FzP6r_pF?K$kT%*v`si9Cus-U(ijt@0% z6R{FOPBx^Odl#RI*SCrWYg&CvPmK<}(R%jd7J@dGCAVF51oPNFny-<3fIN7@HUW!% z8Sg}Mc(t7FDIoT}MX|vQnb1@XAQQm_C+)B5(uw?=rV+bpgAaQ)Hh6p*un`iOr$(Z{ zS9M9XozA!~yBe)`=yArKl~5q0YPvs`EMV>AG4ei%dX1y5qZEuZ=CUL;TZ0F@7nT=6 zgQ9db$-4#=FcJjrE~+6=b)82ANTlujXI@!TIVY_wX!)T{+ghMV6=tf3uL5aL@;=t- zGpf`~&4c5~M?4}<{hoS>Wc{|SVI3CQknCC1n%*JDB>7V0hUki&p><{n2pAA0Xhx@m z6-J%Ewf+d%Nze(UwSS(($doI-@dZOz(}d;56D#>*U+FDflY-fhX}$AoS~;QzN%UT^ z8(nqPsc8N2%X-!qg;30cNX|bc4Z)yLY}DQrY?@%uL{{hynQR5OmhaBdm7h$tYF_`* zBJCbCwLRHyt|R>xM~r;_#s<|l@OvXmr?2x7^0)7;1MlBW0L>6ZMpc4a=i5VoE;EBd zLt$}1h-R}?KE z`5|=MeE=opV3duPJ)O=er=3>KfR>40)9+o(qnVGma@)>1RvOJ;ssr*;h>=ObRQ$*C zxJB8LHx50Kx&~3W|M1V>zBB2~ZLoszET1CBgn4BkI^Nk^3&<3G8Yw}^E+`|C!SrsI zO*9!;&d7v$breJfEtYG4C^SVTf)tyTPVW&HeR8|nEgw+s^#tbIvA3;(fO%-M-zo-_ zpx=+~2jYLo1J%jVTCK(N3X?GY=cSsZDzpn2WFaYQlXQN)=$Lw7~@!!dKnz$hvd zP^;K~8%0;{J_$Fj8BV?TqN7FVQ}G+a*Lb0K`o%p%951r}fGp7X&Mj)-WuZj`zQmJ! zdw}W1S9@@uCVU=gK>^LF+9et-G~%&S?p7xliEojEnrsQ9CT%H2Q`7gs-7NwlA z9%9sb8_pa(^Nmnw=5M!sm{=ZJS#Xr|rA7ps=gR=UY99E99tL_T~??R!{<1(h$U%2K{FR#o0-2+9S(&Qgve z+)I~5X&7G|cO!&0$>|#)!bze;(RwEzK`U^7^UyP6MI+Ec$=pgBAKi#7!H~>wqSD5N z1m={Itgo-+3N7mWn}hxyv)Sgi)g2cddY@l%hU}+M03jP2l6^+!yPSwaDC~xsUGd~; zqSY-s^Q_9B)C28B=+Dyy!5Pd#>G2`SfD?a56RdX|RFw=Gb_e>Hs;U0RjepS`Mrt4R zQ8`UUl;myqk7bwW;z1^e_`r~ivJZ-vpGRpx$&(_@6fe}9UYacgfDTD|DTe)gNy=<_p; zsUL$k$n~c8dP4VZ{LHOBE-TNbRxU3F4&h71m}-qr%<3z8PN?-~%Ta*kLh3m2=e@xQ z5o?S41dx>}3OY^(pCUlXcOE{OyG@Q)Sw850X6Zn!ierkF0Rj!s%6py7DRKbead7OS z={k|m<8>zgBPxtpdeoWx(d!PMF>A~WarPhNQ3V2(~s=9)L22tLc4*29P+u z>Ds~3g(Tp;xY7xL5g@Up$@k90k$r+%CA4X%n-gcN(`_fHk!}6?Kw76UU}6ZNQh?wY z{W!SYhGJ}R|N2;fqam~TRu2;)?@sED85^82KqsxXVFSy`NC?Cm%#9eaxZh^6;yF-k?q=wuX~g%fttHPO{}4J~c#i=yWw{@e{-J7ES|a)6I4qGimsTYffCu-U_`57kQugJ zS#sE`V&vwjn#s8khP2~wOCKJ8e_L6lOU;(s3=V>f7>wRf z`);>MLmlEfz5xft-$YLN>Wf4}AHS;v9ju#b9injTIX=EIm$$kKGj{|i@z2fT=6(A1 zp^sjFIcTED{&2~%(`x9sM@I!5F9Mf$WlJtEGh~?=jJ#|}*CpXSS{fiPrReb7g-u6} zqaIv=a=zF?Q=_YHCd^wzB4NrIDZ}4R6%o#4r<_5^#E zgFAn}DOZQ%()QYA^@as2_RA~$R>AKUyM@a+H^yE&Xb=w)&mdoB)b-YTxe*EzKXD&c zCPLU;ZN3veJEdQRm(}ds!3P`N)n#1n{5#3W=kQz67R%3}p_V|3{YKk+;0EC-ESE6D zx-4zrx=^tW^1Z#W1sNc?s@T2a+kF{pzN}&cI{!fPcpk9F9CW>;e_azERG3Qtj1?0S zybxW{co1{;qTfZps#i8>Cca&&qO;<|V<;vw9jxz&fFC@4RO;9E>svmhR%kM=xIhlQ zQd~Ii&-b!d;sihE=Ju87U+6t*Jz!{yUrT>BmVMhq+e=_Y|H=LPLVn2=E#s$@(u(x+ zfxUoaJ#eePLBO8_TCaM_h%WO9%6!L7CilJJs?5rBDgQF@d&LYxqW=)GM&1|2e_X!( zF*sAS#lEU{9(05%9}m_${O0<+IIa>^VJ7#8h+7yloL@~X|5As86ZJRdTF4r{xiX43Dy@%>-OZC z(u?2NO8z7DIFa}?V}uTB?5#GwU)XH9nMqiZ`iKFx0{OUzZ9iL9YVq1FW{Ff%`l5!@5kXikLJpOBYg*gLf zX)F4{Ez2-EH71ao@Pdu$Qwt6Ld=!;2Q}69B*QU2!N*y&LQJTv6F!OxveEEv3{dT1H z%NCY_tNo(wbShB z*(PEQ@?)q!5L8k{sVF&sccp;I%bER)9XZf)S(n~vjX^~YZgCanT`BY%a&Jp+AlZ`} z=`xx|PJbeg=l=G8G^ZdG{xhBE4)SGmPux?WHGME;H~a5Jw@0Lb>f$s2jQGMQMWGU=9}okf7BnO{yP2py4@+{w!wk`I8gvC< zj#ANE9!=DU1+;8G{ zhbxA7G!EDEoCkwrAyV;19`Dg_YnSkht64eYaUg(2&pD%t4Kq&*93ID6Nju^^EmTqflNaA(g#MrJI9IF57UM1+=@z>LaW2g}a^seRCnCn^vM z&@0MCEZD+r-sQJVrYh4zlmurHL&Or#7B5A|ha`fIJ5y8BxCP#hmgtuadQim2T?zw2 z;Pi$&^A#S~3T;X=CV8e?{2= zI_Sp^tZ79AQ@&83Qm2QPxl?Mn*J=gc`o@vm_#^wSx7^X=!m|c}*Hu4DoLi-JPsG#5 z1_K&alK(W1>k#`V>*2%k1kFrquhDUWjC5=K$spab~ zc)hJP@_r#mUalHhP0IEg6H@+}tOPr9`L*u0)2o8&K?rF@tlCcB1sRs> z&atNrJh?Jsx(~ESq%af3&!2P@9Aw^o@HRukzIUN}X6QxOs%pE0)NYadtHnvNV)pTp z?q)OYmgyL1-{S*&V%JvE8X=p4OHwQR$+C;}Of{NcNp|yXNJKQfw|oczz~_`(w2PlY z0p+m$_L{dxg6=e$hA`C*pRqF-r6~1KeA0e{rJVZ#k*6l(JBkk7K>ej+6l`oF3}{rx z>4Z^vxPM(_P+QaSks{xg#RTJ5X)tv%U&nq+u|M@j7{#w_wtBC0u4`? zCC&WODIWo7v_k3aIm+UiUuh`!Zhae|pf`WWvO2|&0~3E?e}5nfpEo!n0|&b35YAmG z7;3ZC%fRkvt0!sC*dsRAt#PU#Y9?h$UDuyYRd^Zj(Vb+NH^7Ce^<@p zbFNf9SA9nyb>;I{8gx(&B)WGzzjGT7ue0S|(U%q~!P8NZ?dCnje>iUa6!`ukahlUC zfg-1pE%)}k5$QYsl;&po*_D}w>%u3j12RZ9?9lTR4XFG^Uhi44;m)c9Z$%)AM2u`P zfwq$;QF)5A__B+qf{?cDY4*j*F2KxD3*Iy3*D#DoW3)HkHix&$A+*cSEmzn)xaMB? zQm&_kQJW%s%@+dUU!S4+OG{xYN_lD}Oj^+;wp3s`OmS7WbSneP4J9A)AA+T+OD$y> zwoy%+sO{sb_Ci%$OZ@(W7POm3aE!C$vk99RYChBrcr%@Q%r9+fjL$xrZxOykkUlD( z3t40T^YjoM%szTYF)JO?b~F1%Htyq4apXpFLB2w?%xc3unJdY(*P4dlQ<39`QoAyeWn z;+I?ZC4pm8mz7Zs$6`wjD91cMxW#a0USdOd^tb|9Ri&3lIe>&n2srX*?$kN3a&FZ3 zt+6|?d}?=psp=HcA?B}(;jN!;PA?^HN&c!?Tl(xD-e>|DsZ5-Y__!payu0urpmXGx zi*~aw76qx)^X&$r{hcgDroFFloxVYtFXMRA1W zqZ>w<<9;c$__e9fx7%e(0g^v1OXCfwb@8#Ls3ncGe!C?@Z{MY8f~FFok2p&j%1f`O zE0u|frj=4XM@isBXdcReXve9*$=bxe>mzfd8S>@HBw~72@{BW1JU=A#qM}0bWHAyw zn+3Sv-2Vo)A*=PU*jk&y8Fw{MvbHe~zN@Uzx-+jISA6N_@LG8wrzRq-z4AWlB>jk| z_2y$nS|bj`4};eKE|p`~dp}em=e7Y!>j^U8_7o~RK2Zi=ks%K7ApBQi@Cw}A=YcZp zWZg(o=WcvtDw$Y%cQIeO?2T)ggpQgx6+SV@w4Lw$5Xs_(0LXX3!Hwc4m4wXXHuvHc zX@9_3KA90PEztjlBWNIg8!ZcqKPG*>pfgYc#0z~5LwzBVOLsS@#Yl?Xgt>mf@qKKu4^IajSvTon} z#VEG*A?>D8yxK5(W#ERDRPUJm<4R&`1xmQ_fPV@JIuS8}t*HTF5ArVnrVi21f~Ii^ zY6@30E}ix#c+l|I`vD=b4?>Xv`DK7P@>LZ-?^%Kd=J6m6JKiT5hGj#z%u06_#E<@z zRveltL=nf(y|oef<(D!bu%oHqNPSd&MP59kqRzo^xQ)E)ULCap;;c!^+r2JJ)jWBX z9u^k%nB?BRU1BYT!X;0%vD&3^1PlFH@(y*wWfA3SNYcpTs>_wmhW=a_E%c0&+so8= zZM!-%@V1+d{p?M0pzrZ6`tqoX=H<#$UmJQ6BYI%ilmR3g(CO%UXX%#fj_7!NuI;Pm z^6oHlZwEc5`!Yf?fqymX6L5Cl_fNAva)tsgk3HLy#u;=_13D^Ky#l*4@xh!hC=I`< zm0s@szH)WRVIG1z=p4FZ%)7sE$(HGRy)URSRT|*dO$P9*t`7&4kU^iVO_mg6R7PMFtKohhfkMD1(JOt1-$4?yD zNszy)hg^43e%qbw0Q~ek8=mxv>Db$}6|I26@2x=|mq&nb(H*#%{1Lo6zQW^mDSeK@ z#MsM+Kt&IlmfuPxt?_YNnv!E0eAJnI+siiFCJpoO6!~Z~AD;218FsZohH6uX2CS&{ z_>a7vKZuhhP`{SPg6=xLsvdZ1iuCgC+=?WFA78NsH!@b3IY8-w7sCiqFPo<%4hP(kG*qF=XERg?Ru*gHLNXFz ze}Hv}X-y?#M(G{;N5r2Ckxc7nFC=`~=|5;qIG;`>1~!FPq}+;&wpvNX9``AG zsEA{cx(_HGV{Zs9;Y0Y}zr>M8;(U=fm_m@J?}13p9lEFtY?<5i6e71T4Uw<4Fib_@wPOOD_3>}=!FVBN8wHrEnaG_hp$q1~z+fZRWLqj{zPg_N>uCxZg&Vd^ zL6+v0vj00eNnrfErjDq=GrrzSSnslb?#XaO+ZqW@!CMyjCmW&-Rn$Uhg(-6@Xfo%b z4!e?b*7Jq{i424Ig6x`K%H?M#Vv^SLQaD(H1XD?7#*2VKTO36+N5Fi0B@ z)bhPY8EQ!r=`7OSpW9<5cHLlL)*K^y&iC&6@NRq-Quy#0U2(q*n6ImdG$*aR0-zrr zHy%8_TDXvXATnPZ4n0KAwg^jh(Za_heA8eiP~h?_k~wE@qyQ+5XmbfMGF%JI^E#gg zVzpjz!GH;FN#G0j*Y}FyUt2h}u|s&tvB2iqNENu$NW_yMF_n=DLUOSp^QV=J6hC$> zUVpV zgY%Gs6MOG-Z=2dYr=#7nrH{k_e4W_y9Ktr$KVh$RX8dJcamr<|1n z*lu3Zo#^*R9Zpm`FHsfKMh@2Xb1{`xE#97e%Tno5!imopNg z#>}!O_1{ttSj>C*dJy>bz|kS&OWOuKgb7s70KeH<^s~erIa&;GZKU-vD?v#&xA1aY zb`6TVJ!BZq^br3$1HvWG`|I?+5tjM{X}IdLpAwu_G@a3UMaC_6weP~Slm*aOHSB4_Gpp`ZhMoBt&rlhZb~D zpN!}csxs68l8%(9R))M#B#?|fwU7VG;Lu-g5y51IjP%OT3vJTOO!{vBB_{i1slmZK z#q~V~y_gMhl{ZQSk@DsE*mB*Dp%iT9kE-7=uwSvTGUj@+U}-*OVH$E1^R5}mwtTJ= zJZHUC9ftwrG2!cZFaoI7YMof6;W7VO6!;*WYw^O1DS|(jX-g0-|iBkq+q)1*DPgkPt~hMLF#*ve$M~BuJhr1@`1%#_dVyBWBewS3B7h&*q`Oz)kto32*4nQY@sS) z<^3$PYo@%&eRVVq6Xg(1duMX(+VUqS0nBD@(nM_6vtue$vN5%*CvA)rBK_{gFg?Td z6=+P->u^K;Wvh^*_55)d@-6u!zur*jC50fK5y99=m?ngy7F3nmV3H`NW zK2O};F{H?)Hhf;;nA&HA+LCVXcEyIT7i)@aCR5sYh(Crhl=Q3guf~t7O`g{NOj3Ic z$6H@-FS?Q8Cu@xqHOjIG3H;Ya zf|~nBk*tI+$jZ!1J23QaeL}>15EVv3$pZ;Nu7QE)jG#UX(M8YHFoTCJ)T13Kx;c!^ zNVt_GPFk|m=xgKegN2$rU7n$r2Uvpc0YZ1$NizrDWyV!(Qhbww>uPAkA#;Rn6B^7K z@Hn?h6;AHPFCU~y0Sf@7?7VZW)wr~s_=R<&gM>P}Mo(c)PB4GxV-ca}JBB52=(3ZB z%)B>pe5L8UI=Q~{Jovwixp{O7)XxglKc>cpY$-$2OmNp0ut=lG1sruRC4J8$QFr6# ziKh%JGq2PugtnSQob5JN;?^4Q@T#?~406N!q>8!o2e+{^zLjM^(!VC%+(A^h%% z7M%lStq}eF_YhBJ6i#({2RDRbU*<(By_rD;DWZrm&i0wW3$=znvM6NT{d2T%kc)t?vO!2Ui?fSDmV9LzV4E-HC)4siAwUSC>ZA z><$Q4O|K=+&oU>p?`$!XNE7mgyoPj*>#!Ac7Jarkq+{~fME+JeD*k?lTOj4vUUuj=`y!8{CF=hqr zBDd6tezyJTLzF1G60uU=Wi8FLRPY=XO-C7)@UbCZA2Zm#M=IqcJ?HxF8R16YrC^C+ z`u2%7c?Ds^QDeDWjU7gVMh14*!#X=?47NI6K+hTky-h-mQ_ybDKtk{xu!FORc=KUi z^+iU|DdGm12_kX^!oN68b-1|P^Y8yZU|1mFw2bRKz!clOcq3?x{!E4x7lG)EV~iK$ zb0ih@PYS8HHqb1(fSFrWrHnM-##g+91_cX6#!1El8Dmh4CkBX|L)5Kd7~cO;{Zm!Xqxs$(gY5P5cxYuGVqnf z&MoOJ8_yJ%UQ(l)yA#w)848B!+@tU7)rmJD=h`Z1&Gt^qWnG=NEl^WuJUc6NyS(eI z<1cp@R6Gt>g#+<}-S&wZQj0tzSIBjag`3LhW8?9{qfe$+k7B#-C1Dl}N6NF14lL0p z^i=v`rOTp00=2xr#oD0f9v>rwmFJzx&1lknIm1ILM4+K56`yXbG*)? z`k5dIUFi-8aNJF2vJnf^wQ=Oo%5nSHQ+IFG^>cmJf;)x-m)9|FOeBT?C7NHT$i!-)juIX>m~Wo+EHm#=Wyt1`gq8aU#BNUelZ%o{IhuOA zanJmcZ`4s?_jEEhbMYYYs&(Ggx6seY4hTrj=R`eeO(q++ii$d4tzR6j z1rsw$Z63Ucj^4;rYQzBt@cWl_&fynt&m0;aa^u5nV$N?d%ckMhyNbU)l+2!1Kfx6A zmPiVBW^7jVVtg&&CCcdP5=GU*4kg=nyz4C$W=!ixGgwPya-Phy7I$o0CAVjHw_<2~ zHfm(#FKKxDp8yMu6u zU-m4`thtMG$So5B+K-_UAPIXayc9D6|LFc0-$riF`EfTb2N=Y_0V0RXYDTN@HS}0mhnatuQ5?vn*G`9o5mDKJk)SEA^}wyQw-MNu*s%igNv$5Deg&1i(ehjWqxr>OGK3ic|hjnz% zN)=JIi*;TNsRutrQNvaCTkrVDgAPt6RHIK4tjBF+v(m7hf~0;U_SG}S)o<0;;=&^6 zgpJ3LhO5(-6h0*NCISEuj01!m210~C3dm20hyxq}zGtl)9&Jlc^S^!tt4&oDbLHLe zxC6tMbk+a;{$TU~CwIy_P102t`dpaGo#X-z;@+@Ga;o=RZZ+SNcU_Au#bx~^znJTJ z;=3rW+>uDKFhWUL*|m2z0j_M_RC{MzzYG}4IIu7@^#a0SP-M+obWS0&LP{H_@O{bp zIrueSg6oV(Dh+TPg?@HB3zgfZ0grwX-C5%#*Ld+UdCrf;2nyej$8QvF%?es{SQ`)2 zG0iB5zL))~OkxVGJhnt!X(kc|;@j(oJNZGs9fJYLnj4(cvl;z0jpYi3Kz<)6#5eve7$HA53tS zIFf4RceDD!2LBX(mf5-28cB{0bQuNQ*QTan-y_=sy(t;M8=U?#jr!>e$@|4kN-&H& zJZ1Q?VqC{*d<#!||MAw4@W!%>bJZmV%YB=BL*D{AL-N?XM{XHJMMdo15us}V#%FOa zX8h9f($W$lFh5R;8i!$!MxIYjoDjpNQnJyovVt?JXQ?zb=QacJ{(9}h2icFLAQw48 z2+poHxc`#n#B|rc6E_Q*HLZD|<`pn+D%9K6ILHTTz(H{t%QaPRAw#FZx})z}fHf$b zaA#*K9*xSD@j;8A`c88*({yc-k6OK2HW(P7PqIYuh{M@udJ-b&m`n5oUQ2V{D2a2} zd=Y!aEZ)4|@dUo*yw0XH`A>{dr0Ae^psUgf8dil|eV8JZ^7(0!rGg*+i21Sl?D#X% z5+hVB5AZT$)8EjfA&b*g?<+j$RP&JKF*grhPooXg5|&%w;uUhNhWfLWMMX8mz7pKvTX@Tjg*azpRl^>%}!7 zhG?9K0K_$+K6|9G>igVPDqMKgy>yHE&bCiuAX$GQVPmXUk~EK zV?F%+{oByC*ZE-8AD7(`UucYLrm{`PlwU~lmGKAdj^&W*(zA7CA^fgnB?-D-{Q5`L zz`B-QvTpDVee!L%^^Kz5o*sw%qz@?O)oWRUl%`i|rn zLm7$2@Z4TX-a9K#b;{z=u>2yv7XQNu16*v3ohEfuWrkN%2labZM^N8fn}=IDV^nMU zrjBSq4n@&j4s@_)=3eewmYjS@;E+eoLAqv=HQ1e$g#~5^Jrx}Zo*N;qbtv?gveG=u z+B3!ujHB@S=jtW&w!gsqt=4EjA8!D#C75BtnGrZsP61{UjKgVqAH%=>L3>frub70r zx6P7o8X;$&B#}e$(eh$5J;7I2K8Xbn?JYONw})i?P{VEIj4$#cQLWJ*TE98Eo%x{8^os7Payip_xVW>BMy`2>E6OZlty3gzV&WKm^%H`5$P2-kx0zOPy z0@)LpNN_Wa9tf;mvS<7Kcm7O_{vYE&=+vUnPO#|&-k|_ITI?!W5bNv-%_>J_O>j{@ zZ+xZ`W>VaCF}Yiq9CuZ~zqBoLDiTvV{gd939E!%bUV~@}N$2APN=jb)H@JOH)1|sZ zxn5i;uO8)tGu7PS8*ajqS00ZYT^;}sTn-5gnoQnA*EflA7rfa$cxy*D!b9)ga5OUo z;9Oo`S<~29FNQdU`A}dQ`s@PhgtgVriYOr?va~{!pTKVyD6ZTz^@*)lBiO!R>-LfIJi7LbK^!rt^i3krzv*V z&IvFCiBJn5x(>!#PkVbqa*RUw*rhEfyKNd0$_1DDGUhU+$Uc-cO-`q3;okcex2<|T ze|_g4Jfv0i6DN%OTMZaDNCSu9t!q=ZvJw6zV%L2_BYOW)lUUK;<#|_Hm!=CYxC*-+ zCI)MbYBqt=h#5GJKR_bq+ceqhT2T3MqMF|dY<>zKO!)d-_*EeCaCfF$<_r5*%BjHb z+|N+1e%vh4@=nWjantyh1vwuNydXmT+u2Lk7m;t#HS36aHKMpQ?%91pWzZVWW!uQC zA6mX(PZ7T)UMntxu_+Y*guITqZE={B(u8lniRygnr0FbjxMn$UIhP{*px%T;Tc;!a z$)^96VbzKb5Qwo53;alr8YQ=UbsB$FJu2V{iT=u==q7DLDSw*Vy99zRrvyj`wASlc zF@Q7?t^df4={TGdc(Hlgf&zK}gZ{kMaIWV{U`5vlcJSeiGE+q6+P02M>8;!OownBP z_kE%!CfKZ_hp3-k{)V~G5O7w`$8r)pH}CzHwOkcB-fAR4fO$S9&&@LT@_cwxfIm?G zjv-R>upPzkn`(Yi=}F$ur3RF0rK=fLy?S){AJf zZ*Q?3r1TC7W&N9&Q2|Ym8N#4mr-Gnup9ij@PY25B|KPW=c4`rb>)pQG^{ZO)!>DNP zxySQ^8a(iFS^UWE!Z>5B0nMrMT4V;@^?V0$nDWbxnUf;fDb%a{xOsVjoy@pcBVhD} zHbd;fc+HYSwMa~TDd8@0C@H#gP2I1{xe<|D;sr5@){60r_*Xk!ZR=n1rDHn?r}9Z! zp)Rj;iP-EPSmHMVNtiPErY{jV-s5MTA-;IOSoZ#Sry{Ci^(C3=EkI34s@l_4ySJJ; zPNT+$fB`5zTx`XRc4M+_@3IT^8o_udc(;q0l=wE7Q53h=-GS5n!(#t=<;^!F z?*!wawF26r@?58p5M8{OD`{0wu#h(~o4xllV--8Q8+k+AliKy2_^jLOmBM6dpIIxq z9+6*Fa;Qpdex)$0oS1uBYpy=h5crdA4Qm$#R`tf8#iUrmG7evS!;7-j`H@@P?!E1N zO4DlD+4-bR|H(k0ruIGWg>)A14_7$ib=SCr+fGYS42|U;Y~Ub=*2->zKhX*M!V)y0 z{GVC^9-F@noH`@N=%*r7kd*hcq=?j%e9*$%&{UH&^;cpB#3G%NuARA$e&N<3SR3&b z6ffvhp83Wp<}Qu)L(t;nq*|}Fay9yxM;acPW##*|$&Wt;fhNe<(o-5!bNXGxskyl! zTjnMuR#E}SzYh@aGWYSI?#57W63tk{ZG}7g0-WCp9#GhH|WOeKu zTRumfyeOyWFqyNKa(En=&9xjUa-?Jl)!&58C7(|xX2A$6T9IuhmD{8Y2Zvc&V&?94 zw16z&&znZP?k_1zzttr5@Nuj;X(PT(uEO}7?>^Tf-Nk~=pjt^$QZ(3LWHQ4 z9N59fE>9q^G)<0N2*$36;ovFFjzkF!$Q(1 zTAd#jN)W5Q{JtnVsW?)F8QkK9CQTQc7jPA{b2j65#P21YO&5PF{l4bt>Wky=iTUQ$ zlM57v+;Udc^8U+No)*A&UilR(!&m60*%a&aJ?WWlIA7a--x#h&$*~U)o-wCPonPg7 z&2KcAn1Cuc&n1I$s@}G8)kQ&^`!7$|9s)16^El?!?(VMr(N@jurK|2IE&I_TQPd@O z?RvFSd)xch+BARvj?jW9BTK6kEKeU?nxd$_A9iaB^?a$Bm2E2goUhc6m>6n%J(VP&C zV_o}eIM0tyAl)a3L+kDl{>x|98(U8f6*Vyah6-rHfNv~{ae}jX5KUEKyPjaK>Efm{ zzN%s}R|@@(woBwf%T8AgW;lB)iwo2*4!=H?9)5lK@}<{PFX3aqpzW5`U zZ~`f-(-zt+mzzW&G&K=6AMtIgW1=T%NmIR(I)q;eS>)jcW5sUB8nyQj2;R+(^I)zH@%mbcI5J zGhVU0CO()>PkvL{?Z9R{7Pd0mH2EPD?;3W@B}Q&h`JQrr6KN`y%ZQ(&QjkY`V#3kC z&`+j6Fi!K=d$w}@tH?hoNAV{vZl`OiQF(5uD~P?6gR#L z_AzX)7MJA#Zy7kr$P1->`Lo03{;cQm!Wlt*89~(i76IafX2-5`S)TT$c{h3ji_nX8 z(QueEFTX}ca9e^v0Ba0BJB-}~3AR1pMT1GE|LMP#kwOZ@TsX6Ta}*UX0#U)&wh_lU z1|o>Oo7*iZ&rQO*>Fk~Yg+5Amcl(jcV~mwwC7ZH;k}#ib5ufk&Y(DHU5fHQ`-CoYA zu3<##5&pn%FO}9wG0j%wvdM5tJ{}JW2 z2L=2kV`2ZAj@sNVtwu&2Iky99*!Yal;scIig>%9$76{Dzo$MfQRfnunBB6ZYph zV%WWXH>Q4G%C0%$t?7)l9?o4<&+v2LC2%Cq`pJp7S2-~eKYyC|50jAgiS41BGP~p=cX!u3Js#iaPn32w7aPv&T@A<9uSN&n@H-ZvU z^n2Q)mMJ7J6^{!Buzla|OGgsk^L84aZpMgL__jpMEmw*a64?0AB_g%N;%KYy>JbZK z@8yYLLj$@N3nJhBNytDp=0)?JSRYkQijMP4d-f1{L0Wkcy1?NH^d!ojHrY!rs>ZX; zjF9-LuWl5RRgr!>6NQgRfTb>G9zk=_18M zH99&Dm23Ai;FK{^o_P`~-_qduc5WW@-2z_JRgazjJ+wk4M}cGLZ>&Ny;K}r<`@`$q zuM?&b0GO5yayiFtKb3Zqb5X6-i!}{grAWpmi|2M;>k`S+N2G&;DT?!g09kGU`sckC zmi@RaR7PdL@q+FWQ;5$<^0nR4nd^fr+#k!)8c+>@D!Z9z8P+Vm_97xG_VW!nVC6S8 zF~F7&IPl6x-!QFw!_Mf7fup^3!x;~uUuh$%TXITDtYYr_s<&HXeR|Wv*>E-n4xRz8 zpx?`T=Fkj}IvdqEGj2AXIiH`+UMa&eh@paq7dAD!9Z84DL*iQhmm0m`gw!Yqf`iAx ztdBSMvkPPiF+!Jf2zu7kSx0x-`6;oWx!<`yljxG}?%iMRHx8)X_G~@v zR{#GDETBu|Kg8lot;#MiDNjjj5k2?fZaRPLkmCyOJ|-braFE4TJ2-|_BnG4Gons$g zA&kSd)p_YqvePqMm7g{t$!K+^x%T%(@F#Ly5wzZ+)} zgG8F!gk`qjmW`XQ?$;iwGwVu&1?E8nEO_BQM`*;-!U3!XKt@~>Z>7?Up7b9(L#*;#-EeI?g~m zT=$YT@sj4`77(~QDp}Xj!M}jDOU-YX2N3=pgSix5F{3Kid~5Y5)dCND`}Wn9)dZYR z?vG&VKhX%+Onz54ZnWHpdBtCIR|3D1mXQp3iWS^q&yR$*7Osq!u*nGn@oc(TeAZWI z;}+Me8;t~h#kzHR!{Zyo_g_Qy7?zdfaory?_p`Ct$atd5*#pebH(0xbiO@g8_~q4q z^a5dF13)eySTWE215(cGF<}=01`e^pa=$U6UAMf%-6&|(Dd^k z74(bt57X*xAr})~p`XB7o^t<-)5n=_KB@{qnidLmH7#yj>x+kj*o>K>A0daLjEklb z-I=D29gGG`grsMfeIIhYk~Cov;Nw$-tq1c@YZrtc*iS`-N4(CUc%M;kEu6eDl@#}i z5Cf(Q<;EG37(yE(L~;cp4}KnuUty4OTGN)NqO@SdXQwH#PlnaxQ0yn(>+9pc{d|=H zMl6mK_!khRUtWe0iW*k1STzqS>eeEC@1PoL! zhlZezrh?Bp*kmWv%=~R7lx#(nt*}632w-5*1wcjXo1XbQ)jKfUBZy#SNp9fw{Kywe zszVj446~1t3RN3EaRL5=1?Y4;0?}~bD#e_Ie=3)+hnt5d3S@`c-?p$$=KS@80tyud zH|+=6BuF7&8Wwx>eOVm&(^d6*%F~tKLyHu)CV176WMn!tvC1$2GpEIdGoG{OTd5^1 zl^LwEEs5XpZrG9QsfeL?$belpjh5Ea5$grnG=XbQQ!TF4z?J|Y+CB1^2U%#&=f7Qt zxKUYQu|2zwvjI4WL7)AQgp@xyiNGAmkNcsJpm=hf62E2bpxNQ&Y!2Erd>Ej9sEee0N0uS{PbRnTYJ2j(OKyy|NjEMX^{K zztQ8hMFwIV?NQ3Bx*t}Ze|{_r%N5w5(C8nUtzK>|=^?#_wDo69(B2l6H~y&rc&{1I zB7ZI~x30{vk0p{L*$>-D96tM<=|UB1lc|_rHb!lfGjqYYA zyc@p?DsAI_#^yTu9PH)Re=#__VL#P2>_=-}j6A@HFQM~j70rU)N|*XOKQ+N*wF61< zs9}l9*Qt%L+Ek5~={b+w0dI|@V8zec?n@^@C50Pz$^VpOfOR#3kUsAFAO+$Oojp%V zF(2vGkPT;F>pZD)ysW4!B(noLU_}wtl@IjvDR^JZX%nokAq0WzZV*5W(!@#o%1^57 zl$=&nbpS;MP;Q6vIDwTE?lE@<@x(^#we?PGawndSlI?l=;OSv7C2s4=IN7{8JAxYR zMm%h^;>ob;^skxPkof!hEy5z>=hb!_U5LWlV@vH(%(NaXm_Lg-P3qj9fp@@K)IYB? z1ocTM&o+^qUtK;dZDYxkrXmhEFV|lPxLU7#2*VQA8CuuH}*P&wE*L5V&YJ7?dMqW^WAOvXVwB7A-BiG@eL( zahb)2>f5q@*nkoxM9~V)$%9n{rV()9g@!)(qQqK+gIYNi@rL%lqusaj$7Y|GG;Zk2 z*HX{vK*!8!xyQjE5NA~KB}zlcvqrHnlZ+VA;IozSY8eH8)TT#jC)Z05Ba$fT)sxx7 z%yU2W>LsT66fgbrsAHty%A{akJ33qJaD(x4KBt-v+!@`gdo1=v5X=P`;vJ9p!j6~p z%I{irU$G+5>UNE(}RiF|2Iq{YqA4REjp~fN7+?UyM2Js38@T|8Zi1HK#cYf7Rsv z`*rEyTcU&`wq)fF?HZNIbM|cEehC7&c@c=vP^F#AIiG$Bx4LP;bdT$kDWOl<)MCwP z;d&14u@27r{(~7-wq48L8m3Roj}QH~7|)_Jk@=YiayUMl!H^@ck(9Du1+5|y76oc& z5N+YQR3@3MEuZ^}xomC!$RG zMO+o`1n0mOxyb9y|$f&BGoPA(Az<^L_MbJls?O$^sFMHqZ=+Ulj_DnL{+z zr}4T?tLUmCcfchw{~oA&%5JyN(@fCzZu91PZlN`(lrbo&#m17Nx0tca6n(B5iG~$d zLNkkJ#bu4{E=^7!cO;@a(BY*5x&KR4tXaIQH*OfQ%v(d&%!tDWB6N{g(je2yK&2UK zPWyH9Td|qYXxT^~Sk{nIifsRJz-?r)CKe-SKOL+@HdkLM9PbN1rDa$uhFxnGAQ>&V ztOv>GPF`$GR>#wPH~Qij3QxD|$xFR{LMRPBm6JUjy|$pJU32f9(9q4oRNFIOSz5f) z$<9XKg|r;_#^tM=iMFDSAj!s#idVqCn7W2sgm;>=rvDUTnTn>XO9h7+`zp4E#e1Ag zGV1m2#8%T)SS)=&{4yr&Z<@ULUy%SmjS>fW-11UNv8dCRmvkqRM(;`AJ0HYn|Jx@r8)X72{6=rx~y zM6n^R0PO8MmZ+R~{9Xxp>$kIB2hF1gl$4*J$id1x(wpMvSDw7*S6|V9cPr1cle_(s zAou+IQLMqzYFZA;77iw`!0+3M@Vh=`9a{ZN#;*J}x0#qlENH19$3I3+If+9etDlE{ zeCwv~(Uu(P#TiNODSWp0A*3MN7pJD_{at;lDLB9A_yrw&V$eqGIb2_Ll`yL|Tw{cE ziel9fI@-M;M947SpC97$Foi=IjFR~?Sb^y&YYM;6mjWahI8pcv(XOly3qy`^CWDzQ#E?2m?oFjjVryQ}KWX<_MxT znO+S{aN>r<^Kx^K1C;OV1t0h4vDau&*~bGMANDr5)&@%3m45*2bEEibG1;>f&ycMew}ZwxsLAl!q>eZNea~lEuK9PpR_c@eeBaiQ zW$)|Zg$!f5Ff|n&iIN0bH{#cqbPr0N*&TABp2j!WO^K!B> zK>6(QNKGD>WPSW$)op){@;|HLZ#EDdo?Q{V<=!zE(&9kxDK2ZSFf(zCT=+acL8LY| zpZOF5z6})7s$-T-Jg9)2%z~HK%q8i{Pf2!G=u-);d;Y##1jFG;-_o_npr0zZLEu;| z8zX=nbPEgAh(P%8&F5QR;4$mz>e5|RP8r9{x2d#jc;tT`{4r6WNTfNz>^pGn`j6A# zF7l0Oe&plQal+4z*C*kYpondS-Aej1`q)V8VL6E6PCbfmIsLh}ebbwL?UnvJErG}R z4`1#A*Q3e7u==cTt3DLKR&8~TSemv2_W*}ETUIH-bRDyocg8G8dO*jR@fVP}#y85T zL*zgJls(@L4vF78@des!+D&6v8d>OC`}i@V@`!wknQJ^APdT0y{8)O_O~s{?&!n<; zQkZHx;o#-8Hu*w}dT0pIBn?2YsZ$m_Q20?KAavWvXW*+YU-(j14LSJkq~>;V=NjwC zyw`ukw6kDg{J_zPBf4%f^Kb%Mj&i$UQ?R6x#bR%dnHp(oRrs)H`(I$s!E1<)proQg z1BtLqYVqAFR9^SFD11UGHn3PR72cXvr(8=3-L|@DIf6gZ)7trG)OSj?_@Ew$0^Aur zc&5=JstF6#em-wrz6-Rbygxl#L42i2y%Mfo{ z-qZatAhR=Sem9IE-Vfqm2pG{7!w>yUs(0gNScgR<^O&<|JHeV_a^`;pzE72+oqoW! z@0A5=535?yTp|vuRju-_F)XZV9W?i`;eudhO7&ONiX@w=v1(r}XsZvXLayA!=N??~ zQ2|mASGB16%1bBDg3mhbgB_IS7{h1)E)S17gj5Jd-> z!UyjTZoHiEZ8tkQ$ANw|eTK4bu{FD7>yPrK08y%fq7B9po*QrAaVd`>QQ3xmpW4Y~ zj(^1h^XCihiUo3!KlP{;zW$aZa2psk&${gyStBx0ZixdsOkc#FKi1Kqq^iy3u4_WL zOnqSl_%hoe4oC!mD%?AWV&r7 z^j^s4sGIn47k-ACLMp6>5^%tJ`eKb5R=jXAUdKaw-X;KW1eOa5ePDVMG-%L+Of+i1 zo%W3JZ6(+Hi}PBmtF5fhy%_|#r`@yNkq=gnW?LkmldIA2^%&j;s)>Qwr7h=(OH-Jbt7h;(y6toQqfME?vf03>TiCxo85nQ4VPRqIoY!k) zOrN|kH)n+yLf3ib$LyCab4(Q47ERsVzIe>Tw5R`byJ=re z8>(Qhe|4=>_RQ*LTuXSX_{B9;lG>bh$4jx}X8;7pVPgtqo<*BVQHD7!Zus5NQ*Qy| zZ@9NTHzSU4%6Le}r*TYR`7PZuTo~V0U(PwU$!iC+nB}t7-i+K*+uHF;a&E7DqE1

lakVq7H{W+Mt#>A(5J zlSE?RFumR=P#9U!fpQbfgcY$~_Ucs=%n;3R2Xtt#dClDi6)o=|&J@e2w@1vH>wm?F zf}$p2ZUBP!Xk~P}S(~cGy#Tfy;=FobhLef!?qz zi<>P@mH0{pUBhuHss05;Zc*TeQ5nr)aKC7+8T%aK9C@RTXgDA{2j6yKL{Lpa@sHIe zxKP|?0jqD(IBk&hRMUftN9enTnO`3mK1+%p2 zTF{zHf9nKYyndeXOSnEtjqAExOh213sgd)M-QjYzSH;OD;Wv$Lg&B3 zS)dRO9?e>^flZRelu*}x1Z3{f>KMVSVCJ*m5<>qRUnvMen=p;gt()H8QTaUkOy)jR z|8+7?{|rH-!hfaV$Vt<-1!~0SExz9~E=#LX4ccVm8T+$e?>#T~NFchPpM-@U~?x z2=_N-D(PQCbfY#6>D6cbna_~ah|K`0nIb~u9dEKNa~nswpdZH66e#g^eZ0KEaK6v< z7RXdW=Bp!iJ9#xdOD|_lO*S+dDz3YMiaNPI3`)u0KPRN3x~Q|sC{O!Rnrn?@^BJ{{ zU2KKV4H3Bh$d+iXnl4GYzcHKppJ~Xa7Hd$GMWI7N2)6bG_E9%Y|L07SqWJh8VSl=B z`Sk%4{#Hdz?vZ5fj2oWkt@^SCtmTnNLBA6$#ie#^w0qyez7KWftrr@|qdgJ&VDzWm z-1YZU%h;&^J<9bY>tyXqElMwZ{9FNp2zcvIMeBdX_2)r6jcDC9mB;A?QyZh=+8g8L zk94zXkdMglL+$TtMmjwrR`GzO zjgbEoV2t7-J@%D^(b7{2{X1yg*>8xh4#eAlK-(;q8F~UYK zl7)&2A%+)!hIT9tLD`RlX0>cbqHdZvtta*#2RiiQ2wJIq%#TIgVuXrBq=eWGjxjn~ zT1i!MUh4#f3-&)e+)+CEN2GB2oX;kwzUd3RFaI7Y7}roEQ2FpI;cEcFXkHm~J32Na z4W%(f&?=Wy_H!D?$JRR1)o+#9YZ5zEIpJ)rZOH>WMnCmt7=V!hY%pKGmaBU%V4 zC^$Zpt(Gsmi{J&g{t*I5+i={N{0Y zj#>PVR1DX@G}B*}i=DIc2j1|%+>N0z*TLLiO-<4aB%ri>z? zrVwagiHIN4yRuZF{if%lXoPLqu-1VSO!!Zqzkb$RZhLZMN(&}k-%%G&jk}sjnuNLf zI_BQTc;oTXAAUW~Jds4&6Sf5o=oywg30TTuPrTO(!L>LZUg2?O=^WIqAfJKxK&17P zr}p)zAJoum&s#>~V8m@_rWFPcU0_pcXMQw6Q2+Fw^{B!W3=u34a=2up(WPtKC%&Ti z^FPEEA`ft8WftF6kUAGve1a9;(kemOI>UWSUX zS|W5xuwphfl#?@se$4yPDoNv$c-PAGi)S@H!=5g~K zYN|5xOGnM$e3(Dq6L@J@o>*AAwzJ?hI%=MB63DmJkKuiwW={RJ4Q*qt#qI@@qQ)Jl zI98$J7_ec142S31?Qpd&%dMR0#*hytN$ zViLEzEA;j8rWbF@-zY#jrCE)s{IBpyN*brpE_7~xR887{ITx$)pGAIDL}%xDviKd5JCIb+@0|TK$rGBMt_agxbYJ1B|{-;}5TadAwBLZJ& zmP9;lEDW_q3>Gr5@Fwg}pRM64p=ndSA83eK8C-lMYXZ+l#(O^|pzvbG$HfwqMti^B ztIDI<9p~gHGsjoyY<43(J8t5e(OyI^E6gd)4Q>JAG)iH#KeL z`HKI?heUMMd+ebh9Pftk(8#@Uh8y zb=ki2DXraHOR~O}W^#IyO|0FnpIV_j6^-E7VwBySs2+$+9)$bTw_KWs(zII3OF`e)5EM z@9ZqB=lVP;Z*tkW-lS)q&S6}eKg3^s zyBe&X^ye22bA8mCgO(@a*f6@_O7PelGs5m-M3+}Z4jxSev>jp*B=*^qTXd-LeSE^c zF;zq3IeT&T;UZI6I#!*ZM!@9dTG@4XW~o)k8?;-d}wY-{6( zBMRJ-oIKw@>^~(GWXt=C=^*Hy-Y~;ps$ojv(p;$GeKqS+Xr5PfAoqZc>jmvN&b?Z$@20&r;Y& zl2UJS?M%mQeZI|9Q8xQ_Pb{(_%%6<`>cgQrhDqBWXXC5*@*g5KQ#s7m)VVKqmr2Vd zL^Rwn{uFAHP~Ut!lI$h~1uEj#buPM~r?t`_nLcL0TEcxFuE`2MR@(hG5sezMcyZEf zE7XOU-YG&>f0E%8ym+(c$V)b^8y|rw?7Sp%Ni&frXpW)M9lsU`WfU=vh`j)tqyIs)_r+C z5F^#2N-8EuBClT})&VC?@rTvV?9;ja-;c+NNflT~alN|pBqrvDY-7Yf*eV{|X()=s zt)I?G9uZ8hY^iWjwz5{!#eGaO|IC3mAi_7B6e6#U+Z(G$dVAfqH>auDkB>Tf@g>2{ z)l)apKFkN~*)6f7SPu3B!JEE;#ZNmGoM& zIAjm+AAjwPb~`5HX7F#fBFT54(+gk9enD3)kFYc7ype)W{P9WRkve&{3%3e4K~RWE z>p4a$+pPkcA=_R*$A3Sq^}jtcs38fqRsPIJaB*?sUE3NY?C3H;tG$JY!)*=S>2^eZ;d)+5KV#3fZCi~A z$#7f997AL%!f&d^&ac+wjT_Hh_rk2B-EIK0!480>d4BE+bD?4c?4)tIeA&@hcZnFFs}|5Kru7h9qt3n`+x zR#Jlj^=XFXuDuV-HR^Qg)#Kh@oC_vtiM*bTj=;qZ{%%uAs_-?|ORJEQ+EJE?z~3F` z?=S3^&+r2m>0f#%B$<7BjOD&mmF5!KM8ly5dKZGL~-J!#75`EQ@1?VdS1_xzEj5yvZPyHj*5Z|i=e~XSSgQ`d{D}4$SirydChzekE9F)mb#@-d~MDwEF?EsFIHRZ!f^NfwMp%cXje`YEzGodRnePOXlm` z%jh?{;aHcuWu!h=)op~$Radj*iAK!Q8GUS7OkX8a`fQ|^f17~}E-e1={d%C62wiY* zinvIJAXKK65SJ`#IJAG{F5C9GCx_3ZzMUxH?Bde=jb@t$op z5d3g|p!B!qNTD}f_!f>}tah;uoUFx8df|*7MnYz`%FN!`Ns4SPA$w$G%M8i5 z5<)g{Wv{HP-}CMMe9!;<&$-Wi&V8TL)pfn!uh;YScs|DSrBh^;@+*rTl0(_5$*5tM zp4G;aiEIL&9R;ZXcj?vrqq>Rh)$3MiIujlj3!y0N?VkjlOw_Rt3cc;d8_M`g$ErBD zc_l$cO(-q~Xa3zKThh}L_s2OR^{o5fKfy%;3JSs-^6bBTouoKej|6ZV_iAJwYMqlJ zxo~4{g)ZZyJdIGe$mZc>AO)LySJf}s3iBk$58c=+Pg9&0N=q)em2j8fBl*%oV&E-u z33`8Kw#KdANs*P=LUNK|g0jZIX3FBmV?49uw0qPq)BZiA54FFse$Uu{Eiq>-)HXTl z)J2xll2sx+&T$=6^wA-{hECz}dcYihi z(F(`;SXc*fm=swhjGEz&2y5#**|yKz`s7XcMM=HWuvSgB(I5REP7Cz`S)n zWwyp$W~YbE7nD724U9QrQ8A$ZAVmDaGLrcv&aqPC1r*%RjyABPa zHEQA{xKqMEQ%Eza=q&BmK75w# z(|vIHJf`N4c?zi^tHHC&;n7erBHASSV3f=yjD9`-KSKLI?p~9uCj#aUW9%@<4vP*f zT}UV;{kZh2i2Pobr^9Av4sJ<#qp|10?W$MoQ-;iNI~)le(|dl^+WYaRsf6emu(5qR%7= z0{q*7W177|6mWd(twnR7!Yu;@RD)NTm(ngR3ZC!pHdsS04~lf0%T*bdDCf5%P)*xI zeoddvt_IzJ|I4&7Z2U(praK7RyOaNbQ0?0WrK%Mi-|f-7y&e(r7xN(Pj|^u z;*%kH&%YS-d{hz4bE{LD`bpmFD!#h6o=QL_J|eS09J9yFGAHc*{~0^z?|_)})N$k-n%&9nLkgfe*o* z_$YsCOH==pu=b}X$3DXqPjYznvX}5I=z%7kA^05A`2p!EXcwmxr8~{bmOA8xQy*N8 zy~$vLN3$}$7&xkD0!aJm7x4B7OU71xX0BjrB;8)%VXxr54O6RO8t`FqV{*y$<>3w5 zoz?NB-ZNz*uO5Z4QxciXeS5H4FO{g$Eb!{JPU!YdZ)(YPnjT?!qIX@AKNdb&opAx! zldfT1mo~X(51T@1_{d9_HO2bz`nPy%$uhn@7Ej7=OCN9UdFL{_y%;yJY%%JU=a1j= zPG@!QE+qz0b^*s|A%Ba-Y zDAx`4vhVKzv%-rk5e2gcc};$6<8OACL&DnLG;VM!oNQj3I+rH_q2U0sH+cU)K! z%{Q)hzkcXz+#0!Y?s2Jm*Pv-i8jVZ4u1Z)%_lWcTCDXOk|Pq=L{yhH zsVI9c$P@kX?2NpJ1E-464K?9N>&XVI2O_UrKui!KQr*}ilU zt&hvk3N2&Yxco{x2%}S&cCIP(-6(r7$CHN2L%?j z-x3_*uw2^Vg*($Ndy!G5j!K;|FnNRYA?ujkmzcl!EvJ8N3fKxn1NXPEb%{LcGJv2w z|1?(~Z13*Y;W$|uP`_Q9s6#s8XbX9tO~;^yJvm;VWt!E+5+$xhqi(s4FJ|sD;T^w< z$-B%26U6LUP{^i5>dNcqp9ciQ?D_NtCSB74{!L9J9YKi}7Ol|lxyoGWG-tc(U5iCa zZESX3s~EczXL0WAQCJ7f>g1h>heHbeK|84sc)BS}aziKjjn26b77Pb#H6-@Fvjtz9 z$iJp~Z|3RN?UA$P-d1R~_dYML znZ)SGh!QM&g*3l$r6<`RXM5Tr-Y%_$n$o*>Nbx%-8(x0-;%?RtSA;O#)&EmIhlO6kqsEfSV%|Mv-rpmYo4;uU$Yt@%_-+jm zHvGl*rba~Y*Pess)-YdLfzwL;(-vCrcJBwTYIxi?+|Pz9;HD#|nOXW$EjGh#Fn?W0$hNWZ{cPqk0ogf4IU` z{}x#bsqF~g?~)@^r{`HOY6dT(-glI}KO6ADBE6&RO&Onc0foY!GBb$9+vAKAt_ zg_y7q`1Q$4fmY?W)IXV(((Ai?u!1vo14x_o0WI}UJt&f3c{~65oE$xPVBnLQh*z%-dOks=>x+!^`kZtf`T)pa$qsh?=S&Jkhq5$pILxb_>q#4PgVnqOR zThIh%3c|uUvejDDS%Zru&60-9iVB%kW*v{*7qaNax61UR^d#c08BhC8_M}SD-HW@R zkrvN0<}5@{Dk5WFWygY4F=G93)ns@Xz+97{a&@l2t;luK2l$?zlw);tGT8yvxAJ1c zDEH)Gb~?Yu&L1<4d)v=vHNq@|?q+)VUs|2MP^ub*9#k@B(YE3@+3TD&ru?C56J3lzK5cAY#HU2v|*!XepTJ^!# zvgJ$6wB&cjI^wQA3b5$Xd441wA~^kUeRtfAwPB~?<8v21>PdhQp^ zY$&$)u9>06m7W7t6())O`^Dkzrrl%%8HKb%8X&67=aMS~U$L09D8M5%lQE^b z-uf3`tL`b4kMRBcXdG2gT#M{*urIdJHLRb35fkSp59h^r{>_EgLLRRkp+qtRkg5G}Bjd@g*C?Zre zCGYW(98Su)?|k!sH{%paF`a-zK7Ho9M?`Q0z$q}!NYbqqIY9Wn%{d(%^o`ON04#}bs7n9ctouN2;_2#Iw#ZLGn2?n$#u^3l zGPN&@Y}VOC2OX+bvAOodu1~sA1m(*Mk`kfd_R;9R6V{X9#Zi9x)x@#3H==p5D z`~9o+p9QU`I?_PHN(VO7#OP?CMHg+lZXs+4;k&2bFH)E9wYJa2ey9u%2P;(-;~zEX z6Vi5fc4k09Qn(!ZBKwTh-$U>FPUAG;_^40yT1vv_#ohV|?p`03i)iDR#~AyQT=OPG z9dwPA@qxTYgfH#ZzkE`E?-GT~^P`0JiyWH2?T#3{DNd+S0*c{Y$$Z4<57u$^Odb=}(+{Z#|~e*H3nazWeSOeuc}j zzRc#FMNg2v(}B^!YG+?o5K&>oX>peS#rE`&Skca}Q83vkjB9?=gh?JKF{}eEsIPD|<6^ zjbU195@#alFt7d0lad%=E^KFd6E`&%S;CT=c+#0V*=2p&q zCQDw?)1i9!gv#Y@aXe$3JJ~xv#(XLYIK)+7=@-otqzNXH0`DmLRQ!j}A=+zIA?yCe zvYC~CTe7XLv18j{e?AzYTJ|MWMRpbiqz(qajN2KFhZ-&rZ#)>cuNs3kN4o$o?GDU- zp)-7bX=VfDgQaiP(_87D6Z^SnH(xiSs9X}zWFi9`qyqRz46jv;tM|V^6YLn+|-)XSR-3x$&uY_!uOiWDPFp|`__UuUBmsm!sxLC%Xahr#QXH_?A?yE zm8}B^_E-$UZh5%53`buiG}+&@KtWt5$Xyz;Hf#H1%G{4Wl0W)njbpu- ztU6h$m1v>28kyI=bv?$$ko7_d7Tah2X~Fwxh2&G=y@~g(mi=Ct`b9I-p(lUPQGxeD ziwtVMMVeiValGKrME&KlW7WIdRB_rT9-o)DL@*;(FG{;H7yI%ZHu2pz+UU}kB#k`g z&U^27!Q|$)2*-X^v5NXP9E_0wJ)nww=(qXM@9G>--YePVbNKU-eOt19!@>y6hT)1) z{`>du)N(n-buvnxXkwh35f3m)kL6pnobjz6`wL?Uj4IIYKE7VX?+$?Z#Eg?Aqt98e zi6AWs}n#rReY4H3S>m}5sx zl;6TVV_VzzE4v48?`D;lcTzuvknxr`G?kG?!1jEMW%`&bl&CUV7F@;$Sg(33pk2b# zjDdiIk>Q|SyH|!HbqlHd;wzu}$DSQy{f;}FeHA&Vb}tw}p9;XNfAykuP;K1J2GhFucJ_9p(IC(}Ov?GlZ;s1fs;jF!PoSy6v{dR3Lg$uBYG6Yc9hV zeLDQx*Kv1;KPUr#tj-2-Z+{q1+BJ&p`@%h!UcS=h`-+Kl{He=Ye|^>*PuAAG$zEu73zbC45&8P!|<)tOJM#6_h zl0^67i=8lC8qg@n#+araD{ioxnwc&*i2K-_cFRJvJe=0rjx%%))X17&9sN>z?8|(IMPhy2ZEu<>-3F)1pl^yv>k$2yu?vd*+1^6E zasu$Og2#lle=8xo?RC45_JN|bo`J{QpdIBi$e*KkHN`KqXWZVRA_}64c{W$}`LaYHFO2x)1&UJu$5e4Bguh}GMHhULKPhwnt}6^g(0z1k8JdHGUL1nR7$ z=doG~(&-ykLxdQSZo=g>{~)(|GZT?-kL*{P8hpHPh6`Fb-qO=vLsK-$y>gdc@QAwL zwH()c4X^(k%5s=k@z#u0$5)_r`DkUZna<;5Ha_d^5-`5v z`bF*BH}G2p-e9mm&5cR*BP_Z5W+%_DIMc6lWeGw#bf^-~ZN~0ovB@I=;?O`P?$)p7 zFAt~K7};}3Zxw{Q){NE4ikl3r+jomQa*xhx0&Wv6(7tTf|4Zb_&suE%xZ4Q}qQ9In zkN5L}l)m)dm)QK8>G=EYovI!br;~%P+H3uymr&h4+?QEh^W91|HXW@L)8~%+T1MJ0 zJdR0#sjER2iQCKl_%E7KSgb;(xgPE2eoFHDnQlz^hzhVhua&p}^{H1YUuibUU6F+* zs_wZiaiR)A?AeYI7kWf(jT`U2WE)9L`V0Ie|V6v~Lk|%=hn<(DE ziMY6KRZ`R?!IW_=+d_~5a_%ihZ0`RSa@KR?WX7E2Ag*alU}^m2qh2{JJm|jzgn*0- z2J^Q`jO^Q$Wz(KW_34~aAk#Bq3;YK&3dz=g;rsJ4TNh6E&v*yJ*vD>h#`nT&l*H?4F;mQ>k zv01L<9{1YscQ{P>9#!I^#w?8^f%RX%dTvwg6XB#GXGZ!$?W$hlv`Xc{!Pc|gjeT!4 zcVcf1LqywNo0_oNDRFA--AtxJ#?M@7*`v>=ZysNsAm@hzJ$>K1Ge0lub~?Xnf4Q}l zc!vmvpp|&-@&k3P(^}8Aq{mzd@qb7Rqjt{5KZ1Z_-?zOqNE zcgdWRSeBt~V(9+Wx-4A>`3BW=eB`z9{T7Ai&RecLqmbsh!Y6GnV-4(-g$Y1;kx~^b zA9>ml>7LR%1knGjQV`9vjO+Bd6llkCHE6xmWVT76X0W2ZPo{Mge6(}fbp(x-?z39w zIh1aL_Zj2|Z_l!2EM(~v{1j3nq}Hx{DnXoN`BBm1XnQD0CsVkXyu2{ry!jpG3SuTP zmj1yFnjS7SD1P|ovGo^fW!*nqqD0@#dT(>H7Za{%<8V8$9ls1_CACDVuRvNEPP35EB&JOm;?WviAoA`_aUAnL#g2iIJc;T!oKiMYWwUAq)MqtbxG zmZ&lVI>6$;Qm~f*U)m%7tXmv8^!md(r25oK5QR7aH++KE0Wp4_=FTJnLUMDMX%K z>!QZRA%otU?9E3bA2!-+Mn5Vua5Q<~XJvzpZGh#%UShE6fWxq9=8}7Ip?vJBizqIyr(g_ve&J`~ZyApeM^oZlFl9uv2 zbHQ*EfiL?Kee`o%67~D@u9#i(bPWeqxurtqakO-}LRnr$z-Rq(Lg23y_;XqXmZO`d z9U!RuVeSdF%S)WiOT9KWw2cX-KWOXGWrh11F2rsFSSDMvN3R(%MwafGX*w2bMaw0G9{`t0UShf&AjvHhx0pU9i+s%(GQV<1g4|WIG2MEWT z2Bt_$Y%696zM7Sa$MH#^Hr!i!2<+o=xRt5PTf%ZL8eTJn1D45_+DfLN^|hpJCKH=F zw-$QPG%}z{iECy*Wn=$PiCaRBZBaYxKEtQ`{pcJ}cbN*u7fW>c$RAkn23br0-CpUS zQJ0?2v;NKt%?{2c8f^saURm~0E za7~Q=H2nQRvbqm*Hy@WKc(L#sRDbu8)r)hS@Ssy^Pp9k?eym3eE;B3N28Zd#g@#^~ zC@J1uaBc}BU;O@_^Aecvi?y)57Ar$1Ljd->TCPp&;i;Uq4 z4Cb7Sf$dOlu(P!;p)kto7S3=u`cYNG@@gjU-CHm2Qj^e zkc9{Ux@jAxEk_<5>{iw%$H9(6)o>{z0@ByA-<{$%E@C|+=&+Fa0m8L4%*^(X%hSmQ znuFb4_T(N?D7m20NwA)3W%+}bVGlnprAK+)KgwkFVMR1`=);-R^Yh{QgQz>a=M)7K z6{OK71oTuc9~^y)mn4zJ=4t=Jpnp+-JqSqawi(^h#}951*k-IO3iMK(9xU+J0`FbF zwFR&MoI&v5k*Do?D%M}U2_t(p3XI2BkvE&V>U@%-!tL07y@On@&)-^d>cJd6!l8+E z{oOyT-kZ5Mz5+}{U;{+9mr0Jm(CM2lMb>hmgS9cMpyP(HmiTsas=ig^y=w)7m(BI$ z1^$EB&(-;wl}p0b{w&`a!sS6; zE40VXhYKWq&&4!Yr32fOz5r6t+1hF@XiZs~SKxrFW&}F#Cr!XsSef|3?2A&<*0;dZD$IuCY?A+}ef_v}>XPGTgz+IM@UfO%D-Q;- zo%bacb2D*@3b1VfzQWx*Vpqr{7Gvv$Gba;~&Hz8=4%+_b zmx%H^Y_04{ClsrYfeHy#4?;MJ5dLq4;yP$60!#;L$M)SLyPBGnMIdHZj`cLprMS;@ z0yD0}6@6NC25l?yM5{l`n*py2cps+C`D5th`QoM)1u`5>lCmF3b^}WWZ3SwXU}y4Z zwd&XE!@PIna)h`z2G9H8fTekMg^{vH_;B6^>_TtUc0~rc_~Tvnj(pV#4S8~Z7E`Hb zp1-2wdIZ&{4n)ZBT+YzBD1jC#H@hK@ivxPMfM6mAY3t%WP!C#jV4->^&K-rTQ$r9Bi^(||;l>P^i<&U&1Y}EmlXx!AsQ|BJ z9jkxd4cWg{m7~{J-Hf}o-sVO!u(C~-&R&JSAnxFdTs0L2TGVmAM$ogPHFOeq!U5={!@lZgpf+X^37Wb{|$W}dld~}ZRo(7 zbS%Yo2wYUWR25s_u3STiO}nWg&|$?d?BIX(^1^b^^9dLIeAO|lYC%FnY#%31RbfR> zu(@y0dbdZoY=jRw0Mb@)rfac|jdBUKfo?au+)T)dFdpMjWTQJj@Z4zd+zvoZ)!aNE zuAtxB2CvuF{ukj_7ejknL6GOHYK^}Gh?hjZDMl8i*pr&E={DH(TR#2usV2FVCrJ}{ z7EAoDo=o^Q0|$=llGo1m_H>U}Roy|bJUhmNi1giQ zLtw{BK&2{#G!)Uiv3D6@j!0ZxPdP@m{}W@I9&;S5zXHu(*@ODx*J;+-j(~fL2f8hV zzGAoR7($v69ZB|kc?WS&IbvrK))BToL~EZrLua%{?p6oUa}#hgtxjh4C3x|Z+nF?4 zbafgs$@Qs-K5HC58;skq-(&yDz$p=&6sucM+g_LsNH>ecnX)k^gM&9$=cGx&D_2q4 z)u%kjYQch!77JZ7Dg02N@W^;&Hox9N8gO8C0s(QkIr&TlJQ46a_TH^WJn)Q>u&7y2 z_Co(G-4naI9mhq?ldA3V(7f27<}8>^oLuPp#2E~L6r_}e$O32Mq#W zI!qGuN=@E#GDp{ZkCu!dAM8B4YOj))zgQzt4|TDGui#iF(PTj&gFm5C^HQt8`z6=N z8K7RiA6^Nt7GAVNCe%S^{J1PcS@;>W5#=Mx@3Z0)O_{*jP3R`5#&K$IGSet{@W^OS zGSYowzxT@cCT@Oyi-4^iyozjHHG%{)0NA>ptT(ur&r|iBi?c8Vajb-|55Bno<)JJB zf$iTb^baEv44CV@-y85(joYs;3SfB<+5?b(F;65};c&P4@()ws28RrHeRnU!Se%Ko z5CJ!K@q0UIIwqz`8cjEqQIrSoxt5FZ1|inMy>&JUW>f!XSPG~D{hO5k)C)-(BHqW% z7#KiWBCJ!WyRg#<^jOEnpG-fynkWE_rMl1Yenb5VioNo%q6h*~!V`zSa=p@9Prp1S zMm9F5my52ehRwM;6@B1mqPc1;=n0a{xlaj;Q_GX$BtHH1NRV_zekA0D?i0LB}%mdN7cC2{pA$D^*bhhgnKIcmNR_+uojV#U|hn zR`Oz5%4Dm{B@0Wr?t(iW#L{G2n!Z0P6Q4fb5@QYhP zh)1Ekc2}EWy%It_CC~+zOp4!?hsEvSp>%aQ1Sg!ZC}PR;yw%wf;J*g|nDFC(%Kwf* z=u*&RvTxoy!4SW?D_4!YR?bUr55%B-%=KLFL8B56W4akYlzb`{s;)p2^!8eYjkN<< zGH)QC!?YA2DH4wKPEUg~G&o@cRt$~ScZDpnH<@o|>x&~-rEC}f1 zA5&9NsTzXa{TMb3{BVu!W+}v#uz*p&n*O52dy^@XArnqAD8}-U`<_`hr)(Yy?co^Vz}Xm%uP;}1VT9+Z*vcZ!LSD|=$Ce^XQ@;L zk?#eg?%*6@j5GRWxKKXQT>?+s?bPp53Iq;d+Mk;fRrc3>_q#@A;2{DfxQl_a{xx`} zcfFDN1M#CAodVH|xt|^}&;QT;#CI1KzQO=QR~bSxlZK2v8IL#iB?dFXwfsRKhQX8x z;f*qLV&H%}WyDh36BQJYhgAF3=8KT{tU1&|H6MqZg-{wI#CcO%%12UTK)&xykgeBV z`Aq8jkl6PyEaLc?@9DrPd1xWtykRXoU-PGe=ND+FN4|1DKgxLvk|USlDq6pPnx6W8 z#{50)*`sH>4E3eWb9D+J z=@S^!aiP~tL19IpR#CVYkxan}KLpxvO;-6~G;#uE1EqD%U5F@HUbo(z80D2WN8#&0 z^8X=XR~dP|IL!hw^Gy6e_WD`ocra>!;Hv%&t^%g&`vWlgGc2$ZFjwO(ubn7x^qnKZ z0%sJ8j89l8sAdS*DoR}RRZ{*qRJUu#@=EiDV`Zx<32n7!K(qU~G@V#*k zk0~=Wq37kJ-BS5GQi;L1by+~;D8 z(6Iwq_d9(K|71ov;{8@LJVv8g`1Hz9vc^OZ+eM4hZW~-X@CLR&FMEiSgOLp0bcm_? zr}DtNndWbL$j8Gv60ODf8)2Ix^@0GY7ZDQ<;xFKeE=GT!RhhjhJk^Q=uqFZK8Jkp& z4svTe(BJbu`#)5g>5|6@*SjW3BAPGpo?T2vB1!!I0|a}I6x4Q=9&GS ze_#eg_A6V^x_Q``*V_1SqhA^%3;I$dKHK>l#90*TIa8jyyO#%tlfk~oyEn9b zllU^jhyI1viwN-R0j9{>90EMGMlE2CGH$$XF+|APP5cIm1)p(4OSvRaZ7pl|4cFUh zB&bwr3BKCsP|3eH`1w}Ni{}^ou3=b>_cFlY`{gn6q-eqAKJv6Z#u4BZTm&?6yc03L z;<`2w4E7F`9Vd&`i}8f> zZf{QgNE6Q0f*6V!N#F*(%jad9mq+az$>0!i;Q1NpEt|%3&tkS+^$k~EgM1(|EGEEohwAr30UbjoY;K=ftX<1U{c3nd3u z-~ggg6Q_Es1a?Jgpk9Z%6oiZ5t@S5Chn;AR-O|&(d>bY@5JKNHCmYQ**!WdTRgVY3 z_M&Z%aTcC?YW!5Dg^oDe#vS8T?8bx1&xe?TYX8_)spEo0CLHXl?bFEKBpO5vD-Ke7 zsa+NtMRCvu7!BAecKJYXrQGk=Nbc!J))-XEUfYeMhE@Pz%ypPFB#+t|8%xZA_WR$V z^q@xBS1CC;2zAx@@+m0L1mid*(E_*&d=f-q_l2{I`o&E-(o6!d$^#4Z4SBoBQ^bR| z1T0~Gek@BvtgEuFYoFcB5OlVy^?((q1Ka=w6oKwS`94SE}{Tj<3-I$=WD)vfR#trt8Wk?miSYxPx} z7s#vN2Pp{0z_ZkPSsXvc_(kpEKNaqNO-{7-!W*hBxOP8}AYD{M~QhY1c3?L>>o zXAe`X&4Vb(!p(Lh^a>t0e!G-YH!8i=tu_4FE8eQ{2HRBJZJXse=hYgl8-io{sqlUa zn?gmJxKW+zC^(=X#Te;vH$yzYL3DCQDZD z>Es?uhvqYMV3sgK-N@5!0rS-uu)bl~3^9lYMiuFnQo{!>gO-4tTkpCoF!j|s%hx6gm-4_ z97%cbLSKWD29gEe=Vh?Z&zeioMj$?Gf)G=XL}1uLjp{XH_h|{~^(LQZLQSUtLJka@ z-#@))qO|%ChTKNrk2nN)F#Vy$6vZBPFP&l8@8#;Od?|$_Z!PvmAcd?yFh}_-k$DFE z*q=wTds8lufR%{ugm{Vqm|zn-USM_!dA~iO7{^SOKC25|8mOBL^ z#ZDC1tC;`vYf`{KqeoCeoTGJwuYN_Cbl{zy*J7O2EXx_dnSp9L|FE73mOKjXjAajk zYm?UvcyjLVNH74qSp-vkraxT3m=odK-4;Jo*LWv3K1s};sV_qp++u|zprNKP-iF%e zvp{GNZ!I?OYDH zE$PF82TK*rkQ+%Ao^g~kp)gP78V0C-0iMRw@qcArI4KbMjC6l3F)x0qbHEH?ebIJC z26r*1~-oHV2p_%{f?OX^XS1pbzt#NaFwP_F#=8fIN-=I_nu z2$;t=Z&W0_yj6IHxRxOY{BX$0!UP0X@fPs0yOVwtz}sx@&yxy(Ua0l~j&PkK{c(*z zfnZ%eSrWz#*ycTa2pj_wELs*qZE8B9RGQczN(e`9ZNWwEh^+bwILn`e_Meb2qknys z8~@KjiCkZ;%bNBEOwMT$?V%VqI<7n)hcQ$8EtJ1Ax3`Ld0_c}o(f?OxA%GACr~l3M zfLAp9OB{?cP})S3pIJxSoES8CUsMyHRzU5%eD!Q}!eJNm9dyLR{uW(z)V{YY+)1N1 zE_)6+UoL{P?uKIZ=lf4{0R=+RFGd?lZ#@OPjhDbr^la6!gIT+B4!o_dYcYi~D#8SD z7U_+06#bvx+|5D_-@9&KGiRypv#tn0?8upovI!34MNy=Ggtz=xD^EKKrXiFCgDar` z*j&38XAupN0+3Ia1h6i==~Z@aG{Rs0CmBV>$V3= z^ORV6eiRPMwjxuL-xG-mZb{WG(Vw_M#O zPJk-h`$F?nB&ED#IkEP(a*({SV%}fVa}g(U!#xI)R$?=ym|G~wE>P~4rkxz-TrF>T zWZ_}>yiW?8FbDy!AlxGk3x!5IWiWX~Clu#~_yxP#OTB}p!pTbaSxSdv*ALc$DKB$% z`cwMn9}}m4Z%o(NV|~~4Fmlhs<@0ZX=FC2NAc)ADR_C^2(#C!{vBECWGh`+Y-RN~Q z3I`iClUBb*k*i?-;Oz94%z$9TSSRbiwmLiYH1;Z$3k9d_>5;PRzjEjSMS9}YZh-6W zu$T7U#uyKU;p*IX=KXtyhzfpI)h$^JNQhBDyVqbXfP!MZ$3+c&M>H2=x`@4-Wy%+dzu7SrFnB&p(F}GcB%09J-G>GntHe^= zN%}!yobd-2y&L3i^f#QjJ#v=)Med+laIrBN`}_-5jKaXP@?*0ca5%;)bXtbO=m%#e zGjg;w5X72T;gtgvL9b93E+b7ft9uiiK@Z=mUEz&AW+k0f+P!{T6NymQFiaLa{Mejv z`yRsGF_;)otHPSxKBZBg-ilE^R$nxYh z&gAik#~YKTdJ*G3US3|~s2aX5WPAi%O#vYx7Ik15T#gc~FGp(>r26Zx1a-0yQBnEp zQL{nLt?C>2K&YZ1w?MNJ#6$!M7}83r$N-qC6L@!y_*?|ehyELqS2K0rIkb|U5zl!j zdc|x~_Kf^jjX~0x4GDC+ZlqW#xzy8EE@mQmWPoe|m|#NsOBNgzV^;M1^NKi>Z62WMv^Ge&0j!sfm- zaNjSHEEAov_eR3Ec+iOeDzLGrBMcZm3`L*-chm!Qf&>dP{8Cs%LBS*|%8pQ1z=(>@ z)&(UEF1ie9%=@#}NW8IkW;-i+f~|(~Eb9FJp%~6OZW8=7X_YUB!1e^mPlvo(f0uk7 ziKxw*jaCl9l(k285`D+V^;pNcOWDkS(O{(o?OQ7Y(#Y(z5jQo@VSLp%NKm>zInJF; zyDj|BPbTZZ1$o|*LL>O^)Pz8&*~pJ#YlHy~rPh5M-ZM05Hv|*E09k$qGDC-WKLX5aQq1StIm=Ue?pEBZSb8hdW^?NphbcJN?rMX9!&Rr?)!M1~ygAdUm6 z;IqNNfD4N6j%|$x#fVL~Gh^gVQmlYgt`*B9&7AM;gY==@fZ3(^kAalLL9J;)8Bd?k zX9n4BgU>uI*y8Gi?JWSksv_{?PB!BkUuj>SJN5y13u&inxTkfU&ToS*(@3Y2?_9<- zF}sOgT=Kkr3lqd}X2chO1M?$_VKmcgM=VS_*+QuR4l#((6v_CqW^x zKaB@zIVrhrF7tbN+Wd-HPVC+dgz3B=ZxYGbR?wK}MezLIM$Vi5Ai}RqJd>{>>Oll+ z_6n?WutY_C2JRJ^_@v$*ek2qDz8MBWmTCfjW`RivA_6wNus&CYRMs z$HGvX;W>`Nkx&E2SNw<*tGzhr< zls&3XaM)rx!2~qd70<~M1?dM4mMF2o(?1tJw2j(_G~P?8)oMIgryU)K1}|H(eSXi? z^JE`*frTD%B-=$gV6FW8msHrA zq%Ab}`Q~iY8X4o+N!Ed0m3&@7qb+AN&%ig8{R>y)yO5bK$;7LN1KZT7sTAj4=khwU zQeG}%pt85QcP?QtpiIW;CJN;c0&lMJ%TYBuadYDRM#nBeMe8mBnFZgLv+}39A{iWH zKS3rRAM~d$VvYMfnnSESNyI^vAo?oh^#55}x&=Mk%kw)QBvaL9vy<&?Ym7lYG!11A zF^iJ<>4OFbJ4PWHRz@xjyhbt@p*8Xp@qNNSU2#`i$7)>t&`^n}8vhM`)L%s=(nHFv z(C~>^(MO#E0aCnljoc?@$m8!@(kJkcP3r)f(+F&o-qR$;^zof;vL9Q8AH~PMA5qpc z|MIx`(*6V}5{MMcSf(Z@@CpPa*w42GCEzOVAPQeUA|x1ufMsY(nb3weMISBBPpe32 z?SH-*6Y;;NsV2>mveW!~1D&=dovxF;iM8gBZ$0&<1!0{e60#R$ea9Smny@5zsB;&I zR7u1vf_P$-_q=^kfmrN~teGPz57pG&5dZuMipCQir600HZ*LU2vfEY&p;SIbi$(vX z#SKV)pHG2TVv-b^e!qqwuEMe`RFp#t`}w98*(8(jJIDvsQL|kGJKM>@WE4EY!}U-( z1z|?!c&vyjNk}uzizL-{uhvuB);M=!p7vS9U4|;*o0<+~-5lWf#I(WnMuod?R0<xuta(Inl$h_pT6EN?$*^8R%k9Hvc67ZdJw5Fn%+ymjhGhxn3Ot|NzcL`Ep84A94?Q;fvmXDlh%>D>_mlRcm;n}n`8=`bv0TeG0 zegk2@!E1xnI|4m;JQhzmIVnkx=~|}!aM^A}FEh#H|GQ)T>qLHNGD3cO^7=UL@u5*V z@_lrW=*2p!#*}{V>mAt_Fx-X={5fvO9hTv~${EBU4Qmg|x_}$=qu7r9w&J)n6AcwrTbZRPlN--Y?X#Ro}tlB|j7u zjBFPwELNCVFD}?y_Mvg9gn%3j4M7}q7u-^0Fgpi$!!^#Kr_<*I6Y~k1VgQym93+4a zuFRAAW7{k}?`FSU2wx+PvTdr9HDSCE5kaH>R>ppFy1-AaE`6jKia-~%3-@s@wnl zWA8n(=Lw-QBfDdZY#9|YLQ2Tq*|PVRnJt8DB|Aw%wvv<`+2j0Pr|0wgK7Tz8r}w$v z_x&2zb-k_|WWX@2plxb2weAkswT9SS&RZ0Yi7jx%Tg1^>vzSTa^_2m@Q1^D`Q))Nx_~lEf z^E}&Y`m|u)rK`%iA-CU!b6`1HouhS9T2ArSg0RHCWv@$H{!H`m3=1GBha0-NuuZX$ z_Uwo+X~mn*3Qn0(`Di7%0MYVsS6+{J%)q zQp!c&Nv%g6|2X@X3^$9s_p31Ok!x%73b3FOR1rfE33RHqr zq+yvqSH3;52J1sxL3W3R?)-9X#l*@+Ga@YGiD#GYHqF%ir0^moR~ON(s^g`n(iI?$ zA4>+m9E_(T^+mwIvxYJAf-a)1O<>1^p>pR`Q!j$b`9lVcicD^ZeI~%Jz+~_&OGelx zT5R*E>6L6C?5&`Yh1yzT9>>CzIBnk9tY z4Chy*sA8f^=5Q^3x!z2K&ENrxtr&5AjuF5!s+cU(D&jn+7tPDSm4;)c44@GzD<>YR z;}{Y_U}o=CV0s>K0sa&ee~OZmQ#J%f7ygtXow8E~f3)o7B>4~>3x>59YwYPEqi!mR zpSMo}#KF>Ro?K{{GSK37ud$!OEH`akyLDZ0Ac<#t@8U1P#>PWP=YEa{{>y6#;Tx-37o$A=Z3PfOmwFPg>b~ciWDH_X#>GnUT9S-yjU z#G%z3NEVzQP|>^t+6TC8i~@1gni%m(dRmWgVh8h#j{gu$u!MY$LvFnKu_^!(@%QoD zO^tIk#)4ebwQK(D{)be?O^^L%pt%`K3qyVD)Db*q#SWU`96GTuAu^~~(fZx8M9wKS zLU`dF1%6*-gsD|vwn`ODTY+{fw{ja?fE*f#5txqQKaKyW9W4SddwiShqS?qs?u1ua zcGRO^^vkkC6&5eVBMUdKxr-KF6dF!>)CBhk7W_#YS$XBL#WvzFeCG;D_p8pPnvP@B z5S071%A^QT%QO94xzv>3p7aZwRIHUZvn(V%*yU(?fUP&eWI`nUr%3*YUivuP9*-a=k z-+?y(_oC9mKpU>%@q*w3a@7GbJ@r{e{7?z!wKI9{Ug_C4F|7F;c5gkpamlaD#;ZXbrwJ zH&9&Bkk0cVk}3@$vC2;^-M3$&K)aNk#)rZk2A+WLJ0p=$|K$`mFIXf(=4gh);t+wr)vpkXD+yS@_)~^7A{vA_bb(?tb2T zc%r$LY|)pKWT`ZxPmzeH0^dHw0ls&oot|p+!&`U?oic;?VOxll-aaeXh^QXyj@_Ir zObZAS(t{Dm!5Gsj;5~sch50E6w^T8Sl-MozP#`)0%Y1MoK{(Fr<8QuMy71^=$hLkn z4>Z!ht#&B<9~fh>qX`6lPgkPHd72&y!P}mZ0{lgqGPHVYo)qVKM zJuk0`oV>Il8$=h}T^!6E_xiSe&yxEK8CqiT4Ui-^&c@1y=jvI2k!|3$5!3j7*BX9{}mFf9;XF1tnXkK zmWlJJQ&+d`$bzFGMhk&CS{fzx6GQaVMEvdT?HINg@j~a9QwAMeU{o;5K&$K=a3PNO z$wtGL6~KQcTBf-8iY_ns*;BPIGQKBM)aficlF-fiU{6me{w$6V2@O`1ZsRwx=Y>WuIFyQtv4r#M= zSx^C{ic|KRLe&gbqR)GT;XHxEBKXo}F|x(+F76)5j0mVx2QMkr-{IJ%>EF3Un$pdK z3x|n*c}F~bVyG)lr#!bAgLIrvjZbgJeNi$w!$Y*fQsr15bHa}m57_PvFC z{2wKk1U<4q!AF&$*?ZOst^*mG*TiS9pRDh;Tyy{T!ZMTygIr9U_)P31YPU9Wp2LtX z&Z{In=oOr`uVQ!+P+yt8{(9D4UjF7s;!vwU3qZW~(;is;h|0zpHR>09(tzQFm~I?a z$2=-0!u5}~``eB{O0?cfB*n#+SLN8&N0{S3S+*umh_I!?@0aEXQ2^f%YsUq@gB;Jb zstr&RtAHa2im>VL0B3k5*s7@&uRCJI7MSN_lH~+yqdcqjQ6`W7pXYg;FhK}sLA-kL z?~yN9VybCZZ9kFxP#3BsX6wH1d9wJ%V`h#X})$xDw-{DIJ+e}%Am5&_)B4fNIJx;O1|=OnikR0OMR7-EE3^UA3NDiB%B z$g$PJ1&hk+LZVI$yr&NTnYr=A=PNPK?Y?WCAeu4p6YeIMdi|RLgP3$dw2Xm4krI0t z$BnZV355-S^CRmTYcRk^xd4V^9#>`HirH5<9R~b#EPj85HD9su2dmyp#1p8*`c;gG>(;0QIvFDv_*75sLBr-aEeK9`r zd^e_pF&1-4l6wChEdz{k+fH|Gz7mw?*3qQ}LmG)2J(rva5q&J(VGotW>KS`2e{G@3 zi9_Z3cgPVp(tm0o?o`1oQAmVX4bq`~<29L?mK7Ev$NKQ*-lNEpPWuz}LVG4m$WtnG z{$KdWgyNl|kENcmHa+JRl%Fs72CXTcN7(5RjpB^0XRKRlULRkz|MYt6Mq=1wTmBH@ zZpnh1g!POPO_xxuH ziz}aAJGETA9!3(21NEzi0^z*HuWQ|3al0i6qju_E#`<$}A_=J!i(QoDw8ASp1F#c4TzOepMB2S5%au|l=aY)I-03Wj;%ly%Gu?B%*IDT$F~ z7h2BC9+Risq24*F;mnYsK_zEB`+@35Apaf&uqwEs;}a@4DBrLKby08(wQ?#^!=dI& zyNXB27{0>G#D)X0NJ&gUO%K2J>+<#qd%3x11|_!6xI8yRpW~Cx2#w{OBw0=Pk_C+K z6u6u@X_qe|<}3faeGC7Kz)rM&D|9Pxf_&u*cg?cvPA^+~1HdopS6{*!&x_P*rB<4Z_s!>4;PPR_c z^5X}HC!&_f0e?+GlF?rT97@#Vt0qYj|9g%t^ksv+Db6OUch%$f`27eK7~tK-7m0(> z2_ot)48hxGhI6Eyh|@0Hl&)mHaLfTW+n=o>IVb}@zLNCnbv!@7s)h`B#XeT zWMqlG#CY0fBdSuF|w8N(VEmJfUNglpIC44nn+jj7y5w>!iT$EKOPa3~olc^2Pzf^*+JY{&*LsCq= z9F^*!eHw3P1pOW6F9s>}nGt`>>%u74sfNkNSFisWe9@~FK#XsOhx@~RUyNY-d@rn#DgtJdHUY%oS(UQ80Rv@@Yc@ZK`*Y-s%v3-1=Oe+4pyqq*jj!fA26q)-te1ige zALeLQZwepnDJ>1vr2_Ct%9RkO2;G%5Eh@<7vQqwbO_Hbryww}Hfg%WY$(Q-RRZSXJDgQV#$!hV! zT0sJSVZZRm6ptK!nxe1MmV;6YNhs z9-c~y)P$jOF*?6o5u{(uRk8Cw-L}l!{j`8~0~+Yo4uf>QV(JNpQp6DICDvWE#ToX7 zzE1MS=GMlCKfAhorvxGC(vjRqsH!y+_c<9(nV@7>NIk#;lmpyc*%cbRu~e8XkgMdZ zqrb=iKO~hloAmDtLzxF!vPAoyOA8H;7kd9R-B7Zw=SAr@qIB;CQ!uYjcN|Y`BWKliZ*cJgCnVyN1Is3G^-k3>J zt6$5X#ac_tqpd|`mKK;3lU1N>HrUHJUf3A>TDD=!pbAHjaqGQA`sJ;d-%uW?hM>@M zJHkFk#nE>*)9#kx$z~n^BpImlYZo3FSG^n?gihS>b(D%-h&-`m#!cWYgcP)4abiPy z?5g|OG@F>m`sEfsU0A`BW+!e8o#c4LVwjv3ua=FYz8Z`qW5Gnk0i|YNMhIQl7Ki=} z^*xSWPMQ=v-~T-SwmY}xg_a7@;ZVZP_;B{B@*<5~=4hLQZwCY+e>Q*g7Nt^A0|Nyo4Pe+>GREq%B6KTsV2dFfSNMBq2%Ob=F!g z7isqwCrJ`juy1`d-uTuTv8Ub~s`jJC;;L@0sc(mLf@W@@!Xm-rCoBkqJ)-ybC%LJQ zgi5}@DNC56Expr0oHAGpm*BvO$hpML79fqhG)H^q>FOFjcGJY|k1(I*kFHrfSeO%$ zB>%c)r9Q|-d;By_bt1!Jdq@rWF?b;$&Bsqr9orwB1HTL{@v})(RqG~sVJgeKyfa>E zbk$;C-i;Na{aAE?Oq{}EHD{KIT4JQa;_dk5+W@Z=0F59)F;jIXQLuE?RcBnaRjmAD z|IU^7OIz4F52XllNTMvZXFk1V=Cyo^Ikk+~L3uZH-AP5|FJQp?p!pk0`l>>nRs_4Q zG@0%K$V)RhH{AMHPH^Bb;wU^nYCb!#`|Gs0dse$<#a-|_7~^BDGUkuV8Ro>!5rVCC zqI*F_Nlc{t*qC5$a3k?X`LV$Tl`q$|S{W6_>s_pbIANOvAf61cLymBSmgm(yuE%zD z+3>wR{`Z4Qsz3^s!`5DX7a>*1SHnSlB>%W<)ICH8cpj%T73F_|ZutJljjbm)ryh|* z5zbBdreWi=emD{UcqMlL9@x@QV={_^UkB$m&mI!hM0KR8TSCLf=+RUwOcpCB>I zW@v2W@Rf8T=n)1v>=TOpW#@k-1b4{vQz#W#@iWiU0`IPwTep6PAWh_r97@PmI)9es?7rhESfK$ud-*Mo@}4G$;ak;clauQ&-6rL4M*yEd1a; z0r=}H>7$BWgr)31T~;C-UmbwxUO@GE@4(IAK3<^NmQS7CbQQd4DYhC#LOj%a9yt8v^fy}_8((FqVqDC$%pO(Kii4*bE$wG;>+-L+o>kH-^1TF*+SRd_O zi7roJ65AMJ_$~en)4c9t+0lsbXC6V)21ZMX@2?4{39criP{X35lLC2@QQsxge+3VUMR-1#stuwd(;$)3U zAs|xtchQ80==-*dbXP~ktW8J~24=%8wx7cR`!=E6SjqP5*zMCE#SOvG+nZd^E8hnGB-aM&93d%x<;szDGKpb2PQPUhO4gCdBwblEj z3yKkgFGwu#60Hjij!7UzX%8Ou!d>4`@?nc@@btUD4V@;gt9b$v(Ju(F;lQomXHex% zI>G@K0(uYv^>PG4)Ac$)MbLBMEN0E#peDPKdSY3V%u@X{63$7W#WuV{bfn9XDJ?NN zD3a(ZV}wdgXvx{@LZ;urQzyoJwC5MXYMoERCpjT*m-t=C-1k%a>`yof7_dn4&{i0w ztm0+`pBWYDxrEq8czh8*qD#nVT>f@7Ubi=mYN`iEf+SsC8#`i^NYCi3)*s+^3ixHu z_fF04eD-Z>sHdh{ZmTd;DHQ#&C3I~4MY%}gz_y@|)0fqZ+(4Vl*qt0^SvioFRCVv6 zM7+2HHHKQAq4B<~K zPFx9+G<9ti!-L5wm>=TwCfGQD{cHqp86e5xoyKFl{=X*@cA@`2XT37D{Fk%VPgySC zNIgJoi;lSx*6+3pyM=ZKK;5v$y4UJ}3<&`VE*vlRrdr7@vb$(pv5f`kK?f(c3z+KU zZYNflull z=O+xlcZj9_bx(=q-lW^ED>qX+c~F;jc$G)q!0gCQrv7_ljPv|h z^gDHW&|CEWrHr|EH}3V~M8*g9Ozf|T$*TNrgvheaNA{|%O>b3o1pVvIy`4DeTZ!cstSH~9XVb(Z zX;KESgFMW6T7rLLVkHc@p{P9))O|0FIKSYI{{?_8a$eQytN`o3g1OVQ1Xq1}QuoOn zLOc*E-(?zq^2571?KcYxfx({k_E9d&&cZzm?*%tH-^12Xl<~g=9LroEa^Q)m8T2UL zc_DLi408X#*#t|L7}Je@-87NW*G{p!5&oisi*JaBGUEV;UXsa8APMcj^|5hmomZw0 zgaYrXxGX*4DIzi1skNrQvt*9&1w2Wd(s$C*)ug??=;MI>(|KrwAV6Um^t$WR1CVw2 zYO*-+Y-@d27V^oc(!YYg1XtOsxLZAfNZG4{gqw*BOWBLD{Fo4GlmRx)K6qHBI?ZVs z)D4a&%#hN7N$93b@`H_CGar(Isq;(Zh>lJVEKLX$2pPG{#5vS?;A=Uvjm*dPap2B2 zS6Wu8UOQUa-8jHD`zkvuo7IsBDj|lp+79GvS#^=Mq_czv=a{}m_rPSr*IMKt-{9B> z^z2ldvh(e)662-#7OrB_E#@3$e30$8h1%{imd*{nzwEz$n>;sI^@Q!monrdjcpX)` z%Dp5rVGHL4nIbjYNNVzt^!RSe()1drp5ZD*f&mo~v5g8=*%ikJ3=gHJKW-+t{lbk4 zYYD=1JDJp^OYz>9xALbNUd2JjBz2K8@>INFl;VbNqc@xG_yfu~bLa*ZcYAffz zNz^rk*zBPU^O#(kUn(YQ=p;|}UX#T1qKVdC(x9zY=KDMH>2(b%asL)1L>AEOl>HSh z8oSDsbmSI((qB4$EpAusV;JT1D>L;(h1$adK6-h)Zppgy84=haRK#Z_)?PIa%sSDa zPI~ZmtFwKNCN}9-uiTgYRB@-TA<1FwoI_{bz-<}Hj^&A?!>vpNAk+yt4sZhSam9SH zSa(z@a~pBg_-JN34t*F07rc=?*?vo~)VBLE>sK1ICia(}xg15s@^H4CcU+0F_k@Tt zm-#EWUM8EvMe_9O_R;3r@mDFsE9T!PDA+SYHI`Xvz|sP)x~$zdMq zfH3r&B%y!d#mfg|TnQ9dpLl&D#I9H~^g2WLxmtR~tJ!x?veTb5Ww1dJKQdGYautNe zA4h(G{vG-TIA(mZd|+Y*^7x#^L;=e$4q4%6P4!M!94imRnRKpn))$7*4ru^c6KnJ0 zOW540!Q&G)T1=rs4Q+0V)RjyI&^Ru%xCv~wZpjJWZJ`AwHv3l^H+;iN<5M%^iFb`O z>YT{rp|nCH>E3n5SIV7}m)eRUPujNgbC< ztpXh~%%>nWuulW4&8KWbZ7G{)M>v!UE(!M#Wv0QMvXk=I9Dy!JvaHs}W_)Q`!GFHo zgM#n)_@0U!+QxwY0(4R&%R3DK7J-IUAh6$>BB6J{(?i#eYp5*=1zlTx$KTipu(;w+dlj7T!Lr6M zF)YuQ!tvqTdoD8Kyt)7p1CExt&kD70Xn6-QLTI=FL&o0ezy`4Z?Dq(VJ+r;yis1|W z`!18sP&`h+fOr8pXq%J@tx#i+-*4|dx3QbP4Qo3db3^w6L$4(~yAq^FYcJIyiw0TV zS%`Op482lN0K&(TT4kKz2j@Kl-LF1>&p9J`08`4Km(Z}{TIW{VjZ?LsJB8dZJmZx9 z(-cZO9A(D-S51|8P>w22qOms;12lInipJtN{tuf_BqVB>w*9YSTG=$?_rryN026uB zA4kZR)Zp~odLQ)h$&G(hZu9**0u+rM2)vY(M1znv(BIKU)v==NN{zIGEm=a#5(i{x zGJZPzI(8V@GT5_(5_Xce13M8H)QbQrL;xUpZp3v;)bAHoG8{?_`tn&) z(Jn_gdmj>s*AJRHd)(!IxHNGwol!#Gv$(2OKZ2(&V!;s3m4_x5eCR)^f?*43Zl-#m zbloXhb8?i=Ndx&!N4R?*$~bXRzJYj{08opZrt5e}`@G`=0#6Up<`~x3*Itxsb5VOy zL;C?O10EDs@h1(b;S1sv$}5_YdfJ0%3|reD6W&kMhMQy0&IljU5D)Jit0C(FX*VXxQgFHwR{ zih}N(h`BM+vD^qV$^vLOMSkp3bk&h>9(widH&dxrxy$)>n3GQZ_*}iQwh0~M_NPh=42uut&YvAa;n9d(0>2L%Q#RH(nv+t=;+qIM(!V1GuL=WVUTFAEAjWGf#ZvM>?I*L-<1;o4yiN)fKm@--!ZNvLmE=ItB5 z`vgxj9{DWcARgl`-k~HFW6>K2PwhPXMQucSmB^nCeCdkjy}Elozl$S1Pj4a~GySQL zJ9k}j!aBv?$1|-UQ6)I zr__AP&X*=XKk5nwb@l|`|16OHagq}Qu=tet_@rjTll`Q9)Wn3owQ(PMpqQ;D4~4Nt zfFdst=C@2z-s1M={F&d0b~jE1OYt$1PW^vqoc0=`+1^x$G?(&A^cI=J1LPJkr4Mt7 z3sa`39em+r2U79hm1?TIhJ`-O^+_M;X$cR_!DkBr+{B@A1xZXJVq$q) zDY^uGSPF@_)*xEXMpr=RMq=pq#wO`w(24}WCf8&G^0%FnhhB1k`V`VAr@Br0PioL0 z6hH<*A-j%_{)*Fd>eDWpl&C;K`tWy1`9b#Z< zy0*~mEBBj>W+G7E%qvZ5T5@N5HuJx}#YS0}u=6=>WCh;hQ4p~YiYi1>=z z=8ac={0_=dPzLw_^~7M|LIfjyz-~c;WK+{43#%nw-f;sis!vDYYAAzG;dsKwW!B{# zc`j-|choKi|8?I#lrrFVdf41)>8KQd?$vF-rrQK1o&pq!fDL;D@P_K=7 zGq~@*#X)699HKMZ{JLE3x!MnIND>i%iodGFyL@mhTG7&ks^8^7#r3RvcS`|~W*+Yd zbC$tKsh;1(;pBfc#Q08@y!&e)h}jXoh2H)J13wSYP(d#<+*vYD#0C0_GsBl*YW=Q| z*1k-ZT_Pn-tHR%^rulbeFLS4NYMla3W?-6ktTazL>C(qH7wN>VmGg6FknXnM&{El* zk5E~NQCLi4wMjVGlkJgiMfi5KQpK5nb!RN0Bo2w-%JFx6pYa3mX!y-*>+VOVw{^?f z>X%lQS70=Qr(K>pk_I+iQ~Lligp~9CuQeaWF4B!gsaU--AzB;n368wdqa#hYgW`0! zXhfIEoIAjYut;x>b7+Qxj3&6L5*LatJe-%H|Mr5Hv#{^nD)`aVS|mWBHBs!_HX0By z0Y#p2(u+Cg+?uX)+sqSW{!VIoOqu(#hi9E(NIJ{RAvnFErW@7>{ok#|kh7Ti1|eqw z=z$-SE-@9HscSpop+O}pOMprwR=g+A+^Y*4d11L$OB=v_ZBP6oxab6PK^YjyQ&PpW zx*U1iO^<}lsu1EeOw;4{t%0&RP*(kstXCuNxEJ8&Ady?6lJ#itrq?K@_)>4a*evAo zc+ZG`3z&?f(%xHQNoA`rsFlm$!mM7$p$@>NJOD)1S7M@ha4jgBj`d{ne05K#-v)-@0N%_2;21F^S z#4t2kbu4MbLqdvZh?ui`tMkEk005~ilX=;}+X<_~A=N?Ua^xoS6hj*Cgkn*x7xR^H)$|y1=49ZVrbM!l z15#QF+w9s2OcLMj0{(a&Y0#CCH*;fZE3W*~sU~trdgj_2N2EFr?eZ|N*Ibe3=QSV{ zzKtnw5;b6)1L|FzMFO3mk%JX)qU6v$$H|PmH{W;Xo?C4H1mGRrc$Jg(Sey2Fo@2cs zSwg=#CqrAa|FAuFJTOB+Fm(=u;zFrGH3RzXSW(@|N=|ZQ!rIJdrTf7A+Nm)CCl+=8 z&k~TyFZgCSl_nj` znc#A{Foi{cH~j&8D0YEaQ7d8QXLUK$Tq2I3$iDTAvX(s0^>LP-Bi0v(zPKkLW9CAK zhT6MhMo7%yMEkuYUvf=Xai)cr3H_@1_6zP!4O8fakWvo%6AqVV%JOj%-c=zx>aVVk z>AHtUH?jhTT7-*CViH)n3doHoh?6zYl2hI3pEX^{GF$YFO)-6dL=KRB&!b+n8dJC`y zuz!>F0~_d-7Lk&S-j&wQ!j|>AY*i62dJN)>nv{qBfr)PrlvFcmdCADu1wG_WliJG> z)!p(bYFZoK5FJaCo2D|i^bMO&AA^4Zle_d#)SuIJ>rUc?2Y+X zy5a5FWX|_xUp+^CtA`GdV8b48!Ha++eHwE`czdV9`~)F{|51~>jUUzZ@BvN);8soV z@tr&$p2VUvHRLTo)UNlt^J7JlA%Xu0!tHg+065&>V0bt+5 z&(BA+2mcKn-v_n;e@v#-hH~OOCkkNe%YzqFfo?}})#Ay@KL0dU4;K&kvB z)td+eC?^Mg5P|-SQyu5+6O;MKCx`k#n_}rOjHcVUfN+L!yu7`xDgWO~8m9m7r7d7tRJyhCMn!@m z0J8fp`+fb2M?l&LL;piQ-4SBEPK=A~;k9~jJ)qj);|)3V<>-d&aA?saPirs~zIyq% zIXAElF1Xm}XPP|1B?kai1K-JxR1ddj)2VqYd6p*Gd;h{aj7P%zyM%Nl&G>+V3)4LG zzqK+F>rT6j2l7VH=5Qb|RoT-sZ-!o;5AV_8G#68d6?M}eezxPu;T7|TyOj81;(njb z>m)ybwXTqOOA1azFWG)%W*RzPEMw3Av;w~!C^$pJh3bcRaRYcK026XIY`ma=Z@Qs- zFKCYAQ~8!v+QUoq@?juQ6PoY}EsfUG0ti1C29%cp@D6awk4X`94=)RKpXRGHEadJUhO{%j*%LSoeZ&L@|;0 zRV9FTHkX^CRBDt#yz22?HvR7YH-1`TbA~-NkU?Rn$iy8j8g*$(d4lHIyQM}H41Zj2 z>aoMKm$7$uxn}+3qJ179UnTufU~ovSSn6R|=J32QH?yeL$O!o=K7N1JADG}gysojK z*#|Fo8Bjs!p$_&OwMpC&Q-StZP%v4-(EE*5Hcik8!Y>&DkVFd;?!55WJAmQK1Tty5 zGKQp2-e<-c_))8qT%~Ax?ce~-JGi{2DoYJ0R7B4_p2F+&yqodJZ|5wUghVh(2Ebe6 zva7)0O-Q8pooKm{t%nVY&`4c-&$bvWY*uGMuGj^H;=f(jEiLy zk?+g2-a2=EY>VuXi?G=4RK31AaDi}E&QVLLD>sk;yUEQG&>AJBq~b8+b=K{Z4XICw z)?Zdu+{qkF=3_ihvyaP1_Tdn`zkh)<#Wc?Ilo+xyM~W0}?bjZi0{UU;>T^YWpHLXJ3Lp?_34DbthVfCdE=N!}e8HXJ?RRVd8rr)@bX5BJpY zZ-`X@$*v@ZH#PU6Q|?C*B?7i$P>zY5IOzKheLJCEmG0k(wQQPv&HiGnra)maypRbh z7o_}f({z-xb62? zLQL!AR=5_o2Q)HH{Trsb$yE_b=fr{Yx)V>OQG5_O3DESTzfL&Ri?8jvk_3YJj5nfK zw{zbDi1(@WvwmAAP&ZP6J_+kkdcM>6Gyq{rFusAlfc5uaro#T>C0T2iQABYedO^t= zlX~okS1Yrc1Is%mM5GI5tdHE33U3#_d~lgM@;OypCr;Uyw-G&8f(zOt-}_5{GTA`k z)wQ`ASnZw!EZcj2j-}*3JvVndZA(lBGOMh)gUHC|YUp>eDNt(*5%OJWTN;KG5+#@^m^>9CJ(^rQVBW04$p^guub}Gl~ z@kMfoZZtEP8Bl3mGxV!2JZeT}T)r6qT2uwyc?KTOhd^$E2iTTz7_{zi1+< zwphUD$xTe(V!DC4ocKZWr|;d#gM&V#y`o4`2GUjS=bo?3v6>5*WbCOQ52uXy{`B$d zz=?~Y?HfAD(OX)3UmDf3v>GiXnw+Oy?M5z?q{~4N*eLcVdPSrn(#Xk4utMoOH_hLJ zj{*sjcb6`j_I$79_G7NNbipDn#~`EwO+P*n*2_HIWK^7aP+1&5AL|=%n~s>*aKqI& z_h?7n;a)sHt+!s}`*1P1yK6YFQ)hQ&t1>q??zS%t9t?dMbVN^GGl<9`d;WV|UyiZW zN%FK%YSSV6^art(o(58`z$IX-R^G!(=K4qay}!Qhvnv;f`zlhUWva+345Zph(!IUq zOlmgE{r$6kNz=~KJ9umuzhwnMRWe@Lo2JO{blDxyC>Vn5`qj&2DP4* zF3q3_$+*1c> zQmKs8?+6)hP=0DLG?%Qiq7TCrEk6HNyDzY=>hQCBWt zqV)3eXMCVkf{@^sa$24`oT2G>p~cG{Zyr{jGCVt0<}zbv4Oc8)|Hq+*vGjm#Hx zGesX{w6vTn_ZD58%0Klz@$YW-uJxQ%Gv8hHb@RxpnV+wR1#=AFwV{1JS9#raUe-Zc zC=0U(uNm;S-=&$GHoC&XZm|1dPK7W$z_?E{J-pZJJzvW4@u#Y6EAuDGCtJh1{Cnc# z`_JwRj`&pU9ChYcG%yH1xZphzm_0I4|%%9{TzsjFWjd^bp2LdJ+7s*`a z&Quz`=h>K8+Kj+WsejswhV3HlF@>9lIhVTCCKF%4M#amOBx3vk@v2cAMBq>1pW=Ia ztYx038rMGxaL=$lsAy@CtLf;7Oh*;dHxK{&ELU%7q@}tR8>o@RyYz)UR&HCiKXSQt`#( zC}jO!JuWytzGc{O^Xc^gQu`;{=2>(TZwBkl90cy%&Lmp$@+s>K2qq3qvf0>I`Z)ax zwg$Z7bl-ruOFbF4YV^yVe*NU!#QSSTKA^L1DxmD-O~wbNlm|}HXi>h-Naq((JqMG1 z>-*G3asgrZ`2GctX6{WkJ_^tcKwnK6snM%y|7KNt^|qh0!L99>`?YRk)WQgaU5CJKns0 z>XWMBr-g$neR^z5Mt-l#V!J1Qg4JjI>5T28 z?;1SpI+CY;J@+L97<`Qqf3$2t;HqwE)lN*-Z$A^hSR7MtkOHI?DuIGuqUh@n6(;fJ^Rp(#crelS6$7vqkubO?lELS`xQQFYH zhlNmR#|~QHXE}Es_ZzH|^_NP1-rj!6S<6u79DRwp+5Gb_#@6nz-CaHVvd_P3`ls=h z*!m7UjIMaV4MbV|Kb4l}M^_AFR4)4lc$l2j6HOio_ol6!8TRzuJ)kVsqv&@&FM@Kv z?wa7FUsjRb-9Mi5Y~oed4g7aG3sB#1>7G|4tFaUtIOz1s$6P1M+F>*1%B@l%Tm?=_pm1mPK4LdQhf#I?;r?|{cP!BHxm_r`KaYQNq# z6gtV$kwt{`Q+1(g?hi|+&bih25seEqQ2287dBm@^+qM~!YkQ1iW5H- zH{jTA`~Ihbjy%B0`d!i%Z}Lch($qRSxuIR0U4UWMSYO`TN+uMgJxTXcxMuQA-Ve!| zaW_W`o&p7O#G`^X{-a)|eKE|k$f5s)^@&kEToFh!D>h#5NK zIWt|tv%TVtiKS1nZ$F$KVG!s$+QL`WZ`J&%0pDC>y7s~1{`q{*cVUf}6$ed=8li4h1J_3ca~CyUb{3qUKNw#?uj{P6znJOZ?0a}v_GQjxZin=2bZslybQ5=2@a*XBy`rCxp5!NI|zXL~54$oKY%QFJ@5+Cg0^kn{|8sbrnBP0X5e zKD^p_SLRf~Yn-C71<}!9tYi87sB2vXQ}2W{%(<=4+}hwB6t#qS{sNA$*ZdWz07{Kz zjBs!kAQzKqRj;t|6XE9>^8MW{KVymcLrdCGq+_Q@!(Abmb@m~o>CR2IGcqhhdOqY8 zheI=Se{T6a`C1~l#N_%)b@4BDyNc7<>FZ1khxv&Etp@y;lU6naM`pB+PQxMhyb;L= z`23f4>7h;X@VR#T`EdTNEsA=&aWab;tuIvs447QIWXX79WCnT7f6Zyytrt%y4m5V zxxPH5n2S$P!=AB$i$K`YkDM^m5vvNY_`kj%d;gI_@#ofMuM+`DoN}trcePP{@)FAHH z7o(IquG(A7E>!GneW9i!7U-4p!fu{@KuaoDWA`_!Zi3Np_Ug)tWwG8udErG;Ay?sG zcz-HN&9l7LkCtz`9qhAP^S(m>jUX&*o5E>t|cuusl_o+w@YetfoQe-SOc$7yR`qso=@!K$)#! z2u%y``#(L7RyWL%?a1M_`Yg^qdEhYy9|!wIga1PH5IStegssAQM@~IoU1@_ar$fE$ z%dpEFj!L5`v%XwF>hVc{-U@bE*9UQ&`Fgy-j|s!~Ds_I@hoa<-n%^{^)qX?r<(#i3 z8zuIASUGXhy-Z@EZfm!&uglL`t@rzhI@GnvzMb0C&t0$)Ld?d}x6jTf1n650Yrkp{ z<6gU&=o@eWP6&S<+Ssgtt4vwSukhywlPi5wGPd|N4Ok{K#RjWcnRkMy>qED;^u}0o zdk=Toj(1!~X7ta_6gGUT(0WQrY~bsGSXzG;^%%_uH3|C(fK)hMaA0lC>5u)B~tQ7 z6y-XSx>M^tV>(6IWP??T1*2wAS(`4?Umb#I-o|bEYk8MlPt1EO|h#~B~; zf>4S^xYqaPhT2B$iGA_)Lj~zVOibs6SPHo%?YirtFG-y<+18uv!`%-|Z zz5aVu_VUEVzQNt|l7Uey1VSw_L%iqO!xjFdqc)L@Av)3yj)A0=%LNjnMUp6gWqb4ti)(qzXtCkfK49-n$W{ij>f+sHi}Y z03scw_d^LtSCJ|ZdM_eDniL7W-WAV#-tYTy@4q|7{c-OegOQN3_s&z+nsctbpE>*^ zE4tORAa0i%DbVJDWJ|YPJ<^;1C^X|jfAgidxCG){+DR!ySwWzzlYHg!pR~;)O<%v# z>s_wXz^ZOEvK-dv8ozVf&3yft0)Y^gX(UvggiMZf_B|;lcR`D1T?fge$HI14leeha zc=xE9t5`fD?cSQX*F-Xh+*U{oeN8l^J-&q6Y`tU0vmYOqf>5iioYQwTTHRkMqepbd zzal>z=q0?g1pOv6?d^LU#y(vB5s-6}Fm=ku$ph_&)Gn7DEI?whPv3=X~uG%prs zws!CYnpRAB)r^YzFpsC<*wPC+e&D%=7@*nE<%0`wVH=_==v{a9Jx9%^_j+5diHa)h zlRCf%quA|Z-T--u#;0_{$NGXQ3gNS`XeCzfxEz~e!ZyxW^XiYTYC@) z*08@OIZ%n=&n<{lciI-{OxT1^iDYPds8M1}I4dMBPEI1{*Q>sVP$0x9%cY^Y5=0Il z{uC%!mga|N8-f?LoHEuHZ3ACaXm(DN=L6t~A;#w~>An5yaa^@cw)VUn6N6!qr*FZh zDJqW90;(L%?Nre?+}c4!necT)Hs-igAaV^zYYZT?%Q@+5GoSg`jvlLJ96(;@!<&qK zV}SDtydwhX8qaffr@Spn?>N@CaoQkTQ_^^Ty`#k4JQVfWVFqBb=#H6GCpUSpP}@kV z>DE%1lx2@BV^k#0Ii_gVh7+bEcSiNz%K7jKZq$#i*F7z$k6)eo1}jX-$mCzo*5bsE zL1!aa(^4V*!z72L4<2$kT1bkp`0M)lHQQN!y-_03UBV->w?m3|p~kEf!YJ}!JRe=P zVr0vKXeOt9FaX$W)8#0aagQ?T8lzA)0%C#g%(Vi;9|No}r_&gxTi+-)PRCxA5`_b$ z5|z^|40zVBFiwZ>y%$LaFwRStMk9tO%ezTnURabdjclo~R`)vlPNWckV*j8=`nzr! zW0t8Ojb~gC=+MT8kvK)hY5lQg5|yVRNFLp;ml8{yu7OC&hy+q9F|r3OhdCQMZrWg8 z_pZB$FX7;%bG3g~F>u>L!ykE+6e+JcVU|Id5ghb;5Zt+y4<~`7%+WRGn+$Lz>m+N3 zMcRe>dx=P7UD(eXauTLK^UH^2rXIzn9>~+|iQ_O9vrUAzdvhCqS~YFM{`87(2C;<0 z?ewbS&3Hy}vOa&_yO)!8H?pc)$Ut~|zeU2H^?Ycv{i9W;CN@pQ%kIIP57eD~ z%L1#a3U&BYf_$sG?~*Hw=UV(VnVswxG(sL+-;*eH12C^|JL+v0zHe~r8hNn1qvE~N zV37c=i+^b~)eJ0X!r0Z@_&!RQP2yy;D7Z;rLo$iC+HMnV)(dUz!x>+Ufm(46xTt%d zJIWVA|6rn2$QS2BNrBk~S$zy~QfbF4xBsK%$ocaxWQC`cl~Jbfp{QubJBF-JV0c%> zsGV#Z8F{GSJnqNLLM0tVVzZnx%}Y3=iSK-ok~%$~J!CAaA8r4+vB_2h>jB#>k9pV} z?yCS{H;2SuKuv`}gzZk9{od@QQamJZeh`D@MCAj67QH_j-D#~} z4;5D`ziXSf->gaN1!#F}J;-uPzC!}F$;qXEOL3D~Uc}9wvC5UM8n1v1kmPt6_Vx0V zK8uNPoAsLQ&iMIBbt<6978D>P^a-RKZ9k!RvM1xCi+Hsn4giO$?ZuD}Vgj^zyV8a^~}&zYpa;+CE7Y@u2*9<6(rij|Lb4e9m5a z+jS0p8M1h&zMLCSzNVhw){9eH#S*E$hYrZMO(&mZUg6F#bV&N%E@cQSM8R2B^F~S{ zwP(IIWJI~IF3j466~R-O zN7zB>Qh=`|<>hA!aH@4FHjk8(LjLZT5Qs(!ji)`md~U|IpYNbLbK6Q?&ChSefc>X4 z43tu;O;Mt$PXzM#3qCn5Ii(RO$I^4-5Avf;_ICQ*|o*O~jq&FX45!<}T$ z1dNZ@s=}4BVlpt?g@a6&Ie^xdxbI)<8K5BS$?zx0)wf2zWn_5}^}XFI_S?^X$`k&V zP%bWs>5o5J3=XkfNmck-pGgZ<(&u&pO(6};nQn!{f^^kdW@dx8v>UIov>g?3ah-ht zL_$nNT1-{B@tgCxx+Vb)Wm#iw57$o%7opSCA8YZU^C+L{SQkVBgbkPptz4-`0!WWp zWb67S+5MZG+yl@SjC8kO{BL9* z82$i(f;Y;jz-C>L{CL1CoXGjm8<5EA-`BL?3Hm^MsqAlvzJSVyJphv6v-hyO$&y^5 ziQA;h>d+7D?#UE3gPt`&^G|uSp$)vq;Eg zQufkt;LR?|o&CzS8b8`lKclJD2GOQAHwmMn z-_b@g8aw+)rGT&Z?^FPlb?P555f;uN6p|RK#GVlveNgnW!o}DgP>R6hWQLVlv=AbI`cw<*~c%iQWX09 zMfo%hn7{OWxdf{w8ylDN8QE(21w|EZJGVoc#&DqnJTb2!4RNEeqL~&0o2?^tV8OQN ztam(+!ZqbiaOB@q#k93xT>kTI6t26WNlTu$Y; z6u!&wTTOml9SZ3EIU|`OYv+Mn82NXLO)ib$88n`La;CyGX>q$QbuA@Uz(TwlNd1hS z(HMM6M?oXHZKl(Jb4{U<-f%z-i+=}^)l&5|WMrq6Njp!ugr(A=FBTyU^7`z~FR`sF zw{q(Oy<~Xk40srP@650VSP!_*Zwy}065hsgwxVflK5!;IQU6XPAr#?l-bTx* zI>dbz4M?cx>WEHZMF5WCZ3b@mJc?GIxZ=h?JH#mdcl=JO%OEed%7xepT?ClD_nxCN z7XEhj)i$=|Goi>6$^q>EjcoIuY&2d=&i#LN4k!)^lmK&2yd4GIs|<*npUsa6G|~OUq&j=r=ZleyXVY+D(YNZ zJ!!hv?I*ujcHtTdygZScHuC~S*7rD~FkY~9%DB2XeSf>~C;R{E^&fy&xw^|ZDL552AGw1as zs#QVZAPu)19{gV3+d-E|{gWr#rEl}Ts^4GxQniqqw+<`x!HVSpvVib-yJK@9@wLZ}Mm5_h+P%Uk~tN)H?k-DgpFkb7w|x$bZp zQwo^p67>dwx`jbwKpIlg#mRd0Rzj`IcyP0<5X_m{+N_&=HC6+AbL>Z}z%y>CWjuU6 zD-cZ^v$)K`OKM%?KiLQ6vilVgrREK%39a|EA0(k)yHEOgn0bt&N2<_yg_Yl#W{6$| zMhybj5Rh|b+tBp9zi$`iUeU`JU#pR`cDyUynXCNmGBiInJ@Q)5j0$~0zCd=?>~x95 z+q*ygWMqY)N_7q-+prhtZHAxQ^fP)Wvwlt8ph0WkPGNh@>_&O*GDmQ70et zE=7_k@I@*dnOC%O;F8#(WZ|Q9;oxlq8AMz~GO~zP;wFn%^7Ot{wq$bAkdU9l*fCOx zNkEtqk*xkqv*Ha3u0S$yvZ&K_si&nIB`S8Dg42!&9F8Dbu7L{ai1 zyy>#(?HkOYnsZr@HF8-ZdAABfn}rODwwju7XU9T)Pp>i>8eVFNUdza zA9LfgpXEuBR{T|UWYi!#&{kEM- z!k)9WXe?Cx0&e#X|HxLkk|&ZW*7Hn-ug#f)+fRQoMP`2XxWXkn&(IiMz6|BN4i@9E zR4G?ft8=newLc&{eyop*cutQIt>lX(|06)>rukKmmoOW#lTaWVpdy zl$}tS%pD*EtN1j70qQNjlsT^#tjSl2&f^N=VKlnhUp7k2#QEfBw@yq?NxxJxmXUDR z;U=2RxPWph$B8OgI~do!?608hYfL1%3}<-biB>@hhE0-K_7VwBlo~pzbtKSqOOyP# zQ?7iw#3wXajIe}ehwd8j8GQ>gZ{%~F^ocUwCJH{=r6EJk`BJKD%|2Xm{I>5#MZ&A9 zBe1j=c6Vu!^;og)%WLo9h4Cq`(vyQ!x((Y1?xvMfxmLcZ*a1v9S;%2bBQy3}-Ho2K zcyQK^^7f&5Ma#6iyTUmxlv7>}R|4g|*0jNWZ;xZGl!otr8v5X7?-?W;d6OsUPQ);* zuH8R6DwBcA(w6cvUplRCxq12o3)fkZCW@xH=;A5KEdI#%nF}&m0~ApD)`)ADMKU6> zBK-ZM)%r6}1Doo}`;2cq{nQ-&#g^bzs+bi}Pa`dB%0CxclCP6TB$0 z4U|J_d=6n22B45}nT@(ogPU}L<7j#Kyq}>Eo;Xvrf8Fvjv|-!<3Uw9ACi%@&k*dFx{p@Fu+WozuN8?+(45py0B~0H@=B-c}1{jdijqxg96zu-`^*oRg4*Mjn zMe?OLvnC|j6tqxTC{1)bwDmvO8~Q*Hkq}NMoq5V;iNmm{+zug1Ekm1QbfCyWsM*;K zmerNmT}N~|Lt!^YtsrV;<+82k)Y~-_2z`*N`6iDRMezJ|5&fV`1G#;T8|7cDtB->E zZ;bk3HRnTXvcNdZJ_{ngl_$wO3l!TO|H_RQxX!L-0E{{?{Vb+&!tFDHnxbA6rdz36 zqfkZ3=shwisx8+ls@=@h&hZI(IgJQx6&{dqKfEOx*XP{Kng!;TcKx|}{{(oyuVfdx z;>GPV-F_S%o>^hAiniw2P}w5vm^K1?Q2kB7cZg1`4??43kzA~;hS$Sj@05TF~^kZ)um__Z(lR2 z*13&$OFY6(?;8ztg7U{}OHo887u3nZoK21*>sRNJck&D}#hUx?Setpx#CU_HJ8eWW z?rtNcndj6~%8&*fX~Fv6JvjtlXFn+pQe$BLyC+?OOzqVDJ6BFMHK1upQ}7h(|INg$ zi?Qi)n?p(!lm0$e?!cu#2+QMyS(08j+@7>aQrt+}2U^X4Nt6hL8%e7Bdke%U1EBnS z>x%qG`9vV3&yu_R>t%%-|0tgb#N5q)R7}wEUXbM7Ut222KlDJ0Qdft>Ii9zNJmr6?{-mPwJc_K{~1~CUW-F)~I8}IKbXZ=XDF-tNi~Hj%u20>E#&96>>-q|DJ}z z;|qeXiY)5QW6j)$pX`BIeeejZ@5+6i7EUVgMPvf0oS>uQ5wuT;(imvHlrr|*kaWI% zL1Uz;_l9X1N&1(xxuri7>Zt^eAUObf*mP6Dtd4}M_6NHg*mM*|DziI_^vi{x{Q4e4 zhvDcD+G3^t$luI+K4bdY=C@EGiM2k`e%uuvlG-h7VD;Z~6tVOi)bhW#|E^izv3-08 z+^*h+3Rd0x5-T(a_r0MT&l{9UbC!JoW1jp7|MfKK)emH7NEHhs_C$8?u1y zh6`o)JD9*u`ug6F(g=+F;kJIr6N#U}7xooW_6e78kZxE#zXll>-+fA2N5jb8gq6wI zq2U>o^uc=XMxjUTt-Ym+6pZu&kD1>_zgku=Xt<8tQLQ$^CDz6@p2f*N%a!^ey%H_> zKORYga#=mWJ+%QRg;cr8d48r@oM1+Svm~ zEL<$CzGG7HuwQ)8G|l%~5iCkyCM{bw)D+H)vudDVee~hjnqSI^(;N@$58RhZz6cuE zdXw-;8o0JZl0WsDtFDqi=I5(~G^RE1H!0cK2@`q+hIWmlqj1i{U6^*x zVm43VH{OU-R|R|HT3Du@6PY|~yEK9`#@WTtT{i3*L3C^1VDn0UEo32xBz@8UV9}yN zlD#Yxy*OaIJXXnJA!JsiOGZXkwNyU3o}=NXhPg8BRPu=vy5(-);H}q}wIo>vW@0T0 z3rs53Jjk(duOC>`JT!A@<=V{(*v*0l)^EWp`eW=`@FHw3zfRg1a$L$!0|r4XIFdJ) zxy|=P5=^idxlO~Jx}rZv`HOD{#qhe{I;D@NuG|rshlND8I;FRytJ=m9ZRL zP^u&N+~^rsx@6D^nhq^!j!*~qkdE?R)l!!5J)3?G;7fTAMwRp|rN5BDO9TVYdl}*Nfne)(7SXJqwy$ z+^`h#Z;s_4f-Z|z6C#8 zs8HvB;0+&iABFO;v(yLq>7-V=rEawh1MPgrszGqj~=6J1Gz z6f>p?IHr0GX*6Ovc|m^3#z7`F{`>nOx0x% zJLtpE1dpPaKP67=NG+)NQ(Km_bZAkLIF0sE}PbQhh?f8zOP0Xo*Z zGi@T8qqV2a zTb%viLbLo~F?ezmeEg^=2T_zGVhNTTU+-SB1n1tm%~2pn$^b-D`)6P z|3Z{@Lc{l!+23;AdL6bm1Xfddep}-et$*Myt+_&ggoyJ`ti;Z@;lptQcOF=FxE~#C zEyBQK-6{q@yW-aFRK5QK#P0v`^bmSwK06J=v{ekQfN9^J(w0twHBF9yNjV&mBSQ9* z`V(q*V#n2AGw6Fqf^|W^VD*o8U?XV!AjNMp-9V-J$3~xy#yludeQJI+x_=er0UX@>iv=XvU)%o-9$h~od&DX6nU literal 83948 zcmeFYWmHws-z|I&-FfIP=@RMgkVXZRl$7pn4jlrbpp=w|(jeU^9nuO?(%oHm9skes z+&kX!e!idX83TpGVehrqUTgm5Z_c@6v^AA+u_&=15D2cSih?c#g4zp#Ai*%uz&kt+ zBe~!|Q4d7}4?SmV4{vifD~N`;Ri=yh^vWtnh z_Wv{x<4YVs9%y`kha#irfm2-kjpMb8$3{U)7x(7*q?r|)|5}O?aok^(7KcXzyzcu*2Y|u_aE2b+fy>|Ax#VhKC6D%&9>>iTu&m+;ePNv zmGGR0Ucw>1TOE_+fdDH^nJio?z95RHRX+4a4p6VN;LJlqi2;?Tn>s*(W9RAc3 z5OyOu%*R@FqxDk>_TyEb>mux4XGE_Uk{ zUe>i-?=?j$Fp6C7R9n=krogL*#jt1VoL|3yvohLk{pa@5hED?G@z&Awj^( zshe4zt$7t*>p1)J_UiQdMgp-gqaU)T9UVl@wD=1{+IPKroL;mANgf>?*_G_m1G!Ki?E3K9 zKIT-$VXo10>@}DqE;L-qRF}*jFI7dl_s_xABhFaAkrxMnu;v6j1k-iUiOp+vb+YLq zLXCkI4uMqvHrn>>@9$4Z%t1^B+Y2`qeCKHK{bph+VW;o$6artqN#me}yB?p$UdKd# zU?S~}iFTVntRt&|cjn#k6xWaZ3-yXLH^81#ds*?k^x*oIT+r^xw^`)`%81v}cjVjC z76tKGTnHZoh%zuU>Q+FIj3%MBH=<)#|kZNU7amA77T%+xuXmPVOL6z>Fz zy!?*QeArFp1JKQ7NN^eg!RczxQ;b`5YjF7~iw=eOoo+?!%{5uv-CU-NxH7^Np^)aI ze$FIj%&sVWEgv34{mC;*-jxV24LF_DuRoiyckN|}S_D%Q!Zq+MQG5wb>@p&GzPOrZ z+Fe>Vj|Cx+Gn;SrwH^P2i-t#?K2{$cO^N+)9sK!0W*U#!5#ygUHYUI7cOHTP`gCHl zE=DsYwhN3%AiwSjpKtMBZaJUt5?%-h7vHPTpLrmCf3q&_+Q*V+wlz^qF6zb{bh%14 zm?ciO-1A!bHLavB5&pmR@ySvEA3X#tTp~yX02xU8SmEQtA>jpxOi4sPxHT@|5Hcyu znE^+A29+-rzge8@%~4(Nw@E`jI?mRnOZYyt9?8bl82<@ouNk1s#npECVLLMZ_XiCG zgo46|^150N;LvO^o!_9@$F+NeTa_r==PxD#IlvK7Nx7fHo#q;s?ymQH()lgEB+xvx z#Gnnnah15cSgt=F7S}N_h~6A8S_U;`z~|3Dw8MQnBtZ?K^<7D}3pTBHG2a;>K|Ml1 zd|_cBBm^-5-TXXlH%A7c)R3~aJ3klvm-O=x%SIy9$*0F; zP^b;3{~yZ0*k3b4rH7cD|9T0!Qg9~mnlzIGuuuer7lC_5E*+>~Z@(9l{P&@!9XFZ( zwzj-vZ;sy<`(UOhF{l{)XgK5$aC=6iu5lX6Z2q478~qd1WA}dx9sh zt;FTZ868fD0F}wUA3+)O8C^ z8zE;5MFQ-m1ha)bA9U?lV>`;2RrK%hc^v6E|BB#KwQC$V29%p1X)xu4ICN6fJv83b z+2A@c7!JlB^9pX%|GTgn=dt7*0b#@+=XI-ToMUEcvKsM_oh=04|8nF>!$zm|p%-%c zW3a!hmV#0)3^5kgC43-A7|YnTS#vn^kA$yq{_A8yxP2qzQoB~YNepZ}Jl$8P+ZJ`c z60{{R>hM50Rz2VR2QZ(p*4F=B;@dH)@PJ;5;wD9ZF$?-fcAl{B3iMhT0u&eEGi!(Z@!Kv%z`>G>2%qhh^mZwXgy{=@#8bY!vX|Su7)8Xn$rc2eK0@#&zS+@# z`&%%+tn1-D$uDaO)bYk|5D3#k%whpMhI$)Jsp-rR&xO~@s)8pIf8g&lJsC-d?KoP8 zz_7x`glov;husZI9#~kT6L*0&hTl35pP0v>7vkO|L^8t(e&gk}O3>0h8Un03RsPA- z$XUmct#1tXw`5ok;v*Ul^)U=XEjI`t^r|6~So@h|gi=cdCEuqqS3AGSHpEP$O-4+k z|IjnAjmmT3w|;sf`bvqBP^3sB^0HJIVi;-p z%tz%1txO6%CRB&EZoZaAZH+gy^&VO*YRHE%&@as3Jda|)g+UiAx0Ps2)kf!wFAbS> zucjv>>v6)P6Na@0|H0U;=-3qZM*i=C{P&*BG?digc>A_P&IHA%LC%HvwR)vfq=o+G~9TO1}3i5-ZRG8%1A<>&5EE_u>tV4vv zhqEH-;vC7ugczC{GzWjmP^$-P=v%S}O@HEU1=owrj&{4W^Y8gdVI9A|zim-%#OqrQ zbsUb5%vx`4TB^T9>t$hi+r!PV_YX|d>oj-%g!;3-xYG) z$)4o3tG4M2w(I}(FAY^1^HgDBarxtC(UNGo&HuQi zVmOe&X^D<4Co^BsEO7NlYE~NPjo1O(V~a=~%Gk=((32%XI-(1<{7>!6n@Em3V;0nW zh|}9tE$(hOUrD3Omip(HWK*cjN0aqRDQPM>oh@pnO|d~veVO^jLX-7h8Lv)zl2Tro zTaZ^Yw?1N7XJ%xy`!eBxE;Ese@rHuvrVqC^eVj^NfOU5Ubvy4e36$v0Z1md|y%6Hp zBVGpo_Q8iG9(B9SBr9_67oS8wpp;AnQaL}I+S_)yrdv zs??*&E@~5~`h#}GREp+Z-9qeeO`26ZAN`y=E1w;#Ksg7A8r3i%87u(dS_1~P-1eGH z%r_(G0jKV!u!jB3-5#qs;D5R3;=Bs1zLCTkbwz$&r8^m`mf z{z-nKaz9ZUwoy7u@3B>ngZ2ztRc^8KF%kZ_Ckjt<{e00V-WGN)v+%k4cA!klh~Cqc z1E$=%{SbvA8WwrwgB?{c&X$V+HW5eI;C>5ng7S3!rSFgUYZA^yasecjymG*8bQ&vU zG*jhf%)^)3{!&6d3mTGCA(c7@Uz9iVREG*a%_ZQ%UT3;b!CsWucUZ{@#w&SD+MUBt z@G417&8%&Gc(7X)40r;5;Z#qtWX>v2FLs&Fk;_JKshK+XqGq34bBtc(G5{Wx31OJL z8`W1K3R`Anl-Qa;%e3HNmONyB-y0I1OP8Mav>+Dg{#2O$ZWM5-xtjfa3*iWPy?dLR^h5Y|T+P!ZK zC?)RJjQhFQxjTP!e5-%QFB-1r?bJ3wqL{=h1sS&1b8;7Nsu}iw6B~bdMLznBLsjD0 zXO6RyTM|GeYkE{0cv($^*=!E4KKfu`?`p$_1&d>)S%>03bzE%?R1EoGZC!bSY9US6 z;a)_~cROZ)os{WAgBxXjzi(V2B~I-2_I-ckKtwx>etYnw=V&e6DGN&Gx_Zdvtv5Y| zU`~D#v&=i4Di={kWm@C=;|aHUK(QllJNy}7g3k)bQcy6U`H%HsynZxFMZ?A7HZ)wv zYmE1F`p8Rs^s1vb%|=-f0jgo6mBg{FCRBmcg8rh1jk2PMx>3k*DT=)^QLr)*SNN&p zVge}-<6))k2$X5xy0nc_z|xBSYlWj!i#K{e4+aF8fa zc)E~$H9*a2El7Du4~t~uLYdeqRdU<%oLCR{okUMki)DCTBXd!oTWs&Yan5vqv{}*G z3X^*Z)!^L!#!bKDl`17bwe&_)b*SMiFX&p(!QHy^W={+<-7IOiGl#F)W@ppRVRH=G^#TiqkAJ1R?&Kc1h5eLm1Jo-iqYo^ zrQJzu#20FdP8T*7j;}g69kwkgam1uUhK6>&zf7NUbc9D-1%j)--8WNnyn?^@!kppBbh-rB2!aHh&>t@ z!R1MeQi>0=9e)tK_3z3(6N>LnW6jMci#s=YBBPZGFHK7y$|7ePuA9>Xd=g^_2opc$H*DL-k%czOp}sC z=ND3LWl>j^t!!3IJqo?c+V3O?Mh5Q80b#H7@{FLsW*U=PJQk_F+?|{6| zFIB!qk0A#fg^AAq;=o8o%OqpXCkfnq4_}PuNp|x#Vcl&zt6cf$8nO@W zm%wXmgy91T2QjSju==rc6gE$Ii0>-aFKbEM@vYbN6lf>4y9AjJaYK(k$=28=PmRAI zI?Qs51;vxju(fy=_|$KT`$AtSP3T zsE*S=uTj`+yAS^fuTGK5Znh9tr)x$pE`cdsCt~EdFq%~s98zfa!{sVk&p1k|vqN9a zJ%@x$T|-bl8N(Of+aL?QxEgjO@AY4i{YC4K;bv%fBK8Pp@l!Cp#Exa^-9CS`kmHzl z5TjiUGXuQWi{Nzi@ZzH@JL%KhFAx7XiI*o>EBrnX7~F5g?b{EZFBa&`@0JlcvXB3I zIuos6)^?5e%X%aPh9jdw#LPg?MT+u3BXoaC9QswTYa}|wn%u?6AJu`k4I`JWauNjz zVo9Mi@Qlsy$htH8_%v{?qV+`LsJw+yi1Q052O+3osF}R@;POzn#Y7k$vfRCG zo*__u)vJ&o=JO+P2Rqe{5pO>6q0xM&*sPeRc2F2{aKdko5nV zw-6-5th;{sE&M9?BI~It%^Nr31${PJ(q8+&BbbwspuruPpN@Q@i!&W)8mmvT6ecB3wR#A&mJsw z?p`}_v6b6r%AewtH18=apO~nu^9Gal>d?z zL1o4~*xB*#CHU5ZFHgfJk9tVr4E^D+?T>*MAN3vuRLr z$7gU$KP{O1S{P>C2d9*E9nFht3*BTM9nWTGL31bO6b;5a4NSAJizhOUj)`@ayAkmD zxYkfh**}eyA1}c>SL2P<-3D?mtyZV2+&lC4_iFtk&Q~|%w$fe9!-#KEa}c8GXVt?? zv#e{mtRGJy1YfXbGbt#rV$UKx5A8<-bBPFIu?9LX*`?bMbku`;NrasoeziP<_)|(@ zr!iH9q1Oxe(|4dDkLp-%ZoXsqsn3!)cy`_Q6-GXqj@VF zM?v9QZKj3uIla~a3p%sRd;`BhP+25PwY*uQM%5d?c2bWJT7timYS?_WzHU#=a3C}>*oekh)Q&s}@_8W$dG-$(ftVGnS!)RC=!lY5 zg3yZQMG1jUHPcZRAJz+I!6_FJvznEiLnC6*APhKnjO7yyxF${7(J?w}PL2;IAEd=t z9R6CGVd)Ssu)M{=ar(D!WszRC9C8llIvBhTbIlK7wtj}_aRi0@>h=g!2fInCa01(I z9}*Dme*M|2$M8zEMr8C6Tq)-RIOs?lpR22p4gswfQT!PV5$#BG0OnD71NF~GDyv{6 zRtoW~y>;&N?L)=I&4_kG0rJPhP47b_y-yEzWO-ny9qz-(gKIdbN_|9$0Vu;?ukW=% zv8#sU9@>1mxdFuxBh%mH555~x2ul0;e$yMfgqOhwZIvrcLSVjsUvQSZ+L%TN+^LQL z9x(7}(30t$Q*e+0yj!tx%#isl1Yyv*T4vox$>|VmN)ya{l-CQo``ODMjYADPzma4utSLYj(cfm!SXoq4g1l+PSH) z_;=tTH3iFn_jqYEwI>dod6Ml3wjz}4S?ZuMWT{tc;BsK^mM&~PTi;ho0ee|41yW5> zh%cG=^Vc{rtuin()`U&9M3`t&zH1aCHc#Kt{q{Y?Fh(3I2iOYob%B*9eWB83{JNRP zhQYQCS1udhOl`#Z@3gV;rddn5zOQiv6afk+0d_U{E|17L$Q935Q1R9Rmeg{IgP> zht7oYcr?{C96v0+<*mGps2IwI&XyE`W3fVH(g!iJq-gIr%R=Wl6CS&0JV=$iU;`)) z-HscPy;{9B1T`qsOGH{TMJj!n1f*8gEMyg{2NZ-aZz8?go7qndludyE}y zkZ}sV(CyI?y2H{5x}8)U^ZeX)lNtLnhHc>AJ$=0Y8(T3a82$K#b7!Ni)Jm4PS&ePP z&sRlEkKAxxe0_vwEdZ`DvHj#RLhmVXAqOP!RfeDmRf`Sp#ocYr6`dJfnLzG`tzcTf z5%Q?XM4d2VgML8xetRO=~1 zJtRNqX=P(AIC>+IJ`UGp_!Dt37a$&R-;CM6FpA0L7o~|SoothHW+er?R?OB!twFb$0wFT^854EOFeyI2ZYKj!rJc$Mb9p3 zy5$t!Cs$IeR9g?p1qH3fw<5gVEyMz77OQGMemTay4@+|XC2 z%C6^_L=gHuj7)bEB@3p!lU{?+X0044pvn$TY=S*SiF-de-Ep%wt1VRWIs=aWNnL(r z!$N?Xf>6*3D7BPIhUZKUBNCVh)uYoK!%*p>U|xZ4L8(vK&HHrig-!Dd1Gjw)7Gd^6vaFW|%i zb;SVSIl)wXdE>PQ2WlHQudG2S20le>?;-2NFLK>WE9A`a5pBo9w!@&H3 z278M(lb>hXB-fnB$2(vE;cja3Cbi5AL?xA~;r{zAWWdCbkh(dLuW_0a8~@*ifL^s% z2Woq!=;+^zc^FIM;hIej^!8fW*p>!?S@sS{}IO>@x8B$IjT1W_nI zf8hjmYT|ZxB_v!8DG50A>}M}B8_pCpXbTDqCvy3Z_d-q~==INgvD%qQs&x#%IX49= z^KA$+^z8!6`j@~~A+^WmCbcL>bQ#bL++<=+_bs4`|+1pm?*i z-J^D;nDZ59495#Sk9p76c;0K&p2{Df zmHW>;vI@er-dhF~on>x1%J))tMe>MVT{?iSNn`srcIZHv9FWpnu~(-I1sGr?DP=z- zYYVpd0&B4TrkQ^9-p4c_2#2XS5z7y4hIQn`iLo>b-2{m^HPcRAmO~<;Y#e4A6?1;X zolHvkCrdpHSVk0ab)$B3q(2@%`v^cX_vV%iULy0*14A*iVEbp2hhiTmwmA%jBT^D5ECfBZac$=CbUeA} zaJ7+P^BfT*t_tflkLt4RI^)14!pmRGJgjKFddO@X#jNm1ns&n(&dUh`COxo`1c2@^R*<2_T@5hQj$xw z{5X5bta*w#CN4(4>?_juyFaGXK<93e+aG<@24;Ef|gKyFHMFh`p14Xc*Y*Jq_; zfqr?ZDPB7v$9Xf}CFl^q$*zvvf8G0&1=KCPjld{on4oJ_o{um3JI}i*rmc(A)8-uM zJ^Yv=J|3W~XL^pF-peZw!5!}fDE)^x{in(0v)MTby-UjU9#`vXNhu-I(o zmhjgHRdpI#PBzTG-d=q*0QY}DpmSBwA`=9H9!1wM1qut3)`Gp2l1!s#Xva2R5eC@_ zx+1&9)y|s&DQe);oHjWV(n>KR>wt!%ko4Hy?ja8HTHSofw}U5dEy?);@3{+T#OY^h zioHw^Zm`Y#3-{iJ0xmDQm2P+a6W*-_pKn2T(2_zM$QZETS4b2?3ytFi>QUcmfG&&} zOZIlN2j0aD0WMKeopbnTuEo`IUZz>lI`@iJ4i*Gti=GB#S91m7{`5>8_7UPdgoa$r z3G>}nd>ZBl4aTh}vU*OL(#mIxhcF7lU2aamq$xRnZznW0J3A9yFA9qJ^A41bx5fh* zn=x+!JA#O`=W9w}p`g<^8g+cT=o^N=gMVPLNa;gtO}Em5bmAM@sl!3gCgHmT$%R|^ zT-$9z%JjQRk!+6Z56=5t-((Up2`Yfq3Hfe3$4!9-#Ckd7W8()*U%PLnG6?Mc`WDMQ z1>`aTbg~ME1%YUyI(m8D8yJ`SZ7CcDTaL3f^m$4=!L0LwmhDg^r6ith1|- zWMsx3k?)GPi*NgGpr0lLyEM^6&Y6s`Cch|niC==fCTn<4{PA-%wGesks09#~jyrxi z{1o?!U0cVDq`cH5cbv6i=IWO^jT_0mtL0x3$z`jMl18_>_vb>^nPh(Z_Q9M`1o2LE zRUE2YULb+Qwo$tDb-^${QpjkrK#e^9fVy@_@dC{s%cW zW4xx$I;;SOPFGM*X-KrRtSTE;*qcufYxgyz{1V;Z%Z6bMH%?#>o)&q&$0&ZL)Pxt3 z{ap=%;Q|$3=bd1aV0P6NtHrC}iTx{_9eKb_aS+#EqMLz~?AtCe$+mLO|2Gp8M|) z4DvkfQFxk&tj;A-7P8LiA9@%Zvn3+;`fmh@>^0KpGE)!r4IH~elA2juG$qN_>hvuo z$`)7He>Qo>U0*(C!-{`by4bc7i=(V$SolS?PKxA#-gEil#~UYyY{4X7-V|(OXo_&& zLJ4(@hL-2D*`7KGr8d{XI#3x?H=yLH?e{A%`^k-y^?T zA68c+VNpF8_M^?^FM>kgd2%YcTnuD9!U#`W$VJatEa7O;6h4*aUmw9kn`gy6~S%O^X#0oa+%4dbD6_2 z5^O1Sfy;!_#=CPgK(Hm{+3|z=vrj{4@ zptDC#ft|mwSH<|(=L|#w$R|%<@Tcmpb@U|dfkNckulnQOV}9Ytz%3NWRvg_bC#b)8 z2v^RE{aJr_ASFrVKXnt|oBWO00O;W2&Kx{{OX_uNAYQ&?KtTV=N9~ts<#-~ z{&!esrf5Df)J~DBUq*sN*(j^q2AV}q#r}T zNu_7mP8mU_M-UogZ21n5+$ByFAfHK{f8;PJ(}W{XT+Kn@NeqCrv*fGWI&I++EfJnZ zhF*t@J9ksGJUe=g@XOsgv%3RHdRW+K19lkkNGJf%eyzg0dQ!Qk7LSFNiIBEt=yZeb zEH|%DBll~?i4)(P?Z|fgwrM|^6DEiy+72!*GY)T#qLtaar&Zi2aUZAQ0V`Oi+RFF_ zBnhTOm5@TJ9vZykRa(W(5br%C1w848 z$g+B3Z|BYlj9BrZH?8&l1Q$+CoZLCD&SOAoBktJDqyeec#zyXT%^nE!!4P29$X%o+ zhxCt8>(m|=CE3yy+Xt)o$rFs9FIY1cpy{+-P!D5|#63tNaUP76nGf`467l8e-)qJ1 zRa&UUasFw@+n5+utr^wmg$sG|cn}OJB=qJhZ#bJn=s{nRC1-z45}@I;$L@gDRNI=4 z1R)cq2S}Z?-d532g4yxg5JNZ_R(*24{%7sBqe!`~HuM3Vs-D9ppHB3q%VJ2=i8R{z z-hV7JeshfKHW20u=pChsl&RH{`t;JpIrqWsf+GmOaM?Fh^&V0i1Hq|mTuJT-rg(2M zPxPSHZ*pC}<9$)b@m>$0rD>&n<8rrW_6DXtq+5-2&}xdM{6txoqf0(9uYNDvSGngq z5r0Yc8Sb|R%&x8mY^jJV`zL6fQ1*e=kGmQEH&*MJt(`FN18X zvP{FizdOELU%<$D)a(koB_ZoEeXH!^HkOMWeC0lpt{Ei8BSt|yD1-ZL$lE&(zqmuq8^zBE8UyiW$Pa{9rak( zYf7Sy?adj+RW`&S27rR2I_~CQed-)q27J&`sCeV40q1gTVa)x_*JZcF;9R;{7$*ANkjj&8z#*>Fff7H2;hUk$|4U zb1C3s2^Y<%jnUoHw9cdMhY-PIcU26LyFh^wUa7Rgjfe94?gU6=#qBpx|5-BRMpjeg!2$$5?r>xtJo>Zh^h+77J(&%V+jq>0u;b4;SuzuZkZ-r-d>X z4>LA^nh8ugl{w#Wnco-ooxyFten|@z38$+cT$;7r?}z#)Jv< zK>hF4BfGS{_Efg0b(wLj*3VLZWODawZJQb2Jn!U1-MPQ?c9`S?t|GwXBH{PapY=r?4w=Nrfne4Q&SyM;2o ze_vjec{H?xoMsX_*0dkqI}i@ZYiOWM_+dLq$>L5%?{@PuHM{yu2B|{w&^F7I2*H=q za?FGFcelJhZ%Li1IAdKlc^TnOZ#M%GF|G5uhCUq zq>(|z_74TYC{(J~ z^>f&uHes?I8Kp2Sh;5qrx{FTGO+g?vP-H^jVwnxUbkco>HeIiy9emOHoD)EgnPD@= zJ7E*$!?41iXw*2WkMnRN&FNFhOt!ql!`9U`M=IaY@Bhi3uz{&g=Q_;lE}yldl6Bo2 zeu1xJ8hNM=JOBCsixVsk=EZ;-Ad(C}x=1-EED@ICov&ntyn5PWJifJGPh=c+s_rbiS?l^(Oeb^(VKRy)3jd?qJ z*U*nstC_$>_SlNAn%(dBuzf`+wRTb9SN6Cu@nE#a8WGvcJ0XgQ_}S>G^{ZA^g{bEC zY{ZW?T@N18?D-f7D;)iQe7Q;Cn&QZy)R7GZLia8N55^eQQXy%8EEKnZJ${_Mgo!uKvI;K^d0h-BSo)=)(XR z&`@@bhT(I}{|LtRDXw$%dQ`@cxxjpKrzl!7kZLSI40tGAjO8BeVwVZAg95 z_nCl5J=qC8JuPIrU9f=sRd1Dfl*Ze%J^$d^O8o-0r(c zJ-)@wrE5uMv5IpkaC35_zxM(Cqb06(yVC2&B#N>tKRbTn@4NxsKr|(pYBY0e_K*(k zYy1!02`(Q500-!8JM_a)EEcMM`j1!wpjo_bo2?=@w`K?W(2{H4X`|5dn(x`CZSscK z2(>(_@o;*pW#TC@Qkn^LA)(IFvhE5E8w~-qQ>e#a-C}m_D%tLAVq{A}T|_=2k{te5 zh@8XKDw+1(FBJ1?V5N-$=>BvkVfd-c7Z{tb=HY?mNam-mlt( zKI<%lusn=(CYLQ?@s>aQ!_J5*8$1lt0^!^|w}D_IS|AJUht4{0*c&G^2waT3SsZvJ z=>~c%yxFnnQPk*y(Q*YiY@{<5jAMWpi$6YX+U+zx>n&q;Wi`r6Lsa55==tulyxsTm z1ilPsW{|KXZ$2jN1X@II+Zk4GleeO9e`;RKL_z>-|K1fZ!leoArPAa$YX|WN+GH>gW-urC`L5S) zd${&ljz1xgpSTpCNvl`=dl~|f5wRPSW(|@?Y~JnWhS8xfBrIYBzb%yxGF91{mT3_d zXR4u1;F95rY4FoO*QgLSED5?`OyDIN*8BNj zbW}Z7XeeOS%=ALVs@vb_)J%+V8tl`aFIW_Uz)d_2=4lU|T>v`^43+PNwnQ*yO-G*w zjvXEdnc`lT-lLyR<4!u^(+Q(k-3LPaUU%zJqo)V!1R$RL0Psi55 z&B-&y`mmU7&xF6Svrv6U_BNIQ-svH#_vugn{hXMhv3d+Bi0$V( zT~Nq9B^2FpA)oWN6#wF9{$J(?XorSg6WIQ)WGPS~YHCLQ)v_lX4K!}*Cr&Q7bXcd? z&i2MgMxb@QnO=Z^5UnL&)k$yDzSGL>ersb+IgqdREDf?Vx~6fzg#I7X1CpKdskqYl z2kBiYl=d|aF+ZdE5t;HvRV!*Bq2(gSwi>3r;l5wt4(<}%Vg>=yNe9UyHt>Lh!lC`Z zBCX$}m8vm#52x?pQ@EBCi}8|m{P7=5zP5ACtc)gX$Q?Re3lrhN;s(K zu8w*v0S?aBR$VpxR|HYS-U|R(SL4A3NY{X5G-(f&%H=7Ufk`06J74$Ql3Rw^B?7`# znBXjwU@~qJD>)6FJtnLusen>EUD#^rjh5{1tn+r)fdqos=eyxiNhHw{RB9%MD5IY= zNb}W`%?OV6j8$>phRH612cqv-bCB*JC$y3TnU7GH7`oitlyogvc7GxEZpiA;>ZBC; zW|mmjd2k)WBc}k;d~nfu9{gwK-#(4zv8?3f74$r|vO2|NFP(61i`;B--u@To&k2mJ zYTApqS*NRLInph`7bdvPL{jj7m)6|)+4bbPmdxGq>w>G&$8s{4j!Z7Ut$Ob_EM$ZU zDEJ6~qyG_?IyF=!1K(=ywacFqe1yb0vzvT}tm8G^va_nGfHF*9)UB36km>Tw203;Rf)+doI1;SsLIXC>1mF8J$D21=a<_Xg zK2uF~HM^lA`tULxR@o!wduYO6gt2^`nkyI!TKxM{)=V<3aL=i6!`MVbtJSwLMUxCg zmuF7*p|_;yh*@v9ovj@LpwR_7l$Dg=u6rL~+6h_6xf(*_~2xUVw>>>LtU zW5c=R_orwOV($9wHWdjTcNx)j>)|GqW6m(I1_v=wQV)ROYh9SG5X9uK^cCZ=|Yl| zM52I32hDd+dlEHcmLlBu?qL;5Lp^yCGhB-rZ~tpt<@LVtua+U?k@W=zzT1b<0XEMq zhM0Flr1*@=0)1pw?evRpMnH&g@uDrbP^8LQ1@KolC;{GNb`BMq8M%w5G#y4%H32=L z&YoFlCM7rUq7H_G2(>i`)J}hc=SCQqF|F_=!g`aHZP+`hb*IxX5{wo*Vt>MpW_&N;5)Yy}8JtlpyC(J%j(Q@Em9fn}L@mQ~^6RKY9K|(02zeeOi zNIBKkctSvG7Xi*oTp>xzS{@*B)M{U*Wj}aoRpSs*@Tr{&kv_7YpMP@f9)}vrPR4Ac zs!gVfVUUx9>pQT(j#F~UAJ|B_)or>xIKt8u(rkmz<;*o;W(guCQK)Wq6P;bk?bTZX zC`IZKOD+n|HO~oYrJ+CeOXOU}QcJp(H_2!{Il^o*4cFDe6zHT8nJ9_4T3mCGTm1gR zH8q&wP^v8+aCN&cNcu*&BS&?Fl!9n^c{JIx3E)Zh{EcN^U^J0KLO}6hDd&!G5zEi$ z)fbJ_hGD46ZQkNDJv{k7C>_HL?@rLF?_-0s^AR{$`&V3)H{#96-frC-F)Cg0_tr~hD1vj-*V($x&VO%o^hABn}(bguIKLjLNl*pdgRB2 zv~G$Kc#m9lf$*3|pCHNk<_V-A; z*uE8rMq#|c%uUWGtY1u-a3uZ0c3^s~bpevxYxoOMph3n-qdK_OarqsgN+V}bS{zgO ze(cT7BFNSHmCwIQj0EuE7RC&RU93GFfUhz- zMK9x9?%5T+hk0VK=crv4bWGwPkb?-&g2WFw9=e=Oc0xPqc<%Ye+Z1;UWvPBz9~4AW zxS5a7koH#Ac^2=}h?ML+@oPxT+Cx<$c*Lcz{Kj0P{`Mhlnu=5!cuM{YB1l%lA9z3u z9&AB*#4S{<6surn*org75~uCeGY0}izFV5MmGl8e?3Hb5pauPG=g^ho1J7I8IhyO1 z1EIK@d32e})%9OdT{9|;iNKS2j}0vBXf_RnQ0yNA^I@KMoE1ZUXj_q|5J(HiRvYor zbYR**NguzW^gpAnB6w7OZXe>fF0KDmZLczubEd=e9kZfKr<9c^i}hlf`3Z)8)?% zFMYc0=_i?k5_bV2AS9Hfz(41wBrk*KbY^X}1;21~?baU8^g@qvf7lf3Prl$VQ4hPU~QML+P!e(g61APxwaBw@h$pPVy;GsSAZxsQRJ|9OxZ5z#J; za2!^r|6eqnWk6N=_w_F&DV@?C0wPLx3rH!Aw1hO$(v3(+D;)|7(%q#XID(+GG)RYZ z^X%*I|I91r#W?q#d(QXlz1LcwP5iN17&2saO7trBG*;Jbn2M2cgeu?FLbwEvxX*V& zx#NnYPu@M&JX?JnRIEGYpvo~s@G?OTKlJ#$o?9`@GGQdbUz}e3&!WAVXXv(olSmj; z)+uPCcoy=S#XILMn*OKSm6a+y4z8AaIriFLTvtVL*fMWe?Xx|Qt{s#nBT?dVx(7!h z#-fIrg|%1rX?YtsGxN7z6<_)4EvfiC;4;7P%-=0xAsrhN|XEp>Q?!HY5NJa2Ct~fg(9}9`u(#Y!^AsI1uJ|@gV zIon^hr0sQhtZ+ZNG*;6xAtjt-LO%Zk#>~e9GV?O6n&U<6nKto}r_(7xLp9cHDq@}; zEoTLvPaDg+MV*}tEr-sJLT$eI{)iJT?C}Q^u2#!|n!H`(owT>J2G}0mXJOZE(g(Bp zm*zJ=;jR=(@hOMwqy`qOCY2Mt@g#yk2Gg)J0){_|L%t(ARJJU*6n%+~PeO zGQIHp$m2e-%#{^IXVX*0u>8+B8DxR@H^s1LChnjL8l|F5dp#PW(@*6Nsq(;;H=&bd z$Hyea2=Ap&IJoQSct`!bSV|{lex~}S6}=yx+|NAPUj*O-d3Tt(wvhQ;5Mr1tIt-Zk z_m*qX&T>yeHHK*n7L%(X7UhBLrN9Ans>293mWwchPpfjQ0M3)On}xC&f>ANFy+V(W zuT<*+(E2O5jnNS!(dlG?g6-G55XwM(ukpQK#qTixS;edeH5_RuH4ogaE6h8tW}68o zB4Zg9Oicb5E*x&YeDKOMR#GbM`t0@^l)?`pP!3lPg9tM#{)j@SlCl#{j_!MAKWyxtIs1gN6h?cw1P| z-#uW_t5Fgi9SBYh45n3y0sHg}$ z+TdqDf08^UA-^T^BBuw}AlP%4@mVyy3XaIYQl3nHh616Td3JLdn&e;6vIL`4E z@%?jdFUyh0gE|E8By&f7^$lQ3w1b$wVNJYbj!RF}kzO zz!k&_mu2)8SFnXfh+%hW@r1mS0Sm>zZ)iy%nbOhqrOr#V_fyd{Uh#=QRw%nVz)bg=8EP3vKs$F8m zi8wevYH5>4qb8(9Cfckh+FTVTIR1HDG3$rM@U2o9Vw1vGt^#{>K7?Oz)4EqjCFWg0 z8V>UrIsZ5G-tA+4ZXr-qtN6GKaw2jlc!UzUjH_A~h_*yH<5={CU7I6uA}o%leOAm={K zyk%VITGGhtnDpwe;rY_~rMuJKs_WU(5)W9vz{E@fS_H**LJ;G_q)lW{F7%#+c94xN zJ((#fJ4Hsq7=2XDpb7Y~wwQPPV5c^Lt1w=#Q^bS#UE;!O8earTUU7wl5Ov<7hV`l4;-R0R&yOPn*CFn{*XWzub5xC6`#O@tzJX|fTYxKLM&1? zNI(KZCfon=Y3d~C})L0U4fdBcTNT_G;DnSSDZ`j z*CAi4A=oxVh*9=Ss(mtB<0D1c-R``Ls=Vi;0bkNkkcY+MC+Q?3uOy}pHD8{eaEUAVh56Mh#yp_5l9B^aH zefpPrGg4iis@7wJ{Ni+lzLG4%q?{r`t1(UScw0hCpVDz?Dqlerh&24ENlJla`MDiB z-~Ri1*6#H{mZj0(3xChs??=s&5OZFkhK^Okw5JKRwj2a((j!9dX~3Nm&qyU;NfM1y zpnyx-ey+96J>nqy{A@D!)8b*mxon=M!$&Ix`{Ypk^~iy&W&}de`HJ?oZj08|-Qwb& z#7#8()lhs|(d~U7T->cpg*FO!pNF@A=i_o7)2>y60|>&5J+H-(Ofhu-YQv5T9R# z88){ZwL4bythdmqrSl0Dh_(?etcK_WIqo=J?Adq_QmX*!MRNPqC-Jr~A#>^ zpWQi{+-V?#-b;0yz14eY15`H$LrZ1kaB@2-F1*FVzVt7SLhxuHLv&ip+v-wtoSqyU zNShL0`KF0q<8&3p{HLki_rG!ASAVk0&SR&S&wsnhStdPdyE;<^0u{vwosD3IWzu7O zNpHd@yvLF`%@6>$f%DAjt<@><8z~dA;{fF`hMkGnmdI_TiPr1?^}sS%DBXM(syqM@ z4A+n{j$N=I@RKx+{R{A*mt6X|X;qXW0xQ^5w7 zuYnE`5IhHBhC=Y+gn@`2bWgw8!-5D=pP!o0W(Z!!?X+K$fB8a(9@=?pQ6gKS64j^K zb8DzbV^-e@`4!S^2JMi6Pa>_&3>;hDrd-8ln=>X80np)cIW*!Jo69>nxx241>Jfj=e5_Y#O}1KSLgs) z{Mo+7>sD6mUgf46Kb7bUStH(scUQFWv76te2S@HFo99*1Wmip%A6>yvYTVBIeTY!Y zvT#FGMJ4)p^7BmS!h!`Ln^3bvJ#HXu4bcJnheo(XkPScA)K~AMwP!`&B-V8z%-|%TG&Je=OnM}lrEtlu1{LKk^T8sb3U5W z*WXk&XplkH1j}3Qyi?WHiRZ%$?^ouU=l_IJhm5KUCmv{W4xCFDLf#6yk>#aDo4Nd} zZ%x^55-s6&DgiFBbZzp#Xu`YAy~XK-X*|cbhLnBUFYAbQ+M28WeW2`o2<#X);|u@& zoCL?KmgZbYUkyRIoJdf4nEdw?^NyNzv^TSXn2#8+THS2I*fPJ+jUk(-rZUUpZDZf> z!ki&v8{vegm~`Wqy|ffr(_0{?ZM^s-1Qg9Hy#aVV*B z8)3AIuz&E9XvR$#jGFoG4KKFNy zNNHW_7}?{gZf+HVoxH zP(1=Shub;}N1y}mYyxeNc}Ku8EtYzAbk+55qw=MUb)}6l`t>nWIey}Ur!|w1T}a6L z5EYeJeXJ<1TS6w`dxT2J^ZJfqP3~x~0e7mM{|z-Zk^xCyej0qGPic%q0+NR1CVW28 ziH5XezxQv=N;!qCeH+XRxU`B5yc29IM#_i|Y6)o~ALQV$;Td4|9$4}hjVHxnm1;pQd9--khsXS$)^iPVyQ3!VQaV?U3PVe`59-)$;;i!+FjB6OSx^fQ>|eM zt)3RCaC#q|Z6cw?PV6V@oAJGvYN{7(8s8&}`(2v18a*77Q#$v~9wDQk=CzD|T`!SB zc&$sOO^((Kb=CGnf40@_Jg`?rXb+2n-o*Qj*A(w*Qf!jv|@}9<1{P(J^qv5 znKx6+;@H_NxxU#hL>vf3dJCfwHSKH=bBR9D=lySZoF^&dTJk9Rm^EhpI#_a zT6K2}z>=Y~Vs+gchoj?Bz4Kpt-zh(~2)te|SuIYBreepyD6{Le!`Ejh|HujD*d>^5 z3g$NNnVnrt>B~IUCY^T>^tO?V+OZ}*^@r_!?1<`3B-e?I~#4be_Dop>InRPh?RYh>QwIu-ab3M z(yN>*Jlk8Z(=e}7#=1b89hyQ#Y0wb91vse1z-Nrg96pXzOiJ__#YN<%22`J3nTC3N zdH%-F3aj3c;QH+f(w}DAf}jz4g1J#$y%69;R2B2%>kvoQrNv}da=lZq+awD}AWc;~ z?+HQ2%mZC;jpQDGKrDkGl3L|vjhc}>|qh{4+pJ3aSkW%-?4jB7~rV=eNZls zaK>ka2VRBABUO2B^-j}w{Z1YrhRCw%{SRbn-_EPs$W+@KeFdLiqkF4<`m9Otg?(92 zi@lAzk_%@ON9+!M$p26-ow+}=XHSs}U~wDv<+3wvv|aPkwx4ZnBk59;?un&G_dIvh^t^wxVYzcP zM|Mv=`jv#H4w+4s&goUH_h0+*Hh*fwXTyB$ItAAPRf+&*Js7kI2#n^CsE~9A!HhiN zxc?QO^C>QoJ

&LV#!@)bfD?-Qiw#*k!g@0g2YbLfiRAKXbiSgNA!;7=XnwLQjHU zV7Aa8s<-*f|195o!ib88=FfB>!5&>xyW&*0JX0jijni@|#+@0mcK@E5wcTkqDTFkH z$uJgsWiOXk`tR@r*~%DdX`U@T1g61QhfTHfLTj&zm{-2S^$fON3##-`(X8|x=ZzHJ zb+6fuy)*s?U%v3cdu#Oo`^I|MGXyr? z>X(pa@RU#9cnj|dMX@rz@^g_j=F#2AbkoxDmfJ3l_Na8iH9{6E{8 zdAFJ8lvZk&MZ{KR-g(TNJ>%+F5}DyK>zp@z&!PrX4pEqm$B zG7j-j^-Piyg?}nf9Qf9hd($c`wM+~$xc8vjhT?~VP$y3Bhl)I4M2~$qVC*tq!R*)1 zfj%HYkgt}3r)Vm)v49~>yng~J8n6~moSOtn{{kUHhFX}TbcG?mP-)B~IXRhu_+_rz zsr@HH)IkX$+)iO?CSP%dN-5REFcNiPBEgKCylK>R-qW}oto$YnfqQ-IdF+4H__Wl2 zcnFuZ5+m%4XV@8=x?2|i1Txs(_ zPj;rM*6=)|iNmNKiSWyB+M2Ab_9ORRrjul4W#z*|Lz1tlY~@l?$FSKCJHseDyOEgVg0J%2SGERh! zEs3+>@8iXe-I%C*GXu(FWsi8g~aqn$7)T%;KYy^^xQs){Tu3S7ZjYy(Vt z_Nx<1H-{c&0|SHFa{}QxY2j~roV9i%w@k|Gdt#C%1sCQYJuJp`bF+&9Q-(6v7a9o&QVtyZP@CEA14xt>^*oRWsvpz@3E`r3tnI$;cOCI2+bqa zw_6Z%1m(o7#=LtFj#qnVR`@8RrlIp6DxVF~SM35`LZ@A=j?u?8Pl_I0H(i~(3E|IG zp>%a_JtRj0qQ#HKE%oc2j0@FOfAK{i7CgCrtEN2Fh1osmIxGUsavQCI5}_sZ$gF`$ z9q|Azo80AP{T}TEYsU{1pbuW)&NnYQIpHYFCo_>j`Rn|0p|irAy?Z{24gLbB&dFN) zVhP?mckZM<(euA^i*L>hkJ813EeBOV=D+VBhlmxcCVXlrm=H_LGS0J%={fA)QK0M( ziB?}WbhG0}9-r#HhBNSW^pW(hQJlgSe@okox4Xvs1U14;f6s$7No_Idk_$ilRD!8F zc=?g!qThp$kv7`ZD1Z(;6&7W(!*Mr`9NQ=zCH}H=Y^f0o25l=b&wdtX?xkp5t#mhtSkypGf6 zNd!v4HR6NaLCZWYZ-~`$h6lZoRxYi_{iVwnjEj1EL024?>%Jf8%R|`_~|CQ|e#tyFe=5{C1ePA)qS`fkDyf zIo7_B=?^HJ`Tc>&^t974Q_Ei*$(ioN51qLq&z32qIS?N|<8l%r+-VgdYpj-yT5x>z z8bv+=FZ^t%xM_-QU6hH!g!EkKtAK|w^_9pV^Yv0*N4A7Ob^-VlnrYh_%VhmVdS|%$DQziqYky&Yv=Muo#O_V?@5Ch|J%pA+#E=Q zrK&8;#Of!MtK;@-utQ09+LyQ9P)^(h?z!3CQXi7R4sh{V;3|K(Vj{}*_cc4-Zt8ve zy<@ag`W5+5JM|4d3-sOX=Gr?$$yU-j!6PNXas+DrKnhP5gq0Nv3JNf+Cy0)YwrG!j z^~$w}$|e_B`iLO7b%;j6zJ?`?Ye3g+MlJcfHx>wJ+Q z*Qmbf{Ix3ak5;kWjq;S7)K{;9WkQ1hJKee!RgB7GggWbwS>u?I`s49>hI3FsTy%iR z$I{hujtYM(tCUCk5JZs3c6&m7y(N$Dc zQ4lbaK58CZDLIam1GIxg_hklWJ!dpt(a+Rj`|g8T%((_LoOQdph3oby!o<>`UOk`1 zPZVbDOR{fFP01ZC^EZOH<%T^dF?dh1eTfVQ(MqJ)Fy2i!o0+r_?v0ib;$y;yG0fF0 zCpo*|u1asMj2aq{xO-vw!3K{^k-DQfC64=a$DmYsFOV!qj_<+(i{Nf8ECdIKZTMom z6cJq2+9OPY$Y2-Y+8vZ+5e$sFTh~RgC~j{3HOcLRqDEaW4m~O)4x~%HaFtQPDReB3 zC>=LlrXzXx{`Q=(4JtVL<@epx(E5+5hnqd+CR)bK^!FZT=X}cuhF|*5-zs1rbxal<4*~>8f zf;~BB6fC*3_b!=Hv4@5!z_i~#CKPbu3FXe4uKq)QkI2b%! z0=3?x&1=2?9=t3HyuNxP6&TPOw*}0-XF!)z`Db=0x|pnJIpU(ZZn%{=NRd^GkjI^2 zBk>cOj_6=b>s9-dd??ikNgvItGmcUmmotK<>F`REdC%rn#e6lj$L4vhTD+ImPU>${Q;!W8VKzApRKd>G&9yy(Za|-L zxa1vF77@kO`xL++qUlzu0xrYO%+2m)SwLVz6ym;Trgnn3!oNw!OaQK|R(|gtQ{!8Z z*m!>|g?HbbRf_{1R3g6iX5vQ-h*nE>^ucuWR&Xdv1>gUsjc*Nkg3O<6GJ7uyNK*08 z@>`1F{9puy1ts5)*`fdDe}jE1x4U7*hvlh{du<_RQ(33=JviE3U7C$h5u*?g9Vw9t z=}w@ZVyU(u@vU!uoiQrJjO4zXFdV;VMKV!pr$)<7<9)XqF|Xkm8iHL02WyYpCraU$ zX?=ef3qVtkK3SxbnDWK}+Bt*pJU3RFSnbM3f^O+6jFnEvnLVhzcmS;Jp+X*U=kgHS zX;EAhYx*Q^;MFVc=OTx(Di#^LHO{jrP^4iZE-sHv_1pZEOXJ-darmBot*k_CEZcw$ zEt>@Dv31e|aG>*K?Nmc*4#~<$HVwF;O~MpO9}E%@;uY)rm5+K3R`0=(eq(ve)NYFe zEF%fsHwu<&t%f{fziYBR=R2G#pTFhLpS$te?wJBJl2we4l!U3BZ>O_Go%-w(zLeK| zviVX?b0Y8>ZQfn+c;)o!-1+Z>P0laxm|`y5u`&UCu}u!3(cnwhT;{O^Lz5r__pi|> z7_;Efi8qX%!-A8?JLs7li<_S4gKzONNdiZ8>fX#6V{dGzE+VlRz>qKxoTE#gKGuZc z98*7jPC1?w1j%#>?{IPkYb}TV?S!!M?bmuvF$R6xew=!&WSpg6H zA_8OYeu9v5$myca{}(MlV-^6xLNcdZCBOt7c1OStr#!b6UPOM$_~@t8w#mg$x<(Em zDggmjS^1BP24E+QTkQV*o)O<)!cX5zOTumnhw%zV>LNC~#D}JV20&v80Z1p1JZoek ztr@tO@*{|3rGGM2E+@jI58i)KhnTY&eNW@azV7eugA`)g@T6?~UtP+`^yiQKM>Y`n ztXAT}79kwd6kzN=W<3z}P{d>L4qy}ACC;v;<*}(0YnF5So}wa&p_@ZR=yU6C{%%BjaY_+#dOBdoqg6bBlg5JGOXuq+n2iqwwijS6?n!CzbR)uo zG>`Ir=T+U8)z)DlmQhxAO;O`7X!KE5z6&?93zV6BLADyZS<9wa{Z%m`AtCxkFeHzK zJw-inYwn`1zqERvE}s&zc6p)Xvq?in^j&#-$kSgEubzD1f=mc<`mW`X@PP6Qyle2# z;E+$UG9J5YGw{&X@ZD%HDWLJMxWDnMi#`+H^u&av7eWh+;OKZ-<1*QsaLj)){P@qa6kV9NqUE)B+N2JKiE1C@PGPFfeAhrExjf;bei-Pby z+UyCz*e^cBEH8fdPWWgg1eHQvbd40oog5q-b0!kMYyqbG3mv`C1ZyQNXG}zq14q_U zBhrP!nuCkUZlKP2HX=V?qLOYNB%Al|O%T!X6h=#qQ)~ z?og181Iv>JPuyTZ!X&%(J$Sr2jt&;Frx7$`xP@JY_v^&Jr0eBExTc#SO%1(u9z^DWS;aw^YbIe%9M1nd)=1-uq{R-C)8!LQVt<+^8%OA3`WRH z%iH<^CbfDE#l@>b1va|bBwAemzDAg0yn^?@LzspYkFq@Bz>&|UZQF4ED(f!)ixitt zQ&*SV{-p(_qQgg41i%lbDnq<=bW3iIwp#bc()!-`q#C`E( zX9lfPdBuvcsgU(LXRPC3%?>ftwoS%`vz&jS*TUT$_;>k7@e-eWY>GMM?h9255^WlM zOjz@ClcCAZ?R1Z|R&rq8MOsI#vOVLW^~1N%QGg_)3rd+C&OoqKcN2NWcP4K5{WHCnYT{_a0@IM-${f`ta0etDXNmOYu|)YZ>^I-fwzY7tmI9#zEDDTs$w#f^rDz!PCy z91I4(X&RWny1+^O2I!^Vh7};#YhGjf@?W#;ht=`+?M-WgDvpn?5OB$KAqUhX!zmgh zljLnr9t0^!_nYTwe&}a=J2boHDHbQ@#1XVwc!0d1oo0MTlsW>P%g;NvJPXt^JV)Y$ zJU7>}!{ zot_#ww+4eI*RircLb(H~;1#zr@eMp-%0!mVEnd)A6$9Fm9JQj>gJI(oyaE)lP;v$- zzzWhx6_43zhJdwBk$t3F_bBlrExx#xjOey0TU)6nM^nusel#Cn835rE{;4Ixz<3Ga zO-OxL${YO8oU`oX<60{|?No2M@Y&7M(qGc_lkm2Suw9M(M?3JYQ2Eozt0B#6uxmsc zsy%r2;bXr1{s;Cd5mY)&$Gg(6fYn9eRVpG#62_%AgO_uj&F0n1Rt(6sLHWP1VrkIM zCA`>Z*q_~!E$A(jVz4{9uOc5?Y9v1e? zH|J}r%lF;IL$iX?rqMx@ROBxj+&GR0moJd13>fL$eaDqSq6@LI7vO>s*;~a^Qc|1F zmT0cDA1kw~?rb%=6GjLlX1Jp9WUaV3IGWlun7nDtElS>yhvnuD`)Q!*IARUAef427 zkgbfzv>rVg&b`QlPnxfd6KQ^SruyLhdn5{V)EOaUmj4bTv=d%BXGdG{Am$@F%G<9( z?zCUD^jK<-pw~}@KahVl?Fsw9@=V*Wpm6(zNH6T%;Cbm7O?J6!6axqNeYI{_v4oPu z2|Rd6$NJ8&+jI(?fdG4@Rqy~haz%5-i!@{G{pQ=S2@<7MshnFuB{r52HK3gU-ZLDK zN*gl@VU8CU9bG(!ZH!$z?arV63cvb-S`YfCCRW{EtXaH-CsqW$M5Q5PX4H`yC_lCM zrT+~|fJh%~P6@ou5_A5M@?YPPo(8V4ZYbMjkf`#B#h25c4p*_SJ+5U}WA0T`(kvH) z?qb;;kz?t+8PMK7c?orDJXk#H9Kt=fCVQd;nY*3Oa^xc?*l6B>xH4 ziBl6<0&`sdqtD6T1Rc+4p=FF-Mu(?-^74PB0xTC(5T=PA9GiB`ueNf5a;zg~H4jOzMk!i0*a(OsCPa;n*V4Y|J2dXJM( zfJ!!s>!s%*6}y#{l`B2W(MoDKxZsiIy0++l*&=?l2}TLBuH}fGYp2j1dLh}<4T1*> zu=m505lZ&5yCqL9*KtW>s4;dnDTwIqa;XwM7W`~PEBJiLc4>J6MV`Il;$mN;5(e_< zML!L!(17Ueb$x|41k=eFDT4e$X{_Mk;bA);AB8eHyc-LW1J>U{zb(s}o152q=Ho}A z>6X;a{6)g+&j)rQmyYFxv!vtvNO(bvgQXmD6Ln-=+tRitSm5bPO*mq!v&sHcD~!+J znE~<%k>rs#Oy$*l#gh#{d&6QDwD;W@#`1uGo1Zw4j9Pn-ZEu{yQ* z*PPeL0}Noz+1UcPu0yz|$7z`)tZ8^?vWat}O-zKQINu*o%(cxxE(*wU2hn`+NCk#j6A+t%Oh`7g45@zdUca@U!7& zFE_+0w>3((yWnKce+OAr3i#GRr`^Yl*eK?L%=ewdFDOj$FFPbBu(>G17U}i6MX$-E zQw!R|q-QJ%{wb3-?T7-S9bt))|CERf`l_;&7py!N^KWjd(}TXOuUhzZvboOVI91U6-s^t=a}sBR<*^d%6fUiXA*5CF+`g zy`wEIJMEdj@#Ek;Sq|UrvfGkZV|%Q)h;%$ACPMdLA+>9YrSS55bZVEmzKJhcYWRME zDrsc=R|m}|{FPsB<^k8!whx==E_Kw6+wr#(y61dWm~&NEYQl0a&Tx|*jez5H|K^{1 z-FK`vRI-Yx|BgEdl9JaU{xuM<$iK&*Hw+Iaj^|8o%f?XNy#;N<>8bjFB&%Ie^wpg2 zps?~Udhv8yy*hc<#{7F7{8_dn;G1SaT?v1T93qj2`{Qh=Nj0h-AuS&Y3ZgCJ|Z3@V+iUxCQ1@1;Kc#Y^} zs2AO<8)lwD+S0=S$=h+&5r~qjSjG9w(Ea5?O&^EhrPT`?`yJY`ezJ;|bI;%Btj3t) zbbuiv2#J?UNu_)jB=t8px-#$N+d1bx=r$nS;ez#niAd_|%$^z?5JC%UW6p>;Q3#Jo z%gCSv*@6k{o_ev<=f|B-`78B=ha?GQ87T3zjoxZ$VQKuL_uEP30AWns24#us3%uM5 zIRN}=24wpn+i$OnS&T9Nw|pzQ?F{AX92eEpPYvnQMS=&4TNrjg!2nJGTuIrC09Qkc z*Qh91EHf$ws0^omV9zND3wkz!iNtyTT**Ogf@cejNcdV7YWVMO$=}vuqhE|SdE9Q9 zS>QTtWUmu-`1;y>97YbXZ91(PY1As|{=F@Wtjb)sJe59GsLQ|nSK`;{sV0BE>@3wa z;=TjVG&q?=uD_5Xo%otF1q3o*pT{mWhp?cB<#iuza-VEBh*`Q$SPw=G*p}O$zAHm| znz1fd=sL2_47i{WCrs3~zy4b+f2!Zlt@g8jicfy_hcPe3|H^xGhcD4W4Bv?s2F+4t}yT&S?(o$dIm`Ndca_Ph-oN zuZva9v#wQY2bG7%Opzv|sQc>;r=&O< zjzH4)d$_yMyv~Q<@>&PF`3;*a~r#|oJM@=dM zO1^eh;j@$Vk~?b8nh+C;ydh3sj}# zOt@slY?DK?B*&QLP5cGw5O@A|Zwz)sQQNd13&-lvz z3VXkpU}1m-`J?u3(tmUUwhk$d?#4!|!-U1=OzZ7Y`WCMC_9}uF7G=u& zt9)-B7TR5QPDBKMxI#qtKdaKcK&55)Rdk`QjGtyun{2o_+W5NfLueS2qB zdj_W-B*i#@&fu7e{J&XirH-+rDV6RgZ;9=7zQ}^AS+9UL60{pMH1^#cBj)lq9}m&D z*fENW27jUq7Cm}U0>3f*tCUnuPFg3_)2wDtDL$CJ(i|&|oeHIiV$10KYh%sF&%k%c z^hWBm0idB;gyR0Pljob^O7RLqosk`YO#wST-p3kP8|jIaEkOlaC}f5Ae!jTs`A{Y0 zedyevsuB%u)w=-~pU1~FIl?qKNT;HT*6XLXTP0cWX}nzub8xf@^zNd4s-t4}aQtjp zy*$!HM1UN4yw~vlip{s_`4wC6O)?%D*aGcm7|{V^99eb6E}fW5`665IClqb6 zA2m&wcDI%sr|eow^1%n|muumnUvAP0JLCBfL$Xt_i`5LqG9LQ(@5Eot_pQX_v{v z;BBKB4aa4021^Z7BRrAk^igvYN%tPb{5Yoxt2(Fe?|56KAxtApOOkFuiXmA-1_}#G zkp8u^+D|^4ff&29CUIp;=0B6fsV$1Z`W+Xy?@~+K8tdCL-@c5W07c5BZDZ?6)@`YH99W+y-*ab7UNa zH-Y=k2bJ_2tx9*0`Hq6eD>0;Bv5^)d=;sVdcmLeZnSRRumd|nWK!0co1}H1HOO6Un zhLVJ(W(^#Vp23K)de1NFRtc0`WIS420dypXm|mi|#Wji_pWq-J-tvuKj>}=O)fGEf znsHw*+a)Q$%MG>^z_Jgs>Mu@0?fc}JNrR|%oI&Z5=jdgRBl5jZr{L;n?=*mc7m(FA zS89~`{0~{>zkI%d@}MbVx3c%2@0QMnzt9jCCcrk!$FWmFoH$2c`J=f4IB~?GlT724 zh4b_-jCl|U9UWxspirThbPC7Pr)k>6Uv31}gIg{65DAcVnpO0mlf@Td!9c;a{muXN z3*(z-p*E<c(F<5S0^-vqdTLtaaM4PKS2s@u zfV&|phSiKV|5%X;X@3e4d9PS=GgN3av;j0*s0|%Hy}8_ib(H&m)CA~k>Zjl-h8^?f zmHG&TTx2$ujt=sOLjlPkHntM9XyPNx_y9&7e`dO(pMCNf0I=eFJLi98r4LlFIw}nr zD4P*xus$Bh-@$8XU8_GTpZhTcU8wS+;}wh=tR$8x^*)iL{jyW;q>1kctEM1u7Y>Y7 z*i?%8aU89{>NX$)B4MTLp(O7JZ=EO}aaU-3(6jGe!YwLy_UcP@lT!wF$rI55Mq=4M z<06XtI>)s2=2958&0kg5{2PR_FwNT1!HWO0c0Nqs!lYyqxceW>)1nf|C0&KPAf?*h z&v4#v2F*uP<3JlCV4YY`ZLCW*J?FFTES^)gK5}$)@&BY9Dr|7q3A{lo_sVlzwQa$R3Cy`?WWPT2kF-+AYy1rY(m(YPPL1dLqNac9R6ei6u z7x~2^wpK&G+4E-G^_3AQVIya6U`{nz=Lq7}WGywc^cMHJ_V=@XM@4=>VM=iEao%0O zr%vqrd9k>TpV^Sm%as|n(Wr3Kl+_-4-%O;To%;QhQR?{Izhde(JFP!#w>sIXk9F0H zRA8DP_q__nJd%NS*z%s%mZxv6^6fT8_71Oav_qp}O)&1#KvIg%-$mW3G~?5^d~Xdm z45$-Fn9gkQQef&wobI#(A&wl0lK>WCm$jVjk}Xi)&?h@&I7O7KpxJsmmon>)87dP) zErjAYS;I-s^Cfz5Xu)flx(Noa=H{=)UB$rrgRkSOPptI_DcGe@k@b20D|C?M)}1hl zDrB)$2P@`^O3V$auo8=~@+$~|+(iT%kP0R@dLWkB=v|9-;57Y{UK3w)^a_NVB6H&= zEb!xk!oB;S8zDr)KX?Lnv*i_aVy{MxXsk4Mu_2ez)!FtMP zZkI?jShw?dPdq9;1P;~_-1(s#wf6S1tGUruwht9j-j7*cdYgvdM@3TNtXb$De2@6& zr-wjygo6n+5*X2GP=uDJS!-1aRF$<`{a0>xP$^6j5B}y;|CP7Nfu2B6aR2G|^qt+c zq7r-m7#3xSz|4cf!j8!O^a=0ZaP@bkF4uQ5Q=t#MFU#WLW9Z<{D<}-z`H(mrRbIv^fHiMP zffs6f*IT;FHKIFMLdpq!Z+MnKC}S+bV;dK_43OdW>x2GFkFb1L3YoZKD)V%;;$6I+ zhlhSVorI;SUHkR*=CoHP^k_F^jod_+|zh9g7u~S3RTHYkk7& z)ptB8ls0Re*sNN{lBS5m!Wc_RocLNcl8_SOL+-8@oK{M;dh)!lnK0gH*)_3`1y62eozMMv<%U|B z=M1%{|Lz$&nQ!)tI{ZP}n<*iv@Ki)I?S{Jg|)(&&*3 zymqDhmRj(9o$BWK%Dza;;iysBrz8i#jr$8CTQ&D8o-YR@g7mrZ6}0TED2bzbEe9z4 z?%#3~n8ps5#j1=G*P43x(>+C=3NMVnlwO<^XH1}v=09O`e;20wHMR8}rOlRmU|@E< zoOXI-k`elGP%?Df$A-zH*PnUxIvf8#t8ZFHjn&gSG7HA{69)Qd7-%{U0g zJ{O5MZa&I49Lda!0IsFpe4$fnr~mr;P6|r zq@|l4U%I-KV$|vX5wOQ>!^(^(^0B!pmx^1!EYDfcQkT4@xW;{Lm8;YJi1D=m-sa^( zp!v$k7-N?Dd=#^wXdi2NTN7El89?=fXf@!ImEGYjZZv@wfW!P zFCIai@pGf#fBPTbVW*B>NOaas@R4R!Das$7lrb=+%TE$GIW<(Ms1VZ~zDP*6I=GFa zl8El$j~#A$iONJAUieHsNIYS+GXw*dnqNIaZ~>*`?6Z70A;dE-LJzr@Prw|V-HHXk&cz|*m5t@z&?Upms-;}*^( zv9_jWL(cyD8N^iZ;-Hel#6#_;!`fTL^_|G$Z87Sq)md#)@r}Q^rm66$v{|ti>gx+! za&5B}nrO$?LP$NCRDoDfKL z|78fx`fwA!T)5c3vw7l5_#NGoIXf@5^3g}_sl!g+7cVN@*JQs|-Dq$B+XL|1@8ZK( zm#>p9nVm7EC#tC*38E3js+~2kMF*S^eWeZftPKf>b-hTdY@b^?IRwfEJ$=jk_#dni z2p$k;m)}<6zzx=~4D!L`mibgqFz@o&$DuFry?)ixXGH{|wu*deBxq<8hK*gF(%zz3 zvW-ui8cjJ!Wx2_foSg~qh0S28l^hFk=q&x*MJ5|M^2WA=yA!-S7Xc-TmVy~yw(4gi z9CxSc>vr&6&u+~h zKgLp{k8E zsI}530S2C^OSpJwy`$d;Eeo+HHoC8>XGdvE(4q>djK>oC-bFqQHDZ0_-s&?UtDFdi zo?CXIy%w&JB|v0m{9G~*g5!zui$xyqYU=Y_`^(SKgiq$=T)ME?(GV8_Qp0Qa!wA)x zv*nqBPc!1XFJ@=rL`FIpvQXz5nsT#%#&%n`OTV(}XQa|EolQmYP&NL?>O5V#vEG|! zbK8pIuA`XXXGxWJz7wPHiV--G5xB7c39j_RkmvaQqTmUB+f*R7)e8QbJVLIbY!tV( zDs1|Fhr7e;6+A}jpBW=*a1c-;sk^iUc#P+p&PIqBnfA0aF&IC@qA`||($h{J6wB#! z%_mC!w%im^8@gg8m_b`7=?&*(3P*JBVw9pKx2pW(h#hgJ^usVhN=iy;(X5bs4*dof zB1G<^k8_0?Z4=Mi&kSur^>p@~nj(5BPlOYmX=T!X5gv8DP9goO55+7+pEF>$J2Qx6 zBw6Ks#H$&1(eU8ldA3Pi|J^*=H3LvFqZHK=HCwjPu&(x{@Wdj~f)+gJZ6zb`si8|A z8=$uxVC3o}v`6f4PLJu8mY06=?arEpyb<$C#Lqn+DaXf+>|Wj4LPKm$){?ZJd>J&{ zP8(dwl42*85Wc>^rPhr+z1k}$^0^jZ#_OoKnk7znOfQ~Amrj)Jp5-QY>L)q&TRfox zbz$BGonLR}$Ng@E2+?;gS*(_$$&#DjPu-`v0;_C?EZC*D4`0}KIyHLg`BsRSa+5pT zezx4v8x&qO!@C%}X1Yj#c`5(9CT=}OWnGtxJ+A`yFFHxyzvO?$XQBMT4>MY^y8K?0 zcVErTDr71N1myqDLgnS}n@8_7lD8QJq8?5Z8Se{aye3;!a*$rz^Ag(TMwg{OSG5%i z^yNcq^d)c4@l!-YFBLj8kFO z*%dK%yZw@hlr9i2xZJ-F=+r4nuy~=5@AdgXyPVX*S7piP`D<3T{x1KItM?A4g8$>j zk4@PmdlyNOj_eT+WoPd#JE2H2PZY8VWzVc+WoHv7D|E8g?|r(z&+odPr$4%` z?(4od=QG~pHQpb;OlhrvEmJ{JZc4`_0aE<&rpQ_%xR}UA?ZPDej{JwuZa;kJ@S~C> z_~F<(h^3#{3|OmGT0|+nE17LtGumYJ+O<8%&~279B{??P*YMtKVA8rq(=F;ub}ne! z?3F-W`otpAVuHam^qv3_&yTh-A_`&rR+?yhWN&};Eh;LtMp;A(Y9?aft_jmEr#MnmIU%2!I?D(rmi>d6uo&V=TbbAEwjGojyQC1n&FpHyz*c&h+`}^P%=Y zkGABDxPS*GzKiBbUA|l>EvhME0XNzzOy=ysY<;?JET6(yfH_VS#}xtoRt9$?uYj7n zoG)`}Hlq1@?@R4^YsX8mes2tTvG+TKINX%AEG)z&^#)wtovSys@_$C{v_z^`ZUk3P zo5n;%*%U-6(c;bSlmBsQAc1d+b0sNEiTl3vChi+Gp~NSrPSb!iym-DGa=H0jg1t;N z!$Hvg&n@9^b=p<>E%Fp6vXW%(l(e%10IrTLw61FYo`poNcQ{9AbDKtv{2bdYK~(25#54P5g$( z%f0};pV2fXvY^cEYe<8rD__>83GR(4Hbom@=M$}R;-wn&TPJZ}$+op>ox(QiXx4Q1?^h5->zg3D z9=u{fT&)|~3mNO60gC3mDU3uQ^DVbQbJM|vD}Djl+h8u%9-M!8g-Y!_fSag( z4r&H|7uUUMuequ*<2zOQPsWWCxPR6D#vdCkmLN^~db=9{_nAFq-Kkc* z=+rBL+iWQJ-8{zDkVO%RgN=J#w~*x;ISFl}L=^bAWREo$wnf)MX~?$;zD_3mv-kDKt(0+eZw>Y4MUy(>EO z0)v8So^V2VeJ*UzE_Gb2$~*)1z&W;$~IN(N^zT z6eWM3pY>$gChZkBBcuo4i+y|HY)lu5mBEuKi}ypii%zGV@mMMO)g%?Y8rLMuc=6{` z`W5%umB4m$964g^>tGJcYei#RJm?2SAMLbEUlkr&q5U|)|BX&$jP_3c2$2RmYrL4- zUmGN0eCNdLZ;%CYyrT07F|j*LWc&^f5g=w6>1lu((}aDD53Uw>qFGx$RvK ze!}72uSf#22ZrIH^98dN*{PZOm%? zp!Zz&KJT~p`$?_%H#Ekq{aI39y#%XO_~PZ7boCIJNTGN(3efu1~vhomE9Ot-+dp_X_{Cp)FD4{5YgCnmj;E1UtfLmD($#{pKF0w>-ep~NqtGdhye;+|qM@s>P z^nEXRJ3)G5z9jwM7m4vB@LP+0d@)o#ER zET84~3>P6otQBp%l8ORuPpn3{UhvqOn@V6xF3FvFFUG+l>(s5FmGi{Mn?bkLbJ9)D zmtM^2xqf%m0u{WALEWCI!Q-S?SbAP@KX7s~TApH8R!?n^XLl)1!gPo$Ws~4~7 z@6D{O$)DMd9mi(du0fD&Ekdd7%Ko76w`-%}eB_s3Vb8A*xT zZr&1o4`(qAbrS@hcPclhqP99uspZdKf|o`7(3_MJ7?<}!UKHO5&PN7hLUo3fh4O#c zNb5&${je_;J^D~UwC(+kq;_I@9mf<(eyD~g!dQ3)9faQCymoz@QE9+dFHOlB(>@Uu zX~VouD!6yYsX(XVb5x8#BWXiJK;I_?WDiNm0M9AoDU?)OFSPSz>kcIDqXGz541&mp zamRX5xjU<6J=g16S5C@<&H^1KcOxoL{b;vKABJa%W!B4fXuQ%DDpafVU5t1p(H55z z8Oo)r8?=Tp-&Md#-G7rC?Qm;RoNYs9tu}70B4AQ)j+)NcsR(udGVt}7W zTZpvlXpiG>kW9q-=O6@(k~okANgIuz-^tFH^V!MX+xxsoA42vd6>*$D1n21%-dM!B z5qwDrP(ga?aAk5w+*)MFm#!X(;`x0p?B6dQXE0rHKZjZFbraIa^j#&9{5ueOZI6kb z-Wm7jw`y+A{su1*vbag^q2R-xi^TpbLHGB^dD2Hfia1{LCTJnLbL$IDJnZmml^j8@ z--d|hXBV#4h(EW%y$};#TjLYZogMP}h;)?5Yi!*b(%g2wPNDir*@de*V(1~My{YJA zlfe8H>5u$e$xO0P*Pcr2)Yo2KrT*dNgqw;#sEV*vmebOF@#^t<6Z(4nL2oGs!Buvz z@5*_my{Vx%dM3-B&HxV7G!9slSGx^TAO>xor|>AevlPI5ys5s5H~+4f!cn*+);U`Z zsa|794tS+=M*I$gDQFq!bc*yy5K-;sptFCeRGD={ho8>taqtb^I|`>xfn;);jEpX; z2(6FL-}ApSd0l?i;WXEKC*}nMeQ?Q|cc;X4k5nVRXHQ*grd&Pr03*!wYIz#2E_9x% z%KH6?S@Hf!NJIkfw)fMWmgvi}d`YdprzMQ83KJ3%(sV9=OIgEjDE=u}n0@=ChCZg9 zDpoOrsjqo|8BO|v#)D)fQ=*(gR_ozQLA7uBM&nMpw8uzF=O+e%e@K22vEe>?t;tUw zxY7^ar;EnkBn#Ws721hWiv6iJ)=Xb%bF{jt)rIxt_bx-x9-` zb8hH9D8!+u^qSs*G7M(7nU`0uT^?R&zvsMBwdti+86BlhwKp4MB*&g#pl3%51Xg#t#S}ZVM-g!DzhRQvlitjYaQKXPLCI+3p%lFdc12R=4S(3^n zcxBt(Lzwu%huonTp`(%AnoB~<+I)y$)}b&y{Ds_T)**#fWLB{_WyrnRa2w=uZP%W6 zeIK8ZN*%^7ArnQgG;q@zW7L8X6SK{U-P8 zIE1~WBjmCoqHp0XDh#XKN^1d##wbK&e&=>UF~5&Nc@&<#TWFYBGY>ws2gc1~Xpq?H z$5fd(KP7Q3<8!LPEhr;Bm0wvEwnf-^dC*hEPRFr0&F3T=yZ7~|T(f!%qQM$WfQWS; zGrzIF>=R>Fw?4HdnSrhPj9Q;>2(dw08&8oZzo&fk8hpv1Tf4Fd3Ey>Nacw0eXw&%b z>cg-#mEy3l=Ckf4LyzvEyDYJG*?BaPa!9UMJ&&<(6tmja-)QGK{VUFIB3S(tKHqc`;Is#L5ZGlxc1<{wXHdFbr~(EIS}+yld@`Q zK>_*EygUk|w5DgLf!0-4LMhCjAfSmm{8HPtc?E~QqpgI(xJigBNo8SwQNvj!h>VnU z4pzr`_vPb>hvNM7q+;>cjB1(hC12m%cOkX@UOKl~w<+xp&g;&rrS(q@uSeFnp%;c9 zXteK)nZ!GbN=^u9AfLdOm)xJjySAB|)N=`1D)PI|%{ce47pQL1ZIt=>L9+3{z}t$` zO}PY9exr!h+}=b#K?Nfv;t;L;U-~I#9`7_-1o?RBt_t>ch@XYVdQUO%0K|lp9i?*~Eq9o%y@aIxHDO~-%DU^aC8m zh5|4ISMmQ$(lz$Hes~F6b9gikp!-pqk|?P1(dnOSOe|aEv^7LYGG(S_2Z)Ig_y}d< zpJ($Z9QAWHbQMh7!(&{Zc&2i+^3D7ny`J0iqawzSaqVTqSSfpwUPsZN8-1nwp)1MD@Hf z&kb>A-(O~kqM~hGMc zwnLY_K~=LTbIJvSB-?zuh97=i68gGC&H0iSVXqa?b8Ysnc!r~|NO9xq{A}Lw`UBDZ zlRzM`2WQn1xhtX>1iOkzg&+Qc-o?&bSImD zEh-Zk>N|&{lT-~qH}0GGU4Zvr7zhrDO1@ra8=6C3ggWqNg*v1Yx?a5CoyU%; zm%}Kx4*W~%Y)6BB=e&w!t#ve9q|Oo)`h3is8F@y$Q70ldQF~$Q;J(a5(_(|m*>1>pBne@Kt-9sDX=s?unhmT=XUa9m7ypQgJK3inQyMY7m+jSOC zh#%>Qnp|5LX!_!Djw8cgQ@Zg1(lSVG9>?BYtp{Ri)}yOsMfO#>8B|b=J9lwJn)ke> z!O>F_*qHNXr~HtHGPwGMIywwfUr=Cva>&&odh|wn~U(~b#Nas0%p4un7ZsGT!yV1qcyLCMS!oNp+TLw zP@8W)P9kuuEWV(C>~S=12zyDx?nyd|Vz4|YHc?%i1e{_x2qMRY72N$j4VYha zNC=MZN|_BZB9=)+JjkTR^%7|tRGou1l^l4a2yG9mTm9)IWBW8xGAJ@MNvv^Uzvd8f z`%jNR&1#r+#UpEvaacIhiH|vm;QPG6Hb~skv9-gg=+3lKa)WATX`90|wb}Ba6x-Ck z*!)AxjU+o`Hs-Qr^t^NRyuSm8OZoR_-s)Hl`Mm=Kcs}y%S9-ksy~tv{^6$|W?Tebs z&dufuoP+wLS2gc3#~>SwcfA?W>o;4x0j9Fi5%r<2-(QH~rHlD@mXb>S2|zg58Y?n0 z{#Wjq4L`)a!=s~@s+V7?>h}`#Nn%vd+Xjv`1Wt_yx%O;#G%4dd2Zx42EBeHHd}PjX zczdPUFq5_cEUhS%;@)@fC@;Xmj`tr<|3Zm-0RB$}&iUg`MM(tX4EEsD#?XT5MEzph_N3`S1J9crWsOAotAg%ugX^yF|y z^zVSY3#5j{IEmlR1cG<3rd?|l94|Aw<#)J}hwXSdl2kZR{qjI$`Ln+2dH5!``EVyK zUEp_PBf))Il$*#k*7!QcZOe+BdE;lb>DgUT3dhG&Z%lXK@ZVHdETDi+)X?h_O|-%g zsUU(k>6>yfMc*DFSzg)IdkCWQ5)NDFP(RQG>sigGRG~ z5=IF?^|qU})mrZ6xT6+d5~EN{S}}QHUO{GVp|C+Qc@MfUQJ*b+lgut>a)zn46Npfx|*B4yJFT$e0M5j>u*Fxsbi+S63N*EuPILIs!|qq1=)(QmEUuxNUm0 zyRqoY+9o(L=pA7PcuMTmlIpJ{*&CCe`*)f&qVy42Ap$;j^61PkG__h zeEf`%XY&AE&o zT9M3(wjLqsAMPb8LIsC;)mu0Ve>HI0Xl@Mf!_g~jlglE8xJpzi5@mz@?HkYR_U(0+ z0A3pacQD{ff>@t%I9IOsP3$5~H0ziPS*(Rxo<(L{$4wbj0^;C-hE%v+ z)z{0i_&|E~T2aP!q)QA1onqRsNRs|*vo6c;|45c1{VGOi^4z3VpWc>P*k;$tmy{8W zQtZCoHsFwL#3x)zL9Qo!45w_pdsktYh$j``xsOAYo;$0;eFyIULvQ~iIouj@Z<1>X7+QVxKs^$2b9k#!6Qj%Jl)s1rY&!r#Uh|#R5txN2 z(74apc+l&F{inJSOX@+v$hm}WZTXI9u-QQ{0XhI-YBaT0OaAa76)YS7=fkF9E3{~ZoZ_=LajN*=;-mrj9zWewhB^yeA^-j8nU;4lrLUepZq-L5n5n)9j{EsVwkAQ zqFj_z-YX+sXQGuJH{|V_5BgimXY3`mo_pHa7RI*vak>%&;hu6 zPcHdQ)syK;ZNBiOo@5C&d<~fs+S9*zk!iotK#%n_7sc$46poo5{JBs9y)n{v#4g9P zWvx%N+v?^uo*&P$p$Hi@I_}7LY=Q+2GHg>la@vZ{&-JFodpHU{nLZTC^#8LRaRLK0 z7Pj%-1Gbh&BFLD^Vd#6wz}p*($NsxzU+Kt2Lq5U&h@n{aW`i_(MtE7{g=Ie5=Q{qV zWJnWX>x5Qk5lUD_9lPA2E2N~BcRx_DGEoyd83EP!!$KFSbh()6LAV^N!Kd_}l3>$} zUnu@O@T>u4a!J3MO699WhMzBXrNfq|A0PKHeQZu8xat%4-Pg>2;{L==R?wwHIv|B8AsD2`ZUga;uzJDqpLx6@oUDy$o*$jN36`Ecf3ZUJ_p`1yb zCku3R6o~PrAOTk2U$@7k6Szmd3RWk3Tr+8W+H)2c6r;~)qLKYH(s6!%F3f^d{Qc0C0b(ewHm_FDq)qcCg) zrT?`>cfs30Y|&)Ywu1Rnzs>H|;fPtTSoPEOE-n$X#g2Cp;(<_jL%)xDYmQ3(zZgUq z#zIe4Y;zwa>pAf_SzatA7h7cEC;0-MF*s=PHoqMqcAI$KpK5dR^Tl|n zUF*Eb-vf2F0Re6R**I-77wMIMO>&`*?SLAT(KyuPF964CGyoi5U$jK-v@DV_@Bobh zC?}yFc}Vk|`wHBKc07uyNg+J`lyxuA5YX|r!uE+5=C;lgH&H}?xVD4AjF|+H^~;>` zgW}1xCM4ns%*l;}okkphLghX`-4A`1j()D}U8qWl(CAUJf|skIcR8tmaF~Y;)btCZ z1c8qrDMRp%)Gqd%0?g$65cwflJ#TPKga~1Gqli^Ez&VhOx*2g$#1ST&ukHSEYIXBN zu}Kj3Xo(ap!ZZ~ZRy4H&HMZuFq)?vx6i-%?wR0s8HL-2MkxEi9QjqAPj{;yGc9bgK zFPp`Ji#6Nj<67vLNIL+W5bCa1&q?y@mC-^sYeUo-+Va-^F_@e|%z?tx@2--;%N4*n z6qYLcgI-ot`3m%fF#6hU7juLM$ftTr<>4Qmd$0N15-#6c{CGoF zx(#|+%SWEC9ryM&JE8ad@yAi0FUkEhUFnOh+rjul~Jx$t)q-)XuFB^K#U;2jN%KpR<5#n&` zeA6t2+7JR!TK`Arcf;QA*M)5$+M!`L0sVuz=sdTzG}gfY(?VslUO4eaC#YPyTSW0& z{r>!_V0QHVeC>4nzV?`l5>hMwfbTzD@??`eAMsHd^3Yb}{w&mCi2{+<=OP=~VRFK* zx>vTTB|kz#WrhZJ_^`t?Aop)0igJ^8yoS~#rgns*pRmSXjAZp4|CdxgGHoM!5cZ#e z4P#Hoezj8QTCnFnBY9%olyLmzT}OA^pWEK8-G~YS-;JU~1s?{1M;#M0*e^t&!MWe0g_Q3$(WY?j&oIgceMPW?X2{I=xUw+In5ZYYt5E=EKfS*ByZ3%m$H zm*ukok3w!|L3%ksdb`6^g$?sy|5N~f-fLZf<{4TCY6KkOFY$qY8*+~zzX8V7baWC3 z%0UUxmiUOo0(+t;DKFrE*Ac`%bz3aoM9Z1%s0M$LflK4DL0=n8nZePUP28Juvu+EN zMp0lFKpiL8S@by+X)>0N9LJ3xG6mgLs4xJ`dKm|M{cCd}x{kOCgW%7qb#b_Q@H;6nJp}oN(+-#uavTfUYZxmR>8ag*@d#v+|{m4-t)1%&@=#n zWqQb}h)+&siPY1GE-s#ZplMdS%4+ zqs;it=e|k-dP{Z`E@#F~O%m1?N+#4cFIdueSQ{6cVUt_F7MeG-!hs2){d3^oa{@9E z`Fqh3a%O}RQ5{*0z?K|T!?+H;y50K-ooqA^3KDP%wUXabcOD;vVlbe5aO?9i=!_5j zzydpo%Mo_f83tT>S)83VsBPx9FOu-cURS0bEfS;u$X_F*o;s~o@tG%kegfh<;dk$o z9Znb$6MX^=u6mxL&6mXz3P)5tHmyh}sSv=Pg2X&nIR6w1)L?h<>AxM?C$T&aAG&2&8w$uq*8gl<6Zw!N|F z-M6v}WKp#^rF@+&jcKYk&E2PJ!YrJ z1l~uJ0=TAoy@KpvKn1h7&NJEXXBvL~y>&&Dk#m(UN6S`e$iY6d(RrTppN0fcIu--C z8d>D`|$dfo{=OyHH03dOj^cgF0jiKuqppi<)|?3#oO z{jwizcu76*pa-=GMWRD(LxHd1BR-hGK?}q>Kb}^#7f?hp+CLf$ zw#l6r(Z~QE#PVZP)@7G`?J%ekJO-*l?TQ(L@!mAvev93<0EXWur(&OzYt>^T50)i)?zwvfn9^!_bqRM{o@Fu5}RKN zb*F?#D$RzL{KaO}vTM02(hYu%Qx|ada>H&}ia~Rta>N~r~Q=kz6 zrfbTFMTRvyAGwD66XZi_z2d?|6cP>%G=IU8;aB!#l1Xh3;~N0F&@Jq%QqX^3LylMw zPxc_BBV?KlsKO2Hd1G3ki&?aO985--t&&5nF1c-q-sZ{lCIxSl`v&NzqdRE?)rRuL zy!*t^+y30ypR@}{^cf#| zIC=?6$LY5Vu&diw=weC|cwwYdTSP3PC_#Zj(%GqPRTWe*FY2!-Q_r0Iw)d8%t`c0t z`w1BarCmcGGe0~%_Rc`n^N)a+gzCg5jvND5XHVfQA zJBrKHBsQrilXV4}pHKsSfhOby$TxbH4C9p(!YtyYX29e7(ehDoe8*gGKIk00uovhcAnLko~uj(70s} z+O&lWU{xjYV6Hel8mzsM)Nw)AaA|mNeRH!j&B@Vg_dGss35JrM-?lRFgepUtlyg-G zq$zOqmt0BmGCXrDdMo;+hsqe+jale`JucLQhdHO>;!uz^bR%K9i)!8j;6BwEBC=o| zMnuYD6)ngf1HT!t17E3$=fa(qe|kDcpeCSqLSgnme#QNP^oeQH;~r%eCYeFi(JGuj zaNV2&*3#6H4Rf`W^Nx;N!_Q}}J=EQbg&)0jF+?XdYIhha(k|BdsY9R;z!DI<+0rtMM(f1H*%7*?!TdVlI`+A=c<~3|AwOEra$_Ex)097hw$Zj z@QNC*yndLpbsfE>&!(5eS3TIa1t-W)$td+^pnQkz|bop}GQK z%!D_a6ToQ^KE$)w&BNCDF8;J;1)6%I1OFM47o|XLgV>`Rg7_*uq^O&HqUT>KJ%_0k z9o_mYuUWMi+xZel?L6LaE5q?=xt!wiuXyCZcdbc(P~g1rLq20|8cTTqec(HELVM>9 zG;+&-?y@y7z{4|!Jy;~As@8LPb;lQG;Tit&#njp={Jf>dHU(e zlybDj8&Ak|JCp;sGVk*~zjW_4E&`C0OK@)^>!oT*FN53%`3RD_3- z0DDjKbP}N8%^iTT>;HyL;ih;P>lB8HJT|#%fbncv^I6k% zrXKt|RE6UT)9+GkKrO(~51Py3XwRt&#PNz2&`2>7)k%Awgl~c;(F}SHL~w)O-dudp zai~3;1Rk&*b$v}B)iGQ8iU%z|jKgANy=U||BJ?$=#* z5oMmoZXwi2gnKg$ep}E<*RF<+rQNj7q+th=vF*>&RilfI<$CqDg!IYg)F4SVfyy+5 z29~4?;mqiB|~z@!Sf#USV;o{rp$6YYtLS*6=RH* z(|i>%HYcWnbQ6?SN5+!fT2MB(achLm{{Pj?I8<+`T~35Y@06JRxAYM@MrQyQ^iFg- zez6c}NS6s}#OQGjhQeVgT$dP{vSJfrjVHG??7SiBDJN7+2P0iTTQ*MEA^zu#9? zP*9E*QOp!^Nnt~1#&p!(*O&5M?*S&gU1&1BTmT~IBo(nBb#7l6F4!r7<^rEL6_p3d zuIl@Xx8LDlt7*~#=M(Xf7l?AeEmVgTZl#6HvN@M{z(mkXl3UFUKq{;4Dd#-^H_Y}z z`}oHt1@u%UlQlKf1gJe%+3TqK2c9R+Gj0PE0&u%0dpcI)(TP;E6k@QfxI(W;GWlsk zHt5WhE3=J41{Ywy^UeB6W<;GZQfe)G3{GD<0FVuOP&?*}a$`?YPRqw|9dHnZr1p?i zPFeqgmPd$`-#`iJSz9tz5)WPWzheCKlpFLIq;1%o0}#Fr9s-81F8M{?N4S^jzCm!fI-p)!k_q;zU(^CIg}3C)6)|$`CuG82JML#YCWSzH@0_s3v@_z)V*cvsM+)kT4u3b4cd?>}6MA-AZ4<*9}Vrn03WKehqGGxHOKmuo-{(dOm zjAchij_hamMz7GMO0nT3Rl41@4&TkJ^%fL<7G&|ce2u?MCd9Y~OjE86cX z^DvQ!X5(-vxm@obg3$s1U(g^EX@v97mv?c>`WlGX{NHAIHbF+u%Nsk$;8ynDt1AuZ ze8GbVyLxUO*ceLz;V0nfSJ)kwxe%Qz zuguHCWRB-g{|7LK72dXjzS(cajRmNLVHXg`jllVfv`Qz{Wi!-#^+RED`lU2uY&nEh zQDP252F|@1Kat(dS@bXwD1j%@_+5`5b*zpM-PWWXBXBMx6)gDyPei0PK5JiifuBU1 z&~0e|isz864uFY};(!O5mj@HERyTQCd3x8UvwFK7;hlVp~iwR&zBUIYm058Tt7`V_+8Y> z=SGNvdx*p{Kt~keFyU&>LjiLkp}Cz{E%RIrodhu%VJkLM`U5ZHCOv8*B4Auk4@fwE za{5==?3;NY~oi1!o81^iR56}apEXK(OqjB8&Y z{xA7HYv(){UVrsXz~qz9=1>OpeW}d^0_|}=sEbGdMb@!_4-XRZ&mhUo*RJKDoPjYG z4Zzooal4f%V&i>m1|=>a^CNZ_Ku3ZAS6CxF3IO7Nk!hY3Qt_Z&Z%NV9eHzMh;h^uM z0!@E|s)A80jw{v##_E@y(VMGz9bInG$qMj)?h(Aea>S{Dw9NR|^8Un#aVK_jJmRsX zjUli}jo7P4i(CIGD&PyF96UM+>iTom*`@!QYTTsH?{I<0XK(W z=8P_fVed=;soK|~3VZ=moWmTzb95|TxL6G`h(Ogz(_nuu--q@3UdOZajcj!S-Ct_^^F;lDq`_ohB`(UaaPrchTv zCPHQyQYqJSwxgUhT6vJKZ4m2C9gXknORZPyPGva(Eey6JqA~4^`wUfrfzss-RY5PV zOgsw1#iB+a?F0p1Jh5pV;>QC!qWfP__-HonSUXI}7C`#N!(&97E6^h5oag9aJPv$) zjXRYX;>ZQyY>N$)Gd#Z1MYK_2`-@VFaJj5cd|dN}5&$%OD3IVrBJY9I?vrV7y0|)V z2>i)q;AsD{SfYv0$);ON!m43OcY@f7|wF_ptz4n6#KJUSULw? zn9BxeH`~o!ejU!au0Y?{4xqiK`!VEKq%@G%MO@tH#N-Q3B!^Te`(YMx}3)3elc|V*x)t|l?NALm+g0mBhwIr z7cHx!Jw=&a0DQ-r$Lat*Jr$#+G-qmeE=ispyD8;8;H71}*$nt1h<48dJ7aSLe90M! z^UiM=OyM&bu=ThkOuQt+Wt7nDlrbb>Ty+3e%7WDa;{w7Lj z5D>v~S;3%85d{Q|W9*I-V1%rI1Q5IyFc}2O0HSUAl_ZrCA0Mc%uYX%2Oix>u$7*v+ zsrs-t;@z4!e8>vEHg(1xtDDt_t9#;)Zx5}!O1uED7$lfA!y*|k=)+H5F`uUzR0U3^ zs(2bw>MAe}8lQk1zRTlpM7va=7A_78CG^>~mDD|1;fN9#67qSM9P(%n{I{CV@ue#wzP9opc@SPf)@ zVvGOLM^eDL25pM6r1!sBv@Rat(Jl!S&&yZU66Dr67ZBZ1s2El~`;w!{XwQ`ifs_UEs}AW;XBlXTG4{)TQlaYzrP1JDt5WiNIa($E zOt64s)yxh6@$vl`*4NI%7zxr=%a5}j>OfHbbQME1FC{lIy;Pz_%G&NZVQalrqWp77&@ zgM5dw1jK(vYixaTBaD)l_K*7L7_d#Cg*lIa=V~MZ&yHr1(;7p_vG8r^www=^HWi^l z4i|vHoDAxDVER3j`9`NC6O}0pK+M2Eh)tw29QY8C)N5Kt3MpJmd{BXh%0QjIQ`xv^rwSVgAVX{ zNp(%Io`@NBF4jE-i4IWc&|pEqwbA5^^K-zh+I?{YPY1XRyd^{K^A1w=K2I3h@}lzr{RMY%5;jPmq!RzMa4(Io#oN4k1C z%G#!b1j^mm_>whs!Z%Va#q{A2wuAL-uv@JMv!NIs#bEnY{_{YtpIOx`FPyz z)PSqI2&yh%WWiIDB?xEJ>*=!#{)zps$kN$J|9_43A&{+O%UT`>{D4UVF^1CJ{KA61DxS9Fy!ro zU_DQaY(vP55)9Z7fQF!eEA(-qgH#a2U8?Va?bj(We5e~L2*w!k^NiT?y_X*ge_+Qh zU}g25*uwoNjFM7L6oY}$)>NDL@zugh)M6nnnHoo@;uhFVp8Ud zHDCMF1yexPC<(jr?t?pTm14{~9V!D&bV@Er>i9|F;W|)qTx+ifZ5UP?4T4{EKTt?K z8St$1Jn_wDNM^O#z0IdlNgGiMXePI@FX=TzK@}ktgup1Mi7Hh%a*Vkq8 z7X);iiT)GTBsJua&D-C$c}Azba|0n; zWl(Bf^r1}kq@i7Uj9}zTdT^i5h+rsPB&*bto)DnFNoQ%Ribue;aK(vIL%&Ukzz^m4 z<$D3-9E`CwD%pBtJvY!k0n#AI8B#6x7WQwPjF?s=CdsW~eCA3UJc{a8P@sv%`9oqZ zf*rX~tSkaMNY*I}w{QOh6ejK6m+z18P!anRgttb%>^}=CORcHwxBFs|5s3ihHb&GCdd3UeR%x`?N7A70#E})Gcc{M7H)4iNQ_`Y)*>z#d zcQc%lk6SsCGPvNBB&4~CBl(E!m5OfMp-)WvQyP4VNG`y17!ZZY{Te~O_l5%MjZ5u4 zJOt^#NX+^WfcV-;)g#Mphg%znkVT&lwsbWaGJ5=h=dvheoT5Lt(Qh+c!rD2B9FF?2 z!s;=C79yTW2)q?W5T^$!OYws36D-ffDEB$Th_mnS*O{TvK>T$!1{|ehgi!qw@$Kd} z{t-qH2O?c-3_p{K8`s?!8IR(jj#lq-0U%=VCrq47QT>thHbI@Dgxub$dc+JKt!TR| zi_9Qa;M9eEL%_6h-whtb8_HG%(PNG`R^Wx5)R(>obOZP@*7$hz`7UI1>K5rO;deoT zg>MCqvQMjBS(_py3@u@L07YQY!h1(fuCx;vMda187SQa0*P#-Xa6@pbNs#mwnmfDC zJh+|!I&@RA*8gmlk)H44+s9#e5rguN^G#Cf2tAJQ5;x(Pfup zj0M+^CJk#p9_-35 ztmWF_2_#g%?{U$&7df)KECUJR(G&xfPV$hJQ zP&Sta=9rxYGOYYH{)sswA2R&8J~=k_UrULd+<^5lHZX^FF0Sm~71jh zMajvDsNj}$93ygijdfJAsttjVa&a3U8x=viDjDv2K=KnK&7CMKbcG9*?0m8#HlC*| ze$8T5nn14W{s?XMps}t+(P5fiB+IA3XK@h_*A#oOW*Tq{qT;pLrdWtI*y&<`a&!#@ za0x&FqafCaqGzXp0tw0t^JUEvv$jSz?@^aIp`L1gefH+a|52Enn;kl<%C2Ijyi;gj zSwUgiOp%~#0}6kSzV+x`*jRb8Dx&}6`5&Yw;Yg3(g{maOZ3SyXjuDUsoWu7htH4+( zVP!qJS0zfZxOtE2uC~j-ZFp!zsD4IXlfSV7LnH_5YXQiozq4_sN|i3#)HHVm92Jn- zQsRPa5OOjMhRDPm0R$eYo-e0%^DS@a((S7ka5(0;%N!=Oo)+LnhmmloE9AJ^-i?RW z*ha|xN$`{)sRL-wptIj}&tU_cm|IzGHPnE{5zAPj{H1jzE+#7F5!vr0t6V}f*Ubh9 zKW(8zKo}C0IXaAMZVjh+m)EJlX_gIt3yQwE(CC~MAkCzdr}6984T!whygJ^1MGiJg z&xi3$0-n|+{_T3(zu7#{L=MhwO0zx4N4hth1DpsNQ+;cLrrA_fWE<7Dj5=}*+Uc%S zX^28A{D!yE)(%T5_JP;Ko?HH@j$@^P7-6~cBL&^ujKEfQt;lH_M-UzrzglsquLI4 zLQi~uH=P;7K&CXZBY5;pZ3yPO%x&vMn*(nq1nPWARsqWcZEot%;=)~NRC2d-TWxR9A?%uOv-lB)-d=KjfPZBsryeKp8M z4ytm}ezVt5o%A1ugLvo72dJ*zQ8c znfl4h{ohwZ9H@y*hhgQEG^l-i7$R`G-zl@ecD9WTY>tNTjHN~33`Dk=>$UW?Gm>ks zqV$0d)#l?&VJ;#_1s9X;kk#LvUK|9Ftry{0x;OSxJr{>N>GrTmFZu2~hvTMmz9!hCv zATY&9cz}Tr&kQ;h8^c;792Hl5M^fH7&G@gs>D1ygI?rKFOejNgXF^9rktFGBO4pJ! z(U76wGMWcg&k_7gr&v9Iv_k8_5l9F@?bg95r3X?J%277 z7gA+n14yxpU=WjTNA%9kSa7BMkA2b6 z7Qs=EzrxW`QC3V~6S!;w^=9#K<;~WL2~zAFhnHCSnM#fjB*yd2d=F`36(fNu%#8m( z%1CcoK#dnQi&eK1HeHrbgXm{2Y9FeT6nltLK=iA@kceZ;c7=%w~PCcAL!uCXB!*T zW1Ww%0SI9VBMn4XKd50Rubq>H>6YSZ-m5{1AQhPfi73_!lUmT0s&#Xz;WkbDCK)67 zEZgu`)dF52O^jP6&+s?Z1LkWzaB8lS}KizrgD*C0zx_`$hw7%emcsrar&SNOk zHedF@Jm>RgqJ{=3kg+|m&8-))S=es4UA)zByN#j$*pRx|(O%=}be-2CR=5n7@vUN~ z0Q+w{ozYgf9QZJO0tA^@pNSH8nSYINzWU|F>g^7uH0&4z=W(;hd9by+WLle=HVY3z zWZ<*|b*4fnup0k-CJI6+U%uzuyI~zSf-UGwzLdgqzPU%?ZDtM=9|`P7_0-m`Ccy)! zciAa_jgMoOe_j0b?aW@QZBSxd1Ya7~OUYyTC!?3njJ~%=Wnle1uMj8IS*5=dO!SdF z`TM}*5zm!hhro4!mYSUvbsj<4idQNER-GR&T%d+l&iUifU&5Yo-TjYqZJ&Ff)4=e8 zUuZ|ves8_B`{*3!Ba6oMk5^M0$!9T( zZT)0+;s2c&q&9lgR6VZy4GJTfHLu!!^iG>^M7Z?xsX^7MY+gvfb=_t#OYw|J7p&fv zWGzgRix#zrYp1UMnb4C4KWlICW)h0!V?E8wu1j0qnGuwH2$o=6)aH@k^T$vslD3ID zt90BF$AxN^gZ|hWA;jHXJNT|3C@l8`1WkLK$wyx92FIp}7aA>y4Kpw1XTFG(T29jyThfO)_--B~5}=R)Uqe0ltc72aLOI*JQ> zL>c&F5|p@|PY*8QmI*blg)XKpmkM`PULFUjVhLJm`OTsPNPOWBh|2RE{~0q>pR_N} z9RsUw2ICZ5*2_mFC)ak&u+%^xysWeBolS>`w*ak9p9ScZpgwQ~#ZfMiS{=#9V?yqH zpRZXL4AomU&p7`a^t*dHztfUs-x6qZeav-E6}kb`MUD4Tq5FoUpqJv zLC^;6&6qwQvdh}4m~ezE4ZgO9Dx6Vq6ZA;YeMSOQSC*(^Ez4nriBL2E`UX!nZC|4|~Ao8w)LK}?K%f;is2M_UvetwF29)R&+)dl%=`-F89 zS@4Cwz@NO}o=AzG{3m5p;$HRropiM>%L@7b5%u2jRQLb?__0U!$lgNA%*^Z%j_eTG zn}jmT9+{QMK|=Okx$MYHc9LDn$|l)+eIKXy=Xd+{UtJfk^?W|YeLS9;WmGf^{k63T z3(U4Yyc!-qxMQ6j(%4-?kOx0t`q?bIGRMKWs>0$lgc<>fH)S}I5oG0;@$ucIw!3rQ zb+LNS$iw)xDl0aFz19u#R$-C?)u*%1~;Js?{^?JZEjpSa(37)7NG1Ey1QexlC z=(cx5=DB|zAwy%b?>np}bw^aPnB-6?-8H|jxu%$c9YeJ&s!0#?9Y1;0EvkZ?eLwJYLd%X*s|5G7`A;>`c zb)&v^jdaZ6ozdh96BCq!A^!wtuXE4f-om-_m{!Hr(L@~lQOfTXZw3%}o^@Ykyn?|^ z5@DDJ)ycueQ{SUysE0CCa~}We+Am)>B5W5n75_B1C3SkP*nTQYPomi|`z?CmR*kQe z{+^Q>`iJ{94#e;~g|f9Lsf&$Pv28pke16*f&yZ3gu-sE>A*BE&jX^T6f^6zt(0RC) z{Q*=3n3<_kP(6o%aCvHqJ$q0JES}i&Q1{AQ>AEEr53mUmttY@ci{@s>r6BZY{qcwV zrYwdHP0;{)dvX3r&nGd&%hoQm zj#Zlv<$8D}$H<>8-vhsX+>b5{5n*D=fr~iQ5wsX7vI3@`7ATEg*cFAvtG3T&cfQ<( z+S~#BWJ-3T4BS*>^S&!Xc7*t$TAe5h3-ZM;&$%%4tZMU1E#;gXCrNDj^IvFg9P^EJ zc-a)$bvJOhpz|lXi|GqUBPoM9Z5m#86fbYgIuF+d4dat@@{Hjm5_3EA)r@51h;Tu z0)qs}>$_dxMZ6dK<@kT9BN%Fk2nNDVpP#4|oRG0yrdM>IwPo(S1Hz;g!;ZI<6#p8u z;Y@L{^;wFde$?8_eJ_FKn-|Q_f>p}JfeRGp4WYVw4?({L5(;Mk!{b}^_~yYihd=-} zlf|vxq(m+@iWOx7;g$kH@Lr4TQ+NQY2j>W8=IGa7$KYj-yk{{v;obtjRHwW6B;asX z)e@RP0e}p=gh=au1#x6t_#OJ!-FkD-CT3Hp|21vQtIGvhok1xWMn@7uO)1`mkbY&H z^|}l6Sf<9aFwqAD%Lq)*FdK~X27!Rnq!2K+inK=xB}MIGa@}5hkUM*&z*L?Z0wD*= zx6h^2Ugf0~{k8k9N)TnKg;M)1H>Tv?kESGRFgCabxLJ6OiWB0NJ~Wb{yh8PS1jth@ zB|n)#Jo<-Ew8icc4ZhS{NhxCOEKFY1qwmz~-j+~9JJzRB@bf3$xG5zH(%w%9Y0?tl z%HmNnw>B60?m;WgpA4(&$uEzAG)yBJt;UT#%v{RW41O(Bzjdf@e3@!_v;RT_WlMRo zMreZKyR1NHUkJ#!rtC-NEVIiCQCu;e&wdQZ?uexa9`{59=o{PyGenU-Bw{#lfm_1$ z7p}p=6%O44wC?plinbZvh)H#{C(X-^jc;!uyOKL7&7;-xHbF2{4|*feFjfbH;Amx~ z2x<}t``Lr^G#!%*Kj*eEOew|%-^HGB!Gs%nfyMDnC)Sh@dMu~mhGYzaAo-)-gTNf5 zhP+l+G6p`fTGT$2{%6yIWzhbse&=2Ert+th0zeE3p68dzE4_2f^<6*nqV=g?Wd#3bJ_3=$n1&U}?xm5OYUJ{9OJ2>(ZEB);%oE#fr=-OwWcOY60@ z)KHjERhrYKsC>6v=TMct(;e=P?6%M3QIk_AATn&>pQeK?gy55MF_n_1BSn+lpUr@p zAZlt#9-$Z%q>vu4?=&6=ieQw^mM;O$B-owXR!5z0`jRM%jq2N0NdoC2dwO1ud=vkb zE8hn}9Nu!P$a8@vCN|3P*ap`IUsRJiBCCC_qBj{lBA9OpL?=v%_6-OK0LeS6_RKdW za*t=Tz`Ud^f*PCC9a=oq`cuKe)tuK0O%$Bb5B3}p*K^S3(|dW8ornPuQo62{QL}o4_t>tMXU`-!X3>GJf;V2L^`V&B=|ad5lggwO=Y|{{%vb2E3xQCHAML;*dITOWc2;dM z%v+e$L?354NkZ{;+4e{PVXn_#kZp8|C?2KG_w|OCiOZEY9Oabq9eQ9i>M6zy>j35h z3@eI2geX!J7bD-;fj7->#g32WN%}oBHyG^P)ng!r0&Z_&z)y>*7bJwVWp;M-if|Fo zHRe=Uh1R6-GuB`)geYdZ2Btq+Tn&bMv+j!{D;?>xBTsm-}~5 z02iEYTRIUZ4kw4wi_TN91T#$b6T&AFG=OtEK0ru1r**+$(Mg(X6!;)rF1z*5h_Vqf zuw(_hRQGOj>{_&j!J=|G{nL zoF#~oN@$I7F0`%L5&^bFnALTqBF{;El1C|`>?j{XO5Duo58{-A$~M7`IGDfDj-+x0ff+dlXqtx2;xXY^?O z5DNa@g&o}@Q}UV5MXaop{hTDPW8=Z@x$>YhhmRj70%|yoGpW5yd9-K+fezhnhevTceqdJF z>PYfBm5M5qahfTn&mJ8%A-H)znxj1r{abvsyWSjt!y2$~f|LIA;ksMsMfo3+Ak7nb1e<&P#oxp4 zQ9SL@BCqPI7QHLX$w*<95gOAHnj)BC1pr* zMQHV*GPkU`m8y7DpnK`UwYO7hG>lM@uxNoaEQ|Z9Ts=-UzWnq62de*`TRo=BgzVmh zVxu0kU7JAoz#J-=#bd)A|LT=Dne3yQ_*pqnjzgPKpzc4v&X@+W8 z=I4zBU4xu#sg6hR%o2@qcv2P9~bhtU6$CZ_5pm^FCFZ&*m%tR4ic5Vs%IN z=bOS4FPGp(y&_A{Pzh_oDE{YNbEM*Jt_*A-0QN%`Sv*3~D}f;(I-icNbP zrfzw`)UE9Z#G~E8haXgwZ=}9wiwFtX;7nSJyuN{$iL@$3w2rPK*p*2X=hU+oe?D>f zUi|V1Q5`=kG+KLQHPGw?mE**SiFje{y8p(+!bOmv5E}q9ztU4KWi?DDexx_L+!$vOHyaws#yp5{vw#G*(EUgBkBz|7`X7Q3dVM;zB}x9Q7P zZ05~Cfvq#D03{mrb#~7Oo)vmTqOWJ?5Z6V54o3wgvRv+TpnFL>?`5xHB`=Vi_C6Z`K3sSeAeZm z@T^UnGyX`#Ghq0GMWiD)=yHKTxo*kH*hEu&?0|SAYQ^2-t3gOTyGg*V%nVG#UCIC5 z2Nb(3`g=dD>L@=IkDBxO6Dm@`w|kvC8r2nw*k)ni6?dSIWRE{01*JpbYKF6<5ZU|D z@TAVOQ}jrz<1TaecJst^|Ah9*BI+`{P_;bPV5?HbgEdOhNN_p8TG?uxl9}0({k8oV zRVnxl?lW6Y8i!hB1sD*{lz#X=UyGXzxqFBcR*wgvV#7fcM(b-{i+IdVGS^BJWZrUN z0#&KN+MvmgdAq~2i*VDwebnd2%6s!gtO)p$gSNxfOwM&JFoW^1@!=-%4@pyql2pvsv+O!Z?qQ z7-oat$e`eeS`3g%eaQ6gSKBwSyW!b?iW6m+)42`U`#$mpsbSPk7_h%8xO`n8d{gT; zMz$GcAF00Zu$uY_)u)#a_6~d4C^WfkcPZaHH~ZP^*#oXB02C)df5b4kz?90_6rji}vSrFDbm# zS)QZ7Cfy?o*Rf2w^tvy=_W`~d+;J2_2YUuT$_K4JR0<$03l?fAjr3(!uaU64u zJgH%C2=}u>_k$g~M7eZ;#D#SG968IzuI%|tMSC(=PnxOY_X0!-@v_@M&OX>P!t{Zs zGmc}kb>h0?{EEZPpp&^^B3x{X zP^&K;t*w$eW$D5lHV;)PD}Rx5V4Gf^z=P)=6Z|HRcl*cR)2Uu&1#;-!6{Do@N+AL3 zut!&u2VRWN9t2TWHj*QBikL&Kw{W1F?=r%PR!-AZmhzYLZ_a4#9jlot4{4>#S|b3_ zhaic~=-c%A`*K(-yF@w(WjYDt>|yw33fRanUe`l$bV4|{9lP>Fz4QzobeQSiJHq|6 znN`)nU+V_OEXr}(2O*7s@B17XB~XTagYkl4q<;%E?T&rLI-6JQh! ztNvc{#B|y4_xJ1hYpSpbr8hp0Ckt%6a-}3Wr^XJsa6NuobE>Dpvr`f?@{G05Pf6Dt z>Kwd7e}xEc0|a7p6`$rMn{vIsh&Pt(Wb&prYgl$87KeYKVO^`(lK3P#gJndWlQJy( zQN5cShD~~S#B7j|MDa3>6cz+GDQf`*F?Ww*k>^ziUc{F3f%H`!4}IJ`32+9NZ*O}4 z^=b-oLGn>>M(D2wzFqu{V(T}WVqzUQ!#r*I0ht;)n1bqG(dUNmz z@Df99SKrXk3?{L6TR=;e@U9|fH)|jmv!gx{#o#n()9v&LiHzNf& zfFCF$rpZw161a5h#|`q+0yT*qaKyy;i8I^|3{u7!J265J5#q`Z&&JhsZCnsrS9k!E zvtY`02OT`_#|wYWbh1eMO*z!<4=V#%oFIZjx@o((KNp_`@5QP@*$C zXN;An4+vCMMu0`gr~H_B2Tf!UKvsP07^yPKYCIM0xNC+eCSA%5xCLvDAmvFrO>_)I zj{Ii>2OfOAF_eo-fYZ~7e3yYT!Gg0!ic4$N&35-iefqJ9>C8w)F_$VQ%~20V4NU z{Z%bz7vdl##%K^W!zVIA9F+06f=8kZ~d8Mtj$GQp%q(tBh&Z zTXOV8r%@EZA}eLBG2Il+f0ArZuAF)%8NQtMs|_Pit_Ey3>?%8SCrV8jdKGQ!37#UP-wtR5#s7V;$x;ACp{7CJ6MYJ-&q zO1`C;ok{FW;ZY?pX1NzAaHc$|{Eynp7DY1A0_Np;K^uY21S z(L8b5m|8C05P98ARqB)uq;D`bwx`B^mrk@FPc83n==8;v z!?S76RnAm<@)sS>P=FI6|7+&ZbO6g=EC$er%Vib|DgB?&p$Vvs;Osx|?W`FP`iEy0 zs(J35l|MEVqrN9Z-;a{Ftx~up=1UpIM_!LGWJlox76;LCG$Gopk=scDJ46UM>>75x z01J`-!{o%YK9EL^0<+`j%oK==M%Vy+z)INfT0_ zCZf3#1u1nB=w=RDNLnrwApM1!{#6i`p1r~{yD9#yI-|ybD}c|Ljk^BV1#(vVI1 z8+8U5_11780tGqQ7i6g~^j0P*vK_t$(Ar%)J->*^KO;ozVky69+bK3aZr$6?kQj(H zPXukH$q|M6TFMoNxAgfPvYDy~ZI3iRTRVWFyv8WG5_@IWjYE0*^_h8S{v@{X6e-6i zzNBfxkBF7#piuk6AGgY2oG>483GLXN53>Ku*MUK7TOV?S&<(jr5t(VG;d{b|b#SFY z!9Tj=jPm(Bl+>?sa47y8PVgO&jVx+!m+khWVH(!0%P>9`MYTd6(0lfJ>1zC zBzojP-?>V}_%hnt^cjVRbI1btb8bN`2*h^s>#gX->n#z=zv+$gk{GAw4137f^okV3 zaR0k<^`-J}3bi4{zM&XHx6oJs+ilnPrjXq3S7g(>*u&DKcwyD|E>wvKKT;Z(jrT_=K5yuNFxLY@(=6 z)OakirorkYKrj~@%ufoMyd zvEi`kdm;SAb~^a_Mv1r;ra{kM(MC#~;JjVLqCj>!J|I;?L)Y@;Syxrvx(FebgJ8+p z+H0+g=J(e#fiq~3P?#2Pvtf=Q)BNc38Rm5lWjRf^e`~GDKdUag7q`INICVlnczSPG z?|EpsjiSK?iROu}$-tfUBt~@ZDtAoi&2UT)mcpa5lPGrloYtbl1yMtt(6$%{q;_-M|t z@}=Dp{IorVN~LlodJisfw2A%OM@1uYY6TnNPJ;M4D(stV%PYpA%D<&P&lPaQ8HK9N zV;8P+QOl00z<%MTo%mIYYpg|jWLCL8v4*auOL=masYgXrY~9&KZs}pcn)AfO*VQ<$ zW$xIBn<4)m;j-u1>-z#5v&J?5#R70JafO2TjP%ni`7Pbr23Fls2Z~qb;fgcU`Hm0Q zMf#iLBr9vfoc3=SWH3IdFVI92Ly6ugDTV1c-`M)dKp4CYvIt0*x6u1qd#@d_2`QDb zHbuDOg*X$BHB(Qzp^4GnRQvjjVj{`}g;tcmAcs~6&um)f#D!>Z8IKV6oVK!Yyryj2 zPYA>#P%e(067j0Z*s!_!4ZoAIMygLvy{ba##>_%nL*|j3}Q8eGCdtt^GSxl)Cqbv-BGp%TQ_+hs|WKoNOVY zyh~YDs*?S~?k;>-4(0dS;r9sxezQL#av=EIzG03MXXuw>=w>%l$Ak+tyntCJH|KDb=N{Rxv+a zL5t<%0O3OhZ`q)SDc`K@j8h>ICeNd<-O?{fRXwe%aus}7x+l)4&)-y47Dh9y0fbMC zL*~e{(NlfbBUT!WMwJt65i&OgQH4OATR;3C7lW?1_6PZAerw&0tA3l> znvgQsYV%`;V*?Bzj_MSQH2U)p*z5>yA~iG-s(9@DVdA})DneMTDUCOvGYrDnd_}RG z2#$%%m5m-Sv(f03rg${RS-f*H*0^N{dMlCOV}rumjuVn9j;>cNM+q|3?#Izk@ z7Lt$%d8l*!oEADR?95ls!dTc*ClHDxte-@3Gi>?>U9z0#$-R3e^-O}qMst1IcXN9D z{Nq2#svSbH;_#d@)|e14Z-^H0EMEE{CnFAsDIH6(L&}l5>1_FwnMAQm^3biz$cm<1 zkEkG9+1;?DH`H9TZ+lQOIRBI))-B|Ei-=XZ0Lll-E2Dr%jBH5@RKOX13|!hetyp*G zf@R2SpDCcvzm#Lt$f#I?P=L06&^kPyE&0m;hjJ;0NC#O;l6q1O6kiB7^}K`XxD~f- z{RbqScb!L9pD%9&G5q**Pe(8#R((MuL4BM((HHUKj{pLBS57&FoqF<`oEpXq| z42Ugp#2?{-rUtH$L~jfC<3U{;NujHzry#a&?>KS5(RX5%@;IR{32H)O3J&F#h zqfkhxKmD%Oy>QMHQGpMLzoIVwjX#V#pG^b!z?4yh2ykhd1#ihCqCa(L_^sasW>wX?QpEdA_4U2 zf4|d*FNag8GqKEJaXfo_{$u1;f;wBF-J1lfrj{nnTG%@Ec(a?4n1ttiE5%Dt4NYdI zK=ZFI*|{n44+1m=?cj?_zt8KX*S8%I`rrInMRezUK^~R}X&Y2pv!H_G+HrJYjrX0J#46gCpD@`ZI89E5KD*w=A6? zb}6Y{qP}|dsRfY%iw~7-z@e(QY_#>33}2E()ygQi1=?-zo@SLNuP z81ro(=C&CHrKtVpi$5UAfdhp+;(BC>*>AoWkH?b5Me)~c-Mx3LP-6h((RWcm&L-E^+y1iASmT1gRqE0<1XcD7%70A%~DkpHiBFGiKkHx13Mdv58Ksd>MtByqu=lkIw!6__f4ujQ2 zOg*;04~Pf5z0W%HgssBOFG50`C#Jf5 z-Ky`s=_oF1BCa<*J6UJ>R$aDvazTqM{3;$c8D$<-4+am?{Hv`;K2K+#5|cW}?(DoL zd(9LlNnY0+pR92tj{Sbi}z(__FC1?PAl0rubQ< z5Jazvcka|@tu5u~9Z`#|r*0kvk{Ex5fj{&`UBViP4< zP|d3{4eusN_M{WOiJ~oy_8o6?29HO~2yT?(n`!3uqZZ=PRS})h$W)0HX8%AO;G;vLPTDxcNcf=kj73`}CX%qA)g)qE26L7kOR*L`X5JSyv&0BF6;j zApZFeoJ{%L|NI7&kHcHzJP(qx8=qNjQUg%&$n1|{2~%9(*)`9z<*UprfRsIjA{%;N z%2(#t29x)laUEOvjkA=-$(1Bdln5!4!|n+w8CcLiz6JoB9l5O!9gYSWR_xL($BFTo zy(t`2F>?G~wtfSoA3J*2g*=Kmx9Xb{^^Ilv$Gl<4CE!7wUQhM1TD){Wa?v~(-+M(* z|6MA7oM)8=ynclE7g($Vb6+>YUh5RSdv5x-O1R(du2jPhn<31IIZBvA&xU{*7A#uKzdI>6VND9^o z1FN@z0|eMI`a|x$@$m`~YF+9V+oIMLcR5fvq;$!}$Mn_}RdGG1xTC8*cg2vaG??;5 zR>K1i`qB2edIAi6+jsS?Jrovq9!TEjEqS@+xb*W~h6(Powpd`<_``JG)mInG18czr zOEyen@t$!1k>_W)e_y%SdE$*F@0gp$2f6fAp3nd5_YY_d)u9+~&zHI74G)4SJ#a$S1iJ99yv|9nw z*<`*~I}N|h0P1t#!xdUF`C@)9R`TtpTcn-aQ-qPzq!}CcTcG>aU|m6-S*%^x*ux!0 z!oi6tqFPDTYj1{7J!hxMlW~5nJ$CBP^Nv?+%YJByPqTEeMG}|lx!3Cjm)9y$ZK?Jo zXJ_TlLhiP1T!23($nofd!DRg5gwe_4D0WlerR`o{qzTs<$f7 z@H$h=9e(QR{czF=!U<}C-J;r&(%g3?uP2ZJbgcJ4O`v&l^xsdytjzn9pJu!@p=11y zr>LKIU@Z40us%E>CAd+%^j`m~a@JM-VMug@lw_Zok>1 z@)C+&as^;NN0fsG7>lR>7{eTRgLv&mquVloHbYVd7x+!t%9S2?jLLV6k7YP$4*jQ@ z7Pt6@R;IH|o4b$d=su-*q}pRIY@>wx3!T~8r3jP1JS}*v6aj^4UQzp$zjDdB`{WH-D;P~7yp zKO90SkD$XI?wb%sUQng%hc-O_fQuTkN(tz;Z@FZq@K9Y<+N^u~eQj+#H{g7+TL!uJ zZ)BBZ6~_W4)Gjs$e!Ia3C_YLov_8^LG8V4xQyB@$S1}%BSe(`c{^0TgK*aCGiD>^@ zS~AqxC$M=ytU%qf{q+s0;2H`Ie1gY!m#`=s%NZv4Dv%_#)bzm7fdDca(TM2X^gcJe z7E+n{X8q<4^*z~izuAN7k?qH8)B9H-MnQy*7pN`9@JpZ*AAK)Pih!o)C$MZc@bS-? zpq!>w@J`ViJ8eu86>)blNzuR%?4)<#i;ce?2x3loa)ZWBCTtT%jF2Yw{+Q`nX6N{n z^Ibyf>%DmATQKW0(&{>nu)6}DVv)-ocqTcb!AQ^J1D(+>3@VQ)?X6*5E7$mv*emJO znjynfNMcNWq9{0r7CpW?>AvWX1R_ ztHxB7bsS&tC^N)$6U6o4>J*s@8%N%{+nVB0LhlsgI(cd`@tmXoLG&LA%9=K@q#T{Y z0uTsS!(auNkf8Xcj@(35laO{{`zVcxUNe&)BVy#y@SsFY>yt-K=tIY*vs})BI3yn! z2!3AaKO!j4~Xo)irnO^ofRrDC99*(Q;ILI=UZvo@N+1s-YC_%^~9xuO^BL%PmDdsEh z>r1AnJwT<*Ne5AtbfTnhOdh3v%YZEeKt)uq#Jr9xbNT19^z?8*>0&@w2oe?TLwY+OUj03e!c`l@s$bT8rjsNm0NJyf2LI45 zS^u(Kt>L{yt@a@}Hp1=nJQYx{QA7L&3Q_&ND@q1skg#{=rrl_tE7kL$8Wi~^WI)zbQLlM8#J|@uh%a@ zCl)#IG^r#o<7~T7BO%@t)^GA&nU0Yp9HGFd%1cQkDDa9o!9_F zWk=nn@5HKMjGk=yEJ9U}FyCkr;Qfm%6pkKM%R7%sHrlC5Rgk%_i(z7dV8lWw!V@qk zzRTq>*x-}KX^@mLCJ%?#^X%CV`5>tscmiXFJ})mGL}bh2Xr2U?5!pk_{-cI{e7Ds4 z8VU#VB{ffYY=5XzP$E_G+$8{OfGW?!MW|1P;#D*0i*4dk{1AH=wi44j@)sgB#1~Op zUzzmx2H*!xoR6Kt^EGZnxF6j-JX>S`Y|%=*%l}_$1vU>L2Y}CusiZjfZI?j2!)*<- zVkR-OP17^{(f?95q|#j<}$X*BNy{K+zNfT%-Vr&7MB_`;usfz^@2t$oo6(XddL#W=Rs< z&>#Zv&i!}!^m{xK2N@)x@q#dA7k=zTGDLa-acT!zx$t-|$cKG_)kFVrU zdt&!Ov(#c7U+2qA$v1j@)xs0eKPtzk2`t_5FyG~+GjkNI*~B>;oB(7 z677N=H`Thhl4gNhM%=69hMlTVK#Ko=_G9vJ>UHk*PqQUJ&g=H=i&^2l_M-1Z0$~^Y zo^5K(qi0*9a1{=!FjFAOmp=AcUQWy`9>6L5B>V;$Rj*k)NEyq9bNk25hxR*=l%c40 z{lc~78}w3b-VC7}e^if)qWU_J1+_AN6CKQyN|CS2ZVb~|wt;Nuan^ia4thZcoibO3 zoexa37*H*{al(+t`$k!eN1^^I7GLi*fKy%Pqz!ftT5vgzJH_%>ikTE73qAgiC2>q4 z4nGG}=pF}ZELRu(WkOpKy$wGSHhywa#JVVKOW%2a`FKzubPi;wBoyi%==5#70uVcH7*LzfCj{^b#q-ZMfv5$r zgZcUAEZBF?vKxhax-xH##|FQ5dqBxd0QIt>fd#X~_iLcBK9vcszze%_^|{(SKSJf@ zQT?N{hx;F{rhtUsrWUS^S>c2l`Qm~9LL4WZKNUbR1eWyKqgpddLHDE+d%0_cA0 zTs@QB9<1zYh>Asy73!Vcd&F%s8z-_s@?`FL1ue z7P_9bY+6~i-q*Z_>amJ{iGS7Q?1G2$5+?Hu>-bH6!PDQX$^Su_#?x00tR%6VoHNBs zvoOb97N7=HxZSVPEOc1y{|woGK!>60Z5UHQ7IUvX-Y`rDZoFZADKS?}Y@L8hFpmZU zy6x3wJiRH>FYPFFL+zQ<*V2Vl3^%kVwjLp|xP%YuPzk*+=`*6t4a|I=m7(~X2g##z zLM-rt*%{@SBGHZ?@Yui~IX0A2WJy@uwk*{|T`8I*`#Z!}iw6ztEi}JNV>4Oo z(pSto0SAq;%r!XRK(*d~#W8~gJwk3dAEX3JCc7xVc%VjHA&EQ3X@xv?iIuOHi3`__ zl&^OU7#x-X%zGxQ_-+gvKx+Qz8th<@of4s|>sFePVLt`QIhFl(cG@a=$!iZjyEI7% zi{&nC{Tesiq}S;@bCX3|Z`~)%s<|F%{c0M@99@KBy*~rGhwgRHDIu&7CHV^>cmXin zqJ^5duJ&VY|C%z?r_wphUd<8;Y$hwr*{+=+OFX++pY-#$HAvpL*qHFrzLL0lNrL!` zBG<4fp1xz8QeU2~PObxPuC5@zbx!6dVFE@1-$2r6cGZC|ad*i1=&&d$+obtx*`Y-myO(M#)Fp3ajR?`DuKS&p$_2!|4|SrXNx-3;xm#2w*Ee<{^fO z(`Eh)RbC$`WausrJLmd~22MXZR3-g2Dz(=`+nJlF=C7Q1J~bEgx6|AGUH|IZ$)B(R zq06y%<(_)qXELn!_cjyR+Y6|C@H4*1Ltn7P=F4T97sVSFJxL;aOWSv6Ph_qoHryNQ z?4(`4HrG1%?ORQ`iLh9q-ipz}&eGKkg?sP)X5KF0g%0r1pCzY@POMkdp!dx`FEKHjA#hO&Wi%u5GeK`pHhRYRB&H+Aa$AEniOHLm}A zOCZY8x@~5FhUB~j6R;y=TggA0Mw%PJV zrvbNnIl707=J~JDgbgeNqB=%|p~Ko@==8|XY4+1(&7;{=@t||6y&8EKLjr{eiq9`nhOyn$$ zv5ec0_p>$&_;|h%FXzy<`h4$1?C)GrC@FQEOJv z4*$f!Nbijd|K#Mw()C#4YO<{Q&Z59w?SYo=x6#}(?=swex^cs~B~y|UZqE?28>uH&!N2VxQZnZC$MaaTmduoJSqQr&%@$Vd}*Y zB32Rgf);uIYfFc8%!%iII|*7rntM%|^aDFnrN~(~UgPyi-6GEiN;kUY+=Sq_q-1<{D)iCLh-p7A)m>cbK+Su^tE zfw$LA{q@&gV~b%x*)>_8srPqZ=oQZ|?Nty*vN5)d3hLYpNX=CoJ^kf%peu1Q;FXql zUdv0ZY?Pyx(Qhs|J^lDgt@W0-@lVN>$JdU00yajkYWc1s#P( zM4aDFuX}1XAZh;+-IJrbQ7hKTa$X=3@T)A*^ng8YSdv`ZoJiC6kI^6B+c|aQY)}78 z;wRpA@L1hY29XTc=+Kb)vilM%f0$vEn@z^9zJ=+ zUnR+N&Y(Z_SxPZ)$d5_>i33rIj+7>x2{t%ZR_?Sm*5YV6lf+MBSTr@YS@Au|xml{1 z`%tCgdjrFBdRWlroR9OdL+I?H74p6BU0pmP#tl?x)LD4=ySRMA=0#U|>5tT(6T$vL zs&-W+y#9?wrbWIEujz=d70?uMGsKrk`}s4ecFyzo=jz{72@PE{;AfHN8Q41uT-eDN zo0&Pj`SWRXHDhT|c3*9eq(k??0sYiv`hc{V6O^6kMX~?+FQW9x9MiwQQ862Q846w# zq89qD4;y32?(>~z0dfwl=Ql|m1EBNXCRnYSdZug2jYkmE+6B6#_oQd=;a3%Eo z%5HAf?w;tq?r6i0Y7|K~JwW8?9TcWBFb`X4sD!j$Li_tnO?OY&QV)!IuUdY|{4^WM z6HsC3ROcQmn!GkLHFXRNTQ{WDjh5`kj4bz~LMIkK(U_eV@ar=jcfSrY9FIj9Tu;w^ zxX*cX{$5k&DOWT@p$E@hyEkzn^$o7EcnCxq7ghaJja!wB&Y>@q{~CZx1JB(C-}!R& zwG(|9Q|Y{LA~Py$E^*=`{WUXt@T1D5+M)f9pYe(Pfr0l$=!gqO#plKkmP+(}pR$~+ zU!N|QAG8zg`2BeMEKpi&{d}iWt-NVJ3^L2?sVO=dvXI2#aVuZa$vbFB`5BvTXMLMP z%Rlt^KPfeB$P8B7dJ7Sq4(V$0iq@qAq%=aTS&60BYJw_jOj!yYItjEXS63rDF z$=2JvsOh&{C+l6hFh4q-uKV*YvBNipwRyq)=OtYm^%u&`aOpr&vU8pEI)^^%;`}&< z^|1(B7ww&Akl{3ErErQhNZy|QMcUw}unuTMDW8|;4&|O0GwF-@7DPnwnCQzFYAoU} z>^SgWJ}G|ImT{+eH|Fb-g5bEE(Ot8r4$AeXT8ZkB{4~b{DQ<@I?sO<(?KRWA=lrQ> zs(X88MqcF3EVRT0UzR`Zryndfoa7E9=qwZM9bA;RL9)dX zCDX@`HI#c(Mb2e$8{|~soOgc zOpMXxx%;t&g)vFZUq7bG>l2-PVz}RsI=6hTJ);f4 z8^C`X4xWthy?po=H}T!a=D@E%h1Bn-#;pk&@a)i%lE~(Sgg8W)@CuH4zMSLg(k|FY zSTnR=jx`G^K$k4J(?R(1!~bfKfwW4j{Bg&wELk`moD__VDeL8Q?&{oHar(vR3_oIA ziNd;rXAQB-K7QR3tLwHZ`j@o=?r^mgn+8Vu2SqmQm+cM^EJ|Q@5J%~{i{-S|0|nh= zq8n0&IJ7Uj`gWe6mzq#e7cw%R#tf~vIX;j((9sk=j7DZ?KNWUkazbPcgV_;QrV5#d%0f??72vL0cOee`15u z!nUZ-RLpjx87x&b9Guvzsb{?X8Y0c+Dj={OaV|eohqfMyKeL7HkoGOvY>h?x8hZ)9 z9p#*9R@ZAr0gd!?SE-J)CaH5uH4Am5e1=dwo!-4m_rz(+Y4ijSRzzO@7o*U^6cK z7o`pEM|=>#v!P_X*_;LgG@|hdF3Q#O za#S2jjF@zacFjr2xU1pZ59pO_E=&`uOpso!@8TdKkSS zWLUKOH|2(R8EN;<6qMOb0?{OCoo_w+f6V=q66Lvj@Hild4t^c`fL~Rv`fS6tTW;Dy z1!TH7niS+njA$}bg4Q(O_+*f0NsS0Cu>+I|yrhD!iNBav&B&P`mRak6g%gLT>+$W{ z7`#aR$;yO!202N~`HIh%Kujl6g?M8daj*_bn_2!O@+2|tE);x2v{3>zBDlVF;s{C? zor>@MFFIUx*#ASJ=TBsy2`~x&)OE9%79|H6QQU3HUHWVOlXXfP^@XLA8k!*>hWvX15D)n;n-nN!4rP43pQE?(Xu+MX*NfcABigafdP})u&Y5Sj zd}wYb;j*$AZPWJI@yTBtMDP#J_x|U@y-Nd$B3Du9nzIKk18d1P>tt{b6_9TV9d`|- zzkb`?hp<7N&}SxvbGx@bbLb{FV-u=vrrf}3t5O4=@MCtkdDbS!?VP9D4H+8;Mfx}G zi5-ODE#0m6|4x%`!sZ-bDef{?lp{)NQBh{wSk?6R&$F-S3j=G$>BMZ z0pGh~$KCznI(NhSNzB&*KQ zP$Rwfe&~m;B81+HG*NnyB0bbQ36L)sjUTc=${LPg)lMH@R zPh%6bL_E?SFUD|eW{z^YCBFQ0q@O}r2i}zX`asWDger~=tWDwZwQ8^FN=j`Of|#6~ znNHRQn-X&`gX7dX)-4O9Wtip?0`YN_E^LvFXV6Qs;n&i}rk8wDmpbQDRfp$O>+$i6 z7XuDf%DxOp;Iy);rrkUOw?;2(8m?-AcasX=+B&sY zQzVj)B?5ja=f&?X=Pv#_g@A?NWZX}?7DCCrR5RAQ&Z$%}aH5}UfWPPCM|NiB%7^(? z3AsxlE8IG~tSO&9tyrVy%oLcY=TuAJXNBeiSlE=Qp4PKB%nDkBsMNUQ{yLYcg|U3b z8+RKt*@Kr}=4*1(FlYL`A9uhLl}esRP<_wigKOcq)8=rV$}}%oRlB zani6!2RgD;D!ZU$suf9}aiS{C~h=rD3z$-&*MM@Q+C2A`8=$r&@T~XoMc8h~4zVv{XUSGhGK~0yx zP6eR&#h?ORvHhkw7mOS{aH5S%p68L8ZQyx?b&4#t`8!VtT9e}AZ>jL+V8sjH5$Y1L zZZcLvqOI#6O2qHOy%UYjW)-a52E35hVu|!;z17e1E_g5gyh<^2|HaE(>mxFFM#NC5rSVreWFsyiG0ytUTMm7zF8!mAi zPmCQrbA8?2^ED;ZUU;T=KO&c{w>JCBtRTee#V)yDT~D=}B20+QC<QZGr_0$|UI!2o3ENq6pDV^esW3kETK;v{4nyOuWlngK9*g?qAymvf>2! z@jBMxF-Ef=tJ~l#eqdu|I+`jfgYc94+t0k??OX*S9XLS@)Fdu+GwQ=d9MeczJ%%J% z>O_m_wPQtPwU;!ET@$zz{gy5J2e$>4{7-q<>XlUh7>l?=9Haiq#o{e{a6lk2Id^;x zM}RbYw7Gpb=G}gJ=J5^TPBac^37y*uEEdrY>c8(sGwfqR|#O# zkh4OMWxc#|UddcO;!?GW%dP`>SKKS1E_%v8Uc+ph2?;e$==oKxKfRO!rf8(Z{F51I z6+5g+|MGc3xxnT==Ll~rGc(-nucN+|=K@I(OrP18%_UgIg!y$*fyuWd!G?0U`0kUccVA@7slKOuZP8*IVsI3A3Sq{L7qy zlZIP4+mvOzk(c>krljLCD2~?C&_~rUJy*p$8lT2tmW$sJWHKz*7!|IKhX@h{W%N;= zaH=Wf#!=ura}wiWW$VR>#Ju;E>7IhhR=*z&d?0Mm&SqF`*$OTiYDHdRM1GDe32oly z4cYk{bfh&hmgUKVq^=ZTP85L1c_Spt8$yyUvOGzdY4> zjSUC3X>f?`cB1U}x^(DBxgWf6v+;F(km{nbqsa}I8W3=NYPP+Y&Y@W=Nn|E%>@1wn zxHqt)TWy!QT%1pHP@A#Lc9EOIM zVji=&MY;DliVLL+v^%z2S#5537UoOw$*dG5cN;}BUqG_Me1N}?Uvv95XY*<|`Xt#$ zu?t}Kd16fR&>Pg`$9;lJ1@X#?5bPHGUEQYk;-lj`d2a*9%cxwqLwLLC4U8*VnI*nF zW?|{(!;7iwaZg|U1 zuU*Zy#~yne^I%Gv{CG^d^I4QJxU>xCvj9_b4-8q!rG3OA2=V~or^S4-JdTvB@b=du zs#4!-LS4`8^HxIoIRz{CAWCr5UuhbYlRL`A5?8m##b0ZFIxcXtwk`%+5oNf^5_gOF z;8iZwK%ws&-8=3<;2=aeagTm+Y;Ji!3@gVL0w(DTXPluyy;_L3(20r)4=E-2>pA)S zJrQtg!>klY0CjQ$63%5>OeETPr2yP22I)X|I)jhC$~M$dskRP1+^|#8=3pBC*-=aF z&50!qp4gk6BSyfoU8I)bLFMKO^Wv%XrH`KCTNTSBzlaBbzc2Z-09bc$sy9)lVWnq4 z0mb$y?Y5k%u(3yaUNz)o+RDodR!esQwdtyN9%Z}pWt86c{~QHoJDQ$gY+>sYXYUy} zS~NEPG7~&nbXFqFq<_6kxS%-ku!EQGA>gyG%O9C1#9}gZSt62KENj!}zgc{*q|7q7 zi~O-#KRHm$WD)p^TVL~CcH?lPyNdodCv=BN6*>s(7S%FsCB(&vqOi2p8sHjX9f&39 zoAWh>h~7l$3=R8Fhq93L+ovlwU?{&PVk{@_(u)%|Jg5f4ge zVV+nn*f18-8PK48=Z=%EHY!r`8lV#%8sc`e0u}>&p8kV(W&EJAzD)F|59Hr|$->4C zTIR7gN6_iq*wVci(28#!m5AMTk;d#<=4C%*&N{4a$?XHcyH;KE_zF#m(=G-~gf2W# zL2D;js3$N0SsG$q6dl5@AiYh)e+5SUd^mIgrY=kE{i!9*s4ri>r0RihK&V-^>2Zb; znjFfgeU{!68BbQHTCN#To!yro;71$9ZUTVIG59&7w0*k~Y*j6n;v`Q@jr)#EM-1KR zgA9%wEHRIlu48Io0w|DKUYd%6g)=uWoXt-(fld|3Avxr_BYWYZ`1Z1)L3}~|kIQ@^ zJBeCZD=OJFzHZz+cs(9QPd)rKALoIsxza&4ErFe64oF+rf98lY1x67(r%v}=J2(h- zOg(QzkOpjkARbOINso_eSM)wlOYSbvk9%8ZYsQYDrE7Y@Bnz35XdZeaZo&|9QbbN4 zw_XHfVR)-oenYo#z7CSVb3_-nPRJe)D?Ns9Rhf3%E8*bk9MK2W=?MiB0Rj)|pINYC zV~A;N<0u#5Y32#`thfFQn&)YX3|}MC_V=!n z8yaO-rU#bd0MN8-Z);}t{bU)-H1-}W@rZUUhUGdEu^ z#wn4l>s!5DUCt2V=xJ$c$@iL+Kroa@d*b*loj9u+Db!u^++Wax1&H3w=9m%y__F|*bo;=$~N(v*MsXedQ>VW-tld0^s4i*1z{TA zU6fd59V4Z3Z8bi8d4CP;$T!lqpJkCk2yzVg6QS_X1sSQW0x1h1GS>nzwoE^soQ;j~ot;o&)D-dekX zy|34fnoys<2PkLQhtDo?UFRJfGtxpg)}AYolh5}suku68RHrjEX=jCZh)teds$9&k zoQcMiShdodIQQ%F(w#;YzcTVfw3!TaL@e^_U0F2~ev)l~nIaK(UsPjt-+o~_{o02^ zDa9+5FMuCuXryB{PO!4Q2kDnG57R%Ir+#5$BM1!=*udxe0c!^&D$S|t>#SO28yP}^ zfhg{42LT+(Kwa-2?Ho>QnXZ34729YDKp7&br#l$?ofMgU2MqwGm}je+Zr|8aIvrzW z&N2|r=HAt$Mk4I zncl*D1=9cXd~`FDFv54>nha%EUT$0l{0KY< zB1DqBVHFlm9yeV4cyALH%`!5JKF*aMz9^7r}(gKI?YdP414dvR&Gi=JPt80KaNqUy65C z>}M>OQU|@`quZSi{BjzBKDXwG7`qW+#6E6z=f}$r?BMO&zD~UEp3~+|1TeHlTUY9zDsMPH}Gj&PSu5Y3tfMBD-K{IUenzh7Xvhi^O8)EoI@~2OG z;G3^u$chGa|xHP^UVB9?eiv_*Bg<2(Lq+kz$>pr&?R*5S8KUsjjemi zUpfCl5SRKUm#R4uEBB;GLR{3j$5S2wy-fz7p{?wf4~vmY}sh5o~E_1vXU@R*gIc+x8RVRPhgw;IF9BmBZ_R& zsrBo#SZ(|RW8L*QZ44Q2#CVF0%Zt=pj^;@G!irf=%RO1z@#EHcDUW`kT4sfJt1A+X z8Y$9W{d!@&yNANY4vBkY84|_oxFb&vYU=dfM6uIJsMOS)8yF=Z6#=O6(kU}X*|MFC zO_QHkuI#X|l?4WTI$xvkZ`EQc{gn@eFB%0!G+Le3*1-rd+%mnJA7Q~22FY3@!ltxM z_$(1?;(b+s4Mo=9c2HOtP&DMDXTLJbWfP?}?2B(oJ#**Ppu|J5Jm8c}G^*(aYxVWe>Wu`8phH z?Weetb%v9F<|HL`qWA8OI7a}7CbYSgA5z*8x%slJb3G5hD^5?^2M77Ar~K0k@M-e} z#!Hb+q>-z87?#;Y#Xp}omDW4oZM!&F5HTqxvC$oIb*PS+co@7(W=ID zA*ccc1>1*}qs_l(flRP|wt5UeTI;Ya-g$idkBZR-<+MW+n)0G!u+hVt8j)ui-kht= z@0#RU*R%Tt`D6#B(J;{rc(dRwl5qxhli(}0NxMmw;>%wPMIGhon~f#vn|UeBZ;aJ9 zI3PaiFk)gPk2vwl^Ij_+3D6ZtG!I#-Y*c2`t*dX6whcWdkj0PNOK?&G!PBhlffvq7 zM2p_)`1(<7OkBhmGEdjff91ij^F~B8uYWThy#0PCS=Kx(_kGLyR$rOv8%K3l993Tc z$iqx$Q0Fjtax^|+-Q(rkXRHdsaD$?E@&m07Wlh_(03_Klu9=HbxOFq&E?S4(fcWER zpXg8K?v6u|ZJOI8ewd${Rl60e0;St)QlV&}vAWDb33O`E%QZ-XPHbjBo;^nrrWuYG z5E^Lu1w=HcP-G+>X}94IR%vhkSB;q)Ng9v{FV;~Hy}xa+O@)^1Emti<#~j;+EQk^i zsxS9h;3YG%rq`78H|dD{O~(E{_05+D6#385h5wh;1nQIqg7$w7S^Z?d&i@>9%Kvhk zuzeIbzW=^PQR!IPYsK{a0cG;r3j88J$!Gy6u|!9hi`u0 zhJu8s{kPmF30``k;hnRkPkXuY%<7;Da+@IG&fW&;vR5I$KZjz%#8fRW)@*;vffDS` zKNFzEmH*>-X1L;`OB3_}L--a(oBp?sCeo5p>Hi%6kF-9`(Cms2th@6kat1VUZ5ml* z`IaB%&gJ!=BG2d3A~w2%ymcs9p7~NsZD^QyZT9oxm6xc`uzo-1v*S0AYnXD8PY=CP zvpwKIU>#fz?z-x|>UViAEMY(O!%d@fGHNkdsGZRzwLQv?v8|Gmi;-GuVwc$L)853n zR?C6OD}ai*JSNcit;Ld*Az|f;X}2CKvLX!ws>%bx3~kRq|>sQTw9OKEUI zim7&cr=MD27AKp>PeG}p{dI}CM89z5v|(22;Va-n0&jP80m{zC6SuSQ0;Xt8k64*H*;EV7cG~(>lD0LP-hxHTPhidlk=ut zbL_k4je8p$lR^)tm~0|3_g1hOEHARgy_91f`tR5{-a)^H9yTgNHhP1m9(ke7sT|Gg zck@iD^m6p_dZ2vx@TDum3oz8awdqz)C8(-DKx#rIqWI^-Lc1}EcIX+su?UUl<^BBp zDyKgfZDgr?DdTQ0+82GM%QGl^)HbLR!LKXEGLRNwntju#Y}J)Kl(!fK0pUXvr*4H^ zDB_X<6Rg?P`G+?S+0-d`0sDK znOr(^mh}bZMD~#MvCD-p^rvX_g9_t(stZYB@Auzdk7!+@I>9>mjxWEf1vcZOq!c*a-~g7xh_%SY8KqJ%{d zo#^?Q+2Y!U)4>lj@DDf|ZC6%SGFCW!E2TgVD~}HMoVyhmN+s!>pc91HJrI}>4px`1 z7P~zWwS6;hx=yVTtMe-tc;lelO|>~?Hbe{pCQ~z!CyC-*LbOCT!o{ZBQGw9gSw_8b z98@Rynb;_#6A_MMdkTgUMQ7l0*+Fvd2g?v42z z9SnPIj~Si6AYpPXM1w1gsay)LoK;s>M|I&?q*~8>Nr%MZ4bCtn6UTPpjfO9opoZF^ zPTyZpTGt(H^+Ln6jqiTv7N8BtXe-!}MCF$|^w)AVezBh#_OM5ZJFah8Kp^0TY4vmCTlK13DS1ZaxJ9p% zh!H*r&P%QFLQ#RW#CH4af`Wpvt4VS<4U6QHG#)^Kd23f5bPDvFROgLo-TlHXEx26R zt1e>#_P1`ic5hike!zHY7EK2+c-9qBMRqU+?Z)2U9LTYWn$XCux9(u1?)|*;-`)rA z;k@?Dl}lwK zjW&Dm%kUgnDJ@bI?!C7(nBL^uaSw1&Rt zywclD203GJ?@ACnZqJ|o45ny@JLrfAQ+Fk33Qz&9Po6eRI)K%?IiBeUT!9XQMg@c2`kdu{!z`?=uz`;HFf{X~h<0AZ^4*ubH zlhSrmceHTxG;uM9Q!;ULvU7B^vo`|*slXSJq;GJDzy~DG2ayhW@g>BhI?`Lt?^6)YAh+1~HL zm-pPTi?U878IB(rn5b-7d)41EBU|Qq{WY6_dFoB7|s^g)YM!%Ht7goJN?M+ zcO~m4>_5LHXG$e0po4$$_<+vHB?9B^Mnl7TJZR`TuJ>$`_ngIT;0 z+DwQ+iw;F!-%)}moo$cPQ8|NGEtxqJa7TJLTV%p?`@+0BxG>mywP9PgeVm2dYv_Em zPtHXGIZ-Lq{CKxQ;pmo8yKZl~d#$UhDe~HsEC?B3=i!z?-sjjoV$gD={pnh$ye8 zjLW6ie_Gjs80&bIHzzekkcrLO#YJTt??Ut|nkCMHLQsUx`1n5QVAdE?zdv29XTxWf zbZz|e>)vFr(@us)GNIaGQTOfv6`v_xChx(u?XL^FNjtT?!oZPFvrfD!xB$@XN@J1u ziWaNtPaNp_k3K0-!NVajjs0ZLO_HBv0dQ6Vb6+$1LWaF zD`3_g+qKDP`RA9oj_<+*A?(&D@fiia$Q$FCXXyBKzrgvlqJ;%P&0fw38rr1iXmjj7 z#6^Ke`4}w{0(+-js|DH<5%77*Xd^6 z=4=8K(6m%}67*Lbp$49d83FgOij;4NtY|1=jXB!V*6&#(|4uep4Gl?eDG>*g6)HkJ77MlxB1HHLsW?Bqs7)8Ait%}A(aQ#<$etu#vFIRq(# z62xWeq?rJj*MUcCS66TLas%GuN14VGe`G3Q`@H*l)`MRu|DvsjUclI~xO9=SK`s1A zxcHy3BJvKwXouG>{o6lty{jg9{icRHwooQuKfPu zy?klO-(F4wp0@pUxAS5tVP@&pTrkOly(g|{=U%0^_24xzSyRMYQ4I|2W$Tykrxztn zv-Xtzlogj!d!Ng!`JJ0{O%AS!C?P22A9U-zOM5rA%atNfT%6u^@^^qR!LoWnybzXC ztWvps(1VK}<62yv)#U~}9ca(yVkn|rnOZu9>tFeGe|NSn3%So18LA>5dGjY13wPOU z#4dtCvb#oO$G9^xG3BHEr^)|rOrGY{hcBJs=tCX^L#}+qjhj!}Up_vW=2S6ZG7Q~t z`!f@0^bLzIHnjRyIS4OL82Y9pL=lz&$M!SKx}P_(@V}b37FbTNDy#EdTK~~l4 zH~UQM4JDXASJqypU1_@bSn#dt{g@?*iV)><)C2)My)IUiQM67 zE);Pt$MyagQXtVjzcu^&_b6Zy{sV?-Xie>E`kPjpTz!td5huiR*;=v zD^98qj>O-;t4OtW$kk!+DH0tymmlNs(z13=`W0g0no8(he3=7EE_d7=BdhHx>B{(U z(lxh^sSdtE8cW;Zq5ppaMQCr(7DWWE?~c(->$OpJK2JZ}kDCiBx9z_qEi&s@$w`d) zcbu7JgXQQ5w!NzDn}(w+zLD|PB@=DEiTOv@{k~HFJWSOf*MVkhE0gmzT$1C-zlGvWf^mvfC2} zF+6$)_HOS8e3Bny7O3x2Zoei#BM#6X= zSEl6&7K4lE2p-?Ib6MCu&r8WGEG+DZiYvFpds*L#s8HzDd|($r4k7=)0Y_Cpl43FF z9}#^V%#(@%DbAYB$yk(DB`0=dvtxhw{xF{t`bLzyx381-6O+PoHI7j=nAlr153tmwZ&&O91KOlB}`z|t%;;~6E5qn4zRnyx4#f1e{daM ziMB|}leppXXUy0&?$@nvZk`@A9`exg9D8MBiChIOdM*nOjG=&{hasr|(_-aPOI1q? zO|~TDfMq{QiH~>#R36Wa0V1E6oIGCgJ$&+GEne_ecLoFj^!y%LcZkv)}x4@R+*rIo0tk&hRi^p2aPFVPZF z?H2{~M}*_6ZOBSx4{5SNL|E?&`IUgJ z-1Yl4Fj0&6XIB(OEheW&#()v)pRm^tEcV%)p44dZ4R8`rMyW2--_^Z zN*^Vc^09axtICsSJbb?y1>kZtp}z&y-Ik(gLylke`vF$#TBRebG+gNFNS`PYNM{2h z-*q^N6i5id+qTBczD|e}x%|DKC`u^ut%$~vSm(KYnOmDa0cVvOw%>Euce^QyY~Ue< zNQEnG$QQfWZ98wb@zC>$Nnnf3;=6v^Y8M#EODLxsg5>Sp&{&kQ#Ro&M`x^m!6e%X3 z?JtnM)icdk0`8tmr0FB_To*q#=(wKR-Kq`7H%dTo-SY@=;nO~@*NZx=K^s-w`JAnm zFRf4#LaHoc4;$s`u&0cc8w2D)wvCaFY(54AwWy_EJf4{S4l>v3mMv! zZHkSba!D}1@#tK0Q6?I@Fm+pvOCsz9R5Ko@veNj_|9dPx|313VwBe);kvV}R79a9t zy<>PDj>7QVf;PD=D#aul3}V62Pjsu zQA(Nb)n&(Jeue(*o<32*t}#I{>utq&=?uJ>m4&bV9c#tV z#)D-46d#6vlPE-O(r7*53F{#aw?EG7egVM{)kqOc_?0|jn)=a_A2Mc8tGn~(PX~eb z=oh@ZV@f-;jr<)ge(S<0ZZBl_`iHog354obExnYm(MU|=2;?STF0Xi9GJ|UrQt3kT z)`X%m1dGOH4+Zj8+^u)6))v&IbpY2ouTs-0op7fL$l7toeq(Lzc{taaA(Vf8<=1&R zV;e&fA$14?)p=`s9;Ok*%6lI=s!5`@x&`!i#Kt2JIl``3)Hw*sdfk&|B9~}LRUGi? z=8Mo0-N7Hf+kIXQ4GlZBozLIxY!T53=nF6<8$t2yBV=|!ypSLgdRnkK79tLo*}Ecx zBeJWnXrxouft#nLCSPeYDQ_`yQEfBH@xBc?wczVS@D>Mn1nJQ6hOJl8rzi5<FiVHA9sJ>FJTHzTXeiA(?aPu?k;Oaevaef%s6B$AW`ySNQ}{9s{LlJYs69giR` zZOV_`azV3t->;~RTM*bp7!Ox&pOkeiI&&xa8vZ2vnKsvxGi+riarO>m59Zq!ATqZ; zK=CvmNzZ)H7?{stHS)>nDLu=Ds^*J9mzumHfc4H4qn^URGAC{s&$uG)rl6x55&CMDK^-+DzdzgjnqJmb zQsRsWqX6^u>j0Ck=)ZA2F)_D)PCu$cAnz9sdQC&~>H({Arih7Dd0)7C^{3gw_7%5k zxVT@xLzO}~HiHeoSH)`i;3B``cvrk9OjRY1Lo{X5`daJkN9gXO1UQDg_||q!-yJ^d z(6&7`MuQ5gfXameDhx`ApH5E#9?_@1>nwUT1wK9j6^R zg+c|uvE#Iz8l)}2?2dgEGor-;POUNk#p|R6M|aoqC!{T8wX?rfL4^$QT4kSDbV6G> zWl`LAscgQWshe)GvYpP;(lmYXA|DY`QD$AjO%H4?j4fd`jMNl8URpa=)z$6pj7o+b zX?*ZL_Qv&snFBh3VnH!NC!~iC%P_RElh7f?9FGKL~r0~_hmsCAmUCDNawV~AG5-f zO%)&z4G$#Vy!13~4=E?c@mU~s*fiT9bnxPS-qH4|+ zPi1<^rDo5Shw1#Sk3?{)P-VNF;HQsAbc0nVdtJ0oRdpJkw6>bYK#*u?aKQo1WOg@x zJi~1oSC*;xE;(zb`e-qe-UrO?)=#hO_O*oew~t%JU;e!7 zSRi0leX~*-p?-f6LETSR{wOq6@n-+Q4BIB`&+nj2y!=zJ1&>AQWLXrQ?8DNvl?ygc5NM>3d$ijNa zP%sWxB*!VM%8N*4VnR!rFWb)i5hUD_zy@^?AGUL_v^Wu746r@xT zL60CXssTPzK`*5+c!=C(gMS|j8nbTT%U$p*wnUyCe>=E>#phfJsvl{TOYo?CLR%4yt%a3!A4*8 zTj8g)R30#P%B$c020;pMg})sUt(#ST#iI|{$i+{W9Wpoq0?iHg7agHWT* zR8Tm~Yn0Y0?ba|QPXdS!7&x0Z*!i`Qn+OpcQZ&B(yXj$|7pVvWnp=8R{aUUH5m{CI zgZ8$D8eRw%+Q$Mdc1>=i_Tk=t&CIl9owbp9C3+L#o^9pT#el9m=bUdp_zfL znS!{^5$JLy864=}zm&Y($IIgfL9usa#PT<_QQAk4gX{fmjtLNtKY1LS-G|D)l(UnJ z2vZRynr39J`&TZTDT{fd>HU;V2iuQiFLMDYu^4#!qV}?lLZBsgY0XOO0yV%R<7lDWO3QaFz_&X>XypVHQ4nrS>yZXH4B786)j(Zr$) z($ufupN9>&!UT%L2_vZG#($Aa~vNpY*U7&F4mZ`Fm8E`HlA4X+v)cwt{LW*=!!}ZL(ZrLW33<+>Mp9B`32E*Mu(>?M^podAG*7B755Q zX|Ez4sr<&sev?LEf1=2R=DE6k8ZAh}71;F4K5UL_F@5%WM9HqgzfwBR;na;e(Q09~ z<~*FRCh_iFO5yXnf&ETQKIBU?ER)AWy1pb-Dw*dZ_e^;`IYIp@_8Dbc&7dT9-5j>q z7>u@1AVDV+sTyjwgl6izRR$Q$^l>9_M)dwEGieVofAp4#OmD087&Aa2(D0r&XT4@~ z{jqKA>$JV{nh;0*)XLMfh zUpy5GY-l+?)>P045E*-eIijd4@m1Us(ZP} z>htg_Wnj@1{^@zXQ0-0g8R*p6bFzYP-{0auT$yX`L;7T_+ zd8Jw_ys`kJyt24M;WVh@!F=ctndq>+sfLdBz#Y!<4VAu ziQS9V3DJ$^;NDl8*z=aHq&lM-umNSom6W(SE#I~MdF2h3nE%$KI|?ZYX>XU1SK!pz5nC_cYKwR-{Kp(5y2U*z26F;x+H2%b zfzSK5+g(rHho+`%tx8d2B1tD7hLp3^oyHmfrHk`fZoeX&@7#U&NIwuGXWoI9k~}@<&xURi>jz z1MuAIA4!Br+g}>S+Ak3UwJ72@2A8c_)faSxzkNj;%N1^N+o)zMe)^6rOEy{Ifo-pG z+I%mpC)QtLFS{NpFAL89qc?rPi{(t`b#yQ*K`0uRlk4kTpm!&CNnTVw3U9@}S$kaZ z+GIX+-&G9@le`p!tKE*~Gbp-PLW(+Q6!pdu4QhUPo~rqW21pU1BbnhK<+7mkUAMa` zk&4zzQ}Nf+J%)>_pEouq`9`{%!B*+RJy50HraDBadrpL$kmA9<|ds#GqzL~IqMt@>djeDkMj>D7UVW1hhYo9RRG{Rowu#*kS|Gc=woW#`I>Z{NtHBnP-j zg2`$pgu(qo{(5r?%`snmf@r&T74l!V=gar?04vqa2x;AvsE}cWC(g0ba=;eqkpj89 z*@b{|A(h!ycjt4HpRLD|w;<(ng#csJO8&-AGXd(=BvQJdhz{N20b?826a8FtpiEpK z%6K91H5azpY`Ox>Q0$U^S<`B#6$yuyYm0!JZ8{-RtO!yc`ZRqP6ik`j`IN(k&7AMr zm8LOkoEC$>w%rOD^(iDVe=x<+DB!EB9mjz8BJq_8Fnvl&7)3cguc>6>*8$6CK9tG5 z;4yCx>f-X|i#eW=WyjWgzO`7+Ok!I`3LH@64Sf_Cb^ipUXt@#u3dyYBIWt0!cc)K7 z!~weqD?{Pfl#+=Yeg<2Q7uGh2zikb;PZ#obfp*|Yyvu++)GZ9K&bj^AAfyvu&cFAcq(G%gNb%sY;lrx{4g$;lO&R?WINCYOhwUze1RznrDG zpWxov*-7WGexJd~n=0^Q-X2tz@l{nWh?v9^E4B(`?pVK77TgE5M?X(`7rsS2SM`c7U2qRR~(HroXp6+K}<*ys#*= zc}w@V%Ko(K&Yz;(02|28=fFo1#T=oGsw$3?6KMHF@R`~r`Tc~jTTwv&Hv5uoc|+mx z$h>2#uzI1Q3EG{kr-13{Fdr*M<5^aT8qT^%DnTHzoF2X##LRX7^H3Qb18VrM>g3%8Iyo zTmHAqV#t~L<>;pyhW)6at+D+2bOm)iy#c8EE`hL*8`N>Rk^Wg5IUjM~V`%RW7+6nD zh4CY^A@azHZvmC-vFz_j>UY#e>uL`Uov@pMWq%68K6EOR+xBWDf{gEM^v(EloBDz> zy@*?*gg*hR?0|QKi*#%hUa20T@wrkXe-S5@SpeA)yU2Mi@lFEh5P+SI2m73f#_}@= zoV`kmA;N>7YnbtZ2R~_jXR>{EO1|qiBw>l(VF%SO`NXJ*T!$_{T-2k3#hVYL9v^jJ znGqm@0eqkx2RyN1rwl@8aNwb1Ox4Ff_czIob3E}A>zBV?tON!#WxTM4ex1<5zzxu-g9~uKM1s)BsmEXTvyE zZZN=HzaU|6&;0D!v%RL%VSTqTDH6lylWU!8c%-g;H{peH7(s7EE!(ayh|)b5B(}cQ zd3xhhzDPB%^g5;l<`uAZ65+X1jp8e@tG(T9BlDR1Z>B3cpn7 zr3FVyswB!%YyXGBVQ?o8-Fmy8TtZZRbD?0}DXorLD_6!sp$qwkkpe7+=D?|9L;p{< z@XnI54a24cd3L)yFM=faH2-qmu1KH7)b}t8jO+O|#q@9g3m_zcD!bUZy6NuD57<)D z`J8baJf}Z`;1cPU)LBRrL+Zjeg%K!Sx)5ZMIaH?xRlZsuS6#Z;KVkA|0pPI#jG*z> z!AeNvU9YNN3%D%66(*S2St#h*Q0#p`gPOoc@ZMc1iAb|mfaW2~0OjGj+fIt!MfD$V z;sUgetiQ-%fHDR1+`##pTyk@Tc0&5|<#hGP=gE;6;5MT4yJ!Hs!<&A_NC2+_?%n0q zKoF4tRx3cd$io6>0(q1YmN5pI_+nXL{sA;=Y`W}O1cL1^vEE=|DM=5he6@{1xdY*G zRY1dXg<}xGge4GUMxvT6!DLHiO~;de>T7p|TMD8kBJkL08yW2wlSYNYBJ3F{fDL1B z(hK{NXkxOM-BsVd9scRORxl9^%if*Rkq#`xnC!MwiWWmBjxh4}dv;q$MDH3cg=7WH z_qI3zuHn&bpvg-6GoXg2bM?st1O%i~;Ymae{`>gX0tgZU5@tK_%A9Sn!_L82X&>EZ ztJFFZggX9eI9bK?&>cqKtas|*d;`HgL)bSJOe_xF>`7)FX+bpG5RMorKPq^Zl>{&u zjO_ES`R%``k%WgcuYNAPhx|SeifG%}yN5UvBMZa>oQO5elaq(|MUnhtZA$idrz=y+ z#N@=MGG`WmVU+H^^Ts3jiKT1*xsRn=mogY|2!Obum~`|H;%}jjQM>R1B{+eA8zb0# zP#@D2VER-xHO(J;J-mk~Jz@}a!=s|IbXweIK%uQveQ{f50OiTauL$3NWlqXO%(RxU zhdX>lr+$9TTXk(jsG+6B?pm1J;0m_WDrfQG73qi(@Me|v*=82PIW>~ekS>Q=oo&VT z&`GiY6bxtlc*AISx=}MH&8Y=gs*hS{5b_FdW;x1Vy&53+J>jd8sFm<%W6&_WheK`OlU7j(u`Yy zZ0P&t+?d^SE!A+0A;r&dw^~LYE~n><8_z2wl?6HH)p!)p5asqWn!@o>3k0)C6#)2* zkEzL+u#+FR0Vcp^z+D*>1A5&F(0Oo~8N}D4a7<`F=&xE8)Sf+)Oc0{gqp0g86u{F! zCCg0xXvYYd0)ex|{}ve8!0Zz9gqQ|G%8};nN>YL$_Z-;C*bOo`SuCa+gTKz_2FmKx zf;PKFafSC}*g_2Nul#frv8&M3Xc-5w!DW@jkj;Ohty_cBmHxs3o!aZ)KT&Pe<*kD#iCg$i z+fWjzKpdd#Zfbz(V=3ikdTgSbI7C6v`9sO&AEcYNhdgq>2_J~(Ek$=8d^|lu2Gzio zdH3EtuCQ?987f+WREbq`B2fXl7!|fxwxns}-ZO^ZG7NUh0U?!k48VvXVy>m(oNFiZ z(RDq!E{47cR|<99@uS4--mA!BgluJa6_JRwH7sZ02jmN~KsfT2eGkcDzO0#?+aNpi zX-Q!6(W$n;i3)uJV)1WA(nscxA4UJT2*(ecGeKLP44mM^k-p*cqfO(XeMA{OlY`&zb zy9}6(r?zA$&~EX21#?NnykwOqS*HrVyMqVT708Y;C$t5x@t%>3Ss7enNmI*rS_{LK z-@k-P1k&Q&xYoUS{_0P_RlrF_1AOglwh%LE$9cQ!OzUInPQ9q)ix-v*?F*DqN-v{; zhzklq37xkwWV8Kjk%vEUE&4)ZyJ?})016FfUo+|RMf@GmGSTS^m6j*rQkhOm$_;#l z*@L9C5kie)hK%S)i!b;i?lf)9sR2aT!ZnV zl~xovS&p9%96c@hpbOOC@oN6JklXseKh0Nn7G!b^9b(=mC5@*`cA<0vuqq^*zgm`h z_2(kyo`;}WPbv^v;&U3`<_d_J}dmNq13pK&?*p)Yl zFf8Fv{y^GSte=KVKjFXO(~4x-xS2NVV}L7TR%BPwf6P%nnj=zOYDbq&%K|4(Vr)$% zkG3`FZnvUa`@+^`MwNk!yk(qa;(nhj-K@u4P%-g6NOm;m1(>Nkq=(~0=>{INiC^Bx zm=K(F)Y3eAmNr4hJv2cwjwdfJ-WJwrdYh-QtYnC$s=@W5BfVZuV&Vsp2VVWHp_@NL zZLJDChXAdQNKc@MthGrrew^v!0g1*AVf?SF3!y!n(7Z&_0_1{gE%N4o)kJoVdSsm}#c^DrtS^XSs#%b11eHC0xqu*W& z`z?(kCDsoi`r~*k)4P)Sj<_)-3m;9;5|e9Wsn5F;t#07Ar9o&!GN5ajcZ@o`md#Tf3_?|eNqROP?Q7$HyW7j%r0A+x z-MH$Y%s?{mnl@vBFW5`)0H^4u7abfir$CTCnXNiCMaTG4E;wHY8REpRs;%{3_`Y`9ju3#wT??? z;Zy4F)v#hAETB5#@Na8;Z+lZkVyc{|;xi4Lcpt3-R8$*vAn(UnQwJIJ^Z_v?CeN#OH1L(E><^t_15*+?bf4>J=}ymfdm zDOZxAtN$Y-@ZRHzXGzDvw*p#Vj=xUnW`G` z`Mx-auKd6+X4@nDp4H>#(VEse@A5*L$ezo0r-AT1^9gwPq>+VEnXxxky2$mnYT3h= z#ounQ<236_i)LDR@7$PcU2RZhtE*y@0zW_~Db#X{U(vPJ z_(3+sm;g=JkGLQu9^xO>gEe<&*R*6-FKffoZIQP-z(CKJCidqePwPtxNe6%_*K0HY zt+^N3h53sMDSy{iPma%y8fX5q^&~-e-rF59ae6oYp+F|^*ev$j`B*U!C0PK42Q{6+gf9-P^S=m_%8AV1A1DBcoF ziRMXmBG7(o1Rvb<StI5gS z54nL|_)F6UVPTVMkZ zM@}0Jhg5;B?fb9RyS*ci2+EsT=Lr!>u11Qk7tvl8<#F4^emdr$E(lSEw8!=M-A~1 z6=Z{tVMk?$n`6j#+*jonwWj$**WL783{B(ZI8o~wkkE%o-*Y@MKuXKXEXsxD6G0N0 zToF=qs@nTrmqWUUtugpuxc?O~z3iEFu&0lm|BcJ1#ZY;0^T&Ah?B$o;-5t6skNA#b zLwUJ42#0Nj^bK-1e|I85vXGABC(xFv<1rnC zj-$2X1;}GD^R=g$&NHy|=cxB&@-GVU6y_zonv1~knt!+Urt#kPF?($ZtB zIdqHIe;Wq`ZenI)>G^lDk_bPTG^iC=J% z5_}nb0g!c(6E8-=0)stv`gfgk+{&5m&Tfatr1tiXAjxDe_hx)h!w|<~6_*FJX7o7h z7aaMh^sIQbiloLR3=b{y86DsPz!kaX`mVM=v-69~St$^8$nKu=4JYnT zL%$rT-XkK579EvJ90=kAnp#@GI|GE^5dnK10DW+grsTD+loZl6f=SW$Tw^AOkASJJ(uRtLd_!8rc>_s zZF+*-NZo&Zs)nF?nTX+)#EtjkHzLOEVBTTy{)M)#c29^S0vBywqKbzItrHHslOUzVY=YYi_-7 z(*d{wx9hibW9qD(D@4929}Pg@ertTo}H}* zVhoM~nA|(yFau=KU~X&WMDW1hJkTZv+S?2rwaRdwXBcPVM)uVASlm`l0+=<(qW3Xh zgX~+WC?$xe0LyZfCqd-tNSB{QtPP};=Ub0y=srglk`r%x_EVqrOG@0jJ|T$`r`oqj zu|EtrQTtih<~n)>HMW(7I_Vo9-p<$1fXMA}oA&j@iv@qaR{avEIpMTci=5b|@eAbV z!#&dq8mmLK^;Pz%v){Q?sXf;KrQfi3N%$-cNP7&nW&fzsi* z2nr2URdo`tPWYO_q5AE^++3r8JK319we9q(-y=y)CgJyhdjKM_Cvzx&dH9}?*}k@8 zczFNKdSda07iW#`gXf_E0b?p}%R3B0$*a2<UB?Wtat29>(=@JmQqacTaa{sE_!Gshp_*Q061pGJfn zm00359nd<}7@&3@=VH+diPYXFz+;I>pGD>edz>Yko7^7zo?#IEh`#+WxRMe8H`pNIIkGunIKZ+@*yAF0@nWd5AsR* z*0u~x+0lz4t;a8irf`T0&=p;UYHODv`q|4}{&?Nney{3pP3-Ef>CLG~mp?gq5guPT za6R7BbJ+`L;&)de!tKv?bhJA>;&f;SK`>X3myLDup&NRA&rb~H#rYJ+R*+0@uZy}1 zX0srf(sqaU$U^7(^Kzl)W0toZXCE1L7gSZO3BMIbVsLJV-@l&H-=wksi4VUse*UX=W)K4YAagVTVKs0KQGE)`fA@kfbofcVfLl@6R z-A{v(79{iOp2y{+Na*3F?OHD!ApMxNK`w{47&hs725JH?b4 z?R8J8=Y=NfX2ju&-+4jZX62SZ?WL&1N+J^7W`~`Jl4h%?(!MB}gQ5+T@l|Et^V!~L zaC&b4_B*mR^sY641e?Q?X3h9<5VEuLAVKZ&BrCyV>*jTIOufvw&HTNUAp^$v0%6wv zvW6zckOUbG$iQtYUT9VVD0&PCP7s58!l=&SSMiLOy}l(FsZzQ23dvMVWnAh|Wz${z z;(*8G6c*dt3nEmO)~7%{rdLAX;xbPp5R3;YPx`K2=~AZuV?dIOT3N5QDQ?1=*P%Ud z4MiI^JhA-+mnTCEv)E*ja15@C=4dl@H+ciei^}D%QjRYS$6*>^)$D$kG^KQRug6Jn z{N7@q>g00Y?Z2Nud2OAlNS`-0j{Nii^PNM1q2UrUz@tm6HY^2hDX%|Q{ay|W<7}k! zX025=YKd)`Pc2*sSd7N#LuoHjMV(JrHoM(M;wq3$u~+gdGRPz$9Qrp&9gD#XrIlkD z;QWdQLjQo|E5vdwLrQiJV(yXVSZ>pI-D}^zeKXxq1iTm&Fu7)p$%Jqn=}IOm&!57N zV8@VzmRGcI`&D9OlDQ$La8jYDHKN;B4+p8S=|7lYOpQW^Ii@+yVf0@86HJ$4;ITT|LqE65_?d z%++d@Z2F6m34r02j}oeLaK|zG5&s8r(MKDJFEPkr<>IJ%(TG!@+lrfnYE*Z#b{KvE z%dgop+Qtwdrh+aWm~eo9&t&nzPK!B0p<4r% z)H1EnDff2E?Bs@@&|t7UU|tYvGyZUU(3p^yM@ilgvX8;L@T`{;SOe6-+VcE4U4S0jts+MtVH-a|&~ z)@N?e;yec0I$Y%@u*`val&B1CAk>2n<{GWBIXPve6Ma1Ct}laNQYM-qhp}{2-MCXK14@hnhrb|Tgp7jRudNIC zk)FT@TO@-v3E*bJ=KotWh?LgxTjbyxG`CfP4l^!VZaDQK<*q8Gmb$8)x< zr>ij|oW2)|fL;R4T$Z4@Z2fDp@)~dJtY#A7SOMT14G*2qw$-DjeGz%)S8vAB;`N6l z#`CCg1QTUrt@ZgQGc^v9?Z$7K5IWMM79R|vrFgR*Sn{md!RusTSt2QD(tg`R#!4rX zM!J7=owr#T?jUt;duWP5h#vGiIYC169v;tiknfw3?@LXM>{wK*9(d}iHF(9Jiy zo<6->5cv4Oq+3%wc?u_;;Gm0ZKA6rfbiJMotP%P;K80HWcP1%A;ZsX}23fo7(w;C* zKc<|u@TZpwR~a-63fU)#sw|~hm~3` zbf#mHK=BqM51QUxT=gEY&f_RN;*@|8aBz;E6jh6YGe&>^O-t1E9^f|XEo`B9)ZMdP-F zZnWkFA2I9a-BQ(WL0)&pimn`R*VnBTDmHb*q$prEs_Lhqn#m$0iVXV`$6aC>4q)7+%-EXiW+$R}$V8?bSl zfQ^G$U#7~H0;~jx5krt1yLjg9V0~!p&>t)jRt5_96P%Jkr$I$KtvqmH^ZtTA(2iby zKJRJkdn$=gEej-^N?ywMrSE_G{=0Y=a?hSYNq3WUq!j;E9%@b2o4$e)5h2ib(shfUY z&4#9x1Y=e;eZ@-T*kZt;J7OOP^KlFh*&kyP#`008?hX#)3@TUY;ScCy<=L4q@_VRq(i#9`>faf|IYc&%$YN1=Ij~A*_+MF`##UZ zecx-X>-t?r!}Te2r1&Akun2M#p0>un`nC9L(UG@JyP`gMfG=7?*`skbF;GO-c&UnT zY?CoEwf^fLlkxzCYYL+2*$V7l5NaNme}d#xW&zi z6=3wPd7kq58#-u7_v_~%jTN!*NDr<>dK|+Ecy#kg*@^QD8VNJ9x(}F`l#zkx5s%uK z%A3qngA{_!#MF2Ytrcj)92%7Fxl1|;75nQwPFr8Ms_bdgckzS)Us`{<7yWU!b@hxe zP5PLaG4Z1Pj0m~)ZQ14TGzI92l4JyY{)V<{;{pSNwTDB;3UVb*0$iGB9Czvk9=#5G zUS0}5@$*xv_a4O-wvjXZq%J`@t*wkky#qAIi7Y|sp^TLQGCa10Xrat zfIzClj9UeBQBd1FXkw5z>RdWo_Fp`6-COB;O1kM7b%JA zZd9CK`KzpHTHxgkjGgeQK{r4_#ev7{lJ8#RgAGl0*@ipIo(eKoE$lxqhez@#YJq5QGI)U~O*Y?h(l?XB zvQk6u^6Zaq6YiX~OdHeE*O+8SR}{%gD^7mow70|Jq>)&KKk}+Ju7tj+P0yGk$%rX- zd%Q8s45~Ay&tFb?=DOvFAI>2BiV2tDeLLuchQ57k%!tz%hrc?gQoDj5KR-E{4~s^P zRp7nYX;O<(8r4rU<0g_)dEC%dKNs;c#qmdr^&ZMErtAyzyTfnPwxVjBa*)(VEUSq* zlM&(^QIMpvOUVXyb;f#It_~E;++fYy-!F?92x@cqHEZZ{TC8^n#2hEq<7`7kC#Q<} z-HQw?W+SCHSH5~?uD8wc+|Le-+_)UY^3+sh+R9O&ohtCx_KHwlGep5pBt2jV7iE)+ zteo$%c1Y25TJEe^bG16TpnE?iQ#%}A?2pQfg9MSnRP|%^$WgE+{GYEYd z>SFq038lmky*;qcOUD;uX;=tIm#ElDR16FXgoXqkHR_*#?e1QSvBpGEhazl~mE##F z!4z%=iY2$El+o?%%q1?JA|y34UAz+5ws;bAUalt=x2%%Gy%x2{`R+w4@6#)bxAC2Lu_{BVBe zf&HXdQ*xQMBJoga#1`=xc)B-cE*LWg?kDKYxgMJdsc1}q>w(`bnDBbHlr7?ApzZyD zESTnkwKM}2?mHZTNin(5D$cE-={J16lME{dhI9S#D%gy&nFJ|n!xEBW7GjXfTD=;OCCmA&od6SQXBwCoiv)b!bY^`_eB znF4LP%xpt}++6;)Vt@O;XF|3&3F%$Fq`zx;ebLow;O<188U(sN^L5yroM{kMh6!DNYf8rR#e<4fXVvL_YpcJ-A^lv zX0X%xYpLm^Yu%NLv3&)}2d>h58Ae#}T7TeN*F{~*!ye4h@K%-;Tf7J2W)6OgSQ4$$ImGaWYMxXuh5Uc*^=Ea;P`i^tZk9Rbn?%>d-LU#=E_O`L) zo)M+-34890`FV-+me(qcjD47BmQKYr)gli^Xfr&obB8ICGTrNmH3=^Vxliw@NPK zeYNQ|yHO^%WW^pDIjg+U3{SHhTHuRQ%1^)@b{; zf8&s$KW6W5;s+7=bsn0+j5^^vRYr`L-a|@s$K2ECakx9siDUyURr%_?0rF_vQQEw`Xil`rFsgMf~_w_;~(Nx{3-k9xl-^+jtC;=51bW&! zXR>epPk*o`>0a-;fV;O#P?*V0k2vSeL~$Y0_Hh?2`E@O+yLZWXV* zT)3ANeZoMmg3%6s9|iP~7T{x{u^9Axfi}tR$s4tYO%>N(AeL-=X}q4{yHba$i^ed5 zHEL?}`gb_AJ7!OcrMABsQTDHVdQO|xKhM-%^mFQX&bF@qgc_!h^k4h#G|$(!Y`POV zKB=fC2+(DUY~O`)uFo#QB8hs@v|5#~>21v1B);;sp%fcWae53ir74N7_&OR>*qA_O}BFHK-Y;F`C{!e96ln4?W8Mm7?~xN_2@m+0ibr z`Ve40eheckDUjWnJjQD@pOmROu)ROsW?h1<)JRW zpC7Wh0$Ssbdiy=A*r_WvXwxgIUp`9=x5jHl-8j;GElCzRn%`adf;dwAr0~Zr+uHI! z_L5_PE$(9KQ?<8!JfL%$QS?oSx9*|Fb|r{1ijDeZp*Nth?Ie<3fO(HsN==W(cjX~@ zQ4TIz07$&q!S?f7jqnCQKSV?Ef_hbY;Lb+Z8i*9=;gvwIe{+Z}if1oHgxdCgRUM4n zxZdZ-^_N=CulKJ!^A%FjPN3MVve%f-Gko{0B{}?`2nIiEUoWj6t8lFDnZWfm%%_b9 z7$WhcV8JXJZ6H3UOk9L+_v4ClFZSF_DgurpMdKTh?UjcGpRsYbp~*HqhoRgA{p$cn zUJpvVn%W2RIB70xhe0yXU#67)ECLm2K?PGM21=wGJa5Dd%zZBhr5k5UiheM^9mZQ* zvnPXZa<5R27SSP+Jly_e$MM&;Ze0KLZiemTRsi&KK-M5?bG|-m`T!a~k&dn=Fa``V z`c%P_vIOIT#@Q3}rnh}MNniU|=XU9-w7H3%XqR-G9G)d)LWhJ5yUIF*IMHv#%vn!I zH-QplZOz*S@Zbr3`=y^4tDrDAP6QigF+Jv;3>0y4`!yxgJcI1RH*^orOkyTf#kV~5c z+@@K_M8kt-*|z5*4#Vr1iH59=2di?JsFW23Fw+q#m7x)n#PWzXBfJ{g@u_|UlNt~a znQfNJieKtV)ASvdnUzaz1zB=9iCJiNsOE(wut~jrkeT%xod!9a&8zY(uN+hOFvzD$(sjjvUGwx!B zm20GFD}MSz)q+8&NFsb+kWtz+NfyB$VoVo{Xc_%>+gm)Dc`)K~qM)IeiAq+|yoa1j zo$npFH3~^@H?>~b=${T}=?RR8?N_`h9V>flRLlHBtqbq528kl_3nWi}OO6#z2y6{B zXM$yu3=ZlNUo-N?YCU}a-8>fa_vdfk2a@Y%rh0cWv|cqiWS^y)Cn%7MhEY21n>8Pe z33Orv+sfxYv9t5Y`to-U2U_imndL_*Kbmn-)We~Os=6{M0Tm7W-uIJZM#IlC8YyF= zA6M447pJp_Qv<5H=9tc0W{fPkwQJUIFkC6xUNsc0yn}9Sd>B|c3olRj$hqrKGM?i< zW})WSvM?36zDJIg;QxE6HLAr?jvJ?qut1+hBvL=JeHFwmI;uXN{vRk$F`~pxh3yW- zJ}-Uy(VVHI38z1DoQdkXoy>3r_87_GaF}dmlpj5V-$KI~wB|QxLwd#Xiu;(7kB7JS zOXT;?2gS+DK{^ml*Fq&?-XEi&t~{Bc_RlsjoZ4dG)19e!(a%GkUw?DrM|@aYx0er0 zwD^I0a9i!u-O-pd$A}rNu0$XG@*TqTOs|RVyVtHt?t=bET||j8SwBaGm6bn=q#d48 z@~PYkm?uNk<<}y^NgP-zHdNR28$2b2cI6Iw*p?h=5!q_C!lor%M&XWtZxdl)8!|}y zLKO%r%yt~}TQ}=CT7vrS60&!_%DJgdV&JlRhBCS3VpW-9nk4rjq3M1=F9i{QNPccm zEX|(A|AtHrYZ2FpCgZ)XNvt8ve`WM;Ui{wB_G+$Cb0&$%-=eIi5B9xHXFQ~KZ@N^B z$=C?jR#G3O!*gv=!MifoyFus87Vb_t%>sR#K;m-`Ux)W|6K%L2D zew?0{f1n^qMpWmiweyJ~tYANF<&5Ch8v*BGKIG}e+9AFLNr5t|qSch`K$6y@CWnP7 zOZu15-|j}$_ZmwgFfEf20!e-=zpnnoWh-IQs<&PJSzdi4Zi|IjB4Akj#i+v#1Uu6| zNjvltC9HO*SI&x2+w@+mI8epLYU(6ldCJ6PQ&FKJfeHf)bvkBtRAIKc*k4yw_+y0S zvvTt7V4}YW&QJf5F6FWCu}|!2sA@=?!t^hZ5ItM2&~|OKHZhRBmA@V1j^9uMxk=J& zdz5rZXl|}WPVQNZ_`(OwpdfNgEI7ub=dLNPt!JT_x3Ih1Hj zP{6BaXn9+TZnN@laOg8i3|nrUfasI7;=Kf6%cMpgw%ziMnL z;^v|;{j&Wv3{aFH&dBE1=z(_BqR&KnLFkTFco$7FCwYLi%gbkwNQNaz)_Y{K&loGi zNJN&O*kou0^$vx#CigG}IaK+6b#86)Zym8Uwz;q$6HCn0&9`@+Kkt5A4xSw-Hx@kG zC9={EhO33}?-tE$`Vnw43CpuR=32B}Gyi!fV_ina?6VRP*X)Ni^K-Q~I#`u7k)!${ zZYl}UlSPg~C@QSG&T?do+xE7#nH|roG+t>;cf$ZkSWWKM=JLG zqLWxej$V;zoV8h7mnxH{0qs~|jD43~WlGDeV|t6z25eN78sw3mQIe*Y4#8zX();-E z4h=^*L(BYxqRKHYW{~=LjXyf+aXUXdS0k6r-D$E%K+dI5!Ts|@E{E^RKewW;h zey6e|OBm{%LlWo_f!1kpM%j9K&K1_1mf~?|-yCX&6mRV=g*CbilDEQ)|B1jyM#<} zvS0TRAG&dwx?lrWH>mAL3`c#C8_ilNecS0@z!G3h@f;^F+ImHP z3Ssl|QIevCN$J^NF5DY%8dUO774~NSQGE{ zGGYYj?78zc@qQR#C=k*V_mvt}r(vh@3>xRs@EdCGZPn<4QxZMs@8>Jl7MJbt*@AWr zPZ|&e-|MIM6~ax6sdl&C{uE{7h!QB$V{*uy$%P`WO=T8(RxWgab{eM{%a zkS1jY=>;xKOo3?g81_rWpTPmISLE`_UrSP9a^VbinX0otD{k4ns+Q@Tta!P4x2Hm* z_oWCiRdj$K`jq6J)u1Xg8|_XAW_MavoY|b59N6Q_UO2M8fORuEA@=OMH@;$TQYDlg0FiWAff&lR?MV9GB7 zro!%TcVFU{$E*|ThakMQ8l9|E=%`n06WaG8?TV1lfZ66{xc>Ym8;jt=%KQr~CFBkw z1phlNPH|eO(Lh$XOer+%Lr|*Y*l@GM6rWFI8N#9q4DF|mhjt>5cyAkKE54N*e4XIW zWz6ce%GjqvF;0Z=Si%4E%RK9-pDM>`!)T6YEA)kF2S$?B{Jj}xWaTHW!EA<><>{u; zUH@UWqw=wMPG0LEKS7byW?>CJ$3f3S5#q>Mr6BwF!$zYrDdIdGSf&_t;Jpb2;vh`b z|2J4U;#R}EZu{rU|9|D3k2$@C|8>RdfFh)*`vl+9w}8mx;Pb}am}mdJ245hv3(o0? zM$r7ATmn(VW)+Ve$E3IFo0N?97s4d3fG3E~=WEv5i!C>W1^7C%-GoaIO$FD#)1&Su z3=bmp!v9?#5xFnecMMYR_ERSqneP?@o*`tOZ(Yf7=`ckI!6yJnd!fgXrfCQ+TjCIF zA03u%i#5>`kIxP5FQoqG>y{VCx-og1IVHdKo31)MUZBg{|M#&EZuj3ae22g+uy!|m zi1_d4A*^n{+<}eOT~R^%2f&P=up5n3zAc9>}>ttvfF==Pw`@!5{utrb3^hT)LyZ zr|F5u1vB*YIiOh3Z~yo#$)<;k$Y~)mFQvrw)cR=Lq<}u$qV{mOW~cGNDvC1Vg4dz? zRMpQ2FDwjN^6lasZP(qr6SP@Q<$9({UOvXKc)xW@8Ag8F_17s67;8SJhjRyi&#wwD zsJ}}1UQkC6(bfdR8}?u zH6!D4E1|`0t>t6~{jp*_#NeHVf}Kn>R15S4M&SzZeeHsh+UH9qM5*qfVD|_okb$k~ z^_^)`u}>uf+--nh-|gm@F^&91WclkR-TR*(7dzv!_Ky%(wL%YY+tX%L!H>owYCJB8 zkA<(vuZu%g)wsiJc(!k3Ae8=+>w(?y?j?Z@3cX;N@Cf{9y5u^;ep1l>eScG6b$K{q zvzig7prq8S;j-C+uyf1H%V*6Y?A$%2+AA_wjMmWyid)hAYb4)N-(~ft_#OYfe2RJZ zr4%`P9p3%<%1!;ys&|bXR}^_xwr%c`COV3Wib$R#6SnO?X4m~k5}{Gdd37>BW;db^ z!#l(X1u>vGxpdcX-F>xT?-HOhU>7zwH<_F@e^^yQEY!2g5F1FtsXPOU*>9y&;{UJmxfc(Z+BeD`_aG$H=i$=dhOi%YvKcX$^z z2mNA*KUqWUI3d7$2bMGjKugu;cM+&qQ|4pQK-nOXofIdO&y)#ei-fOPWU_M_TxMBw zXN=A(o&nGV7lH7?Ku#}E_qi)WdCO$;Gxp@9fx1Q9@YqYV0H0+0@u1@wkNS>XhiRt( zfXbJ0SvlIIy6)Zo`Z}<1 zoA%|XzhA|@tbM<;>+u* z@cHO#^dkvxI^TA*5yk7Z12$IJeo9%YpC+VGfZra0H>f?H?gWBsw-jS-GvEk*o-QTE zbK4n5+h-c-nC&GV0U65?Sgek-ez<`mq^Lxk|CWpphN^ps^klJ5ML5!5rGNZg_#;34 z593!b_L}y^FcE<|z5wCNb2w!T;Pc}h#8@>@UC^{=-ZDs$ z?(xd;c>m#thRn34Ma$(0nNs}`+S1S6w@uzr9RyJ-YJYk-m~^L7Lq`KkZLar8KpK9(uq7~9U)3;{kec`Gb)X2h zTfw-?6Vh@6YwOAvp{?@|>+$_E)nBg63D}?U!^ObYSLH(BX33X3O=VZPcauGYfsv)p zU1|=8rAUn;JSQkv>1WCb5k^DnJHR$uzqs7nyC>}txfVD5wEWuZGnr@<9-DvrE|tPz zYVZAN+vlwN&q#gI<8kVCbZ$MmegI_{WgET4v)LI<$?kg1J6SAJ{dSs=AM!2sGDNQb z`E#((+Y*mF=*8eW``I(21aPT3x>`MGDe)B@la6V zhM)nu@>^_*kUFzCf7F0Vo}>*c0LOh;!$eL$P^TtsiaXzS!loFIe2kMZEIU|ub|7KF z1Pgyv>|46wEt?PU&B~_7e6O9H48N8?&lQ7yJQ4<+4BGVoo%t^vz~|3*6`KKxtnzhN zI4nCm@%qZ~JUI3_F8g^~ZI%1?{4-~1+^zzMV(F)E(P0KlGa>~8Y*%a~nw8dENXR%D zh)@%e@jC?(r%i=(L zi4GA!22e9Fn2#KSP35^XC%}yyK=vT9Ec}L$3mhZ_ZGtz8>4gRpOHmHhl7j zpY-OAdvARC`SbI@0K&rm*OHUlmQTX;_S=6cBO?b{OrPikop_s%k|h^>qhGt7*?048 z*dy{nT#uYqI^({!=m2;8>)wN^r8D9$jOyNiwU~3BoldEAXu4_cle2jLQf-nsqW>j$3Nc%dYGcOkn3?up%*m7)olbz9!c@%~exnihrW ztB%%R5&!~`el6ZsDl=%^&!B?3wUVn_8n|e7#y)~ht&AeL%r z_}HAO5^`y70ZVLi0PzfmtHK9gga^^% z#g$nJC0|upcJ(ozjsGEKf zF-HL-PoKSzH3a<0VKc}27OnmT!poW>((Y2&X@jAs`(MZ;!nD6kG8m_vI#iP+hU6=% zs&)W@rV$|&WvsuLbaXx0i6rv4kRY<{`x=VJOq&%&@DU?XgYh8Xx`}}4V-3%hHz@e# ztq@#mK5u}WzI=S#q2s%Xan^Jli6`Jy}rd=b2dN$v{rx>7Kw%%+mRLiIF2@q zK9D!J;yYqGRZ&kF@V!hpf6_pp>CNTp+hx(|4JlJ6r^~6?-@o69!txM{An67il(e9r zrZkJosyDa|#(Tl#UqrQQ3a>sK82Oe=RG$a+ne(?5=C(+W`BeExpihRqK*hwO#NgS( z8`I_tp?%H)F#C|sMg6&E37BA{%cZ8ZYGNm(mVR`BMITml_S|1mo9f5%meZ=;=4D?{ zk%(m1wkkEF5>UrVhZmRzg{=zxrK8J5lxK z%SM%yL(-^zvT)JL{r37LIXqw<$_}WY$k0Hm3+rTEfT{C$34v};pok^(O#X$YRG@v= z6hKJjVcY!@4QA>FZlJILk62phu$uq;^6^Hc!Hc5R!K_E1f4=65ebGiK)?VWYnPN1@ zhfDk~z=;j8JcKMX&%HQ*z)lC5NMt8romniR+uRe*;UT?+-N|9*6_FLaDN12@BkN~5 z6s^(%er?2FMfz-#BmH#WcdwT`y@q(NQ8EjDsE;W9LvjBve)08ohvI0b3C`C}u?lp)XLCQUca0_b(j9qQ#pDkYSlM@NQ_j zApqC-!P4KFS=T!!O6wxO>L>h6aq|9~YT+qEc})9{VgYkz$cgY)2%ej(3(cEBGF;EA zkT5x^6h*WkR+fmaPXSo-m0~>mT)$-YWCaN>Rp=Y_Fo?Ix$MG(v3^bR0;HPMs{nbx+^`U5KYSVPxkt{OAwDs~GqwYFd zA2SCu3Br*D0c)Cm%!vix!}sZpx?i0u*U$H#(?x|*uoit+!hdKtJ&m<{ni<4p`}Pb8 zb2AO4rrB+ARR5GvrNpe~*6_IL0ilXFEnOqh!RADSA!{&9eNT2NKrI~Fn*1H{qT$Sg zauAs1zu!GVn5vrS6Mzo5_QvHTsyl}w5m;PHj(g_Sm7D$vq6eSn2cCR1tN;a!g5~b1 z8p#MNEkp;DPuw>mph|InGjDRf?Qw%4j!=fuha*yrg3E7(9H`J4j`e(ih!Kqra)jr@ z(Y!9aQTI`RIC%)*6Al3dh@g5%nw*lU8xcUqyZubxEzPN4H=GI%!P#fzdS&_hDV;6C zB#%;gl5g7*yS=~v{CGTTm#BhAE-FDE`aaI6d6@*;IaDu6z4Y0WL13JqFj{|w(o4^w zPxbQIK=xL7Jr>`J){U5=j^Ow+0kKD1NmYp!osy=ccOV|BDC@0#kCQYbtxi>2lXNw) z;vk+D-iFm^B+=zK4=O%8??mJhFPwOtQGt@$FVyhn`#lqga?5GEe>J20F*UVe#aEmq zz-L@6m2|Jg;OF(>z4Ct~mMI{M3p}sHlytA|mH4Cw5o4p9+0U=LqP%>Va2R!d@I({` zMN{)1++#hhk%UyAv^H2M-brFnm%YB%ww#KY=&W_-gGm|dKii)TNx6OB@3gFh)dp{%` z<{)`=+jz(M!A-!lNtZXSV<7ImKidat<5_Qi+_$`tI1uFuBZ(D^YP7iLmC; z^HJjFqZ8s;mMn}JT{+b~THloyumgVR(19Hg2#Phkj#gGrz?4YW+4#|#0UyCwuu`&m z(pX>byR*$G!EpUaMD$)HrKamH4U56qO~~nk;0%Z(WC6I?*kev9#3fF2Erjx@4^kN{ ztM{p?sc&d)jP4?uW^iVUXYCkqeE+{1mCxb43fwKAn!YX3XVcSDD_PI4MuLnsbXhPY zn-)KPW*{zi@0qoCxjlW)@r>a2oQAcTRPa{H7gq$dr~RLNdugGs=r{bewakiD-ZV99 zMe=;(fO;t7&z~rd7ClZ)_nXpKsAQ)eU}pg`Y|R;f5KD+NSM>PLH?V-_`{#4BBQME+ zY_%vL3RoeUzr|G8X*)YUg{KCllP=k_*OB+Okhfai7JvSwD@TDv@@#;dBto}jjDYH5 zd=m|f#{aUf79soU-5U-&EX1j^X;l9rbpLb}uQM)vZ!d6@BX-3rz_TfGv#5_@aBc2yc{Xx@D|BGwrNm7NJmn&34b|TNcy*zvlbKd`QfYNH= z8m9&H86#mQ*>Lw|-|*3T(Culgh=!{vjvIzSB72UPy2N?KQEBODnQK!K%u;Tvr~-N*j%9vRU|y1} zA3s`mP8okA!->$@?9%ytFMrs2%W@xw>94iHfR)HLbpBnXA_@_vKFpaA93=ZK1xuaeu>mIOO{=|MF|sv;kn9i zhnd#hLlyeEd{rD;k~W(OncFE>4smVM7-1bMv}UoAE;_n^A*-Px^20%4`!wG-TtK#c zRR0m|M>$SsPIJ}Uk>%$h2ZMIW@hq31zJ^BW|CTaAoUkGU_c9U*fXmd=*A9k%{&YN< z>wCK_d2L7IXOJSanS2aHmm&RL2Z3EfUA`ZmV9%ZRIqp-*YbN0R_PyTEo+SYFRpoob zNb&ER*oeOTaAU?_@e!8fTd(D1hxz$+0bMn-YWjm=qatQ98b5#y5+Qoi_1Z?@9F!=bIh5PDmrB zhx27Ijh{IxqWkS5Yj{c9QUZ-lGJ-O(_~(;K{pWx@6)38f(rl`VF89~{?{sPFGj2vA zwB7lL85XxQ#hU9Y9)J#hKHXnttK--2dJAY831esQE&H~=aO;>`n9mv(Rl5=6=W-U^ zT{o?7U6@1ku9)ELk|O)U8)sg{-;2$aGcsCMLK8hR=zJ_|LK>Bg#cRFALzs|Env@5i zK22>;Jepa0c{?~}E+VR`-o0nwm@u!d?MhzNgQuIclStF8|Kub``5zKI!HwoBk%l^b zQ;hBR>{IzS)6?jKtpxnuYbrCX1Wf4S`JUckK?z*>zH1}X66y7JR5F==v&kJf0jS(>D9&8JE@*PhG0J$;@I;F4HI1XRDXcG-I4QU|&)R!pPsZSYK zBuh`j;o0}Rlmb*AU_qy$gm7c(jeo9tL0g~b1z8}LHK*Lp%8vp0E)vfD>4d~3(~Tm= zx^iM2NtHcY)y z@lX@@Ib+x58FX0o-pdK}Z*ahiKz;N0nCtS>Yj zdm+oaE0SN!UN%EuVq#JWQF5m%=@GDVZIn-#zqjdTL;V<5EFzb-e!HOhJ_OO0oruFn zLx9$brqEzA3o&lKj5T;|Y8F~_n*P7{f$lBPWi>ze*ewDbydkqJJ+09BR67uC8kxnC zrF3rYPp*n!wqStby!o>L?gkp5+z@F&FHnZOmA}8)gVGrzjPgmtxT!s4tVQ&y$j;PV z78516D+8{T|N6oPqG+3-oBa}i!PPyrU{QTrsC5$t8GN!?(bd~^iD3LojMH>i{oNcw zLgBoEF*H2%@j6Q&E#}Wp!KC7`KFs@o3zPc$we6YTjHI&r&Hi~=X^%d>piFs(^%?Qd z)R)t44!U%j!zWP?cmy1n#)U$=Qw0AJF*fGsI{tpmSF__V`Kn(E4nP#ibU|| zht$PGKWI@R?iaFI74A&e$$ z^a5NdL=KZy2+rcZhY}Z7?-(Q4xKWDzu(<>BS&Wr|y)ccLExwPV> z{mz?2k$kILRBqkI@L+mD5!|094^RMvV{$<}47Dul+o0PA)lv5=47VodA9MUL!OI_% zT6n;~i43VVtkrU|O@Xhw>oc)#})2a*NIjD4lT#v>Kh-G0#(i{FI z=*v)ji=moy;_HD1xVtAdt2eBn5X{F-wb-?L_&P!K%1%X|>+n};!L3dTX!k7d_trz6 z@)!g<-ylLm23u!XwD&oXPP@@xam1AL+90fv5Cl}-K7c6EAvcfP&McAsn4gp2MZXe@ zLL@O{Su>8DwewxxkI@!pQOgg@pz%Xw4r_V{rr{2yzbiAQnDMx#Umwn+BnZ=04Tet2 zKdr0}QMAc+mePW$4%WTf2~$crFoUX}nVDT*s}i*;%3}GN5j*nS<%2CU;s+R<8BP-! zQsfwYGs31*Lv2CM6v(8TC=}G4s`|5172eAcWL7@rpI1IENy4#MnB*jo@ntGV1~8;1 zYS}6!IbeI4wOr5`Hd76L`Ls-3l%<2ownl@)>m}Y`3>SN)Bvjdp@188C>!xo$#EVt% z)uAlPolHa;#Wxwr|C*+A_tmRcrYiNh1wS31PMDS;O;`xv7wRV9{P|OPTuEoWj2Np8 za8M@vU|KkwsF)K*vjJA;({JnZ25(R_I&RG87 z%@=nja8m^z++im)yb%(ol|R$B8RtQTc^@u*Ae;x-OrlcfVIFtl8qK^$rDIXjZSPn+ zmKsB=5d9o3VJS}$*V#%s{OQ?T{21JyF1BBPefcOuDSEa8a=}^LYc@LI$W1~@l`IL) zB$JZlTYFchkM>BMJjbiI$ef3YRv+buz(UPz@+lPojYOjo(?V^^F347&{ycOqQkIK{ z(C~Q5AqzZ?*O%KKVQq*ELP!c9bvvFa!GmP&Z#@K@fmMmoK{6&TCWhox7+7HnmJM9c zub?8^wab7|$WQPm+>%qo-JKuipDa|#wzM#0Vg#J*Z+pkIIPvp^*~ib{yq1^0`4Tb+ zVSQPIi;1LleR*tQ`hOd!m5=EY+E3Z31p_v6v^m6$GJK7j~jM54G3+$eVwd3E4y&+Od zIQB)()*o>@SNSE$cTyZ#5k-=HNnN*c{T0KmdS>YuL$tARZae_Up}4{d6Q!Yv|CQph zHMq6DU@H(LS_#PTu`i4OX3vKq%zrO+$WP0y#keu!F{00t0SFRzs>s2fu9r$?&1u-3 zpDu&p$fe1Ed^c$Sh zZi(Jfj4uli=}H}y#JilQBku*L$~e%uY~Ga%Z(zWl(sb2*t>BFPc*ZFXRirfI_wR>L zim~-X;sbye<^fXw<}Ys8cKeGfX$A;ICL7tADACMt}nD+M1fV$qcvP+dS>}~){h_m z60;DIea<|C=$@b}tVP;_Wh z#}A?cEV9cHpoo5a$xt*}7I2%fg|44_>43Kn9VnY*I|Q zi+NRawKg8uyR{N1k?x{41BJQkbJ3{jp01#+#U3NbcZyr|rOX@S^bv>V?!-gnw-hD}fsTVy+60t%cNdpNJUQk2>EUa)%MY}sy zAZ~B3;|3}LD<^bnBL9J%lMj*GM!?1$(tkhF9Z~;H;NL|YuC{a9(pmFb7APIN9~P75f(%&K^>lIhb7l~X z2EKjsh3)(7XftlJ&$s;^;=yY^67c*r-}~Bf)z9#cGPT-ec!mD0_YB@Dnqq)IDk1zf z3Ozdb4fqYo>mYssS0MC7es=;0xH=xX5VBb;o$@G=s)!o)Mj){x6Cr$nGblsj%4S-+_o$3X%vUgnyMun-nb|wCf%sMIDqdJL?5fPLPvGP`@>p#R%-E z`L;M z6xSOP#=hcS2x(K~E1-EUhcNP!5ux4eAdm$@RC;M?%`S5cIw@p4!i(Ic$$)WPSUNcD z1O8j6qbW}z*AKgbhY_x0zuP|v6h3+cfL<*aV6Gz^VBP{Pdo=QOHe$>wfu5>3A$LaOb)pQzq%M=Udl$E@?g-UmAk`Cl&f0L0BMUR>i?K@|g-zIPs30qkrq%@n??6$`A=H=xr=6=uDX(M*{kZ4vun-;>LvpHU76k6_Z zelj1yweV4x`uTI+`pctv_e_ zL!v2V=Dzr#Nv_sx?PwJ1@pw+J!M7RoBynvNHle|KQ@TDW#Zc*c=K+o-sI%r_zXjL{ z7lb`Koi4@|jeV1<9sr3=uOF^PySx~2i?WJ(3+&(Be^fNX+UB(pJNW*Ez{TvNjnYBc zFijWU6kGp^^glyGmTNg#FRT~D5jnyLceq)_lqfmoEU4tn4k!QL1Fl~j5Fel=uTptl z9!*5B^l+wkK*KyT-_j)y3iW-sHpNg_>8j#L=EU@@<7`t<6ax#eRp5HdpNO6%^8@-Oo1}B1$TFAo*knuH(eQ=##4*WH!6Cp*Ov1<)-lj z0`4`=a1+>kLBbw?vj2>EbL2gi!z-g8CuGZNuWEq~yGRW4*g>%?;SX)|u z_Sw|7dlvk*RI!Rq^4OK8#u(2Sd|gSB@wj`rD(9g9U0tojW!t#pDBj@TnCjc3nwJKt zZvG?daL%U*YXg=-cXJTdDfGdrXnAio>oC`W@`qkjAC2?x4aDQHx7b;Nt-5{iKg1RQ z!45f^LYBzePc2ZKjm*5 ze_dgN{7mM`il}Yo`DEH2{ykYdd--D25W4;}Hb#um93O8xYSItBTDDO-&0h*v(*CyG z@>zST6!4U$)5rIt zH;#E{EkB9s$?59qc6E2lD=6p$#eMp8>*CKTnx7EjY2NuO2*xCk^2Ot=RiUE=#4R*3 zp`tu^pwjh9XUf_s>GNkTeSOMHAN4kcZpFs=wuqeU>@N_^o|#EGUGI^a^Yu6Fq9nbM zkZ3q;%oi6I6jl`z-RwjrIoHX% zrK8E^Xrlp2HGY0scoizSlm$4Mn;2ZRa({YW_N|ptMyF_0b1J^nY=T|Jw=?a}!m1`T zUxmKDwyvzIO4yvJfVya9dwY4bNcXzb1A_lS|w4Uv|mbukeObd;}a9h zjO;8tS&*d9DUyix_rFU(K=9&<8=7&b4KExO`ucz}wx^6BQRH z2Iu*m*`|(@RCj|92* zYoNuHorPxb5*)h8$;r01wmUns!ZjLE#;J!#-yZ>Y|Yg7c6FgbEj=_c zGB_}h#+%W;X%DxbIRAa6kc|xsEU;he>QWxyGQ2HUd;3<)-F+I<#MqdWB*NzW$gIx& zQqswZYieq$Y7lYL6s@e7Q~BM}^76vo(uqP{iHt_{B_rdN({E2k%{oiy$w|=_xgKw+ z!=qwd{)uS!M3Y}kRYXMOL)ah@AqECU(L*+NQc_YKLSs|-ug&a3qk-^`S#}Y84P)Z9 wE*X5W{A;Tye9=@mEDXLj>QC_h^o{N}^C*{&*hQ_iZooehuVh8?g|xi?55?}ShyVZp literal 38232 zcmZtubyQUC`v(exSRf!RlF}e8-3mi@w+Kjgcc^qqcb6b7ok|Lb^w8Z5DKWqRb8epR z`+NU5>$sL{#$mJf>^rXOQ`>MAC21@S5)2d+6f9X8h#CsY16~vq)V!yU!6(ilck19p zz*SPmRo%hd)x+4?3`Nn{)zQ|$)z-@7mAjd@WprIoP@Ws#|3&>KR$_&MlGrN?d8gr-xxeV)Nj5e0b9Fgumd#4j zZV2m(;!(Tl(?x8aJh(mHrHl;SC)&4ouLvK|YD}PKjXnq>@jhbZMq{&Xn3J0muWz+MSir4b6whA{WX`BB`{v8WpN||Hz=xyKBWr65syNXszJjM2k(hl<7e(aGFkZA zBX$2~J%pC`zaQ|?*5HCSJxx^M(f5b;VaeKpUwz7HFJnRj-h?@IYwn|9DB47?C%#t} z?^dCEISrv7kv-`#;lvB)r-*$K+mH79R5c>vHj_U_LRtBFu@&CahY>{5OiULp@$4aa zDsr2y`$6)yWYQB*sQNy~W5;I9vhPDrgS&K+)%P7A{>vnoH;onPnl=jPy_i4hA=0;H z8j(hS9lX5}fJ6jYHZhk>)tzae`z5W)YhCPf|h;bLE4a!N73QVD$Ot!6|sp5{2z9*k2o zw0=?zt89HCgsHmL($exYSWs1NAS{{~B6UCJQB2^_H*sKsRPpMd+{EXf+6YFkifXbNUpyJR1~n zA^){Q$ZL9WQPIMpwxhV?Jsv4%Dp)CD@hXEu9)=F>@202_U(8T*y^+t~cIE9?1wbUJ z&kT+c)RO#8+`RNg3~p`-$KLIdF;a=tSDsWsj4f(MM(THwIiJn)GS5h#J+5qdaC$m| zK|Iw%d(K0h(Z;~L?0bsUd3RnVaQqW(*0CFF)}iy(**g=OZd28syy!k3t;n~S*!^5A z(_`6>uk#lMRYZP!dzK7s)X=8+c;P@Vwgt-R7r0X=!o9EX@!Jggj*J&XjAh~Sg6fgB z|FUO%@2<9m;R`N*(s?2UT(&lDn!pUi46%1+;w$lgvZ-ti0jt7kT$Z8c<3PNy6mt+` z$Ry==CiUVKXTlF53r-vzS0tyABY7nZ>v@OprGeeV!3L+!+bv57!}!kbZgD|DL1RF4 z)J$03rbx}KAAHg4uz9=b=HJk)WkIyFw*m{%db&;JYGH!XS`fa{hfs3&m8yVSW=%~^ z76ZndupnXw4BmE}=(Wy&4wJUcxb^e4a>FtDs*QK)i8+4sefjLCK6W*8Y7EL`iXb z0C)CtDo&{@WLdZ&M-bnv@) z_TEc!D{JeY90XkEe^NQbwpYKxD+=QkY{m0%C}J%}RZKaEAvRz^ZinHMcB^P;r$kGo z7O)YYS%}FHBnmSWne~iF`v@)g4+X}hYclmq)mP?ThfA*n;XhuwitX&SZ>3A|DG};_ z9w4*nt{=nFQIq@q*CM3A$BwnqUbz@EcI!aj{cBQ{Y zXvxy^UTyHFt1udX!o{KZ<-@2lBf+l*uBtYiV5$+>Ro{OD{Y{JZ=6?-n>=t|WL@5t_ zD077=M!Yk5G4UFg-;I0<#cngbRdiZJ;+U0WhK)^zxi=>?3h}1WkNxnMIeXFh`QlIT zZ_{|FXVtaP-LlcsIL9}oVGPXyv*GFw_?AqCiDJN!4g zRmCSa9fX+IE)?Of2YTp)x#^x8*df2GWX6H@SLw}FEK~lW%B&5AH^>G$jb!BJpk4b7@?AtazxXyTVhYd(jkdPz=QOIdBb1tQeB3qG z!ysLCjg6=(IZP)6pC3fcK&WxEeGUa)H4hkic<{xF-SMN$+qbgv@bHiY+?;T8bDyzp zUU;{&=u`(XS2lf4PbYyIdKexytz!!c3i5+(dP-i4lmGVLoTQe`&Gg-upLCrP=VyV& zxu0C;ZLBAH-kTDg_-z#ln5;RqpI%fKPbb>tk!K99$K)Q=dvL}2V@V*f)QT*1J|@6> zitFo>C~sDtpxMj&`GFg+1~qe)AG^WsIsewAy0WCrFc#m!TYY^}Qrl|OXD`@3Zv9ES z!q$DNilPVe4_DlpOOJbMaIyVqg7Nn5EnL}=JJ5J#a(cpR`&K3FZ@+0Ug@0DaI0<>= zYU??Dm)LFZw;0@D^0xf!sAiE#lELqUsO7KKlmK2QlWW zd`rmArcjvp_-})$z}wz*7w`5}UK!~5CCK%*z$*JW`!j$36^gz4i~@&MiAq!5v7t#Ba!iD(PgmT~cg+AlFlvVWARY_vb zscG5v(I>r{{2A5c!iWfry*>KqyYSEnWplEN?3aqGIXTiJBO{WniNU5~G=yi}SAMjZ$ zl8v3tF*hxFeGiOFYGCiUjFP7GO9ihi?Ax&v0eFLdg$aw2y7YVu%MThx}u4Jc-y{Xek3>MH%3V{%!wZYfX$8S zpuZdTrkD^Zk|#jg%=>*}{&v3DxZmkP^?HmSpG{TDPMq|_-B~1UM}7adAn4@e)3#RRZkQ~-x7e7uIrCP&IO>nZpM^jN;J!3 z{_J{ttB2QmklhH2eRQa8RBZA~HZ>Z{GUb`d2mM6DOPekvT%t=%=tUHjDDt(W2@-9! zsld``A&7iWN?ZF&KUdj_tY0)SI>3}VSS|T@wF+J+A5!_hH+#W6aWR5-4iCFHF!x}m zjba4FvLnGSa0PBLeLWUJu6nmu-0_#4EKHvGKcV-0qCc(gpmMc{_Ok&+CAt3JU&!a5 zM#!K&^oi5?NUof3`40}*hvcKY4is4XSpU0Ljn{JV&F9lviW1w%OaCVXuky#I0|FQu zeO$#>pZBKmW*x@{WW!-mJe!@DOfy<@*Bp-?R$d8>ttjCZtxnHm?tH?)xmFi2El+XO~Ux~m~Md8~-yCGu}yY2|yb)@5a|W~~CQAMLwMGn)hz z(Zq$}V?K6jT~x>t6ciGRJdu^U=#i0)j>ai?tF485w^@ab+#vho(DAtcS2id9;K!%! zVvY0Ns87hE?B-JixJU7?jO|)e_K*> zd=*y8m{sy{{uU1OVBfL*jY{i{sr)FTrfvYG&xo6`eP%$}mQvsR@$51I42@b@M{!wM zL~ZTA&qhX3c3{VHMnrAVzg7}^IU>(aYh#azW}8vFd>b<3fn5Y+Pm%br#!C_@RdDIs zVG>Fecqo6TFok+LirM}~4lVA{GW%e}H}Nw8y!Dhxa3(noeP&I>K{R42CBbN(_jTM` z0c<&&He^f6V8QcXNdE6QB57^y7ko>e~dxY&eqU%&=mu41-dx0b>;4A&~vDNpe^RU3X%FwC(!rH$wOH!g+?X9~NQCfw; zmPo> z|DgOvuoQZiltMfnXP7R@1{kL!S?GuA_=t!IlTeyIMzFnz>EeF)2dV3)@HUSXhu80J zL7oc;vrlX1;WR5aGF7OOlY50zW${3D63(IXfx17SuXo&fXX5n)7z%hy-0r&|qf_zZ z#L00$^|WlI;5eJMGroeh^NF$Vp}p%8;?+j!yDToR!Q7VgJj;n5Cdb<@J)2>3_#*t{ zwJXz8!rl8ahxOkw}xLaU$6+ULHX}|cDCWu8|-lOLsvaiS|?dG<5Fn8i`@JT(b zT|2tgEkaCLqdoe33$@pn>7kE??V9L#FQdhrry{~?w{a$Jq znz7P(SaxGDvrXgN_xz2LwADn9o(=Db-}W{`2o;NAOVH+!e&Kxe?{76VxcyGwzCFdm zd>lz0L);A%4HIrF#p57T$Ict-(bk@plv=w)Xkre+r47E6lrj`La*aDy5Th6}UImp# z(__lKE_GcxXLoEpb-vAOyIgZw@HsMMd4J>ftCFdYqO=OPK=OXY#3AankA;!8eb_xD zjELK-ZkS&Jb9XLcoO!qH)_%>!12&K7PphXF>AWI8K>EG3815oG4(S#F$Wb0i5|>n- ziC-Yupn+pTaAn{6^1wNdh53LJgCm8t`?kx4*8LW`^CXYpr2T@fW4ePm1C_|ip*SRD zqvUvQPH=Wgzc5Lr$I8m;@%_+=f_iO2kY?nY%vmZs7I<~8ef3lv~7Pf4HcT(a$`$;d-r4Q{#pYMOBJvqkizNf!Nv#FY2mpUj4miG&DLyRN6F6UA4n zG2GTVw~iRII^;kv&EC%GJwKd(6s3R}O3O>lIyEP^vi7WW(Gt5pqeA(B9;WuAH{_DN zlc1$FlKj2uRaJ}g&*VoEpnM?H0|*%N$Nx=fM|vV}J+A%@u}6?cFdDP64$m|w>gv8s zqT{Gv_uHTf>jenIkj>ZQ_6G_sI!XmkxbY+}7@UxgEQaFe*{wKDH)>HA7fFqLyejTv zk2H=t`N|4Jx?lFOPZ4&VcDcN4R192Fc2^coo*>=yq=~+Quw8d5$>nwQ=`;}3`hGx- zFPLfneh0a$Z>W5QhraFGM$2o$QGrh3^H55CJy&cgVq-G$s#E#fg%3j8v1{Au!((*w;tfYJq3fEE=W7ex5d5Yp@df-bI zD#HsZiFWw&9{#A*c-6IBZk1qLeDS1gdVVly{3}z2x99 z`1gZM`eTZDT;$dkJfayr%L|DFSRaTR8Z#?G}T0 zwWp|_;v#Ig$Ge|UK$ZMJ;CVj@e%)Vs=RRF9ML6jjXA5O@YPqj!KddQEC(WIGW>hRy zUX`q<3h!q^&c+@iPm?#E5LUcnN`y+>+1pG!tV$VW^$46_^f9eX%L!QJ@yzxi!XvsU z*M-E2rR|LMD>dQHk3peOIc^fO9gn%ZdquLRv|`9k+H$_Hv~)P&E#2=q6Xur6HhO{S zj=|s2yowx(;?qk(?PGnC5!L)GLwkPsV2D3zojugCd3|@}3V`in+LDySb5!#q={X#+p@r5z=?Vpw$RfNb>;kg)kHgE|N5}n(~%#~nZkBO*=jJenARMq?g=V_# z+zl;Pn^#3=3w!UckPM7!t+nxO;ZfF-dOydYYL4c9&D{9?z!2KSZh6u!N<%`BH<^SZ*4B9-_&wN zp8w15)rqGqeP^*V^BN+@G&$WQ>M3Tb#-j#itul%l?~N>Jl!46{ z&C?5rTX5jgZH)H|siLh&pN;^c)zbj&rd&L9Vdc9g(7sVDdhXSX4qq6`MOVV5x{o}{$xQ>Nex?dbqwG2|n>)OwVA!?$fxS1EHb zIYweOuLHAtJH3hgNwO9#MW9{wTUkpYTp|9P2i;dxY-)-}GLpu-i%Iu|tR>(Prv?B7 zJ#S&Jfi;f4XMY{as&0ayV5#6a>O@k+$#~9?7Rspx{?uuCIFf)IxE_$am#8a8 ze1tpn?P)!?9%wk|`!%7~;AvNRZTL~r>UHon35w6+`O}>9 zf;za(1O##GioA=JSf(te^*(cYSyESLoI5laM(*BY-7ho-&<1GRPR#}i>D&Scv}>?b zSNvho9lON}_g=wCa9dygoE{T$Q+a~7Lp=r!Ju-qadsZ7x6TwatS!2@c{8q{qVqTt>P%3Znu%koc!kcvTHx=}~pEZ;Je9)aQX^@hVhcE2)30A>uJm(w;Zs6_nM6{B_@xALU)M>&N_uAJlMw2}gf z^Ra6C*~6VCIMoAfqi~1S`qXwGBS7pLke`AAjuX(Q3tj5Cd1Hi8lY68-RCF5Ov%a1= z&xy9aHUER81rtupg{n^aaK&&PT_di0QlQr0>m_gGr>Mx}#>&pl;J(30<5Rw@4CEfX zyUrhAPdp%uH6BR~XEV7S)ww6wfJKGPklI5`A}bu*;Yxj3c1d>lA}5JAk4<%(6*-xB z+T!Trw10j03e2lNslZ*6aWL~6uFHo`Zv+now=Z44e9oCpaL3_KrWZyeduDYp|Mta& zSFSH<2K{g4ts53Gr+tnHgnHs}G2B+%TkkIzrY8+}0*Z`nCrwu4ax@#ew1g37=AoZz zFZK;~o{jx)pXX`6Ir}XZbq&zm{X|X{;e$3T;$dS66EZp3{9@5V)TUCP zDJ~7Cy7s5<-lUU`QNpLa{hx@PZe2tW(|ljRkYdotmF6dEW<@>Nl)oPsM!8t4@l%8t zj_$FaZ{ux_YQ!O)9I3yD=nNdA;b*>uG;K6#L)8r`&j-h!E)o({-jM8vCK zWbnVZ__6E!+&qeZu1Q3qn0)P8K72m<0UfOd7|ng{Bu?2u9tbBUJ@k7ej-0|nDeMds zvFqpF3R-FO&t)2r4NBJkq#GjTf_}>Ltb> zXY{QM)FOUcEsyx8+Tjaqo;`S|(ITFw)Y96@shGf|z9;RQjedcFFCLW)p;nT2cy<+U z8OtsQg(wFW^k=`_pMQcWV4cvy>I;pP`LkH@GcGB45_T^aH)$9Al>w})Ckz;&>;L02 zzv%<0vHG3pZIS7s#j?|Gd}E+OIquP8H4OpUWteiCmF*IsUbrGBjm%os?(eBo!xN9v zQB=fo***+`Dty~)HSyFcmw`@u3RCQ9T@{GtrJ6f;4~ou`_V^YGdeT# zJCUh-nX>FZTUmT#7*bV*+YIXPehcidz@<`EK%U6R|B9{?v3TUUo#nyE%)I^+?fFKi z*bNm$EW`S``?4RrBd_#sDFEr$_THhRi&Zf>xaK40U`IL|Y)*InUGlZd z@w>QpAxRwd8-gr_RSl_bv<<_NeK1ZvZIqS7BwUd_9cqg^9E*IS_3(VXx}9fBz?cQL zg~-K>=||G3@RO=~w?{QP3II)M4W%@y=^6}O-MSDNJQgZ@$KS=8olsrLVO|K%R{al4__%AZu zB8ZDp!=%3dR*rHg9ZSFV2DE!OSe)vx9nR(}N(r1C>dLA8j!d}r-06te2)5AvXv!qY zpA5d|{Z5{{MJfOMt~e{!o>+YFKe-Alq?erKEo+Zn;S6Qq3n$2bix&DYA5xxW5*K?1jh6x78b&c8KF9+QUmQrG18{z@WLXxE5S4Y7uWX; zU`)mHM!#mPYienY&(5Zu)U+OT2xZu}FijLInhwO%8Tg$~k-1H(3IoghPo{ti0qzeyuRs?WSeE-Rk`gex9O=n3c zDtf)EVjYp*m4#>4)z#%DN^t1(0S|;uUG)(+)L(gSK4l&5GxOn#o7Co!i!3`_^r-Fh z`mX&Ps{dm`Nr=;7NtlSu;P=&bj#$2nU<^G0Myy&;K{q$n=XYXxDi7zCl$ftb^pDfF zzD}szTFujswPj{sWQzw08e^Vkh7~G{-Nwt%Dskw@`+R!u@y|Cg+jeB2pE5v+7SCe5 zu+-IEDgtM=-bs3Qu>{ZS@(X_ExHPtZk^*T$9&GHLH*fM(z8y7yn$%sW0DsRAoi%& zx|kUn4;4gKHX1rPt=!8!Of5|#H@h*Qo+|8hei5RlxrCnq0N#Cwz#lQc?A-U#LPblf zk1CX`Yt|x1WQD)qsoJjf2nPJb(ed#v$rpwYAZrs6654j&g4zJprFoCbvvuj~y5vN; zggE*YaLd!QKO>U2q#;6w=g2fF&6@f57H0lMj(a zlBg=k!E9mS{V(R-Ep3=92qA1KpoqRaI1ovDR$?pEeB(nvLLC0b*pa>JB7s5xj zhdgZ+6?Ol9&o8X`sbi8JKN*(4i(~@QFGLWecOV7025fww$gsKd=LfZ4ZNb3EuY(pB zv*$$zl2{v%;ujD$E$H;5ykE4;_mYx~m>BFtwaMw&!~eD4TDkKo)Kp%@i%`5>pvgJM zd1p;dO|71LOP?>?x93`GE33X*yh~qyAY(+_qv?S=9sscR|BZFh-^-W~t=r|G!Vamz ziKQj5)A}}@fuQ@FF$cZ+KIcu9q7e4`P{bkQ@pm#n^1mTUNb^`{XO-| z$x^k@B)rQZN=8KY(OB^_GX^-4E4k|D>G(5R-r1gozVI_L%tk@aPeL_-;YuDWnl!N#xZVqN>aA2$ zrF;2k^9FyLfeEy3PvO50Ve3p%xdjDZ9Qgs*H1GlgqCPH({C$>DU`q<0cUbd3 zoc$cE`5OF@@?#Dr0MazhOA#ve(w0Uca=R zSJ4;QR`iNfk>Gyx$7}5}z~bpz&2E%toCJFCXf76B>yG`TF5xxcXJK%4OM^B zaka%v;df>%irAlMGnBZW7CmMy7KS*PmD8(l68ZG@0hl-w_OW=pd|z zvC&8uc)u#B1Y#uACkAmzsm5ierWJD7&>aI7U)-YmK+`4Y`Q|u&ay&J3LG%7>s~%5+ zT3J!ieFWb=_%99@Qs;Z+ymrF>zDgVH06jFAjX8lp`Z!3E?0TLt<@aX>zAwTxG?_ox zZA0R&ox+*bT!T~O0#9$>$wD{KsX{hRy=HBHu%d9#tDJIh3g@XXEG{mp86|{NmKGtD zQ^rrfpMr!0?`w+gY>_8Ee+9vMT*2U}X9Y{gL?$UobH8c*Z!fk)Vw2fWVF&#SK^<9> zX$L}~sQel`(wvddp-q!HZXl+MKUK{y{AsY!#jS|Vzw*I${x1T`@}`3&h`12wG<5Pr z2{JvA_qymU%;x^Md>q8^f6#Dah+S+uPMTt)v?QC+oiRVi&E0)`YAV>6cyf9O6z6sw z7OiTV{|+rw`TnA3ronZ0@HTJ3UOBD+w?Nz`s(1N=|J}i~7%=Gc3a`&&TP)P?+LHS|rkU$V<8y!0*C1F)$6Lym=Xn$$UYVthSKZ1#y{J^nrwfM5`bO9IhI2zpV!<*F3(Ak#>BzEci2_-lpmtQ{z z*9+dy3d$%HI#`k;+QT(+srpi^groUf%MpI{O7eA1Bwdj_sWA$Joa3XBY0-fOQ=- z4WlD#xF116Q1eV3)_nG{^uCz=vbGJtiS5^|F%eL?tkAu``P};AJmZ(i^`cxBq8aC& zMJy&YUwk^98JUGr-mV;3+T|xkLsw3O6<;}`i-^3y3%@b)??hGQh>kAZY<;80WzSTv zCyPZ}l1J8`S6dtZ?_bwhm26xoBh|zIb$3itENdG+Y1o;Is$NFVx{%3y28xQ-1?kOQ z0Lnnu+6M9+(~~0G!J(1f?bb^8m=k6JYLOO7aF)l50va9@8jy)in1mG)lkN@zhd#e5 z($>#UL`0-<-Tf%qm<1-Up;pK1l*zNR*Mg4HZTa)4(`0n~STiZ<_Hhb~#hhsbHEJpsRSF)qp6d z=Kd(;Q?U4e$*9#t@jCy6r9%LAC-Ug>cG{Gf9ED#AEAF=}gc=zNokF?vZQOMA@80R# zZbdKBx)9EvJDJCZkmyJ z#1u(?*`7d!hx*nk+J95>rg7n|?TFt~LmwIf&-WSxBOu-UCt2Tqv5`d`rq{J5{oyp6;8vRr0mDLi^~7`0M1)!H@uokpM>K*0AjCVI;)GK9^R*48~v zWS@V@ftHTp?^jxr7P!DJs(f5%`U>x5wPJg1{C85|xyx?K_R}Is!qL08Pgmgx?dGZI z_44rb@_|vB*Uf&sgOe|$nW9HLuyFpes;F}J&cLOkL_qOdzt2yCDDUgRb2@P5LAFc6 zGkHs`BC;o7On(78_fd=jLH8c_h#al^17}@|>@;K7^^=cA(R2|EWQTd}?c_xS=jR}K zGVTKMEIFcIW`ArGY+lFDC~#~^Q?B_RktZg2IlQn-zqHrW$^8c56hZ8(1GeV}+(6fv z*l4Ne?_kb#e?`fYqK)e+E(9QVg;F-wHn8KXj~*VXEwnXh9}IE=(kGliR@v{LYIXr` zZ*jf(KzuJZFK=$`K>WYIMdM`F-3!6c!P7lVAUyg)bsy6D@Q2N#eS!ySoVWVzX-lJhZ!sRj7rR5icE;%W?)R@ROx9S z+ndrD86rHa8{W;5+C`5VA%Gl6OG`6#9X^7e+OWW|PmN&oHoD0*mH#eJ~NspO2?g+I=pgm86 zfnvmzxDSJ@B*N2|LQlDTtVo7d!N*76!EbmHSDKL-4&vZ(E* zBycRHnz-+caQ1d}dGyYXCrU*E&D*RjWPaJ+{9DVn&IR?K)Ua!2-UW4w4PDI@UonX; zpL+_kqYx$6qmS(jv=rCC8#RxFjYfd~Va`V?17>l0JzAg>O*g}3Q6C{>tcwT)F zZRHSznK)LSh7cz}_rKx#}{`mP5 zYJmXCwAqJW`q$t_;c8C)0XSbQhW-N{HK zaUNsP-@n*EfZ|YeAwK6xudQ7+H+WQ(7(H}O1*Y4tQQ)tJw>MjE{ke@+xz3+|n~JWk z!tyNc{LITC-1hJQCT0W^Az=yrQ-d%of9TPllvOyg=7@y3YI;6k;PfH*(e|a^$F1|F z$Z3S-Tm^Navt#r7{-aKJjY{o3K%~yXA>V}8gc6ba`|rNnq?}P!?0U3D^m6EF6R<$i zBGN5cBLC%NMI#$B5E$Wvxmb^4=)Et;Aj*kM-@<=7kwFbySYOS0P`_ZC&S)~o*><&+ z?0xC#<`v!#KlJ$i399)ehG%#L{c&v1=5@KpU_VtF`MNpDnPrb8HkI)h_jz zZ{e6>w*;!E-j^M-PJtK82aPBLR9%T0TjWi97_ORxt3Lwt5-%ZlFQsUTuW;3i8Mj83 zu`3uhZ*(RMGEZyd+*EYEo-Qt?;Dq~%NeIh-E1P>(B0g9(Gr#@s9XTvCo%HB|L~^!IFntnGR|`YR+Z-nj&_(WI@6 zRBPSYjfH%wKcU}A?;>1?U5Tg~itMr(cPCRqH@Ifd(Ej#THC&u?SQ(5?VX-+{ zSy_jK=G3oAXr;VlFFJAGv_O^wYynwal}=>1q(J%t`fEdq=~)&06V-@ax>2r%Fx

=7P$v=PTOZ zd;7al83uF`MRgUEfHm}LZhe5YW=s$~MDjv7yM$x77fnhsnMIbKo`+|k`QJyp<9B^b z1&P_&r%svI#&&nv3hzTmx+sP_xV~5&biw>AXJR8EN_|enMT#qRykmkg{5M~wuxbj6 zit~V$ag0C%0V4u^+a-SqdL|-AJKdMhuYG&G9i9Qy5XTjua$NWr^gR_k7Y~V|G|B^I zT_W^dL1BAOVdOhl66|4JNRhmcHv6CbWsZ^H{?nYO?Ke?H8kz@@R&1nNm@(?;nD4#J zbYYm^?VmU=`@ELTn>>c~)>Y;etgG7kxF1cMA0gHCB^B=fO=huGJtC6)n>%qwSvgzb zteR%*J1ui`v23I9sAYPSBEHXXeb|vmm5l0O**A1LUI($vIYA8{{kg^VdSjESX8Q0f zcP2+yYNN!6(SY2hAL?UMW*>;tOVtt2nVAzYEcn%*CnX__)0fY(`5IwWnYAzF1jcs8 zE`9m7G%O10!`CN`iH8N=FaL6)w-5%iMp^}5T4Kd73-9gtVrCb)UM}l{fO!flubnRi z8*>-9vDVD|>M=oZY2@=R$*flEXu>4}y3TvIo0fdZQHtDvGQO)Pp~#x$v5-+i#IOuT zQ3lvw(+h7mahKn9=iWpbXOqvU5T%# zIFLHdC{AWS%IrXar6Hh?+Pp&1q~_KsQ{c;?dRb&y*;UhGdyZhzls+WuCauZfNL{o3 zxm^9$&20={G>DH^fSeLNPAajFNjTY+FGL9;YFE`MJ%PyixB1*(;WCO+#ck=4q_Qvh%q#oowG<97pJ*XA|h*p9E7te*Dtl!li7 zlSV{6s^MpKq!MjI@psrBRTb=X5wyPSh98d3&7NrfNU^7(0ZH8+!gnA$_*;%Cojf#X zS@{)CF5ta0xTs*KTY?}omVh%&UruFZXP(9r&}R2rY(5vs6HXM*S{{fqMe6LUczgS& zoRI0Y`oP?3Vf(%~LxXJW_j|X;B=mtq#o`I`G%lSa zgWlbPup=}P|A&jQ2)YdB4|BtjOaTY92pwCY{4sS|T6g*h?gX_gOT!RoUO5kMjC!z{ zU8)H6GWlETbDW1Dp23f+RAyu*HNa_mJv0|# z!24C>^{4ee4=4s|Rg1ra2Np|r)P%KO#>|B`C^p-!!zZ-=zvK#Vre~kA3-?F!z3+cv z@)+o(Vdy3w4L`c1`I9J=@>7g(y^I}e`CM5kRxmj_Pg__V(bCE;UHX@-DuV@E zsib`0f>=s@&Z=I6EWAevAjJqMp@5->Fwi}L)C8n*nV|+d5X&9|e!aT>zT^Kcke_GF z#L?Cx1+%vG@g#j;%s7>Bo~pA?ES_gG+ENDhwy$#s!BxDx(X5{JQ;uQD?yzReurqoI zW_;pq%O02?|B$QJn>;`kA+T}pA8d(cLt1Rhgw$Ce7*JjQP&B8rkx*jytEQ@?2@nfG zZm8$HGgj4}Z@+_duT}c3+x25B@hFY|Q(Z!IamvD^l<9CTMY_q`YYzTQtCnF^!BH^_ z;v6q+>)cJ#S!uN$>=s+2KYfSKEJ)d+7*sZLeO*{0#B z<)fZSv*Q+X5ppoxD+q>?Sytmh`QfBwF zz}82?*)XeaFSLKdx>O4QPG|2nD1CChy;6V7<4)vjYn$o3@_jx};peL-!s0-7;^84Z zi%E?BK;amqhL8Xru-bbz&<8CCuG7&o|Ig-6kfCi_i(uvlc3m^#u(f$3UcOfJ0vLDe zAi}#1o-|$oPaPYN7s_V3j?1#>#_Lays+qD~KLBks_sxyw=-aDDou46FG3DZz{eOi< zHd~iP?lTUakXVmQZ$ZKA;`UoBAR&#l_^NzPSfC;W{^y)^_SvKjYM+!2VNW z(d92z+PZXbOFe~G$0?J#oKd~)S#i=@zcU4^tQtPdC;YgmQXM=5=6U<{h|HDmGbVPV z*AacDl0$xp5Ap!$Vox4?659}oNxVBa36`+{$|5Zuh}jtp5MoQ97U%!JlLfO&k6sx3 z1SV!`yg9=t2q5xI8+6MuWc8pkWTO1k(zomFKpYNr1wRu&-khG2Uw=DYbeCT~Qy0Wg zVNPE6+CvA=ks3Cw^fZ|hKTcrSZh_f@?I!`lsH@!fXzi+P$ZPc>ZD~aYjd<_@I^G`K zPO)|(5(ZJ~uH~i2X?oa+^v0xVw$-tDKDJ{F1_F(@oJ`I+w)i_Bgx%aJAJU`!;8r4@ z5PEIB4F12E3P0%9z3P&N5r>_vVH z^A4SgVAr2+4Z~W8!T&8V{od!~=5%D6Yom=*3_;**8C9(KVrx5x=oK}UmUHt`Uj7|(jjOagGq(S92S@q|s1~^e>ymo6MkiGZ&8mG?ssL9NJO%IDV+p zuS3YO)o7?DaJuWj-|wy3gpcx(Ox!1E*>b>aXXi)1uVC+*1;$-)4$!TW#BRrBmQ;$P907{?d9CgvnMBQ72VFE0K=}Hi;nWeC#8KENkQ&fftW}0KLna>-59-XgYH(e zeI(t{|7RrQOrBpIKAbJ$^Yg%E>(46K*z_dPYo}LI1PMc$nVN@#>q-?2!@jxh91Dl} zy-Yvv^BI&w?}1YcvPd)FS^WD{;&0Q1Lj)7E5UvWN*?H?Np>Xz#aEQMGcZ)NFefK41 z6U@>}E8;>re{KyQN2f`lKAh8#S*`z8HSwMtYJ0gqz0?cYpSSw8p_@Kq*rKt>eJyFGvghu>p#Nu&7c5h0<4u`Vf^eXZTY z|A(=&j;eBR-#o_vgAhlm=-Oq?JZMx=RJ=kZw?r?gnY;25FE6=@RMKb8pZ4 z&irQnnzI(`ESCa1p8b69xUSE22leeS9W~CW$0HstuIsR$9UYC<2qRN$q+0qYNGJ1G z{&BDQmG$6ubab@6W2WBshj%{iISV@1U*{dZi|TD!u)eiLtgLT95V)~X`dZ}e^Q{_z zi}QtiKZXtpHY?U^ZGozPZlhkdVZN^5=5iMU?{A`IrE`U}+v&6_L7h?|XG z=JU7a9p{}Rh8eo3JGo-#kM-m#VYow3p^)6dg>R5Bhf?+r)+d*zA5<_&2jC1gY8vKm z%NEdEwN^%1RzQR^47g^Zcjs@@9ucGDt86i4^Xgk3qJU4)YYxuP#>a1!c^ffutR^4i9Rhxg8<>;6Zr`eB5trk9wNgXUD4VS#*kinz&Y!xO9*FNFB%G`=X^txUeC ziT}mqTtB|(h`=u{-ahp2P^2Lhi8Hi~ey(b+aqAIF$*@iKHfwmlz& zt=c{oAY0p3%eSc|>yI1x6UH7t|Mgktea%>GOtRjM{5w6g;r^i6^;t5dRZQW@AHR5s zAbA+}`!wn6tZJrQyk_Zu+brE82vCHwV=`fVy3!Mim7A(@XoCU-fYEo;_>VMO%gu%* zwe?gjN?Jm{+AS3D4V$2R#<)InzVpWF+e7Hv-q&|o`_+FWnCjm7ydLy4`p$~GaM8*E5z2A2cMDLqk z)Q@Y%7k~A{V;T2*u12b0d%sIEXUpT88VBm=0(DX96w{_GIa}}nh8{-_(nf}<@tFL^ zJEV9r`l`F8E^MMVSs*sAsKNC~LEloC2&j;@%7+!q$f{Oiv{ZC;`+;54ezsYJ^@K8f z9!ic^J3nhqF$Ibi&&i~xtByM^f0k7XU*2e0qAflqwJ)eC3?A`U9v%GTj+?+=<_+Ur zrCgGNO@B$O=1N}hJU(R@O<3phkTv^iOdqN$;dZV?UvVvCk*}ZnOc6UnJe>~SEleMd zV72vGN$(*~4+r1OsF3N)$8V2=sBvoN`Cbr6N{u;Js6jKWqU*_$dHO&z@#~#x5);Om z882GW0faT8+i13B@~xO07gBNXSN54x@Mvb+3p9kF3BvvfDz_w?_J>G#0ceq~PC7(v zTd}3k*IwI!yl{AMuqjee_%?OW3Lf*zrU&ZU@JYr1qza4EPa8B65|Si9V!-o9pnJDg z9g*)B2wB$z8-6JsfoFXm^LTKmgdla-ljr9ir+Y*6$K3Z#8Ldlpa5~Zw3SDbNYy=N0 zYZAR2ldPU0%U6@jd7*qN`>Af0&R=ri$)?Oh^;c#(&rDXm;cb+*J$qx+r&K!hS>EZ` zh#JRjabNJ=Ys0xbS#x~hxovnYVBs4yhX`X9QH^wVXI0IQ{+Ly>6ZOJ1a>3Rj&aqAOg)c$7N4Uji7qT!u$=WM*(w&Gt3=0s{WKZ#*3Y?Td= zS|=^>P2~M?=06-!9n!RG!Qh2$YC9^CMHAE=px-lYXu;F(z3Ugt?r~NSXN>0ANL%rN zp>5kU0EPwjjx4RajhF?==p^q+zAvQ0&I~iNhB<5V*y=-Uf?COT{JZyNo-=N<;qE5u z&=Fq8CO^-;*E5w=Sy{Dz`nGws_TjLF_$CMJETJrEtK>y#;)*r4WW3eIz}WH<{Ry=# zp(jGLJQVY^+VDrlZ9mmr??7>Vb({blJA|>63}yJ|jEslS5*hNS;mm)?4@}@R!Q`E> zS8X?V3#z`SRSX#~i(mbfZmJrJ2J4yU+wg7{&G{Q)2)+6A(|F#?xgJ4t|6BB{J%aMF z>u;pXd6c_h)FZgKe;qdLs=A(U$IQ(OT<_Y)UgxP4N;Lg5GP_N1zj^*P45Na_s-||` z0$&rz^Yv@;lN32T3h$g0r!+C)%S_U~;}rR^q3bf5*aR;*`530k^qL*0!9S_95z zpU_(~?*^QRd`qr@)It&q`jQ9JJB>reywTBq3;T5wv2u(z;REU{IDj3rEl+Px#C8@$ zOGu=e`aLV!(9K<$FiM5k;|~Coc$Cz6b0!uHsi8?;`ZN||np{u*l3`|gxe#r7_TA17 z)A~*WdWNW}4yv=d#|;vaV`ZKCXS+K;#Zq~Rh4bbZzc!<_EuE|AUga&gKhvO*3V>22 zT?=KCZy44IEla0PQwi~g>Pxn1Lt<(!TU_544sQ7k^f-qE1`fMr4G~y}j5G?RWYM!C zWOnc53{_Z6PQ>ZnYg^rSj^j4()AtL1v95*y3Ha7#QLOb!^a^O#asy-@Uq)i#YmT$= z<@^)7iIJPPYCymg%b68uUxC_TGd$yg348QK$3{7qQ{*}bxh8&lT=q3#1E@58+les` z;X+tPkCrYdEG+CP-qsLnPps>cptl!byVz;UJmnXj6Vu>9b#RsPAoTUPl7pdmuoUPj z*fAez;n9WD4`?PO<}byGv3RJ+9dPF69!cdmzA{>{LYUJ>!+tzIHWKvL<{D&g4$EHwp(YkM3&&uw?De+vzz zlhQufJe&0IHhckdPA;P9l|Wqfk{A z4Hm<|2%*N&;;{P_sSy?;j`yjDUW$BAiaf^AkRp1XK$6OLXu?e^_a1*m*2pTd+;%&^ z%hzu|HJzHCzjX`)mCw)7r9)7RHrfT);(rjr3SoV#E_SG}NCs9OP>#1(j%St~NS0%Q zWWjQv*+$LkYYSUKr)5+Z@ga7iudiXj2pqE+utXRIy~mG?XCVF5pSG-Gb>!0kMN%st zE==|6FJaXM_Qn%0|kPTebzXEw)88(Jz$8D?wvzFALaSvsVb*%;PEGt_r-sg8|_ zAS}olobljCzNfYxHzrKCH@6q3+39y)L?+x1Tb0Pob)>^N#V(n6zZ@}7op|zb@Ec}< zpDu=BLaK_g4ZQPA9?!<2e@q+^+B@l$Psw0>Rnu9qUuFyKlh1vhE(cC4m7cmRg=DoK zm*y(6BBB(n#b3X5s=bh>Aw^&Xh?lB5*$z-U&6P_DHee+uV}%#22B}amGGX;HPecdm~Aqn?etqWH%zU;;J!a$PTy68Qm^L%_UX6XpekI?I(Jl%^2*@6DupR*4FvmI_sl;DCc^2 zcZ)%Psj)&TuQ6EzC!b%>p<3e-iC{_x?Ay$rU_h<=kp2OwZTYjDuDQN85Tnv!`RS8nS(jNb1*2lul1LPK= z^A^1lRu5__|fTJgfiWTBAsm8J_WO=_m~q z4^8jk7|}^l{heJZtTde4Nu?b6eq<8MBg25&Q{4jnmWpgi8=h7ve1-ma=$HEZE7P7% z*P2d1G{4QB>+ZGhdC||~fBC%}GltH;zO5^s!D!)dR*dgL)m9_t>wS9e$31!^CKxbt zc&a!c0V9PcrE`kkzW*8>YHTo`Du0;n>B;UnQ5iBvMxcrm=+bmo?Gbi+opQ3tM@2I; zbGf?i&A3xFOuwbIU$SgHo~r6p4lJPwRnalkd0N<$22~#nx?kHb+q=JsqN-UPna6Hl zmdy`=Azz;>OBkKbKYP~Hk+?0U1DDvjcc*m)mim7(bnTkdV@vV=;m<41x0F0g$^%6) za)cY%$2%9%$1|-zNIRM#mzgH}>3lLP=cG+hS@W2No1wdsJe=HlksVf&^eR4S&pi(M z)a{*|u&Vo3T#*IC#zv-+dKI37!yydI{Cf_KF-`1oLsFttuk#mR=$GvNn7u+TnZT}} zMklCeDnTz-gN@bD9&-@1Qg4_JzY|3HX!d^UI|44aP2vTiETTnpuW3=Ml^lU_7 zp*hr%J}D_dFc*EIIIs(UdRJJeHT1X&vkF8gnqgag&&{FY>}Uv~B{885Xywt^G%n`} zkPN$~{pXK%oDHFzxwq+`TNZAY*ljQ6pklENmu?+0D6Uk6$DFRIxmR~0$kDv#-gyl7A9-q9+R(E0;)YbyKh;TRwdkSaH|p%25H3yI z3wvRlg@v+5y*AhZN$5|Q9jSG6yw)#0LpyHfxwxPSxFA*!rA7Xq?+F4pjj+f}yaUkCA8f*A{0X5=w zlI6gcyv;Mu+90~Nr2{B|-u?bP_qoFS$&V;GU%AHu2oP*dI=OMVGL}sI10umC$HrUK z#oHKABDYrZKJ2rqdIivtW>Cfd>$^s(;&ZOJ!=(utMeJ|~RH(oQIuu=FC7yNpkIWnK zR2W7^Z+u@mRU9LXUM?TGw0F>v;Nb6c=8CDf9#hfczsT9AxOa}MX>Rbn9Lt1C^p(bR z#M_%H^!C?b2k%_380lUsOG}mGQ;@YP#n+z@_lvUp2zpXU$`aM70|`nKSSl?ZBhsy0 z6*f_Z)|AC5=UOV!ig-p`?=0*Myh{yPJ7?j(oL+k7As^nlRITSunqKfAE7P}C!LE7p zk>m60|26skluL-J;TFpYZ_RAw8_tZJaDS$~+Zbfafu2~aEsk}j@DCMk1~YOyB2gM? zRZ3n?wfbEvBY$>Oh1(@iK~>FB7#gtalCp9KcJ2+eP`biGQ1ewb?-7USm-GG8l&rKx zV~ca0a!06nWw~5ADupf{$aEDDIbO3M7cKqdvUu@6_AG(2)bg6Tb|4~`iET=~aKw%= z&p+u%=(`ExzU)_NUZfw`s5_347*)nXR%JQ3>{g1a=r3=J#7>4Rd}>nVGnGSbm~#R4 zBfY|VY~87IhgCyNCA@0l;_BJ$8!R^o*e)Z_sz6IIpPsjwz-6NJa;)mz<*kpd#rX@z zV-FK<2k&G?Wb{{Bg8vaEPFM#g@dGHf`nBJ|#wFtJlQZ_m0=F(sae5VnGdI5_%IZ^l zGSfAw2x@=OMW?3jey`+}J9iG}8gn!w z<#lznZj5$OeSxyVS1odeGCHI?a_l};6sYwL$}`(xw7~f6gd32 zJyS4r@18XpCM>{M+;{P5LGUgnfqps z?C9T4`8}-vaXWG-V;^BiiU~Fd7#TJ8xhARbK)vT%$9nJNdRHr*yyb_|_YXh>3rz$6 z?^hi)513+LBeQqv4thL1fu!3KXiPSYjBMY&m6B~@&37J@X@YbcekBZ$7Dv_fb~b4f zb@@X%lSOH`Vb=}n2jho9aTPq)NpGOFN1HJr&|BKCODZw24jgbA-tc+6BZEkw$z_m04rKO+_+y#%q25BR>DO+ghn@dARWacgvG=4nly`LbWW6zC`qMhgarpPOv|LODd!^9L z7SsOH;Yu0iO2itfP$;ur18^b!TEFGsuADf0){b_v(}=cP@1zgr#?1|X&tq$SKhjW^ z0loBI?XO3EAEJdy+9{D3s+M+5C#8;f31%L1f-q}10u?kSKYnE*-4Wsp@65@2ICByW zKC5xX=(7ZUCRRGvp8?`w0wojS=s0&Ae$32-m?apLddUX@kD6VQ2FFHIGva280Zqxn z0O@6BW^*iG*IL=JHK-P7yd4kln7X*4IwctY0pQ4;w@wY;!dFv~@0#-V_BMepCRtTEHiVAf(BlM4AZdZ z%dvMd*$rVos(F8~wk3$`d^h8pO_JHf(ODa2{xZ@X?<^QPz6sAEptp2S@EE;4g2uEl zwe@W+$XR!5wak&OnY0tRVenGsPQ1SVNuWsUNw5@HUV<&$9t7-5nY;5o`noj``-<7> z>G1T<4=%uTkk7!HlS+Y+f`LdHdzZR|NYfqeR1~Vc+&99HHS!uxl%6lKtFZzCzvM<3yqF+J)sBZwT zO_GtfKS0Qjr}y>Za&}kl&o~IM3hfi5y8j-Eo0X-I$V~Gg@HTXP3R`WDKCYai_;*MM zTWLXl$47m3Vb@;_e>BT9+_oL=+|%&vVuA-q8!j#9f5okTD05A)nFfcSq_UN(xzg=? z{Jz!o{vl+`XCU|N8E2&>$TcL{UTT11BjAT7SYB?J6qV^t$@89TZP+e69}i9(4?w=- z>=+o&-Y=6enT4_bFtgNo%0<|=?Z{~sF)}VEK7^|v%J0~2Q2u)FFsWi_bQGwE1y90P zV*m4vKP1!)t88P9;bCX%9~{$_tp75#TT><~xS#C%bTd={WX^H3L$x9<6?fU&;ijab zq0u#x0|(F_7@*8M4!evu0*o2wGi&n@btGY(uJGjyS+Pm4ArQ5f(i%_=UqszA=x3?j z(%iZy9x$v4cA0A^I$F;<;Ci{d@Yhd=H|)AwcZI137XqsQIK~;qqJ|?t+~Ab=_;`;&IJIbkBAD^Cr&&Mnou zyoP?=h^|b>U{a-SKv-TsvJdcGdTZZG8h3r^F=C8tkT(DVR6jCLu9cOQHcXi)dgwZF zEFUo&Xx17-4nK7WEa_hh8TpB?{Ew-uYdXt8BtW+v?u7(&ED zFQok+AiDz)2q~pF!4>fEpY7vSPYd#6gOAd58hVjUyI4wKphjM&5m(%l>P!5Yxr2uE|W=oILGYh|U4KM`8vvrq&B$BhzA$_-;cN?9as5X3| zFF=xK+Q;=C&@-~@KGGdoLGY$Fi@k5!s}(*U#O@X-_}i)0p^Y4x zoctFV!;#T|yvlg6abCg2*#vBiWL^aB&z+}Kyi;=hmQJZo!uzL7RU6v(+r^!6aq?K9 zL>F`kgg3aHGMo+WrcEa)rBSWMJ~*|z66aoe6mZ^|dZDasbJZOS+h1(XiT9r=hg01* zNM7RmL8`ZGXmm}`6Y(-&bR5=NB01py6bUYP-%cpAt?pfa^w=J;P-L%nVe-5hZTrC6 zT@xpr`h_0AMv#+9?&1bxNw7j@SfmA`^yn=Ny&_oq9jGq_(pvV$-# zJ%QQ>-nOE@#!np`ioZ+~Riw#Y_+sxmTmr96CReQm>814#dN~KIoBly7?xIaB9uPja z29$@9M=$&g4XgS?)Jvy{*M1Mk^(g|GDtg`O@J|Cqkw!24A=4;OsfD7E)ulQMs%=^S zX4&QDv1&M_HA!)y^&_^u)p)VO>T)=$&JXT57&jZhkL^1I6FRQtVedgVOz8C5`ZJCL0yFcRV-f99W)<6W!Gh{x2 zovej%UqTyPmnp0CAL&W{w@q}z5cfrRbE%Pvp6W)ggx-9u4aF?lE)YEzP^fIgzg7mp3y z8;SK`kbqB9nroKjo}L%Cu_~3MBJVHtAUM>kMl2d{0vD>&3S1$QcDNX+UU%e@`bS(m z#f z<;Q4T7mD`hoQ2GV5X3LXvh|8amK_*#%gS(HDS4NSjOU#Dfs%|5SP7HxD{rHE160%v zN#t-pS@8R5Hz1Vvf_~LDdMxYJFc<2D-hDmxRNNM&>KT@QX&-7q5}s11=5OEr4Lp!z z?cNkmiR|sZIxP_Jem;iC|LV7Tx~=>$*Zg+X?VSbzd#7}ZM5D|AwZN&B zM{@kD9n>ivfhk%MiF{$|EeaMO%{4VM>vH|s8_y|qU#WY!D-x-JI&YYDoVL_3Np?W) z^%R9qsSj2M$c9`n#FTY(5^i=j&!5ahS>!Xe+u8mZ@`DbBOi+$qkbe{K35=QEZttv2bgdpMm?gJ362aBvglO(ObyxWkU)` z);xQsT|~<1I^_qAh=ltyBXUw&yxH~!0yPJh2Wl6fJE*o?eHrY4d;6^2q+C+Z<|c_r z5{7|kv<=(ZfQ!BLL_pscKhkdaN*D(F6LHmaUz$YFgi)-{*;~cYv3yN8ReFd}X!NPv zjkuHe|z6~;%)8r$$-}t=ll_H*P|exgw3Em_;vCw zP%&tTG0Wh75^NkN8g-+98$R%ya2r_ttgJwBmT21J)In%cF!{1<^>bP9chg~st?Bew zZE%ZRk4TUUKB`o%eVfzeMwYnivFk<*tNA3at5cxmgn>jXM2ghK=NW6geUlB*+iD6l z68n4jI`-HovD&t`Wf>rk#SXYC0Iw4s*S5nTvZ`Z;X@m)EwbSN-!51J&HBl)+&UTe( z8W0`{V5BQx>mxEszd@#mI@)S9N7s9%O#K{_@nYba6Fh9D3 zydA=2jK>mdA9Rg25iKzd6zHZ~~lZ-_Iz_(9_LLP{W|<0=He?>ZV1?sKPn zxTYd`Yx{Hyo+~tUShHA~ST9L3Fs`rg+5bzh<9st7Oy* zf^X$PtJAc{NTJr7I}sFHB^{*5uZLl$e})y&+=Y@fNh#W|11G~ae8cX!I`8eUtQ+U! ztxHildrTL+tUk`fa-94htoy?PNZfDDc%9t+Mj3Z0XpsDR(BV)tAE=RDhjZ+)1s2lg zmgTn>$gX@&uFyg^XqM1C{7UDpQ0v|KZKg9boL;Q-dV1KGtB5NIkX$S|aVMgC+)}=V zM9Cn@FSQX0?<^DNWjYpJev8m=|Cxz7YlNW}y9go}4i)bJwwX5s;&@3{?SvZ1t`5llysa%M&q6D>{~}cEPkO8T*;PbB zlsqrZpYP`GF7r-+N91%9z|bPHl3feTyZxx{X1fc2$H~=>4*``*;={4=@&AW-607SG zf;cljlSKVtOMG#+h{pC8R^;$={gHLE;g{v-DL%YYaix}(2B)Y*PhDI}S{Mlc_PS~QH=n>n;dbF;GIXWu|4(jGgWih#MhK}aL1+*x=Paa~cCG9rETdx)FhVp_t#BiSv z7(EouBNWfK`D5o7(3a{C9R0-uA(QG$#g0~k7KCec4*9FZLm?CK?P@t{Eo1`$p zi$ulEL(_lp+wLc8!@IzaVv_-ihH29DQt=-bTdIs$A_R7mKN?ozr`Yy{&$;?PHl`hf zo)^O|>wd%aa2Y8nv;}K|*q$~379o*2uMINZr*m39-X3W1IX^`#*6zLyjxkQ!cmr%t zIrmhTo9kZ|FOS7OwTu)7cG!p@^g!zsbsTrc2+&+F)jkYOJaW&EXw4LVsOKfo7UuPC z^&^5-FQvZAPe)I2zy<#vAoj6SwJOS$9QLY|EepDe++t0RE*tBUyLYz~&pBBado}G2 z8?eKb#l&p8HsL`TVsVA5@%5Bn>B)|}MHG@r0UH@W0TT{zDrS(#uMar& zgtQ1ZZmhSP>V!|1gtN8(j(M#owwzgJ2cw%PhC?K3hfU_4A03Pi@+-z=Y9HT?Aj4@f zLD*|=CypQ-(n^_Y$p)xP7}z1&qyJ@BY8p88?+##`U%1A3V3cQZ#YTss0WN*3YVJL# z`&f|9{J?)Re>n6bIja);Yss48YfuRXFRwZ`XXh&R;zg)kf8z4=c@vQu_ z;EkC8Zn~0*J=Xcdh>15u+PihpHj4NK_aP5%t*dm{zM)#11)`$T|AGV?8`@J>GaZ)# z0Jvy5Q0KEdTe~+`e(xZ$Xpn^$kebxCzpv$6RxvsHr@w_CP+k!oyWGF~ks4l_k}+N0 ztfg|mh+d&meUpTJ^z9T++oL4~ej#&wWeRc6F0PR`^f0IV-X*TsdF9DVYSD0t2gzAO zv$NhtMzg{8f{{7dI0lxrBx76r*L@ZI(wKuf_vu2`2ur*hp4lV3f9Q%4p$62{VhioG zVkhev;@|n`e7b`F-*(7Gg^#&)Pg-B~4J5K$%w1ofW-@CbuN)A}FQ_7!AT4# z0bD4r%L|{VzX13LtNm%~^sk0Nng4Wl7PeHlI*Wt zUe0AO&GX>F3RJQ`hOmJ!CP5P*e|wm_LcIUtpK#8DTHLpff0?8%)~>q>B0NwZgc%gn zk`65?(l)HlrkCoCijR&yNUN`UkoZgT0;8S8h69JkS@7+dznm_1YQ)@?=;1LE=~%Js+OSy$Vx=kgyqNTP>#YV_G$aB+}`j2qzT^L_F;ANk@KY2X3% z9R;@m2HC(~C-0%O?%L&e>s(|(G{D5V=(&>d;Ujm7y}dn(3NHmmBq#!c0EzlvsyPgi zWIxDB$cxX+0JSu|r+X+8$>luw$r)Ea=|wwbzfgOL2ZN=gBKnR3Z!BS?XTQ6<`)_Z} zgiG{r5_i4pO37OWX=)~`Q=IR9wlDnW$y~XL{%~Ia^NDbY7$#Z<8y>49Q?x@Pqmfpe zo`;5iaR*68lzS=8Ly7buAhmPoQ~j8>ZVAcG&yQN~_JqMPxnP)xESy;H-aBv>V$IPx zx0{LUdWP>b>b^fZwVm=&y*|a-C@s1y_TLzr6|9&}`g`;S$qr*ojs!GdbGi-WW}kV6 zj`x;WvYIMHug|O+Z$g3Nzst#*g-sMC%W{s_Vhj5|RbAa?z?R5KeB=_nF9t6Ug``5D z9~}y!j~6|D2)qT(B@7!+&o(7sREOkH z#6ea>&Bf;dFH?I4xFRjgo&8_Fcc((;gBz0P}|EA{os*t(~#36EeL!@X^EV(b2`z8S%t4eQ#dD$NG#*ZnDS1W@hD1^X3-_ggmPm` zj^)<=zY9$uw!!4_2Gk{yDRa7V5MT9F5$nYLQwtp{yQ?9Kwjl?eTK}YZ5k_V7<&z#r z3roI0+RicvHVT0bG!!N*S$`8kKt{gAcf&iHrhdk^uz=>mON4s* z>zfla5y>9oqO@DE5~3XVH#7%sF3640#LFo%M%zWRm(#l_Y~;-{1$F4Dr()kl__J<> zhj{h%_5IyA9ZfN{VP+V1X~PtGWO!KK&CSgUk?;fIO%rIsJTi__t>+Oxuk82v`|DRm z4@*#$0tYkHaRkn)^*{3NaC0%I*Vl)@CqUm%r4-pc2+D3_y--)DgVecl$jC)n6ElSL z4cspuL`%7&J;21;Fi1xMQgiC%t%IeoK%6;owiwByKqQ^}Kep&0|?2RAio=dB!NhG%r7&k{~|{d!8A& z9w%Jy47Gkp9<5)VUXoHcCrw#R>2nUYC8o^sD0+e|&n&QAeiy!iw)kT|!bWQODK*aP zp)}Sw9!p8jsTA{&-58?V7l&AJ^|cqGw%^EYxAy-exe4EBM?8O5V!`k$qRq4j-#lHu zX^Fv6x`k)!iW_iZ@28VHvVHO9?8v@nrOM22FrmpmGmCiEKqW=;3=%0G2v!Ds9l@Q~ zkKCZ5`2G3I>xTda)k|?+EU8NpvEH}JIa$YIKZA`wBVlvno@Op4KMG}dop$a0YF)38 zZZWK{jzJhXk6-EK9-rb>B<73FN6dxh>9xn6QJDhQ=~i;s-ss*jm+82h|6 z-q?EbYxA1;)H4QGmJ=Zzulj2yecWh2S0JZwT*B)sBojrR4+SWXPENj$G>)$)KmxUY zlc!2}7LMzsZrf+*X-)`GcK{`4bLof*vq{64cMCqR1k?m7cv#=wQc=5&-)@h44?d61ViGcYssNtxt26M;uO^R@W!%h51%~{dCa@=McU*=aYAUY$t z3Yp0C5$o*@bxP^sK;4WiA7!bP zDnot{!lAF~@)P@&hKH3X1W=qD4EBh%E!L0`hlHLT26bHydVdm2ejn%qVXgZAP!iUF z_$Sz^p&hnOW>sv`%Ap~@AlFEebqSrfAkb7!=`r1EX1U*_xM}t%}-8LWwV4n37 zi8`j$gjkq0;thgw6+ZLc?q}$2Y2QS}#vWj}SOkPk0BR5Js!&}K{w7FwGU(MNDEP7N zB=|$~*yCkHyL$~%Rbzpaq}sTR3E7svUet27oSpNb>`09|B(O|qJ)XF0BI}{6PmgEv zt2cO<<9g_$eUWRIu`XG8MMGvdDHLG^pROd9lws5XaD}&3i7>c2uW<!XT+Kr|S7dXfa>T5<15ra(R z7m;?duF;`J8kZa9#$QF07%1mNm<&qnH&QwSvO@Ji9E(K0SyoPl0!h0OcE}HZxV-dd zhV9g#Fd5@Bib5Xre0iQn(sKRz+-7e37tzYHtn#U03VR#WHc46q$OtwcXI)#2H8ohXaa(lt}1|PkXl^ z1QA0thy6t?|hTlX_)i5qh?Kolf^JpL^CnqD* znD|l{AIXC?{L;hZ54pQgUC3w&qIX?e^m9rGTCGr@a9)xJuhf9mD^jcyZ!8MOJ&MzM zh42?iheCo_Khe;4maf%Py?F2xY}oS4UsX#ge|~Gi#+>UuOCUb-QwiJ=(UAlc?7p4@ z%}$swN`z|YzR)qP`>)BD)0U~bpMqFPvo3z7F4Z2k!WuB zu4;9Y+HkRYKZC^I&@D%5$rg_1PQ3kJWgwVVP*Ov*JQLWe)B>!Vv)Fl_RO-LdShLTL zbjwBd^^zv-0`D)cLFBw7WG8Kmn4Mf+>HBdSN9|CT-=k@T@Xb)EEAM&*+iJa9?Jk6C z(COmAuY+|mM4%ctci&ulU#jmb@D><<{yb$)8jg*}n7`0=@#%9%4K(n;)zs9f*3Unj zX;4%<+bZ)01?t`fx0CnLGJT9NwQ>E%aDI97W+-!`@X5T#)j_HhAiTo@NxI`Gso=Ql zOsVJD9;p9-%&faO|FWF*i{TK!QN+N=<*K{5#ug0mf@+1wb3J^Qyz>)^!rw`+QyD>} z@=62G(~De0pfODBil|U5(YQV4E@)?j&)8=A`qmf#bEo5JTHx1sP>X^*nw_I4OD;pH zE9Yzmbxz;*@={=!xR~EA`mj-i*rYc12tjEA0lmh#^iz%+8;=W$0Gm$}Fu44W8X`sT zs4-QPkZAXYXjJvzEKVjASXiq<89aQn`OtogfSwR_S+%-TMojFDSGMcA9;Y1A`Ev*I zlp!zU#fxafs1mO9AD_rFCwCrsNZ=#Fl}Ly5n2{*h|A7*8URy)UB3kuB9w3=oLhjsC zzUsQQ*NODL(EE$00V6w8A)5Egkl}!aUrL!*#E~b&l|Fg56Lj^wDO-|dvXK_TM6z73 zJwOx|cFJV^ikff#wad#=i5-5HFp5N_q`$g6ie1v^iPlZ!c+P?ws7OwSyz&wv~GF{z7fFIU!PV_4kC_%aKG2l@BSiEInM z?z&MGyjRo6U~PCh1OYJr!E^WBqA&0pX7xPLbzP^~X+(I!0#zu6S>yYV6j>jH$!{i+ zPLGbZwc+daswxUeP=>#X)p1;?JLos~z1&3=+EGa|HRURKapG=WgPxn$V`{bAT*|TQ zO?AhhdLUr)a6DV^OzF7^8vVx~--@2)3mMQRJBhr5=Ia#8J;@fnMQG5jM`R(0wP}+^ z*s02pvw=N|90^%x1_ed3Q%VnQq6KWP)t)uaRq3+>6XZ5jp4Yljs7~vcdcG$J`3+)J zg(RBMzf+%vF;lR3my2hX&H7(~4nlb*Mb zU44Qe;tvq_Kvp!~153GffGl@=9MAam(A@ndZZ?>D71rH?DK3%Tb#zsq`aq>%H>4ev z5$lQv(ie@~Egh6hjf`5u_}=t3yq>O<2hk$A11{C#;SZ1X2R>fE?I2?MeThB8<9p-{ z#|_kuDFT@|KecaoKmE}Bs-%S=@^=c!#g>W4Qj%T&Kl2six;>{h5PyIP4~Y_)q74xq zsILkt#`Lc)P6hW{aeGrmL|FIluxsyL?zrQ{(+b4VCSsNxl$TltuRJ=js(B9?tdB%} z((Y5Ak0Yr;yQ$%JnPA?g3Rj*rw+O~QigCU=U4?od=`QxD0@6Vu2G7JhKtFhvf5+87 zw09c5_(ThmV#c+qpnUqTpDtZl9o7$5&F?HVlOSuDM$ zg%Z9f+%ov(ByQdd938iwkhoM2-=ouF$8)?AgRrceoPS!BdgIvBmuI~t^?L>B4CG*X zGUtBqASU|NL7$(xA4JWobkTyT-5+90pH``>sr_E?BMUvL^Zk-t$kONG{^9B5a{h>+ zn?l168{&*?d*Tn18+#bu8{g*R)<03deCw_$Cm(A9tzA}%9BXP{)VdgsCuYqNmYq_rqA;3^4Spk#exBP}C?X48h#q`!4( zKbSt--IiFM{yvK%!S%Szr)+C<_XA%|8n+(v$0Xvdrb)OR}zJkPcGG3B2u zUY#pv62&q-adR^(=p_z_@KR_eFW`pU6`FAAq*uj`6Gf5x7fCm~uPzD#UBOGu57$#E z>G4{681SY$1>U22H#cA=UjjlL)O!4j2iIt7bH7(6M}%0Wbsr@$YkWgD?CH{W9AP>GWhp5E9i5rDOd0vUuhY{4q`9#z2){Cv-a+#3p%$wU$g2O<|J#_)kgn`T(qMMUa7Kh9A&d!siM(%r0 zZ6`IMgWO+i6TCWELfL{u7LN|g>IGk7`@yH$_CpdV7T^Tif}8He@7TuWRS^WgZc!|3 z*`uJw3xnV$fw|Xr!=vZOUS%aauAhHft-{B>I%Ty%9BTykV_ABc|^d0Vb0v65BINM@Mt3oTha{I zf8T*2x6&3{VE4<}4<&-<*RE$c*ye&_p}XTKbPdS63t;u3h^)z|Pv_>eAj-H8GbTd& z;Cm>b`(X_b*KfU?6IYo%4rJsmRR?WzqbP|qDNIEamkP@dwt!9 zogjoZz)RQ5^1qmux9%ZN{aarHFEZtFSZ%3kI=KRpobNpLTlmx2l@)S{+;~PR(AXb} zCarg!-72{M$oHunLvMxglII_Wq~H*%QXpCtb~ECkLM69`Rus1c{BQ);YOD2}G2s$)udMs%Z&cE5 zoY<0J{y;!b8KQec?HxX@t+Ue;p;5)P(Lw=-uA18bJWClVb+w`WK`&{GT94o6u}r6_ z@fXYw=8V(X-EA%s63H3iVCq%|N0VLis z0$sp=qIC;(@wfKnfLpoh9roIDPq@MF>f;;pmYh5q$GtBTn^sC&d%yc_k~{@mpTRuc z-1O6UmnpI(di}=q<((#on?T(bW<@RIos3F>CdHB9<~XEMy=3<7SVH2a{)S$R`1irT z3ncD3A&1>H`Y=*U2C%-r;V_X6)RYBE^cs2w|BVq?`Vb67ot(g~V63mN5#$-=AxC|c zrA^wP9{&Sj760Z2&?DQ+*SUF#;yTH4kNp3Xk0HHt5c;g)G;^4plf&dlzvTN@d))n3 zr;=Vh^H%1Agd}7p#V$KVb+s1VYuN+++wVq%ha4B-BV<~`AuB4k+i@U{=zZjOE_aqP zL-Y(OiC^qKQLUeYwF46p z%+kz!jqv_So%|@f-9L2%|?4kMFtZ?{lu^2Zdk^5nLkv zTtnQ=nj`W|O|P+Awe`TbRMXQV<08Z`SVBQbNx8n5Ll6IpK+?=Q_UF>wzYJKV7N@4xAKWgrHB z8PVMC3x7%N9fE<4jV*&pMD+jhjRt6tVKh-?MYg!K^yN9D&2ncrd)Vl@eP>UPn6opV zsHo_t@Mc1X;UZ)i)K zZD!0MB+0C5R~h!(uFF(HlXCrLWo|B^ni!YSh{`goRx~kIdp!1+@9*EwKk)v1&UwGj zIq&m%z28q4mz=0ttM5u2@~|myH-^?wFW$UqZEJ5oF(u{IQwBA|Bd#8)3jOOeextsA z5Mki?hgX6PNF*{ErrtZ1N|Lk5OzhFSd9w2i!+tDxTB-c=ZI2n;rTjO zEWTp~1?hu%NDYxxYT}I=+Hnt5d1d8VNebI=B3umy1sDc{Nzcs8+*`1R@c|uFip%~> zts>qI83%Rh0SZOZ!~Ft4UjOwU)|$F;fUIF{W1~4WH5CVxv*fBX7UGuFIUv0O0_CT+ z`nBSX{G!y{z(x%qNOPb}6!ED~M3pl@;inD}{o0@?QzlihcmxvFk1;!nFWL`QE8ZzoY~`G7E$}Lxd){ukt#FW3aNaaxg3`zIwsDAgXqMaIiFYySs9r zniv?U2fm-Vc4MKxzu(5qZ41=Oo}v&Z<9xsEC=`n2UDMQLnwFM!@ODV$b*hVGy1&Zn zbGwe`#Xlr{HQ)T|*88l>J;+}}tN786wK`~Sb&W9Ai+?{Xys$TPo7Itq2#{`0a@1)bTaWhN1+}TRw)OyJ zzz62mv4-SP!oGbPYty)}Fr(q5V%X^jD!Z)L$ffH#;X#BmH8OI)a8xdTH~%Kkn`XO7 zpe#Z7U@jRbR;4(HCTc(f7$|5RcJ7n_@bORRO}7mV4V}Fhm>ybX!B=Eh z{U&7(&qY*kJ>6uko869f(b4ifl;v0UIN#L$?$5Q`?>(?<0b1^CF!i5dGdV1srfk42AT?s8N z4pJTp%+G!L-iZ9KrKP3HIYE27p|SD09|N-U@^tIY5om#liFa?_xzm+M_|!Yvl1k=% zfws}n0->v)a2INmTrNkmq8w2aa*nDri09rysp{8iYg7TC1Rd8~axttniqALAw$|DH z!5gzY_rO}`sdCZ8+}uMAg+o8V?&>K#DZOIXlCgn-!5Z_eHtNy+P`ZcyKi}YU`0$o1 zSFR+krZAaIKs)LjLiP*{J*cm5m&s&r_p+T#DdYwEo|4kiU%>S-BHiGX)Ja|^o%Ik; z;z?ggc@(yMPM~^NUmpV%V`XDRbxu)Hk*z^3WozIG0^4eTsXcW!h+l-lePz#X^7+q@ zCz6sxN*SC>F^ZKusq_S=<>u_9+wh)T`Bb`AMGonCBNR9u_~ zXI(R z8;;SfMd?a1HwT0ojHCkEf=UHQ*sX0G*$=I)c&XA4Qi6PR)Qhqz5{vcMu&HBhn$p?j zW%>)5Ognw3qHz6rO~0~diHQjbjzJ~ZjLb|e=BHJQHB0pMO}6M$4u*%DKr8%UL_{9M z;m6(GdXfSQcgCj;(KIq35p!XEO+chDF)>N!@$9!485Ne6_7vx5aJgo^|Jlna+t1my zV~3uLiwnec;mb#i9?N(S)G>_7lNeJ|Q^PMePxh7yigq3yo16r8q;6E2yU$Mp!jTa( zK*6l}Abg8>AbgySuw%pSj=v8F$<} z?ilCG`QVTN+r?UQ&F6W3H4RcykbHym9tjQ(?v1pRmakK zJdWa8j;gk1jxL7wrf~9xj&@eIj#lPIB+jPx4(7HtY)qU?tPCVy93AZ(c$t~4|DO*q z+1h_*rrE(W0vAEFlhSs8gF`cf{dtxzlxGeH*Y!_Y?4z1%%E6+GtKMep&FOKoOGEZ( zXp(h(pZzi6IuaiKe1aJ-yofX@;w;61%~kx6S*5g8g|u_Dya?v=XPEA<$KSld=VCc( zcG0a+mwYche(dGr6Uts=6&uN5E|GP8&hKs#aWt4RIyso)Hoy~%E=A9a?GZ(-@)s2PWzu{loL|Sp??6}6n4;tjMNW{TvvGOA!4#`}!G3GIyE39ZjQt)gP=U)2pJKF?dq|GT^U|3AXc*VsVH0@-)3wiJch z&UR&D4B(o7|N6^VOKxwENtg(hLM93{*W>lgrgI%1z}Cx8B8vFKfX$HdgeVOj;4%fB9TX$QAdn*ATn$4Gyz^ z8#xwXEQK^82`-wf%Ik4d!p^hVIkV`bS0dwo9v_34f(xw)TJPUn^$@>&AHhlMez6>9 zdK`Jmyeutc6^7t@*w@ob#D=~7;(Gn&u&i9@0V{zwHk95h<8VHC2Z2(0&xo}=G8@%w zuAH%S9UIcq@^I>PTE76?qV-SjRR5lY87QS@U`|_4cD){duMAYnW?n6eLK8ne!Mi6(LE~9bX zJBUv!dkT*EoG?T1z+(l${=uHXX=x%xQqW0uUn+t8d;xX%ciQkx7m?pYLUXszI69sN zmp@wHQp$}wF<5G55em+TD}$Z?<-Z%xMI)5>awjK7uUr3CKxCz*%vo8@+MwFcu*y3n z({E_$_LRNjVKzx)`U3}x^}@ftQK_gH23QTG{yy4neO~!)bnvI2aGTF{vskzM&fMQM z^oF(mI?Pw%5$H*LWyoX}5)>`juYU49i=rsFkB03KzuuWswdPYMiF8jm|32(T6?OmI zRp{3DiKi_nCV}ZV85T7b5noFe26aXu9uE(Aw>8M*mJF=U1R^12M&c&^3wMmt0zZn4 z!97s0Zer4L9k*8)@ocHnD?k5u;rDSg4#~|e2(`>DSY${)z0>KEKfk2jpi1=1`!Da8 zsMDT>P=5R@$v?3`9M$t4Nemq1tN65taEf=Y zXpn*pzmdN=PA8`Jyj>6rq?J~|h1H)lBkS2cX8&>W4oi|*xzc@)1PqS)UbbEU-r?r1$6qiQhpV ztcz`1h!~mj3rXO^C7&Wr{DWN6U0)gh{TtGN+@&ku{awH3ZuRx(E|2(2_;8_zxRWZ` ztn1MtmmYp1X&Djw##&I}nm@&QoAxz|WtW99$mY&S3BozvaU3rATAq4NM6n&VMhJf! zOfKs=JCzjn(hch6xh^*+FYP*4=8wgFw4RjAY1C;VQ*{P13NI}W>U+;5zb{`!m z&V^W!Un0bMcK^8JDT11mz-HP@N~Hp}O~KN$SkDI=b&eLcA9pxzD9s;}V7EKk`D7)D z4k-%|O{`_sfGaz__-}=xC}>S#s}62WtUJuMhIX&se@MaP-%8E0Z6tHcP&9nmTe=)>FU_-(l_LorK@8aTWu}72m%Ozfh`OWboUBb{|1Ddpq z^Z&eq=WY9O=t+W=vx=6JI_H$->djmPA6JrGcMUuxJI|FMTYwA{3w8Z;h@Mn$E{ zS%JaT;5RFGd0vLuw8cx3WCD7(Vepi6SSW$~WFxWR#nJfF{h#>)??Xlrhiwio;%F+> z%OlC3#RnlC3{f$iyv=7Pr|Ug#XMNPOEna-D(TKAD{Q2dw>{UCtk4Snmzx>pV%-kew zYD!5i8NRU$eOyjtF%4xpsTXN{@P2Sb=@9NLe~YnV z>vNCq^RP~QJMHtR8GuGSd_E#H@_4;GqHEhM4t;v$h<_QxeAH!kdafnqOLK<6@Lmh-BlUBk4a&o1);6Df(-TWJL8WdOP3a*LH!& zj>0xAEmrcd3EuOv>G&NMrr+jt3VDQO(-Eb$dY!T|1a4_j>HLz5-}x06MJrOM^Tvs; z^OaSoI2H1um1x9R@T}M^)-T4u&*5N>R9_i#6C#IC-kX@GJHyrez&{Ov^jU z;7iTRPGPsy(sj7l8I_19=CSvGcz6iW(f=Q`vH6LMgO=f$Yx zU?Ll}ZzODGqGASlz3BRnuPedw!vzNi=a-b2&Q_Sh>Dl*DnwXk?9TB)z($gC}+Z=cX zR)GKH?+gC3UUKl04^}fQpFB^+3kwTx`ZZg|W=UnECU90+wm8x=Q+d8eMt;1hphq7L zNoI=6cBL^j1!awMz9nyfCnga=YBw!__h^DKomM=Kl^h(5)B@fuXG8HSbcFvLWjt5D zg9XJAV(U0K-Ezg@kIsKNp;{h?q$qfsUChfM-6w)@5b^k~huAw%N7?(zC^_tJs*CFV zdSKhCl)*O@x=NuZ+%fMnauyWy=l*{y9z+SC*FrbYUD7@88{;pMgd7F;s$xw7s4D)Y z`2QcAN2Ca;)&4z+)pxF@h%olF4qbI!E0c$6sRzj=iA?Sve`~g^4eEE85YQWRs}Oj^ zezy$$6w)*Ccz%8QxFW<%CW08XeH#-Si*sE{lQ=9BHDR_@U6d?u0f*i3x5^YNTnL(h zoE7B`-P{#ZBJLEv*kC}VDp3r|6b59@*xW>?h2qF;1EdT0WC9}8MPQj7sOAmDqs zSgT~&R6NMiN?hpgmx}juVjLkF2f{#rrm8aaJC-*Q){ZRLyjDp3GppQF z{;^+pzi1#KE6798x2KiiA5U&jaGkptMw61^g|)kaq3732%X=S0#=(SoL&nz#`>nwz zo0^%|`w?FZ>1&m+#oT#)DY;w>O;jrWgX`8fb>}vr-j7KTVFtCg>~EH@Tb8>brD+w_ z3vSQXe;3MAalIiAs)k-uYfBac{x?>wsaR705+S<#<~s_Vrsft=&eV5)J;~e@An2?| z))Awk=6WYrxa^ACY{!EBcyD=w&wjVD{@8;IU)K5|l2itfLQ@0uI;QTw&-pF6jBZyT zR?LEd8hW9TiPAfB`-lt9c~(UvPK75qY$wI@{%((-6W;64g}xKLIiol2S|w6|v5V^T zS-G7CO8-*bs2!>7G$~~S#dK-cyFoEYGD?iZDH#D-ZUU$V0BjTm^8g;loK-#EOF^GR zP0;p4ZI-R$Qk3p(Gw_AS*{deR>yH^4LT+)hs5w3brxhh0q)cC`wE z2gyGh55O33K+1h)=d0 zc?zjkS2K1uRz~lG{0mA-%&%r5$t8Q9AZluzTSNP&_o8^+KgNHB;4tR?{*C?(i#og# z-1OMkm>oC4%pod4_>Sg91-o2@XcdJM{n{x7S@x_&uv0tjIE33Z*U#Y*1A0Xs&p82!7v3)H%O)f@;(Y|`Zv)o}~ zmL}i>hCzmCpb7*c$%5CgqSg3#(3{eu+82b?ljLQksqgjX#cR~(D-#9L2eXy_`aZB09+YiAjxzV#JxOye~U+ zJX;x(%IC6jseu)wSBF|qSQz}N+5OqCRrtB^Si2yd|=5pg6Hs^zz zI-~x+K1yn8u2SRiu`y#+t&(@_`M;#2yVp)9FoLT1jiy_n!c46Tek0pO&_cfLWx<21 zN_lL0x_%zdo0XTf8HHdRMh`HzMhSYIJv+I71P?woKCZl%%nI5j2e@fUE>a~$0?Crn z_TIj(-edf0^$s>O<@;#;Ur*6c;V(K_k@y)FGyw{Wt&hI|BS^(?Ylr{-Q6Zfvv##!E zMFneNA^(l1piTYel@=LBkXU|kG2CAh)>TKdHT(Lnjf*B`4R*XE3PW%3Ia3Tf0;o62 z9czkZE>dLA?Ao3KLxrK#Dm9qqV&d{f3&!<~nIV!fq z#KiJZ!uSDkv)quBlm&?%Faf{9?wy+SPs%vCO>3$o2tt(Tj@V-B75Fc+i;&1YlR(HjCJevzcT>}YAD8J*rUPp!D zk%_zQhtAPyX&Cr@k;A+`**OImRHX1uPEKl?njA^I$Uj8#3uVAvW@e@Y2cJnyH{Nc| z_YMuc_+4Ba)6k$}?{L0G6bl-a8|dLt5$M^E+pX)a56nN$m+a*6xqjW|=oUQgGN1aK z&wpLi+vzVtfVjPtF{dre!|d3Um{6>Al=Kz;Hl7zk%fyuV$Ii~`PE=W~zrP<2ATqFZ zb6k!+7i_qg;_*W^4-`o9*swmMK{O{KvBgOR1X3?9x)J**^NE+y&^IS{SVJ9{r52=*>7n2FLocT@P6U6*wRn$bpLdC_Cg z{XlE^0JRsIIAb+KxQ($*z7rRovTK@bMn)C&Y|X7mw9M zOEZAl>04iP9;@4#TKg*c=H@1V1KllT7|qIX&y~y7KT6%uI|qZj;g}_jN&yATbg=_~eoj43}a%JZq?6 zj2%KVR9H+wK~MAi-ituM-9Jk*LP^aLso8rPT>bOb;B3A{Rm(uC%Mv5~=9SVm?(3%0 zZe4^|-(%wAm34GPzJC3Xr-+Mz01wJMEF4n4X3WYuw!6re4!R7Nj`3un0s6j&t?{Qv zS{as~g89Dym@~fEU&cU_jpB_3b1)=RO>?#Bma;rPX2oN!ZkL+5lhE*?X-xAE`^^GK@3_9-@dqFn% zc7OECuH#p1U;eFV=>tHAEI+<8S>%#6pr&qobud6n%QFNz+KGD+Ei-dgQ&Z?-qYJCW z#22PUD<<^CichNRUAu#wRZkAA$90JB(>k{0f6S)2AyKa6ZAG>^4}Fi$b_Q5(!X^%F zsjJCcv{FbDBZ+{-sHx|;L%nO#dE1neA|K(MV-n7~}cjzqTnX{Eoj5yGU}4&VHFn=RQ8|O{Q2tx)LoY z_*hqou<%6raP9Th*x+Li|Ie$N9r75Z9lsEP!v5g9AA?k+H2<8C6jCYfBYTYAP*T#) zhT?sQ`uH7*_HjNd=0^v?B>SFPYzGxqpgdItD2>aJb2x)3@`M^&*)M}p6PTdU9#Rcj z-<*G__AK7)K$C*Dwf=sa8XVq_PIwrELgaV7i;Fmt;`JfJxj5-PT(Ekqy}Yp=H;OQG zhk+xv95dvzBX{Uagx7v*ec2K+_8LX8q;Aa#*a#%wRMa;U`Z@u6f~KG`r)!rSa3=5K zB1Kl(qJg&gD=R`}3;^c|o7F@IrDgAPzn1~qSQ_+^IL-*#OJ4Zfnn&S}&;@0Z!yOD( z+m`UX_+<+I?X!^ZTcdXYZQi6aYj#S-=3hiuHc~R~e)tL>XaV`fYu$E^Ryqhfk^kk- zQpK?_QqY%D=E!BmZkN`V|2A-JyI6z~SX<8D{4|~`ssu0tVBL0y5rLsbA~f;c-Fy)i zGR%znd~67{-8}^IK98b0UeJ{$BeBw$JXgMcaeH01x?1jGEWU3b~M= zI9Z-kKQ_CRN)l{^5V=Nd=%aqm)x^5|@uxBNP{G@Y#}&z;rGU#4E+tDHrv5yux}D0{o4qQwsN2zm7n($k^DoMXe@yujnZdD>5L1n+1(Jjeyp^=mzjRGS1TOIlq`El{1nd4%i zgw`8^^TJq~RTlR)5tFRV*z3ZK)cch3Y#aAIy&z~15iN6J2f$_ zZ&(?X5{LwSAv`ip;v`ph-m|**BvNZ#+N#};i#k z#Mz~#;fM3JA6!pZ{=WRhyKj&30^Ib>Cy#g4Rq!2~RIZ1Y{y30vM`R>YCH`0%UpNV8 z1*7?nY&`MoL49>k$Hm_j6-=XsdVft+zBZ1ZxbFQFOUgG(&Wt&;ujqMW=|tBrrI=?l zO=`!@d+`(!tZ+K}*%Az%7nxaX>)m0WH+n~BlE19Xs*b3-kc}wYk2$4AQ%5-LP0*SR zr-aQGuR7r&>Ce-+%y6)#7pKV*!XU*a-1xo7J9m2=aial&ap(t*?*0A?A^R$PDkLKqQ*Ma^b5s5R@T62NfT4@bV(?eEqM~9K02FWw*7p9uPZ-WJe_y*`&*yP< zV0gT=I59a{Za)61#%6Kw7pdqwK4<>=df>WLiq~wXeH8F6?z4ZZl)f`Dwc@&Q4J&M~ z>yjO&vGcn@+6Gi_p+uJjxy?ApP<-z%9m>4SD6tBZYsx4cJ^#b{JY&YU?a_JYb?Zks zF6v$M1gL;RJBJhSbVgCu{+^uP`{yKZb?n;vzkStVA;pGLAWRxMAIvC7_q~Iol22-{ zG9SkxFdwMM4G*E>EFqvS*6<$+*MUr)eFfeOvybQsJ({CdC@#5nnxZ|O%w8N!IDa|} zBy>-HgZ!P#>Lz7wP6rN^khd4?3%I$M380#}vCA9x{xU>)#~K1}vq<)@7|x>_PG_FrCEo?c3C~^O0#44IBtw zN?KZ5PQ1cra7Dy$xv1>8i@nK^PtBzkjWEZy=v8vS6IWdJbKeVFCLYuqSlX)r+`jv0p~I zoQ@xVh(v(lu&0gn1ZSJF^sRK6m8UYSq}Jb~WLs*a`kOg1#+=C*BEJjivLwO``(p}b z4hb8xWTLW5IgC1`fI|QA>sO3M=fjnqQSuaCrzq7t1=cT0q{z5T3Q~FiM}2eXxQjzm zQGc#~PX#1N$r3A5b_s;%T+2%z+9oF>-L9>*rb@%DMPL8%YK- z?+3AB4f+?aaXQ0Col*@_EVX$>PUi4o9$0Z||E+&6#ybI=<=U3-$GXcIInwkQ=0A(A z{J3hHXUtV$gLyE$qHd5$ek>~h+}}<@fK;6 zY=kfihCq(~lK~Jz!5bdlaO6$=V2lIo6J{XfL_k_>mx?l8J77T>o6sv9SX0+b~q~o=if) zpNFZnN}=PM?&V+ox4X$A5p-*;jOJ??cN)THt$q3ns_msF zx%(xrM@pf}d9Oa=r)qRy!yA>Rx3jXQz_)l3!`|s=t$v`tiPvVA#JD1(^3T#kY3Q!c zTK!u8mpA1$a#Q8fn0+erzxinBc)Ru{=?e<=e`+eR{M4>wA}7x}Pgdv$RjtD-`G(mA zQTq!W$C&mAC77C?Hzc4Oel|;R6QF`2KbWs<9A){!cR2zRiHtRcu;nM$dU^}2&#lW? z4R7A=sFGn(bv>msl(|)e1N9OVYhMya`tx6Laoxq*@gKe@Wq4-o8G>bLGx%n}B1MA! z2na9&{BtofQaP&p{QU0i^J#seM>iU55oK(4c~SLAhZc7Bl2wn3&)Yt>H)HH?l7|!| zBwm@D?*h#-Ix;eR@#vRNptP{MdH^cn@JgGg@sPEpMN_eEZ2(X+wEwK^i3PgGEr#!8 z2XB)JG(*Ulf%O%JnS3M#x^XS5>xluZkN)+2DVNMiSak3+Im#d1wRuuaLqkPd`=hBT zkn+@lNcr5CBvPtwcE7ODZ_%dh7|jq57gY+G^k>zWW3>Rge8;L3`F}#lmv)$jbMNEs z&dZq$p%Q|KsjEwb;`RN@=$NUsMboXdF&xXL4MHs%fXCGfd+h6(_wE`_sn{p8r=ydm z7_id^+Q!+6eJTWj05uSEDqkfnFPzf6aQy);iE`9hMae41GF)^W{ zIenro$0QFm#>Pe`X6nKMzaCRO!Q!s) zHWkOGvUo;aPGh`RuTcpMriyvOYC`ki)w}K^aP1(Ca2A$2@;0E?G*}pBW#=|Vk#kCu zX;-Y7V4wzS)!V-WunFE^B7aoRd3FI_l5#{<_vXF=#tpH4iM6Tf}R4!7rtGgY9z`VPVTDb^}a0hT9#!kUokpG(d66uiZFZfWm< zqIsFc+QZ{^cJnfeb#|5qg+NOf`t+i=udmB!_rbhVjaxFnaOG638#8rmOa%yk|3;D( zl(2t*ODKWH<>&V?Y$}to(S%p=?c2>_?aE+K?;jEe7o6t_xln0Lbz`QroqBy8CEGcpL3+MHs*Eh;21$EI)7p3Qs=TO-!x5YxLXOM-_){#n&p>KQPE8I2ww9 zeqN%>(cjShz=F9u?A3u_UNpEnRooQzs zd9W>w&<2cvZ#}9(K>Ptp)%(lrJ=&;Ee#%9)iPet4+uISJ;i(c`X<6CzyZy3lkLCMM zMdybO+rv5e`8$3CE@0JAd&OCG^5A}x*BdN)}H zhSmd!GuT|-A>%NtJl!ALI%;b&2*>b7p!)%V-{5>J3{I7Jb+asr1Z{jznW6;_U!xjHFO&0D>6=kexG+5qdU ztgJjdS6!sl`c$b!=5fTEmZmVyo~w}B4Qi%Xubv>Hr^Dm8c_@r)Nu=ykGZtamgujBK zl}6d8p^M#dW9c`4GsQ!0%Aj}5U`O7P@I zh4f>l*#mdJ*0$^T`q?P%G0?-_0ls#7>$SNfhvdMU3PbR~&;nj3x2v5{qswvodVvWb zPzQ^Rz&$ui;}6Sy48YULH={4il4OwY_RCafcAHe;tovez+#H5(bR=D)_^_h-k_n{E+XLm@dH?F&}CKl^`?Rpz_ryx#- z@!VIq|0roMZo8oJ`0xJZnj9gqchiu5{PJ{3CzU{OVUvzE(cdB#KC!vP4 z6h3%fkqX;w8+jLA#p>#6&T%}2+?z}Wwi1hh@U!4d13dOZJOHO|37lS2MgIuG$^#|< z_Z9Hbt`2nz3JOdY8>+45sv^PM|KNO37jmRNnK}~PWwf4T8F#YeVGDGSetg@e;Y{)A zU+K>YD@LYMhgCt4>c@{CxWzf(0vW}{q3!MMW~G$XA?Qk)uW@8A=-YtxKLRQjM3Rzi zTf%_dDHa%W2701avpc1!si`n~2JD>!T|&Q>h&CFt$Et?KW&s}T;eodA_kcPhgNZqm z%vIra&nXd3&~NE+K` z)O4?_cb|@DSq}!{7)909fkrf&J5NVTYY287DB_x|j)SR~3RZ&FTgut2z+buviZ-nT zddS;GUXO33{^gwkep_L`Neu^lh46!e6#vdqReurEsZz)gSO*zx?RP-29$;$pqm;GD z)o*2MC6W#^qXCO*g!NvXfvU zR$9$^5D0qGj2d2QrM7hEHZ&x4h2R1=hJ?s<#aGL>#j>oqM%lN;%h=G2ZOHG=SN{C z-YZ|r(!8zHR#DumW1y+6m((tiU?Tx3PibpJ{}-!mai7YMN?&w8P%VF)4-2(E9|DJ) z&FgM3W_EKzqt7{9B^KQepaH9;rpUFmFF#!K*rK&7&DiW#eruGa2X9MHJ82Ya4TEM6 zdpzKuDmqHxGQwt^I??dp;08#}Z2^F}1rlWxjErGmJ0u1Yx#y354KVz@|9Ls#{&HW^ z+?*C@?#y5_k&=^tmt}5_IriMVBWr9lAemmHpU80yfF`M)-_cuK9b-Pi}7kO`~lVrJL=eN|4SJ&@SIR zmbVPjv#vFK>;GT6-dirF1n>yM}x@oG8JY2~1Y`p^?K9>!6 z(LiehsTQNP&b|u9mwjKu-81dDJ9FjnXUmQ80}KsV6BF6ZS=W0Mt?WZw6?qh4m_I(A z&8V|iEO3kooEeC+=#<#wubKW7B+pYVR#Maf0@4|lwmTE9ATI+n5o(~Sxt==F#!pau zkBVX|)~SvP4z`B_ui-P8Y#Vu^w5x+=$N&(U+?+%fYoF70b%|Te{7HN9`s#z_l&OF{ zMR`q49BAMn!ha)5CGiAwO3@CHSj%_2L5jD8iUUqWS!v&;&(VUvupeNF1Xj~MaocCH z?~z}9_dM;|23iy{DLiK~;}sQI-d(myRBUXQ(=_Aizl;~2SF<`G?dN*ESc}K+N(0nU znOUS}c>v6eL4f68raWx2NT`bir8}H3edmu#nw(X`2Xa2@QVe`?gifC32Hq%iKX8|9 zCcR34xhrEQPB{JndP{}PqJ?M67yZ1|4oOz8JCs|GxTv^H8i0UOp1nYtsWN}T=VG&c zvicpk6`{1MOoj_}h>mT!3;wFuKi;vKfhfs*jkV$7+~iKfus>onCZUdu>|<*&Hcr!O z_l<;=6{pB~>0S&T(A#^0-wtTk90<72*q12e?el{9V*~^`kQ32k!i9Aq5JLq9)*cSf zqS!tUZ*3*pX1N>-`ga%#LOltIJx^?k^|cGZua#v^Z39_`XEzV$P5@f7w<+gvCeAn- zgB-BI#ulm0&Lz3pTj=67S&DVh839^ZZIaWz#*2TAF2p>PW4;gG#K%pQF_1=QI2Mo- z02vk3yQ{GKI;DmgrPh^iVhl zkzges4Vq=$bxot2@8VK$i72B7i@0_(>^+@-CiI>TFa)5r2NV))=YZWx=uIr3t{xjW zt?v^HI&HZY1A|Ugf-F;gRYx+KjEW|}|GrnU-*Aw`8lWmkhB-S1eaXWaqO}`HB`>E1Qs*T zO0=s~15nPf99t#TbxMFZK#R@zEnGtssUoSMz{IuaNdI^z?xMt`dnKsvdFs}G&Gda| zcyzz4HL@$DjGVD#n<4Yaq9R;AYUh{EGha9hZCWh`Jh$fG(YXOKGBR2X7aS-Z21g6G zD8z!9sz=oCoXq4weR{lN*-JFIV!R3z~ zx0ty2OCm)|z!-zxvKJSg*{%Hbc7*h>gx)a|Lb%Y|^Or05(Z7K<0Z{RGLp+dY0~jFt1P=a)b*1ft`%Hb5>rqpHfkcFFxa7)gSgSRNn>1Nsh$KgdQaDe$2Nb-aF|cqS7?m%@^jDZ$A7rXkh!&=|CM z{05l#bPMWpa|6Jn=k(A8>6Y?ND!^IQ91CZSK}4@RhBh8<<@z4*LNSKZa;J9QTD7qv zP3F>8Z^Yx4dz}BR(oX9+h{{|i?M)VOt#`{C++URxgLp`@$M!&LG%7f_LCYklPYAS} z|I~t*7!rRNo3dKCc?ky;c32|i49f@qzo2$zQxie$yu7nBD!Mgax##Wu%_Aww`T=G; z(6s<%>h0yeH%p9+Y?~=x2Z=oO$$#u`#g&b_s74NlQxbQLo*rI)6M;Y&fvyC`vNF&` zAQ0=Uc}6gGqZI{%AD7K4rz1{Gq7rvAe;X(Tgq`;J<6rOlCi-`mPc}u`IYi-_u*7w?= zKSnkIoTf>fs1im{UY28-Q~Co|9AqlnS6SddOeLHW39NM8qRrjqK@Y-S}mC zcJ+NGWMI*%9C)Ya51o%%p-)VUU0{&_yMk#0I!FP%0HMUph6a!tv#@sQi{SZA^B^;f}(Tn@vBUTn5`=zZ<60jl#Nj2B|L$3O} zJxkTA>O9cY%V`V1DTaR90#smf7hqi8d>He7bbuXx0bxNU^_sjqW5N$nvMuM#AnQ)e z+i3%HyF71M!-<6g3JU?V;;%0%Mg$B3oQHrTMFG~wMuI4FcS1YC%3C# zkZxAT$%K?;opK87fqnmvJ*=>h4i+B(UXqloETHj#jxxK3;tV8n6SQ_&Enze=V7?1p zhC-hEHtrrF0{MDn&NBX_?e(!e;C!$e0WJ*;qz0jusItpR-#$JAQAgV3PN%opJwO2z zErB~+d8QY#oi*VK(w>B_ORK--#__)3F?`U?_r4~-AbK!cSUSf>4Ri%qo7<}aFS@T& zU6avd)>Nx z_Azi)=a|30UO0bStYLYe6}Uc~o%8sdR1JIcU>!^3qcXfVRI{Muk+Cmrq0=D^Wa5au zZ=L~~DLl@O!=M#YF_PThk96SdF?Q)I3oKgQy_sGNd|DZVlR}e zcFr>jpQT(chkYKxP1T^LRxg1xZl&NL0t&OtHA+hP5||OLCvZSO?_Mtmg)HSM3Ic3l zIibZ7JDsk@fD?f7t{arVPcbrVVD^D~-*L}YRyps&jZo3Lu?#?aEpPcil|?hU9J}}g zzk1^6*QVQW@xk#`r#XUGl8G3S&7=%!%%L{Dx`>Vr`%GfwedJNG?4gh@n$|q;e zmy~GG8+V5qcm7nSZ62!S08;}NOyU0Xdvr54HuhlY5%d0vN2^)q^TQ3xdQae2?)PX7 z$QeepP)bTn{GU&PTSK~k0ce!~f-TJ4+AAuPo)w#BK>_UqM0QoF_zq(hqQ@6w%zHS; zTA}EP(@Z4i-IjI_M_e?Nl)z{Zk3$m@P8l~*hWk#2QQ?&OVf)|)oeB$_w4^3!KPo8f z?*ML)@0Y-%w53!&0#s#PUHp6KPmC;>crjPC>$xj?Z3n`gS3B9cl+KMmcpR>NrIo5` z=AF%c)<|=w3tMcIPig!utc)_aHAEw`=QupY9tNO64;}XLaw~XqPDuc_4*<|UaCJD3 zNhniGiIp6VjqvNV+T-g;@^|1mmwTS_fP)lYAGYF66!C%%i501M+s$a5oKpCx%ivTy z43AE4d#$QaWIvwXHt;st&|(Jt@w^QLunoo`+|DKdQ)Ov0_yuOt*@DAJC#Jy9smR;0 z_#>Fr5|*o%jXZmZG@keRc5ZsF?#@D}zMi-3cYB4Y^OE;`!1A&yyr{ATCbs!Dz(7X* zG3IbE?S0#e=|g1Bfk2M7@q496(s+<|7Mu0yrmKwE~kaE`8n`IG9`O& zY6JhYc(2AyniyOhBCoaoFvLZGhZ(Dhl}<`R|eB=Bt;K5s&{FyY(&lZd{0r#G_WVD9Z=Fc69Ofy{1OZfpsy563k87aA`kJgTOp zE`&&TRrgU=L`@^sL>{L-3Ls+1I7$&JC}T@RgyVc%thSVtp|VW{XFUl!pB9ABOD=Ad z;SMj%2aBT0l8Z)biGBHwfT@7bfD<=+SS)lrB$-d=JAc%ljkdAZRU%w!i>`V){KV8wYTFL-y!JA^OH|^E^33RJ<9T;G)P(Gqq|iB{*3HC&#Iy4_wW)44=5cg z06YNE5+EO2ruvOBus_j3bh>d-!p4S)YuOVYGz9rs2m_>#1*xFa`{kb=37hv~dFkve zH)}<%%}lU~1|(5wZUT$D?uK$8VMeDf$J=oa2EQfFTgZonC_y`c1B~qP0L}mJMVEVV zS##*-Vy*HpZ6rx5C@@sAVvRL-3q)U*L|q{!jA9K=feYIk+lJVsjsSr6KU7p8LcUUh z<2Jz{`S+3O#AG%RX`9rs=kEj zrkQ7pkHqvnng1KeNXIdhifBXvhxtjnSia|Iu@Q))@xU&Vv6~>2RmLu@Tay9A7bJvx z?n-l_z_Wm8fbX|-AS7N6P21`7Vq8~iu0Bjn_clS9Dtb`J9~+mW5Qp7NHdj%Nd^WDL zAJ?cEOUuob>djuuRxfQ_{Ho4qWgjq}W1J-qV1+ik98X9ZPjb9%QmB)N8UifGJ zPPvX_WPbzBDuKMOq+|QKB5c&rp$%Xpqhf-yQU9uNB&}h_qht3=Y559nP#7E>p8yL5 zxC)CqTT+e+ryrk#~20RcQu^ z+p*(KMfYp=a5)EgUR4$QS4ETk;JwtX1=GWh#|Q+>d-325^n}%rzW6eSkuuCzuA^^t zR`WI|Dm1jQum8Qg``z_dZf|Lc?%LjAA{m{zh~K-9?kZSd%{2ACQi5YXW?(ph=nfy4 zFf`)IfKbx|%A3ODz)Kl2H~aKN@l1Ww5jo`OEu`n_?3{+S?pK3=iP5;PpUZ;yW%P*A z1u@(=r5LR!tTfKlLR0#Gfhh8N-x$$F(2>MLK86wS(6x;^GWSFfn*zUpCb)f}{#>Qy zUy30f%+6F4f?&`Kx(+b9u)ojg@4X=kR{4>sSNB^mX$OIowIwW5E#;bxnQ5A=c*;c? zTN(QHqq4BF-^^jeugI@LzjV?E`E-Ft1_Snw%K&);YlE|pdIDlz8Y|Mr$cRF1C5VytmphdM=QSp0G z-Tm80O9CFLWobQ8*)+ZETrDWx78_$R@iAp*;?O>XXvWFF@GMl#h2ZcHF7wj1_ z#Kp8`S%x;xY&zc`k5;{qrxF|8N3^P`MR>JLj@?irN~EZG0laHif&}~z z3%vk0H9q1z09nWWWaSxXnSE&jjUZ^Fktw>zQr|{Gr&LrJQ%KjWn`DFBE7L_HX~i2@ zh?(Z~&bQ1n6$I#I@3Ob_SPRUPfeZ#*j*sJ266rrxwSjgHJ9Y&V^}rG}7~t1-RRrAB zP~dG-3X>jOQG)}Q?-4Q#YlWt^>T)V`E>0`BR#Y~S%j;p_W|u2$T;MPVbnc)@d}(91_x?4FLu|! z>@|G2UXb+mB3~OHqTm!!M~onh_@rN6mj}*%!2bn8bUz@DQTB~gysGl@Z@^*YSD75t zDzgQu)NY%xxZqfx#ibU6*t5-VH5Vbn2+wAiipyFXo1ptJEnr?C3>3Wqt9ACS>Ai{r zz`FejA4Xf}0mH#WbvYKF1*r1l_sm8fG(wqFBH0We{OfY#WzeLU8}%!}A^09I`%G+> zQ__QH-)T_zAM0O>p`iJsn*4C78LNW@b{+yy%plafaiC_Nt_B{jpQ-^Vf66R;tXyk} zobCKo%5WK}|Je)C?G@80Q)9wk^L z16>J3VZwo63q}hT;jlQqj?kgc&57X!#X;XRlNnphXZ^O`z8sbDlT_5C!3f2soT%+8sJ8 zPoOSqwneDLP=qdG=@d42t5%KF_y}c579z#d^P9ZWDXRT?R6!&j^uLHY3!p6bXzQb* z(p{3$AWDNsDlOe2UDBzPq)NB6fQW!}OG<};h;(-<-OWpU`#tyG`OeIlIXWKXeR%${ z*Iw(ltFB6Q45fmdZ@w3+TD$T@X2~}v68E6~a#|mL?ySEvI`SPZ@`>iJ_|a1Zp~0flOa#P9fmgTf-9YNAsO^Z13YM|FYnE~PKl3yggERq8xySkS{=kBBs4PRP3{8WwzCP8|CR27Ye;FSXyJ%=3b%v4z8VXzL!mX}Gt>VA*$4W>W%@VQgHr8)_@#C18*sgkLi7ywW_4m|1$@i#;N8~n}=@>T6*DN7ATr8qx{lS_tf8;?(C0F&Btb_%RKRfT)4YPEJb|ZV+it=d6Pw(&v__{9Ph>|Zkd@)%ex-qO>Y-C)|D_YTX0%g%{6_!`C7Ts z<0uEIM%j!NuUAzX5lI=#dIy}qNysFS9I5&8Wee|?LAiyZiL>M~g%ZprLe$04ICw-m||ulR`*U2#YN93$Y6kaHH;8s(&N z0p|*Ig+FAj3BXC;ny<+Q$v(ON`;IbLpv%kWHhcCrj)QXy9}K)W&0n7dAbm5D*-InC z!#}TzSma{E0{VzC9)D0vy9PSCvkJ z4ic(2dk%{SRY%m#%)By3I-}RY$ZSGfF;=8IV;75z34kKk?~o~KK_ha}x~mO9VF>IyS36UC%8 zqj)_Pl)0Q1%^=7KhBEMpF$#Wm71ABbMnnpymZS@LzD%Ojw+;F4TY=lJB%LutR@Y)b zxX^{Rylh=)YN1{58|ks_o0in($IWFPx<9-OJCvW$)b+?L;ui`^JfK}S%RR^Ao~rq zE;b(mS1h5IWpZonDR#rfg^%F}`senbkKmZ#15JHghZ*moGf3Rf7{hw!;gF|Sj+w^!fxIs(4jsnzoEH&=tEX*alzWeh>H#h%0?!Zm* zo-}QX(Lr4$IZcWoji-&n9S;f}!EaT6{wRQb12zHwwgn~|GDaaV9FBv00P?DN`Hy%T z2C-PybF!F6WvUO@N*hjvt6ms9&C7jSGlS|-OMIQU{fuG$2-qDlL^+|M+$fM=)q#(Q zG-w4He~dK+6UB~EWuspPSy_fh?JQ>6ju?ESc6+W^naZ(s$?VIW_SfD8w-JB-6@BU{ zKnvn<=x(!Oz^fswy9}v`BN@~v&k?# zt=5HZbkyy3P7k-%OMO{QP5Z{PWA+~R>J=f&0^+e2Kk#*9nOeUHt2+^n5(|Y`tw=$kTqfp%SO# z+<+VXi+53|=reB4foS0_jluQYDDnh!{Ui)CX>E(wdpi zh7Y~vus^x^{d4&7Me_{*tu+C2XGUfhf1`aCxaOy&W7j#s-DN1 zrF7KnGXsO}1{eSS(y8mw8z)Ih!o*<#D4LI?H7Tk^RYqdX%!Gs6_QJv<|BA0Lxr#z< z_0F-J&k@A)wYBTl11HwpcCFTSpM_JE(PZTjTzgucjbyOh0e5GqeouOgQH^SA^XB6A z%cz|4+#IFF(~&l_+1Iy{0J1gN=M(Nx5s`)COf_}T_qBriQT8gnZAl}lzB>+FfSx;9 zY8%GFKl8GJU*OE&HxnB((4AV(m3E%#W+wGcOYhhGiP#@+o~Mh2vyamLrTW{CAGPTP#NjKSXl-I zF!EI^Vv!T1XiQRjAFkpf<5n!gk=Qii^8kzMN*2BY%PQ#A2*yL`SzoQvn<=L}omBQg z?Fn!Etem%(G1@+6qlg{=t@3!++ezbxj;?in5Lk{)T0P;+shk4` zf{b+#I<}=)Wl_&;JzHh1ak+IEG>s#ZU@PK2**bqhB$IxB3uiqp2A6+S?!XK}U^jL$U z48p4aWrKzf!#3P$dFi4fU!rR3B7~g19n0hWmvjjULyDeTJr@uTGIBI7-|)ytv>6_` z+^nBEshY%~lao@_F~pi7pe=NIBp1~Yw!aWz|KV-g#xu4>^XU1`@{t)?q6>EJW5 z&-HF8`dWgO&F1os9ltn_Ijs)sKUR(S-P4d@cH8d{;ia{PE*jPQrzo15PIc-9s;h8o z2i=a?YcC+k(Os?p(}P%Qr&RxmxS6Wv5tq+(HD`GE8}=9IK{=h?LZJlVD=hW1Ip}vB z3Y%~V#aYU}$)S;sj5y$hC|Ef^YFj0JF=8Uc)qfOLAWc<7Of)C|nuT{GW1G!jVq)NN zW@za4#O1Vk`Heh2;w-CypV>u~w$Su>=k9|mZsd6uP-8!IedJKt*wMkc>wB5vG-Dux z1Rqvr7<)%_|5Zx1OQ34u#EPUA!GQaaUtR$Mz2A$}o|dON$O{rb92Y%%no{< z&i9gdD)4b)tw>!PTwHP7vJT7SA6WbTgG_pCGqkHWQmKJo_-<`VU`JyfFY(AO`S9pZ zX`xb@#k{|n`IdK2I$csA=e{?0%{SjFxS4Uq<~Ws#>d;uESZ44L`3ghb@^`}Gx)&~c zAhZwW7apQmh&5z~LI(ys2_#_w7Z;8GZEx07WOX)VcrrTq9$H37W~=F6lBcR){Z?Y& z4v<||^Ir`xKBOh8{XQ}fvuZNA^eyKaGoRehkY1lgNq?rzy`fJ<{Xn2)zKHj6B_XJR z0>Wh@l}~-H-F}Rlc#AKq>LTtE1u(@@(DM5K`j-9gntk18G9$g>ncG&iS(zl;^SgdC zz7OPBAGIHEij@{!5e*fml8t<+nt3-deMqCFuHZz%qd{bSjquGo8*$(|=f8Rfv^2$; zKA-13G*^S?CO>cz1Zl*wT+4KdK(703U-l@pku2A`K7zI`D9~;r**x^HqOd#qzVV!aW`*;Xx0zLPN>>CYT<9bM{KjUFng;n=aZX8f->`AMG! zB{0WO_pUi-_}1owQ|M z--)sSsf^8Bu`mr8+^=0?g}YnRbz1)stIR8Q9d85MU-|o`JGo6hMZH@Tkri+L_DaBIFx4R;8cjgTaRyxxu_(en#^-PD_ ztddDK(g%0fq^%#m6k0cU2oVyBbj*OoiI>CQ;k-2FwzG06E9$BU`}4=9Y~t!?fIQAK zP35K6JyNRclfrx){vT$pcADQ;>6f)hItuPEiChXr=qR(u;iYWdo8Er;NnwMKNOuYp z^1UUQx}(;q_4NlR)AldKmn=!!ny;2kBQXBuH5=($cnMH?9+2dRUOMYlK(1kr^_wSj;pl$Ig(E`W22pLp*qs%xKCDpn>MCIR1NY7DBzE%)mOVU5YV>Z zNT#V-XJN6!Bps|=@PJw~E7AC)_m$v1{U`^a$L})ml7!=bE$30;S?;gJi0Xx%UNI)7a3ci($#Pgy#1Qn?mNw|@TCdQ8MM7)jmk(nc5edzsZeJ|#sSgxuxxWb@C8wrVy%vrQ`Tn$Y_nSaPu_z_Z+*~R;@gjN3c#z(8K+dHX_B8 z-{q1o*V={B>3#e6n{}5?gG1L5o14Z0lwz4|JAtl8e;%Hc($QJ901hjRZ~h$7_4PNv`B!UiHk{nj5WuEC%= z2N+(izbG;|`9J3651>;bNtM7_`U@eC6)^FpQn~5@k2TQqnD_g?UIxIvI2n2pzbwy5 zcNgx_GSxUlTVER*PxHwS%e0$?OTPB^WpgHlPjRa%F>3kSp*N924YDQk{ri4~eJAIn z*ghfELT;P6=k1!)O3@Vp@iudt%OB?4b__fR9vYPuqS>;SiSIL3q12!g^2FnxGGz(9 zt0)wly=65l{Y-PoFf*HFz-~R1P9+Wxr}H}I%hhF-ShJFb8iAti{=NsZK+Lg~HqSU! zPC82I#O~Z%x6Fjwd`I*aYb%kXxeu-oO|v5djFk|>0JVh?OhczbX;(kNC;H>;U&`6l zNmC!#dx)XWS z@$YD|D(Pec-*4r0E^#Cv305oFh zxkgCMI%J3|$N}-R(4ZlCZ72u&q9%!tbSlu=IKi2vUp_Vk8X_2gz(&d9ngsRC)x{b7 z(OMn}`*?`o5Bl7*OBk~z7(%_>FDG}uE7X9`77y`mS5jmKOGfHh?fVSW5Xo%(5Uj|$RB^A)iu&!RL$0R$4&iSW-Ygx(hZ3}!d)}z_ z#1R+Z3O|046B)@aGO)ej_HA%*HAty?ifW^Jc*gmpXch%vHyV#FQ8L|VQ0kAQ#D_Mn z(T-Xq@^sE`WYmqWtuY{3uD}azZSC+@grEXAm*AJ*+Ba^H>bdRCw?J5jxk9(#GOrV# zYJi6&UN)*OnUKN@=Re)fSY4 zQg&Mq`?iIQZLOVCqsRF#RSo-brN0op7JAJ9BuH%%LzxlzlBJgo)R}(#DBog~d@YVV z8Wf9V`~Lj-R$F@(;A&7p3a26)-DvZgGoAm}+S=NgGzNw2u8GMA{yQJQhGjQyc^T?9%xF_FfD(nqIsJ(d_2V}qgP$#jeu=#{)b{2c7dHx zHRz^dfD%Q^jTTfQHO7qc@yivQotm+HHsl^usdjh!JqR*b1Q&K202&|Ybj!uXw{_vv z-kWbTkmSzRL_|IT&fM7IT*ZV}VbNoc8&IND5PU_U-B*b_u4GXqiYDr7f)EV6WY8H+ zB~i9${I^!CWM_w+pZ_s6HJ+$xD9q%$+M5wg|6ZbWEArpB=EPa#5^Zgi4n5U98Tvjx zBL)9rHG&QisAnd@*Urf)a@fGMAu5Ke?{V8DoVt4SGjn+>X`i+vi`*SR-cG1(Kt3JZ(pS|(Es z4g^KYoCH%LGNkAD7C?7}Z*1R;f$tR6uSGhOAAZnKlh)hIV@b>(8BD{AwIiC#tXxr+ zWf-TT(F#lu`+=kRCsXn=LmHozgbYe(^moqf(%4^6`}l&2jH{}%9&&^qlQB5N1Euk+ z>#H`vv(OsD!+@+!l!`1E&P_LGJU`7gym_wNgdS_v{=`P9S5%3X|Nc(`A}Omf1NlR3 zw4lf8FHZRRr>;%PFXJo;pEq2s3^2u{_Y8;(S6>Z;1^J^RU(iDMau;abzaj@sgPm2nPa``XUsb|U6 z#%&}QS9k!AfzJPrQSPe5wgr>f`U3PIC^Pj>9uE$_Ra2(yJU?OPYAPqn$|lKlF#O== zoz(xRT0&YnsAIu-a*3L6{qSdYY3c5VN?r&hK@eHL)aT#D#tl&R;vo6?lU?lfGTPbM z8ENI$M+84=m{sSCJsmI3Nh9R+)0CShoZJ<|NR+?p?9CyFkrwlJ7>YmBH#(#`$EcH% z><5QZAr%jF#1GH>bk5_Z4i4Aj`;vGVk%S>ubtZ;QVHe(lk!JvuL_&KY6Zos|8ms(l z$vi5GiE)p3F^q{81aOpvT@+qBZu0|s|KMR|JH@sY#ACYXuA?!_g)^d)TH@Pnzn~9P zHqjW+b;#m#{TS_z!wq(?@~WvsTK`dNir}i!DH_pcub$16w8TffE+#4(mu^?Oy=FmT% zp8)z(F_||6+Bc%7^M2#6;0_TbdLI1bO|rw6G2#oixgf_M6eFYpFC^5|FE`nSude!r zFIRJhh4)`PaHYxEUNCGQF=;Gd4HbX(tip4*%v6SuQgI)`RU9CS7bObp*k>#J@Sk$H zCV(tTtGzE4tq!|6Nm0Y#IYkv7lXC-@3xtt}N=kJG%hmb$BLh%UOLgY5^L$iS!X!Hg zm1TAIgpB<+7WglR)0y-3F>^K^`~mOe&(;T(NrPbH1>vrP@ER; z6oZe?m-b8N_)Bncf^Q89q+0u#$J^s&^pG+D&;+zv6`ciGyXx(+@8SAT9m-}V+sS#G zDpeN7{h=s%_FRPzp+r;m`~mmnXc?sS4v;JLr;A}4nwop@C0<$OZT8W>y3)@lNS*YnStc1PyZlhC zUp;v*w6ndqI#~h%Yq&!#LEj&G#QCmi?Ix*30I4LBO0TWW_p#=4@p-JYGGV0;sAQ&u zJ+(MArXhZXZ11D%F^Ws9=7m!+tV~jno^_K?a7lRoy4mHELPuyH(B z>?w~Z&fK^RE~Z_tDY^(HXfgMU-QVYdg1W=plUh;e9iDmXLK2#Br^(A(s9fPUZ@w4e z3iqLMz22&Pd%y&^awkEadtyE&8Esb8mxxSX2e@r3hg9;RK+@;muV@J@N`c@;Z^G;9 z#nU;%_Zb<%|1bvDb6;fvN*m|;apO$;fXg$J*rcScA!V_iHe9hkez>Bt5TpkS84s?= zp-ScwR$Gmc(ANK_Xalx_8&axYy!M};pD24}N>6Q+hC#O{}~T z-`n;mF0M)jhc#4hwXOQ~o$P?PpD|&o(LD^}fzg;A+r1+-`)E zz>Mtd)QeP$2q(bac46{ntQC*eMt80?tGF2fmcffTmWnq7)({Jhq?$tc^yCf6KX*?Y z#w1Ywl~O~svT68jCD~-$XprD0#IYT!U%Edt|9Tf860N$SJ;ie^+w=2IMy18oUX*Wz z`=9bYQO}lFp&1Zz#zp??tY)?aM(MJKT}nAj8(X4`wEK2_S5$LN*EJg->d=z2ogm2z zgJ8bJgTZcpUk#3}_?VEMm9&zj=Jz+i1YrY8Ju`m`T7SW9;`B5^L`-^Vu~Zm1J-U2qcXM z`wW9XOmB4b0s~R%JMTWo_b{d)EjdANU3gj6>B?Vx?7ba! z<+E+s$>&|8H)g``fI@z*d9Tb$NKq)XyAnlnYuv>Eye|KiyP&1T1U2SNdi6}aKi=kC z6Y0B!Hg$^%CL#<~Es~@$G&ODZ z+((h3?82_X(`UhlH9GW?W9|N&N&Jh>KE#PO_@QbpEnr0GE_-}-j87I=5Yj!AS8O2X za@6fF{$}9FVAX@>LkmT2u}_8F$$g@y^mvw@>f$L|Kh8UndkS?`oQc}~X08zYbFT8_ z$@)s4ILmaSUPJm}anGF-a{koQd_uLgt!qP4Xtcln{9zDj*w`5R%)$MdSK8j7K>jMg zoUW$yuj+U&9bt-Vuv<^Kiss>aKfx!-k=3qS*2r8MJUu07Nwk}k0kRqMsp>!;s?5+H zWCVfz#7tHnk4=%$zMl~i&dTqRz9Es9f6h|eUfeQIw>Ysk{M9(Uq^sg~&cT-hAM$6a z?8UA!&Y_#N=05rO7>`;vyic%_B_(0#)5d?XguPd zQWr>lyzsgQI$3OBokY0<-47?>J5+U-FTXB{a`t@U3Pa{$AhTZW<49mbR>b=7VffKg z`P;QtkaXXQ4gIxL0TdNeR`ggcN?|=F|zT=$r(c_6sMz@%i~DyY7vaP7y&F?q%S7 zT&urVaKx7(6gera>ijSv{*!`k-;ZH`ygl6aY0793j_wblfBEwpj;$aPYcOuz@vENS z^O9z%$n7%y^KZn=BI>@#r6&|Nrl1RtoZn#|BhV}E9;onhvderyM3X#P7UJULGiP6C zM3#~D6s{R4-$pZx1rRzzDzEA8oi-j(weqaoPnNYOpCz^Nz2J;?BCHko&H@CKAb<+` zU0arwSNHSMNd)2RO;0obTpm&B`v-ZP)5{r$2Sq$b8>AqQlzqW|s-xpk$T>AyWZ>0E z1FtKKi%SzN8twTq>31@Qnl8TlLE9T3WXHE9sG5M&YWf_jiKVxAAnLZ@R zH*_bSJGmlm`)hqj@4f0+?~Aw#jI768Wwh`LV?xX_+3@O4I!gq`5uaJ9$AVG5p*I_A z*j^-pm$VE`21EfkYl-%`-z&LH! zeS0E~uTfbuzz8?OcL{YqGGX3nMRN9JN*7lS3wwnfoRilb^9Pq=`T4W?b6doU5By6B z(7e#2EU41^M;;l>Eu1obO&iKyyr_vdAJ%eS9jO%!6&3fKqVFqvdR4hOFXkvD|z?^v(2I4?<$%pxgq)ZSiG2XUT&Y_ zt*ow#V0QL43ma1(;em#T&I~P+r0``mFP!BlTPghe9t}uz8pQX0nsIXh!EHtqUjV2% z5IoM!|Gm5LC@pN8Ws+hb9%dj}R1$m?2YD%pa&OJXH0Ex@Q(voby{+Y6TIHiHq9{bLGI3ic;d-h1?Zj064Zcm@}bln5-Nyae|ol&oyTzfs9B( zoS+-EN0T{{NSrML#O=UIJyGZO*u^D}3wKTx0}~Sf9a(^=fNTek%X$SQ{1$+#1)qw` zq2cI`Xd145)Yp8F6!bTbS4<=5GyUGuw0qZC)Hzf;hX)!j^Xisz5G08!_6!XVpQ>o$ ziVNV=ffW$*<;%>03WBF?wxe7risM_#1Ql+_hrYzU~dRz7w6y2dE z8~(HPE=_%3vAz%>V@%}iIP5+qj)fHz>j0dH+Ppjf=~%67MEk6NNUo?h$$d%Wof()N z`*}4ufVkv@Q76sb$%t$qRV~@|I4wca^m>JwCwP!J!?83f|4zz?e?ki={#td6zrKD&Sa1}fEg#_MPN%f;xKvxq zY5Rk1tkqrk1^S&icwq0dC)J?u0pBb5&stksAUA+p{sVE{z&|{76KChfz}B0n z!s0)wQ2y#ajDGSfWtEX%+h6}@t^-_AVU@x&Q3HE35de-*zFK*fP8b-S*b@c>2)cSs zL5GlSe>R}+L`0*KEM-dy>*xA2B^)*Snwl?bcCC>mI3(q3FO$iGweA_z@lW0{X@2(} zi+tF7>M3v5_wOGD2MIJZUyYYmiI6huewDny+LfZn`(v`M%L0g5uGJtiy;ddIDM&0sl3_yYupOq@~(#SX+Owf1{Sk zLJW(vqfFpMyS*=E`CDxEv5`*-Qyc;vW`dID{}LU4m}goEO%ln-do^AM732Oes&ij5 zrOqvxoc`3l&&4$Ko}_@CEwtI*ms_h0nKy=wqr>M*LPGD)kXUuPyc+-}R4K&%31L&U ze@=Wz=q=u*k#Ti(laD%>&M5LU0js#ORSjMDe-R-#jCn}jQaBbf`2HXY%_R6)=@s`D zt(cgkbl|gBSsh^d82ns{{8`ejy==`|i|tfB9_ zD(-@BNoUdnd!Uxb{zO+Bx30`UOWL zB!n5|;$Xyc`uE4m!1t0^tK=#UP90a-i!KHtjJ>lJoA=vucQRPTgU8=eaDQ8?l~wBo zLrrDA@uw4DJF)84WdUT+wAFu=Xc&T}{YQ}-IH|V&rSq;7(>`@ko3^QwI`N4HuT}J> zonI4PTDvdxW>g)IoqAnQJRfKm%VbB*wYCa-j?G(mi9S;8YH1kVg1IxLsMw>fp|RPv zaS1YaQ%3Fi+XoMD;DQzP&(%(9DPqMz9*Uq#09mVndjJ4!KnPs_I3C*tFbt3q0VltC zYKsqzv1o;8f4=6Lx0~A!O zKvaefvDR$yi+P`~qTa+PXEi$cLqwpCS){1(j4gE5w%hL?nsKYGffHAY zeudF)2Z@ZWIITOvj>6E(SY|8;PDwM8hc$wKUC|*Z-f*rC53~PktG05T29L)f8B!er zngg?7oV`3eaXkn^4hj*p93HAuHu&JLiJg)T`ks30J=Tjr42EbYaL79cqa*)6TYd`Y z#X=u|1w82(w6AlEF73Q0t}SyuGRj|I(NO;zl$WT{dmuiZmv?3=4g}lAC}S*3{vWUb zZrvT-IW~ofxFeJ$F(`lR0tsx4t2%-pV|=h@?dXpmj3-HJHRq53Lq4a znF2te5d2-_iQPTJc|)sHkDu4Rb&~*^8^8G1t*NlLBXSD5{Lj9frQ+##RoF1UxY+hp z>HBP+(k`wNtWBu0HLm*EZ6*+CE`*e?Og{A_X!~Y?b2rBpGxX`aC|GMa!)H-)^E*af z1l1f4;zj?G%+D8P!Xu0M*vTQuPu;iw#^Z_96uacu`S>n^CL{YF*M}A%tEsq8PO9EX zf`K9H>tlFyEPHh6Hk-yUgl z`|PVL9AVF(92zw2`CjUtHl5jVGOjwKzdxA5oyR!sD%0U2x?PfQQjq4V>i?7lqj$$E zHuT2<-r7u4hLvsv5Q^ZOQG?DjByq?DdHHOV{}VB1gJIuGcE#faKbhoMCm<=^S5m7> zb?p9p5xJYg!{aKVDH1Vq4)r&NEIpZ?EW>Mbsvq0Z!NT>kFUqtdW0TI%-#@**;7B8$ zZi7!p9%g*lv2#rVmnEmF3RUo9V+gLz6`j7S1GvVwL?N;yLN!hjdXXH2=P!qskX((};NXD6Ro` z4dH5Kw$#Ca44HbLA2N!Fbk**;k`bo&iyIkd%7=x80R&HC%*DXxM=+~;Hn;sWbccQ4 z^&Dea=%S)gM$Qr7M73>rledvgrw`ogxIbTqdecRcj#No#WaJV{YR|MwCeKbT_Bxw$u2mfZI^Kt7P0FwmRn#}wMNb(=6D$TAS%v|&Y z>;VVdfQg8{{X0)Dj+yKWwr{O?OCOnbMRuRRVd!aI)1Up8y74p*;Tr?*&&pkb&;5VD zRZ=5ds5d#!4?QdA)2GzmM_!>oSc51C@DXC;Qe&)p0n1qPH$e!dyT~&Tm|vc|)FZZC zG_*whG9))TSmXq>EPKr+Bc?=fHAN=cqpjf_iTwTBW!1xZ{ol0uNU6;Oyqc8S+Mqgt zstyS1BQ?+f(l4(7bMs$>>LDcl{GP`a(~TIm;sVjDBf=1c(`NK@oW5JehDV{uPq-H> zTlPrBG&L|7`R;T1kDlk?AxwSWqi)u!wx(l>j*?iB_dTJs6>}5Hz+*`tE^eM8P#mh+ z|6RbDr0`kzZHA0}gj?N=p4$vTag7P}+FDL-@obws$CJ}j(~a9HD;Zr%#8y^f%Cd#E zq9jokx2XFb0O=q^Qkozn98AwtQ5M9NmA-U>t#M@HXbJ4zsgN54bWFQ>IWR^wwre-2 z*_*uBU%u3z>n~?Z1*qZg_%xJ(-Wh;hDLP7~uFSVwg6#{5X6MRSLc|~O<~_+C>(Lf< z$CYw;8(m6=IvKKLDT9-Vdv8)IT53%qFynJ|@DEANynbG2cKgxeb7#c&^#>hq$|c!X zrvSDZ1|!Px19$x5!V4&XsjH>6aTzS|6d|gLTkg})yFEkB$7h{6tv!}mo*$ZFTG=RV zx8+MOsU^M`A;|Y<=)EUxJg!mLegzblts|?i;1!^ytgEA=*fRIc^qs^ zsz4uwoTf?EAxHpyNQm2OgzFpd>hCmN<3MZ|XuC+V$zaqq=+_|C!w@teLMmjmJx7Oa z;ih!StYy0txWtKWH@rw=4_+14VsjBYXT5iQJ~J-$z)|ylb2-jkm{NlCsRyfO$v&KD z%4r(#2e91 z{DRJdG5bUwMi;9hh79R6_(*IbjX5iQLf2#0c=FEAN(cyaxxZ^a{F73R0!bVoNdSG_ z_EL_O31+XDss3P97oUC|78On3W|{o8e)?xJpN0GJgfDP>chuF@hyFZT7f3x>biAll zRlD^ypPDi<4U!lxlREFfLjZ4Fwq*(f}!;jl)9f%CEn_gd*W^_1k$vScde=+*!g6!^N!labJ1{D$ zwJVmnbfWiI2_s0NOu6hod#1zVIuTt}RQ{;~NxHCi2%QM!AsnzO-g=num*w|Fe9yuz z5qK(}F>p87;ntvoiyy#UDypi~HlHw5)LsVy18pd&tHx;wIW;8ex}x#zfizgbgP=>7 z*2MXjROVKhi$+^umibJ9q^czDRBZmn9q5cUDP{4E&ImcqI#abSg>19uHwoAF=%oMa zi^8wpOOOm4F9ap140Z+}Hkv`DjLfbj{WmL~T6u_1t(V!~2*yZ&NWucdx@oV2E$xRQ zf3X!nio6~6N-B1yB2$rdXwO~Cm@Gg;BM!2Z9ixe0s)C#+*j8b4`Op>H6gtyb-QGJb zp1XPu4u*(FU+5L5qPqETrSclS;;L7${QwD?&A;tn@-Vn<0WU{6?cd>=NhlnQj~;~_ z;nuBuL739x!76Rxl#F8k>AL;K3h>Qd7ke@&f0Ew3mD_o@Za;aRJofT`hS+~$Lmt~q zv7x%CdzWWi5Bo$Sbksill4W+kR6O1JK|>#c$q#2F{DjCjjf{Sm&|CGz3ge;et`~3s z5~L0I<;XKY?drriAq^^f=>}C{s*c2RP{n2wTb!h zSo0SDuixCOb7CNLy;=E+6D7mz83_U_XOb)Ll%5(IF)ep)t^msTlE=4{#|~yg+1RAK z;)=?BUmfNe6_Q>*&$Rv{qTlug(xh7tb&qcZ8bdlv()^EQH{JfWO?zlmS5FTThVZ;0 z5`fb)Pt}6$~n=SDRy{=$<#ipd32bv!ptS)zN3BmRBg;27oXaBY`|JpxIPU&GkW3O|2EO!XNVUr=2=yx+V}0 zD5ZsbuzG?&KJg*?QaWfyK=GqPdR+y0Cs45yk+|9>U2GRaI}Zl>W)&J<-vj6!6GzF5 zC~b-UX3jec2bZNiWAeaq0Tv3tWl2r}G=>)?)4rs-Hg&RTDK8c98!qrlpHXNFS$>0m z3oSHb(b*g+(rNqsnw&g&;@B+BVupvodSr-)^#IimKq^6G+zcP^$a9o^n+r-jk|RoT zb6FC`;fA;Z>i34&{Eu|%C} zn=vKW^})#r4Y*%_i|%k-emD8md-80g~pd+V@f{9yS6f#l5Yx(frN z%Lzbpz?DkHvszaj$*h^-Q6)0O42$O3^%z@vjh&N`5t#pg1Cr4|t%^<{v6Iu$MLa&< zLf{r^y&ri{s*S3}ru}fhcV(GOAoV7#!tjWQtp1F$=bsdNiy;@dYiX5xp0I0Z8bdl1 z1|Cq*dUR;$vk)!DzcBcg-O&wmRX*{ogo1b}+cCD&cHXNN$K<*q?#vSwog(x1pMHP) z#)oC{6cVt*zPau94A?7D(B(#QsS^!Fk*uFw;AH^1&7rA*2&i+wU@LBLMYpe3uwMl8 zGT0f-iLx+)?e`+LO$gAUrCg3un!joFs!~l%NT`gA8s2@t_BeAxf2x&169)3ZF?|bG zle8+4`JYcM(?8w-3d3b%tiDPch_nFZprdc=0yJv02EEt%n#p&jNNZuWq40I)FHFue zG3>$Xg;fmv`=-Ie>CoH;nm9<7fY9w3$dn-fqqvj6V9nJzBMkdfdGVqX;5N^IahuV$ zPC^%*2MsY$PpW|rLJ)!lJs2gsEgDF0JZIphjnsV(o)zCm)U^I`_Z?FdtOaEuO<&S* zi~)cXBrmqYk}H-;aZNQW-^SV+CO&YW0IuSd8Y3SHV3_7VC{-$gc^KwB*WS-K1}?zx z0+1m);hJ^h6aq4*1pRXlCMLFUAQOBC_+oo!UiFv9DbUmhX1@KiV93vvfX+lq-A9sN zAa)&nR zH!mB$n;hWg=7!-{y2zO*poZC8V(2UEX-QD37l)>2YQ3oT(4*@DhA9zHb?KRz6Q4Hs zks1~%I}1GT0t_-B;vm1N+jRU-5k@BxP-)?&gAI@nesX}^iFb6zivA`0p(SP4Jz?oc z6!WmYBa5nw6KfPmS%1657zogLV7?LLmqw{Ywvtm*2@(B?w&C>#idv0gY5fXhKx2F+ zxy3v-&Jd#U()3L+Bv$~Y_WMs#Ih>oIBvGt}9}uCTA`zu5Y-~_8TwWh<3ybFO8(f^O z{7Fc97@PW3`zAUnn$37L3SG@Ry3ns08wP)MbZv@GCUtz|bW0{@J=v;fr}B#$Dz|Gi zFu$|jzn?;9^Wh=wdxp)I%-w|+y*p9wqh)_dGnFqRd>Y&Vc-8yIZGZWX*NSl8fp;&X zkiNxQKqN`Xidqf0*9!IP0)a_*v+>@0Bomewt*)SAXm9BiS%kFj%XcbS?NmkoiT`?eGeJwch!LC4r zSfsgjkAg36!b$c?^pYI5>0w5TgeR0pUSpfs)t)FLW9J7drE*>y;bR181|QG%^PvqV zT#ENX4sy)Wqptcp9Ezv`Fx-lSTH3BXtGAft!Gll=`%e-&I&QwN-<(%4Jf^FUi=$j> z!=1~7sjcJV+R&Sv$|7~2u768^baeEyvvVj@#-p^&O7)T>t>f)wMDv*oMjwo3k$Se3 z7_!xqrT3a~5|1_{VwDIuN`C==S@ve-MGFq2S*o(V$DwTJn)7$BGnp&-GjV@z#UZ5s zmrd(o+nV!WgC{PKQAa=S_@IA7&U&K~49;MIJ&FF?nBP7RdERBW&2as>;Ig<+zEKWScadPp`0d);&pk11FnsG%a-DazyUemu!#LKOPJW*{yV-K z*`U$4W%-Oo52c>VhUhB*ms%!w0Oa$N2!iQa?w@}2jJ*X=xZXK_bjC|nk};Uo07PV9OMm5yjkCot?C~vZ z21Z7p?A90s4f%u)=CjVHGhNV;7_)IWJSZ!3LbBA~9%LH@5e^=Di2N@O1*YO0?{FBM z?MLMm6kxhqiqE^&o$YtqdF{5S{qF8F;YY}kg0ZJwo_NLvz}Kt+0YL+6&hS_px|!d$ z+;4Iku9_e-n`d*V$A*OcRZX`sU#9Lt8y!97J{C~Sa1bg zgsvgV&-Rx<=LZ|=%PqO@S*fiOxfTDR1BodH)}$li5N;&s%WlH&>knfodTyEp0ejga}8%R|{Wuy}L01Po>>9 zfe}TrQ<m!w2up@jb@gHzSsJv3{9foU#Rng<-ySPJabZ)6Ln2*i4zQAAb{cvr+_p zF_hsydjY~Nw*v)=eS7Muv5#BPvZ6X5PX~1|B5Ewany+-<`jlR)b~=OwaM8rbdP}%3pPpQi|wc zy_>K#zBon4B99wlOq8_jO5({m0|YY4^1sMz-|Nl$G7L|%J;Uw~tvTztjPSvij--C{ zub`yruF$vAn1s<(Ao@pu)ii?z16qhHGj4Mkg@wH1=^>mjlpEP*MB*)FqDV4_)?ju3 z12_VipFELZ%(MD1GusRl!aa9km;#aLw8Vre#NZUE2hS@Jp!~ymFUnlE$Q!TD*B?P zMmb!IZTT7U78cy?C$;@q`40+Sl)#L{1b=^2Sb$6nv0^g=CRmWYa&06MsLG>fdF_1mREMNzAcl%R-NN} zeS`L_gY84x(w^h8EUo9sc6R;6LzKO}J%wc6Bp6yP=jMnBh`qd`N@H*s98YdY*fYgl zrCk0LJ;GF2NpKP9i+>zYYbX*XXzTuwZi7;-lS$HFuIQZ+^yz^<6%M_-#l=EkkzIT& z7$RWb(tyGm3~NWEs`9WF{(N$RSq#CaxJ8aunMS2k6f7*ia=sd+U1LNHSehNKIw5xl z^@8O3&jP_?lfD=d4=Z$S1)Otgi^!*+w3Lvk|j zk&7)u89ILYekY+V^m1^;^yKtD#{(OVeL0&mNL}cM9{c{m$#)cE zW|XKAV8_iYaIstk6uIp$C?%X!%MmOF#Fu;A3b50=9J!Z!}H-?fxZTt>K!y{Vb9b>SZOZA{`~WB0y@o1#X_1oO@9vx4c{2#tvYk1<4RiO**N3f^m$9&2WsM)fv0i4%%xOC=3wPWt8i86^FEE6owLhKy zSJyp)*SBb;x_fuviI!dN4RNR^uRKf;wY^hnhy*{gO_x@K{z9Rox^nY-+L( z9yFmmuiv+|6@{-~Ugsx{{=l-}*qUb|A0~O*)kM>6E>`qubr-(GN0sgUp64ntB{mH? z)WSJVEpvoaw30ViWS%|ODS(5Q=Sh?4|2JiOtE*-;nA!Run&a98g!riIc}Kvl0~cpP z{|OHWC*g%}`tsejn#c~3`j_2v*pwpJ<-X6hrg{M$1A04_n)97r$PXl)<9K`2Z@OXkB5R|JQ$~XDpJYF7RP5b!q+`?ivp;+vJ zrmn7nQqOpt#FnvQBTi184NL;p`C6z1n&l=9;`!BOiYveN+P?^=ml9c0+jD-k1YGs?@cV7 z!&56Lc>JTxgbL8USMMBf`CTn|8RJuNFMd)|Bsk0c+i)z`EK~8Tyy09F(TFRzXViEX zgIYYjJdFAK`KAJ`UfK`JYR5_O#5?-f!1(3mWl0du!zRYl#|U{PU9j)-jZ2wz03~2F zzOI+c&E*dpI22MagLVexOEBC?58tasC26qEfcyvGixT2wm3aNXlK$RHXHi)hE7!N* zg`rn2c9#2b{B3TG+A3bld||aqvwCoj^JslZhm=2T&?f)ozo_vFbA0LJq4;D`Cq_VZ zZb5Z3m(+a9CLkbS=w;Na)yL?!D$o_rw9(9P{rdH<&T<6sp1@rRIM0~AJD*fCGdJ() zV~}%P=Y$Os3U@KjkIAr?ukPcKFrJ15<2OGj8-?0+=Qnoc=1O;E5pD*wagLE!R_} z&z2v-?(!a+rGo>9;)@?YG|xA~rK`9qdLS`){_88;IL#0uISo2C;k`W%(0(V7x3Zo- z1m|yd3BQ|A23dvhuSwR(_VNJwJmMAg z_iDp|@5G!^qNzAc7LB*Qs~!Vx^rweezeyr>3N=P9D2s+>ngTUzwcS?QWfT5;_RO7yCOehGC%qvGA?8O#fFKo|FwB)8NA!nbvCgT|!hqC=700LG#(^+RlM!r-k5F<3>PyLxUvX zFmPKAk(SPYx!STxxqNqV_%_HscZ^*s*3Pr5>1^;31t-=kB#e?@7c)@bz|gY^ znM=wL6m(&5+4Q&A(vZuXYi?S~^@s6{JuytuSG2Vu>+ljA8{1<2Q!Z#QWVE&E=<-u8~y(~4y9)4bv1y`QSTdXF3_PfD72@%xnnS&p7pZDhx5e9*X`G2z#cZ?)^oeI%6R;=)@_WUNjEe zBg>sJ~PZ3 z>hhfi(^|BTPBEKvWj2&S5Ka+o@Y|^~in62oMETL^&z~ao8>hAJcMfWQ4i{=g#>M4j zW@b)C5|asP5v67qO}&icdyGu=6fP=qS>37rc(zvAff!pxwVp+dM!R&nLT9N_ZN@Y8 z{bR4Mludpw?9d9TsyFWW?b}pMI@W3#8I5o*L+jLLSvl)0<|1ZbJT0HERj#Kxw#M5q z)mv=&R3tSrDvE{cTg)$eDX$4tfB&}6#mYU&eSf3l&{czh8H8+UKDKTn~TeAd%ov~kCi>cdp=wejAzUokKZy(ZtIof2!!qpeT-KT#l{rlVrpWAbl|c_Wt#=etDh1q3r z7j{S|uMRx(rK6*x5wX`(2S|TeVx4VV;Ao?tD6LW z(O0rfaS<4bBJ-N`ppK^IvjiZ^e!3|Qj*gu+B0j`89|uQxs$+emRYm~SbJ$uKI!pTQ0+4h0`OyZ(>sNeM0ppE>-_y85vWd?*M4;WD?W8ub z=y}Zs=~pKZ9=h{gXaLN9zssK#7L6DDv((X{a%w&kflR*6S!Zloa)Zwfb})`5`*-z{ zcNChC`jq(Y3t~$l61myQC2Pl;iO5mJ;Ieu@GK)e+HV*(afLO2Qqa&e%Ki(}~cB8$H zFP>8Rado@&CuoqKIPUShx=FYE<|_Pj8CiPbo)wHwDpEh0SRu*s-Mg{rcFfxQPpI3r z8&XY$lZ&NevbeP(h|R1{nNZ__iJ_tI6%)(rTbW^l^zX^C%^9SPyNa|ka0UUxgYG%8 zuCDH;!XAUA(C}!ruUDVxq34ab(dfB;ze2xt=?fHw-U%v9*>2W!dBVlzrweQ`sUn%) zjRlim=ITxYSG}g=6JNXjdNf;irj~7ToFPA<*=X$OWIe+~MFi8|iSi0UM2dA!`=3c? zkg*^>Q4dYg~;KX@m+F7*3bOC##E%TqX5%M`Z} zz~r3>v??}9@J;$GRW07P0`ST{Q_5x0!l)TWNKM4BDF-siYetRs((&_EahZEJq4L`ka z9GpKt?nZ$`{ic=Js}A`~Z?>X|m$@nz2Z_bAs18ou;o9@ZsXpBimgzqjD?5iaL;D^n-7{tZ1H<%xf5x9 z0>@Bxj!Qhl2EE~(ak*>sCl2H^d_ys(>f@ZRgiX>!?!g8%b{>%4q2m9mw}PV1#BL+xS8$H`vKebcOsA1UelZot!S_cACxpO?7(O z|Nir>TUCzlh=-~b%~&sRv*SUBci+x3EGQ41)!Fr@q55LiXcg94cYigNhW{o#pnudR z_7F_Y5oc87&@r)R_K3z;SCj9BN zag2#Q4qcgH@$#Oj;8VYydsSj~i(=xr{nxuMDgct&zdMhQ?Mix;mbYM3nh2e3jcLt3vyir)48t}^ZD8cD&N!V-z3&f}9Dw%0^kPyb;he>KMGQO#Lm`0I&=w!8LQ zZ}TRjhg{;~DWKwbsY3k{SAK_0thO9+^CGyF_b*+-D2XVY!p;F5@bs1_ikO{w`?#WmybU&?NvQ>ryZ&(-}v`)eB0k{875A7aXb`Kdw<)P=0N}WFK?@8kIWqFnC>-mMP2==5+F5TB+ z5K1wQPZ>%&Hjx_n{Ni%5-}bPR$${6;a&gp`+3@%o+xFUy+*}LCCLf6K%7H@+JM;&^ z3!5Xl6V6|Z7^oY_n1K(7<7@ui1!+rNz|nw}*2|YKTdHi(`sFhuG4ia(?ctfBeAkde zyS|9%cPXM%4qCOJ$ppLdqV2p_r#C%SSdYChap%LgF`me>?z>jJ9s}njJOZ~P$noUc z%`ssdeq=+a!+Twm5@!=55AGsPmpH_nK3Dg}+W@`GKYInz-OPFukyy}zL87V6KF$(k zK@7A_WXxH0hXequQsP8LD#b9~3;XyHcZv6~Et57j6a9eb1G&E(RnxsLct_&+vnR5u z24ra}S9U`qGN~VEYGbP{K5jXoR2SsCFvt&F>?XfdZ>}(;tuupE?0`7m%Fq^r3AL0w zjmPdGPEEH>|9+<*%%DflIg5cc8^bwWM{Q6buN)^(s-RepjE&85npSNYy}b9!s+bla z&cHK4dN#!3JClIWF%C?%_Qid>^Fyl!fR9crs(k%Z2|lXd&B)z$7J@?}Y0hp`wu#3x}YY-d$&M*9K!g zV4M;%nv>?bdrv2>U%Li*A`y8uC2ICnV%*hyr=%{VXPG^kL@CCkd7S^wHx-m@Wy4=~ z$VaIC$Wagn?=uNV82?bPL~wFI?R>b&?CPc<cD?ez8C;x@~mFfSyGjwODgV*;$fK8;+%ci_6Yr20Cug1>j znl+x?NQrNMFf0v+Q}_n>kW)D+UxC-V^uHte5j)BCgOZX(X2CVX+E}3)4cy=_VAA08 z;@uPxNra@W>(|{}9^4-iF*-8*LCwhi_g%g~iNOn3$MVuV^lXa9#l2{%9LxRYB^nT> z1{_o96px_xHkXE=VK7lp>nDSZtDq6vwPc(|Y#q?yyh-mae{o3HL{7WwIq#@iQa0aL zj=)yK-TX&c%kG@UWtjYNp4b#GDOm>bk6Pwe-tH)MjUgUhqj$M0{wWQC%qia_17ws< zN-F(VrIYPw?b9JW-Fry@lPM;YLASVH{ynNloJ`!M_kk4s#K>^oW(gVvQ!UkoHq3D0ng6$%f}HEf)$ z`fRbqF-rVvHXvxyyv#UI3vz{eb}O;SmWqbcZWVZ`-9uXkJ>zrMz2@TswK(1esKsPo z(#Cel&)Ipd|8AXa566Ph03(=f&fGZO?|UO4_UCmBy>z#_q5IH2kzIRc(dpdo?IJ0E z(rPaza3^_Eix3p5q!DxGr&4)BEkVX0uPxBLWl+qOojQF;zlYh-C2J|RnN-l>J_yE3NEt`gf0Sj-tF{}wiboNT&*405Iup@)|Fc?m z8Zj~F;kWOko4$o&Zefhm&8e^$dtw^MvL5T^RE|{Hnix6oC_j6aR4DY55!=j~0k4{T zcLxvVGVn=&`^=+WO)nw%^{-dAx zR{E^xoT5?|ua$MV3?)*addojf@G^TG0cb)Z^prg)>puzdr)r!$lOf{v4X1+`Ac*3G zSl=7n@kuTabNbyfTDlNe9oTr~0h#~tqrO-BJ+Cb`m;GaDhqd65UB@loMhhQF_%GME z?#+v$?EO`ST*b~0)-F1~ABLNcWo%^h{hSXJXZY9BYQ066Mr}v~e3k5tfCo}Tn6nI7 zo|Ca@tCD@i?(<+&>-o&Xr?r{s*_>bymulQdhq{?274YpKtHuo3b!W=R_ zjmB^QA#Iigd=L6Fp<;&sO%Db5c}#2udU}n$caFJdB>MV-j)F zLz+6>v$EG19%-p$#>x`qGPl?@DdCO~mEHYc%=j7ulS-d7e3-7{V$HhKC)KO8LwMHBOS6 z=Yai6#GD9)rI}ouVZ2Ax-6-91&*sy|PKtjq^8Zjrh`o5JI6!^e-%xob_J@(*tha`&`7t$s!Id!aK(;_#=_-;taI3XTUUtPpoaDaBNe$!2jCX+8U?D zEE4XPF|53Ba2mf(&rE1627#f+$G*Vjr~|(Niw(LfToXa;0Rz7V<|6upE6WW^9E$mJ zIO{kbb>8!_H8p;|bVER(&aqBlOe2Ix$zHZYy{I^ak^k3lQ^`kK^3s?tr~F{wMq?Pn zSJBregy#%PfDz$bu&~@;9JjN=;~tKHNKcU`$eao_Pzz@l6qFAIil@Z^4-MSli=v|Q z5CjiTiBLNwiy7>9EMcOJ9OJLrEb~>457vHqNFhLu)E-7`1=R`o1AucPmfM8L;YzCk zgu%?q`PySuPp|`k{U@*b&Y@&fVU0_ zk*)XIP|J`CSpHQ>&7LsKMxLGX-+M#JF5sXy{U>nh%`mTDq49ql8JI4o$Iy%7ewmE( zY`v2LB3y{JlCiNNoLQ++hN9lg?84Soma}i`SiNL{b99I`tQ`IxhgyCsTF>?Db%Msrr&b{dGbt(^X zDIXs#dXFazcU{L&m?|3~NUz|>0cpPFbkihs!{*iOWK2wtfWWn^WLquU9v*(|28K%i zR#qSm=0j;|dVReC{14Q+Fn~TSJ@?(L0t_(VQOeEDg)LY{Sy>cV7$rqTYsA>-4cupV zAp{=V>%1%qk12#V0%TA7L^CDa=y*9b^OpBGi$p#_Z6*1CEGkk)nW2I7g#(VAmzQ_-x;Qh-i(4Wr*#-I+3&zVScj!^w z+vCMc$|^0^Z5|7V)dRkcfCX*Ah3dDwt2MUD&|N`T<28{d;7BJ7fHR0~qtVOrtG|R| zrRIrLrSO)Mz)iLvZ(OiUmS^ej&&>mTtQ`8tTCN>?bUs)~!6--#O=qcJm| zi-?T8=Os}yluT3k>yEBj2mv#wdm?h!*q>sya>h`n1y0Acw*+xty?-y`>Z+XM0D{4B z1A4gVSfI}tKyLyQk&=w0iz`9ClJFO=obH0ctrGjd+cq{f=N)-XP3f;+cb)umzd{vF z2oivavo&-2t9V!OSmB>`0Kr8~z4%D)&mS}Tkuw|Ktm`r%B86B+~x00vfUQ zdxTQdv3A4C(C|Gf%J91j*z@P_W<_dpSFs+8b#=X<1^QZ%1SWR&3R_x2x} zrb2(+n6&=)g@D18H#8i(gG$~BA<&P?KI|SxX#4SEi7&nMza8BihE?o31r6jx%t27B zG0Q5d_rGVh-MjK8g|4Bnu+Gvr-ZGZdQ%@#>pEWX;jHTdBy@46(Tug)M&SmY(jZ+6` z`>w$0;9<=6@=N_X4Fd9G*Z^fNJ$iU?OLY1?cJEVru=UD0^#WzxnP zLdJuwqzTN&zN8j-P05<*gi$fXu8hAED{BU?D|^%~H>#uDX@D)MRUHvqK-n8%uutBf z>bN|=6hbzu2-nFHqG`vv-s%@=aB@4P6^D^@X)jsYpA-sYVU!>JK;2d=$<7lPw=65W zPh{t3BYrQjx#13cfNX8JK9-K9I4bks^|YM}GJXHzPog9TtNHte=30HbOK6(MNkCh3 zSd+2x6JlSKl0{RC-ma*JUnRCUEXm{Md4T%&IQrzaF=e~%L;#_>N^^K`?wcg@z!i`0 z8;!B0*%zENuK}#y8Q48(Jy~CUiX#(|nE;=aEK9=k%@_w`dsQG$R9+VDmCXH~%=P8z znUnxDTfA_|=_PaxPf~-)mhaGSN3(Pcan0!T+UD3qdxn3tr3sSA+syoT&E=J~9d$ao z(_RB*kIS9ok^AGZBst_p=#HzcG6+aIWmGQRW6-5agIM5&Bz8~ zbABr<=+sgdaUh+T7up~0=8lM)Shp5nemL~Bd874tn3>N){EWM?FInX%kt1oMbR*56 zSO{6tBluo}RK2RkM$d*-&9ZTf zrmVa9n6mdtS#2^6R}ub>-$qb7d7U2oDkSz-eXm*|LLF#THWqgqo zTFl6045er#@5q*aHavgP)~B%OeXda1ZRdM0&Zjmjz{=r+sa7~i&USI5 zY>8o<&9CmIqN2^b53|W$^y}PZR}NJ<`+j!>Y4@#74`0xgiFgUsFxi7V%RMK7LR`=@ zOJ2ki@yYOOqa534z~5Ox*=<)qQ{+^O_=nmWe%49H&wjoCt{XIf6GsCM6*KiLq;vZv zeVz(7;tc8JpREZa(`bN*Daqwlj=1UeC?#gRSd_;@{&o?5ciMsBAGOeWjGhb@aIE~^JS$5-vz)s7ZzkT3`6Ao&} za8Qe^*Ugcn`xbdj)7jbC`K*6lJY20DaQ-r>nlAZHE}CixdF5H8Vm4X>v+GnYVk`(E>Z@_I`=g&o&=BrSe(IU z8@y8sMjerE>!-cGjAvQFuy%>hW`j);v*~Zb;rL(RdP&B>ITP8JhfEc7p1}c;a0L6Ri{Y55AJsC;+Z%%Yqc>l0?8u_NEusUd5fwDwJbp zObqr;oL=|JtIsV z<5Is7N%Oy=Vwjrae&W$-Ia+FTN3Z<3u1UaKkV4?VnVc+aN7alu+ju8zr}G62?)cum z-CGkEd3hC&Au>|nvG&N^7NXfRjv)PhZNmEQ?eAq6;<-FxPBo77)dx`QcYA%vYh)@i z`u?o;)oAq712uQb1@G$#oAYr^tGBmZNTn5r@l{ekCb*qPsrO+TBUg@pCGAPh%1-V4 zr>54_yy_dUB0q5H^iz0gnh>3c$Pl zuKJ7lJ=-z+l48N}ce}m}I>nb$`{JPHaVvQ3c_kq0r+mc{|DY?bJQ8i~Tv%5m<8;;Z zW{81AWL~JUgnmh4OKgRHwJjxt(b~E+Q*!IPeEW9fXZS&-K?z`Z|FYMheCX&lG4|P0 zXDrCWN)#R)DoTVlsoSuQb|}#_jS(d2neIql&OGF_^^r?TIcMNnyOlz%wl@5?!xGd0 z-!o7?)i(@Sg@h7Hp44XB805H!fOV>cl?sxCS=QUxALE#f**T&*KtEr?oH=DHXI1>3g%gAQFWFSU7`$hq3CeU6Nqn-fDa&oX?1y)=SVpQSq7)bq@R&V7WiFB(L zrtlAra1oF6JA9y8tmCfiFC&`*yfx(CT8$KGgK5;2FOzCYN|BiTP?$^d-tOTztA*sS zp5ETM9*zu)g>P>mG(8S$qYpYgSC|pHByP_fvcw;ELTz@^o-wHTq%KTB z!K-iWe_a2&=T12x`e=dm!=lbJgk08oZF9HFz*!oZ_9D@q=QXLUA8O3nK6(V?@`k+G zFrQLBr$V9KnIJ^5*jJm`X>6#aTorF=Z$x`l4&7pX)fpip%cx`@LWYy96Dafh5tF>G zexxP;;m_Oz2}5#_^T}%DmVuD9U*spV1a^_5{5$)Nj-YJGaW-x9Wnk1>0D%HD+`B zkflFYzj$TQUgb=uqOyHV0Sb8!HFcwwqvh$m>Wpk@%?L}uKk10e9?ojz53jR)1jr)< z@+OC#XbI4e-6?NZ`8NIiXb?nu(!$A-al)u7_S0G^K4TpqWcb8Jy(ab!LgZQnw zTfw;92kT4kGegL-)BgL2=#|2gcs86qcG11)z|h1uzm*;kGRvO8Ckbisn7m_;3b@E4 zg^SZ?x_hQYfrt*Rw@U9mAB+#8&n1(o3cAWjC4)0lA1Fd81n#{FD6>;r3GYU4Jkr*? z8#?-$4+zLbum!9?H`f*5D8&~0Nj-1L5Df7GXC6W(6A^(uuVo0BS;F8t37A77XaFW- z4k7!mA^zXJAj>)>@3KThf36Lkv6FR^MWbdI*?h=UxUd66383J+v?1jP)I-nB6UIRI{e*ZsvK@d1(^_{L- zNrOg(77U4BV)ddWQZ+R-i5waJuU+Q4UZtk?vc^lcfmg-_8i&yuQ1QY5pFF4`x~fNw zd-0k42mc7b^d$V_&1_Wdl&>9!?2XS5nc3EOFxC6@6)ViFTx&j=+;IME$itX#Ls!m*_1F`|u37gfuzyq>*o5XT_VrS<4uCujh__Vmn# z(K}j?xXe29(grcy*R8fevytEvI zrO&}t-p}g?_Yxg%ei{x8a~gmis!4uAm0c^dZS51N;lIP(gAtfZ;Bt>d8+aJ%y;n&g z04?JgCPTy_Wxv?utVp|i?e}M`-v0idA`av8)1LER$sJ}|UW~)H@?+M;)8k;$E5mcb zp;mYtEI>)5d}6s>;s@6n{?cgbO3>H)=Bd zM_|^KS4sEr%O&@qTx9UY9PQ!jSCHpp24Gr?MAT6U>;@qWa{8+Z*RM8HB7=VV(&k^(r2UbfS)e*1(Br8FZ-J4@eBT_ zlfLTEKFf9sL2^pU5$i7_wsL3$To#sbV|3CTnex0aJu?gJ0z_!5+1T9XYuvpC<5Ch# z0lOMYG1E(J*h}ij3kHd2jjg377(YC_X-HQ6A&pm|)^Sp=!Mg&p52hHvhv0y%l0hh3OC|YaJ5nUivG4%~joPN) z4l#l}4m99KRgFNd9UdNfN;~QfC3=cuPCk~DIJjr@Szff>+3@=}TnG~rTI%XI!P!@@ zSQpY-BGP@8auQA`BM) zl|0hYGXq%5b6_fm5G6xmsQ{XMs;s&#X)Bofr224C4@Le~R(Fv9u0)c?xn)0}-mA%P=&#r(} zY0E_5;xr}5ct))gXS`zRgt5c3I;Doo(|IP0ee+e*J=}^a(IEa>JY*;IAyme%!A?Z!h%fHwWH> z#q!}vts@|H(D#&Oj;>(ylY;kLSrY%7v?YGNu>&Il{TNz=<8Lv5JlpnR9kVOKtWrN; z;1&^P4Whj(U~7L441%_H=gOXlxF@J4B_TEdyX}IQ72~lJaz(L)xZl?Q{*>-@&0GWk0|shc?hx o(EqQ9=;)#OKRm(zXOVD-`Ix8mM%?=FIS%|$l2el{l`#$ae_mBJW&i*H literal 51763 zcmb?@Wmwf)_$3M|C5?2a(hZW*2c)IDr5gn4ZloKeLnNfTOFAT_%R_g^>~sI~%slgb zKJak7z%TZGW4&vweZv&xrCuWwBE!MKy@p7OE5pG(=Z1rOmV@{b{1->TM-}jm&sjpl zS;fxG+0D?=6i&|2+1}dD+1kR0+||_4$->T-gPEI|oss;rv$MU^dlnX(|MLsXc8=yO z^#AaUz(tVkr8S-4;Lr_WU(bq#i!9*a2ERkZKYaR;JA3OO2{L z_rEWRf386^zKBS{I&%F3Qd}ydv+yT7c89v{+YZ&^w;k$7>1n6jQsnSlajv=*B%&#t zPpW_V7b4&MYm)J3!j9>e<+bixAVxaP=pj1w>>&f+$-+G4+1WEbYdLpG%1c20=fUyw zEB|{|@i^B1Pmg`8yJZO8iq8%eesA}x%331^3)yHhs?X;^E;MpjLz^~Mn(%+tC0FF> z3rBgya)6pn;JAy(v+j7nX6ckve^Gt@coCCx}X}OBr#r8-^pVl z-)~`O=&pOUfJ(Xmyp(|QO2I5e8j%!aj2mR$!Tlr&Pf_`6|aT#vQ}EJERf7V zsNN>!V+he(^=ZrWLQ1C&yTgl_Fis`g*ul-h60uxj%ouhVDbo#1z#} zmaHI-6}BmGa_4Y=<1?7@-fx&7elUe2s>~mg+GmHTI7rIaCR3ae`qD#Zu6QSwrqb)q zb$54Hqt04$iv7o*-*Ggu8tvX*ZfSI}(zhsjEEYUEQD?KlQcTR2T4e~&=d$nUpb;#R zD^)-LSgxTIir2d5SOhX>%;?U@P{*B7Ggs##qo6#)=d%11vE}aWE^slea{b`F?|SEM zr$4*FV5T)S{idC!N-8VukB)r+t?I`3RRD+q<%?yr2JvkKEvyz3k6A` z5yNKIoTP7_KKR2w*{i;#i-MwWE3wyNS@DPtZ>$}A}=4AMo{t!dw40j4B$tGVIOOuBXBTK8KBkLTLH>Wf(%RTAV%GUZuwA18VeYxXi zt652Ql-ya?q|w5+aP4Wk{^aRj(dr>DMxz2HLS4usdcV&D-E|A55*5PlBkxxMuT-AK zjS*PdsAtqS`nDV~QC}h>0I7Hrt} z)8+x!U4A{{OpweYktm0rUeuXao=q;Hw3Pb_GmG!lQ?!@Hihh{slt+RH1{DkXQ&c@A zJ4a`}Sd5~6?@0%l^z8-9C^KTv=%cQ(=%kA}_T%0Z0!y<1r3W=zQM-Qqy7C-n-wZLo zYox!wf8kb8P!KAqK!fZF7gkvQlcAZp+dGgNrG{w4(~od+R1Nzw{zK*al6&iTwKWJk zK2N0&&kDny=P!HlcbRqjOxaww-MU1w8Gjv-4BI^GF%6uUE>VHV%Wp5at=MS2K@R%z z^l+6b?Bk8f6faHf6@BZGQ2I_BXBnZF^LXWpEDQc0p30|+yQa#1sg6-JGT@w`9JhXVSjpEo@lP)Z3`(7Kiu z%x2BoSunIfF!40*W-VL<PjD}mUmLo9y>9W4~mzKWkiz4dZh!Gwg&k_5&U=k)C2S@z?y<#d- zN?ZD#jzawGdua;%E9JAl4Bz{=P`#`%c1VkI5d9DlDxV%8El-bmq^vTOP<)9{`iDp) zf5Vhds=eyl{^dXNi})Ry_wHOe)CDNUAf688J7R)f;gJ^D{E3F*N5Io@> zisqX;XHOuBOg^;JLKU6@j0iK)ABp>pF+bVN|AAM7EKtQ(XcG{O7FXx4v-e3-LZ=Wh zU3C2O&A|iMeRuYBw>qEulI8toh382wJdOLtaD6RAm$3Aq^4BjT>(9dLI=h47 zY}~|X8)rAiH!YwJiF2?>nwfDA4i3Uyd+Plj8hWOfP;K}-%BQHHfG3IzHNb$?cj@pm z8~5_@O2p{rsT8Laa7Rv35SCEnNh-n z)O2(lCeqBQsSf19xG#>}e0+}%S&V(wG|TMT!!F`S4$$yQk<}O;S(cX~BxR`0Vcin? zT*jU6(mZRohA$WV%0K=(%&hmVct7{rua8<@?NL32Xsec3UlZUV$4-!QUqRn9kf4cs zylk7ITRR_ovxiQ|nGc!cC64v~URt_t&s(`j@;Ob?cv<4iKj%$E;{N{r8w$0NGY;#z zYU2lQVT_ZP?gCt21h|;2Q+STzXbn}A9fPk{eCi?R)HHk`wP^(fGd~0b*X;h7#SV@9 z=&AqkvhA)d`mBG24tgRbGW9+63r-qZljMlX*zZqvkYN}!fIhF|(R;=b9$wcJ{m{Ep z9N$&gZ{NH`%;)$Gq|M*Mcb;c>-w)?zI8Ea$(@X-p;dnzo78I-NNJvW3qJ`u^YIup! z*x5(>LQo0V6Pl0O@Id2$CQN*zX#8t0=B&a>B^ABSpnpSnad9y{JIi%1{#gFw2OS4T zwS~2=?uOMxLSkawTy!q|aJm~3Hl2L9W&2N7)UqGTR-dskI|hiNo`SV0Z73H+m5QH6 z?AUh3=x!>|yMtfD#s2Q*S@u8rvC@H`?&Do2O}*p`ARYuyacD?nmV6qL5p4K9Dalnp za*`t0P*GD8;_m*!){RD0)fO4KkInNM5e^ig`2_)tFB3*_OmAL#-(#j0lB+6VG(}^f zaR>|!3Ze^rwiteov~NZ9(H@{0b2aA$6m>g9|dJ) z3E+B@Q&Z`Er2J|FbvD}g?9|Df0U@lP#|_HVtkM^2J?}B!UM&T<7UJjZ`97D#-|=}w zJ!U@(LS58^LUzKaw;eDL7KWX?7!E-cw54xb8?VtnWAgG zyg&wSX?(Q2l#qaeBCmv-c%M+i} z9eD2LAVP_!y8A=?tNe6Vp2=tvYpKnQz#UenEXy7cky*Nn7HxWS@8Gdk|)SKNe z=Y77HBBO=icKg=UpiWM4NGm9qAFozdvBn`@T)4nmjE;`D(gakkiobs4Q9`Hu(&+zU1d#lg3oB&d;1ak^1$@R+Zm;UqU6$u}BdM z!PIGJNd6h2ABZtM;{l35UT$tiTpS08LL>Z_d6H3P7Gmv%)6<-^@)^S&eteN+!Y`+$ z*&@9!7+ptsGY2C{(#Ph4d6O3ww8A5(M2iXw(-Ls-77leaTy4#NE{!6E1XQiDZirDh zzRr_y;K;F<%l62))qiTABaRezB!$6#=h%f;q?8A{1)uwowZn*VEJCL_Egw%r7pssT z;3yEh+tEX)N}x~epzcr4)?a4O($Vq!arcup*zd*Dhqasni7auVCVogRH4RPB{k?x- zf-~Guc_!R+@jD6$!;0Q6y@(e@7VON#h2%I!z81OoFOv?mjZGTG9lig%KW1#A#6|ND zhx-+H-YgH|KL^o_ZoJ1Uj{M7Zk3`$w{^D!TH-l7lxIMQB50?ku-tN1;;#qQLz`$gX zH)r>5&yI}z_^Y}a#7zhY@KwixK9{N{@eKfLd(-;#ba%e>inf;i`eSJdfbX1Q=+^7E zP%MbPD450ai7-kmzWCg8w5;4wEQDwek)Bp)TxPF&RuO|7Na*lCUj5Nv5yUyT` zLeR-fri&+dZxzRD^L;46BsiI=@e|*;FZWbFr6xVjY{$!0I$=*AtGFcGnzQG|5}CQ^dy#Y z+bvC5IyX5d6PCI$KCjP%)AQLS>4PT$I0&SQ`>dt7q-6UXs*)k(mA1Y<1v;y3+YL86 zJ7v({)6+hKDviMrlHZ`Ro(>9)mNY+Id;s?&)k61nf&PTlDu`1`c?{=Kz6G~+!lbOW@ zy-G(=-vW4THde45G}|$$UGdBDXgZf8tEx@RWa&qvqXs z5q+#=a#Qpb(MmXHhc&H6X=y31=QV5_a@*S8gmj0mkgd;Xw@b^&$e_lEKM#8ljD;>^ zK~SY{&z|ZSEa7mbdYUZY>(uor$1$WA^YC9ToQNVKusJzlmXD$!AXBi)Ra-0!?EN%f zX=@e9S62qRQ3x&A-+y-cwlxMjjVq+|;A@rlu~1Uf-e}#YhLbnql6y(W0BY(uPgt9c zW=Kd#yp@pXFDWjzrLeTLvMLye?ZJUog~4NKnqH}n-ee#=H<8DWy5+0r+rccAx%NjX z@wSuW(Oh^bL>4Xehf|^du)#8d(bxchE1_%=|;`h$qVyUDYCM2r; zq=^C)gltyhkIjTJ0S-{occr}ksQwFomz zL|;fZCKVh$*$DcWB@k4i zQq=zuL-v*qhOn0W+|d-IM9)(yA&+C(xppfH@9=R%*t$Y}A-g0zC%*&Go&HTDb-jM@ z!;vsNUZsH5yMb8uUrCXhE%>0Vz`xu)o{%Eq^SZ_1ceUQ=@Ov0eVT*UzpdBcYg;cI&YkCsYY!YDViU*BQf2r=&1xQg>Qwpp4EejNDz>F&^Rb?jGTEt8ebQVa}Iw9_}cR_ET1VY0*?ZL z%&W%l^wbfJOlaU7ipOTyB~IW&1?AqPgHS>xhhy{XD;7UqSRG+#{K9b>Hwa`%Jf8E6 z98^)Xv}(4|&ru9LJ^fYqbTCvdTDu5gmn(b~@K;xVEJ}!MBRz}|u9x-rN|J;mEdMoF zubHw&fGO6m?&cdDNLbpgiHqbjBWo?<5I)Sn5~}f1M8AMxN4(@mugi{&22YvT=l9{5 zg92D-FAE_L6-WJUN9`H)Hn_N3`z!4+fYZq>CDgy}(v`FIetKv(8z=K#EN4*rOxRbs z*1%&6<@gix!CPuQwmb`aigUi+jzzo9(|_d%-eA3Fa5zg4Pd7OpX-5oXk_ib>7_}Or z-(ER?rDqN1cgVE(V|33F_0#676et10D8&pd2BQ7u0LA6e%50ZxeB651#>uy=EHvMT zJ7L;SjxQgweWX5XO$oj5%{4$H79TmQxO}Tb1^M_%)pWfF5=kl;{8L-l^y+YIuG$kjF@y@8=!c3JgQW)2F2iBN?vo`imdC|*Uun6$E=(EfrHCb4 z^W~Ns5T6NMU81LFC`LAM`7u8a0Rq9%E?Wgxu`xI!}{a!Sg(fY!J9*2?` zjmM>bbYOs*7%es{tFysjgMgo#EF>=gZ7p2XesBvRS;xB$|2yh%LJwbeNQ}w#aje`^ zi0B8vc8!3T)iU`6q0XfE?>3*M&|K&(2{Cg~|^-E7VOjju6k)!>KX z2sEGcX%7q!zrT7<9zMzOlZZNw)NHAVi&)4rbfZ6}>dT3;rid~Y*M9*YTFH+g-oj3j z1J`8+uZ2u#C$_a77iT1zgOL=hky2K+pT(g?872lAo&D)1l8nsg@ucin)#nK;P&zTK zs;Rx;{#$P9hR_R2Sd*_!xMay^)F`HH3u~K|D)u zr1<2^rgEo~-elOAF!S^7TUy#~))5~KLehnmgTM)W(g-Gc8JjI}Tk{c3rDqUhGRDsT z1Fyks3YpA)3N&3zDm3lXbV3}-3^|CJoj@m}M%=H_nm4MB6)>b!7rI9J;{krp7x7YotqN??pSR}%%E}Y;-`^oxMIm;4cM7F|h z=#hFU28TNi0BI#K$f>ebzZyuR_q_bCCN7I4n{PB->@UDleld>!ufW)Q~ZWjqB1WjYyC6l3|C2eyP=dUeKMa!vCGLgl? zvIqQgKly$n-TudW;pQ3^$QVV%uQ+Zcg=|W%lU{1UW2sN|cl)Oty}UkWvXjaB!O91R z1}I?>%6pwnhPo&`we9nJ*jfCo6w>EVKh-F}t)xgVTe z`@_puX#2uP2PG0k6lvs-_V~38*DY66P|eLhYLkQ%_FijmrsFu6Y?m?KG8U!KF8Dp< zd+u3PRk8HZ*VfAU%)UiFnmZ8Ka>lauB+=NuiYG(ML-M0kQK5+=rFuI!c)G;^8np;w zXBrn-rTN(5*+P=EJhbK|F2-Bvs&m$?5Vas|>(n%a9ubF@mwt-NIpK77G@X)6Z}fXi z{JQS=C`VOhVO^!=-UT&j2Qxyhy{H|@FWNG-KnAXtYBJOhuXJZM8|>NQX?5Xz7j<3q z7LoMoYE*}Hv;k4Qdde_rMHZJO^%7lH%kb;LmOK&P^Y8R?%bp}F?cUAm`{8)15B1zWf(MXup8M!>D^qE*uf`nIggXytrr&U5WAeV`u&*h=lE)?k%!P%)l7 zmGKej_MPWP#1QR^V65=x$k&H^*;6i95Jp9upq7>ixhJCF&b96kuxy{3XXIF=Pp_U{ z_X}r7Q^O-Z3-_lKPZwMXEc6=*-hrBry@6ssA8O*_CG|nrYvRH{Hby0jei~(2YkxqQ zG$w-I{FIQ7Yi6eA{B|kWFEw`l>}4-fT47EpVQDG*$uHBt*Xb+lA41hSgGHxArj7+} zsrv%M*nX)|LRSzeG+I4y0U_4W7qw@h8li@${CM$WF8kpXMyj6j$Ld}j&oi#TLd*su zzQd~-EI?pc5Dg07x=q?@`CSC4(t8VsV@mR?g`VLFQ+Ra}PhGV^>pr8~+ID zeClm>sJKg6RRz4Ub6EaL9zC*HFzN>-9MFb(7i!6jxX;A*7VC|CE@*Hj>fE%RDXMlE zpO$zV(T%#wCNOp2WcyPHJ1c#S#|eFRNh}wewOJ2z~q24k1*k;jW;F3C`F3@iA_Mvc)O1 zw`&0@Z<%|1pE2p9zJz$JqLUozv!R|F2WhN$MXde_yTib@8~9O~kGrreh`^#52z8{u zDJbAqQ^E)r{j$rs`*c<(#r6DjPv`^;*@2o%LCzb>2LX2+%(#Vn+tZ(l`KU0JyH_v zJaLEWm=IOrYbiqIl_)>B_{Q=Ot|T9J``qDm+QwA%E)9iY_iNPKz6LB^acNhvl5xXv zS1NC2xkfsW5Sv8wmOne|ZaiF3bw2%2uUOx9a>ua9`<$(%Mfj&Q-0(XtoOD^DEzg{6M%p#g1-D|&;YiYlBIU>MCHq^Z!z3qHJl%wOcLR%x?$l>R| z;kG|seI|5oj|*2)QZk(FgM_EY%SO?>2?|2&TDR0M>v`2OtqW2>4pMSjao;|+lFaN` zQai8Js11EocSaWwRbt(!#Qs7Fz!8G)X7(dS!OYZJ^52`}SBQTvUqn{j2-?OR1erq~ zZxj?67%-a9M8D&|T)TIe7COf3veEh6)HM*BCoL;$e0_`wrWurwysz(H$Wq5$Q}DRa zyZt?pV0^>y*xdGUQlAWJ-!jfAdbVvGP5fuKcAN$Ulbc8er?ueuka|YNVBDF=%NNp$ z3fWyvyRGusIxrdYv;y4y0ouNH+vi1}hzm!*W*={}uojT7>&15)ZKJyog5j@HB+uPD zs_|3Jwqea|d$$Ub9!c(r>r9b5VZ>&|>I6 z0~y)kcU@3w`za<}9-aS?R;Bggq;2BJHhr+4%SJG1twc#F^-cfNvY7*8sL5LlyR42DjFZy^46e%9;RO{f%}_ycJYi>#tP%UmkjXe+K@Umo(|J2_*LG|9V;0WztJ zMKb4qIpufr6^IJyn3$~DU*$d%YA^y#0xgzuI*K`B)w4?Y4mD8J zCOl0NXG&zH9nWj=P1lrp*3_k}tnAHdz}4{=OGQ=OypR|v%Ge${2t>XwDtjPW#CNu6 zM5LI|JC+Ds@(=tT2sHQ|10>0(K;8sz~8vl;6%_$%SY2efFb#({k=R2kl}SnC1hqu4oHX zRtexUfb-L~?e`fvKuqQPV>5tHgamide$S$q;0nJMSc=tfFC&UKa;U@~>9Da_MsVT| zS}y&+Ys$$`KvDoI>0i?*xZCEhA?D;<;E#ZdCA9~P+6Of?ZlUbt`W0{Z?6KK{yQ;P) zW&#e{_;cYW^oIe%np5_3udfb|`~4=vEpQLjBui~$kKurah7+ycRy-R<3Eeb7;C#`I zB)C3}qT@u8C6)CrmXLkqWXZw2D6{v40V=Vy{X|@GU1~hXH(6%Qfs5Idp6e6r#luqu zpno%|{YYdeZwLp>DVmgWy`BC_E%xk^n+WS%7sK+LicHDLH;-;EuntXLD-W0;t}G~P zJ|iVIqZ@xcFfFrE&%1`l@0MC^e~8Fz(r89;+NAfq@_f;c9aEQD@+XB!_36jm;>G?K z0a7r5jkLI*4SxP7q=#Wj9Gh=P5lBvqhK&}27^L+WeNO@#mmbhU#58_#1CGxXNZa#2qRW|u#CKqxAyr@aTbyS5~99;WDbrV#aELS7j-TG+gPUG z9xOuM@%=+U<96EK=$;wP7{r=Q4m+mkW&NU@OKo}@AM$l9p3woFaT(f@fGyrSp&WAY|4vb3uzHBoM> zEpMl_LR^TBfIyy;sR>f}_%M>tLzgD`;PW8tdFA!`jzb}bj2Es+{_~9WJ$hSU+doej|&$`WF$s{)HBSq8~hk$N;yUJr=WaWOck92op`p%j;B{x#XxgI3k|G zJEnP0PEKy_Fnz!ftpr1u(4F~}^6v7_V5OX-&2{2hx&O|5D(uD5T?&zN6R5J&&(w|sx@ zq+sAizVZQ*U07ZoJ*)5Y0&HsY(r7`lUSFkQx3P^{I~_3^OvM9s7<)jpzav^Ot_d13 zqY@MhsHt%VauP&gj2x(X2{`IguM6pP_rr4m4P2#B){y(znm+J*-OLoV_3z)mfnGxg zNDgob`D~#-oZMVoi9lOH#b^Bno{^oSI)C+$YB-JSRZLN^aX+$VttAc5Uwf2jCycjI zDUD)CF{Icf4pW^qCF7j_vdnuY2vLtfO^XwXTC%01p?Tr^qr55YlO_r!Eg}Wb1_3=C z2YQyWj?PD3VoSC@s53WGN;M^IWEtiM;;ju_-{>lmROJTPCK0 znwoq=nV-RFX@qDb?-9k8@wb6z`mG;W@u_i;*PUtI7P+_h zpv3JfE1NmIF1sc_=5UIpAhw6BfZgl+Mj0|j2yo@_Z)PRJqM_refL_b@& zMU@l-JMKn&@*ah~Cup>>Z!$7uk1KJwfdJ-%{}tBR9k)NSahT~$8!OzNX4Ld?%7L}u zbJ;}z+*xi}S&f8eWceN{A!o|pzd5KtSUf+EwB;8Lvljva)$}J7Ev?_F9KASiNGUK7 zIa`GQNdTyzfgz%RKZH-OHL=$+#D@--n&$u?2WW)7pZer{Hv*)&sPO$y4=fP$Cw*$^ z28WZ-*e~r5g7@{y6I&L=pa3Y(IfLExO3#yusr0zG17?XW>!4`hbMqhD*_x{o1tJUt zXl-wJjC_I812hmBuz)XL6Gj$<{Nlqp@dN{QG?{Q;XTU44#NzSN(=I5W$59IV5Q_zG z_8oBQQf9?pf+Ti52#LgJivt|Fi;eLbE3h3DXIT#KKMO4Scu?1n_J5xw`Qh&Bm+cZ^ zAjalalp&B91l45og|o3K5NK%3=bGJkf`X*9^K};wTpgW4*q#5ef^V5C@q6yy{_W(o zwMBy%ayVY~{(D$jxHUNVc5_Fnuymctn{i?cqE8(=7FK3V1>psp&1gTF-E)KcYa|`d zljj7^^CJiWA3!7yEVnk7l$Kg+Wn~KbVp2(hJJlZs3 z>EE$fs*vIzKTH?vn5-A;3dZDAY1my{Tt2C){ze_{}naGp6xv20Ni6-HiWd^VDW1PlN%-rY z*{=mnHT=t+ci781iuk0aR_S&`3LaF19%s;G(gnr1FVeItFif|+L#oC zs6aFsi*-tAcu!&`pUN;WybKHtQGrbX)JyD2kY3+`>)C=8i!r_-fSKDuc;`!G{~Qce zR8+b%-IfPKF{!>BcfJByy7hQ>)PHn!R-Nsl=V=3-Ecgq&bxcVYMMby;GXWbp!W-9% z`btEWekt;FkBe=-M?@=q#GJf+Z!Q^4O-%t6N8+nlz3sRbq+)EXWQ2hh!sohA|Mlu{ zZ8&wka0}?tKvRvqzjt^zTB8^Rj0va`>>lSDKuQO~kwN#T#B}h$u#o^%zf?XaZeSpY zdtQ_btXMQuQ~`iZ7rI^*R4Z%9S*f25j~D3-Y^QxaLZKNK@Bh1VhO9IgkDBCzn_Ec}=% zqp4}p{ppV(AbyTouh8IMp&8AT@uA8bzsmeVuDr6%uIG8e2ZZ&T&G->OKsc0*#Bt{J z2aVib?4=5Rb&W562E2jZEJRRb|V{0(fEvv;arL2Qvgh>tY+nd zQ3<+2F?ENN;+%;DnXQ2fvGMVCPn*%HQ3tp#RWvl_ptp8yH?%A*$IpSF51lGHYd!Lc zxxX(jxZd^f4D;=iKHA1y**!7V07jK=tiNDfBop-a>elK?WM%3+R% zr^A}cq%CCn^yrnr>kt`F7sKIwk6<>OGN0#P+nycY(jox(!QZ2q{2KL#VgUKiS!wzo zOstGSsK6TukSe41E1paymJllgpP#YX_X(x5PGI(GNdO`!+Q6}&Mih4`#PY92SfWF7Wo;4uM; z1tu~Iy2Ggn1)i=mCWqPZKc#1j*<*uS$t-;b%td8okz+!OU8?H3xK{DLk6!ZRqf@O< z8^Vuy&?B%79Bzj?Nle;(Fw+~0_esRrLZJn+0I401=A7W?wD6&=j*SyT{8$URyHxi5 zw3%(rPfme`81I;hmPzz$-A5Dcd56>O+T#H<_rCoPg+vj5Kv9~1>Fb4C== ztctGgYY{WEH(&#TKo)c2jz#?Wx`2DTd-G2Yr?>C^CW3&&OaSOpVZdSGdE7||UcVPi zBm0-vMDFsG!|CkSwzxt=6ZFtUCPq59 zO@2#@f3luO?8ye5{e*;5<>J9oQ~RU0d|bRrs*u+k4B?e3@GoHX1;kOQDx;i@4b#@v zRwN-!z|RFRmukg5ZG?=M?OJIA{q~W__K@a>M{tbrVb3J}khVuyuW64C61| z-HlBywb97~zt_|R0v5k_A;DWNMhbrvv*t>F>XdPGc6@1qB75 zUqwOUv4mwMQSp7BlK3%5O!$%Hs5p&j*DN>yL3`MHbmg=;Uip>qdar zdeNb6*V>!LW!115CyUQ&00%1D`h*l&0SF1OdN(ZrA$OlD=-acWS^h@40NhZ@-MbhX zOvhwwE%b+_JqUlio}qgNSXg$aA;9g`zmPz?-nb* z-Qkdq?c`N}Mm68)#J^Z?*UO3un7(r;N2fx3P z7;sNc`qOzm&M}g8>rj*T{u+_e`~>?(N+(YYTZ32Vhsm?G_!P}w`=2TOuEdP_#9@8;O9~9OOeZzS))>v zP(1~r|r^;qY8VMb>Db!2y@#Ghmci_P%@VdawWy{yKBuN~@41>gvi31g_UaGyMx0-oQf_ zr$>c@T;;g6_(@$INWez(zZjITi*d!>l(n^o?v5%pqj>ZRN=vbtmpbonP#PX@(@liQ zA@#AK9Rk%aK3fvUAxJI%7sq`5d35^hp@rP+CnocrOrHI9*~IXm4`uUU1k9}XYWUXpc(>f77x1@19dIPp0H+7e=QM~R zc1DvdUIWMl2OC6!Q1FH{2qD8&8jOs3EeU01))D4zu{KoT9irpVo#gop5UFjU($xIp(3+vG@RU8;LI#5@@tGtM(m5Z*`#DawA z*mnjEr{P*?-9wAWs*U^W@U?NCG-fI!7?>oUaT>Ua{W)d=&S^~muf zvG1SQGeq;Fi}+pifiikXJtkTRm|@_-Ji3F&>UkZik&c5$%v+i5vM1ETDF>E}F(8n} zD-AkjZj?p~j8LW{XPt&9i5P7VKuj8s$y9gl{dWy|M^6 zn2mO)E#LrCnB;YL*)x}WEw;Id(QvCJUQOwR%*v17^GESmksevY=Gv~2Nm7lL7Dzu( zZqWJwfzSo)?zayki>#sllk@eUlhT#JU#FB^JpH2WRJ>#BWyuk@HmT3Y z7?l5$+JTEg+onhcHepeUfq`Ui-*BMGYEc%A>jsj8~7)iGBAUDR>v#3Tp{`BoW6M|PNRHkTgeQ3Tv#54fiJ?}QRKz$C@~G;hL8#iik60X7%l zsY2}lFCZ-n9ofd!-Qe%vV7`4M zBG%T?=_!=kdj?1mKCtBieQz$jK2B`{?WzcHc=o&qzNPPYiPb#Y$X&lGN1OnU*+HMP zr_kZvIW&Iy&z~x@^XzJ8BX}P1*)5u?AHx~$nElbX%G!Ht09F|u>ZD#w zk%s4f%NC9Xg3<6qUdV>n9HO7cF0~A~FP}X*WiPH(#3;cHQ&I*;K>-bLvf=r z&}bYU=k_hj7^MrRziLeew^9oIFrHI(QVsnp?OCALE%JTzmV zNAi+>#edMCfD@fX0@4l4^WE2QQdN6I3=7=R>jxp?XlfW+3IqvIm4LUQyG-W>rWOqk zGrnQen6@*H%q=LUr=$lKEk!jo8G0N`54l+v)NT>0;zl;U6e?vc}0tB}o26PPW|N}N7$FQVS)!Cp0@SB5w8 zpjN%I_2NC(Sc`P=e2uLDP=z-$2!uST>;F3Pi-wNAq9YeYoT<>41=E0QbLJ3ByJ#P# zc<13#wnNz(1cNe_6L?%%?N>zrvtNt9IOVUYgrlr71?VSZU<5;?(E6yIn2vZ?BQz`1ej!(hON3lk1eX?c^TGnT=)jgGLHiMH4VLeasf(n4#?zjGCQZ_Li2p z&AzMhZa^-GvT8C4#O$KJh^SX?^g^eks#dq*Cj-hx2Hr!XX;+qDGcQ1M;klI{CK_}~ zs<_{lgAnTKqS{|>jVO>!=6aD7gU^QbF8GF9K~;d(*d-S`Sgrr>Db|Xb$TiXRnP#e zQ7Mk|Y(sG+D5$970qIODmllcP|NA#Ghz@{r+!zU9;!4=Ot#V;S~br`fgx@ z2Iq`xzI-zdX>! z6#bTzBoB_Zl*#S700u~<@_4T52DqhZK+cj2?O*z=+6(xXlRYOVX71Q&MsI&|T`lV` zZ)+=uT2!;~53WfY0Sn*96xO$I`rPpvuNE~^AwnBdr^+wq+jVBa`=9=ig)PCw!Bl$5CF?KNvL&ejA_(>)Qn z-U%0%xWA@QMhX%Yc)Ax(N00+n4bTS+_vie*m8klTuAccT()R#B04%LMFu@GG4*OxL zA2?9N-1Hd@0Pn4M1tFuJ(AfO^{GNrf2IJL^5BY_KfF~0(G&HPufs?MJHx^WCgtkvK zZ*#)d$rNS=xd>)fb(;`cD5`f{*`* z^hR4zvoRte;m%iDaT(!x{@FeLasf9glKE|04BqDnZYr;<)na`nG}R}~yg0$mkQ zNZ)K;5dH^#@Nz8(=@dwJz<~jfz{~{vb#M|&^zYs;ebt?GAz9&R7n54i0Y{VI9gp?D ziXF{OOMn94Jdh=r4Nf!;4h)#A_dN3O=mFBCC|goXYB-f62AnbgAa=~Cx-}Go$-G#Q zG>B)p^6Yd7l8|KiIqiFHm;cBmmT#HDq;F{{h%oyhrg|sP9SGQrsHvp-8vbb!$HvBX z0$BVEHa0+OEdmk}5(+!kjQgW67rednAK$foZF?>*{?RG0lyY*i*nN%5{xa&7Hc0gY z(D6aYpu2K{t;LQA*#XyyqHFZ&M!Y z38O95dPBvq0nX9Ej%fnK^JlXY`DH-M)pGME^{c4Wp{#X~G6uC;CFSLX#s8ekM#5zK zA_-)HAP2~@)_N6*oWph>sgY_H%oY=+_y)F@o2w6p=*3!BNPX8xt>y}Nv7Oy0_DyBjIlV_ zz#C-Tw^{9WWDCI4l)`VC45E!bIp7(_4@H!q_yRRWU};4S^tH#o{amK=^c5jlJSvwS zCiF=}B%SlyMOmbQQz0*5{|AEDiC3jIuCM$$ka1|Rj??0>Qs1Qr@^_5z+@*=X_RS4M zLMXSn9_xXEbBd`d_PnG$mby`Yn!@w*pJ=I!iP8E4TD|Zc`fDtv2n4<$f?QDjv1|-@ zpa<^CFY7(hNWL5WC?ypY5mj8kdzv7`Uhi_xj05Jf#7uPmNe-L+r09UZd#e+W33np7}#1CK` z1mt8DcYy+I`jvx0C?JCoWRKxlsd$h8dkPM#fYWxF_moiA(N#6jD-#j~f-TTKAVy_m zB)z5!8fP6boSqRv@-2O{VJ|R8$<)G>F`6Bpac}eMS8!~qrij`M{p6InVZAWYIXWm= zrC|7p0COl|^O8JdkYL&8sr8Lu=`9MVI0yz$kF6<%^Mn5$`jZ4>dT#8wMDfV69KGAEa;Jv$zOjZ>vr=$6xqP&sF^1ja>^cZ zZEbDK<-!mQhocM41uV9rRb25it$+T=0S`VjELo+mn}K#CUhAd$v)k4OOX7r^X{rXE zn$8D1d5@cX`tdhXA3#nTb^GstZ$Uyrvppl4fR7!$dFg|$E(xIWVruyu`YR1%qb~q1 zyc!A_DyIbO=-U~$mA(rWeg9yVC`tsQGf8lSyE8bo+F(#wGAjGqIG6T9E;#uJrpfR0 zl|YyLq$+n!_ZuknFdhvyM9a&A!&B~vv0<}!94*UaIi(VCDccy|w_2JDNdnOr48$=g z*}48?NV3HIxh0j~u`8~4a<3;=&?i?OKSl;!;?5LXRd@C+J%0aa<{~(~5%V$Pi5Rf1 z^Yilw$;nRlUkt7N!|qroji=D7taW1cviLi8#4vM#D+CKorHGz*sU7cbuY&puOa2TZ z#T?+>L=j=A*4EZ&w(J>l6RAdyRgVj=zW z<_FA<#mDamCjZ6_nZ%=JwaLV+JhDNu{V%T0JDlqNkN=V+WG8#?%m~@Z&N^21PWIj- z*_%kn%*YHOl)WjL$CePXLss_hb-wrSkKgtClH{VPUyEa`MQDUH9gQ5VcP?%E_!A+8m<1Q{IqrLf2f70DYG~f;VHJ{&a zTcNnVsGBir2eBM3HN{(3cq~q_Y<2FlhsuZoOpJ{0FYBi~HG?jL`8@P#bFF#U+n$k5@25 z4h`ee+8@^jkm9_Mr5_OZii0_Fe4JBM3;_!Q?tRFLAySB|eJBp~GDDYcS7>{FdzQ+z zDUJNbWNSx@ZmszPi|`~06S+lO8$1JL4Ik)_P;~O@e);S0t^Z73dllrIAV`Uw-^u^@ z@mL@0;0^^2^uX`Ti}xnm3dKiUDbKv$@B94j<)<(=XR&{*$=|-EO)-Y4NItgS?v=sC zkN84IW@*Jsc4B(4h_13KO-Fz#uSqdA&ze_3w<0^=hbjVG8W49j8v65*HDM;KK2+wv zUrrYqO_1o2{`(c)k{t!#fL3t3tWkA752{vS+z<-a=`Fa3_6IXA7=FuXj~BL0{jbWB z{x2W0mHyO9AelU|a8PPoGmvDqIJL}_yt;Mz$H@A5^vLm__7jsQ)a>?G3G6zwNCzLTHHT-JuKflwbZ<>l1`XoraRfJIMi|2q=m z`7(pLBDi_7t{(ZGx+lH9qV6Pn6mW4|QhCLEc-Y#$ZLFd_E{Mx`lYYi2nLRXk=$J>! ze*#A%nZmwq)miv5cHjt~!bJj`ue&y5C2X-7xlB0+>?9M?u`c78UgN6 zYj7C#qU-yl3{e3`%7Ic=wO77K?Bs?S1qP)~*Bk1}#NDfmhZB^;c*l-HUhMX#AO8jXyo+(+bB=@8d1HUxt4F&iC2Sq<#II9l}ROemBmqU+2*p=JTQS2gNHv zf<4oJ7nhFn@=Z{yS9W#9mX3VEeR7#;rRvri(o!qWe{O=L7N_QKk}0vJ+WWmcoh#O2!3EE(Y14& z2vu}2TsC|XFFSmoq0thN7gH5wr|$wc z5hhnpIPN8AB3zRG{v|3cnh%R7NZMrs4A2=r@X-=b**w>Yc+ItMaR zv7DUEx9=qsrK3mTuZyr@TLeFnHu+3>H5Vm$;|4S)gHHI zV!!uVg;r8cP7V`lhI$nRYhC{y@ff8=O=0(CHDmgTnH)J z%wlfHVqtffCDHi4Dv-R8sFOP)g1QwE7KVbN3!kOJFKu!`+z`-ngP@QPC6!QVKtt0O z59$7UjkMpEQu66inJ>zP78+CQNxqf(GwU6>`U9W&%6NzE9#&=qBY3fynav(+G`0Hm;c za{Bbf#vt4#QV0@%38(M#l<%vF&T0Y^W;CzUX+ixDhrr0cSmbWO$94JQ=g}@=mkKe_ zoxKlkx8^MfsJK#cXDbGtQ!5E!r1glNQEnWNki*qUrp?r>;BXq}Oe2 zOHly=A~{rLPe=O=#K6udRo;U`EE^k~kNQvRc4gS2g9eU7*4IC{`&Dt zB6QeAn8s%Rf$W}Xz2tmu@k3hJYuZnozqEMM*opGSK0@3fC1EHjLHc;*Z;HHTl`kBF z##PGhfG%aT;Qg1MAH-?)X=_)pdrwAc=v`ZV<;zWS-1j>d5D! z33%L=7%nw>uD-SFt;^k<9rQ73z3O-O^dXV%+-VKT z{?N(~Mr5c|JJyT72$uJYthv^8fAIHyL6Q6~`yYR%eC=iQMPwdwao7uP1fJ%MUC!qZ z_fH3)zGmq7jP#VZ)*B{z=eH~&8IrfL3CT0wK|#GegwPDBOU0SU#{RIgtg;2_T7+mi zn>VdzzN!}b;&P_UQLB-CWkz$BQQ?5(5lFrC&$#E=Z- z2X-FEIUP0>UxRD$PVNbgdip?uRXWS@*rZ$81;*CYzzOuXBN@*awtZsCHSNQNCvp%3gIbDFzJrHWP8`{=0iQ(IF&ymyY8FdOhJFVgyC0z6Z%KWQT zU2#!1cx%p~6;8eD=X`LP!<~Mu;qn$8?*QTFxf~76eRRlvgWG*DLi+c-vkOXXg~CTf znbDzs)DsuuP3pBJd~8$O5?rxqX(eZ_xa_X=1k&$#W98I8kqz_b@w=bMv1A|l|6!mL zxSg1&2&IB7O-@xW*s*~fw%z-E#P3RzH+{>ZuI1X8)@YpVF0H17k4Au63-nA>FN1@- zN{tvpP5V<4uBF|7h7E0LG%~qQC0lY4G;kR|6e!=#L=RvLJLml8Z(`%69B_fpJFtZp zbNL{T4YRg3Fu&n6tN5sr4fDm7%65~Es_llxDDp1U5g|5X!0WXrDB_{#a=2FNOEHXv z$x~E!bd02D~oC7cyJ!uCs0C9G)D)8Zdczwo>oC?l;fmUznEBWb8`u%T5~kT;n)n z-b^{2%Hp11{OBk@piX>!<&aGtdFloRF|*rp+S=ToO>L2`tyh9cNiQh7Nyj{8(O!1$ zJ!Oz+S#$hA$P*iup1#UEa8!7X;dzErZ2K%`8+$~a=~S{SaoN~B71)=kO+IO8iTU*D{pYz&!o1@Rr%&=qO4ySo^Os)~NdUWr zh7l4(Wq&8!d_E|H-Te$Y2#Dx;0eK>< zA5awYZAj5r8<^oMe*Xw2;OLqKt!$R;Nn02uU{o?YR~ua9(Sg_ zthgd+y~4I$v(_;<<1HzfG^_F-%~Nt-n$I0}hm6P3t=02ve)v=8b_;Ey`<^*feCxvD zr9d=eih^$n|MO_L3e3N!RaFVDa7G9B4gNVgsxgv<{IYK(Ke1?Rv1ZkrQ(xMAQounG zdU$9cR^_WJII|%Ubcm{(nYofhlvYjul*KCl+D{)Ek17B;7PMSWQahSpJ$c-ux(drj zRrrUC!FAb^j`j0rtY;YXhGP>I4hlZyPP&tEu*)_tNYg#ZGPduy2MD1p?lSqeRKkP6 z`t)Xwm11MVT}N-KZPA;m@>ssB^Zn@R{^H?;MePhxwagEheP+KJ6ZF%hdC4qwYkYQUreM={o1c8ljp@iek}u)#kwStVX7ky;iLtqwZ$R%IyVilJ~L8%Q-?M zhoS~oEM!e-8yjyzJMVgUQzbe~jnBOl#qvG z`0P98^c>4Yw+tpi291C!JJ7k{`uXx@TaA#30jw&y>Zo3%)-FdP89z%7(0N43a*43H zSV;8!;|-1y(|sS5>d%xEM=9F`5PtM%7>|sQ4O8_Gm)51|NqLo2ji$|Id*`V|mA{Ps z%$>0@F*UYN1+TZW>;`50f7mdu1B!mLHleb2g34aOgiUigLw z7 z=wnXrWg)}WKp^lAWGK!~Jd$;i>2x+DFwiIKMdcz%Z0!OQ`VVV$JnR@MTtAm6)gOH{<7Y{kJ8USHT|~g}qB?;>Trfy#NZ@wdO)!z1fv(^VTQmds zkYCYIDz?6B5*yVWT2bm=REVy9IHv?nFB=@W}`A*n~>^>$V(V7mA3;y5Y!z$CNmxQADyP99PEaoYH?_RzxN zi<|VE*81d$TjlE*A*o33sOZS#wc$et%jfcgH8xhi_5*I^>_~8?#361--HUFsy+Erx z?nUg>2%+2y&g~?i)?FhXd)+5Yr1%udQ}wqZ6fYOOT*NMfLJM=rN^Vvi|i(l1r_9LXK%pB`Cftv)_ zT-K}O1gfiQl==dpk%r;8B;8B|y2=jQomhJ($^~n(+6CgB)2*+QUL5*mk;wDVoDdD!sdwpHOYujtqd!CUTH2Kxo!fmn1nCP&oH)j!j;PI!Fq=EhzXA(z!4I<+lQD%`>VR;PLO}gYK&f3 zTE^P#CLhx7gpGKsBqO=Xp{XQK&qIu1E+)WVsiv@*Ql+hzo!2TyPy3n?r1hF8|tU1aMBK$Sqp(4hN-%_PzPnSF^dv>nSrJ3r9 zgr#LdV<*oX&Mzy`%mlW1)9YYE+-S26xZ8Mf=vniDK|Ea*maSx*fvmQgpq89OtJLqF zZCicvaK3lQ(+AP!0$t|^{xyV+7cNP!1EC8-iIHagj}JjYT(p0cn0#=BR{Y@uq@znJ zLRT^cr5wK;z+W6wPVWN!`Ujx$wY7)i_~4(`82mK(fB^Bp%l(`Ti4WmsyZt7YNoRi= zE9cT8zAl4y%{G-#zYwkuH^iV#Z|LylV-|Ic;=6NxKEc6mR3KW|YxEQ0sey5de zaj_79Lhq(rklx9{G#!5T=%Rv+R!W$vM}Sfs-Qf^#V-^5K_$rziB8*6cpw)T??Um?Kxh6$v-Mup>X(V2~ zweB=&B8>`u?q<$Ao1)=Q{3?~TZ^Z9#Nn58`ai{A{EP94U3VhWXcZGv(Jzhkx)R#(| z>v5z2t_5zQQv-g{{`0JgjN}6Y{}!JA+obC3ihBL!->)YP_L^czeOzh{;3UawXrOp! zVpW@cPyA1nUh50-n&(4~xoxRj2H`g8_A{SK<__ze=2fBN(4WF(r*BoOuUBn(3xtn5 zim&}}w}&4^{<3*uEdsvwxw`otvRJ5AH9BMjMD+w){m-yyZm)8z33^?)cB^K$jb`F2 zcIcQ_9ILBczka7u)0t4$(5!?-Q4}|#`0v6CVbq-X?VCBOwq$T79L^X2=~KU=(rKVd z9wy){Aau~>%#k5)qwFz1`4m=cbD4bZFUiskbnN zAm^0o-MbfDP|!+%9T2kbgZXLtGPR%}=hKGDdmDKL#S@mrU70rN=W$Yx-shRK2DJ%L z;fVrnH7;i8nOC5EY3VnFb{GhOsNyT44rKBRd*VttAZHn0eDI;wsD1_w5M*E&HwLgp?I6XampGdH@^i?(uV|SxBVbg_GQ6~wK$!3}; zsiA!kL{yk~-wQ$Le}0~LQ7xY|^faW?tb0XCV%2TOwL8$Ze0ICAx;hEeKbUx8IcUE^ z+QdKI(Hu>?vEqD=kJszIK)OJ_pvr(`CnPMe0omPU#vr;;BO}Wv7s_-`A{EhVvFIP9 zdT-r|HaD;R88p6up(FpSEH9Hq{DO@4gsS`p?s|Y!ESPFi6XK z5@_XhbT&6_IM*w7A}1+NvVX7KPMCWjqIwH+(?$3L+{%>We#pBO2I7jXPmTpuf_j(Y zzP7xvbEG@GDfv?B-P}Z=G?KSR?Vaa=x3ib=0%vryD}e3@vBQc>_B=X|PH9$F#=$%jKi8=Jui-$LIYiYHxYXh=5Bawt7e%FKJ#ArK*oxOxAPZ z-3&L2KOyfd+5GIZXkL3Av4BibEoCxiXgI<2*q9;S*y|J>+SSm0r)8d7#!)qe#(p0}A}R&!Chc(s4ORz6bMh5dHW z;Dg)!gV>po#frHNr+08Wr7bD!=t_M#OP8?1FwN63Rafy9m3*=22eCSS98IKF`sbkr8L4 zocWs+)b!^NaO4i#E4vBf^Aw7gJV`-$nNK8HYqhCVEw2(c zfiF3KgA>{g4D=!M*T9Jl{js%%u-Mptw$BK8)*7-uuC_J;0)F89WZwrYat5FfGWfBpx5YnJpUT&*v1S6^8N8<|qzA&Jg9K zN!*ReGlUk6br#)F{s{r+FSyVP;k(ImghW?^-ymMBclZ0We3$KE}FQgF76Et-

ujj%7T^wBK1-S#vx~Xv}j@06uTv_$3TDy*vIFn1^YXofVQJ`0tm zAB*nE1RRUI7*Go}s;=d`S6U>IBshEa@4`eratn|DV`yJN;cpMPZ0YX@cnDgt{goge z8^4HBx8~E?v@5n<9XAdeuA0q(+?}lT3P+eKaD7>P91Am*0M}Snd;EL}gCGy!h`pdVH+N9YdDk1JVr$ExCVoiLdOBYD z?{u;?9=X08PU*NHI)9=X<5Fl-S6b`?ep!alg(%i+AO%FbEcNVx-Hjiv$814Sdg~7+ z{NB5-ph{$b9(2ifXXW^e4>!LAD?d*Qx&Y**z7304DSWh~{Vb!S74HgvyHLgV5_D|6 zWB3Tdg#ZW{BMa}yK6|>);2nqL2t-Pk+tjr;l^L1p`Ez&l{II}`TP9U<*`mb_)}o5 zEWtmU^!-G4J9&lO3dz=5!%iq3ZdNHOn_1LMBS_xodW2S%I6&X*uGXP@qj88rM$q*s zd%HdF%lLi|`Odh54`@Wvj}f>Vn^z&GyA=K{uR-}&pqUY>PJ!;;f9-lFS=fA_(_>N0 z8>ySzA100)SN<8$XhIpIT_FFSIjand#Jtz;Nei+)%`(qsmEe|XeA98^!_4&byNW8! zg!JfKgO4m5Zb6ZYfhv2>9>>hSPUzz-ZM*q&m<}`4mO;2eyjF6a;iWk(C$7e8CV7`r4?vpF`K|?_h*HpM4i9eOFVv7XEr8S&wPxNAvWz zs5;;FWvJ9biq+->s^-HzX#~M!9^2v8{7z9p!K=KyE5>`9Po#D{sdl(P-5X^_CQPLW z63C}<*}8xU($r%Q8~6g{^5D^b7=Rm@<1w739ud}FI_xQYfp7vHs4QsjODP^sLb0mU zlZM~}TV8ITkvIgg4GogeDh-d0UILBk;$D*i+gOueytKz*e_CN}CmCtwamH;u1#AZ+ ztKjzjM)5`^tQ(zVK{lRF`A?Bl(!Acf1JbJdm zx3L)*VfJZ@CL3C-;WnQlSqHXt{_Q>%jb;E5S!DkqJv7ZXCzhh`9&JT+ImCheb*EB0 z2RvQZp|jE!6f(ox-7{n-|;?^Y~S|5*=24gxcj@0!S>33T6_0G`8De z+rKTU?4!Sxk#NB#lJw%7d+e~Cqwr)lq%h0+nUl<}wYS(1+Nv?%QzV{6ee1|Ut65v) zjtEv5iK|=Z_e^pbM4RK)P2-(}Mx)Q&MD?=+&}0E)TNLp#Q+u~ig8!-T;pFI@N^c1} zm||iB3HPg1p>X=gr(O%Z!(#%V+~w{`IiMnqsSPXU8=z8llUjB78Y(TEd6UVb0bfNF zs(P*@-M2GupF3Q>DrWq(_g@<2$gn&{T1~m zzS2epc?9LoP_x*=!rx9OTt-Zgl z|1%%DNywrh)8F3%+hN_Ph|c_WPavRxYW4Z0sOVfpDNU!9UzJhSNM?Ko69fCmdtoa4 z#luTnde`DIzn7<{S2B~w=$O(|l%@Z4>iM>jM@QuoaRu+WI#$nw(1YwEcWFz6=DvuwcFwQEOHqk=aqniyylPh{iMl~abX|}-K7#Uo zQ3Jkqxnr>lQn2tLdcx|B(o#=NldCL2Kla*)JgwL1zSkRCPTVT7K(+ZQ{Z!UHz@TQ2 zMQ5`SUZM?QXHwE%50dWL!um2kT@mIL12(0}8R}5!{k^kZfm^B(k9SZ0&`Mi}N+Yo% zc(z7ceuV*5ZPBx_O26FoThnb2<*GpS_QcsYTfyx0O93mH_eIA$rw<0!@!uj~76E@r zZq!DFQO*M+vfKHn!Y35!K%se-W@Rj&0kXTfOR~h@@pFz2MU3tNJc^1}eySyliB&An zB(ksiVda-yP#`HpiS*CnHH9yFM_`*S9U2qb;r1+X(daK7D`>zn>w+(jyg1|s7&bC{i@jUx4MJ3P@IdS~-~Zst@9i#L`&&8jyb zh~zzK>LyKI$?2@G5v=%|4VQXL#!yC?#}k)Kw9tY`rrUOo;C-rsY1IeG=Vufk${jCz ziZICNV$C@x%h@3f752-&+Yt{6=<)GQ-hsu{<{a;irIJOcw!OrqaEt*z0k~hu$=`x6 z0JOXkV6t|JZE?VXAt#S@97(4;F<(8j<^3vo&OI~Ixm^L%f&iRz!}4~3u`D=zVCMcv@W zMRtIAQq;=+-0XVYhlwNfmqTGaO5gviO{&}S#f~8E;Kfp@UHa&Gf|YBwP8K}{MiLEc z>FGoYbS#pGcJj{*Ol*{eO6OX!|E#8)Uj++CrWmRB2>30Y^~VA>@qE9vmIEl5*(lijK^ZTHvs?{mGDy-JIAq zSJ8bG+KIddE$`wkOhf^PClq+#vg(O_DCsgbDeS$A z_M(**NML52a$pGgyaYf(5TgP{qwibvCI3Ae)RIvc4GENSSEn$E!eBQI{8gn>sr^(w z8)Ta^+)?u;HkoDI_wH>Ay~PA9*VJ}GVoDte(m$f1p-({BvSGyouC#6|ze40T=m^^c zZr0v&3{}4sArHoqh?$vQzSt6whD&RYzkv8CWb%v){s1ARqpjUlJi&-|+Jo3cESDGW z>q4O=zbbHOd4C``RGMETE`tyyW4S#H^2;H-qV`aAsK&PQ4sw-&x@sSMk6;&UUr~DY zvuVFf_s1kG>m{Tb<6B!WOv`DnY!^M0#`4^XwA@@-iA!PMHIjN!{R{W~2i(n`LpHfy zM`xHsC^;!YX|dcV22QN@h4w5j(?4ne0V6Y-1OasS_8)y;M-vFO6_mbt@u{?DIO+de zm3&=X9O=Kps3#SioLpJ25a1Z2AQ}WsQeukBNlM#aGBWaP0x=sK<5(kq`JbnUpdw?? zZu_@5nWlFRetpq;6*ItbS6)r#kt*A(-C}r13hOOVdGjo zC(h=@L&}o!i~WbQMVlf(n_>n89Vl+y z6SVg%R~CgIJFI=99@kY*e>dCy}iSiEHCX@{^Im~2D!3_;2Ntx$vp~D7| zg*|d94<1}~3CIg@9iQzm6MUwKSYn6nmlRefS;UZ+P&i>gtirQra7#V7(XW~z7{abu zc!Yzvj`C>%gCVG5lhg3CuCLt;9sAd>DnfHg&z{L@k`^tWtIGuL^$VGjv4E!U&hy+& zj`elbAAfwmzb@*_yw6>F7|IwGP0TEAZ}bb`*^Ywty8YmUfX#V|*DEN=y14u0Ic7J7 zYzZ?ze?7Zg_iD(biI=)oL4IlQ`zIH%w6tHUaB^X)i;@i00abb(ZN!obXNt;8MPV^= zh(6)iu#vo8LX*0QXJ0oilif+-FriKoa(WurDIovOCJf6A;&3T8f%=f`pzi8h5lcL} zw7`P{TN}ZkMUE4 z%DMBl#Ls}q!Q98B@W&$uhnH{pL)etaWJ_ctv!nZogtJ=d*w+)d#F#&C6fH*t5ni-iWVFzSSw_aSO^2WO1H^hB%Ov532nV>-DcHGMk!_@r$ zE#Az0NNi)c?#=>aP-3|$nGk|tK(v9^jtp#NaLq;4Dpqy#D){au2-Elyj8jKN2)r~} zCy#AdH4dJ?xVHAU?uYiWC|Sh6mP-}GoGtLa#YqZV}# zA~L}*MdK!BfnuKy z(N6B5OCN*H2PS*LHth&YJ=$SsLo%&U9-H~CbSt1MT=(N7mB5XdIvWl#3^bMW2n;Bd z^$uG8vEG|g{g2uCu-3cvk_)YCl^a7E3ApMxTAHr3vHNJ1braX6l$3_%3Qk4hj5A)d zHr5{_n&?AgOr2fIlv!kho^ap#Xq`ygX!I(F2U5Yp)xz8jXOY0!MJ$wHHb)kzpUSgl z2i^&t3jd5+J4yS$8b92T<)HoC@yaV~m>B?67DgM;KcEO^Gz;juz>_f2JQfUl$HV)vK##=AkiqBKKe?=(dpC>2gX=OR?qT^X4Ek`GGQS=*WJC(}%&rU53xG4n z{r(0oUN8RFJ~B0{-_BqpT5>+WAsdzRLWDHtM$S+KphMChq{87yntHF{;7F!JKn3_d zD#BFeK(*A1#dj7vaxS|$o~3i|ur#_~;4Kw)Q0Xu4WgbNRP~xY!%;;!~;QprshArrD zL5ypLynP#`;3SC$X`cv;YkCAwXlS?sS8sWF8BF{%jIfQ3=A0B%FI_Z0IxrH_n`uC> z11SUGeyUzvP=L>}+Mxf3ojyIGlX~&%M09QOi9cmJo02ap&1%?HdUM&vg|j3X*w^v3 zp0);=#qMy|3`LppMwXVYHN^i1-|Sd)ZgsS&wwoL*)FH$nHJsUL(k?Hq>>X8q)<7t^ zYZFp$(I$vK0owo%YfwsY;za^wy7IA2(K>~4*SwBfkYcqt?leWadO<<#WGz3g>EyQ^=%a;SG`&(^JI^p(6M#Xqs|uwdlF&L%kU?}kqA=rxm$Nx zXzJ)hPg0sZi1SUcRCdF1IJ9vUPSS1hzmYGu0`{OXoo1Bfs*x&!1W%2Tq~Tqsv8Hr! znw3aUTWz_q=J=9sIjzUc8_G7v!0LO2aw=fI<7qud2SWCBdJM=a7N9)aZoW?2eI#NI z)^#vznbl0|el*R^47Qa)?#{bB)hx>-;2q;7vnGpm{9R6%9)DFQ`YwmWaf==DMuJd+ z?-@clAbf@ezzSACkeN_?rxw*Av#|Sh6R!Ux=2UP$-#`OeRFv0zKw1Bz?%LV}`p_B` z7v$9KA4?~ci8f^^*7`15XX+$Dg&wOU`gSmpxU%&Uo2U6eOk4X66y!J!Jei>lwjp#U zR5TCFqMG%8efGKA*S9XUPFrGk?p*~tvoLDKY0-b4SY48!X}Ge&sfz{*F#nq`~xoEx1z`90xF%03bv)Ed-&A0Jf}ae!mEKfn4t zBMcw_TY)QJ;84}i{*_-T27f@)4`{KyU+-c1)3^1XRsc5KKbmzS!o@^cO>ypWr)a7> z06)!Vb4-!y_$ug`_M3vHQwCc-a)x_2AVMepyk`}9Q0IlCF~x*s>?H13PYF<7ef{J2 zn=BjvjReqQjmwfRC=8TdTnfAEeQUarqjn|%RdJ-i|AiJvX-|S@DH&#J0LY1>l=Kdi zs-+eT(?4xM@Y=n8uJ$h9o0d3d=cn7$A3f<@Ixt3pd9Oh>J3UAFKhjF#(inKb4n1EW(r^ zX2$$8J13}LcUjGbcK@Z%QKP;qEsIdz*xYd%9}v|CEKwioe{!j&rpC(SgbQdt-(_#2 zFi5Dto5}@i9}p=hyB)dR7@ptJmN|G-fx`tPw3W{1_>d9?6JW_`s5s0G)7Q1W+Y|xJ z)^h-jp+u6w!F#%#;C-1bB?ICZYNY`z5e?kc31BTm4aWlX zI^qhoL$HockaLY z^0Y_bHgGJI%@z^B(1B3^-Z30QD0DCEBqsclcH_=50xJfP3xMO;tqA78G! zE4^@tS@Pj~_tM_Np4QS{(>#+gi*j0DEcx9Bu@684sD?x7VZ_SZE$jGam^5qd{ktd{ znA!ka9u6a04NW76p;Xcef5uTy65pi90CFKX*Iol?=49VOYf>I-OHCqv|M)mRC6zuh zxsfDYZlTn!xbZ5G;BAyPfjYdH#Sgu5Ka+>vR9WCmRasDukB@KtydXyz{%aKjC}O(5 z{YQ*r0q0b{Jiex(Vd&&0yr9>~?t)>nJI5ftEu2Gj7={3Ij`?zS`?ph|9~IJGG;(U` z;Vdpcb9Xna#QzP`1&Kq6aF!~&dBe;9_;J146$}p_zD4no;E?(8=Td9=zVCm?vngO) z!#j%6Q}-C%xujg(*^#t+y5!W^b~LdG>4nC{A6pr8ZP64s+OY%>gbIzPEPs|GVykRYDZg2R7Z z*_MbC$gm*(1Vx#{h^&FOHW;JFUq?(-qA;%~zc(S~_~kC52N!Tj$wj5z$rsc-ri#|f z-)XmO9gZtV^M3EMg$H^5#TdN0eBjY~X2GLBQ3D|eU1nBvQpaz9pm}$~xL}vYGN2>f z1mP8A8yD!nvN8U-R@`Ho-qU>iqEO7a6xs|pI3Qg~W*tPb5#L{rda*w}_r zJmJY*`r67MK;4Z6ida6}ts%+B7ixh)&dlMuZ{9=@hr(HaGQNX%uxln+BC51hWse*# z{nw|b4P*vPHaL3Pjb67f(3=h?HlaTybU@r#ryaofRS)R909+0*4mf1y;P@tLk{eO= z;@_i)yh6h69r^jH=DVC5)TnzO&OX!;c%R5R`%^tRoDRUB50$2uxb$}WFp#KVu9RO4 zDu_-;FXzMYdzMByc(Ajf-bjdx`Sttv=ma|#Hj+bi=AZ`T6PS@J0OSDF;Gi~0XC4BJ zCzdNo!8`<(5=`_04nIlb+)p~&Ukh^7MgM`e)HPf&Vc0AzxQQ_ft`sthzl65##)G@X zYlWd_=v9HM%yZI^(*tK9lt{s&HyFMf%58xLss)fvC&2?qJm5y%82~12+xA2;kO8ig z{!5mr9Ll1Q3%bF;9f%6{e)Yq`trEmRyD~a{mqsmga;H?u`N;4)!l&6%dkA$H?*gcA z|Jywtb?udSXaHve3k8fo3IL@B%ywa2o!|rujINI-2nPNe3hDu+RYnIZS7pa^K(k+BxM9puyIvczM7`c3Zjj{CD z%F2L8nZ*1Ah*=$*QP8>)%5Q9Ho0^S(LEfkLO)iljVq^}!KM7tq3(phLHoB~ z?@ueB>**3Hbf{X+KYFENP!()9C%aiLX;6MV!%^$5IqPTerS{l%dt7Hz1M$J*S}3;k z)G>8O(yKcPeJ$TDQ`}wzGR1~+;k;#jy?Wuh@&>|nx9qQ8gKwX=lvS`-eQ}=g9&urL z9R=t(sJ1yFj9Ew;9Yn0*?qG5geV@$f!}t zelO0|b!xqVT+InCJN$B81bLEaozh8 zOppr8MmTK&hq<0vD;b4siuO%rW5s-+41_cIgK=|GDF=A~O9QD25>*qX4LEqTU*KnD zHIUwaI60JDPj6Fb|LWA&v0%o)Axyk%eVyarl(q`TYGjXn!qwU`A`RpZBSZn7` zq+#`2N-mB9zWd7SB@dzKJYG0=h=_avwypQ&uiKVqBkK34P*7|@b9_fCWT^$li}k(+$2`zdPX6k^_N z5TU>JFl_2GfPjREX=wiJ z3^#-VH=)X+R}c*%f~zw4JAFT8+BkpYesULk}McPJ=&ntX)J1Sr5S z#31U|>^?<$?d!Vx#}^m+Iu+;W8RbD!Q#3z(Hyt2l?5Mn_>h*w-PzM%13N$0L@6XHd zQE_z6lS_K@ zV07N>)*?bf2#zvL8CsInI4ARGGfdpz<$kV4`iN_Uc#8 z)p=TJDaVk$8UR+33JT+(0yaIpX@E=cs-Vy=(aZOywYcvB)kBJ+(2M2DJMo(oTlgTZq2-HQLepBaPtAWo+iylB^P1R_1p^hXu7z-|9w z1P|v2o6yGr%}jzV6Rm+FW@d{p+zf7}=P1f|n$V6xS6A0RQ31j(D!iLO7KIVZ0oLi^ zBi5EcsKq6}uPpIumR;zW$t0i_GqqpQ-5u9$^{0ZRWiqUJYNjZao1y;ah#18aZut=b zTzR})(Kit@JmZ^uvND;KRV9a~RbB7l;95>GApL0G{TwAg+w1KIZYcwR-VzDf@-!c2 zsiK}JY({HqYcx782Q<_VqW`g7V1pvCgKlO3?cmQ`1d#Xp(PFt(i8AoiZEa_oDl1Bf zOx)RvQ2`&QLHI5Ecol_Z8y{xj{Ws*p@8fhjQFJUHbE@G(1h|u&s zV`9l4QGoR!E&cuP;`(!utaxZ_4Hv1Iz~t6wSY!~RUI(m<>FELas3*@%*Sb4E$Q~VS z+r1r*rFs~BaG1;V9je#mdx&4x|-wQ?- zoZlI)%s;)DJa+!xSTerKPv$No9|3gIgnnkXT#VpBj@SD*_>Qx6X<6^>3=BFQP`s`fZZ#g8T`Va06QXU&k4aVRMfLK8$ zB@uACdpK!_@;UDRj$8hnZ8`Ia{Qh3*ETp~=q4iAG1C%LMA~k7Z07I4J-Wm)2-Bh8@5*HVDzG-5jq5cZLZK`VN>o*GWPZtD@(r?|9 z1!PasRU;e{uOVRvR`=57*_WeZ+1nAP#N;QisTmqN!)rm9;E z2m}HxIW_08w)Ph(OkP<8NJ?Z}U7esACI8}*9kfW@U?A%IM)CC(eP?iWX;Y)Ez5Vj? z*Ci^^l+JY|bN2Sg$Ox?D^iKkc)=jx4ty++n%2XOhb@j6T6Qx>YbX~z^5clmOBqEZA zJPAI0a{N3N5YVg2$^X88IbafPJ^n>k~_35!%s_cVCHkfsWKwJY4 zEZEG!SMjp2K#=+WwD#6PRkq>RD2O5oNQWRGDczldfFdQ5k_t+LbPA|+t0>*bMo^?X zB?Y8Aw}5nav%hP<=Xd7JnKN_dJ2S_B-tl$A^X%uj z^upEx$V5`|^10sF+_&z?Q^$dWBgoC_j zHg$B$q0^J5QGyp~Bowx}no-OEv1a9Y>96&QFeneMqYFXi%J4jr(8O!tmr zcXu+OvMvVK@VvY{3`*%YR{_n4TQe3}Iv7A!Ip2$xxfBId_V2hw+ADDRMd$Ja1O|d% zZL$s>YDiO^&uv|=cVjPHDy%C!D(VH;sqU|jD^G0Jh$?76E(iLdD#ak2cK(E9b1Wcgp5Er|i5|=oc?AWStIeO;2Cp1S74%BI zJK=dvxZ4}8VQr%^KVO7&B{;0vda%~tjGVp3T)-j>>j{+JJNtv`6=Tw`XC$Rj=gtrz z^++w&DnHONdU@HhEi$PQYBp9*&c85*VD4z>=qNrL_bRs?e}t^heQAD+NlZ+^dUIm7 zNge?=Ct%U@*GbG^-K;18{nEh#Y-PM8Za-;!PAw-(J*|F!WsoANyA4ndh_S$d^2-s%29WSkt;CPvz!Vy-epg!hU1g<* z6-yNWO^6>qhBO(Sv*lU%_&WCBLDLk{ef`yGUV^ULU~_s7B~*m18upcwI@_u0gphVR zyTpXc_Zv6g=E)gxeXN+4TR_l&+nMWXk!#?!fQw#^c%%=tkR&OCkdJ)+ zoxFu)3jMQivU-P&mG$|?gb;`o&3KpjsPHk}@f(s0QI|YVNPq74XlRkGuHpEcsjl~4 zmTE@jj;=jFvi~t^Lg4DkMQ%B=bcg;t7xnOW9LG1mGbx<8lcI?f@cS8gs;@t>>dVG9 zIugnuEuG4&9P42peOn+1(53$xY0bN-ATMt;V`+GWG&2jU1gm)1dZl!!^Ur!Ogw=fe zDgDr8|AU(M%qBvht3@|6>+ECd3_+X?xkYd40=)EOG3OwV@j*73|Fp5X@1@f2p8A#a z(Y4U%=p5YwV^}p}Ql-3!$;ik)&@I}r5vUGAv7ZH9VQ|oZrAg9HS4U^A{;%n4L3X|T zj}SiqObo1aH;amjFi$41zEt!;FPZ`*gw(iiVc%uTy$4w^*>G)RG22R;*$g|~?Vd2etfo72 zt@)c3rmZ&_7#ZIwk8|KN}^2jqw<(ytnFs!tcbzlJdN?%{!eK==4R_=8=v>n{4 z7N>S~J^8n|=uK-OoRnna;xzzZY*SNHp`Kik-XF@y`qvY+m6AR8c!q~nLzP`!g@%W< z0n>!crs+)otyWHQW#>p0;?U3zIB%3bdYPAZW$l#kTdijlFn$p3!VX;vm=JkIIp40{ zVk!9a*?31drT07OdlWX*qj4iW$=P|CKQ&Jq;*n?6vBkwYx4vc6?cUTz`Vm+6v6_7! zo~u*frQkOF-4uvBSy}*@s+NMEl9IY$^O2f#c6P?(Uh$sicvroeJDKmMZ!6`^l9@*Z z^#bfn-UtecjlqOh#5gJ}V8-F|NNp2KaM&J>DjNFwt4ba{DI8fDzuJH_g7m>5=H3^) zlzd6udYt6y#b&|=iLXU2k{j%V4S1;{xrl-I`44F3hQlLwT**nr+9$e-$>HR$-zXz* zGBamuX$cP38%_nd(5I-u%V@QZWPpMZ4kJHC9)Uk*p+2KQ%eLFL`c*OUZ8UG-HxOZx!L%~bzpHID9Ond^(W>iPt z{JH;cSXvkWEr0`d7vfBukUmGAHp+h>YH@13^rqD1=C#huIP{#p9DIotVTumoH=~ zZd3Q?4}SKe8_ADmym^#kIbUo}RiRU+dSy__VB}oY>I+y7B+;CJcnBAxc7H$_Kt~90 zL$8p?hBTRr6?Hh$0;OW%C9$5)Ydu5>6%|YYUPeX3;NgjSgiOB_oX&`eiMgNIs0<21 zc_M6pI9}yW@lo|ze zpnv)Oo0Wm#$EVt>@7mfFq3r3LZN8o$gVG@;PCV^{1t;*j6zk3MhYjk-0_sLSA{Drk z52D>BUX;-~+T|5tJ~1bm7hSz-7dAk#h(bd{&sTLDOyPTT9Xi)c zf1@B(1gGt-29z|^V$JpyF&{oOf?cr3Tu5t6*pUJ4#QmG2b$ON9>|ZW7y9JXTP6?kc^vs4!_?K|)N-kR>^x zB>f00{PV-VRi+7|cLFZXbM$7suy@hO~(GbBug7z5mc4s zwHg@uYd|ckU37k;%~^0ka5~4(YrfPsD|o(bbq85prAc7nAWSUf#H#=7S$M__#Q>_?&1hn02G6`GO|4_p18@i)0W%FMxMY7WGs) z=d1i>3LxBAa5I}KYmONbeT&aR@;W%ExXHGyzc%UCvh$)~HSTFL4iAhm@`iOqCHzOG zgLY6%+~vxb!2rhe$XQS>Bz@43F$=RD5Brjeye;Yjp_T%@v9_bJ;9J?M&a2@ms_u(| zL3Rdw>(luBa)QfBnpz_K)-FaoSk)uLn%q#$g6Dr98d)o0_PYV_7%BhI zPoQQ!isq>eW5BW`qzTm~2z}DT#u8UGGc;p78XYxB99ljY+dAdetF3ALvGRRbep(QB zu)0A1&*k^;c?|mm4fj?TtDfjC4O0gA!ME*(11wdF+C$l2Y(2?h8~?rEChM|KPJ3@o zhaWc|`TZT%``mf+2f+-M{n4u>XDFGPe_;inY7efZD2y_O z0^WQ3wgO<%*m#fHGern@cY^h{^zRS-VFRE)@Iylbu5eOAGpXFw%Hrauu{WdpyoSe9>G)E+2Fy@y1Cn@--EAX^^w-q}{VmaeA| z`Kd` zCExn{1%21Z@02W^zBH};z#|XL%50=)Te;PSayGI=?^YCI46z-_A&0@uRP> z>_b=+z5-6RpS;34tSX?${`XnFw)-O9NIPA2IfCk}8M)TCXE5`I#>i8Q#Y}UjfIlhJ z-tz9|8`F8W2M?q&3NAiYQ=rxoO`-`iZ6q4>UitV8ItfD8jwxj6;oXTR|IlSvsrj^z zu1i*fr@?q25DgL&e%xkWF(Y}~y(cuz|K#lm5aT0Cc0g|bDc(v3cZ zSala<%*n@mMO~>kj915$EJthP~gI-I9H)D~3xi4$K1Zdc}5==6OliIY8CZ4$>>7!(BrG zX(HOFi_73bB_^kDdod^^2l()=l0h{$4`a zIz~7~Ar9PyQf@8%%N^VDNq^AG6R=Db7IyO)fS?!I#ho>u>EiFTX)xZnoO*D`E!GPN`->DUqM_+ z4iy zFZs+7BAs7nE)Jvo`}%BTJRV@dfRxkqy~V|T zvps^^AvkE~*Y&NZAanlv>p=qlD=<{e39m9tz(IZ7trP}@2xLk?hOa$9v|u#Eqi8nx zSPlBWSQ9?--;n%e2nTgE;_RLFSX1k*wV}uLsM{jXeYa>-#!dXEqiX!b54|^=h35DL zeB87wS)-Ebr%hvS#e)Y1hpz80Xf_WC3o{)nBua5tp$|~6G~@>6;tzy*f3rz_F={Ie za(P)fxhrpn`a;rSoyHh6H7%05#IlX{c4waIf^Z`ee)AoR|7D5d2>S`i+E*?0 zQJH&Fw&ve|HDW4cyje4^uRAmeh@yIM;7tc*+KGe;eGB?*1C*XP2B4t;|H6*Z_)~x& zl5q6?%)%V;qWcWP`KZkG=kKT0-W&Jc3=bquiNdF+|1(}kvR3D=anV7+f5$Kc15k6o zL5S#(L$yO$57F7)Aj=4o^$&U^$5>6~SrHy<$Sr4bN=AkJq5Ngh&Dq^YYOUKGF}}h2 z)~ZV}!a#U7nYSbQ*UkRAl(b;;rJfBqS2?!RAX}}=plw_YCHIy|cv{nlrrP2ltihN2`5D1YEsMGIE5j4@pr;|9dnvign<`)KnIOk2n+Zgop z^jbQx-o(`O)f`Y#5na5y2)NvNB`1B+Qt}(&JceT%eMudOYkyrqR`t*%15gSqBFIxPiTSWM_wup_ug%4CHxj^>pHlF7Jo*0No|> zLci?Fnm_WIWsy_m>|fs>NWZI-i;+VYmt=w^RjT0*LEqU~G;wm&&KF7umH9SiCJv;$co=0|u z4}$08r7Bc~gmd#c^O4mF>X~L}_o+d3l&tyUU0``b#%&KLY=|;z0LKMHIpWhNQ;4As z%w(mEWP$X8@D5TrScrR>yyZe(LnVR_74%-QQg@)B0{y-p>MblP4u9&12IDvkhSm*h zd00qd&*Otl>Nj00)?9xR)6akkw zHVN2ox?tn|etvO^PP2a;8A-SSJRHEmj@y5I;any;$;ikEQWc#3em>ubO?E;2i%lcS z!*$F?AqL#hZBCi%%+(U`zA>{A)f;CzI+^%1Y72R;0jM{8^l6+A9mS=NYJw~@P*c4Q z#)6+qbqnOlxogpR?m*ppm8Xe0CjyXnTa39yo0Nqt6Ii7@dHU2V>*}(h z#%X@i>^)SJD^j|bq59_EJL1XJahJHG%SD%X>MmyJ?`y3>@Hvrc!pT$1TM!>LGB=-l zkv5up)*4RfZht)(%N>PTdHq)PoY{ew6x16#Q$Hahr=(Y!o}E1r8hyM+5JZ_0n%ZB0 z%qtwHT1Lvyy#4%n26$d30H*=Ex_I;@Ps1haKM?@%uyPo?3p#>IqAa zj{{-$+@IfYCq7N%@#2_|?>@J&(08Z`@mQZltaZHl z$rhHEiAjVyG*QhtR<#>FYBJ@m#GMDD$VM2S`nLFR?; z5toarE9~E9rz*DL^})`kcm=dFz|DzFy9mJK2Xkj(v|h(>Oh^?@<)Gm462hjh?O1Sf zT-DI6>wg(#V|EBty)UG-Y29ULx?wZapr%vS|)^1X;^tmu zY4efBUCF5edP5I@V!B%4jzNlci%wb|VD$f}DhpyFqS7ZN>MnPerLDfd8V+4di{kP0zYa|$z5x?A{CEcI6Cghmfz(DgXcOTA}7=7%{9{pRQ9?R{F+1ZrsEh10;yj`=hSaFV4a7;!v z%)Y=oH6>FS5Tm*JGg>AQk+|e!M!*C;eTz#XAp_ACwt%HAUWK@Hrr}Hu3Ck@4wM6PfXpP z4SN)@LEugV&o5}c-T61XERf0<6(QebNkhsW99^LApO7x?Zn%S+8I*S5?1Dz47yp2F z-kz1Ey&_apTh~G(zW_5CNh>v1{fb2MyB67=x1SB)ucZZ6dkT6wzegLdeF-x7MZRoH zDcQ=$!E?MV<|GJ$jIhqmFmf7EXQ!yAPaM#-gqa|f62N6*Vu3J#V4`I2ITAXZ8w94(VR(^MHK$p~_Nu<^I@u9XQxXh$Syc^Eul*1Z zsfj8^RNeypxam-M_sD&KVKBheUtWV04H!QP$uVglZE7|HMrp=mwxS2LbgxLD0)X+?&3C77??krL(rLl&brVH8_zGO+p^5@zuXR_^D#W z;YKK?(M|9<3*#fbllw+5J(Nm@PC`#@-KQVS=U1Fa3e)$%66j(B;t{AbJcB|-1c#uz z3T)BEgblcE+~`R4;b89^uk&8I7A-_fO|2YFs~W2I^eMlFbfTQ}eya&_`F=xXWre?K z#S71Q*9dPn&9ZX=oW_Zp+S;I~gGZliT<1jue4HgM>~`HrBF4pjnq2y%Ko)HW}^jEDGLlcO?zTV&8eFG~4$C(n~Rw}yVRuDknE03w}!xU!aX zmo)G+4MpYdg`H7wPU~Zwy2LHSmJqZh^X?+!VbVwzNs~IMs*Ra?;oVuc?^;@=`4$ZY zXxuZa8EVz`h3fNj!lnvtT^1nEK%o;2%$J6-aa7l^6Hz1dLw)+dU~M#vk3_eWfm5WjgLp9EiY4Y#uBP~E=ymKu01%yFdP_tFu3CID$@4xYPDYE z@UY(HF){!(mt*PW6F&N5<>2|vjMM2?qW4sHtW>b;g`cf<*kqd1~^VEeKqkdnJ7@S9XB7;8}BXt=vuFHzvpfEbhwNeJVr zd6ICVq#{1C8N;`%n^m77gKe(-OukDYCL+XU99z`?OKJV_k~Cq zD@c3L${g^|1mUYx12r|Zqj(Be5LH}kY_a3~DS0~(NFN9VV6212qOZV&y-$#e)%!v} z0vk)wAJZT4;_7~PgQgMpT%tu_nXb;0LO1-VQcO4jPuWx0SAJ#TZ-r{M&y^YRt=k)dTJond5YMms1tR4$!JFf=`erw&h6{$aa^wJ9(#aZG%6 zx64R(dnW%n8N2>2%FNT7@k|OzI~QaXe;Rywv?Up?Y#f!DXBin8kM!~nN|W50Uk<>L z{4|EskKH+5B0uecRb7lwAmaJSb>kUi6RkYULz>*e_P1afX-!tUesFLQ5ESHD{*03x zRvU=n$f>W73JSv3(mqgO&oSP9rvr^lKM@&*8RRS~+ESt2Rw+?ms72BjQ)}1j;oO?q zg2>2t2OF*Kn+qYK;naraW=2>vqx$*~iP?xWL_>2^Q%FR_{yH@%uDV71mcn``joZ{w zH*}BRHheI(X{@wjM3?y+W0#=v4cvL}Yowd`&Hm3;14n2iA?!l(Nda}|1}?9%b(0$& zXlSdfjS}s)<_H=u_)l315|IrTN2|j6qNId$d8(sLmXx1S<<>rIO5b;UeAT?=@IKe? zcKk|=xXiz{moz@Vg6lOjLe$ryxy7;lf4x=9c~BsdJ}PoiUzp|m@+B##gSXd#^Y35T z2caW+alS!lW@@Texg8~Zxg;L<)Zl?ZO*Xr0nQ>$*1>BJxvZ8h>{3A}kEBZcdRzU=f zvj1-L&r)1!QN*~x+H{ayJmqIqf$A~y(X;%IEi#oM+e@ic*3J=#(HPzhFZ(LgtT2rL z1H=0tKR(h#jq475CUwc#{W-=tXlg=tD6&J&#hv-CJ^|HZejr%`w@NupbjVsmNd{rux=Q(}fj zCC$%-`3^aVjD&7h3eHvsF<{YbmU+`!z81FN-2 z<;aSoD2~srlE=~O_=8hKPjffj{*pz_wZ469(u(lY9KVPQs3ytnElQ9+JVA9eMYR`k z%8C!Iyre9t%KSXY-1qh|f2p}w2Yeuqxo=_^LQWMlA2cr7uKrmGGcXwaHRW)l8+|8@ z&=QqapM@$jQYhW~vg&dFyv*E*y(TzQ-00rE?;moHwt2t9>F>aelk_SCdsCR%X5<*H zVZd6ohICY47inNM$}r6Nk0@usCDD8a)_u*GEVD&UDq26{(J@EgTLahc+-gem#@<6- z4!G2a<>FqXq1uG*`X`E@f+QFR8~DQB-X+<;_V#(IR_^!eN);F8R{7rK_fMZWo)GA! z&@ROnY4M=`@Yoz*Z%WD2T^p-NFu4>h#T4z9%_ zh<3Jp0^VG*g}JR13D(haaVB>Tn`8;AACJ*o+p|#eW?9C4uV_hMtFEe&xw^;WDAN1w z`)xc`nQj^n8s{aAi7BPPqApUw>;UU%P+vNH6L z*eu1oyv4(M`*5qqde0=>C;Cp)MwYZ%Qw8Vi%ac#8#oUO>>3|={5!EFY{lvs?C{u6* z(JL2i*n8)xtI6{$#}c15XKy~3;NhTDlnw3TU!Uk-m3-Rwd5ZEDT?<>NY6Xk#6?*wb zr>HcC))O!8agi}`e1M{%Jcs{VjK-S+NCTD2^fgq zsr>gjryTtB%Z?oMZZet`81(e0$?uexeb%P@Iz<`VFS}%S5^FhiItAt{Utkou#8!*{ zd0nUUk4uDD%I?aDME!%`yRZ7jmbZRamj=I z$yxiEteGqjnmrA2N9}oz&#x;gKBD$+pIscPxZSz z5tb@1FOP*(@sECBm1kX_flS zbQ%DDAQasFZi@|TU_-bw$xy=uZL%mPJv}@Mo5Top^W+2EG?NM{>Kmw?!FZ%MH7U(< zVyBT~l|wc{V{cJny8bqMyo~Y$bkUDKRCr}!0bRNp0LZC=&36s$8R-8$kla&)m~~=k zm_T#;;pAMVC%X%jc>L+gSFtZb=jEr}1jaU02hT+ObVX$j>NZ_&e5{yyv@mM$-X<5z z1Q)m2vE4}4{TI0%DY4viS3%$QzCe6jUG&dyI9!6H?LWkzj`?_1*TX|f;y4<0OyGMy zPlr_q+CE_!dr-33PE~#snep&fiebToy;%mtQ|+t6-xEY$r|Qm;W!7=}dEBO=E~s2B zopa0L;Aq`FOcInl*^-V@3;CPL!rbM_^s{r#$JT`=*}xRsy1_L9h@a*0*u=z6XrUV~ zeDS~{@Lo$6@At29pGVM`dLyF0U+}BuD9_sblV2sG0Rm6|c)(cS&%TAMD#2Q~N#XC+oLP znK&L{GvPwDRYkz{bKVCFOCydg#$LYjt5PG2FmSi>^74koQXsJb+}iEf(^WihdAZQ$ zMz_rmo$!VSgcMd~Dsx$rmoLR>`lWvGKiCw)S$6(fPitR8qw@p9AJb4(S(Z}db<1uN z#ovR`*~_yF>MV+@E(tE0({(EUcV!w|yb9vhwFT9@JPpmkzgxWeeQU0I`Q+Btww2QZ zeEfu^RVoaoMTeV_KMM&L*s<`0>S#v;LWi^`YYFY157LQ;?8Gdve)(cqB<1kN0@GU2 z{4ABRua`)bas6=XxnWItE>_jr`-6NfGF5F2T93ElJ~%x|^&17O655S%N+P6xUYVBZ z*NU)P59euf8rN11U+DbMlhxO6x42TKpAW~r#ZMd1SPPvv@EG2`rO}3B9h2I?eK?lC zNa|dw$@g#y4p>w6RJ6W7489aR)d@QIc*bYfsVG2+aZQk{%dcL3{y-qt=KwWPC+C`; z${3Vyz94essDMXvs0@AN?GpZS#wfaWuEHF%Km++xT+MBK~Pw=Y^gg+V1D< zCfe8N|Ln8VZ;1M~H6_2WWOJ93Hz{bc8Aha~SF^S*gRUU{gH0v8$?`cWk(pos7wWFs znxPoR(>A6k$(QEb?xm1w(4Lip;Dl&!Ul3vY0g}Hr`7rAmCU+9O(ob^~n-P&zduR7j=P| z_djH{@4#pj|Hw$rLPiAMTr>BQSLW24&Ab!1W6_b%({eccE1KG95 zbK#Px^F3gzpyQAo%Pq|CXal zLePuRD4iHFRSk!zG>>7Q0K(C>H5-L%RL?jbmj-@TYG3I|W^vP-q{!y%;<6Gdy0O38 zm%>fISp7>k<(tOfn&Y3!cZu$?C%pVyH}?5gqTW}jOqA$oH69iL{jO?lC}~a2k~K(r z%{{GNw%=24{>^g(f9UJWbT&r`)Fj`57rSo0g6hgfFJa&^`PY&#!py;Oa-ZlA(bD(R z{8o#*1ppRq5s`L3iR)W&P)mt&UUl(%$RJ3BPjmjMI9N? zX*A*}beqk^tKMMH$I;2tOhLx|Xu{Nka1xl=oJQ53 z6~f7j-kdn$VYBr_P5f{7C=?d*z7C=m1n2uIaBW|ntl%lA-MxucCqv6Lv;gm&@AaA- z6rs~((A@)#gX%J>@Yvw9+yv6ccTwj{GSKw4)6an;J^GXd10K=huj_QSMcps?JvpZA z=Z|;hK{t^)+Z+rT)QO0)702ma$^L-es%iUPBq*Opec?A(tT=)`c?2>^%fP6lw;YVf ztf3QQ0t%@96-T#waHVv&vyF<1u|sICumU8fZgn2|8OrweUF;S*zs%tASk?g_IRVeV z6s-m*M|;&zKtWIjT>yqVj&3zZHGq4TA}==GQ|+KbX#%8>WoZ}d7RC{x$F8L+g84q9 z0{zkyzV?t(Eie%&GBdVnR=wuQpsL}UKIpoRtbfsr4PM1iJnh>mtE#^G+xX6QtT3ab zY0V87e^?4@zM7lQ)Ov#9->1w>1{nqNb79-DM)>-nVPU(rNsz&mmse~xh~SX6KiZrI zD2dN~)38?<#Ps+gQ+Jn|gjOvRaJE(^{|EW~MGE2wM2_yFQKhrW-Pa$Ri z(y9QsE+0#cjm7Rmpf;cvo>J7|?tFVRIM=iSqv^>wlpd3mO< z>zYHm)Y!&h4?%g-vSmW@5p=Kcz5GoG8--q}B@r|v&D_*3&8$hiH^7z!p4Ykb3=DIh zHa>p*ct_HskAUb}@ZLo-8s6PldTo+V_qpTcT#v-o%Ym;-P=y_COt#w;)V2Nczkaga zOu$DKIfE;S1G!9wyMDolqy6E_EvSk>{t0!bzHNnmJ~(E9RNK6yYH)tz7R-jeAy1F7 z!WRH^J%!L2^sj=1qSkw9Z-{Fz#IET59}nefSy`DKRl?^_pBPe>-+YyN<-|2NKMx5# zp-YGHd}frq&oQ8RjMZl3#|wBDqxrhz%0S&Zqv@A>(5jwZko+^<1Z z{9iJ6CDXy1--o?AP&E2}>IV5bFcx5Ran(nT3=O5Th9wh>rf0o!65H9?0m$kTS{JY5 zkx7FdSfQ%-^eP?b!Bc4e)bXjNCh(QGFh7NYuOxJZaR(3eRGuK57< z2b#Kx7t#5&JX!A#;_S|2X~ z)LXgdn#{`2rO=_VW7+>_xuTCJMhmOl-cs*UAcZl;T@H?LI1%ium-O!b5$Gi(CT{BD zX@FitY!FH8Uf|wf_!J6yf`}bwgpBdyIHz_R z_w9;?i^wfM)S2Yzauzfi#{QRJ0h$mdCMFMPN2)(#Wn+8MohXD65DLBc6Y0dqV)K0c>Z!I+jdf^xgbHg(@!lHLti@?d$#)W?f-0bO<8 z#9R@$zbv#;nEZn)v@baESq(6e^B8lM+%n11$Wq*an<{i!c`ALn%t%Z^axz@tJ8XJ+ zy|PpVY;ZkL7e~*^ZEw5Pqyz+9CFj&@BvF^7e>H#&gBc7@49<7s8vdOjQD_vHQ?KwX z%&+2B-@Lpzw;BUm16T!sZ(2-x4gI;lVD&^#m6!Y7=%oo-OEmTMJ0Vr=KJ?rZ5fMRq zV${7<54p~-B+y5(=TCQ@-des_f%HAIYm1`cSW*%I?Ug7`3A&1qe;XtHzgtH9e=bCJ aP?+g2YXl7$9yNH-`U(w)*0(!JOC z|Ms`PbIv|qm#^%W@UW?|ArJ_jiZV*49(<_hH%eO`3r`6?K9~Q# zfY;5#o{#g{?_lr{tQX2go)8FuCGsyyp=^Nz1fn{u0(Qr9jv72RT1iij>^dm;K!PrACydJFIVUsozed43 zyONnY&@KKi?J~`Vl9bCagyys7zzudMjx zVKAG@943ojEEf9<^tHCOD4y#OU*FT3A7x?#uzX$8dnNj1m5o#|SS`mxRK<8)JR69` zqKucnHeC9T2h=1Cak4XM-4#i+`SVlQ-o3Adg_!c;xR1b1A33nS|IFB`N?K!~ha?eO z^b?;fe5W0YqY-6dWxZ$c%(kxoeg{$_xY9jT$AnlyuQP{PZ0yoz4WH1m z_JIoP-k*)H+@x-fM~TkN0}i{>1gyimd1B19i4rsMaA`4PX$ltX?M*0r`3%28Ud?+^ zEck9b2sjxxm}uf4BHEhy`pGpx&E+xV_wQ|Y8#>V3lJXYn(R_7zvo|PRhpWA-pCafw zmfFL3T#W*D_nt_3?^34lna9t%HsWBA$ZwYiMY`MrO23;N=^s-reaccxL8GE%)3>=_h{=JT)-LEiQhzmVztzl9kt_7I(h!mD1VXyn82}sKs)} zTf)WGbEop=@TMjyTpAHv$ya+_Gc`^l<>s=G?Sp6f`s6`(SBtqhIjCe9EqY4vw2y*< zWJH{&LI%@Cb4}`8DJ5QV#M6o=z4K&Y@<=-UGbkOuvifaWZL~nMmpMTy>3CA$*LyJw zIgc6s;M;(?7oB*JkdiOou$2<%y1{z{d=4z6E;n;2p>}G0{v%){AaXI}Jc&t3uk8ju ze0tXC9d35?_Xi)rh40>6!}EnEaWGROmOCRRk76SuGs=R4y(WIO1YX`v>ydf|-`!5s z4Gx-4LZPz-H?h>-IXVXjg_&+B_Q5J;o< zpN@}@!qkH2!|oHTOqjTJ8`)>R9T-qUcIxIx?!Y7?(`#cTyCK?>#pN2Qnr!=FyJo7Y zhA;L#8%OOMN31tqU|cg~gJm?bW#YgHVANqTCVu!3?bdRE5l1a7c%6YqErf}$>rl-~ zFGRwo*7iw0g5Uqt`Q_dml}t8)xVX5O?_V1$_Q$X_L0{jtAACEL2!wRHmt9i3S9`49 z?(P#Quq@324i&DqG=n?d8<7c9A@qYLCb#--$kMBqQ@SWS?Phchd!#ECAnZI740;c%jWTl$+# zC7-R&sXxKoe5$9nyx_mDUPu8<_#Yjeq*SPi<(s(Zn3#JZ5_Q+t0gP`5aVU7l=I;(V z33_j+-@kv48d6wVT3WS#eza=QEeDp5EoVk;xt)lU;b@bTH>RjMcix z_d&>k$+hWF@o+OYA$llN^8VTWRE7NU&ZOpffXqmliRdBd%x7TWjRrmlbNS#xDm;Ea zsnV2u2$fM~VoFk~-gzaafZ6=zD(^F3BeD*h zUI++WAx?~liQu$3&ssYL?0e96pRh17RTBL3ae`|3+F1YGoQ<+J{C4a}+;bP@m7f{| zitjzHXYdJ_9bl91fzA#`PT;dSPtD9#jZ6vK87DiiI%AsM-A^H5Bv+M*pb!*?BVa1lWG_+w=yaqIPO zzL9)&8sMy#fTij6-*2Y)n*p^OkejV_87Vb_s%3}~v1?>tPSeW_Jk`|=LqP3Ulw>c7 z0%YhVytdyc(Fc-3etuS^fXFSj1b*Vc#uzg`vILfObGnNC*XZa-t`dRN)ovAId6n%C z^5Z|V6kA(co0H}A-g|QnE0Rhu*a%pRNJ`yZAEgO9k@GgJ5kGzU zbO|gxjE@*BvNv0rho`e{tGiXhipIv&kfn=_?A}fS+1P^YAnL%Y({3=i4`a-)QPn>P zAw2>xd*Q$;uOd5er8`C&m=Kj@w(*^2FtI#UYIrRxQx9rQs#&`d=w*4m_ZN8L>1A&_ zdvcZDYROYOxhW-3OO%6E3r|m{xxN5SkBrBpmNZu}j+j99`m3_KI@x^!I@~?;M(?t| zzCJ?aX!vG*dDa-+;JJa#_@=MFpQvuZ&#CVghqqqtcyHe1%&Vlh_|5PJ$*}BQlPis? zs_H#Rh3Cdl;-8>ab5e5haObN|`dbDM505v5j|Va(4XU4yJf@ZO=B~eM*vJ|Ub4GnzW=3|}fi{W4l2-1j`nbhIaH3nXJ(@Oi1 zf`-F@`wy%8^-Cw<_F@APk|1-535+~rInk}B3w_`*QE^F$!1JFU>t_Qte=-7lY`xMI z#rP*p#Kl-y((i094#aG|QWe?{=2Z=L2S#r(#yCWW6bwT1fZHEbYV3;qKM24P|0 z`f||8jJ*?MV;{koaBy-K9Z5y89g8@Q^&MC{IyyoM<<%)nUp(rQaS>D79PeiXk!VP} znwSDg2P%q@u){BO*~^iH6^YYc*;@g8TCor?otPvgP0rG?r2Vaq)(7hkduYODMcfu> z55*h3cET0os4f4@)YMuyM-i_pIIY*r|4{qK&I^7<};cGr7 z24hTzo0d}(78%(T*QrK_boOg&YfB%TzO<*iwM11`3Odi#6A{RqGt|1wVnEV_9Ei!e z4MXnXkXwKm>~p>xakv~ouNW|NeEf1Q`0l2Dzvb#+C5CV1Xjry)eK1`BgcK0DbP<=I zh1$$bpsnYZJLTF&Mp$w@U7~@PF9#6N`~Ii9?N|G)32$*IR{Ghq(IK%kqWHiew*iw{ z;eY1ZbbGnuvl7LgbPZx&xUN9jA*O=%0eH^pFIB$o;ow`(46g|z5TD?F|Ni}Ft&0hy z4Fm;;KjjIQZ?E=y!MaG`YrQ6}oA)*u+qjwE4~j6qyPWjd{1oxC%3d>;PMR7_UG#q; z2Xg5lS15AyL`5keFMzvTEf2oo0xS59=dd(I>N9UD@c*P4-{-3xbgz%H@4EKp8%OHg z%&$-DTD!sLB%kjQ62X%>JAPwf>*?wB4Gh3+ZCM2c1s|Vgin*hH{``6K*Jm7HbzB@7 z5uw?vMB+vaAHN7a)Bg0uX{@#NMDL|7335t{BU2!ehYwNN)KO3OZY)joQ@%NeJX6@r z2=7!wp5pxf#^S&#BhO%>kI_*z+Yq>zJPP$Q{nPvI9Yi&y@T}&{mkQ}Gibc(A;%5J6 zR2(v+n*2XP>8djf3x2c^g_*gKY({vX4_sYMLE*Z0TA23tJBD$PS?CL#NlKEZu;^w= z`4YDg=)H;RqaL_WHoZDMd@z|Gceu;}72{MsId;x}_l`8fy@#s(8wUvb!*zz=m-PFA zWg+%*laN}}H8vbi`i4v0rpQp7K03$D#?w=L&`|U4cDwX*;MMV>yn^-_+981wq9(eA zJTJUX6-UQB$mk0~KkM$tA_#FHm>5E9YG9_w6=-Bq#u6L#DGx;$Q5cD;sAw0MC(ssQ z@YbN+|D!p*J1y6gTHq5=X60^`xD7HdZPIGDMLL(6>h>btf?Zd9R^Ynv@Th(K#@_XL zD0;{!o110L{P<*GZ+GhK)jD+9_HE@sZFG0kqvDM)D)lE%u#b2mBXJ|oRvac2Cd&T) z9W#qpCJR}85Wl^+m~kp5plplGs<0|9nRe_rIpO}|D-YrYckWg-aCN5nG{Kn>-pV!t z3O#i}-b%B4JSDGP%5TzKKdx;|d6eVcy)NVkS>!WFbadjc3cB%&r4&GYAn`IJhr_VO zQLitE5gnOofGPS>J6DmC-vT0YeIV~otqOyA8T!IczBNgGEXC#E#lXfHzxt(fv}nza zQB;co?TvpRzrWCYcs#1Pvlo1Q*n7B^thusPklh0U_7TvXrtaNjVjgRe-8`&JIm)Hq z`hF2~YFqafpY>yNWRT}Qe4O;FC_2aD_xJb6$O2N>EC^a9_vjJIUh7>DM9#}gc&64R z2I+fKOkAUOeB-zoHNbR~#YAUfXJb!?@6=UewSoDM%!|J?{r$cql06*pgSQcv2FwJ? ze`(OSZxZL8VAcGZeFD;G#S!9UTP7FOgHW{l5QxicE#CA3Fhff+(ja#M&eZN;{p>1v zMgyegm8sS3v20B_C4@|l?Ws$v{`%{}j-HAZV^JUj3S;oyrf zg0rN21tAQwvh*OI>IgiWk67(ZSOq@4S9CET4ERZi(?sbbfN<D3$mX|}3zEhFWDL+!8S&JllvBQ%4s$ujJ+t1|-a zZ2msCp;iL4P<8?VqM2XIZ)UhF99QN%2@bkQwp*>A{UKAp3wolOo3Ro9pzUH~az5ys z|7YdrPqn=r62M~O=ZM0V*fgYD-;r9hK`eF+Pt0oN*s`XdsHUR+NE!cQ`-?=F(Px-W zcm|8W#%@@j{<#N(H7T;^Xd0S7B4&q&H4caL9p|YzxX|bV_**vcRA|jwO!2I~y&{m_ zT#gv0NE7ORUX}bBbRArM&g|#FpACCaW?^?7osdUiE0QgN{tzyM;zt9UBcCMqn@9?a zQ1Uf|e~sl?4}lx-P*G|kn10=ru6{R9Oq(6n#9(E0)HLAk?%w7{oFaB-3uJ{pbF_V( zFgX|wqu7)k*&0m=G8_Osk(4ou^P%D9+Qy=qO{3ajW12%gPU{#Aad)G6)5a1nK?UZ> zbep>E(MdhHC{bBGZ3JhQ&0 z#rdk-pz@(3OV45%Qks+keeXwLxmFtNuZ zlAy`O89FNPxT+7>A?^4Y41sXJFHqAUAdrsqy=xBclh5JZkwk4J<=guuMNu+y$I^AI zcF0CE4gYi5*w2(6a;ZLuhJT4znQX<#3eX8&j3Nmcw%^>EdzUt73F5rJc>r@;>-&ad zwKrSf%J;Cc;F%XGd2ut3U+6$6+V+d2cDWuGB=ia2Ku5x2X2wyqgQrjGXX{EH4V+9) z&eyr;&VX>I%q{iJe=c*L(yCL+7ct>l4!WtK?mFHvc(r(a;kfGIQR+JH|3KH_twr;s zC-v@6|9qbM_bT=`lgS8S97^FQaqN!0cqvaiYzeI&Zjpo}(2Bo){TdY+bAxoKLxJMi z8xVWX%yR=&H}QX3pVlkar7VB$FK?VIwosz8kENl&=s{)9m(ZGyf2jf_5sjSBEVe!D zzBNDsHYsmulwmMZ#S(TBI`-Y!`%;JKU!AFbe)CG=TCQYgDo8 zQY8(zsj*JA0?lki20}SMKfk_H5K=E^zFHUwR0A%q7-apfU<#<$jwdg_Ncx=Q~Is@Y7Zmpdb8mW|nrbp<1(1igwkI|LEq#yF z7%Vs<{|}rx!AeH^_|hWZY4VFm8iI7O*wj$=OmyuNH&vN-zZQR$9ll2fuwEs&yMtEkM`*bszeHP5lEhX*pj{ zcRK)onM6e=_t?Ng)_~a(_Z$mW!hRl4f8Wfvdx_-kH{Ui1uesT)#rOw~grhlcKNY-l zA#5BKo^4rTRa$a;cHRZy<+Tm~5Bn}ddpU#T2Orhym5CFWm_da;_5#W@_ zB*?v=HPvG9gRuKOLGUn0Vmi(n^;o=Lyi@n?X@_g$KhP;(^9xlAYPn>=!VnBGE%CXJ z+Lots=^*3YY#@@@@_eCCJD1;ajN@Oe0Ke8UOv02z<&TABTZplwMm7f1%|?T*>e7Lw z?hO0r!v#gulEky`ilCdoTyS1?Vq*Q=;fjj|@*?u4WCt=g1Zs(oiYyX!A7WJ{F8XBA z9&Rj9VfTy^d+E&NYqaPZcIiqta?vF{&Yu=PM8`qJ#=sR4jf{Hb=vi%KkW#wxEJiI< zuj$`v+p`txKvBQ!` z{B299bm_g>+-MqtJVi)|h!7gzS#)CT*u~u)Jy|$8|JD&%0E@N_Kh4-^&Z4iePogtiv#c|VNvXlHv)qX-w-f@1}Qogrs=qKuP`Wfnm)9* zMCB(UN-L$}%Y7e6@&(n|eSF~scfbbsE^zsmS+)3sQxz)3VJoPL;lGKgJ7Rv3W zvodLHY1m+Uu?&3nAV;Q&Hj$tu^$BrAT^w5e)=YY~BL3po>pJ2%1$LmRk7Kz9s1Bz% zI#rAzy7vB4@AhmoK24NBSICjDO^q z{-OOs*vp@?AqWbFQ`zcEW1^z!?#<#|$oimm1xrgoaUs9RTZxgJ2xDHd{upGUn9Her#}-CGy6e2W-=S~LBw$ZM-cOVoITGd?Jae595{_)x z%t;(n{Lgj&f{J+fNkZNOkC_TIvAckqz>N&Frn{iA2&Z;h!Vgn4Sz{&51{IFe$~R_k z-Y>xBtXahKehxk^q<#d$ws{jt)dxA$+*&7fL`{RJ!B`&ju7{?X)`%MGtsiu4+WrXX zPnHjBE9KVsbc&7a!6bK6I%VQix}WJPc?MUkT&n8B4&&bypsgIP{~8l({a4P}P?i&M z@2@g1@`wlj){&gEalgdBs65MTR$oi2RT$BSK(2C?zP?MPlnTzs5itpY4@pn9E!K~> zMtu(2?~efFQpj-((>}|W?O&-UKfh-$AFNH@fboqv(~qTUJhSG8g$t=EGlYFpv|Z0> z(<#+e*u78>0330c+IoGDujv4FNao7f8Kh96^DjvN`Y+({i={DL31;&_S*6T#eJTyj zN?t=vC|)&|?T7M%0q2=&tcHdLN)cyD2!o^~jcN*aJIGs{T|rI4mx;B;aXg5JUO$OD za)egqy0h9@+SuwPsO{9o?6RNmkFutkzOHeav;q(jB;;(tpJ2b~2tOSE0rjE4`1m*g z&ar_r>VHz4H}Skv1r$%I`$)-9auvIS=nWZ$(}80|W|XlHB*~@yj^!L3A6}mRi2+ds zI3luQov)c4KQJ(`G`N3eG6g)Nb)K?g9C4TF&plPrGD11|D~Z3k_X0k=BdvKsS74jY zEETMJN@b;UANnJOrxS^M8X86dhr9Ha!mN!%Q!13g%!d&?RSoePz(-4EO-*whtk>gSIwJbF)=S+mlZkxoh?PAWn{f+Ho#JR@wxyy{=6_nKNy(U~&F~nNDsKM7L@cJCTIaVL6^j=?)T#>;S;6!9 zQ!}ZhuOI%N%K(Y9bqxodLL1W+VZ7Fp^d73kH(63eGDc^6-x^a%u{k0$=bQ|NBR->K zN2tJC-!l}2A!P3^hAG88SX^6gypMOMNdVSQ;M(w;92xk0ZFB&&G4ESOO~)E@1r#Q{ z=3w&!jngcGt<+a9u-FMUR5GEX0I46ylBTJ$AFgfWgspja-!TsV(Dl?2aprdzw@0h7 zs?JI<#4!m!3qVI@s};rIS-Ki8AM!wE3Ea6Q`WRPEuDVuajR~ za>NlSqciu`^H5ND1y#fxP-UQ^qVg7vh-Ars#*cEdfW=wx`9ssOT@tQ;Vc}Q2ml3QKfXR!aQaf~6~-C8vreG0nT-CyP0M~$?VHXa+9 z+hmtxMc=O02eiY|7Mjc440u$^47o>~l009CkiZ9R(uC!ReNOZ&x-f47Dad0Y7w+NafE_?8A_dP#k^H(rf2j>+eD>7co)hz#}GRelnGvOOFRu3Ck*T~iA1g?Q7v ztQ~eDxD0?OrbEcor4^H2zjAG7vB2)lqGF=?np30%+lo50$09AWV6c9w4ga>e))v}U z@4g-AE#f)Q6yJ^u#{+Hnor5lbjZTWm=EokQazu(Og&}WN?I!Aap0??No4k%hCTvRN zARL@1Dcsuo&BqauWa`hlooa@5dAU;|H!Ob z03Rnca4ab}=ws9O;ooA(6q=_}Q=a%SLK$>^=0C%kC#@b&W%k=162E_bAb%6+)_f0_ zje*tQrtD;=dh1Sq&)F~kSkqPnR6gbC`;;gN`6~Mj_j?3%yyUYPgXiS4?fcZ^ zeGs){5t2pKXaLU`4RKj7nqkdst8RaEn-w{Ea?yt7b(ZNKKGRl^6@5txt|S0gz7dDo zh?mC(`m;VS;bVT3ZQG!rrzdA;cdSU&26H<)Xl9Ydwd?aRZm&1AUew^D+<5=7tR)ZU zGO79)Lef0gd6v}So)*Qu@xH=M{~|6y=n*|dD2oR-=wTeb|9a|dm<$;4czdxl1ivNf zM7eo(Y;9sMs9@XL%DD?@{c};@m=i~Q7(o+CUbh@Lj+)_EHJQ4k&keuGL;#Khd3p0G z^>vUevR1yfv5{+iZtfW6(>xSw9i7-fD;qI&yghJ!4Y;k5ac7B>By2M?bqjIL;u9>K27r zCoK0}I6N#3Bl^Y5@hQXh?9^hH2dwxH*lrXE@eUp&i@8x_<>4ZsQwNzP_ zbZCO?#Jt|ofaj*vjXuBwHedFMRnAnyvkc0g&aw$g4G0BYpBILz36>exU@rz;@vy0- z5gw+2Phy5bp*}}fHxt5I#I+QR%#))(CMhK+R;0>$=?#JrC#Z;^8wlgirBjn<2K7Ic zhq-V>lMKX)Q4g*!j@$vKC>KyPh!PNjw%8#5466gVHjW9${ach=o9K7tL_Aso!kRl_ z1Y_oFSNjRqRwi{A!7ojgALmM!yGjN#NuOkWaCwg`Mj>Ol=;-J~P)$8sZITeCQFbK~ z{F`s68)(hR{nY;jvCcC**bZ6zVZi{;Tb!Cq(>X0nCASR-l_{C9Y#557ICb9J11 z(&X{k!2_y<4h6LsL+~IFr;L34#QcF94@?s%s{|VFGEA4`HD#PLS;fw%ZVujqtxN)c zv;G)bBC4jF)7f)SY&`(QuerT^LSJJhX)dha4hYIF2%O7`JuqMI-RYR~jKngtz1!^B?OJ^=9Sr%!s%^OY$HVe14X(zaURQR2%5T?RNVVXrH! z$FB-0esic2$YJX0SEUp&iKJ39KEYR78z5|mf_ofS-tIRoTu`g*Mq#n*DmWuhxtK&P z`Q>c{nC~Q0ec6m3Lw|GQS_uihKThTR%H%gjCFRCX!H1n6UVD*(~DN@-<9Bvh6cFi zi|?euk^TJ@)hfu$93kOU^i`{wk4KoiZSH)Z1cE!%dJ*7@kXkT4VX4=9!c@T3p{FWO6A$hixU4^&wPoO%8+( zv;)6bbO({+gSvf|FMHPX+ zl6l+cmi^6JYXHJyOsK0%5-3XqN2eS}EKqo;UH&_(FAaxi|9J5=>e9h7eb5(@j|w#mMZm3ei^; zyO!0*lI76hmqlKugm0smpszW_8X9XmIuWIe4ZK}dhG~w>FQH}qvTZs^NH?L@3(2g} zU_r)^&#HrNdFtGVS`CywNcx?*J^*TozQcMzd8sAK!f zh7X0?H&noGLPDQ($ti})p((WOi}J}OyD0be%SXW8iGhxD_`<18Z@Yye+(eXr|9M6D zONf^;J7M9S(^j*$3f5PfC_g|A9F4$_;t-&ySzSmeQvu80yc&-=T>A(BAnj!I08CC%% z%xs?^T8}nvY4*Ea$lx|(rjPx@_bJ7X;>`Br5YoCZ76PQ}N7%KAy?zrTXDm%K(DyZE zS3UxFEouM+gxnilCyCC?mV~(@c40=sdDbrtRVO~lWBi4!uR60;zRQGK(6WBtWyz3o z@Mp-a@DNF(v3uAr@;ZAT zMizfJvV-HHLt>qK`P#1y$GA~jWj)@B`q%oA#kLPg;c|t)ETx+eq$wdGVNDoo9{}0( z^4V3zi{*}`+TC5}D{9!udiW<)UFln~7k4+8S3?pw=WEIJSv_37lrvvbNbDa9B(guD zQ@~WgSoAsuj0>bQU1;{NaGjTUxjRLK3@w5HMF$q}4_GcK36nL@(`(;9%l%I_qA!%5 zgNYupyE_H7c%u6In!eVdnf~sA0I*@#ZZKL>;Kao>3)rG;PbJ+&v{bP8Us&v}M#oG; z<bIRQoq$ZNrKJ@DI5{glG;U*o17k(HhkeWmW79(x zigYvG6hG-7CZ4P~RiDY9z4re`eSUjpoZ4QVOHQju-I6FRc1&Dw|1V76Q=LCKB_%xQ z=F$?3PPFqN3p0i6!}wmTXp(;oD3xF_pddu)}mZ)GcbyKY?Z7*k=Shc2j|GuqFjqGOMI#;F^dv9j{iQy;WDr4QpE0QB>aau7+m%t_^J2g^H|8_+ zet1jlBBrtvg=O#k_{%79@lI!q?nqQqpKujoU@6Zc9IDGyCHZqS{cVymVe){tgzprq zS=23^&vG-P2hHSw-Cyb=Y1+P*3Lc_ zD&vJ<;G_4%>F!rmH54+#)A`fjnD+TFHu;aKugZu88tORXVZdi*1epXY1{2gj5r&H@ zOQ-icHAz7~i!?K$n4mQ){}4i}Crm%!<&CYsYrh|A)+|S1ugEl0+$J}_Q$V7BPeeYCF|;#cT#i@A^b?0;M@doWLRS=#`PY{n%vuaN7=jS~ z=ZTFGfu;HPt`D#2rlf^bU=x=7%v5{^m~kR3{EqLaNg?Fue&sF2GFz|jd7XLfVq%7B z1PAtAE=A+syB5S%S0u(P#JWTBVvJ9oGd;l#qrws|8f!ILF%q=c(y^GXWWn&ek6&oe zMZ|o3hC>uvJr!e@?SmF%ftBX{uPdh*oyyyrz6&Jz?^B z=KBJajfI4jAOfKr?dtX;0-clpOOgh}?;fa+M z;i}N#8Y>xTJs*``3at==Bq=H*zCHH71C$f6kC#$R*6Qn7r9Vw{K8o%6A&n+@oYns! zQEd$aJS6`#@fV(G;fV=T#pO!MJ4O@?fk(SkUsG+H6JT^*=oSP~Ldi_zTzszitYZ_< zipe-&iTI|8lcMI{NJHs}c+8o|OZZ$*sEI8!)nMSpY&EQYm}^HCRYK%@zE8c{PLC9J zqKb;5S{9k7pbYofH8$9haURaJ(U0y;Ex0wW>&WYO|FY*&rx>*7(rA8Ob~b#+8*KR# zPnei6p!yY!T8NQPOj~@e&3-8KfqAX_WpyF#VP!4}VN>%^i&vqFOdj;S_7*5qPttmI zXPWi6EGD?Uq-5bZv8)tDRL~Gk-QzO=NU&QlnfVObzS7c!4Oy;T4qCAFS2Hl_v_!w( z>3sf(>|-{ccJ{}ITNFhuvmx2nuwe6C#kNasJ;E3 zB%I7tr1vI)R=eCAj!MOtMBdk@MK#USWE_|lS=tUBZo~D|&fDQE&n%DhUL9V>bb<+v`9!?Xm3$vD*XP9|}rM z6xlUSJ8UE2?34JE97^M6;4|2*kryIgGiO%Fy$~~8?I3$C$)#Gh*Ju+pgT}<5M3}q$ zb~3<~U^}YMYyeRalCGN8`w(7kzi+mb5RCr)>>(VDiYArLVmkPUHBj#*sDWTW$ps`2 z^~pzgb>NsVd@E`W)XeLSi8bRY-lkB9mQK#8-1~R@mQ#bEE2d+->^NLUu=}>gZLlbS z9eT7`Zs}fe(_iDav3AyLK!p%?WU^*_%oKe;W_`TFqKEd-G{ea}&wC%hgFVWGxgf(i za@a-(4eOHY+3K(1#s}E8GzOGS zpz*qy`}Z;4vy7u7W;+z~u=iRFTJai0*+1~Aj16cb)bwI8%Jzpv@ zz#Gh`D}Lj{`_0$z(`i@Jxm9MMZ5UfeHtPZQ7cAGKt5E-ay$BOW&(2cvi9$eC$U0Uy zLL%(Q3lLxqnkc0k0XeuxA`oCW`$IPk>_t%$CnlO#A`v%I1Z!w<`pOrJT{Nc4mCtm_J$P6 zyaL5te!BrmpopQ+PALEKMG;9i zC`wGAXNitQofaY|B(JK zU+`~D_4MwwE@mG~KxcND<$|BLZ{GC{2DQ9Vz_LOuP|ykEq;lL%Yu{}PQ@Dui!!b3n z&j*xQF#s+f0&be36p(N*GBY!;+1;y(Aa^$JRn%s>FStm+&I&B4p8Gy%+7XuHOeIDA0BTD4PwEx3Yn57h|W2cT3i1vyJqt; zI#4RKL=8F*@K#1p@BmSrfcLK9%l(B1zP`RdS!q1U|a}U8PyCe(%otKV{E4W$5NR5H#1YQ z>UI{@lh@Cs1$q-Exe^6(_oCAM=&IY8f6bQNqdQvf&i+YbcE)~v0YP59Z^^$ZhjkAx zS4pX*I3)%3F+<{qtQY)N6T7)SsE~rv;s=^bAmS`+=7w+Ll}yWw#ziU%;@Uae3Go9u zsl+QlyOnqqPb|c3R%#}m%2(dF|K4D%#Maxp`85%=fWEP8gHeA8s3Zc0Nn}b>kev9U zs+9lm3^4>@YuX*Z0V;A20tmhiuXMK!D;`Ida`XJqZ??59nst&4G>%-cV#LONoPgK* zR%-9&jG5kNSlVmm6NeXpF6jyRLe@d;+idxB&-0sY_me=k>)TBiIO3Fw98|DpuCz^Q zZ=mC@-QA}(nUQ_?AS{XpEI7=Poq;Z{1>=W)@D`CQXTd*7+BCpO(Ut^qKzSW5^PRHBYMUmu-r*GfEbXT%?5XT7LPaYu zTy6!A0sldCi}}afe;0h+ixLOi(Bd9fdVOZ5Cm5##EFW7&6L)4+flb-GFX*%=qF+0&=IhK<#kTY!lqu(&KTV)7)}ikZov_Sga-NPSQk&st@n`-FYb!aq3C;#-QqM@R1!lbE*Gh7|eTl%o%MUE4)H#FFY{lnDDR;f z8MQIDYL)bUpnB z7%2xREo`VO7YKE_mOm=QgrvLv3LYV0hh!6=sY%=i9IHA@)UPOqL)X5)-;3Ex1s;T6 z$~DWaFFg{r`g<`Tbq`!IX~}P`Rf>>pXsEE4lJ+)uOWl>>?>Zm05Ns~3<>o2^$e82p zmig$gk_lrSV&5WEdX1$w&(U`$ryIPufc!`>9emRokjfB~I;E`0PRcHY1Y z<#zv0&4mW=SW;i4_1i2%v(QQB<<>_fHwrsdaBXP$Kyh{rSuU_9QwMS#K!6fJh^!Xj zW_p#Jl3R#KT-+PVxZ$D!abbN(^prExA|lT8&}&? zCKuja$u8Yqg|exKEZz+5O(b^5 zmX0dGVEx?|Y}$kAXi&SUdF;xlT8+s*xZ{$JL)$cx2>U2T}U~(B!xS@3aco`${0E%B3@T z_ACx*m}%awFaZ>3jV&J2Zm)h7A1R3hvcP!XU4U4_5eTZLi<=-E<4tZwauqOsNtwr3 zZGhF=4fHP{MV+XR&j#2nn`Rd6bwhD+G>SSUJ9koFmkrQeq>i<#`TB|j+S40hrwImW zY3VP>g!DY1g{5v_+QyuvqEPt(M#;SYyZ4`Y>D!9G0Y;hz(PKW($M`_&+JP*m=8awQ z`7#g!sy0xMpa2z#{OMNFf9u46NDjWsCi$4*XV0ry-y*9FB33NIDI|NUnjYG0VfY93> z+MveJ#)%|h@Zj2+<`rV5330ysy;aIxQ_LGP2<|s=PwQumjt+q{%cD_2rT`t;?5T}r zBX~$sTzf3eKThO-NrlIdjhq8wHk|*WKr)8>^*9mxXK99F2M3g=$_n|w z_MWX1{m<`Z{$%w5wW&Xg=6J736@pv;k(X(~>u34XDnh5R8aX)~-SD+UKaK=tNvEHH z0&8C;<-imJ6;|UvB`6w@Rk;p-*Qu)lTwS6DGEY0_#L_qOO;SKV(m)nsWSIs+giebd zjDEE#brlp0T>jg7pRXN&!P6hvsV4Hms)Lsc7xZf>cxamgR%0nYAeahT^IMa!v+h>@ zyDnB7DpJX0If?t<=c;Vjc0ar&3kO4HM{AdpmXY=q+_lhd5pLyS+<_#Ej$#e!B_*OpQjk$W+cMlp|P>JK>1^FvOVrC3M^723zHXr z^85F1si1ZiKxQ{p>q5iZdhM~czK*PFRfBpz7-}pag=9MU>j;!=x97dGRzN28?W&}t zMElvZ2gvn>9n?w>gq?tX__Y`TZg@)YA4yE?&Lxl6u$oJ#90a*Gfy6s8Iho|J{(lr` z$ZL~8D@xe{hX;`2AV9Fp0P-32bP)whOU8d(5}#8*n;{aE4~corMRQx4sp~4G0p$;<3v`I5gmxTUnA8Z zkHR)NTfnFyJ^_KD0P{E4^Bsi-1jP{1L65KBGA)W*M!|po2))d-2LcMyUU63>&5uai z1<4)wx7PyY+R?=U(Bw9L`~LO6um6ACjN&vrdVO@j5PpR71MM9F&ys6&B;09a@R{A zOzV*`D*FSAgl#ixW7ldBC8s4+{q^74vap-3wB_L7Xmbm` zGTEJLAi23Z>m4^Rk1KDvd~$XUM1{ByBuJ45kqXT8#cPaz@TgUH^pXG&!gT;`nn2LC zPZQupQOX8M0e10QkTXpdj}~`s`hGEQr2{kPo>}mX7eKrppxws@8!Iq>MG7NVfrv~C z6m~sSH8ty2-fi>y#edM0xnRk=0U{NgJiar>c+#3P`3Q38sR7xP||Z)w>_?R|Hr z1c2g_2IP$|O?xE|{T+^JGtV>8W3vl-R2EfpH#WQW*FcT?1z^)!0AK5~Q&#ul^4P%? z8J>ZxrmNTRwwaXfbTs?+=^PNoFwXiNZ!*&PETPP=?leivNyVFW^b-6`?z7*j z-p?a^Oe^K11tA0zB*rIpd{K4ybRYvL(||O*_n#L3<~vt;7tm~a(N_V5s6;OTl^{B> zX`Mj)l|x6eC7#R!Kf*Nt!eM5mco49XGtMRe9yJ&~W-cxqum?o>Q7f!uY=ia+@X$bM z!W!)6!NJRmKfTd2>~VX2K`G_K4*+P|%4aFVfqsti6%8cIbGC!75;L<4^OB+9NR8gZOq-PxozdGR~Vz3D|?! z-x7lCT@WcY&hQ)(CrYTg^xwMFtFqQ6WnHspgk`!^#1kyK9*dVHK2J~KHhK-Za0T@7 zBQUdH&jK>SV^g2yx9!2JVFn^$L*y~#&p+(=OD}*Q_cRbK$0wd?g=Ei-+%l# z>>|-z0xC}RP4Tj%=jlk5C8)=sffc9T=S?LG6g!vAYHyNTk`=`-{E@9?2i{8KdPDZE z9VwJKGURGa&H96I7%wK%(b3t4g#aaIDG8?|*tepyp>7>NAE08Kv&7i*|Cbt_}*`B3;I&k=K9a__6R2k8cGFPxU2r~~4&vu1( zP)gK`l`}zYjSGzrDyRFlpuaMk0JY-ZP;_^9_kI5!?N^GNdKgf!3xOCAZ6AV-D&9H= zBNx+%0>zdL8#{Z!&>>RNh1^F3@ZL|-l!p<{Q5ozXZ};7RUY~=Ty9?+RtXkp;QGq9W z490S2-Y%C|y7vXx^8>WYL`GFEGwuKwG)v%U11dpc;u_4{2|y%AQDgQ&H3{$aDT@8rsFq&d9uVnxkUiD1Hb3Rot>M3gEzwV|33CRFPruB z`SWhz{zRQ8KPF8Q0`2jgIBlBRrp=p=0(Sz3Kezl3Ja?lTxcj#o7^2`ZP=8Tu&z$F} z(__^buIvPAX7AV3&=8nwRVoBJm;%`OcmynmM1Z>;w|wY%WmME>oPJIOI9eqNoT6J) z`T5zSN#1&bzy(lIbDx*|O4n==04`ivn{j2uL|_kT-n-8yzeQ$UE>`~gZ|6gB3I1!Y zN!2`HVWalx_bXr_c<(18=sXP`x#aKPgMRK?2&|o5`kveb?`bMx2X73v zrY9P}W}0|xiQu}u-)>EK3vAB;k8A)fOwP@c6ujAbT2f%*V^9(F;_`BS;ILQw>-GEP z7z!Tunm^k6{oY~VvLRrwr4@5`o&cR(abn`Us#lsmbFD-{>$A4y-R%PABEINtIgaz~ zYTx8Z2}bq+dkB`31eky^X$j2KAAozfAFtc}?va4-M0d~zg5$q_Jnp{;+_^oc`rS_8 zVkLGdvz(0b$sH%yd>GV}jz?`sU<7R~2G+xG?(V++?wPumq`j*o&r{>pkq~ly{reo znB}}_o^nE9j$Q4n!@e$Z;LVM|-Vn663~zh^8?*#EPN0o#xK7CWYu|iMB4F!^{|&(N Pz8E}R{an^LB{Ts5=`A_# literal 0 HcmV?d00001 diff --git a/_images/linear-regression-implementation-from-scratch_4_0.png b/_images/linear-regression-implementation-from-scratch_4_0.png new file mode 100644 index 0000000000000000000000000000000000000000..1c74f40a11dc9096b8e78fbca874313f3acaf445 GIT binary patch literal 15066 zcmb7rbyyT%{O%w~D2Reehe{~YOGtx)G)PK^$kL#&bR!1R&C*DNbT@*Ez!K7p(kb0_ z&-nfR;y(A@-}Br*T-lv7XU?4YTMNAV^SJR#HOUC2@Vy8>KObzS!zv6#o>Z zcljGmkW8*$I7_PPCw1xh*t>7aKC7!sTAc}6=KsjMt0W{|aW^SfC;!d2JXHIAB|Mcw zLCIIw$t|y6pCR8elax}NduY!7Nm8-c>l-Gib5}9`sw(DguS2Abh&0d$sZ-}dJ%)u zGrqj0UZ1Rc?s>AW5z9`~(|{uyceIoqs;;TIaKH&c;8?I&?N>X$U+xNey*a*x8xlu%Kq{<%|zu5FrG8e#(jc|MhwM z@LDqj9j4`u{>-9rFSpw8+FRDnxPk4Kn|hUsb`kpvm{dShTP?fhVP$@yvG=M;=Fhub z$y$Y5PvktQwK+>LIFR@?jiG_%_;0$TmndZO>_&>LZrf>?Dkdr4yUK3(2EDgBY&G*W zU}e0j=x+FjWVe-E|01!YxkyTW+r(=^Yn)PdZ)iM!e!{H;L47|5*3AEWT(^(#U^^d~ zxHUdFkhq5bvSZi?Io;?fxb>CPaoY1B^YqvvJ1I+OqrQJO91Hq21y(-R^@I9HxcYFh zVS>}zmhH1UzpT130*i_14&4IG^TXLnNi4E%2b0bsls6y zF0Fmg$%}tVxHLase2L@L7tCkvvVq>--s2L7MWv?qI1qk-ANvikQ|z+qm*Ni>%a~*O z?U>pwkzsD$zMWTH{pdG%P(?v>s(F`VuRWLLdHo=lK_>(Jo!z5Ai^FaPe5)xK9Oas4 zL_zx>ioReLQ@jhSroHO+c4&m0a%yXJ8r=5!RHSJ#Mcnt7&JL!BrRh8wWZh^lZ}+ZP6LSM#*O#_l}5)Nj9F#c>(p<#_)>-9~_-YSCiNGUv&A_YQa447i1V!ih83 zLo7(V`mX`%Sy?&-$-aWE5-L<58n6IQli=i8^wU5d_ZKxBnTxClEXb$)UxOL9$}ivPt+%i5A0v>{6u9Ya4bHc;+^?+sU<7s~!?Zs{WF7hP+MG*f3hiOVG>UMB)R!^^tztrwigC8MW`u#>!1XS#bA}0(scrmVG|I zitNG^HsoTXE8D)srjK>EevM7vuF$PulVAanfZoJw^5vUU<(^OFAwp|HZ;!tj8YtCJ z-%{zcABfwINW`V&yPP`*9tU@XY&YIH@~e*lOYrRn8izMjoD^PWxrb^Dz-q-#3W1(Y~qg(35moE{9ZD-xAg?| z7=M0c%#JWuStZf0?NnK&9j2gqqi&CcAd0PHCMtFKc`3Ncc1VsN+N*oEo@bOX-l)J4 z1JAyr-Nl+v6^+J%UNTH3hU$Ua`23GsSoQUK<&lpF-3jNPoX^o?yci?TAc1dTW>1k1 z)2AKMaSL4I{}IN7Led2s7IN&S8wHnA-|RYjA2_@14L(1kV1-g?IP6M|;f3>IgylmG zc~zU5%yVd)EHl9Ohl@oe!4i2z0*I6S_5J|n*6%`GSl$hw!J!EAapfF2JBQtQhW6Ie-GLrNC zd(+@t+l!L=&|8oX{kA33eckU&(D3lEd_>5jnGgPLq2P0yX;g^7z*6+Y6o^5Y$Zgy&FSF&M6K;9f*XEt0sn?d(lG$y4h;VB7H*s+xPw9Hilu;X$zU;7ZlP0d9&X!sg!DX`kFDJwv)WtEPFcYd zJM`5o(2)wIfW!?zfU8(7QMEJ=y+uA?#$>pJz=mF>mu4w}ST|;?)^?Z}6r2=nlW2NH zG6nd5{m?%yEbE-@G(gge(J#?A>5va1#+_;5?0ji`3DgD#o0oSy#pW^asOGBU zUDlOTda|~o2j*o8G;qB9rTb5Ol*uhMzH8aePr;QM8{66;Q(GqO?Ri4FYG#HHoa|6j zBK8APnKd@U2}|*GXOy%vSpM9`(n(#TPFMN4cTV2eq@|@(U$RK;#!(fo&fL;cyJG z=`}rx5F|3cYe_Hy+@|xxPDT$Qr1kY(0+P>Kr0GASuBu!%bN6=aD(d1}D{353YA;?0b(S*1r%8p4 zEijYr?jWS{eq}J|M3tIhKt4Gh^q(Ebm#!LWbJ{qOs}d=j91~{BLqpAYTa13{L|ro? zV%8YLFh6fECJM0(bzmWV?A}EnH#mmcSRFKuOgsuj!)prLA=Cqmw&YeHzsZl4F7M=pYQmm zP_&&Vd`l%Ehe4tVpzCtcypFZVtsy7R=QByKY;4x)p2EqXm%x&Fq8Q#|f2C(azu(=0 za}COGjDY_$Ytt5~>-nZ7tb5S))vJEf(Bnn`kx+fP&a@yw4p9SK5X{WE$L z!pP|`r@Pr=8j6a+w4S>vd+X!R1IajsmVTyJc%C?c61HdKHx@)lw!z$A`J=YcxaoG` zblM3AZPpX_o4B7yZMCGR+qfz}oOg0Gse>TBx7)95)#6W35K2rVsJ@uwoNU{4wy%_O z?{?q=%HX`TG>LEDz8z7sL(QCuT_I1q3?oYkg+9fgBdq3LvIEc7o&M z?RYCL-uwtJ{uhRjV%OWQM9>`tN$C5MczP@S|>YdLCY)FrUp>NE1VwAt*7U12*Z zxISK`T%x6rnVEUK73%#N3mca~q_Md8+1s~oX+udMqfahk=;L>1vIoWym=$J|G4?5N z)1VG9@vtx7LLgp?xa~f(u*elX+f@@eSu2a@v50_+ZSq2pqRW_>Hke5d=7$w^8XBhR zBr=V_>A;LAdA)Ml!&2*i%ct!6oV&w`(d$u&tE^ zD;X;`epBnXI<$PC)`bJ*0Iy+FZv52Kcvw3*JR{NVC;$FrNcVerUcUPLnn9zcZ!R(- z15~*n6FX80yA-q6t#Joa^2+6F7RWse1NCmi_o&#M9II_zgVT2+&flD-x78H#YC!X9^C*k4bW6zdYt<($Ghr>o7iniy$hsJO_mKIAZsLZHa{IliZKMVV38x=L(qFlUOvq zxlARWpvJ{myaLB!kIty&GkVTk!8WU`Zn?`8;HMuKr#`6x%;5%QF8Oy=AB&qPDo0+@Q@0 zzddLCk_A(y>IKr;bxR4kq1}iC)0)BYRnm}#jU%1>m`(2X%#S^C6`sLztb%q4*D(-2 zZv^k8{NNMDMpn?uL?oCfMk%sKD`s|8-ZR4$&k6s$9Fox8nB|D&^pLDZeXDOl_Q^>u zczBo4!hbKqU{yPd)b8#o$tn@Kew7LYr!?fOD36zY8LQb2NphF37CC4%@EeL_uA8-V zl_qw{yYS(?FqQ;K{lm*HRL%NYf(@BbQ!V#6^@q1N{_aqWr}^nz<$F24GtCK2l6me; zf*mJ9zK@SWNSD?a`E@^FLw&PMy+1PQ1vF%xg?TLMPGdvY@6VWoMc}<)l~{;PIN=BL z(BHE~KAxZzvOJHEBB_*f&%h}V>==J;b;h_Hceup?iN;+E7hBSSn$tBL#eWAji zzL){$NXlFST<_f-;yJqr4U$Z`pz}e0dz!Iy_Z*g{UO!VNh?CHjKG!jd+;h@IcW`t5 zc|1>f3TRuH!U%4F?S_xGzZK!4%!QZe+o$M5L`sq#{_)=kx`08adtV%QKlk)(kdv2p z1U1`gY}09GE$YrS?CY#HkveTrvAuE^5W~}Zw?Ht3t7Bh0+TN6lQ!^Ux)2*>m)4;;& znJZH1DwD5TiM)u3A$z9JlU|eb;ELoT4JsNMnX-{g79iXU9xtWurPH0sn6!lq#<1za z>1IwLuI{XMYq_y#;Ae(<9BF!M_mUBEAV=kROAIbqwK zl8Wk9;5QOcs98OWv4ZbE^PD>9=u9Fk9$KxS;C&c<)e=We)EbKhwS6v#R7AAGT9+?h zwzRbDv-8@aQbcnz&L3bB_>~7n{lDO)*JE05fKo963=E8As$d1XGz5%Dx|l|>tTe?)=EQs@PW)1hCHe>q0i_NNq? zK7;J>`9V|B!IZo5&O(C5LT??D)ey)QB(XV44U`V>X4QX3bP?kLQrfy)@zpC=1|}xf`aeK8Xu5!ECe#UUgLfbSmLYjuOw;_kpIGq=~gO$NFICso9_I}Mj94Ad6QRoLht(UE}EG1QX?m)NY45Pa30svKe8TIw(CY8QL8w3s-(a@_ zNcxUFA_q&!?tix2??acmHw@=MkUSn*=NH{knJyMv#;8lO`D%=#i8)9!XR)Re=Zo@0 zhenPMZ+v?jzjM$=g>EyZ>VGp9LQVs$__@NNltC|J#KHEe`o+dtz&t3MG^H~9eV7I@ z@4atvr}WZy2_ra5;$Cr<93 z9*VVMqC^q4f2Khh*jzPJMrz|79!oyO$r>xDyRw~bQX;D#(c0W|TA%=2uNlkwRO$~S zSj3r9_qBUX+g03f(PlHUA2=cJ#UPgumPk|<4q!@|1iFAeW99Cri*S;#*h!!Hw!lK= z0%xmVAL(cU&;CRZmZ`)O9b!7!^TgSYw#qv9NNA&w*fE@$DcE5I;0m(cPr1RGM7Pod zSs)w`HGjRyLP|S4w^pvbkUcGd(aKzb-uz}Lj1&jqLp*`vxeTF#5-FPTP&`C*B+nh* z50lt{HH)UETU3WFB?;BX$hWb4B^RDQ z1G)0aUf_q2tS{1^od0aY34W9IZ=u(egxWnP#%O~$e%H|EnX{P6a<}@;n(5D zae$}{H@@LP{M7D!D&5~ipc8#1V5+9oDj?)Krr9B>z*BmlbYBD*{t6ZPW??Fuu0&#P zAhX*r|C;jg4y{UO>D_>-q}d8d=^tp{#g@{2#g-Sxema?t|6KwOVpC6RsIir#-1Om+ z1l>PVt7{?s;IT9@U_M(vQC){XncZ$019=8eT=cv(T^C}N(5-AC*$w}@59WcUOfKxK zR@0~>MPdm$AL|>KW-?=~lWX$5F>HRK&?v}5vn=_4wmUh7mA$q}le~_Xk0{lYzP;cA zA(EGeC#Sl4WaD>gaO&PIS*8z+Z8f)xkP%VEyW|(LKcsx9-lbH8_@A8`)A1kJ4S&I0 zCeuqbOLl!~YHC_L^YI~%%@_|Tw>k2$7S%@HPa_xIv#ElL{b?v|!Na0@)kr2q)hgRbZdw;ne}TB)WaQS7p{X1ivn_hv$8oG{ zi^T5pB5?w}l{VwMo2|sF%HGG3jXOyjOMUVjgRsAwga|MtWOt#9aS^ANuyy>>Rd$9m zSkFS9ciY6d#zZ4blP-Hph5Tvy&P4#sc)dKw(x z#FVCMAJ#+nC~VbeVYR4fs4r9AamsZu*Zbo9xYO|b6O~=P3b^R;PRhk+jeN~zz%C3H zd7rH&621bFG%r8j>P)M_t%6~>MMKy{oG$p4;>zpUqfC+LQN{Ldc2g*Mf6lPwY8`m%&CUAD(s#Z47{7 z-|;(z+1%XGn-7LYn}HUtIudKfv&i%z`ed=NAh6~?bsIx($qaHneHsuueNXF_O-S8azYq+ED!K<#*~tOo^Bc(yQds@^qT$hpw@4fpk?<}kZ< zq*1M8)R47rY(Uo5_qQ;p{2}6?xTN59S^|3b?;15|eCXVk?j!+H0MHS39VW=G_{?|j z-VKE&2|2qxdW`6Gy?qqLVwj#jKrXgZ?l)vJwvMst?WU9Y9v{p!?YLv*=xmK%M!4{*Fd*JaBpEM!uMitDVnHc^l;Z54nD{JB>nhow zrKmPss7W|VetPK%yQyH=i^s_^7SWocC?Vv+Et!{6FE=L~dX`}d0QSeG_m}*2m=F({ z<}5N-KCC~_)L_5#5NY7s)b1vP-T&562z%s9CDHxa^)0n|D;YKoMLZ_#lLopt3%0XS zOB@+c7FOLtAjGeuE7!t9P}{tJ61er=?=RUZ_$*{`$T!BmoaCuT2;^K=FwwB!yMA-I zGM!(=EVFSj`B@%78h9L~%4DWW<{H(i|QF;nU`~Ib5T7M9Jj%mG43EB|m>7 z+|4-IPTJApOx12Mj_IsU?`g2THWFyOD}`~DW~+|fj_sgw~8-r+up~aU$OImhv8ClyU!7uUg||#2c?f;nNFYF!bftwkj!k3e^CLqVbyc z#nO4EQhCjv7=gfN8`m9Ren?tqcc{vL-qxAqWmkyJqn7vOzAj!%09fNK|J!>uo&Ncj z&e?mOHH5tiI(;RM%h$!7w2+U@zd0x~RLEylR7iQ6wSNJCJ7vw4UIpF05?3%{0Urt4 zFe{Y}Q=bJhUadSi#_`x|ST8}U^*89%8EC^Uuap;K6fij6vXaeCH!T2k*ANHIrB|Uw zxX(6q2HbC?9+hN7Dn&kVs={q~Z_0G|E(>{di@5h+T+6`=`@l_>dGhaxzB+<9y#h$& zud9(PMqw01`Clejt7I=C#|7d@P>Sie&6f5&!#JVcYKAz+*uJ{ z)GGhH_n)i(jC=KQW`srNn)owvF~rXA_jHz^ebA|~&ul#1mZx!FD{)&&dyndqWj+$& zdFhjd{4zTj5wfm$ZCQzME)>*{*(qLm{YpZLAfshz7V71SdLHLgR%*Vdw*N5wUTnJvudSMAdpK#x^{zEiV3K*z2STi&SLeQwEH&D zfb(4FPFmfP31?4;y)x15<#OZDpO?6GKrS<6g!TtEQ{bZz6YEi#gFlmwAQY~GkZmJdCiHeQ}@DYr2xzZu}OvX!P@bAJ3d6~I5AE3Db>8f*Jmu`jx9UI7~$(tju+i0>glmBG_ z+|7SPD9T^9H504X+rLBH%FefV3NaxB;{?{r`**)n*)a(3FC^IIf$S+7{6mOo0XY}X z2FB+-gIU|1Q1n5$F$D(yDA-qJzuc1I;6 zd66s4QVsfSv-Xq^<4VqlcUpju#W^OmgR4ZR@~cG8g$qm^D%MOK9y{{kA7WAeSihqelYx{hx1L*IbLYxz3`d zin!BD1yCU>WO62W61gc!M4#suY=-BwF;)_Ng!BFJ%G;=tfI~cX}y<`EPAs{nXmsf~kz(=vmm!0MEb_kjR`)wxoy!bLJ0jqb7(t)9{ zLY2r){6@hqwA7Art?s3`Ql8P<1nuH~Kr(pxs?7L>2f-JA@tz?nHGoG83BB(=#yehgTe;nT*N8f_BJT%6JG+B~}0#g&350-QGcLH;l4z44JoU%R>n7=2N3H}xEu ztjA5`%H?^%+~?OZ{)rFx`8)b{I6fn=voOi%#4y5<5X-FVAD^qTj_;@0>hH^SBqR*j zJM4VwYf+58!aa*b(wonenMJ?k`t=gi&KsGp!?qE(k|-(f5z$ops5QGjOvRQ-G5T#;8T89k80Y8ZWUD?xpH zC#Xjl&;_Q#$R?bv#M1%o1LO8O++fJ>y=j&(qCiEvaEH-vD3~wYPJ@V1HjQ=^zc!B z7Wsn(hv}V)f(!QG+shlutb>3q3Q{PX|DND3LA-)>7>Hv;j8pU0)r@UBG8bqI#0sa4 zt?k)tE*wJje`3v%W{%QwJ8CoP=E^l9ew*gHN!zP@ryV#DqKc}+miY&8>l^ynB`~VU zLIv2~zJs|jYuoyXagHZ+wU|3KP)@_Z`F=@@O>)~m87$0CtqnI=sHx%2?! zsXI{s$dL%>0B`C=oS&q(A!O1g$~QWZs1}_8ga@d-Wo&iIW>v?(R|zsi3Z5U%?t%KU z!pq>m#;&d`Y_%OF6GvI`yvK$%DCjV#^|8SpqjA{tZWdoM zGC%5pc^Q8$*oWR%!)cgBKyg2oOqpceRtu^Is_YEmPzei7K$DYnE!581TAlT_{Nax( zJr1_Ga&?JC&4c=t!-@Z`=N8d+!huLBCe4uZ9nr@#fgC6RSgp*4iVeX$`LLn4eo^Cb zp4)-aIoVmFfCG>7p9!bX#j+j+wKBM!LkYTv+dd!H6EkFwd!}ugfZe%5ysC0vDnnV+ z4$~e%xq;`CdeyqW9w@Xdel`2n0(g$snY0JtIluIG_SETYyt?0$sOa0$DI94^0aG$m&BDaqSQUK{~ z=L;U4c}LWP)Zy>q^BWzsFYIi2uc;1J;5~7)-1V`WT4->{0g_^V*L~|8r#O- zkg`8?YxfMxXCEKQ8dZd}7!|eyN-#ihrGs=oKqQ|B^9wL{vr5F(PXt-VxymqaRxd@R ztJ7Jjv$XSV@8&(AgGO4GOtUy&jmu|(KG`9rDgG5U>jUu*CrEc0_xhHP+1|dJ$my`Nn&>n( z#koeZB1e?Ro(O?l3c6Zd!U}W~imtCrvZpTq=@G2#g6pGq#X1E|FYC;AZ&XnvS~uC_ zn`66uWoGYD9=IyzNgjzii5nKZ`yA#lwG4V}NkD(T>aBYz83p8T$7_K_6(vqp`6bl^ zPb1pR_EdzSxPQ>9R2S0+uz2@<&*(2dCeALW*l@OR%i7}DXcIy8lAMvg){$yE0`kB4WO>Go7|aKy zy{?Q8-Gag%vLb43Do@zdDS%JK>>@eA26eZ+r3E+Z_p}p=_nKD!AmaiPiDG0S$m znI|7B(>I?`Y5&ukkxYP!H4=hO#W`mm7j}jTU8PsW6$XGN_so47Pp#0zZlCKx5M(XM zIqNsxk%EfR7raWJV~+);n&2SVt8-7=O@+LW3J@d{Y{^8{S8%G`&>*_{kr@arY5gc- z1s^`41-#Ob=4CkB-v#0Y1S`TcHC;FcXboIPU4WL4L7Fo%P2H9CXafFL4!)UK*OQC# zT*ZOBZ(!!gsW{%rv*!;1(cc}cM{V{c!#CE#0zGRXX!KrOJ2syIVPh8ZeI75wiPNdz z`gn25sB>OaAM#lP;rd3B`Hr^Vty3# z*y;sXJ_7hiA3~K1TnI^zMgHTGh86S+J|+(zYl7uhkfsTeX>Nq!24p0Zk3@oEIa`L| z({g|IiAa<@H)67cYWwD+`Qze_+1@bTLV0y>$m@F4nodqmNeEIf19WZ#qkOsJs;13Uy+FaN8GuGWk5CSSH2CI#J&lwk ziNu1Ixdr1!YaFs|tAFDb=v2r_NiExqJlE37X=!N@4#n7J*+ppmqh({p(EcO)6VP|W zg4O|0y$gUgi{V0j!R3s|feNeVj_YF@t3w6-4F^;Ch5B`Qxw-8dcXZn46iH+iaG`2b zP?ztInyp4ZH-KTU)wXu#l+W_)HIjpagDm&&Z@PcbQcNi7OmUE})>e6Gsr%5nt<6XB2x} zeHBOp4UEta=ve^G(=}5-;2Xp+$iFrW4${*c4`ngTVSfHGe=U3+UjdoTLzt zz*_L%bD;lkN+F=}xnYm=hzazc)OT0I<3>~CK|YH3NROy||4C7iKtZt|-(Ew|h`%XQ z${e?`^S{!)K@TNKHiUS>^;=M)W0!cpF`;3t%t+AL)A= z3NFDv-{@2jE#@+gz19jrYGCH(N`HMpLTpIkDd#L{0*TY#b14K6qT6?k`N{sCLh&W2 z2h5c45Jip)#RZu%p*p_%n?m9)*DKNgOJ z6%#`EWa+VJxHl$MdIUGFKwhmWCG{5c@yiFrKx8TbOeaKmTV@iJD=;fqX+8R>tXohX z;Ld&dMU5*5y+kzOJUbkef(COwS65L< zJ3Bd86`DQ@p><#5f&u6Up=L;22s)`jqq!R6EqYTWfaGn+EX6Ymw9b~Wa;?fXsiU(q zlGgCA%RUa31}ivyaf(sUO_vTG0vPXJo7g#5!R(}@69hzdz8G|X12wZT1sLX^@Uv5) zYRWCYTVRnI;1w3Y$8<_x1`HMI=XZ3-HN6K{CWNbvtu{KVm4RFUNUQNs4iYdYrh>!4 z6bPpE#ScZFzP%{%AObqTIjz&iBqhEeM*)Pb=jIo@C^KxxC>H>+D?jdqu5HFO;~@Yr z4H(tXfig2?sk@_gAILfOrfM9_j7UGWz6w!&)Quoqy#IDq_`klGdMAg>nuB%0YV%su z@}qCVppwvA0!VuH4SlAW6RFGEGSnz9;0UH)~#D0{3-Qaoc3IxTuy-`1%{Jyb8=*+&;B^?HDeQ(3n7>LGFdn{o*Nsd zfrnLLJzDBPBxYmVy#pfPKpd9|T*Kv8S8IW}+(3jR4bcXI#Jk}#b)mo@7Ejbw?Hxiu zP*W5<2L-Xn??>a)oj{l*yzEK~`0RqVxP5~{!zKe#W+in%@7@ZK+y&5w?AWX{9@VwwUM;GUa`7meIB`Qu1Um*}c%~u$9hoywaw2Z%Ee>z)e=*4h!1U zH8hrixs_xoCFQ{!xLUT-;9Ps;9w_VG9Cg;KMS9?u2QYD5$3+*%91S3Uz(P!3Py*YG zSF-)C1}+400i(ywTene|{HO_7RUUB2+Rc`$ zq#=mqhKVY>6eZy;$w}vFPYW8mS;yslYMXi{#)Cx)v;Kd-3R+DOS5=vz8AwoYqNkFCFcxX~?kJ}br~%;&OcvI>=v`tUd+mMcbf=zmS0*(BgFl!gp{l(dfb@S2c$!{A`C@1y zd3L8qY(vH#D5CnKdMLgE;JegRiGk!bpt2{2+7#S5h#A_oE3LKPw~e^zf6sIXX^-<# ztc>n<9RpuYw++Ue6a_85qW`o0p`ndj5!hji+_BCFaESZC9}S?JC850l<;Gx>w>ORJT(}@W z635P>m!hq^Uyl?Uv#_xZj+&(ufY%g6e_Kg-aKKCps5o?hNh-TcL>+LG@)^XAa-YRx zVibo>E3NC9s3<8JawmJHed`<9pHN{u0GJ4?7l1@LeDe?%Djy#oXH2UZ8m84eczVh*6q;Ux#5)!_i5X6?FFH*`T@{^ecSV$dxx{3`M{sDlbqtGK&zP; zB1VHwGyw`T0O#d^K)3?CQL4ln6!0CZv*W#jHk|c_&-wZN9nlZ>`cuw%e!q^K>QoqU z(MNXfT5+qv>n`4kM^Q^7keJ>am2{q$Kfdt2f6q%A?;RgjY6G-g35>QQ|T`n{zo_l>T}X8l(V zA+TNzEJ{bLC?}`4J4t8{*nE*7umFUcQqfDnELaa7_T<`6plD9ntPa@7)U7m#MHer} zqdFH>;mwT{I~ncSZMryV0@d1+>^3)7{dZ2th2qw0Y7!C>b@;D9>9v0MTXjT4L`Iu4 zsJ$A%bKQ(n??Kz46U`<_m4(w_7WHC_?jr4Hy0o*4bu7C+s^dZS;dbm3zD1W*a0g65 zVlo?xh1!TiCA0eO8N!3Lc*8@jiEeUn%JkyQl|Q z^T)N&z2jO!8_xa)cjqJ!^I+9>%WVGhqM_XEC|3if5ar7)A(`rMd<7!Sj%l;VKHRl^swK-+6u%Lf?47Y_Xic~_v+8~$7{Dc z9txd#pZ>ctf`tEAnc{H9?4#q+9oUw4jdM}yh3KrsW%!=Y|TJS=uWU}Tpk!0 zcvLlEA9$}_yB1}!$|d2#G0WbttGWmj=@Na5JnIb;KoVPKGtOrQb}58mv9RusJ(zf* z9%yhvW^ra~QSKqYe89xQHudb2$tH=4!*jgDdb5)0DrW0r6$E15h8|l|t6W|nh+IQb zx4r(;bm5f^fORFn0VMryea{>f52FwQvq1=w5W_mB0)+JlXErdeZopBmvuYKmPCA^= zb9leTC8C@|tqyfj2)n#$dAmf$zvv1$h5r@M>2Plz3#22;)pgPgFQ+`oU&_nI0YJ)#cR1efT| zez&}pP3b8=;5JB3SXt!2AI=;sIkdUs`O*GfBgftJDwQ1~lT4Rt;DaDKrWam`xrba>6WsRsuJ%)v1@ zcU4&QGl7!_fPiU}9O&&H3WTJ?1t^exxq*ss7YG9q8JXxaz^b)Y_l6CJVbWy7`{HD* z)-fM8zJoC6&Cjz@!4iGqS(5bMWmpcQmqG+h8 zMFLHe0C-Ce6nM=h7z|Y04RUp^MSs>Z$R@BvdM{h-Og4evZiw#UP#PYE2gHA$9Xi>n zazOIfS?q~rfFY~D0UK810_!bodV~E-01%~Grhvy11a@EHw5|h?A(r1(v)_aJ`KLWv u?Mbh5gNdMK%m2BT`hWFU|NZwf@7S-eW|KHF{(#~Rl9f`DEPQO__rCx*zgYYL literal 0 HcmV?d00001 diff --git a/_images/linear-regression-implementation-from-scratch_6_1.png b/_images/linear-regression-implementation-from-scratch_6_1.png new file mode 100644 index 0000000000000000000000000000000000000000..1c74f40a11dc9096b8e78fbca874313f3acaf445 GIT binary patch literal 15066 zcmb7rbyyT%{O%w~D2Reehe{~YOGtx)G)PK^$kL#&bR!1R&C*DNbT@*Ez!K7p(kb0_ z&-nfR;y(A@-}Br*T-lv7XU?4YTMNAV^SJR#HOUC2@Vy8>KObzS!zv6#o>Z zcljGmkW8*$I7_PPCw1xh*t>7aKC7!sTAc}6=KsjMt0W{|aW^SfC;!d2JXHIAB|Mcw zLCIIw$t|y6pCR8elax}NduY!7Nm8-c>l-Gib5}9`sw(DguS2Abh&0d$sZ-}dJ%)u zGrqj0UZ1Rc?s>AW5z9`~(|{uyceIoqs;;TIaKH&c;8?I&?N>X$U+xNey*a*x8xlu%Kq{<%|zu5FrG8e#(jc|MhwM z@LDqj9j4`u{>-9rFSpw8+FRDnxPk4Kn|hUsb`kpvm{dShTP?fhVP$@yvG=M;=Fhub z$y$Y5PvktQwK+>LIFR@?jiG_%_;0$TmndZO>_&>LZrf>?Dkdr4yUK3(2EDgBY&G*W zU}e0j=x+FjWVe-E|01!YxkyTW+r(=^Yn)PdZ)iM!e!{H;L47|5*3AEWT(^(#U^^d~ zxHUdFkhq5bvSZi?Io;?fxb>CPaoY1B^YqvvJ1I+OqrQJO91Hq21y(-R^@I9HxcYFh zVS>}zmhH1UzpT130*i_14&4IG^TXLnNi4E%2b0bsls6y zF0Fmg$%}tVxHLase2L@L7tCkvvVq>--s2L7MWv?qI1qk-ANvikQ|z+qm*Ni>%a~*O z?U>pwkzsD$zMWTH{pdG%P(?v>s(F`VuRWLLdHo=lK_>(Jo!z5Ai^FaPe5)xK9Oas4 zL_zx>ioReLQ@jhSroHO+c4&m0a%yXJ8r=5!RHSJ#Mcnt7&JL!BrRh8wWZh^lZ}+ZP6LSM#*O#_l}5)Nj9F#c>(p<#_)>-9~_-YSCiNGUv&A_YQa447i1V!ih83 zLo7(V`mX`%Sy?&-$-aWE5-L<58n6IQli=i8^wU5d_ZKxBnTxClEXb$)UxOL9$}ivPt+%i5A0v>{6u9Ya4bHc;+^?+sU<7s~!?Zs{WF7hP+MG*f3hiOVG>UMB)R!^^tztrwigC8MW`u#>!1XS#bA}0(scrmVG|I zitNG^HsoTXE8D)srjK>EevM7vuF$PulVAanfZoJw^5vUU<(^OFAwp|HZ;!tj8YtCJ z-%{zcABfwINW`V&yPP`*9tU@XY&YIH@~e*lOYrRn8izMjoD^PWxrb^Dz-q-#3W1(Y~qg(35moE{9ZD-xAg?| z7=M0c%#JWuStZf0?NnK&9j2gqqi&CcAd0PHCMtFKc`3Ncc1VsN+N*oEo@bOX-l)J4 z1JAyr-Nl+v6^+J%UNTH3hU$Ua`23GsSoQUK<&lpF-3jNPoX^o?yci?TAc1dTW>1k1 z)2AKMaSL4I{}IN7Led2s7IN&S8wHnA-|RYjA2_@14L(1kV1-g?IP6M|;f3>IgylmG zc~zU5%yVd)EHl9Ohl@oe!4i2z0*I6S_5J|n*6%`GSl$hw!J!EAapfF2JBQtQhW6Ie-GLrNC zd(+@t+l!L=&|8oX{kA33eckU&(D3lEd_>5jnGgPLq2P0yX;g^7z*6+Y6o^5Y$Zgy&FSF&M6K;9f*XEt0sn?d(lG$y4h;VB7H*s+xPw9Hilu;X$zU;7ZlP0d9&X!sg!DX`kFDJwv)WtEPFcYd zJM`5o(2)wIfW!?zfU8(7QMEJ=y+uA?#$>pJz=mF>mu4w}ST|;?)^?Z}6r2=nlW2NH zG6nd5{m?%yEbE-@G(gge(J#?A>5va1#+_;5?0ji`3DgD#o0oSy#pW^asOGBU zUDlOTda|~o2j*o8G;qB9rTb5Ol*uhMzH8aePr;QM8{66;Q(GqO?Ri4FYG#HHoa|6j zBK8APnKd@U2}|*GXOy%vSpM9`(n(#TPFMN4cTV2eq@|@(U$RK;#!(fo&fL;cyJG z=`}rx5F|3cYe_Hy+@|xxPDT$Qr1kY(0+P>Kr0GASuBu!%bN6=aD(d1}D{353YA;?0b(S*1r%8p4 zEijYr?jWS{eq}J|M3tIhKt4Gh^q(Ebm#!LWbJ{qOs}d=j91~{BLqpAYTa13{L|ro? zV%8YLFh6fECJM0(bzmWV?A}EnH#mmcSRFKuOgsuj!)prLA=Cqmw&YeHzsZl4F7M=pYQmm zP_&&Vd`l%Ehe4tVpzCtcypFZVtsy7R=QByKY;4x)p2EqXm%x&Fq8Q#|f2C(azu(=0 za}COGjDY_$Ytt5~>-nZ7tb5S))vJEf(Bnn`kx+fP&a@yw4p9SK5X{WE$L z!pP|`r@Pr=8j6a+w4S>vd+X!R1IajsmVTyJc%C?c61HdKHx@)lw!z$A`J=YcxaoG` zblM3AZPpX_o4B7yZMCGR+qfz}oOg0Gse>TBx7)95)#6W35K2rVsJ@uwoNU{4wy%_O z?{?q=%HX`TG>LEDz8z7sL(QCuT_I1q3?oYkg+9fgBdq3LvIEc7o&M z?RYCL-uwtJ{uhRjV%OWQM9>`tN$C5MczP@S|>YdLCY)FrUp>NE1VwAt*7U12*Z zxISK`T%x6rnVEUK73%#N3mca~q_Md8+1s~oX+udMqfahk=;L>1vIoWym=$J|G4?5N z)1VG9@vtx7LLgp?xa~f(u*elX+f@@eSu2a@v50_+ZSq2pqRW_>Hke5d=7$w^8XBhR zBr=V_>A;LAdA)Ml!&2*i%ct!6oV&w`(d$u&tE^ zD;X;`epBnXI<$PC)`bJ*0Iy+FZv52Kcvw3*JR{NVC;$FrNcVerUcUPLnn9zcZ!R(- z15~*n6FX80yA-q6t#Joa^2+6F7RWse1NCmi_o&#M9II_zgVT2+&flD-x78H#YC!X9^C*k4bW6zdYt<($Ghr>o7iniy$hsJO_mKIAZsLZHa{IliZKMVV38x=L(qFlUOvq zxlARWpvJ{myaLB!kIty&GkVTk!8WU`Zn?`8;HMuKr#`6x%;5%QF8Oy=AB&qPDo0+@Q@0 zzddLCk_A(y>IKr;bxR4kq1}iC)0)BYRnm}#jU%1>m`(2X%#S^C6`sLztb%q4*D(-2 zZv^k8{NNMDMpn?uL?oCfMk%sKD`s|8-ZR4$&k6s$9Fox8nB|D&^pLDZeXDOl_Q^>u zczBo4!hbKqU{yPd)b8#o$tn@Kew7LYr!?fOD36zY8LQb2NphF37CC4%@EeL_uA8-V zl_qw{yYS(?FqQ;K{lm*HRL%NYf(@BbQ!V#6^@q1N{_aqWr}^nz<$F24GtCK2l6me; zf*mJ9zK@SWNSD?a`E@^FLw&PMy+1PQ1vF%xg?TLMPGdvY@6VWoMc}<)l~{;PIN=BL z(BHE~KAxZzvOJHEBB_*f&%h}V>==J;b;h_Hceup?iN;+E7hBSSn$tBL#eWAji zzL){$NXlFST<_f-;yJqr4U$Z`pz}e0dz!Iy_Z*g{UO!VNh?CHjKG!jd+;h@IcW`t5 zc|1>f3TRuH!U%4F?S_xGzZK!4%!QZe+o$M5L`sq#{_)=kx`08adtV%QKlk)(kdv2p z1U1`gY}09GE$YrS?CY#HkveTrvAuE^5W~}Zw?Ht3t7Bh0+TN6lQ!^Ux)2*>m)4;;& znJZH1DwD5TiM)u3A$z9JlU|eb;ELoT4JsNMnX-{g79iXU9xtWurPH0sn6!lq#<1za z>1IwLuI{XMYq_y#;Ae(<9BF!M_mUBEAV=kROAIbqwK zl8Wk9;5QOcs98OWv4ZbE^PD>9=u9Fk9$KxS;C&c<)e=We)EbKhwS6v#R7AAGT9+?h zwzRbDv-8@aQbcnz&L3bB_>~7n{lDO)*JE05fKo963=E8As$d1XGz5%Dx|l|>tTe?)=EQs@PW)1hCHe>q0i_NNq? zK7;J>`9V|B!IZo5&O(C5LT??D)ey)QB(XV44U`V>X4QX3bP?kLQrfy)@zpC=1|}xf`aeK8Xu5!ECe#UUgLfbSmLYjuOw;_kpIGq=~gO$NFICso9_I}Mj94Ad6QRoLht(UE}EG1QX?m)NY45Pa30svKe8TIw(CY8QL8w3s-(a@_ zNcxUFA_q&!?tix2??acmHw@=MkUSn*=NH{knJyMv#;8lO`D%=#i8)9!XR)Re=Zo@0 zhenPMZ+v?jzjM$=g>EyZ>VGp9LQVs$__@NNltC|J#KHEe`o+dtz&t3MG^H~9eV7I@ z@4atvr}WZy2_ra5;$Cr<93 z9*VVMqC^q4f2Khh*jzPJMrz|79!oyO$r>xDyRw~bQX;D#(c0W|TA%=2uNlkwRO$~S zSj3r9_qBUX+g03f(PlHUA2=cJ#UPgumPk|<4q!@|1iFAeW99Cri*S;#*h!!Hw!lK= z0%xmVAL(cU&;CRZmZ`)O9b!7!^TgSYw#qv9NNA&w*fE@$DcE5I;0m(cPr1RGM7Pod zSs)w`HGjRyLP|S4w^pvbkUcGd(aKzb-uz}Lj1&jqLp*`vxeTF#5-FPTP&`C*B+nh* z50lt{HH)UETU3WFB?;BX$hWb4B^RDQ z1G)0aUf_q2tS{1^od0aY34W9IZ=u(egxWnP#%O~$e%H|EnX{P6a<}@;n(5D zae$}{H@@LP{M7D!D&5~ipc8#1V5+9oDj?)Krr9B>z*BmlbYBD*{t6ZPW??Fuu0&#P zAhX*r|C;jg4y{UO>D_>-q}d8d=^tp{#g@{2#g-Sxema?t|6KwOVpC6RsIir#-1Om+ z1l>PVt7{?s;IT9@U_M(vQC){XncZ$019=8eT=cv(T^C}N(5-AC*$w}@59WcUOfKxK zR@0~>MPdm$AL|>KW-?=~lWX$5F>HRK&?v}5vn=_4wmUh7mA$q}le~_Xk0{lYzP;cA zA(EGeC#Sl4WaD>gaO&PIS*8z+Z8f)xkP%VEyW|(LKcsx9-lbH8_@A8`)A1kJ4S&I0 zCeuqbOLl!~YHC_L^YI~%%@_|Tw>k2$7S%@HPa_xIv#ElL{b?v|!Na0@)kr2q)hgRbZdw;ne}TB)WaQS7p{X1ivn_hv$8oG{ zi^T5pB5?w}l{VwMo2|sF%HGG3jXOyjOMUVjgRsAwga|MtWOt#9aS^ANuyy>>Rd$9m zSkFS9ciY6d#zZ4blP-Hph5Tvy&P4#sc)dKw(x z#FVCMAJ#+nC~VbeVYR4fs4r9AamsZu*Zbo9xYO|b6O~=P3b^R;PRhk+jeN~zz%C3H zd7rH&621bFG%r8j>P)M_t%6~>MMKy{oG$p4;>zpUqfC+LQN{Ldc2g*Mf6lPwY8`m%&CUAD(s#Z47{7 z-|;(z+1%XGn-7LYn}HUtIudKfv&i%z`ed=NAh6~?bsIx($qaHneHsuueNXF_O-S8azYq+ED!K<#*~tOo^Bc(yQds@^qT$hpw@4fpk?<}kZ< zq*1M8)R47rY(Uo5_qQ;p{2}6?xTN59S^|3b?;15|eCXVk?j!+H0MHS39VW=G_{?|j z-VKE&2|2qxdW`6Gy?qqLVwj#jKrXgZ?l)vJwvMst?WU9Y9v{p!?YLv*=xmK%M!4{*Fd*JaBpEM!uMitDVnHc^l;Z54nD{JB>nhow zrKmPss7W|VetPK%yQyH=i^s_^7SWocC?Vv+Et!{6FE=L~dX`}d0QSeG_m}*2m=F({ z<}5N-KCC~_)L_5#5NY7s)b1vP-T&562z%s9CDHxa^)0n|D;YKoMLZ_#lLopt3%0XS zOB@+c7FOLtAjGeuE7!t9P}{tJ61er=?=RUZ_$*{`$T!BmoaCuT2;^K=FwwB!yMA-I zGM!(=EVFSj`B@%78h9L~%4DWW<{H(i|QF;nU`~Ib5T7M9Jj%mG43EB|m>7 z+|4-IPTJApOx12Mj_IsU?`g2THWFyOD}`~DW~+|fj_sgw~8-r+up~aU$OImhv8ClyU!7uUg||#2c?f;nNFYF!bftwkj!k3e^CLqVbyc z#nO4EQhCjv7=gfN8`m9Ren?tqcc{vL-qxAqWmkyJqn7vOzAj!%09fNK|J!>uo&Ncj z&e?mOHH5tiI(;RM%h$!7w2+U@zd0x~RLEylR7iQ6wSNJCJ7vw4UIpF05?3%{0Urt4 zFe{Y}Q=bJhUadSi#_`x|ST8}U^*89%8EC^Uuap;K6fij6vXaeCH!T2k*ANHIrB|Uw zxX(6q2HbC?9+hN7Dn&kVs={q~Z_0G|E(>{di@5h+T+6`=`@l_>dGhaxzB+<9y#h$& zud9(PMqw01`Clejt7I=C#|7d@P>Sie&6f5&!#JVcYKAz+*uJ{ z)GGhH_n)i(jC=KQW`srNn)owvF~rXA_jHz^ebA|~&ul#1mZx!FD{)&&dyndqWj+$& zdFhjd{4zTj5wfm$ZCQzME)>*{*(qLm{YpZLAfshz7V71SdLHLgR%*Vdw*N5wUTnJvudSMAdpK#x^{zEiV3K*z2STi&SLeQwEH&D zfb(4FPFmfP31?4;y)x15<#OZDpO?6GKrS<6g!TtEQ{bZz6YEi#gFlmwAQY~GkZmJdCiHeQ}@DYr2xzZu}OvX!P@bAJ3d6~I5AE3Db>8f*Jmu`jx9UI7~$(tju+i0>glmBG_ z+|7SPD9T^9H504X+rLBH%FefV3NaxB;{?{r`**)n*)a(3FC^IIf$S+7{6mOo0XY}X z2FB+-gIU|1Q1n5$F$D(yDA-qJzuc1I;6 zd66s4QVsfSv-Xq^<4VqlcUpju#W^OmgR4ZR@~cG8g$qm^D%MOK9y{{kA7WAeSihqelYx{hx1L*IbLYxz3`d zin!BD1yCU>WO62W61gc!M4#suY=-BwF;)_Ng!BFJ%G;=tfI~cX}y<`EPAs{nXmsf~kz(=vmm!0MEb_kjR`)wxoy!bLJ0jqb7(t)9{ zLY2r){6@hqwA7Art?s3`Ql8P<1nuH~Kr(pxs?7L>2f-JA@tz?nHGoG83BB(=#yehgTe;nT*N8f_BJT%6JG+B~}0#g&350-QGcLH;l4z44JoU%R>n7=2N3H}xEu ztjA5`%H?^%+~?OZ{)rFx`8)b{I6fn=voOi%#4y5<5X-FVAD^qTj_;@0>hH^SBqR*j zJM4VwYf+58!aa*b(wonenMJ?k`t=gi&KsGp!?qE(k|-(f5z$ops5QGjOvRQ-G5T#;8T89k80Y8ZWUD?xpH zC#Xjl&;_Q#$R?bv#M1%o1LO8O++fJ>y=j&(qCiEvaEH-vD3~wYPJ@V1HjQ=^zc!B z7Wsn(hv}V)f(!QG+shlutb>3q3Q{PX|DND3LA-)>7>Hv;j8pU0)r@UBG8bqI#0sa4 zt?k)tE*wJje`3v%W{%QwJ8CoP=E^l9ew*gHN!zP@ryV#DqKc}+miY&8>l^ynB`~VU zLIv2~zJs|jYuoyXagHZ+wU|3KP)@_Z`F=@@O>)~m87$0CtqnI=sHx%2?! zsXI{s$dL%>0B`C=oS&q(A!O1g$~QWZs1}_8ga@d-Wo&iIW>v?(R|zsi3Z5U%?t%KU z!pq>m#;&d`Y_%OF6GvI`yvK$%DCjV#^|8SpqjA{tZWdoM zGC%5pc^Q8$*oWR%!)cgBKyg2oOqpceRtu^Is_YEmPzei7K$DYnE!581TAlT_{Nax( zJr1_Ga&?JC&4c=t!-@Z`=N8d+!huLBCe4uZ9nr@#fgC6RSgp*4iVeX$`LLn4eo^Cb zp4)-aIoVmFfCG>7p9!bX#j+j+wKBM!LkYTv+dd!H6EkFwd!}ugfZe%5ysC0vDnnV+ z4$~e%xq;`CdeyqW9w@Xdel`2n0(g$snY0JtIluIG_SETYyt?0$sOa0$DI94^0aG$m&BDaqSQUK{~ z=L;U4c}LWP)Zy>q^BWzsFYIi2uc;1J;5~7)-1V`WT4->{0g_^V*L~|8r#O- zkg`8?YxfMxXCEKQ8dZd}7!|eyN-#ihrGs=oKqQ|B^9wL{vr5F(PXt-VxymqaRxd@R ztJ7Jjv$XSV@8&(AgGO4GOtUy&jmu|(KG`9rDgG5U>jUu*CrEc0_xhHP+1|dJ$my`Nn&>n( z#koeZB1e?Ro(O?l3c6Zd!U}W~imtCrvZpTq=@G2#g6pGq#X1E|FYC;AZ&XnvS~uC_ zn`66uWoGYD9=IyzNgjzii5nKZ`yA#lwG4V}NkD(T>aBYz83p8T$7_K_6(vqp`6bl^ zPb1pR_EdzSxPQ>9R2S0+uz2@<&*(2dCeALW*l@OR%i7}DXcIy8lAMvg){$yE0`kB4WO>Go7|aKy zy{?Q8-Gag%vLb43Do@zdDS%JK>>@eA26eZ+r3E+Z_p}p=_nKD!AmaiPiDG0S$m znI|7B(>I?`Y5&ukkxYP!H4=hO#W`mm7j}jTU8PsW6$XGN_so47Pp#0zZlCKx5M(XM zIqNsxk%EfR7raWJV~+);n&2SVt8-7=O@+LW3J@d{Y{^8{S8%G`&>*_{kr@arY5gc- z1s^`41-#Ob=4CkB-v#0Y1S`TcHC;FcXboIPU4WL4L7Fo%P2H9CXafFL4!)UK*OQC# zT*ZOBZ(!!gsW{%rv*!;1(cc}cM{V{c!#CE#0zGRXX!KrOJ2syIVPh8ZeI75wiPNdz z`gn25sB>OaAM#lP;rd3B`Hr^Vty3# z*y;sXJ_7hiA3~K1TnI^zMgHTGh86S+J|+(zYl7uhkfsTeX>Nq!24p0Zk3@oEIa`L| z({g|IiAa<@H)67cYWwD+`Qze_+1@bTLV0y>$m@F4nodqmNeEIf19WZ#qkOsJs;13Uy+FaN8GuGWk5CSSH2CI#J&lwk ziNu1Ixdr1!YaFs|tAFDb=v2r_NiExqJlE37X=!N@4#n7J*+ppmqh({p(EcO)6VP|W zg4O|0y$gUgi{V0j!R3s|feNeVj_YF@t3w6-4F^;Ch5B`Qxw-8dcXZn46iH+iaG`2b zP?ztInyp4ZH-KTU)wXu#l+W_)HIjpagDm&&Z@PcbQcNi7OmUE})>e6Gsr%5nt<6XB2x} zeHBOp4UEta=ve^G(=}5-;2Xp+$iFrW4${*c4`ngTVSfHGe=U3+UjdoTLzt zz*_L%bD;lkN+F=}xnYm=hzazc)OT0I<3>~CK|YH3NROy||4C7iKtZt|-(Ew|h`%XQ z${e?`^S{!)K@TNKHiUS>^;=M)W0!cpF`;3t%t+AL)A= z3NFDv-{@2jE#@+gz19jrYGCH(N`HMpLTpIkDd#L{0*TY#b14K6qT6?k`N{sCLh&W2 z2h5c45Jip)#RZu%p*p_%n?m9)*DKNgOJ z6%#`EWa+VJxHl$MdIUGFKwhmWCG{5c@yiFrKx8TbOeaKmTV@iJD=;fqX+8R>tXohX z;Ld&dMU5*5y+kzOJUbkef(COwS65L< zJ3Bd86`DQ@p><#5f&u6Up=L;22s)`jqq!R6EqYTWfaGn+EX6Ymw9b~Wa;?fXsiU(q zlGgCA%RUa31}ivyaf(sUO_vTG0vPXJo7g#5!R(}@69hzdz8G|X12wZT1sLX^@Uv5) zYRWCYTVRnI;1w3Y$8<_x1`HMI=XZ3-HN6K{CWNbvtu{KVm4RFUNUQNs4iYdYrh>!4 z6bPpE#ScZFzP%{%AObqTIjz&iBqhEeM*)Pb=jIo@C^KxxC>H>+D?jdqu5HFO;~@Yr z4H(tXfig2?sk@_gAILfOrfM9_j7UGWz6w!&)Quoqy#IDq_`klGdMAg>nuB%0YV%su z@}qCVppwvA0!VuH4SlAW6RFGEGSnz9;0UH)~#D0{3-Qaoc3IxTuy-`1%{Jyb8=*+&;B^?HDeQ(3n7>LGFdn{o*Nsd zfrnLLJzDBPBxYmVy#pfPKpd9|T*Kv8S8IW}+(3jR4bcXI#Jk}#b)mo@7Ejbw?Hxiu zP*W5<2L-Xn??>a)oj{l*yzEK~`0RqVxP5~{!zKe#W+in%@7@ZK+y&5w?AWX{9@VwwUM;GUa`7meIB`Qu1Um*}c%~u$9hoywaw2Z%Ee>z)e=*4h!1U zH8hrixs_xoCFQ{!xLUT-;9Ps;9w_VG9Cg;KMS9?u2QYD5$3+*%91S3Uz(P!3Py*YG zSF-)C1}+400i(ywTene|{HO_7RUUB2+Rc`$ zq#=mqhKVY>6eZy;$w}vFPYW8mS;yslYMXi{#)Cx)v;Kd-3R+DOS5=vz8AwoYqNkFCFcxX~?kJ}br~%;&OcvI>=v`tUd+mMcbf=zmS0*(BgFl!gp{l(dfb@S2c$!{A`C@1y zd3L8qY(vH#D5CnKdMLgE;JegRiGk!bpt2{2+7#S5h#A_oE3LKPw~e^zf6sIXX^-<# ztc>n<9RpuYw++Ue6a_85qW`o0p`ndj5!hji+_BCFaESZC9}S?JC850l<;Gx>w>ORJT(}@W z635P>m!hq^Uyl?Uv#_xZj+&(ufY%g6e_Kg-aKKCps5o?hNh-TcL>+LG@)^XAa-YRx zVibo>E3NC9s3<8JawmJHed`<9pHN{u0GJ4?7l1@LeDe?%Djy#oXH2UZ8m84eczVh*6q;Ux#5)!_i5X6?FFH*`T@{^ecSV$dxx{3`M{sDlbqtGK&zP; zB1VHwGyw`T0O#d^K)3?CQL4ln6!0CZv*W#jHk|c_&-wZN9nlZ>`cuw%e!q^K>QoqU z(MNXfT5+qv>n`4kM^Q^7keJ>am2{q$Kfdt2f6q%A?;RgjY6G-g35>QQ|T`n{zo_l>T}X8l(V zA+TNzEJ{bLC?}`4J4t8{*nE*7umFUcQqfDnELaa7_T<`6plD9ntPa@7)U7m#MHer} zqdFH>;mwT{I~ncSZMryV0@d1+>^3)7{dZ2th2qw0Y7!C>b@;D9>9v0MTXjT4L`Iu4 zsJ$A%bKQ(n??Kz46U`<_m4(w_7WHC_?jr4Hy0o*4bu7C+s^dZS;dbm3zD1W*a0g65 zVlo?xh1!TiCA0eO8N!3Lc*8@jiEeUn%JkyQl|Q z^T)N&z2jO!8_xa)cjqJ!^I+9>%WVGhqM_XEC|3if5ar7)A(`rMd<7!Sj%l;VKHRl^swK-+6u%Lf?47Y_Xic~_v+8~$7{Dc z9txd#pZ>ctf`tEAnc{H9?4#q+9oUw4jdM}yh3KrsW%!=Y|TJS=uWU}Tpk!0 zcvLlEA9$}_yB1}!$|d2#G0WbttGWmj=@Na5JnIb;KoVPKGtOrQb}58mv9RusJ(zf* z9%yhvW^ra~QSKqYe89xQHudb2$tH=4!*jgDdb5)0DrW0r6$E15h8|l|t6W|nh+IQb zx4r(;bm5f^fORFn0VMryea{>f52FwQvq1=w5W_mB0)+JlXErdeZopBmvuYKmPCA^= zb9leTC8C@|tqyfj2)n#$dAmf$zvv1$h5r@M>2Plz3#22;)pgPgFQ+`oU&_nI0YJ)#cR1efT| zez&}pP3b8=;5JB3SXt!2AI=;sIkdUs`O*GfBgftJDwQ1~lT4Rt;DaDKrWam`xrba>6WsRsuJ%)v1@ zcU4&QGl7!_fPiU}9O&&H3WTJ?1t^exxq*ss7YG9q8JXxaz^b)Y_l6CJVbWy7`{HD* z)-fM8zJoC6&Cjz@!4iGqS(5bMWmpcQmqG+h8 zMFLHe0C-Ce6nM=h7z|Y04RUp^MSs>Z$R@BvdM{h-Og4evZiw#UP#PYE2gHA$9Xi>n zazOIfS?q~rfFY~D0UK810_!bodV~E-01%~Grhvy11a@EHw5|h?A(r1(v)_aJ`KLWv u?Mbh5gNdMK%m2BT`hWFU|NZwf@7S-eW|KHF{(#~Rl9f`DEPQO__rCx*zgYYL literal 0 HcmV?d00001 diff --git a/_images/linear-regression-metrics_30_0.png b/_images/linear-regression-metrics_30_0.png new file mode 100644 index 0000000000000000000000000000000000000000..95837b7fb088f882855a0ba1e23cf1e71ff7c9e6 GIT binary patch literal 20108 zcmdtK2Ut{D*CkwP8(Iu)D}qQcfJzWdLRgji?Ank|ZEto3KR-B#42efP@kd zB}bK(5)lxn5(EU4oJ4Y_W*xfc4bR)}_kA<-%=|O|^R%smI``gl&)IwJwbnkrX{xI% zU&^zTLZK|D9yz2XDIuAfPRAfWIvhFSM4_xSCx7O} zE5%t+D90wKhxY4U2$P((zZ0Fpc9m&t$(0dC;R*E%5)BhyLqd zNK1K5I-d|*8#-wyw)R-0V!mMy_2^OElP6DxD+o|@uR1KF=>78L^|j~6#b{;K)jE}x zl{`C7UR}X2f4shpC0q7D(rI$&=8YR4Txv|>V%0+ROC~s$F5QDclgtVWRLd7P58~D? ziR^J|Kbk-FEmu`dO(#;(Yq-&~KS9NxUk<;Rez9@2hWw)@@2Moia+A+;F5NM1O&qoQN6&3HD=>CzbhixgiHM7flUMjWq~h-EoOXQ$Uw5s5)VX_x>DIBKrXJL>CLf>e z`iq*+7YA8T;+1Pm+`hXc)acJ zH&$7HeEMl&Uu?M3tIG>>28!2nu3EKGKtLefrba!baCY+W%n4n=UAwex>oZsp3ZC!! z+*;qRij9eh*NRpi92sHh8JNT#_FF4UV^8*^EM2)WR1o)3w9_Rzr^9GL)}E}6mPHhY z)fk8_C@d)Wd*x`ghEmr9n`A9K_ZE$ar;{T+J(29`xJApjqcjvJ4rMla&;>n@96NT5 zl|R-<|Moez^vsK{ss6&6k4Z)@)yJemChm_ldZu7j6+U~7eO5hkV|K{2rZ;lw7_!-Mo1-&4=xM?b@}FPaT;} z-a02wK6dS^i`{8a9Pd8VJ~`gvFM0C!C2j5P-FH;@wJu!9GWD5pQTYCHLC(lWBbR#H zOlqKk#Qc8b$dMg}nRb0=bGsAiw;tLTWH(fVOW8gcUY+LJb$q0fBbke0{3>lJCH?@FO2vycIC}J!UEz!?E5*#LG*qI7 z)4+Hm^<7CxC7Jz>aJTN(k|0dWJsRKMCoK$rI_|74+bPb%#jm;fmzm*e4f0iKB>N4Q z*^$6v8eb1n(XJs&$;HIm+nd(Z(bm>gn`+Tr8SU#m(ZFJBMwa*@Dr&C_a9;H*T zzumqWo4B`yyeloOo}L&QVHuc}Fc=KSi#5q6yOtfqf{Tf`I9Q@x;fPgzSVhIA{r&y! zrozJHyg}7;`zF(pl9HT`2+w!n{LkF_P2DeCh(BF=SG^DKU_z&6q)fW$Y+ag_s)mNa z{{6pJr{?9!FI>3LWLUQ4>(^nXjz-DJ)VEDdX4pD<4h|047Ng%j)3J(6i;5;bsn=)N z@-gN$S8U*2u#dC5F+bNL{pP#{i#qFUQdpnenv$MA6tCL=1^bGcyS#*OdF%JQRTrsGmX^`B~*n?JfMVV1n**aMlmnj|9w^BKJ) ztn0cA+lQ*Es$miQ{k5q@j>aN;#~187e9vhag|%(xPAxn^O{qlT)9N@4(M_8U{Px># z9xb<}gTuqU_Or3uLpC6K{eecWhFJRu&_`tglBeMl)Sv`qD$7JwHE$ew7uUxyuQZa!k!tk`PPt~Gg@cE zdUSB{Z5~Ng%-M%8MZO^s5y=Y{ujs@M3=kwi6%Wu|mrg%$@ZiYISd&djpb*dQGe_@7 zvJ!N*E=T@K$sc_%I5-#_5D+D4^YJVeD%UXIp0fd%wiqM(d_4;WO%JP$#3Zt^>vCM^ z(Pk;8`K^6@N!~M)T?JF$biBO_8a;ZpA3k&_nCCma8ew6ic)k5uMEknur~MvC+B^|b zyW5GFQ%PnPf#Jw=pI@JuMlIquW=XX)ra~XOm`1v5U_LEu~yidzBsA zfbnxVXq;SJ>$e+a>@mzZXBDR4`EkdxqS}1V%$?_IcWmCZtLppU;I7Bf(YM*N{cI`3 z!mr$8*bnRQE~PJDxw2eINoli`)W-{xU2(T}Tb9dA250ovVHKab#kcq45)O{t-8Cup z!#y<>wS_)D32G0$CfY)kaWBj5?d_wn(uzI%^9{OXLnX}YoO^34zmJSa;-SvGk5H(; zr{q(xv848erGIqO8?iS1%3Us}!~4H~DJsUYy?uT8dY;C{MrGd>e76>ItTo=@+ERR5 z8FNfVzU#7}d6%F0^q2k;z?Dm-+)gxtVpf0Q#{YM$`nO*U{2U;nsjdC^pzn%={Z|&{ zJzqniM6E!0*{TtttE(Ga-P2K_B9lBH7u7y`^r&qpM!mGOx2e#~z}WHdea4Rrz2=4< z)v^Ajl$S4G8YUCS)bZlextqWJ=GdC?{3jayWp=`vUw{3Tz^F@dPag|EySQ=Xe|%5> z{%-%`Cqb6BTo~?BDdW`@ZRP8_nj0pj)WY|wRaT~(u=h3;D8OWF-KOdN;eUjnog4!n?Gs>-7h}2dJvXv@l{hMPu?k zWAE>_QQEM(gUlw&x>4S92kmyq>!Q9_$Dgx#`0ebQGRhiLGUjei({=@annvu6TfupG zs{Ji(r*$_RiU`Ip{o}JP+7`P^nOZ<=E=D%U>R@W~V5Rd@w?qBrs z!fuT#dng_H$?Xr!to{%nQAeO?#~zn%T}iu!ou>V`Y?-dBYlcOAu3Jj=0CJ?dQ~P@@LqkB1x)^{ulK%;e zb}?Il@w&M)mog*@#vd!+=83(tStSv%2ADetF}1xS(yX1^@6F@4Z;voO#%pb6>@3{6fdr!Yx z1BfG=F*7x0p!EhHia&-At(Q6%kL=rpXr$;rPAC^7AE6u*Bj_VrB$=l>!^4p2myj(!h_;Zen4(f~%GX2a19Uj^9F@jdL z&&+SqX!>|iK`SKH$x^e~$NEWz!qU4qlQU_>D`w@ui9fNops4z7sgP{iqHFxLo|irBJhRV!3n>m6Q^3ALA`TFyFMe( z*H>426Q7cJ((#RbpGC{UsQVUCqBgykUDVK!=RW!i?|RW|zV%m9Pq8KC8yX92ALa{C zDBH+D7K>Nb#c3Z>Ry8$^9UB;YF3^-!*@zzo-*#A*m3nI#BHFWOgHzY8eVRIbih0z8 zLdg<+y|cM^>C#@af}!~4rc*0dPU&lE?sl0+X-;0kxU_y~EHgz_OIzE!F!1N8_I|U! z|D>nkQ-N{)Kug=$Uhjs+6t&O?2^ZKZBnVYyZ(+f}_5AQ(mQgO*G<25?s0et){J46{ zw(Z-GIXXIe0NSu}-Rw`FJ}vw>m_3!ty|=BSb}DL=3DfTB-E3 zBxtLFOaTG{P&xUbB#;_)bSon}I~y48L~IX2;nJl`wM|VU<}X+v>P1qf?n;B92lYqk zGEVKcGR}Q^91|m`^3d1UH!v_TI3nU(l`K90fD;2UB5rh~r-tBj5-=C6l#goReCnrn z{P?zqW$kI$_%CO&kI5*aJj6`05ai=VvA;{K({r3@)SxZGA|mgEf7!ZqYfrdaVd7q{}jVieFSH(pM@?YxdNngd(X$ zdwq!7Piu1P{IH*Iud8n9-R?AGFQka)Q~Cw zWPi&Y7J!c=Oxb*V>X;T19DEkB_@=+Vgj0i4g+knk7iUO>107^^Ez$|OgHOrZ`1X3~ z>pf5yY|%VOi?|?h6VlDVg~zjNU7l88w1I;t`bp<6Qtg`xyavCIEA)e{>5;=bC*^+J&{3p+ z6ki7U9wTYC^-`#7j$qLstZSp{*n=mQ%l$a;Pr&g-@^+AadX97#T2JDG;~nE~?=+dM zy!iF%snjFa&3zOc4$Mzk43xXgpYC3k6v1njOyj-tL_H+KHfYo4*bG~tl`9is4#{~N z8>Swp%Qbi)8*~Yw`nzQoE3BmydF9_kC5ni@gE50o{%oY`s&&Hd?jeng(o*k>Ey|ug zWHGP!l0_?h`>bN;3J%div*Y*j&6JhPmpH~A%l8`X-~SIk znVlWg6INAy*KeSGvT1t8=7~5Gui7dM_t#;mS^JPoatk(Q54Ta0ww6|x*Ug)~jMYEK z#K%8K0&Z{Cel5qa+aLt=H<0Z@D|#JPBb#9uOXKUC!F_7FU$v0_X_dLpD@L|-t8LS) zr_72U?@W%gEO*CG^?r5e-Lh#@jId5`54Yv1T7%f{W0@5@&xqhT_OUkb=H3T##ME9& zWN;1Q_y6Z0u-LmSgmymHbbGgV&rsb?WTPOY?Yk{Bp^AdO$@b^4~+- zV-^9 zm}?wd)(Bv(v0-2amG?3pHzFwN^>*%|h+ zb5C2fUKNdto5Zx0hS%F=AFj(upLPt~V}99dZ$~RN!M6S;gIZ-7Nj1rxEhs!6>&%|v z^ygR-;M(h8=h?fn>&i+Ie$Sz@s`d6VnJztBP9$;qdwrAb`j+d{RPip*WAy2TFhQ@e zaAwv(|CD`!a9P-ifh^IK;E%~JcI$T?s(be6YihJI6=Y|oiR0lnErI~uF~9%bG=}JY zeT9o{@2?BWr*@w?0v==_i(esTtjWzTcR;zTBT|%quS?<{kKz8QPoJt-1_tu#fghjV z0Z-@UGjOtNfFa7ywNBWJo$pldHAao}F&(IVbtSeV(#_8AcF5q6DF4H|TV}?5*ad~B z{g{P5xU$uhE2{aXF|&)61$tK_S54oN5m4GJ!q2E!;;kH(k`}p2xh4L!a>V_*OGG8N3CI+U_&&v%c?hb-h;e=-xe!dK!Po3jU`Tdb5A>rkQ6+ zsRx#aIX1HUq-%<22h19r)WaNX MRv(=~DSa2*28>@(LnKAV93m+RAGFiWVjk9@u zszvhcveMjVWh@W&cO^rbmjUChzOSf-KVR;%zVGHW#Sv_QTVGGs^njpoFN}&Bta%XB zQdhfrtN6LS&TnT0uHBp-eK<6Ge|K_?=d9VgPv??vw^{z6w7DG5h!6WmuHwpR@KMeR ztZr5Qk|lnB*Xf(ptF2HzfJU4Ox^Xjt*Vi|+aV?+8z~V@@0cEY9O^aYjeZ6~AMMZk* zym?$1*REzsN$nYao$>Z9mJJxRp@O)$o*KiHh#~KNmuxI5rXmHY+C|rsZ*T8YdXW6F zr^V?@0o_84UKEnLe7$Kc%E2!7Jf)@y_E9Fi!y`YUW9IF^n49f6D|W-x>p4{&^kdKHS zd%(L=tDcz`t>NQKVls89Rh#|gAM-1CboTqObL|Qy&UlS~@tvHV>K|!;Xs;S5w$`us z_WHQE2oF_AL;8rGBdtLifXeT>x=5`mzS549)}PZO&Zpp^i&~YS2|QYwHA{rS)jir* zztvyq{lqb7EMMRFjr_h^qto7J>LFx{B+NsC*VHIY(O+pc3zHBFL_wyo#?&(jm_x|S ztcj;k5tm?!XWn-*4*hd>a$DO8heKhZNWfqJ?^Iv^JIcfo+t-fj>a^?2);)gta^J$m zi$#Tm4o^%>w2k`UEwY{*TaPaifRB0hx;{lI8#Z}D>@G(J;O?^=36wAtmjEz#&50Wi zUf;HNuMyoKMPEznjxvom0WZU5;Om>%Q6-QjEBNGMxJ)nX@2g9%27g1y>Yfje4jMi` z^_xx;SkP^U6T-#z>EZkhQ@)`RE;Dz%qn8# zwXdxfL5||&u)JhQg+bWVmisxOYDCWkQ#5>2EX{>ZmX{%r4aY zr&8ig+EP#hH*PG6lhV-8xOV+ISbJ0w!0A@la6AegX*yHLj4lug-a&vNIuifI@B2Xu z+4RZ?s{(eR;RM?&6t3SrP{a=1&KK~T4e zQ<-FUL-q?o#WMtajKO|f%g4uQZ;l6dc!P=9z=}0kTcp^ zT6C--$VTq+Cv}vUo(OM6gn|*!f3=C*XCZ11sIifft&tc@n;@a&oNkfO^3~AHzJLF| zbm|R*LAIq)#yKs}+(J~Fnq;EWeEs_M9k1n!PfV1a6XWA&CkES~<|ciAv1|8k&Yyoi zFb+JKwM@_2@GvMn$nJtvtgesUEc!@_&x{(%vPuho1^w8Cs-O^TL&CzILJlV2Y!YE- z&zbk!%X#*^P1Sz$>dImOH9ELQwdadlAh~pbReB(8AAz;;RG*IjP!9@Gp$>hhw=YbB z!lwn6rwRgBvSoz3GFG}nh#83&-36)&0Le)-hdcnN&+Z-JxR+2&k^Z-!2Bj7#DK+*>D@oAfZO{^74p6cw0cp z^tyRGv^9@`H(cQU;;pk6QL6r_rkNwdIVlv^kfjWi&~=4Ag_styBNRrMI&(^r#%a3Y z*|TTwOH2pEoGE)CyZzPOd-sli2|Nd0KwW}O(ey%@(_R)NWf!a-79h5^WJgTEPr@7b zt5WZj8wD?-T;efEaJUG48E~mz9~7Dkl&z7jYL&p?J9ivk=@?RE&L4Upr&pJ8?B=cD zx{MHc`Ix|;yT%=@-Ym81H??X%imEosRnNM70ODQ@(X&yk8s>YXL&FlJLih6c{%SEj zZ6D>E{a@4XD=C-iTGyudC-+?N+M}6qWpV6Oe`sD_@BSau3o2G^%>hqah2wko38{;Uem~U1!KXYWey3EZ%!s; zNVLs!Q2Mjd+VLBN(1QCM;i=p8A{D&{#@#9fcxe z7F!Uon3CN6S47aIDqU+~X(}ul!BXdHqmY)mu=~{+kc6k=I2Jfq-JoTpSmd3&wubi{ z`()$9&6|RBz3v)~U1lCXQuZaq>&lcPrK9=<#Sn!oC=B(BLE|Ir^rlUl5c$JmVrpx4 zDrS~D9=|sv$Iz!UQ=5iuECihPF< zvhaJv(+qpWKFTgKcKaUXm7Q^U{#0mxjoRmb@&f=f=67s9tREfV+eN}PCp=+UD` zdhV)Z@M7Ibp$$IM2O`Y5pBpBT`!x0JOBWF(+Cw}QLz5*~H--WUc8;G{uSQTZ;sozV zp-9p~FX_%RosVm2W}>Vz_C9~^#V6xghxwcE(}p{xUu0xtvKqJ$nGlm>Ip*%kuk_0W zQ025HVtRQX@BUo*7WX3nJF2#aN6y;qhA~VgGckqKp7HZANeu`~pFxrH$X|G-GewXT zqNMfA7Bh>N z_E5^!u)7~qe@X3dtUmpC+Sxmb>}e;)Y>U5AGOQv(f`VuJ8}s$_dGQI&AQ4Vlq9g(78W4_JKPl@arzca++ygc#-a%&GRG6_h%X6@Q7R8on9MlgmrLI;I7xj0B~CNjVrFKB=t;G+a@l-F0+yIM=Lctwr`1aXLXB%R(gG@UXuA-DL2l9CcR!c^^LP z8FVM^woflCL+dTE^SF#6im+7p3j04iy22xE_Y___Ybb5js4ZhFh#q+C-i}wP_Afpy zd5bYaFR5N@fglRV-gEhMJ>H2;`q|3YZ9_-HWVALb-`bX`0oT`>b?Xwq56h&37S@-Q zmA!fEmh;3Apq(HUC`uc&4_;6LBEjAf*^A@P1VcPc0VDzUvZk|f5r>rsjM2)s=W57_ zp^nm%saOmLk%4NE%LqLjTJfLZ$j#q#HtpW66G(Ce!#&b_(uz;^{O>z$EkLO+g+z?| zFjkbn#l#V&-j(fGrZDt=x9YKDE*D>wfkP*ZHQwkZC8a_Ui8NRy<#3;{RPw52qv9w_ z4X($!WFdSK0hpMi;4eygHjUOWd#Q4*We-%ih12{ zDGHS7)JFFXzR%}Nw@<=VNOW{!YEqj1eno7pnhWcXWbgOD=^`WvhV?4Quc7|_{=hRD zJ8KC09tnVD4Z{bv2XA#N_rQ*cX=U4BAuk>sE>NxLL2apm$5hg z|H%hH+UaO*J^MCbBiRiO4$ri;wSyxg&CamRd}j34`o%K)unb*?Mf=9#5Iep)lz1ED zieF@KIIsdX9)!&;39pq7$b^l~Lz%d~d(*zI~T;JRKaqFZ9CBahP!Qv*P?CIJ^E}L4{KUsGMj{wN&5 z#tyxYeEGrVEobF>x)Fuyx_Pi?^6S?JKAn?_L*k))tJogFYm}r9Uz$w1yN3sHnZc3~ z>-7Giv<7iWLiGHfD%{&c+skbMmB*_ihp?lq2=$>T={;Dol>mTvByn(hfy6qXz@8pz zi?DweEQ~ta=^U)O>}p9Y)~HcdcTmf3tG8OiB-b_y6^@uoUEm6h8+~C}A+mKVBR2cB z+Fda%c<+!@_05~0w4w-C19v_+Fd&?couhG|fv0RPu$BZd>MJTQpZD4uMhuuBSun0J z(`^i>RdCDd!7G-Pm9>;nfyXA*lUiiR{rd?3*{=~PU!H!uy`4AHwq75v5=uZY!XXh^ zQO=zu+GdCdT<-BmAKlPOwU9#iEZpE;PAQmFMfv|`VTVcT$!ja1V-`-gNf3uNDcaxf zuIQ{(5lBk4K^)rm`ODfb#{(OE*j~5S?N(Os91X_pk`N~A)GkBg;^Y(-6;*?iRlNn~ zoD|XItOE#VIn80Frlt=d#~?sR6zyOp>WSu$fAzyH>ZY5KsMF2wr&XDAIzHfU-itNd z-0cnde-%ZR8(=;!<&^(ng>q)_xpn@!nBT$uJ%Px0nZ#oNysZt$Pdo|U&+stbuMA@I;gfEngC0G6j`Dc8K2vA_av3R#|%J4G&1a&mex$wfQjN6ltkN}^;`ExsW?$k3@z{ji)CS7lV9|CwMI2UwZw3M0{ zD_B?uOl3#yXn&Jgy%4#B7dfKrgp-}#)&MkS02Yww0!xYjTk(3%KfSODSfQc8 z*!I)&!^B@8m}HWxPs|&Be)PMfM@Z8xyDY2)#D*}y7T}}~(lVGjgpIDWEsp2TJ-sV# zB0@zs44`FL1TZh@G$GcnJ+OHkK77~;I3q9yXh}p?_5^`^06TN`_4oI7f_Drk71hI4 znya+Hgh~{H7697Z#PCJ|DMSSkMOq{TNl*Y%{|^{{GnGgb?q(Lnx3qws+P-{wgf0{7 z@-SIRCoK#guhU=`-jZ{}g*a)uGfKVZ9F)x`|4*sO|2JO;?ig?E%8-D74JhRx1sK#4 zo+N0?F>Qb+-9m3K@)iLli3?Jv5VaMW3uJ676sOKfnqZYtx_4#%$gnIAtK@TQc(j=R z!pqoML~v4K5$4+VbB-Rsc>>5#=hE$&#vj~JHNGn^cRfcaR=rRXzNMSdxs+vHd~01G zQJ-^|O53&_0qg5(?FqjS$?3$OckIC)$294)ANJk3b4O2K6rXDds+X5dUW%oG^~ZIz z^a5-%oNL!Uftj=iRcH-rpi%{mf84emQW`WiG4$J1#ZU<;0>=?wAJ}`nP;rwrJUod& zxYi^^mzRG;tHSa2Y;7GKK8@!Di*!BXzHZL^=&OOY1SDqh%nC#w&^bM|W?2r8h}eaF z6si=5$%E~li3OMj15lj9#R60~Js`h`IsW3si>iG($B)MYoG=QIuF%_pnD$OV8qZ_x zJD0ySuem4bNAmtt0GMT3uHoeD0zzU!NJ)n{u(Zg=*f^{_LV-^398`=yfxxSE80p(T z?EJpzj>`j>5>Rh)fDC#vTdB4IglJ#Uq5+fP#6j!~DRA86gC_!whE*G{(MW{n$t@!I#{gUTQtJ$D`!` zKS}u!=`bBqD2c`Y%H)T5ZX`NnR`zC<822HRRI#hK3i=)1wMkm`{DZS9yFH|mnB z6n-MHs-gDI<|<}FRfethsTgKPQtOwEA;Cu&{%WH7M?A+=cU%4(VDc)=0+*7OvX4;U zW)!P_`7-*8*e9RmD>F0g>(BK2-kb|Q4a`?pMibWDxf2*_(B%bUogr=$5*TNtJNZqr%$W})K$FdRHWa>e>|z)FwE$D5`GuKpk_l6a=a zN#!ZJZYa&g+S+gzMH+R;h`o0Yhqto3wz6?0=O6cy`j?*eT<$;ahilcwWA{&*F=RFu z6^L8|lTX{JBP_mxxbvHTUd3nIr0M>@(7W(2Q8IVW8Q^uq9d#opXgZN$VZ6)N?K%W& z9wCxcRd0fkr+*g`XYO^xU!`pL!# z1W?0docyi|E1-D`ao-w{7R$gihcB=Fcsg2IqTv+O_P1>+FoA!r3eBN$cAs;ofrKR^ zDyc-?_sfqTKc3Ys!{r?$h$-9#KnxpR6XsF7ya8pR9D&6M5{!+D6P1yvU3E)HSXh{f zsDQ4rAiMmLkJ=R{{)|%I@C6B$oOz+w5`y8Po|m`nDcXTsEa!F0R+%3NAES) zN(c*UfmufP>8aG?B3_N9A%BEcU@FqtQYXH+v^GS;_x-!WHDBMF+73P$hkXox0Ry!E z2vPrijmASK;)KhUdau0AS%C1!-ultBO?KbpMX#0sYvZ)rGVNRY(8@yFld83Os9U{>gj zQXufn$;#)aOT%aaiWiTAk0f>g6fi^x4&UqcQ9U*E5tFG)xN4Gtz_RZ76 z=_(n_^5uZHWdUhZ1sX z((%*-gk~eEBf7u3GV1Nbc|yIRdGnK! zgG(GWG(9*lP`fn5OwoA4EgqU7VFR($lGziH>^tV%(o{fO8UCsW(9@(jCXnG!hL*Z&tj>e=a>+`X57n)wy|f!hAMn!tG|zqO5ufD zKid`7@=k%+pq5dKlhJMRY!|okr?IV@Hy7QY(WIWgcp>rjXT57%8S$&2@L=xI|| za*9HxoS=>pl7}RMFWnnLeEgv+N}?}!8`ds+vZjz!(dekH(T)v`d;YBg!V(~S6r3Oi zJsm@Z^!U}7@?lilB5?LVu1v%ZMxl%KD6lT?_tavA;SUE1H|uU~rsC++opJLUv4Z`B z@kG*yR}fbv7NLiBIdd95L}h2vZ;kd%$H|AsbW^InRSdS30*xBNysA6ZG1SWKLV6kr zsRS^5+R~EHe{$Z_S%zt6wd!L{^nvlCLqrX%@y>I;-W28S1DJ>5`~5=E4ZJX&8L~Y% z%HQQE#jnTK`&W0$+Qhs(J!gM-dzd*cHYPqZBg9JN+FSbw^x?+?f6N4Uu5`~aJ5(~I z)z#HI`K;i{Kqz}!#j}JF?}X2;fkOqcq8n0J%4nhDui@t0XoS6mLN*btPKoHmS7$&y z5Rs6OKtoe;<=v2wSW*BhDi%B`&F|H9_R-8W&Q?MR4RR_Fuou0>Ga}C(&o|S1|wRqt|jHLno0$N`s zy!@n$fvHPj`g;)?0cv3Q4K+-jtum;bxzjuJI!T}2()5Bo-JwL{Bgo0uTw{qR4v%#h z?-1X%?E|#ptq;q#;J>-fdpw}^i|Nt>*ag`C;PJd-a3>_x!HM+&9T1{us0HN6yh|?} z)^qj&bE!6C^o|G#Gewt0%-Hj{6=k=@mN$_D1W-Orw+OIzBxikHT2xwEdbTR&w*ff& zxDk=ljfPLhq<;R<^CF>91@aRcWc6D{_`<7H~(y?gO!Kx19t zBh4UhPHNfN*`<5a{zz4cBfBY4VgRY}SN~|&LC4P9`g$W&S5?F+Mub;(uZGf$?u#>J z=M(IYEv!Rlay(Q=(gvcYplI_^jC2K}3}+cGrc9q8L&X4kk?jSZgs4DIG$NBbB7F*& z1t`Q5o>weizFZIdSYq!*y;rytG6W0Khq%lc?(1vCjmg+0Fng^{TtKNoc@PzdvXn@A z$Uxno@raijYg)W(Ea4~IR~oP+6P7?~6`~6{a6v>y<~TwMIj+EaX2gIY3-wnLeSE}6 zC?1pSp<kscp$>-&_)vlpWR^u zbs{u4k{WdBu)6&TmaBX^-WH1fNm^HD?|%D z;!--ApGcq3XYZ-LHdBsErCcZ>5^qFCMpm!>il(e>Aft#Qja0uVhEa{v(Rw{OR>)2w zzzU}UsH&^G-kO?fVkZ+Ob9NfXrSznPK$b_4x;vE(nWB2Jz{M!Aq-T)~iMF=pr=OzW zZ1#d|5Ez5w7w~3#h_zRc9EZ@KH$(#yj{-r-3RN$UoO3*~{)Q6%ulBipQfPkCz@Z&E zP#Y!P2V2kgKuEokTrg=38Kfz}3kQTiW7h;vrye1n0KC(Kl=zW2g@_alEmIC3dNX6r zeg&^D0a1iEgA0hX;}4J2nAw1)3ykS6WSfE{VPUz3AQ-~y(1k}z8Sa=jcMgf4)Wva! zXdm|Mb+m%P;+Kl3QG`aN3&WKve2n#y)~B!xEZ1Ep2a6P4XuYGdtZ2tAOw7SRjNPr>V+_h*V~Gr! zHKY4L3S5U@D%G(?Ij#VUpt$+f6`VwJ3nDrlAU@?o+2#r(vXr*u_{48IIg4|cG_lwT0*{G_;h;r&o;NWz?mY`A9ge$8!{*u*DFZp}<3QVMCv?Zv-;~fE zm1q~*vcgnS?!dVy%n86$a#l%%jN#KJUTgXVv6lMcia z(iJ$@)(xKnq^FkS;P^-IGOQ5^$s_}AYJaQl$8QO5*`f@hwg$}Q2*}(X;x*8TgeBby zD4O6k6v63E9qMSDu%t<}5<^Ml^B{^uatIGGwdeF@ z)H5?|jUXL&B6`ramaN{Y&Qus{h(>@EMf*HF#2?_>G5qEZZqQ@U?!2eP(*hT)zJPBbjj*In?Iz;WCZ~$O0rcgQXy{Y18BPP9V6^-lX^euZoZ$ zIEBbaLt!LXCz4{MSiG2LO-k09RUhw*D+?vb!8~QLFg?d>1Q1XFaF8?>w?kH^l literal 0 HcmV?d00001 diff --git a/_images/logistic-regression_8_4.png b/_images/logistic-regression_8_3.png similarity index 100% rename from _images/logistic-regression_8_4.png rename to _images/logistic-regression_8_3.png diff --git a/_images/lstm_36_0.png b/_images/lstm_36_0.png new file mode 100644 index 0000000000000000000000000000000000000000..9a991f39efed861f822eb197ea38a0d52d99f025 GIT binary patch literal 35043 zcmce;2{_hk+dldzm5L&nqC^ow(xWJmA|aVdhEf^I6lE%NMKV+}*F$DXg^XoN%9u=# zA{3IbC?Z6%&%5=$YaRdpe!uU(_ddR3cdYfkEuP{2-NSXA*Lj}T9iV+km1WtQWfTg9 zMeTsHE`_o{lR{yrU|Niyd>gAfhyRmvQZaDSvp?;0;go{~Me~%?Ia_-tTPxG`E*1`s zR`zz=BzH(|6<=@Zu%MRvex3TfO%H=iY;RMG_9ITeg)V-v{j$ei>z*~ohM?b#2I99=>Q{v`)(bZKzM1<+%$B(yn zIzLDX>ZjXv76-h0XAmRrO7C|)QRKq%sq)6Y4~5PjM@Cq@y}hY+@43w?ub1W7wAwx^ zr6=#dvBv-AO&6!F{*QXT4lZDgFz?7eyD!tEq%q4(^>y@)l@Xhd?pIe|_WRekR(VCm zsgEzN-jqzNEp#0hKHU&|V~vb;ykXAi?X^=gKfYKtB`y*>eE(9K-n~SV61VE=>gR1a zXU0ASEB1WvtG%zEPOF<#RnG8HVh>qchmV%AX(_M2yX)iE-`*#ll=&<%>nwI%APJVWD}z7etdp=|7hmA;^N}Qc%_Ap409H5*nfQw zMxIP{pZa=LJ>^AbiMvGy2FxKAvFzc|%t(p(@dm}Fhex+e&(0>?^T1S>cQC#`e9MV-eYH`lIj8F$JM^g= z(tLdxoxZ;3@$&K#Ihw(T#T@;TS^Bvz_xOBq&WsKnUrf2SV(ngKWyV*L z5<$0avA&LxW8bX*=n|gj?ZcxfPK8woI!XIku5)kQn=dXS!;x7sx#od>`Z6sotv8Ph z*>lb`?Dz6|7QWxHgiGAul1dO~!s$Ai$cbn2FJ8VpKiDWxGRLRj!M)pkQaMFELOb8q z@J+^X-mpztktqdEL#zCld9GkAL))g~=6_Xn|IFU+;P*Rn$g=;etz%!h{we?`ZV&S zE8oyC&FNI5vbid@wyejrl&~hv_vN*f8@6m|uxt-j{LQ_kWMb8t?Y92>-oMzoJg3&K zlfQWBOq?g@nTFU1db&x;n#|(w%hpgWFR}1$@BVP1tDbAhrNE3V?*q2oUuJ_ zZaX8loVYpvd#cp31UeUz@Se}kA6I$t{zH%bi9Z&BqU^XeEj8;F0UXmrr*DRV-G&8d7g%uHORB( zppa3hn3@W%VrSp#HepH8x{`;_e%a8l@=I%G)vJijA(4@OH`nemo&P;2+@NytqU^He z%bT9qpBR2$z<%e>9Tf$8JePYnZTq*(dH){gAMPySjq{ojZAmx2rW(910srEh-lCK5Xi%6H z4-E^;vTPC@ewVfI+p}3oyAOpzyCU)8PZLAU22alk%Sk{SJjaEyV(PfRp@dXlS^TJDc|;;-)mZl!g|8!P`(&6y61MdZdcHfrbEwAMe6{{78+{^if{fvrx1+LT)( zrP#>_)YQtZF6T1unE3owWAd3=m@sAiTfq@*`9+HsaVvTiH_ahTuugsJszMI6m=zZn zSAJsm;T(3`Lu*FrfQYd0{+4k4XCAI3JmLF8Wx57+(+(Rv^N^D~@$CARXVVKvSo!|_ z`{Rparc~=UOr`U`cTsBVJ7RacHx@XaVO+FGZB|q-l^Mard~D3h_Cp~@gW|mW-o1Ox zXTNrq?4lg#d*dG%xc82oDeFdLYhQ%KD8+xP);_w?a-%&KMFzPX*TrWu$sn8tXa2i zU3Mv1(V48$3*XjJ*2~Ho*z@~EiYBy8L~U0E}8TCUbBgHZ};!HSx)}oe!e3a#|-U{BV;0$A-952m-+)hQCeu#^*|;Fx zV{4ezgbKOMjx;4*E1NU=jGctzU!|wDTgW&=H;omi|9Dq>p3MdU0fx($FJsB&ty?p0 z;3uDQ8Wh6v0|EldNDxX+-bhv$FR^S+Wx+=uPnOmls<=1cA9&~5wI#@dS1W?JNX(;L zx^#&`d5$%_j)5n2SlfA|rKP!jaf-6CUQYGgLv^yZrg=6X^?J@u$~^6I`|+7aB20kB z+ld2uLm@V^?OUjjMq~b2V;`$ro73U+n56LV)g{ir48GCPykh!~EYCk%xMW3njGW^{ z#+}e{eSiv;R_2SVUJsgV>z==&bOQsRTG1K#JtsoSJg@os-j-eC+1~p4b|A;*#DjOF z{R0BF8U@{-D^HLSJMzHy*DsIv1&*qmvP%VSAy(`L3MO$q)^pNu_3G8#c#v`oNXqrQ zIri$Q(e5%zth~tRtIe6+O-ZWLz-m%9E#k_ms^o+Um)a;VmMiqUb$?@#>v(EeALeht zC2kq(aMm8RQuYfME{xS|io5+f6S4L%7CP6qjcyy4iU;)Z+}G*;ZFkADJZBgzVPj`Eqh>Byxz2wXhnRos3GWZXUMxRnzm+bc0N|de zj^tXs+88*DRMb$b%#EFS}iUW^FP%069;G+ zC0ju=Ni~>LKtSO1EUVQFwJuKag#B8l8LhV&$BpIZCYl9tvMjx}6pvo9Y|l-ruBq8t zaKh~M53BY9$9t6ZNE{oDf8)F?rI=O(a_oPisinn5DL1w+v7pxB2rZ&yo$c6OyId<} zoefa=eVf*d`$l7F3&ZKs*(&CP7QyboL7u=DX<=Q6p- z;Mo6K31ebgvnKF__Z$ZTI{;|Z39kU0o+J!}d#fqqgTrZ8W~aV=!fufD`X%c%Gqfq_ zW)aTQ#o3W3V+fwSi1`$P8C<4dymjl=i{DD7Mt{$KO9C2`b)OWElsvvH&qzXJ3X^+s>gxw& z)U^aJVlN2n+QoY`)1+c@q$A7Yr$dXl;_jMMoTqpk=i=z1Jd+nCM*q(!$niV)mkDe4`ItS?~%L`pb z0(rKbUcYS{DbuDgoH!pgK~*1B}MA= zYi>-!20_6Eq}H;w7VCd~XCa>FVV0oo>n0su9kt1qD;50(_WAkmbpGs*QffJH5CPFR zJ{#&|cR!5s0#NPwIS|K%B>JMZR>RlNFAxzp2(^b{A(qYPO`4u6vPEE_^Or#2v;A1z zWBSb-%fs4J@w(+G3={MpRy;oSvK)!rYBVjU^!JPgGoP$BV~RQl8wZCF*?Tzy7v^SuBzn!w zpuE_Z*fS5-}*jz@&wq@ zN7nUwa%Z#SUZ(Q{^=r3U(KqVkoYn-&7x*%gUlo$V@ z=mM8@o)HS{0Hlu~uE`>wI#$htqTc&oBDli*-{67&+uI{qfrA276$z32NHc zxc=$v?Cf%6TV?!Ybaa#z>&l5$C_JE{5f(9yz_vOeA%UzDNv2MNjY^mU74>n{J%PXi zCJ4++QKYf0S|v!ZEGE@Hr*EUQvXC$9ihvgX>eT($xi6QvPrX{KzHuOx$MFl!PxfWC zfNHt1Avr=9{LLlw|Mi~+&Hs^UD3dsQA7P55qRh-pTj?WstAoj2Ci#n_6hzJJfM?EI zEwd8@MdyDe2t%nrzeBF+z>Y03P~11T!h@Y6962bHg(>No7#3O zRjt0EA(+q>AwgSP^ZeG95nki}E9vpyy|qR~-fg0~Nd@GJ*jsLD!6hxlxz!lgyF%xO zNkJ%(4_l}Cvc71#Dk3VqZ5#GEDm4a0MaAg8hq`GL%1C?OOY9}v$Sve4O1*PZYijy{ zK{I)&mfg=oS=rbk?3igWF-1kYP~I-3ph7P8(b$KNb=zv`zyPGWh+=-`%&w;!G07=h zKEhnxpj!SAHX$3xD*%BpukwpECHJsXEi5eL{&{8mQd+)k8wu09o>Ix%!}j^4B7+yt zel5Chm?KPz<%jwb9;0PTM8w6z=}ZEwyu75=N5DuzK`rape_cE-CWh}|j4T@i1HG~Ulg%=ME4P{enYH9}CayEH*c(AgvUIIcE*s-J4 zt|~KJ*m42+Pr1i`9wQ3l&{Fux2vk``PtiF4^}QS+gT@CMs(>DnsiZJYR0(?QG^ES7 z+ii7OSs4j~0N3kN?#R1JlTz;KQ`zCJQvQ|v3d&ASRFqN4)O~);Wi?@&*!cN_Q3isd zT7~dPpSf~nfwGFqN8pclrQV7?Jw1p+ix1x2nRoG!-_mxaW(2KUF)_o>>0~W*UtCU1 zOf0Vs*uctlyhV(re2DQX7~uBMbD_grP&Yuokg_|t-d03_7|RxOz) zwtzWOMnRPLsiwM`m9qNYQ9#P$3ocExB7aBsYhfeML`%GP<))?q0#5&EJ#l`lM}_hn ziTNr@CqR&OluMhBW~@hfj-5x}Zen6W%H0*~>Kjnel= zZ$Fz%J=>9w=ZH*Mx_tS*0|)%WQ<2$$Qp&Q-s+c1cH*H!1QXpH=y^&ci{``2qX3_99 z9Fyyg7kcZ@yuN+;`gP_vnJ4%yUWF?uDKRL_3~nf%pleVry?Jw(vPWC{mTggd{Q8YT zLTXm>yLanknW~gfX(M`iddT+opUi{WFYv)g?XJkH>L6Ec{7aeRDFyb3R~GLK0XZc zX^S2lE6C3MFw*fP#VDb>`($r_zo3MKrhbRh?BrPziPasyv`Cc9bpZiKHhg?}&EiWl zoqj7S>fX_XDIfd#j)*g`EXmtQj^ni!>Ta)J+;(=~1xW?J#vvXU6N#h}C?w@aK|#SZ z9x3J0eVlKE@LMUUr^|+#@1; zUj70L(4!mO?K2{8U}1*ixp$`U%6Lql(?MFya{i)!9w<2L{HOhFtgP!(wc;dG?(Djd zq5bf!DR_n+WbB@lD3etrcVL}$X;}5Z2S*+TBB!7KHGRG*O>a|Eu9aR$T-=tFp_cS$ zOL}s^0qkR7^u+U@Dg}4$G%||AFJHWPp$yKbV(e3u%HF+KfKeaZmO6E%=TlZINr+=( zRs0%S4Kioj-}L`Pw2shM|JJpFg@#aB!E0YE0Kg&%f^joKyHKa=z}k?ounj4q;^M2p zJFLRFCuvN6>b)ZwaJC0Yd?^2YOG`^fCnq_90R`pc3?utdsF`BZzi4eeIz2NJn6U3! zAi|R&4TTs12#9l6@fI?!>iT+p5BW)E8lXl!;lis|gm;!6*~|3tsar;<5D=Di-Wnbr z9&l|rR-K@0D>r8rFQ5Ryiyn%Vw`%@{x2SJUnX<3nJs>#ExRz{GL}9jeCH7rc@O&JK z2*e;LoBv4|OxwwRmg7X|PFPDlUf{6Edw%Z8!ap&7Mhfr!`gMNCMfd&t7t^+%4Fp}W z^D(xpa>{bNAtWLq<;n2pw+|~$unGz$>IN!>1vO?^(Jzj6UtXwAlFv@^?EsUHZ0V+y z!8d8_fG2#1krEQ=SMlO=j*c&pu#%trLQSzk1gTVK=w*D()$q+n>;D>J9&#G%&A0f* zURh?^G5-XevZ;}dflGfVa+|@ymsohu{fH{d z4PLi9`@(thJS=#g%0_l4QgGjPX-ZU?lw3guS{7eZ0k|r5D4IsIuKM$+l9-*>pn5p& zIXiyp6A~26=IA_f{QA9n_sUK!VLpH1!V^a;@{ubSYYG{FlHohfh-X>lqolXA^3UFL z!ECNi+2Fa2$S~P!@iOi|a!tpn#=}=Yto%1WlsqsrA@WD+vAw1gww#8vxPnjiqr96Kt2ka! zv38fs>%l^tY*X<+ujp@#PeUo9op#vG8_;RC#{rKmTzh+aPxh1tFflQKI9iFC z=ql*uT6%IyiU2?X4io-C8a|+<6_uiP=+J(YMjug%f^{GyF9M;$VNO_Z|cR{8c_lC@^vdu!h1TCtOC?mh1%?=j7a zU?3tQa*NK)Bh84?SlPovzUR}Y^WS^b08xT}@nTZJ}0_*X$$rd~8-m}`- z*$FBrm@o;Hqqbf|A-aaBrm1NnWqo~|;uc?4)7i-p0tvuD?^Dn5nsY;z5R#UbULB>l zVZ%PkV@qCR%E^f>n>Rl+sKr_7wMHBd|{ zT_Xv~x$5THeI_RB1UGC*u>hRL6uyMW#Xv!TMvw>bbR#?!DIR~%rk*-=ifQT65W3Sy zI|n#(;aTQ_1!clGSc1{#E;unzx7&AK$D@&DHEJnwzrf5bML`Ym)S+(~;aLdPj<55H zisI7M)B89y6aaGQ)pvldy{IQC1bTq$a+_Vw%p9JwblI}d^h|>+LFD}usvq{p`c0cu z-Qw=tu^Kzy!Mn=`=daDLnNbs zF*2fw|4HYxB&75Ah0YpVGC?&|(+68bQm{j}Y|+YGtlshZ&Ne_Nfw|*FE_J`kIJf=5PZe{}XTk8r6>$-I}fk61= z9F)}^r$D8p((w6Zpf)9p^QlJb08XZV{;c^O!!k>x*)~6Q+35@; z0|S4=DUzCBfLTfDBlyIC5)u=09dt)oD@gj$nJ<|nXd0Bb$)Mca zdbXYVzUabAtXEjS$ro_KM6w0jxr#E1`c;rhJxnV~kB_H7`rN0j&D!4(7fix#xj!2b zS|Y^_6Q>RSj2WEB#L zdqzfX80A^>3|E=k>Yl)7==xotuPXoWVcH<2y}1EJK}a7rHDZ10l~gc^tIhr-y>$rH z{*Zf;g7zT8nQpZdQ#$yTETc}7l%*I0HH`1Vx6Th`LINln3k+m*7Hkw2Hf>JTB;@8_ zMWg9?<#W6aZ~VIpuis#;*MJSx@eeW* zbd=+f!g6vvkn?iUyn%oWs|h#l%yq%2C< zw}cM@9Oc~byRE%_eKm9_wClyi52}aVzRi?pbOXG>0V~9Y<%G^<=j8MQ)gh{ha+|Cf z_zoTk$3ur!Aoy8$XB=SqI4FoYklTH4Dea&9xPSuLV;O}BNiGGDBD5tXHI?`gI5z83 z?+8mtY1?}v6=qWlXVd;pfk-c^pEsrGKh#M#l39N9ovY;z3&7NnQ-|28>BkCIVR570 zPEz2k2rc2-J1Ehd5?!h7W_0LqE%$8VsWhR}!G^Ol32ux!gt z@m$fqw7@z}98tKZ8&P95C#NZ-VN#2~|1h5^3$F~kAeB}8-q%44#~-@8a~kJTC*znL z!FLph3R|IRg2my85Ib_Ev{W%wGujXQ%crYcCKL*h48Z5UyuHbbRbBz36tXFqT8 z_g9-;BzUpKHW2ElI5i-qYWbGpOQ_M4@N9JH$~OpXTCyst=fq54M0wWaJpZ%7yYZeD z|IltyKO}BK#*>Dv;gvUgB@2Kp9tA7a)Q; z{>ij~sQyB?9%;sI5ht49eUp-%`i~5BuBVWlBmeLU;rKoROwwmJsNOt@B8q4lw)#>I z3fRX6+2%_rCub&x{!s2ZW7%SsYv7BR9Bx}kIiRVjf;@Asx0--I^6EBu;ku7Ax&N)=`AU+Lw;HmqRB-|81M9MPyjTthyA$0EXn;nB2mN<6m9pBPblj}MVAtPmE^IfmrxK^{3LZY zq&@g6-es9Bfm#;?hf3n!tIM*T5CHe7s|QXz@tk#OoB5x^2I;cHKNy#t>Pk_+4F)f?dh6eFzOv+17Y6+aPK_d)XPG^c?wCH5TN<8lAc=DEZFBeeMi zeF`IGtM_k@p}aIj?DnIn6TiE`l#GRQ<`L8Z%YdfhYSD(b2a}i zjH!SVW4agTwFY8bCBWWe$ALp>kpqym!Gr3>Xo0me%C)>qjFGU=Rl!N-x7DojB%kzOXmPNS{ z-Va8Qm>yH)JZExkmB;_7`VV^?6w-uMYITbH#30+Ns4ce%z9A|IM zJn_W31JRj@_+Oe-`2&!#iFF_Vyh8xiW|@F5VSkAsTlV5;JUE)bcR6Q*F?(Dv#j+7H zUjZ?U1KXNo>C&Y=kWCWx?j1@5#t~FhJfYqUU8yNqjXmV{Z4ngcDo_JdoSbrV74S>n zt5*ZC<$^%+5piE9&-%#LQ!f}Rs`TiwvBt$0vt;o|iT4JO1k3LYA-@X&Ul==I+YC1% z%pIJ>9{{!s`WC>6gu-<9LLF`GlR74)zrF{7pkfF3BNBbj!^~%)Ezm~{aGnB*%uVEO z;G`fDAV4Y@u7i2R^o8%z7hPQ^AVvla4qBE_K^C#Ylfm)q*)ziQ!v%5};je}c9VY+` z4J_yqAV4aJKhVV`zsF2eRH>QBw6x~H;MD*PFGVmD z9Mr46z9*3^Q1(UH{sbI4K`JSFjR!{ z*A`p&LF6HH5<(0dCCFNAkM)Q{sXOjSMku@}zZ8#smhtKVEfvex4V+3`{>1AG`X|Z0 z>lxHuX8m*{i!ailL8t!uRDEa09sRHt>G`zDB15hjEhi@JpZ7>G~z8Cyub)=Q>c?HZ)d#;ra zxbb)CF__88lW(bF%Bf5O-TlJBRWd%uC%<*^4>ZIf%`D4gvz|91QV8Q?ZCwy)*dg5;A4gZ^!EQb8h3J z@;vw>^g9nT9oo(XXBO&@hxrx~92ofK&b!t9k63OKUH};ABMSKKlGw^RP0$eTZ3W4l zeD9taIOxB~FpyWhPOpF5A()U6OO%Bpzv~a&sJOYdti}|~q6$!cmfH_&lx6M3D_6mR z=3mVNa4y~t?jBI$Q+WXUG;DBugqKP*Eu#r%ud(sP^i#2O;0A3ISi2u0g{uTcKai4{Naz(DT_4^n~rn$_i#InwHVtgF(t^xA?CizHo(ff+G?377_H!0_+e^{kgKFJ z1`$K)#yk;UDU3XpPP`fmP`nB{a#M9eWYF~j50^-!r`04o4^IH33o{Tz71@MN!~_$^ z^bosf+V?7AAC48FIjl-p7i48+f!)9S2X+$CI!rNKv(aG4;Oro#MTR|mJDm;?`bdQ04}lT3j(5*Iiy*49Bc|V? zKRQurLM&V;!&R!nAR$mh4xOM=8fR_LQBc;`@_ViPMeY18a04av83G}PXC%}4x>Wf+ zd&v+B#1a2t6gUejA`ZoiOAHH%*Z`r{3}B5ugE;kXSBErU44hmHV4xW(C_0#3U0t)O zf5|>!bdbw?)Af^3)#%coo#5}abfj_t^a7|i=h+-3F^sl6uMbkpwrzTost(8x+v|d5 zH2tjnOyO&qJ#X3Q^k1S*21;^j>H-QVTJsJV-POMQqXE$lvj3NMj*yuHX>Y9$Kh&?I z>uL8?R8|r%d0v|y+)l#-F#SyThG`wV>8S#LOPh8_|!;CMW{(S_0liff@KZ$maqZKiWQ3~CA3(A^z-)q zqaD>yp*Yez=E35aTRBY;3itnpDiN88KaYE-)BVn!#!gI2hPjyJ_KmzknX}d6)oODK z3&Y}ciH6!g9xyI89krgucu`brT$0CbNfcciOPsjv27(_B$m`$%HNH4HI*!5MnFQ4M zx5^YLEF`q(o>p8W-S^rxLaA-%Y6DUtnw5qlq$jX%2drGcKw*~*DKYm^yVkb*EfB%VhdAkaENR!9cuU~tTf)!Q)l&nG^W=C9N2f+|QM+?qT zFe1c#a{luh(J{KlmH^Co5Ee_c4u$HUE)cjy;2eI6`X%g-LAs$KithBKMH6mxW$fs{ z@^a-SxOCXiDU%Lfg$or%A`UPCw1NTxN{7>pjvTx#r8G7cK6!6|3gOChG)=}}Iyokx z6pnX)7-k10(53VUWvS1SmCGoJT5$?JL0g_RZmz|e=3p5)>K|Cq&KArIR@%Cu;5AfoqEsqQZ z(a}Ic!9cA0p_rY{>XE{mH*1jb5wj}v0rD8=ezLGaJ+aAe#ab~q9IwI`Nj45KZlwL*`iQM51_W~&m*91 z6lMKCMD+R@NLsDMb&c;VcOiIEa&N`L+=>!zVKDd!8YMd{Q znY$vS5y`Fj>D#wpq)nQ*2AUd)gDA&BxN4}gq^PX#>sKv>SCzCrub+KfZRb|iiz_O2 zHK{zlgZgCw1)UxbE;?N-Tk%V|H(7SmqJnUo5}#U`wRJZ>oI~^9dR~D}?VXz4eU|Ng zPK@r162$*fH@;C&46&fPpHD~cq=+Tm>uz-P=7(3M4{zuj8nUWdC3ZB_n&w}<9h27d z_|!g+pM6m`CDqeloKR;3=428$hlu6#1thll<8hEha@vPp9hZ=dMyk(w2wd+;JZv%W#`lbh?4GuZ9|kOj|qXFWlR0xu4B^ z-kfA*>uKhMwh{MlC1;%Y;cz(ZBW%p_JnbxqG_?8@sC3Bgv~-A!uLwb%K>=xeonNu@ zvpiMiVDZOWn|C=4vZ8IH`gGYm?5%CY7y4}W>n_wHmF9(jN$s|A{R`H8=$G5KL)!QP zqvD0Hd{{|>Q;c)($|!~9EZLdSB0mKkbpeIYFD1^UbCbNJKO<(hd;ZfP3s9M3i%4k( zuoUyAyUYj9+M2(I2dA9VRLQOCJFj%iRKl-k_tr(- zCzZ4j&~47Fq^XAj7@47<9_)CMS>u%9pjjEr9}M#IBf|Vm$-uh1a*m4;&m#I?Y!nj% zII~4k-s1iZ?WXXHv~4snEcGg>`Jp~TwTd!BIqHA?`kUzB$Fd?k4&4ATkfnp?mVctu zv)YRMJh+C|K#!1n`70=&6Lt=Ks(`%w`zDoyRWIZgrzYs8%i4t&deWE|3AgWfg;JB@ zBHi~Xnh1g>osrL>s2V#RyYTgWh{8=*4%Yq7C9HB>lHc2e(r-`2IFfuU2#OGh~T^yycfMc=bT z`j*9Q)3fV(b^|yZs_6Yh&M5!$vW(17Cc?!fs-kV>j2w@; zO<>Lv&3Y5|{aOaAUKb_OS*Zm(N5;y+uj>q0GSluG5RnW$-lRNDv8eyPAze3Zlyn{= z@zSL=YEM5%O@q|hbbfQ&z1=>mjE@B;_UgQ!`@o!4QP*Oq(3<*mFOP%{{pP*g^H;xM zodb`6bYkP;x&|KC>Q0V_4tg^mBk1~k!BS>fH4En??TP-(@gCfRJ^ub+G1&Ql1P8*@~w%0Vb|C|ln zr}k7JYNB7x!K=M%!%@qYGpG+^68ML}tuIFE%vQ4s^08}Vq@dxT5?@cDz$xSQW&Y;? zzt!LZvlBDuuO5`>c;>ka@yK3k4o|xE!q;PljgMVMj7USr@K%FQkgy~j*0sx6 z?j3&*X7n-IaVpp)cCnwaT$aZr;H$Zy139j{=-aa#r2yM|vYAKDf34-XB1}q5o>^UV z-a{VbGL|EK-e~pLwl7E!PDK7C&rN!ZfnJ&*FAskxYPHnVLnD1zUnL#ra19g~iAV-P z0EYn7ZtCCC=R&A50@*@4wj3>TMbX9oJZx(z7@OX1x1Q)Lvu7QcIZ zYT^42Bm7;wZq|p~1&`k#jB-Z@FX>g+&p5V}Lj1)H2EQk+CGam5@TCrX0A-vi5{JXI zkOG$HD)`%OU`T@^m-NJfacZ9B8d5+Z{jVN58a;B+v*zI}cgAa*P$LGs7X=(9S4MqSpASaLV zQ4Nea>lTXEE6=+3+FES$MU;%0T=^Ufu++uTlZJJw#JbUPt*X(BXqZVuXE~@mZf6g{ zVFscr04&rR4za^~P`<+QR%ds{k{@5MUwneaovMY(<|Kq!efxPRlcFmM$tn_N_k7MF zwUK7?E$CIJP{KSHoK>rFe#6|GCK@fdxHO8XZ-N#Ezla_8XHN~-(em!GvC^o=%} zBCf4GY5nLIbiwS#Uq8pQVBIU>FM?bvdtZ457TfC?ITP33LZ$a+&6_uF>2-%jo72J5 z9`|+qZdoNsmb>JQym>QjVq};IxjAS@jI}Y zE2@X@efHDn5b*+r=+A;DHN7Gq_s4Ctna>Ig4o3S}_Tg<`nSfqY;FKGk9y6nS{|?Kj zZakE))6KGajpp}rp8BPnaC1}&6H@fgAJ#G(u9Sl*fT&e4cC;Fwc^F^wE_@q-0ysyR z(=nDyyi)UPUcW8}@%X2qU=KPN>K0yu*oKaaiN{v4`6mbc`aXM_Q^kjv?1tTq`7~A4 z8=lyCOSre;G(s5Jut+9<5+R`nd^x>wBUD`RTyW^u*T^ixrrANO^U<2%~s7OG*h{23OZ0hJ3D};JqX=_g-|UIhiM@uH{j|;?#W97t-yU znpV-ej=6j9hpcYCB>#aGJe*<<>!8?df9f$Y*t9*(DmxFhJK`0hFe@0H{j53`rloKh zg-V$-LiBzUlh}#QSO6@EBA7!jZSuUuoR!a>nKh2?Yhib9bOw3M{b&sw&(p{C7f>lr zMiq~E?t3H8lJ7occke4xMsli}T9<~+yX@286$JXE%}%Pw6D zj-xX)%4E5~L9e!;@ls)-+^Wk>kI(S1%nh8i^rmG+|NfEbedo2-F70e#RE}2cZWDv2 z^7q%haeceueJ)4Jo#sYY>0Cl3bN1QXAii0IVcczz=h|5zcO#GMz~GnRTIKVYlXz2-%Hz_BZ7d+wt{H+w3TrZ~Ko+Sa4- zjrp!pSXkH(Ykg)ppmlPq04i_;nL~PrVCbV*QT(IDSh#s8mVM;>>G0uJdcT}TWJk2H z$opKYFwJo=+sgX-k(%S;4h4N*4Eco!Z&mt+Ig6( zRi@r|LrHZ_*nL9VMB}i5uc0`GL!r%wzU8rc3O$by>*Vm@VXy%(g`gXe#`7tQn_({91 zH>|@lyY2=^lx|V~4jbBi&8d46w6(ag1^ttBUZx{cj(P?LmgC>f=-AN6?HtJ6AUj|5 zN-;#5)Fv`&%2>bI1OEMo*S_5Ov|r$Q8ga9R;qzDV0oD7%y)M_yNjVMCD>y5*T0=!t zsZVl@HYy)Z6b9Z@fwhDY)QP&l#)QlTY7*IIn zY{!2|;wAkcxrk2;RhJnx7?C?3)cCtRo2ZIDbXq+> zdcyN6Gz_)cLvac>khTnuogQ&&Uzv(x%p~$F5Je@p;Xn7(428bVQi)3i+}Fs&eGKln zg2!Y_9sGC6t%!NH<@$G5En((98Rl{9$m!F`aq;%pD+uq3Z(4x z&)1Sa40RgZ;R3@?Zt z=<`rLMVg0d=rAth#4erZ39~t|QIRW-;1ZO&T^Y)6X0~s|yYVF-Xe(+V8CF3r9s|kO z_Rzp>U=G5&{*IT{t&h1MtbKEQI~acwpNI+M$gIuV2N6d)M2EPJpud-NLu*8ehb&U^ zgKwIVTyJtE3E}M{h@y+rqX{OZN;cLs+pPniP=%8G*>>B4cC&l(E4|xVDQxcE%}v=1 zBPY*b@uBnV#p6xT@62B5mM#DFGVB!W(h{?9vHZW6wc|&n>!92yz<4C-ylvLx%=gII$&6_=1n78|p@skx{!kRCT zpi?Z=H_;cJ{I13~GM~F!UYe(Z^;_o)#%ux2wk}^fG z6lWYxv}8N4OSPtjqX$s>=`X|+{gr#IGOH%iYaYUEJqS(%&F$8274k|;{pv5kO!)at znwj(O{K`K=;`K@6-|x5s4L2){WFW&9=NLNEw_H) zdPo#nk=bmtj7?;dlgiT5INW0HMvdBy$+-j5${Ew4PF4hOPe{0w*omp;6?SALU4CuS z3v|pqtzi>@u;=ss{W08_RM#W#%PKtk(W=r^da@v^H*Sl@72y=y^T$zAHszerLU)In z(di+@d+m?rc5mgP%Dp^U+Ro>;B;dx4h}gqTzZNZ7qVYxbI(Nd8XGjX!@<6{*=X;cK zIofkLmrC4zg#L)8#J=X?U}wj@0xWPP!slEv2+Pv{=4~$0Y&_6HGA1f!3u&@G`+Dx{ z+`SvJq5kS_+Qo3E-}x2(-RiFrmUbW1%*=)dMf}9GV=cMnj~1reX@+GfXtwVVA8EyH zOo!hyTKTgsAdU+#$RBKIwjojU1S+{(0nX0GLAScRtkf7#Z?K5PIn6)bcv~dn-T)lK zcw`pIR-!RT)HknTritVFg$;y0_b$|0L&)cRlMDOD|D#u`_F4D;n+D^eiBs#p(|+H&|}Ew0r6zdOW}{CI^M|68ExFX$P7`)qTb9SdC)@bI^IhmmA7PkG;HS~> zF3j2H?&@08GCMn~@dch^a=9E3H7l+!SwP!ie-nivX~8^j-~eT`S7(r@9>961>r`=( z7%YaDfg03<>%PL_3#3(nzB6K`Djt2YoLuXL7o7Uh%+kvZi|@jd)3sC3800>9OWb^e zHlJhQL=C12a4AUiK-xx2F>!HncN9_dbMn~ce~ky*I(-HkE+VM`@L7{4o-2As;YB0+ zP0}PzT4tyEuL#%8!XUtZ7$|uxPDi|5ccjeXr5Cz;*?%RCQ|a_ zmb9+Y(xkwFaO`jinpg#=lTF~+vUe;Si2?g`^(_HdlbD1L#rPwg@Ya1JPqAzArYNw4 ze)yr;Z4X=*)EtJDtyHE^DeP;V#`rUomfSF7gY!;*I=OH5{hBXTIjGephTGVQ<88sB zZngB=1s=Gt%cAzW=Dy^#ysZ&Y1*adNXW0~u8p6$%mRE!|>YGu1G7K(Bk7U#=jO#-# z#s@Up?i6yh;zcV=*;ta3;x0eyVB%-Q1D4oHfpr3$sWU&y<*3y#wC-Bc{Ft+4;~VS- z0zA;XRgT^>c<=)eMAX)91aoy0DEcGrKY58d^gQm`BJpfy&%Hmsd_DWfS@fZ&m2Cfa zkJ^g=y+@5Df7beMhklCD3NbI@9KX=zxdg#%&+oo%+b^1(zd1XGyGM*C2G5_@kzV90 z!Eq)hEo(>$4Tf9MSy41H6>a}a2NQWZVXh(GCCoo-Jf$SvE>8Hv8vYN_ZP5M>E?#*4 z{CT>KkWw>xu>?zgx0e1E+8iaCtR_;D-`FN61P_9vQL_srn>qIxc`1c8n>HgmaH`E0EJZ|HVpcJ57tsk#_M;H zYgdNH&svJ{t2$g9kJ%1V9rxb78)Wn&*WAFlm#ZKv%Z(J^Ha_*9v_#0EC882hYT|pL zhC9VoS~E9iRR#Gu{tBG`J z@Q%cw-4OPjg_M7Z#rhVW|4k=i?$7g~a}lC?i*Y9eop<%2*`Tw7`?tYpQp8w_PABV~ zZ=|;OEot*}3EOjiv8K8WCmIIrolV;31EQDHoD6xXRyJ?$v!R#P57%Sr+q>O?<17(H z=EdJX2h!`iZY5sdu}D6x?a0ouCj~TNjdw{dN1E4|1wyF`WgEOP^77r8M)Y)~@Awg{ zioV%>(Sv+DPkjR?*a&2DIMZY;B4;Jh2p}DkJEQ({KP0*0piV6PKQ)C2%SgNQ#po~6>59DVI;b4>nyE9vd8O8ow> z&b|a1%f0RQDMjsQPHCpd*kDYvOp!;KD???ueDcO-0tVTum5%ZuHSI?q+R)yfouq`dvO+$jh6k_ zkH*_Z8+3>!4F29F5SqX(Agb2^fK{;Y(gJY54aX(O2&>Fj{DSC`8;3jTC&8ucd6O%J zQZ8Y0u33ZkzU#|W4AmK$C7=d8#&o(7=6hhYl>k4c76)2OpCR-8={3Km=H=$%q~XDW zT5;Dd27^p2zQNI<7F|==$54epGtdmOUXR61G?-{*9dB!W>o}Ou9W+fNPi|$LobKQ{ zA3HUjJ80O1+g0-8%kQlCE<>Bgm@jKurL3U*3|H>Go*o~f@wK3@3(h$f6RAN?(;mfU zt1FKGs*Fw1N*^gCq=jF(+=4|K$t459HA{l9BiT4Y$8rohwu+{Dqxh zLa-tPsq?Y8hy7!G^vr!Oc=s?--eTJHa9xfGT)fI`Vr_&T7Ed)eQDU<6u?tKW-r2Te zwX$8GsAy%4WXLNq{WlhPcq4to$u*Ve*UN&QJ7(WAZsa)t0}68vPiwAAc^(oPUZaN$ z@*X?3&wYXz;CLqj&8+!M?+L9(vklUN^p>}YYdnP#`etZ;5Eu6_YQ2eLTrG`fIulYv zS{8xu>szov)L4A*X>31;6tbdMN69uo>j%!LXplf>uX;0AxIJN4ip34Kka6DA_*>R> z($96}G1J*T;LiT$kqsXU0S*lwnWI<6UOe|&;-2yB=~IsO_IBPu-xmRv630ftwm%fK z1EK{~6w{RC-KF!Sdu7L$E}h=ahH@1;`K`(~ldt1uO#$PMyh9cx$hmNA9Nm*6^In;6 zS;*6Qo5fX!#nfwJKR7rai+5U{Tvx^W*emWr=v|LH@SXl33m7}B))^vy^BScOd%$|u z3aSG4JzDjCrSphvW3QoF&BA}EwtFYQS-+QKJ2qCebqFGlI6pDzIW4|1oW4#nd7ie1 zp4P4VeT~^?E1?s(dFvlrFX|*}gM*7sLq&^u{iBh-mx^EW#>L-mu@~>3cR zGRh8k8Ny+uU7m?zEYSU~haC@8-cXuh?Qn#-z<*}zld%bSs=_dQDePj!B&2xF(I%9u$TY8b7mkhF0GM0~ZpZQhtSc7!;>0 zT^Mxbp76Jk<+ycB)3JfYANu=e0fR(;R&K>c9a@8}oxUGYt4l6$0Cl<4c)^!VY#*oA$n^~=EX z1N)sZc2(IHu@i>SD{Z*$V-gf)M!G>8)dp!?GpXf#R-ALbqER!O?KNkWALvoF236UA!{@=)S6h>`OgGjEY!r^&5daMK4CG*g^AUXJ6ECB zX)O<*vTuvCP4h3tk0}cF_79Y^q`*()@W zmquN^cj-ZV?tMTgD$T5m0i?Ep1$Jtt(W91qY8#Iv58eEjjrUlVk2}k%b}D9?=||dz zt-0}ou=cdijVceeVf*Odxb@8}9D8%KX&Mu2;CqLQi$>0(hMuv%d+Dv-+Kj-CvuoSg z6D*gNhsjRcwnd<@dBPtp;w*9w1(f+BMC|*VR`BWGI#%u=jt?$kHb#<+@-vy9oH}Jm znS4rHg(an{gFmJ_54_gWD)I^%W5;)hyMr0;lQ}_}hF)iM@1!e?{Rugn_X}ZuP`z7T z;0O_S+k$nIYu(;)m9eg{6VVth>fGB_eTU4=l#J&wd`TG0=f2f%pqFN{9k}ePf$PdR zAIv(4qpaW*}NK=2)GY?q(3RN8Q3HZ_g8em|*MB*s${Me4n(#N_rBbZ>( zgel*a?ZH6PRAGbV71;(Y>^|CafKNJ@o1pnv(1Vt2wvT!`_M4oG;YWiHy@>f)=f|28 zsV)4nvb-ek=$K&V9jkjiJAiOT+!dTZ(GrsZZ9>9MZCGE70Z2nuXiu=)~GKc!tgc-oHeNRUPO$f5G{5na}7T0h{a?SSB0 zsGbSGQ+kANKM(HFG%|*FE;O+RfR{Dv^qH8;7(z>SL&w#Pv*PqptjG1g{|3dg3Z2a+Q z$`QByI))9>e4mL*YB$8~G%jWRx<65K@SJG)ble-s7XeYdL}x+a=Si)fMpo{R;dF5g zMT{N3VPCI~K7Ms_Wd)L~>lPUpXtpsDefqLOzFR24D_X{Zm74+Ezhh77j&|{U0p(ZleV%8WQda&*l%WPI&yKD9hO!4Lxx{B%XqMXg+v+5TC{MX`DaVp zw60vJj7tC9nuPT~@##vlcb=T1vU%!1KEl4!hO*UsTTPfdXn_t8#3nmLMdYLm^L&BO zI#@3XjW@>YC&e{Wi6>AE%9evIkjoKO%+vFfb!fFwO{{jJ_-wXMK&S{LBW@Mor81A# zV_8Rh6sv}N{*B`@DqjysE9d|hi7US^gNNdnUW%5MXFSxNzF%3_#zr*NSvRsQdHAQ1 z@H45f@xebIv_P$CYu9q$4pe9?IHzl4;5g>jov)O3PKF zw!Ir53d?>{H3gT%HrxHjQq8ilgW7uSeBGffa&nIZwjUh>gO~6n0(M(G(3LJH_zS(l zR0h$L$l^w{?^|ln$8@XWIq+xL-gpR)VbVn*9S^os_r8U@dyG#Q`pr1r)2ngvx!($3 z_;6Q*wA?RmSgBACI3?oqRmE;Gc#49pu!J`HnEy&^l||;OPG@3-e+FvM>ZH<5N@~o& zu}TNbZhJH|2(6S5y^;8{vN3ha@5LHc2_WdU0U+cvIq9-c^z-xH(ySR61Z2XxK+wtf+Nux;XNc>O`e^%< z73y&b3{(e};h-H<(IR_cak7WhBX#clm)gHS==@OKy6+Sq2ff;zR$eQmH#StKv%9Wic6%5#%D|Yj^RlXrkfMn)MyV)rLu)$WrnP2TUl@8hQ7(`qQURNd`#v zCgk;qhdSlQh7}usD+Qe@>be+@CSd`N)}XdGl`_?=&kc71x-dG0#?|s%$}G#OlX#T) zZpJGu$CPs*4(kHM+T)5}o)auCxiC!^0dt)!D>R@!)*HdnBf4{9h`M{uRrEd}q3F7S zAu6=2UTo`D!woypYHfp|B4!H7+`k|VU`rUHDw7o{{V@-qQDXOV;-}@=Hm8~F{l3w8)IgHqM9LM;?%s%ZO%5<=R6P^NPLtZ zya^`*DsMogi)Bx|ZR*L>SW%DG!L+5vE-fOSL<&$9ad&Ys;5o)wF^I(w3WXW)XhHy{ zZ0nUS1YL-POZr?Pt*>N?dsilOn%U>t9IfOkd)f=IIQxWyoL)K38*vyV>N2nvRS)Dp zW?@13Bq|kl;;T36uU8b$z3Pp}TtuY&Z5{;Ou*g?%I|n04s1n}{oV~GJ{vxK;QZr|~ z4lN_wTDwbX(hn?{22xH!Mr$s*_@4mNeO?~(ljzzZ{e0!)>kpfx$pDWS=FwO(@**Dqnd4X z7SH-r++mB14Sw^zUZRzWJc6bD<}=?O=(&o@7keFl?R7k)3+UsBbj!TIYQ`|2*E#Hj z(`A>Bb!~TPMMcF2voVa-2hvS1+dg3#4m2-RY(5QwiB(M$A&M4GJH4h}b7^c&n1Hwh?_aUJN{4e&u!`$@Pwq39>@I_)WWK;}HanbUB(7L_64LfakFne3gW@U78jB>hkPT%I;pUZ43rNY4l-KCd8j~X6m$ENZx%Zy zKp2bVm%51p=!(P6u(iuarF83K3vuFjaF(&^*6)P_1@j|Jjo;rsc4tbIcu8G0WGudQ zHm@I^2$^5?MNCm?J#(DvJ1p8VSZBSC&(Et=t-^OO=G}Xdn2^FR>zBk;o>b=P%dE)2 z#su!sGeA4m@4nkWihyC+kO!IX(-X}ot_cK?M7gPXcdI=E`j4`hfw?=F&wtR~l0Y|V zcH6D`)M0q@tiui@|0xXkugHakKsy{fqje`9l~-gC-~j4j*oR|#U`g=+(N?{MQXusR zTD2Cs%Mp%L=&XLHM!R*}F?|0q9kaYYlXOKN#@t>O?drH;_3B+G&OLuA4`V%us28zB zd37QesBTZOU{?C)Iya5cX+@4&>DUG)dEGexzc#Fr%bM#ZG^*G#vw+R&OEZMgiikSU zh8;XMV$wu-kIgAaU#5ayuQEP8xZ{4g+q=t)3AIQXJJAzQcy*yg2R4>>!)tHN&J4v0V>TuppC4QYKeudLbg5UfCAxC| z>fboKL|PMKJcTei3WV*S|KY%swzd_hmQPR@$XmdZ_3C=CPJnPCOVX+S9Ij;U;>BE8 z7xeZ@?zLe{KlYKp4Tpt+y4#8Jpq0wGO?U^mMfyH1#qmZ9{}RYu{Z?+jFZa%oVpX&n z>_)fuLFrKItbE(M8o-9)ISYI`XuHkNK|5CG_Ajfm({gQw$3KWDXgjIfxwh=hUq$*oxv0_nah!^XOSKxSo}yi*I`SZtEQS%EPu$IlaM3! zX2t8c;jfwDgE+0!Q>%%M3wAs! zO40pcYl9&PDc#KKG3m@V#|Gfwf9=gntkF9 zv3MHSvu5yr!f?@nunhm`4uGk=u(AGz9Uu7^@vm9K0Y%(1ECIbILllT?4kaUIt(hR0 zi4g%08*tKwx=C6<+MvV3&?NIMtXB zeto8!(g$}5;uylORG00$KTccZ&dv<@N!2aC1Xp9+Eaj(LmT33c{L4!EInJvo41-i7 z1@NiKGc@xbKH;9yi^%XB9@gvjE|@?6B8EsZFcoO9&Kl5a2TJr$F=@HbE&OU?Ab*hT zIL4y7yj%hLvw<7;GBcbbg#^QM_XXzX=T}Y@in78s?9atAC0S*oS!=D_KIV3Rf)(AX z$en+6Ol;0`t>Sg6{tb-G0pEuh{LyFp&>a9zDu1rw=(OL|FUE$w{D&BB(Z5;wz5@*p zUPRLwuyQHSCa=-I9oTeE?3ZYhZjHHb4U^uNbv+*wK-vUzKd5erBpIGW!ti9h<22@n zmzibEx@{`QPn5PKl-C9|NZwUs!{m?*C`$2%n5^-jX4d#c_Na~3D3eyhm@Our8P>q3P%P6rbvok!| z#TGKG-PU4meeqzh`gHzFZ zN%zw={%{dcM7Yeq#o1`Nt|sd_kavIVTC;x#3JPi5ijsS7pe6sq{iANNBzh04H#wU? zVpuzRvM!}J*JC_eS8O39sbCNR+`6qX>3imKU|8sTB;8$tMR>z6M3S^Rrq4k#KFgkdI`2JmJ%RORB1w+9?j zc}DHBxXfaXH3K?0utPDVNt$JC9|N)C{Q0Ji4W}8WzqYwdDe34R`1tX7{rQ;>?9RvZ z?pOdN)f-sRh6plN;gQ$z%34! zE4}$!WEZCq&M{K#-S^LpC`G4RizG{to@~o4vjvSLa*9q53!n+Qj9M(B{+nWO;6GvM znbdKlB0dxQ4l)O!hOF{)rk7$^H_82hjYUHTm*X)mOHq3ud60i9{5wc6zvI_8GkU_v z42aC|U;?9dSO|0xIx^AfQ0C#^uCEmP=EhFNPbLWlITxW<{oD0*%a*0kbaF7rW)-~! zLY*F?jynAQ<)H!A5IlvC4r1uF&kDOM_OL8>HoSy!RrJ;((9du<@NkIZNcXckZw@j^ zLfQAtPPhEA!2N+mjV@^R0z7(0#Ng=;@u?rVYhg+#MP}AzRF4jLGS)r20bEU0U!NCu z%Nv*hw!55g?GDH)+h9_#1iLz5bgQvhqlB|$lfpx%(lNhygP^FkuLV~<3(rk(Qz*tp z44+SP9NxpvVG0zr=!;_aaM;iDpJ44&d*2gwcg<$ETU_o4(AY+;V}9pQ&(dxTq-Us&DSw>0&T@o4RS>yhW?dy1_rA!M^i+ z^&-~uqPmqon}R1Tz?Eq>1`3zYz2%@$xS-X2lft|h-~Hk+!uEqAxurwIBzzHh2>T0w zVgi>N`)@xFH(52_Uqq>@NIQ64t2~8){q9>pS}uKBFYFYgDpb|r*&!gXSnrJo9U6N% zHA(`nw!rzy8^CmHt+GENKWdM^*J`O>7kLKQ3f|@AMgbkrt-(WMn~Td=(}<3QwPEn< zfE&gY6mR)F;Zi?zrvAR4;Q{G1?_SX7;b8}-dCM-m0|xcqNU6ns<^L<|<)h#FU1|cC7!15+TPA~2VuQMhQgUxBgYUT) zWJ3%F1<87nalKNA8^{|t2x~`0kFHM^D20Tcf-sOU08{Q3@xL(8Qd5B4gePn?D?dA1 z#tq(bEf6$hZ8eD+Ss`_!Icp|AIkUosw4}1~bhTg;l4}sl29(VD(a(vWKh>Xk*U$gg zzvO)T{?WQ4s&s4qSJX~a`E;nuk79TyGaDx@A0}(7<;oM~`mKJ8g+0n%y_Z<=dR{ng z%bqEd&V~Qydl)ziv0oeZBcO;D>I7;Pd5kYNUh7+VTZ#)1iC0=0G1qEg25FRIuMlDh zXJ{0ojAFdbFYErT-TUJ1yTZIk5Odk~@A}_=*y6rZFEd0lUicneECuH=nv09h{T$|^ zwFH=R@XxbtFF2UpuHP&rA;AOj8-_sqgG!|UrGCVXs*O5j;h~}4ko8Al-lYB*o+PBb zfLc)}L={q<(bRFsnJrl1owq8D%?v%fj5|;Bctq-nE&^v|L!3igzs)Q}?YyBVU-Gb_ zpfou3egfJb4Jp7LP0dqIwc?-ga+7-t#?!gvE{MDwRLu^w0{>l0y{OG|RMRp0m-}_2 zbk`xwxa%nJ6UrdN9N_~ea!4PP*-z)%r@V*O>fXQsR7@TQz?kzv&x6y3K#s0K^ac!6 z8s54Y8dt*-^exuBuq9E2sXbySu7Y5jzbcYH-tRkD_7uNHF72en#CiV=kY+6n7?~*R z{>EQ%2xw=wAM|T^Bg1L?h3{1G`^Ftrpb1e%7(UmY=Cnxhh$N%KVRJt;+;Q#VBf>*V z2FjZ6xrzS6vqk;wh(5)b3+Y3CrY%k;V)v*#QbSxFg!2OH*J~a+1&!)EV0BoD4<0m1 zdc~I6i}tkPE%_%=wAbXC6^a(J$RkScjCXEjN&WxDSa|o90B4UWSFqhs8?tlWj*I{? z#ufCwYAg^IV5|S@r|Z^L!K}P8TkIKBr!oA4g4Rm(g8_E>{dKu($KNNH+4h{a8|FI| z_r9?a)Ot!UX^}K2ENU`k1}>1Ko6Hidye)liB53t2Pc z3)&FsiW9c40-Iwuo;mBL2K4*ETZOu07UDDc zDMJF3r#+oAPIk~TGD3$yp$*#2I`&iku>=KAgi8CQZQ`4QKk*%WQqCABe3;%cdy|-frX~VC$-uSEP>M zkSVRd6FK%>oZV)TY7Rd*0$9@#_|WnhZH`*n(tu6o(KJoY`-4MItrf?nu?y*a4i%19WD;^S zWto)awUI60=%V#ffO69wU}h#Zv*-JlKTO&2G}W=7wFo*@$|59!kHiMGW`mis)$-~1 z2r2Ss!_s23(e39lQ%TrI-cCfx2b{^)Fa%W#*W7`14&yw^!QVMUAys-+-mn5EOcOni z+P>P`dD*FM1(1k>cTK_3%y==i=4O;gP#e*z)K&aO=d0;HdF}RZcLC6wPS%8tl6-ZD zPr;b*A~ip0#X~Qd$fE|^+DTIbj;v*I{jT!7A}`!sQ+)K~#;jYJm=1j&Je{i);xhc^ zPF*0RQG#x5nDp&vsx2SoBDEFFJ}-3H91KX#XTpM`QHE#{wl2vE|E zNbwNI8!(x0WaiNL-uOR_q%9=t*?34+4&mq50zabiV%r+vpG;~sXJ*p6X+bj5ReE{hCpt{cj!s9U7 zr>DBOQUKznJe(z_AXkuNkZvFl20oww&Z_Y1M5S(NCFVDD&* zXz74f){nhk^kigHcW38SjQv;fK=}ZId0Es9!Nu+w{A9;)6}_o1PLavq3P>v@hWg@- z-P*Y+Y>SEESuf*vr)AKoQUdTZkTOQHU9u+6Mqs-L@g@Nn!aIQWNSNQ~&HsbJ`5TIH zcqMk=v=NY$)FvJxrC$J~Gp1}5U{)2M%U`~nkH=;%_z~n`gS*im=fDf*HKz`D=@}ktl>K*4rnh_!u=n^13EwBF zZLmM!zciTIjS=}7<_dDp`7}DZh%6y7k(N3IIpRRX1ENyg3`~3;!r8*Z#qYR(lz%rg zw1IvhkS9uG)dHX48<>wfgqX=X7i9nB&VMp&P3|&u)qvpo?S`zIn|XD2&p6tApDf;@ z=b!f=)3g71$Emf+5P~y^2j2FW&h@{HMU;QNI>J3kGf(^v(sFJ(g@U92F#7dH6jsUVZh3VwhSAjnE>oBz?wom zZt9U7*W*~e5rBdZPz(6l8K40fqp*i3+6B#dU{1`Y>6pkur;4tUL!i$kG-M8c}|=TVZvouLwGfSeh7BJRzaHH#S4RNyzv8Qh_W z0+!*7FT$m3uVm1RLNTo&Rqz5EGkKKwiP8n}11X)5!k-aOr$QFPVPQ$1_Hdb^w+t_Oa2!~rbflD@0k!fx;qUmYLqcFXI2VMF2luuqnIE3qoRLrvC2SWO z8Or#?UI7y+5BwQR0W;HyN>VM7bAd+s3CqeToGr9$AdmssJv}lBd>#G$z7&)IPz3ra zCA>s9C8?Q?KJ)!Ev_d(xcCaRA!QEmWPSQ*2aZj-CN-+4MgF->Oz$M#GZ^WhY;x#b?$Pr^~?aF!b}-nL!6|_}5DxxJCiuli9z)jPg?nU%?JYI1tCAx!CAY*6n#u1)L z;DXQZ-)GG+)zR+ZN>txKp|NB(A@SAJYWnzX|jl&*9tuxe=HI-6# HAG!D+C{r~T literal 0 HcmV?d00001 diff --git a/_images/tools-of-the-trade_13_0.png b/_images/tools-of-the-trade_13_0.png index 558d9488ad779b448fea821091f533ad44359baa..8befd276cd95c5d8c7c3531f2cf1810754a130b7 100644 GIT binary patch literal 36999 zcmbTebyQVr_&<06rBslT4pAuyk&;FPK|rKLLRvbdr9&h{kPbmQMY24`OIwho? zXM4Z%o8Ow5KW5EZ_b%>*bN1Q$jpzB)djb{YrLN&p;G$5dYfq#llu#&iK@+k za9IAY7qDB~8gnqMkm*}sY|$)J6e@K8iNr${=Y-8^CpV&lzgRmj zs!e4zA7k~4Pkh(L#r9KutgggN(!h3~#4vyujo>nxBsskT)&m8xlIenUPP;Nv;9-GX#1ykStRL?)I*6&ZDa<)oPxhz zZQ|ZT{_{zoFE#RWf(OqL`HRumgK@oJ&bC;s1zmqm_>1F*{|_%P3eQo_5>HW>+nTPq zF%gn*m4X|4W@ctIA5%$5DOrK(V|cj!W-hjVuQ53VMbKwq*PxfT7^HCh(3P{~%N%)F z>mBLpYgiXI_Mce|Il{1s|n&0jG z{w?l@OVVFzsvJxsOu=XM<9detp?*jB9f71Ie}62N7x}^8ze~FvjJ){X(NW|`BD;UI zYao{>Fv8-U${;-=^ioSpG41iSt7P|3f6w+pTi2U|T>qZ`Nl{?hnKUm@uVG1jA}7~! zcD#2v2LIYMwnORyts368P}f0q&RvQe42_M`Bk9&)on-~k9rX@o*M&XMp+rxspOiYcG*0tVuWTTVe zR>(N@FNuqbe~gIm9UfMZi|59nH93)Jdh@}+l((d z*C+b7W!CdATa7_axUHSt{7?NlSwaH6)*uq>Yu8%08~%nQBv3`NX{!F-lsP|_hM|T< zcb%4& zkyrgbD0b!Ic$pSmtfQl2aeMn2tV5EsNpdcu>nI8?qpKvu#Kf)_Z67GP?UuR;$5NDX znE3d{7G17z8g>$+i#cumU>;e=!lRPb*47s2Qehz}vzQ1+DY&>)_d3d?J@myKPI-j& z(C|fp_EVI}@$X-)pSyZ`GV=2B2-mkvZg6PJp;r1+9<_d+s&^NRVpe{a`~1se7@-@6 zt|Ph6(`bZU0*cw`Qw5#2uA}1b8wQ!I6U*eN5TZ0nj6U@KE~q~VLiNMwS?!d;JVjQ! zs7^#DY>XHAqWVLq1;3AsL`Acz>u<6Irb>mAhNW;?C z*DrKCwtZOOdUnKV)D!QAd5vQ3Jx6`ND{X~RhD_`|J)hqDPl@J#|LPh@eu#lAz`dm& zlou@PxmHpg3D|rJnR4W%CIjf^WBF|5GvC&;H7nSKgoOH2C9iBumdRRcadB~Rn)K5h z9UnK1jgk6d;kPZchhE+^R)oDXsWb5+|0SmyyQnB_lE(?N*=Qb)latfickh0}`Wdb| zCxPNJl=aMDxi@jrXgu7bNvGb89MxZLIi=tC#@V^Cy*+FE_x`?p?eEUJJBNqw8X81l zRIs9CGL)BK6_N=$vch(n+u91Lc39W%P2i`aw~Sj^G2ynJdAaPs(QtO3822)-#dxxo z<6I*e6EUvEWGRl5!Y zbo6^h-DDOM#jP72VjOk*gbdF<2Y-1{pg&P;IQi@320oJSw( z;1m;OYHEtQaBV;yrn2%u*psdL`0`!lz_jnBcsvA;D<3AaIT#?Pu#Pj#?9CM6+pNx)(4 z)lMzj{%MKpAFJAvwJ+HkWh_6YrwIrNeK-x;==k_v7`va;)5h=ZS~r}(dv}fU8&r&I z6x{uv$9QaQZK1@3_V+8ma=rzRmMG}d25SW^yYGtU#W7>Pc3rOU%%ew-E;lgxUA}x7 z&1+_~0)~xB)Po9^;ShV*_wS9cE3cE1zR2AS{9tYHL>CG|KuE~DPoF6D4GfBG=EbQ5 z?6INxxdj$Xl^EmShb>_BXTP=JxyL`(em(M!9|B}J#f!}(;N z8OnL!3mtb7&$C@Dm;IHLk`TB-eW)VNf2N)0VGUiraw8db+XLqvItpHkY~^z6+4^kl zIsv2ZSno8cPpcz;1JWT^M!!;`9IhV@%5uyv^?V`|cH#E%@%b1Vi=CmQ{*))W^hPQV#7F^Mbl}fG70k8okwOojJAL z51w1h)RM!%V27w0i+uNajS4j1bcIH>6 zYxq*r($K_QyEgY%hfJo**>Y8KeDFn%P|#M?>RfoV-~1wh)}7+CJ%bu1&4Ttc*TXm4 za)qPTYh%NLO2mx}3jD}uJMp`ab7T>enUA$WU&y}}?&pSu(*4;I2sMZoflv~UAH)9< z1q27TL@++vAJuCKAlUiyr@fulGZ?OchVnQ+cyX2L!S%4Puvi}R8#JOG!El?YS~ZRj z95-SQsi3UVCWyFGq&@y1Zeqe@HCz9|a;kiOvdnz4p~ij{-P6+(Y4tmMd(BaIUj)zm zeBge<{q5VgxrGJaKeL{+`T6-rFqQ-~G{^$Iv5wDgHq3<77UfL2CU^(3qH6bg1=Y&T zq6YftI5_a1Jb5yy$yZcVL?+~X@BaP!rKE2fOSk*tdCYeJmR+S4p(0^XX>9Vv+C3Q4 zSpeYB3V#Y7H3di^Eic~|KyXW;+(I2eb1Oqx`1x8jnZl~Dx8K1a{Y-S4d3b(u@Opbj zcw?dj%ee2eBy_6X0V&#>ckf>LdvRKDSbOW$$5y~LrM?QEh2HoWw1?;cwlSHl7tV#Y zp63Qglz@sVxTQtH?RN(w%IoizTtMAtn$Np?he_~O|*0rbQsqo=GeZ4w(=j3d! z?@5Y+!b01J_m)x%N4pD`yk^|?o+cic#;ZDQjHhTBbz0`NhteufS3BUK;MPAtE0+*G z-zS1!$XZXM^)n{9rIysHmlzF0Yu=n~I6tIBONP5zk9;2(c+*e(VGO$#J$)+d83NQ~ zsBTPp-R zDpkbaW3_*YD8NYRfUFOh*Qa#&Lyv}C=eqob2}vQ~2^XPfuMt5>&2vK1d0t3$8D zM%}q{$27*!&`=RNhkg0(YF1KsOiYYCks!eU7Ok6DZ*MP@0v>vnV_wzv5b7K#0{e>{ zM4QDvKIksHt)w}Qo0F42VB)&M14$>jlgxHqGeC3Tqt;TIf>g zcG^?`KKTU&m5q#y0;lfKYt%Thp(Vd3t`c z#@6UP=rVvjqYta#!9Qc-)8tLl)_*WGj^@w_X>1gekdQ!ml^g$scK?2QjY)>9GuLGC z95!?F?5xf*vUd{iQw!LO!A5%jwFKzQ<+M<*+5Q6W%9Z9i*FTp&5WDWLggJ_ujpX{_i=JHvOgeCEs4)!Ffrf&{ z{<+t-hoeaJ@7d6b;{g!4t9VooymlAbF%r8^ftEMokJ+z2-duf zqhlKo49&cJiS#<^5m_46a2CbhP< zuDv)}pKO@^@nh%P6^@l*OQ;FiN*O`rBiIVF`FC?j+Ek$7J(e;g5n(SWF1GozrDea; zj|N;2zqq*Az7u+}`cy7D3Yyiw&!8532UrKSrZb?Yr^oanp9*f^i@W{WFb+#p=iH{+ z2jGQJSE!Mm1vsO$puuUI1|ZPu-Jg=sK`>BfXJ6|M+iyt1n5=AAp2VWsxhSc!^?q8e#E&%B`^lIK0rV~N7mtgvdm zTTtsm!DD6;^CDLT=k@E?<0Zz=itKtct?M#|?o-~lff*&^2c?N(dImxM#fGw*VuU?x zHK`TFa>p0MB5kz7E^lj`wtoT#xI{1yJnixNaE>w~R0ri#Cz!AKg@v>|_d{qMu&pF$ zc_wq8-?f-3zXo^RjNDD1$m!LrXGxC%Ed))!8wz;;z8M&?%}W2x%?8^lzsoz8tcp1* zEO{@h2mzB$o^E@cG#>x%;wW-Ib+lg{Y@J)@5&jE8Kz2zjV3ElSRKwZtE70)9^b1DD zO0lz_-GlDd4vWfx{l|&b*f8{p@nYDIbMUK5yX6phJ1bbg4zLei;CTro503R^+ym&0 zU<1@}-4Q%`{?IeAB>4HQqa$ZLyF57=Auu=sDda!b*WXW+7#kdJOjNoYupkqJu%S=Z z_1*;q9GTCO@|B&QHsF5%g1wrsf;=F63MpmB?hm^@(N*JD<1PvR#o{GlZQ8HK>hIY@*?a) zpc8c3hh}DGMfKXSMRyJkMshRk zix(P3>GFF#YJucuNg}bpQ~=j%=;WVbNxECgD&BAw%ZPJ z#iJqt;%h4h%+;dt?ku(W$bFd+OuDwo7{A%Z@2oujyqST-r??>$$qPs8hhXvodz$o0o z6ogk|pb`Wea1|95Cx1avnZ&RL+~T66dGzA#yUbZc=PJ@|LRWze2gnIQnS?|{PbVu< zuO2X`ic{Ojx>(M0gfpkh*FOi)eU<$FB`Bs)2YC>Jo~YYCT(8nrYCeXSO;r*w@W*%|+6@T4VTkP`zsKKJXFAJ7cYDW&^4*Xd4M6LsRIO}n0S+pD;5m96{E#L+m4D*>jRDalRt+2B>U;mUS!H-N&zYTm` z7oJj}AsOVLyo%a-qvI>2?2SW1LvtKPvN@_>DF7hZKqIicf`j@|?QjJM|71v;*8@^t zs1+%|p&mG_spPDkjOloibPc7D=O|R>!w3E2gn4S-@Nkw2L-p>imW8lj6A1;?KWS8O z8TWbx*w18rYcT0aF?HZ3zK2?S8~5hT8`uNBy#+5GC8qOyW%pZmo&RS|nEiOv{~P=MVAJ9ACWM>{u>SqC8w7uQincEw3-ZyRc}y@mxS z!N#Rgj~>~b-ln4y>pxX2F?xznNoaVjt?x+(K!tUK=@v-)tx;k1Vf3r!LP?(pvVB1G z@P|sf=H7R9em=jt8o0OIN9qcT&d$cxR$N*-AlaSM2(}SYe=_Cbls2kh{n7*m22Scq zt^8Sr|7io}QfR-bgzVay+R|HxGD$c-PqjNj+OvcI4@tt@||Ejg!uTGM)!zpW*uB^<=wf$dJ9_Iq11v;Tn zR0C#G^>Sf+FvN=FlI@mzFQXD^{sQIu-rY@HIzz-LzmjnFZU`r?b~*SWQ|AXua+ZpXhTjgDdUB25AK1o3e0Efv7bgF{0OA zKF>jE=60PHblhmnO7aMTE2n{afZ1gllJTwGR#i2+iS7*WmcV&caY@N8>>h-SPpbOY zyPwkY@Q}b>V?I0q6?rpoa%f1oCa=)T3-#9De*py5b{MSpU(cmfmCH>B{5~E&b~A26SyHaH@BVR<)rmZAFXy|>_tUyFU0L0q*EWZ(E4#?!)pVP(q?}}5fl_mG&HoGot=9cSs>x+!jfH?EW7*j=TDo{Lrb^Q&5CRQ z+w!7#AAp9^-@mV9yuy!)_+*pOpZv&KhNtnm>!V-Q8a#x5E-W|*P`iLqDf#}!c!OsHZ#!PH)x?|q6#}^T+h&D( zuyz-qY(KQHV0|1)^8o}+J=k@V3r|)G8bNQLhYk6?udf{jq7Ygfg4X~fHN&IH2#Fwy z03RP;?b+`xXL#=2o%u&+M+>1KH1$)O0QSSOuHD6i7XKFd{uz+fN{97mc^htzGiQtO zLNo*gfU|>$!U)Lq{Cm!aNIK9#P3&ri3v_5<@rx%4I3T(vx5fB%n6Q?LS&#QX#!?Vh zM8KZOY&hE+3i(Y~zQE==-EnT97NnDxvNUNPkwrIqzk&x3W!DVeAXd<&$m4h@dT8F9bitWAcP>> z(*~-h{l++f`{|)1w7~hFKYbk5N9Uom9nJo|z(T22+cSf|<%Jk3P`|-rY6=y-zy|Ni z5|z~l3Q&>d6fe@Wp-OqZe}AR^?}aP0v(+Bj=M+eJQz1C9-=3icCaPBN#;;LkcIW6+ zxjMQG<+HWUdbgatXlw3fa`i!RPX_};Q*mgdfD+MK$b$Y z5tiCNGp^2HgUoMket>>i)#8wqm1VB^>$8Y^5LBT#*xyp%zQ}H@;GsY&%m*DZRj zR?Ey$@8s!#o#|@$s6Z>H z;5PZlE7=M_(sc2AmRP|qb3BFj1m+N0H{%*wlmYwdBL6KL@fDa zANAYynBTf}t7B^FlaR15Gd;Zzn3h?}ZT%uEr=N*I?75YzQI^}Z92fu_7I`OF#*Zbw zHHaGbCLr7+4A%4WJhiZQc+|PnBK6L@`j%DUz3q~qWIg>P0P0~V=*Z7t;imvj19^y) z$8_*5?7if@c-ZzzfZ;%_F;%vROke4@V`OB+#l}t^A6H9E+3{PqVomcHI4^4Jw`=|T z;w}FJ@MXbKj2|BE*=R?)1uUI2*cpg0Q1+$y_Q$xmKtN=AAl*&A{Uk?qb{;0WRni>m z%N)7j+P>dQ#kHb3f%7Qc|2&jb#vRHmOn)VgZX2@UjmPg1WKx;s_Kns zHqCdiZg4&~f9RM6aRza*kzEfQ0cbbADnL6x5M+stZ=-@6M9UHPo=OgSD+0Cwf9QLC~w45VI;vo!rt$@%i-%X_Ye7O#wr%>~&=d&yg6{E>H_ZXf}G?)=wD|F-}@ zWgp(~UL)AW7+@GhxozD+@&SRq0f@~E7&hiXDa0lKlU7>Hzuh z|1G!RdmpaEfCgd&!gheMAleWjL4#JlX~uv1zkoy79Y#ij{gr_u5VFd;e0+Vwz)*oX zxI5a-xogP^*OZe0#1{}4IDli1q7xRT=H%oALAhM1hl&(S5Q#=egW(JP;uJu{_Vc zZN|@l_dmA=Le$L%56A%FZSO%i0>%xLv=W;hD$4(PeL`X)+%5{$icZrr3%GdMP4Grr z6CU#1sqhSWS~WMG=c){-(||G!-O2Vd^<9OJ^}Da}7+@MelKkG;=@S|n3hNeT9?u5T za22P{!w%CBd1`b}POhZ`;7^yWc}Lgsg{HEkv{jlW-RRyjjd;Xk9mNqJg2Knn%usg;gkb)s6B!r_mlT zD*_^-G@=!h81y^9Aqj+om`rSFpkmC|6}@f8hPJhsA&mJ_PZfdWT6eVJ_40sU9GU<W#zyC6X@kY1SQDH$tUjv zbH5ERuCuF)sJ16Bj}=`E6t4=Rb?Xsh|A0`zo8FJ$ zKI%@En*Q8^$Kq5pv6^maX%S0NSg}`eT-4+fnk?MUn<-YVu+l=TZ^SU(nQ!KVI1#Lr z$AgxDzzJYbCflJ`+?l3Fl3K`;N0#-ydf;)m3mcTkSEoosa z<9Zb^E$SVbyA4Nljln=g?Brb4uR#E=Z!<8^gK!Sy7*TR(oENSkaGFV{UIiKjo<>!EiS$V0}ZiC0h*~5>Utj@KnVw$C3?^8 z$Oid%&=klX*w7)Ot@$P)3=)y4(Lp9Xc?3_1iybYs5&LIsVj%)1XyNZ=GQif&ZVK*z zz5^>%T2^+UULcPwWz70ZXq$d8=TfD!8MYD5zeZ3(@tML$-Dl&m0R#l?sBDu)ruwlt zjWjC_Au$*`^8Jljz~bU7h~>}&_XNKnARs^tY&9s|Y}%woH2<2N`iGas2cyB)?@lI3 zbBPCI&`f>%*T=quPYquO-vPiQJ1;Sfm*fBRSIPBOnNa`FzW$%N+G44`XL!oV$l${D zgQJyMq7tSjI^SwHRQ*E$>L0s?uM3HHUw|zDTRQK0Rp@nt%>UAicO`mnwWzKB`%8q^ z%af!B6r3|oJ=jH%bAUKcVo2vG)y+1UP^8?;y-G-ujDc~14?FKZ#KR{~GGY=EV=TiA_@! z>9}Y6*EkA5%mV|cY@Mx|y7Bdllb!ndjl#tMMF5>>$xyV+U-)sV%E)AdqsZKuqGUSO z!~dsPOn{{@Ef zH&C25PTXUBzApLy6cS{ZgRVCf^M7@u3|6Dja)(U&OQg4U7W!TYlqY0KuN-`mf_1pz zlNl-v`MVhp!FVEGCncVw6jjtysh!lXDA*K6Sad?QF9kBwaSBJo!UdVQ+BVRg@KhtJ zeRIkLeD-#1SEb3NJ2RTO5Ij>ezY@Wxp^vU)Zg_V|?|d+f7#E28t> z2zCr;Zl%*Z(lPrdypVj204m;IbREZy{Se}!l!!g|3==$dD~Ixfz)@x9y#NVg)lCrPhQB9QDKcrR3%bC z>vuKppb^}$Exe->EkNVLI<5k)?w7XG)%^}bN*XU#MJJ0Ho>`Qc<1regAULr znt&jEsMpTJk)cj0YgT3aYA>Ng8|p^cbqN{0ZpFdY7c0!sjD^H)(TrbT{alz*gTyhK zIAJz;-h13w^kKitlV2{q*8jNxD~Hnv(|}Y5HTgcX?Dya}QI2h;bR313I&B4Vsh=wi z@BFk?78Vu^ht!9npM*6_TJ1gH+yypc1B6EAz2`LyW@ct6J@+)^b5!VAS-ZCc@nxTG zP_h5O`dM2BVMTp{k z(V$I>dU>3?-P<><8y}tqx5aZBV1D+zcmw&@8=(F<|B8Bnw6ete5IqEML?9FbNvn}n zj++#q%Ah@a_UzK7OS+(EfJ9fZn164{=4k9*319rwM+npa%3l_14^b=Y>+MYxA`49kkXLuu{rzs^XJLGUsPCtIbl3}_;9?!n$~KjHV_R1 zvvFjE1Z2l5$v^&_Qq76BH>b8vGuc6MCVTK_<0aG>$FcCwb>v|-OD z41atK%<7Y{xL?FN%h+;JWmL8J10*7!^BqlyS2%Irf0PYZf0>H$J z#1NeX0UUhq?Hzsdj|B_eRn7K|OZCP>Q3>OwXKB{Udj-GyOiD~lCn7=v`ko{Rn`K=K zKYuEK-KLWNk{o39mbW-W$Q*38SO5wXfcI|B!hg6_@PME!_lfsusxTz!w>CPdun2Zm zvl=6r@5Fpj#$p<5?bClnv=L0jPYBM;H;^{$qZ5Z$qn+bKhs6=`xy5PpW8%pkg9qt%fGhPixa<5QG{3& z0BC6ySfYSZuoqc?T8ctJb^Q-N0hSUlD~k0IoerFTp3LB5#aFGAc0%P!AJuA!U8lDlRgv7nHf4vln!n4|3Tb( z@RG@h=-ICA?4or>VT4d|YF})qJAB+5lpP%FA^U#ly=?Pfyo3BqAcZ_IV6f6tR7CA9;9qfJN;A5Cs={F>s+G$4{IZ zWkJ%^UtPP* z?0Lyupmw81d4E5Mr-*^-0aUB>Q6~>kdS+JEx_cu0(#EE+gD8FGALk7wiAur;m4By; z<6Gz79gKVS*`*GI5gqQ1NX`JB8YeQy1~n6A;= zu`^-F21e{{N{{Hbs5$cXSM$uRv9R_}R6n0SF_87fQwWMqgvfnUYwKks1q<9)W#dW@ znZaRl=~w1>9HoO_6LF%R9yz}^kSkD)jeHR+F>3V1`qr5wa&7!K$~eL|5klq*-@|TY zGk&oeh0VZjr=i^PneO?JKJkBjmuM$;2;SS*kC(|(bEH}7m^Ijg-;k}+j4V4z}Cnk># z(E6w1^*_-0F8|Qaj1{Jgz4uUUg3|!P_9#a6?yq#g{p%GSO(8>n8?H!tZkjx19M@m7 zMWFY)l~2onywZoyt;r%ZJVbU5ryBc2uiS0WMZ4!#S?UlTguK(;F;XT&odh_8CcWcd z%C_|I2n_r6%q`#aoKJ zmJZ=%8z?bI9(kOsGA0PS-ax^D6AUD-0Af_e7dE)OQP%!6?lnBT$Kv8X>J{RlG|#d4 z#Z|s!eqQK|=L*$~=$QTpQOaP*cIv~zg20Q&)@(y4q!W-F@dKCrY+{F3pjBCf6BAYD z>lDza-?`lngv)s!yVADxH3oGuaYYe`fXMk7#DcPUt;l!v*YffL5~PJ#nJ*X=Pm~my z5$P|zJuM(M4WdMF-h?MMP&4A{eKxkI{Z4vYFLgK6^rmQdaAQSh%O9&oz3X3h%F%FS zkc&;eW{+xwm4^r_aGx)$CqdTIu(iDp@)KxL-Vgm9-@=W!RRu?-j!`dtMe9YSRbQetk4J^z?Wp2VrC+j}V= zpB8<7-s}C9o%26!W4p^qYjnoLOhk8A>E!SnwOu!PY9SH_5n2*Nd0ZbWFaYDzd9R0$ zfRggABsIAKZ|8XTJPHEs))B{5WL%lt$|31l7*TgY=|vZGqVU|@U4ZK5`bSB1@L{YF zg*n8w0bC&U^Y`8!8VaH)NOIe#H-XvZGPyx{SESJyBy+l+2XkJzXNW$w&^|(Bhf6>O zW@a*8Q0zU1f8-uyOf<-sH9|preRlL3Nnt>+4$1K#Q#Zk67r#qh;t-GX()(u#p2-CS zv!ZNXzrI1dQoA31atPuw)kG@?Hm$Z5pb9moG846+zCPliiWfPTHg|Q%eDjF1n8hrf^P4Bnl}{N=R^9-NhchzhAljti ze6%Pkxrr}qEJqQaQqdN_>xWn8a7pP-vcV|iMhfkgt-2G`$*0Ok2=?Qv>_#H&?l(*H zByX&*f3dV(VC@LzOyTZ10*x33%EcHjNz_vWOW^M_F59mry4mDaMjzBiBOaH}Qkme}6X;AqDT zh;N^$HXt+V6Ht0?52p=+z*9sd{*}Ru_ixI|31Le|&=@PQtN(9&n3vDCXF%jMg3+7d z>D#DlS1;kws)iQoXGU1i_h)A_Nk~ZB)Uy&@F=C zamngSqZCyP2O35qZfFCjY;8W4a)yCHm+@#Sk2 z@UB>H)@cEHOmppY9yI9zI*ARsF2Ylj578{L&iesO_m!MKMkH8lQcUrImJ$(x3uDzz z#%DzZ^hY@9( zQr#(4(xi!%ijV$@;1cDerZ?fj;tWlZkf5aXKoR5WdH2pWHI^7R&eTz@eE*!2=#7qn zu?h)y35imOzJX(QL)c|M0K7giK%P7f4#kbsk#TiIlZtA2Az#X8_(zne{l0c6on~*3 zU%|l%8*x=r5aV{t+mUbQGS;YRlY3M=pavf2zYIA&ay;Z|>^<**0N8mlAg5(y=N`bE zZ^SV_3U0+!VigY7z%924sE1zu{{A^%-~{gX;gE0o(;mhCIAUxAisO^4WudlRpWT=7`pemDc2f&~ zpZ@u>T&Z8)wW!MoYy_eOzF>cX44EtJ<+M5J2jnJDOSCPPTyB$z)u{b>&pk7D>O@OJ zbcHId^o%*|)9lxWtO^bFg~c8oP=v+G%#=n0)Pp*jdf|)&l60N}JiPLwiYp;u*ge4< zk`s{gf3N+pO>H%9Qt8$qHieW4wchUvcftOgh{EEp8aaC_M<+6xj7I7i6fQH6_vN9}yY&JXY2;ORqd%lxD+{)Al&Qao&5XXL$POMU0a}RJnY& zfE1)SzU+7=@ALzV#A9~>fr@bW#oCAopS-(zoq-S8OXLlFDm5S2fe695(C6C5hJ z9|f~TwZ?EVUq>Ti$o3Dtf@7cg3=0?6OUGkgto?Hw)ds==Aqy`iBNHU=zX-mu9^m0r z)eugp+e_S6GI|^csi{8zNe}~pfRmFzCW8>3f@6XTYbhA#yTwQVm&@q;bdA{Q;aYFI_{Q{?Ugz!&-~V73 zq=C*BcD#ioUOmEv}ug+*SqkkbPr z3I-1eftMQ?v*ioX&FLQkBR#Z zZ`!WjcNk=Y?tKFJ8#(v5yj_W8Ijco(oQ!_*A+|bpsaMH zw5roTm#j^2Ef`Kudn;#oX_TcG#MFg1S4pz^6wGEmRz%n)#0eCWMBG;Zt!F{_EYY7C z8BMc^;yZ6#T_YeuCMhX70HD>r6I%Ho?7M7)DgOE;2@YpuSXhek60qiBNE#yv3^>F& z1hHDsM2vmbo7e=qRUyFT$7*>{IX$sEkc%OBV~=)>cuMlekJq34 zX^);*Kdms2*-=es`!K>L+AVZADu6IU+d?7=3bP%AYDJ8akdr?F;+hH3&;fvDIpA2U z0K;=R+DR$zhVvOrw{O3NthzjeB{D%U7=nCEw!4U^XcB~nrJ?7iLhNM#cx4VGy}2RN z+H?R??F71PQhKC}VW7ACynm4ZwpNT%PUI^ci^RG*&xQ*Yq3>@Fo~PCdnU9T&z@fG< zNJ&z%-X+HUbk+Ix6~}aY5D3u4V5QxrPlc?Zt%E}b>M{y(Y*2H+{hSXs$dN-hY)GaGNo3^Y8GhyQq#w0S12KyX=AIJO3pG#!qGG7^2NHH*yxWU1f zefAej#1JMFgB%cYK=zv2TNWlJgm+JtTfT>w9XbjQ#my}(VK&gOa$sO!z}=;=DL?q< z*2yRRk6Xtu63S^FW`>Jnz|HR|GwG;@oOA#q3^}@ntkd3NFq+}WCpr?>-8q00bv7$! z5AQfojJVxcU0rqY)$U0!U8?tdC-BgmA%!P{Xx|qLq{GG{gKy=D;pp}&y83=`x=KdI z6_**X1VOh#PV+FzHJpP$+_fv(+c4s<*M^zFQEeY) ziL(H6P2iy>h;zW2Z_lzDWaxd3h-6rXh^4!ni>sawRjFL#=$IO5)jZ>zEA@u+S=06 z53=Jb+$S*!i6n$f32J*G;G<+?V^ee{JXK-Mh}wtqq=~;EOq2mzmXKfojzHu97Z>RJ z3;X+$7aSg9F**HV?B5YrCYY74Uh)p)ipzgyy+5D+9i74A=gJU`jy#T$Tm6VfyiL{M zRIqdL;2OpC={j@As5l&McgKBd^OO3La`9q300S>FVNOUjJzy}9NE!hFHNWlKe+T-s zAk>AN%13^!RcVtlz88YYXP5d+>dA`jhmWY1|VrA~jOsm>m;VVTg?G zUz|XFS=`)wDj@+!)G~p9QfQ3B*R!kG1^bvT+@H++t6*%#mW zRn*Jx%z`y!Pz4|>n+>ZaG9f_@LPS}>V3mPNLmtdm+wKOho3w#eSCuIpK4MKp^ne+ zXi!#Cx=ui#SDK)dL+p^Ac=MgetwyXyUK9tmM&IFPqbx_Dws2cem_;@A2QZigK%Go{ z@Y)AXhRM`Ws3SJZTjsO(HsHZes*+>ZmNEE`GN-VH6={U9X;+_WeejZNV&gaN)5wbt zCJ1}WCg^AS?g_YYF^(j~jckI!yp z#DU8_f&*S?DA&V{CWr)c+OH@enfy#Y!~6ekH*+<~fGMK5{(`@}TjSg$Z{(-srS1eA zx1*H)7u}fmnoO=}n~sZrp^YF#h!qzThgLN)1Y5-+4PDv=-#-!zLZB`jbLJ%nh3aa_ zs6EN3eoyd7wAQQpdsYgv zz(H&UFA8WtapI84AT#(qZ(_GL?y7OVVL^AFaJ)fB?f9#vcW)wEBaT?*Z3jX-dG@w_ z&Nrib5VS_lcrllsAqnaThNlua#0GLA8|OcDB8>*0`gt=~{3j4vSPc%Ek9qz6g{Gqe z)Mj;PP4nfNn3RC{(qd3(s6V)|<@DY8aX*T=AUS||FP`TIq_6@oP>=>`1s%QU^}=I7 z$z&z$vOSe-q|veVL*aPT=-St#X|QUs{6=5P@RFnmr&4rHWNOZc`utsAk9L8 z=# zK~UcF^pjV@IroVqt>>S|QZRYLwp+r&)IL@$pdXdI|dI>YF73-5EWdgg4! zdJIVh%w-mqGjMJ&$Mgc#^Qg7v)dx29KC{}93oJom|1xzSs2RX?J?eJ&zX&)nxa@!L z6zmNyZlkg|1SfndUE~PK#y5DJ@2q_(_z5SkxPD~>$F=^L&xzMjkkov~O|B6U5z&*M zmL~iE!m0!|Tr~$d`9N-exISL8{Dz5GOeJ!+c)K=jE4$X=?%b++5H8pI`*#|yb0y8` z8bc&L;KPSjDF4WbRm9JNsvlEq6>J(8(Hg^5DiiAaM5`@?-%nie+a@_9Y8H)-RZXF5 zrM&(`W;%24U~H6HyjQOI*pF3q=LK@spb0zy#8E>MM9Ap}_!g)1JW2zNrSzR;9fiT4 zy2TG}wkIr|A8p4TUMi&a!fl*-Tme?sKNYm(OIKdwK&D<1Z&On*qU=Io+w5-$gaLuf zNF{dDcX#~kYDi9RZF==uJT&9z$obM`9;_V>FDaDv{gZgmE+5K=(ku;sRR2`h+r;p~ z$2SpDRf&2_a4;Wi$VXOI`L{_7^0Egr|J{u3u&xpW2q6Ll-!1fyVRl6o8sy+WSp^*i zA0t~yzk}tu*S@{O$L2k@DJ-dkcdhYq@!0mi7dv)XhxaxCMjmaH^v!{gsAcs2jbrR4 zd?^Ux=s#&zrnaP)m9=Zp9aOW53=gf^LR}D-CI(>70mh(T?T$_CKl2)LVx4gHxG77N zV9Y2a^h4L~lcQk*K$6HbV-q&Hjh74|(OWtuR*^s3e=wnRa31N4 z_HmPIr-$(no)jlcimSj$Ex z3sVYZY0QA|Wk{1&z;iDo?E zyl)5Ei-gxeG1!QudS@srDPKaNnaf^IR(Y}GEASl-b30Ew^z}0C^Kw5$^@^I&@H@;I z<24SyVS?k5CNLtvsWTG)w81G0=)tena$or_w-w{{xXJW$HGCBA$-14zUzMKsUS-ef zNlLPp3D`P&&(S2fjIwo_ThdfmuJv-N9;K+TeARl+U=ZH-;b4DN`DL{|4t&p+1ahXw zvKi;Lb2WBX$?*PVTfNPzol0YpYi}xAelOzmS8zb!^jl|v_O;rR+)@WymA0%I1z9;c z2@pyyo3&VkwJx=F0)K?LN9d6d99v$>>oj{XUL=%4#KICKQ}fxQk!D@nrP0{K#I~liw24&k)+V5G$?6OqDceM zfKt83yNdbXVKk#-@o7Qy3Xr7kK=nh;D%3`wEkA)9V5en+7XJt zD)Lk;Ow9a8I~C+2R@hM#iFp-=@vXwbIWxO#8LkAY_Atr~v1}jfmGcNl3Z#6#5dKj7 zMoi}Ov(*>EXP&ev7Hz}G6N4`Y#^+?30Hq|{rN6La?1aAzx8ei~dJR z97iHZZFP-@_Nc1yKVWN%G@|vlT}HzQ&;ug7pj4vJZv`KQaIc`+eRBT$?a_@V=RyPC zbur4Ve6VL3cdfjqw0TKDz{f8}9+G=4Eb8yq%wV~zLDw1_kB!Mg&>R+i8L6JQRR4k$ zr|29JDJ;S2m@Nf78-~a34>kC=%5RxMeHR)We>MEtN*D^%{BC!PVdg1VOvv7@V{WyCaY|q|n{>@J{=A=_6l4c3n2ndsS%i1wMq& zd5`;E!nl1^NpN`mOxd{$bCVZ}?5;%jm$81V?`1F2-^A(d!YJD*k-YVd-K!UIJ0ZzH z+YwH$r+p)DxG(w-P#>&N-m)$IK`iT;AKNOWI(ORklcqCtos^};pBBVThq1^joG?97 z5*5z5I2@^W3Q30p|F_e`mrb{}uJjo0F86u-VlQnA_eGZjeYdazrdKEK21R`T1Pn^Gd3x6(TI zr0T>Q(EoCi0svTDM_!jF}WL-OS6p~1npLyQcbm)&mtc5>p+j%vGN8fKl576^vbWm-9- z%s3gl=scSIFo_f7Tg2K39~8koQa-}W2SN?8SVrk9zYyV7<6A?#k_pld7ty-xu#Cq= z|Md5G3`T%^%D49qH$!IhmyraMUnTx@s>Aej{8Lk%Eph@kqAn&CQ9IhZ2yV*D8uq+> z*Didw;JLSLSz~h9NlAgt%2LnsY#Q1Jn%Z+-Y99G6(i0{p7Ildm{#EBa$!K{H!d~|X zBnOUfpMpXVgi;~{jHp!&PrxV>64F`#Y$R!}6asQ9Oj?bL?U~>f#L=#M01PfNfH?cP zW*y7VFgo5W8dt+epM!$6^yeI01wT|UO1rFmQnteJJx71d12fEmE%vmH+tK4L(BZ%Z zfu6YrdL;@4u9jMWJid3?rJewm1dZ@VqZ@Vh?^i+B7f0`Fs0qi{I_m1`UIB3c4e1;+ zfF=ZG<>ZJ>ch&p&*w|pS$CGJUY78VdHz;LCjbAaf|9VF|mcq!GhAGsy3T^YOG6jr3 zJlI;A^A>zk3)SLda-qNbvvK*{i|zsyW^dKy?=S_KLYn+kxrvw zYu$sfDJc&g&#Fs>bstknP7?1$>o(--)wc@W4$V9RRN9|w0uAZ@EKf+=M)^=2ofUuF z=-TB_#z04_#C_}9Q{Uf`RB07U^VdQ`louwX?x8VQ;JUQ5#P1p7kIe%-BZtjsd5kc; z7I^z!LIxGt1Nrl($}QWuNDjxeQ%GF@kG#En^7wdK?(gG6Enj*$ zo_v-mIvnY7a20`liX1Cmjfq6n;=)fV?Akn{6172W#1M-+^Aju<4KBdY}85X6c|Z zCTa@&`=#--=gtMg8`N|uzJ_VI=;pNhrjj!X1!rhKy|>tH?*De%Y|`QTM_0JGe0m=| zV%?@6zF5J=lAL4E4zFSzx;z+(?1MGc9lA9>zIi-Q*-%*BrE3h)GHz(XK@~iz7IgkX zLq>5-qY1p-)iT2lftUP zS*iBzrGPt__%|6AJvyRVvnEQUSr6St2Pl@*XDm{<`EFwwHH7R+=h#u8n9!99!#1ly zvB&rXo?MBifUn@`Z$W(_v};#1+z_J=E0%8Kfi)ujPx$n@Juvc%M*m*}Ye*U_$OrKU z!ZI=)cf8N!Z`F5w&Aaue>(k_4AE^wchcP0)wc*-PgZuWBGVj?_!Ac!fdaLT=`1fy` z0Hd%41cVT+-JPYbLu*RQ$`Xsk)GCBlfffoqVkYF3H*mxy&QrWyd+>Qk|Gy|4EqDXC zCCRt|gXVQSig8hEx~aaZZAp4$nj&T)@Z$&brjN1;EXfLjsZUwH7t~-b5JP?+h6U(l zhT`{i0lER>RP5gYc=)r<19MiI=O#IBW@Y7X$@2FDPt@H)JUB){xr5v<&bVK`Vl5^5 zPBMWBd}`f~WBbk%FKN&qu5EuOaU|@xTiwn_n0Z`S@lNV04EwHKedQMf^#j|oa5F8N zip5Se`{tglbslCzIq>|?4{b%?U+W=Hg%WRHFatLc-4MZQDqa0_Qyi0P6YuBjkoK-? zK65l2yQuwtudHj{ecb;g&1~Jh!IK__l`jXS=Yu15?UIX7JgKu5jqn*@GvLX{KljZ% zN%kx?slu?JwPGm|9;@YAFBlNT7`?{0f(QC1AztCqj@$cy$GvsD=2pio=u+CYJMk%Z zEEyR}YSlO;Lky*XeYmy6*_1N&OhJbSuDv&@xq~U?olJ^e)PLr8?6hM*(KX;|^O~}_ zu)=SFnp*+;#rbkN!VE+>b#vdKSHBIWFd^e$`o(){D9(Wx z)PNzyn6j$6nimF$^z`&isf*pmdxI;zC8aLJOFR2 z(%v}gxMs6sN$ALwm4MWv5jV^{CqI#D`0H zM;4c)YTXGo4+pafJ!wyon~%@cXWYAYcXXqaV)o-+kQYjWww$b&o#wb28rU^3Jz*`Xxg7@$+YvqObs0WLzH2`Vwzy zWxoV~S^18>kGzy5pc}%>5}KmKVprzcxa72>HeqW~?PiZg#mJQk*p1(oOrWC|d<6Jg zb#=Vo3^bBsa97%mzX)%+V~J(YSMo-nXiDI@Zvx)GZ9e}#EAP3jyYNbO+TK6%XB^i^ ztsGIen%9c46NHTk1`;xy#$hZN<}fM>IXYoGi+?IFK%LGl_pP_ox|K^He6QZC?CZip z2P1M%^=w*AzrugnEI>|B&?ETstKbV2OVm%@4fKbFWi;b-VnT!6_$1tjz6pvl!WPEz zM4UO;-B%p6IHMWHMheZdnVy4T5fPe)4sAI1bi;+DAOp_GSXvR&RleU>o>_V};L5{O zd4spo=Nr{7$77i;iu1vA{8$J`XA0)huiWiIp`(LjnyRZSsNrzlJ(p^)&+9%ebK1X& zOiBvF$}nE+jz!_GuSi#-=&as0+fBUOfjH%3Gt^!PP-8?lSL!LdNkrbcgB@B24&25z zv1Tl{QHt%F8otx!Bwh~5s$X^YYOaUIh;H?sKlIGmG$TqTBE?nFm8-foR~v$fxjOTU zSc7q*#a%PPM8E0eB+FD^xw?TtjpmVk>Y%!9TdLdc7#4Z+)xiLUlH5z0-{YH8!p#^w zbu9H?Fx;FKe;!``DoxGnc z_HH!aqV)54y-IkQ0(9c)tm0SAuUL`k;YtM@6l_o5FV54lO8Mw4@sQbC zea>s*D$fLH(8Ti(+si?;t-k~;FKjNK>vn8^a@HE#7sg07F3EW{JeRonmS(N>3kyS@ z|GJp%Iuv<{YtNqB5z2h8>++9(5a}v3N^lPKx;Rqh*?6RDykLiS{xs%EMu7i1U@!X@ z4H`f|fLBj>>)KSBU*fi1aOvHWu=7G)ZPwrx!EKlA`xI|aI5oU)jZ7}qb>7FkKy&(w zsb^SdwRwbDtCY|~;{xi<{=cy7@Lg5#WqLHjypS3pl@laO%ihGr5t&R=L~4{U_Eicpd*PgH*7B4%p_huFoARwz#`E$np?`8aG_I!{GC_mwRH4G zv~r*w>0PYVysGW?a<@!IaYph~_1YU;ylKVz{*-pgps}$d`4|qo>Xn(gd(~-L?rpr0 zl)I()}PML zt^GB7G;KeN2fglrt4ppfE|rO=sqLDwO?|tI3+#7kZ}WJ-WhyVT%TM-dUpHEMnmRf< zIn+GC&2D@~e@bOnJ1p$)S>?lieMl&SZg88RrjjnqsP$X#`}(%GDZ>>~R#UTI;!npd z>$dJ!0e3lqPCxY0bK(vVE76TKX`YN$qEVQWP0UOB@N}QF1G7P?D?hDV^bVFcDS0V% zZ3gkKPOo__V_n&vD-FvP(Bfl@k>w9tVjlnHA{#J1F;X2IFmSzL^zffm%FAk!!!%a7 zHZwg<%c#kamCHzw^W8*NONWq8gPWE3FSi0+u8FwHj!WF8I;-s*8MyhpXAkoUW?_Ra zaSrWxcvPS2#pTV3IJzGVRk=C*(mFKoL;E))hhrJJe)q$_)TUmW#LUH$s>n+*VK0Yz zWk=rFz~=)t^)^1UhK!p}_jE{l6m3+ED7|&-7PFloZCY~j@v(u5gnEtZ>s~R^(@VvL z>9yVLI#}z11}IOBh#EeUIL~z(+Vj#E{O@uvMkUf$Rb^`)@t8a%+j7=pWzbrKh}>fp zDJ!`BF7voywteyS-K?xcBW{(;46kSd$yT*4M7jZU4jZMhFbT~UFTz0%WESVUSE z(D;mvAE0uut?zJ7rJfyQ~}F*700^@D}R08dyHeMO~2Bud4DmB=ibo* zlXTUUD&u89IL5t`(yH6}2glafPL6%*-5o-=$JcF*0-QVf;XsUD1fv--vUhR3> zIG9J|N(L8Lw{24B>aj|mWY6k9qjMYcpymk&7ZFE&PkS*pyUm+qn%^W+{5Kp*rDF+f z-t+kDA%?lzcdXkwPlg40$GFP9c~d%eS_JsXw$=KCG1Q)p}3XX{V!@F;7< zuXl~RZob-Qf5nT-pF{WRZrPXrO6q28N&(9e6)IqZS2MaQFBbo*+g_mGm-(PMft6AB z1|l6K?->{HZO+J5FWI!dVL+3nhzn0F`B^pIHyPh9&koWVeCxwmuu6S#eAB|9^Voc@ z*Y_6Iliwv?uN~Oztn<~0ud@sAf!T?!C`_Z(Dd>}U$T!1Q)&fb1u#ixQqM~9p=MJeb# z|6F}f`>e_IrxQYTpR8}OzueOu*W0C@l8keIIwUKK=SiS zN-`rXqc!Hs|K6!GImNp6Q~HhJvNI}5Mdz!pR(@&YkDZ;N5wpOZ!T&~CY;N#6zNuqT zn)eQEza-_(`KmVi^QS+%8qJM8M!g_RA;oKXGZPc$VG(#EyxX_0p}-4Nv1RAZ^@Jw9 z^s{1l0O}v8bEF6f48mY)%JZdpM?$+n>V^ue3!)|B`@SEnd)xDfezXPl7TY(0lRXz) zhb~96;@dtY=V+!Fw$fxCH^whb&LY-AZts+s7{c5IV|Ra9BTVxUPpP8eL)iil7|u7{ zdub`qc+sHb<&r&9`SI!Wj~_RZlk=w6bK)-g@UY_EUm5Ar&plhj8D+f>oljd467WOj zQPLwZp3GJHzG0G;&)nCC)rUG=N+xJuki*iNe!#Ri>4s{8;LW`HUD} z!K^An(xm>NJfS=*l6C91RZKg*3gzqAcUGSNEo>Bck=n9)P34<6GxFE`e#m(Ebv!*E z$D!EOAo05K6|QCZ4d?u=chO>jj8uE!iNBd~&4;(7aSq)O$oa@;0o*c_Y`_&Eafu;c zzZiXd^uE0)R6o__*&lqI6&X23ZxV|ROhi4-887OnR@1sM1Oh#dV_k0~URRwsy{CIH ziRQh&C9z#)i<9HaWH~r!6^tMCg0j2)%le?S_-Z0iPcoKaZ)6OSvn;FK#z|Bh)3|{aJ2oEA0;N=_$qOVJICl2h~QTzGD zv5J<-beq5~0ljeh3M>E;?gO~jwlFQm9@@Ec=MA8+a>x^psavu~Z`rvByeQ#d!TDnk zqUI6p?W3zLgwpGoHN$&%$kqY2{<@)PE``qez|^PJwU-Xg^>)|iYT8rY)H6-S>e48< z@*c_mjGy?tAZv2w#&oM@^+;}{l+h(tO}4u75Qb-v?R6m`FE*fVr%X4Qr47> zKP});1byJp!BlZ&iKpS!*WL{@&3qZYo?9qwRJ7S`t}9Y%w<8fVHvBNQ`w@+UWL#XF zRevq0qM&|k;N1ASo(Y8`pX3O=&DVo2+QN$N98)XKtge)zoYk;E?vJNXwD4$uzl^w3 z<|=XDi;wzd*c$z#1p{uU1MFQ z;$!W7`bc|3PWYm%b}zN`uJZ#dB9C1pzDLUhmOLH|X;gpf$z8ZErmo0ZC^l5o-O8-g z@YmG$zVgr%MW&AU_h@2b5we}zc~U!kMp)NMS+mJGLylp_<6y_L)8UeQ*F#_Rx(Q_M z%@A6RBC&#T51ZF61}rVdqu_67Q0ry#c?K%s(817B3m9#Bk}bmo+?aJ%_o&E*Ea|mU!bQGiZHX zts8zvKm^D^D#HXEtvwQdKRnL+W159$FiCE!Q+drrS&54*rG3;QjWOavjs9J(o~KP8 zD6ni6+*r)p!Nz}PD$V=kVSAw)@g}Za@*aUbk8y9fHPe{}?B9Abj7h#*_3KtYCx<)S zZXzW~%XKm1O}XGV#s6<>QtOK3JKHdDz8C$yP|1h7w6yZ~bYMlrmmbLtRqR`(WpDcM zaB3txD-IWLD>;77cHi56gQz`@Kf7+e zF0xZs3tIgxV*10mmmQ9JnnuF&g7qGEBJ$kRHm&%nTPW(v&St=Y9}-ahn&w39L+@Ew z6xv;~k!R4UPsI0wRhUR5pX|-gTAO*3ix(Fcg~i32yASW8Kgae+_g~*bRrQN-x(WWy zQqSwzR{O9)=NM(?Su|RF>sX^FQf{UuXybNqU+LL9n?!uJzCU8Xi_fd0h(XsHJ|(q% zTsqLc`uh3ZgeDm(JIAB7CpE(-WY>-t7S#swU*LxHcLIa!z36yPktRx+oH&I<}8)}pVsrguXDarX{x*V zspC~lKzRdiOa73h!D`2oR3kJ&FzX%9HKWS3@P7KV?W{&n{*S*}u4@(%FS#jbSYQ1o z#%{EiIdb9QIXN1R1WO6*KHny#byKD8qTgnVx{Mg>}GoiBziBdI#YE!eO_X@t1s55wZ$~di0*_`EOhuQj_JpKK09u!2_ zwVjNve7Mc^^$Ke}m-Q0N^4;=!mUV19bWqWswl*|bP@Qei{)Y7Ca1Dpkvuvl{{BsHpdsS>3_qOZ!7&1;?*ThYJw5(loXuD;*kmZ2t zi6Iu|z;peu>s+b-a*=P9+)S6Sj?}>YgQ^#sA)>Pe=M`PByQ+^*mSjD_)Q|6@ONiC>QPxitIPc$BMVM43y;p}|=;rwsw+IAJa=9IVZbvMf$KiC;CA^J-?_>s|;I$jli z>qd9339Zq={T|GfucI%FztXwDlg6T zsJm|Fc5K?|ASYon>Vl$C?4|;!~d>#0Pcqip!R_s9jaJhMoWaxlAf%6#{xW3^I@6Tj#R>yq%OH3@s+ zoj-iv-PF~8LAUsD&qi(j*KNgN8=SdYMS%424c)(Cosy2Om7QKgrA5FZ|L7w$6JoQ! zaktq_7`xu-*j1COi#u*%LhH_Hiw~Sf4GcOS-27wgy886~MMW^ZuArp5CHt~wy<~yf zJvl#RXvk^GkJ!r{k?)w0s$$#0t+%}{_a#T@kF_@9GBPhUR;R11jmRyGXnYluG;>SB zR++&w?(k~vmx+;))YuhT#f0VyS+7aBYS^E#YML0q_7JD+_q5g7SpNPa;TPB1NR=3lZ1W~5PKHC$~;x9eV zb2t8cVX>bwBnvqh=_SvaH>J$NO$+{wva$<#G;Vcjif^XG2A^lp1H2(dG}6ANHPT4fR7Khfl@v53 zCh$Jnr;rPPH4hZcyPt9w82#YnJh3&4A*bWPwH&q4yIfaljAVD#gn=+fXEk<3)!xgG zDhMieph?1>AGtcv)xp5$bS3A-HMxwIst5GejVMN5(MZgyo;dLPHu;;86EEwkP^#UI zKQ05>Fu{}W8rBorVY8*0t%xy6C7zD&Gn zZx#=eVAAUM(^`U6VW(Ai4f9ha(_V68!lg=-=eSczF9pICs~D7w*taKH$wrnNpAUp7McJlJ2>`Hjiig2{@Ch{m;TQ zb#%cO5~AyD5*Go?*N1m>12?xWPKg4iHJd~gT%FcgR>wyMXWt2yE49>dez#s>&-GjN zi%yTKYuNNc>f*fcZf*KiNh3*bATr!eNcF#Pg4Fc97X3wWN%c zECpcIhTE6!XRufgyQj^RTK;c?NH8{Kd`wjv=#qOq&~3Qbk!6tJSG3Wv+%8PQtdP+Y za!f>5-0?eSGVpws-#=9o^bcYfP7fWsc1izoiCXSukGu6N zGfLMP&KU3i+fxmDk+yf@kF?>opF1X>cda3x#->iWv-JFTK9aGDD48_y=bwO8^dH8n zc)cH`|E3&@o=yG_I8Pl@>T2iUQo8XCYxd;?O(eF>+leFx=6EnGoOit(qx;WG%Xc~e zIt)MmMc6+`U?QYmYR1NFuqq(BiRxca!)F5MJmCB1e{k-<9L%@%UVHnQC4F)|vn-)d z;_hufzH_*EDKt4%W8z~y(=nN9|7JGp`Fi=zFR+x5tT*Czg?xm>Vn9J(fcbw>hXPD+ zV2l3MaIogod@7t}N#}|h*}qTg;}o(fLsAYk_jc@&U|9_1R+Lk15D-*9*{FJFf?xCs zjvQ}EZq>hyMl;+Rk4oLdxV+anI!i1`@9L^r+5o? z77yKVpL=#XOk%ogpW%!5=04X+PYeMghoAuT#$E-afp+)EuKg<;qIYNl@z7p&?(|dK z`}I9HeHy|=3m%&?mbfZ3bsSsPInlgO!zLABRy<*RRTRBW%q;&6nX9U)IhLkz*Ur)5 z&rlz=4TDeLZt{SZ`orn!Hk|R|l{3eHH3*Wfu15M{c+?;lxZk0&{qOtxQtv$~ zSEN*;eB4~EZiW$y!wcx9T#mM}0@tYY$r2($^B+NR31!vhnc}EGkzCBcf)G(v@bM)O z@;0ex%Q3vIxk%dRbkWUZ9g9lr9U;Iiw{H6vA@FekY)K(V?%+oLOX28yzFWhd$Nz!X z%^ytvLjNQHM9X?wpj8am5|Za3WFt&W=y{w4TBr^@=e7$I)&J*JF(H)kNlxx=d1g>k z=XVDzWjPM)nOzfJo@4(OKw{UsR8dj!CPEs(70p+E=n1kgnR_+XZm{e6I62^{t1r1$02*75ZrXvn(&FWPSW=bwB3!886> zfHNRz_)Gs!!P5Xd;uV_G*4hg`Xl!aKan&V!Vu4%3Po15HcK}C?0vth-%*<9p34cLf zhd_TvQ*PHUMOp<47G_2Y)}dper(^OOnwm7AJOw$$ zi>3Kg@q}UhI&LM0*OisaDHB7NwtMzP4)Uw4e=dAky|8-9znfFDQ(v=FGw^3ysYtRblFTYUeE86P_~xyx6Ioj)wpK1UoaQ>Qhx^24sy_Wv!y5(P zkKxMz8!(KpDDkcS-*dUk)_M{V7nmS~t%WY<`OnvPPvIeDwwT7+vjy}aJf;|-0Qe#D z&Kq6dP~evkKtnjg&M5n85f=m?JUdUul7%YWQTB%Fu94Bw3$Lm z6HqWJcHD*mDTv7t#XgDxj%0lg0P4ygV^L(g4&qK)BnuGBEyA1Hy;4G^;P1#lx-e1A zqjh^3w&k%~!f$*W#3X)B!y%2-VQTCsG!RD;F58M#Yb!xYb?<-(=h%c>qMTdiwuLO- zxe+;}dRi?&_;NH^GGbT$kGlVUpoWPzIbRCdoyiMezk$8yOH79)#15v`ghv%^do)*2lqsLu16!rDEj|)a#6g7qt}7VX3FEo7k*Qf5 z7K~?-<{^rRf}b6&Xvc=S#Ue#S*W!|f1Hy`qu?oVNpBd&E)s>oT_hg*_T{wsWXmD_G zgN$>x`kE^j5qkp!rP~j2j)~PK-(Vrih79~xY;2aO6r^qUOdmgp_qlstdLb@8em_21 zF?5BKg?J2@DF<|Q-z_9yBPJ0Oi`f6VZG!qX3u~38{vF(`db|j$tq~X%?lDCEv4Nf4 zJie7W0;tYj0P5P8@(gnz19?qulky=rJG6l&X));l_Qe~i zD4`+QX=#B7iWnvF6UwQ0KcE>GqhG@(xx8S(Vf8Ib8R0g#7iPx}PZmO8`K5eRYv0vH z(oP0XfW0^K?jC(@-xzEn$ZQb*A`-P=XA+nGl*81{q1nW$psdFj9(JNX#|H4I;opOg zy>DkTGcyT@5eVVTbp&n8pMLAyq6GmsY1Z zb{7j{3%?AlyESr{ZNJ|1H~cn2))4gMNTSX!$lq1280y_c0#fdZg8?x?eLLKY$EIll z(ea#TT1y?R~xY--XDZv46^s=eLhIgf{;`Vg3vE z7kDG5H~8o^rQT&57nzjP7V+H8WDnvsg16mcO8=1r+s>-3FYLowhja_GEFFw`=J4pe zj`m*2?AX`u*xTECHCY74`*qKU5v!yMg$s7m3^M|FC&6F#fIlD;Bj3K258ceq&^_Dt zJuCH6$joXooE$;E>cv=dZ#q22Br8oLjO_wo3!k9Kd-p(dx@)7kCi;PRN6LIUh_1183%I?dH26Up~&7V=r=?kP$AuLVEfkUpZ)8F=ZdlcsI+`} znGOcMckySw<8?{GtpV&B1n5EJ!Kjrb&V4;D_4A%=&Rh{}B&|p$LMFkq$VXJsNN5`^d-ri_a z#trrfvy(^uaxs^&Q>-OvLyL1gpuPva zxihugzr2*S7ytqa6u;KsXtIE0iDbKsjgA7>vF@=Ghz|HWO|Cw_M24DdFD4^l+zMaBkReDA%rZ_%v@%jO*r07cWl190bGEn0f~> z;x8m%p-V?{7LemtTD>c9{}Z!Vt1E|VxBhjq%eCq6*=KIfg9*?&{}^n^7fn3|3sVVh z1>>pjum_v~7hGf9d2A#{A22g~^SM8jL>y8NY=8LsCvIHiSw!l^1732fLF@bCZuP5+ z?JYF&z+hEF6X|};V}=}q$eV`$J(+T3t>IU@6T42e@5O78RAA_!TW_akwJ$tD4mupa zJb17qkFl2e#aQJQ6_41qYW3}?dnwJ`O|;o&CD3NK$_vF7o9ogJ0R?%g0W=*05DPLV zGBVvdVcdDtfCoS8v70gKBFL7Y zb_g9V`_$&wuiy5llot0dzg_QxO$05~0}r45ShLH%B@h^Q(QF>9bz21mv#c`WtFT~f z@>rbrfJm>{f6<$-@Xv_wkTMcv^E*T2)duHGHXSjf9g6HQ>2@nJo)GKgHDo;O)RD{1 zEqf*qqzX0Y(mL4h{lbCU5QFM?udkqmK zHT$hU6|A9s01Isch!=|6#HSI^aAv@o@D^8U6r~wqC7gnmu)sqc83RxO%!IeZgDZer z__RCBwDUlwI>7HuA_hpyZFE8Coxe+G{srK}G|3-+K{-&2gh&EDz*{jk)sUL;g&LkD z_sru(_&0lt&H2Lv)IW%nB52*8Hr?oW$*M2Brx~ZjNPu5OO$slA@27UUe3saA46yn! zF_HJK{OjWi=ikuNMMS1@}vS!bH<8ji}fM!P8vXYY6)eI*OO!{2d8Vrve z<3JdzMLTN9duC-aN?t$I%XqZ?Qw+I^)W_0#+uEYQdogxOESWMH9vW)Jql!n_`ViJx z@(N^{3#6#f`DFE%4^<5F8!Sh#;BVmM)b8u+8~prP4c;;08=9O(2ZtsQ{v*#W_>5QY zEvUtJxbk6a$S9(uU;tMjGidB*EjZ@d6h$CkN!qGvH7b5CVtm2|N6NJ7jt{tWSFc@b zEBk=yumR#FNTd^K@t~L`VV|u(_0_H}_7*#^>~ikDg-pEqhK6hK390t`{WL4+l|;vk zxTnauH$!7xvh|Bib8RgWX5b1tv*+w-#-&OC+l&194A@*Ph*y2o>@nJM0p(J*kv|sb zLs@#OXu)#`InbW$b(5t%E+>Wh8zYO`DAS*efri zB!M75uMR8^+;F3%BPkg$SREJCy0PG|?EfbYWL#BTpTV)Q1E_Q}P*aT^=L!{B_PXlV z$js!oy!i7F0)t=U5HXh|>KhXjUjI_AGb}Gk>(?$Vgn6reb|z6iH4|YUhJdEW;bq4^ zsW<YFExY;J4+^21$6nz%{uJHR9F^lo#ovxnj?Jyv!~ zz({CAcQEc&lFfh=21c}xx+S$^L@ubNLk*^MbYd2oef$ez2(tCO7z%+)NQ|EaOH1Ex ze&z+-aRrErgoAYj7V?+SJ&ZMqei%_iJFm zz}090v6?`eDS;@!c`^CK`gZ{VlQ`L2COz~gAE2!cxf#EuNkFsB)>tZzTEL4WPKO`h0@;={)2} ztvHMwe|DaULNrMP0e2pMhhSCkek|eT75LUql05ND6{Gm=bW;mj`vM2V?*PV8#y;Ld z$+CLwT9LEK*vyHSlcpy(@m1S z3ByLZpFegBtg(ljJby%DxxEB)?)}9woQR~+$Km56wjrP}jnJEEawN|c3McTXptXhm zx2$RUVfh>fngB6R%qZlgaZ3>TGbJ1Q)(naR=Xm7XIlga0*6Ck4I%MQnFC6fG$-0;v zKSUoZ$VcQ}Sc}y^D!gE0S@9Qc{}xA4*auc{$~f)C4nwXLmLBW+NPbEnj*DBNFvLNt zb-^36Ae{C#AXk_4o=A=#BGy0R!+JO1aqUNim~E65USb1*2`89ARX7e(kqArC4i2Ly zr*-$^Rf9=m4+|j44Iv4JGvE3xPIvLD1^w;yLcE4J$jhiUIn9O@Wd?!hoE?`qSaXYEt#zpM9=E;-W zuyNme{0C=2lsRGKvVq~)U5f_|0auoD&rx)dP?&7f$6^55UqA&wfO{b985R`c`+J3D zQ33(Dc(|`YQ9igCfu*sds7okWa%^7w>MD1xnLFUebV<#nWB*ljT-mn(05BTNU zkHiz6@53HZow5T2F+9&#F#EQG7xLnJ6D-hS>{6=;1rMNEEF#D6J(Z}rOhTNFoWgH> zMcV1mU=83wK(G20TxTSq4Wm>lioE-1AXXsKf9Wi7=7du%-=R%_7@;Y|*GO_U$ybao z>N`p3L|M4%G5Livho9D{Pn zCoVN{vgC`6PQcDT-~2A;Fk&FUVUh}tmc*y%qvkKj@m|h_!Fk;dng8o1Q4muTI*uq!n$xqsBHFsVDm4vQ0WFqK}u4(L%Kym5D)|bX^`%a5JWhFw?NBJZ7sy|<3Mb_wF(>dSNRNbIcN_%&gk}l+n&-{m2E&Wl01g*G)xWnAiuSzF$A8=R`7WgY? z>lf-%Y0;T*zA${Z@$~9)TKLh(;uIjj>16!zV1>KTcA+bo)9Ld1H@+U1h#>YhQEVDN ze1nYDt_d_T+Hih+wXklV5*-6$=Fgu?)YR1WYojDn?mO3> zJ$vT7p8pq@TKFby)DxGT-CctDZq zz5Vc^v&zHN)HFP0D^oUc))!B>@$BS4b(9I6TR=eI&!0cPdDWgiy`rt7Lqiz+!1L63 z{%ojFFYw9T=F_8{Yo25e*PvgPxwG?abLN{vxySx0MYZEv$W<~{{o$e)@ef|0-x6~5D>3Pz zy?_52T)R}A>)xvgdSM4xeEE-pKGD(9BgYTS2U)l*hVgqo3W4L zp65px^Y4fS5sI0d_?qncpGoyt?iD=!vxS zw}y-J(3lwF?jEzLdLcU550_BR$GeOXR009Nf2*uc*4=>RE9jdX8KGcSFK7v*_WWY& zB`GPHf85P1>Ffl1c-h_PHhCu^Rid1 z)eb9d*=x%KxfG~!gVqqrNFkSPKN2!B^R=3M&1!o_jK+wYd`ff0$pTIs>gwvGgoMq{ zq@`V4>fXM^C%tjw$B$xi!`1bP8eCMOum`_&`=4h_u^cFipC7oH4lbrH&ZsdO>rc0( z!+Sh-m!gVmOyY(J-|5sivZE}93Us>q`l9Y@m3NKn%s#fTV7Yqb%FMWKf6w@zj%W&$ z5D`nR^W@;pxVxj*i7G8Y!1VO)NIvKX&?-FZ?{QbK{^v7Qt>o0PfV%N0kE zr%{aVuri3e7a<{GkwGhtTn{sxj`1qHz8qENuEdA(Yl2obHV=f4m+r)#5R3aUtL2I2 zs^w3wu7-J?A7P;$c%8e~9?pis5%kZ^Wo~Y6E^=HOrEJf44O{q`_ze!=ix)43OH3k1 z>q$vSUL0=DZ0_#|ynjz78Ak5&>z9(;MhQP0pn1I!I4(oO1!-yMDPHG%ln~E<%Ja!&T+0?YlW~Xb~~_|e~?$+FkPryhl6tdoALgY;KJ-Iy1aZ3<-y{@LYiKK z=jP_7cSC~+o%~1K1ewfV3tMyT@mywvcL}c~B`5dQy4ZE4h){>I8zmkdItyN$?lASZ zt(6VkCJZimJtsNu5qO>I4V+s@G^j5{6hiq1iY(O8$tuU+lbP5Z*pnZh2$0!Wxf^jI7jRL}^Vg?D6BrPo6$i{I~A5)!c%}X7u;P3P>QA~497u`&OxYP& z6g@pX`@g?1Atw%bsK#0zZGg`#WEYOsCo&t#Qo+^)?c}C!QSx z(xq==;*GSlG@JEtK3M;pFlVOBdvGwqiw)apZ{J246l)wE!s6glP+Wl<|DCOjRa{)m z>$acQX+FQWXxI`&fFIh5+#$rx?Ch+HXI$hhp^*4^^24K}rhx&HYd3gWzDM0rjYwxT zS!@X=TAHYNC@3T}Gc)4@8ESgE$(PBJc;m&z`I+;@*}=@l1|EFO?#2`~T*Uk-9}=^0 z1|(Eeh||*3xz8sTj(19&Hgs`s^5S2kNQ!6+~+IjX2M@(FN27=k!8&$jA$&92e)X|1Nq##Im;|iWr;^N|bDbYD^ z-n>DHt}SUPDG|zj6by!}%CPaHr>DI@r{--;%*)=Dt?z7`-L`t7K``Q}yH= zFR?ozPrMpnLhdP%$5PC~BCnI(5%xgj;*@5i7VyLOR%L7*-8A`4U=Btigr{uy$ z);5XH&gS&+_38ExHf(I{MmWoR%N1{Em*9vF3@_wYOg3-N|A>0~*86ER-3(N{cu0@k zDI$@O2+&YU%F667nlCv!J5Tq^i(sNIUB3KE(D=y{Y}E9@lvg|KwgVkb=Sz;3mX_Os zf;V>-d)gr}|0~h2=i10Qjd4*&HqKM^9yGDf*kAo-D7ButrBz|oibd`2JwC3@qEUoG zLF5F(g{FS~eCgxIkNRQARu`3&e4DIu>#MNVLv8DQaCCHhh4D4#mY}n@Zk;QQu<$M4 z%h#Gm%gnd>q^Lj1Ch{ObgL1*&hnu{^#)j9?(SePFBli3`C1-{UPBX zAHi-^=C`9Hy$NJZXig_IS0))$z$ao*^I(N}7w?0z)=zVmj%j~)~X`B1ogZe6!E zZrFxt*pr~(;HLg8`GNfxtHZ^c2M6r{BsLGX3{j0<=R4H6H+XQ_+1cX-oLHe0AyJ8B z1$wz8h4ToC2l}Y)k3ykWi0BYt;rR@*Mqv9lB0kqi^{^sL{e#alYqDKY*@850+0&=t=PaoRfbEpThX zX=-LLUrVFJIJ{dJIXx5<6yySqEX%*MeJ@TLF1~rAVb~xS>NF3(+6uwJ4!8?aD51Z< z|8RvhH4@aYf45RRj~PQkLtn29-k;x~Vhv^aDCCx@?YF)AS2>CIHTsn2$$bPV!L|>Y zPL-Lf2ele}&d7K%n5T*IMh@JqTer9iIE@XzvfsV&dUr|jvbW__eKLEShLO=dqR>_r zK0eJwJ2F=7@2DbJqug;lMa8D|$+}$IT>e%}Z%DbtfVu{GjracgZExESLK;HCHg_D) z8%-ZJTXoWDuI(BWvF780jlx=ab_+h+KTl#84>qP!j*gF)-6KP?Z?~RQ+Ro#g!0Qs8 z+%>QqE6?BJ$AJX*5;Y8=lVK~^+Pe(7DCXcVXSnL~=baxOT6d$00CVuTAKL7%6gGT) z^9H@l1FO;a=Z6eiFQ{=E8XEE2Q?NxQsNvO-64lXrcke!kdeTy$UDXT_1u`@)YOL0U z(=eh+0mp$wP*D4*w%+69>vbxAhKv08>ru}#I!_Qxgescyy3lda)6}H6ii2Z- zaT!-(@&J(g@52ZLA(ff-rM0mS^znpeOwZ3}{L*t!ez%-iWnf^SkuDjovJOz@1xf>A zW4nHK)`0Zp&Ae?&1PItUIjK_^n1mGrxbg)jD?%zUUjHJiJ2aevIZp}59r<119a5=iNZ{s93TQBOV#W`*p;#>aoz zb}taYI66A&YHIR?FK@|9<-%3-8uaQiMi@RdV+Ru3=u=;;%wIk%d2hS_*XQa%wl=9Oc20&NCk>;GPt> zw=eD7XbmQ!=Wug#Q&Um-yyrk+Xt6e0hKs6kKjMH@e)ok}&R%wpmp-<*o~x~{7!vP!;u`PnwUBqt~c z+t1&h@nRzN5k^aE>kBAE+{fqZH5)mn0vsI3K}=E$5%N6MI1>KAW%fp1_~;S=0RfX& zf?9>kjxnn7WTTsE!Wis>}1`prfE_k@MR#$R+XmoSwR)wj0v!+_|GzVWl$;%kB~y5dn=w zKQC3T&BeLL>S)I5xcqD6cuCx#vQ2$DBoWi*hO|D*BM*nbzoJ;!}&|p%GT2ke#ge5C{ng zc?&UZE4;S0MsVv^!OadE2M2#ZBGANbO*dhbweRomUq)GsmR^DGu75Z%=OqUPl*a(5 zO`jCgB|A@ieSM>1V*H?W7&z3~fy0v<)&+f)7+v&CTlfurJ!?QWOT)$Kwlu*8odw4# zal#@Zstt3I)FN%L@SC%tY;V{Di0I{(R+a7Txd6iFojO6wIP>>!_Vx~7o^aUNt@>A7 zfE(aIw!`@-HtVNzhjR<)kp+OXmLa7a4I|?f^#biC=xSpwNIHp0Mf){s-*vpyD0@W$ zs5EA0!}~OJ2NH|^Vt4Y=NJ&=PA~VMYwUFy)Td!z3*_a~~gp$DdPRhk^=Yr}_k44X~ z8t<=;@Vab&?)2B1u$P4tVLm>Tr^yNBW)>PTrf*dM8x_pdVgFFu-p_PCN~^N6vK~Ut zM13zgyuoAfW1|tR||N8kVfbD}7u6@o98yjobAwQe&YYjwK`{^fxB!P=A`_ zUcS6rZT}ZNK_s7DP|SWH{{<_B)`0I0m_>V>+_u+*w*sb-v(qg)b_ zlFgHow>&*Po!6@te=j^zxky+z=1e`b-g6Wd7Vb<@)+x-u{zH5uF~I2AmYkf-?zFBg z^MUJ%kB`sNcopaI?qAo=hTeL!_~yeAIe8i4J~bN^R_C|7Yp-2x z|MbYCe{pdUej3kXNy%e1u91#6fZ^(p(?H$omgAaN*l9loyw?IR5ha$S!-Ra`25 zm3yLGevosaqlmqT2oFa-8iB}qo=1-@r^i2uW0jirp_`eR0T7Z@PiTgfBbY@31z>Sqc-?k5@Zfg@AbOo0Y3x zmM&;g*}m43yM(-ad@tZWHH!3oI6i4m$HvAw&&R62V)0N_(9SCrqDDan9R__{ z8MI^BP{k@;_n4qIdIS2Hfkw9J4d&I&xk!;&XeoY;4Dncw+8m$fo+Mlj+u>9=Dff(A_NIL1oi@Cfer)6!y%OVVot>RXt1+EuU7x*m2sJEb9;XtL19II+vUT6>lR|EA zd}1OhF)K8T@WzL!NC#Z;_CjlFC7b|4>^%i>Pqyx zcSV4Yk){^TU_f%R4P7L|@Jt_4F7ffbsXY%rwHX2qg`!X8dAcPP-q1pO=g!Rhygzi6 zFFIow%g)n2XJsM02NVv~qpPp}{>peYmU|skHA-V|>}gGfRAD+^$&SR2?{PJdfs_vX#LOf)``l1Z=jZ1&s%-Ds+S$cE zk_A2}wn+|-Y$=`Q%2)*u6h7>kwjXoOA8XwRQIwKJ!??{Buc@XM0I4hIbT5bT>2vmF zrLuYG|w{dX+G~xmJ139X%dJ>>tg5|K;nr)?w)Ty*VgO2a*levh0@_}l-AR1DfXQAQZO=pf{j%*TuD)tUbn|8ybaDnz6f5l(uYdG9 zcR@-@r+#4JbS2P9qCXP?bKbps_W&~3pZWRhWSi~_ufB!C;BJA<@?OTO8 z9>^tv?uSKf9D_MXi!m8I({o(R*`K6BAU>`6orVE&paL)6zpq1r#r3 zfw1n3LXHGn_>{WNv#X>m-tg{6q0CSpBO)S@2z7UNkNLI@?G~@|=56S&ewwKS=E8}D zHZ;c_53W4qo^;&r<6&UQo1xQ*fELE!`&$~yF~)jn)rKE%@F{&aq1NX9v5Sp~K{|LT z;K^gtuOkOSO^p*V&Z%$oKd8t=a#o`Gg5(f{dCWKMT-NP*0Wl3W2Uo%KT}s`1w|;`H-Ap zBH$II^Mn-h2$1rtvk&fRQB)s+1tkF5N9Cz@ZVm(`(kR2hE{&tTfZqJ|`Kb#Ko_K&* zkk0ZpX()o4Zi;x`G#|`+Br1y1*4DP)XXN1_MH)t^O`~21;auEhc94UJU^$+|@AG8WaV!S9o&oAH%#0$CcAOIO? zsBpV>1Rd@E?MKKE`}J`Oz_thk^*mX77!w;yQL5f!URW0Z(B1v`Z&oG5BDB8$@)~>; z!W%y2x3{wshvIhqmf)AXVvO%nj<-ZS!`dUMcPLkDce(`*&rdd@;^Tw<{CRl^3(FA7 zR_6xMPy>2}#mF0Awo>8LU}9npmzk55TTewm6A25axN-n^=A(_RZ8P%ePLnQJKb^62AkER=I@_ zl=-ZlVF=hzGPXAOc`(8e04m@=Jv&2)4@9y+h~-WAckWk)^b*vE%hxFVfb(o_YC?n5 zB>w0Tny%NG1F8{r@*fWe>?CB_HURm>FFOdGU0sQi2xjO7`FIMjSb>BnDomU9b{w?(p^vor5vN($hIR5&{bQ3#11&~q>Vo9;X2+K`>_ z4T{OHT)AR8R6r#tC|G3JejNx#2_t@178YD&0VlmKJZeFM0SdekwkdOOxT>nEQ?Uwo z2juoe&UT4_Yb>R!#t^l&wOyM^Vvo0&cpr=K-|?ZLSKUqzi`#hME=(W+amQ_Bmsm~k z@52>xKwq*jJ>3YvR}<>TaIMSEE0zq2G9wSwv*VS*JhT4Hu91-h=A+C6d$RF@~5pf69l-#dLI$Bc$dwWpnEr5Q{ z1F{g&NVqLWV}62oVX3+b;RiGeyi&EQ0SHfA@6KOZZCq?Z)=-AR4e@U9yxa*vFal)^s0e^GQLL`(;(uSe@-5_38-5W8?3aKj zjG$p);o^$&MAd@!(pk|DRVwaqCWKLUZt0@_#>28JL$e*Uk}q?UlbS_ISv(^%I>p+tw} z-@z_!Zk!-74W>Q5y5CBs_oX&~{{s_)Ilta=PK@0d#g{K%^a0xcqhksR3RdUe>lrWh zq?pv#*RKL$rdr;w`b?B5_AAtrh57kbNN*Yd2}VFYjJ?MM2)rGVX#4Y0(|4g`GW$+qBo4Pe7mqlGb3BJasGwS=fNKYk{*Bw75H)oBB{uSeTeX zsCaEeGr}_uQr8zhR|85cg2QC$p2Xf(?X=Mi{R^l=J>-VtP~MXT+5vzk1O{U5?CcmK ztt~6HUbTJp*W~i4_5puCKL%+m$biMjp2A8*AOTWUQ&R$pQ}N?a(rm#+fGjMGjL6C` zOIw&Kd;G0RPNuqwjjbOX9Lyv=le@2@{`hQpqy46I&*O_V?BdrTR>MvAn}12vhy-;} zCW)7z!fHYcx{;p~R0fxzG$LdsoaB6#%BP2qL`0gU_yqihmrjCT$O@*EsSd%ttuTvjLur`z5!m+1--U^2F zH3L$lKio2u$3W18(;&(6S5VQ6_Vq*>Au9e2A|fJRsI8cgA-rYi#1Y*Hq=Ee4otCeq zmSd#XuU|ieBdDmPlqU1M;5laqd4Q)U3(@>4qW`z#D0W{*1phorOab@@yZBX13C5A| zg9_^@Nknw5KOjVYds}7R4eA7e3eeea(MX0kio(e?(bG&E1pUP>EJ) z8Uos3JIVj|?uVe*-;R2s!lR=W_=f7#T7*bmUj9E$gRAMxnEr$@SKuuS{@+apU6iXV zy0zrUX(@OU5){-3$u=eu1Rp9e0?h9tgwoA9Xz7B&!~H>?f~eVS!lH&k)%@GqAGs8C zqrr?tNRE0Qdn6xtEOFY%5$>e2k{4lk^PiWYqrz?pQ36<25^n$bQ}*Zra2Jp)AR08o z!F&7ueIRtE&0qyUP)x@Z9&+b?QZ_XoPYw_Dpx+Os6>+0&lwrBDqOCRJv?RrKk(;Xp0_bo>?7oq2& z_h;D9D>lG{oQyyRgxSx?$mneU`t@sXrtA%)R16dl_Y91TO&}!5j(Q9B9l)2qQE*@S}(f z4@=Mj3~Ro{5L_#~1P<&iq(=ni$70jGJAo4m()*wE6C~~wfg!^Hm8Q~RC2m`|SR)L? zE?QyX$O+X0e;fC=n|3xBh-*K9bA`(8q171T4>=!ZL44(M8kn@lh-fiZHHA zKYi*WL&vF^(#0RnZPZD;yFPIPNTWtLGEsnDySij7CaOt*E_nC9(<8umf6#5?M@blDn#|8TaRoY^&vS#8#)ruc)c~(u&sgX zi_Oi+#S#qh%F4|AP&#@2KgnlC)!khXL48opa>v<7LyH~Po<|Rj5R6Z1EQq=pA|H0j z>4<4mFl1e#u0RJL*7b-%i$a4Fh_dMWY(oM6+)O-DPqZlT=hBl9YZK37(|=zecBY`8 z__J!4TMqwS#|`@Ej<*R3!H`pFIXU}t*mjRCj70OWki-~tt)y(6gvQE9G%QjQj8QF; zBL?ds_!S(t+oT*EMIGQ<<;ebXajDG3L_E3sMuSDt(Xm|he!E)j21Hkxi@@Md)uQye&Qtl{JMqFwAQ3S> zal6ITlrj{_egFSVUjN5;=o_!Uc2m%FQn*(#71{cki3Cp3vGSY)cH@urz2Efyub1=+nwEX;&*5ge}Y$8e`_pO4htSen#vOH@op z>FGt=XI=g;Z`#|F12iwM)UQfzHHPipizyFfQ+|IkV}U#LTk>buUs5=F5?(H9a_;V; zWp|k$g{(X_jReSo5bdL5_N&-8c~QLlA2Q{u|E;4RezL8t_vLH$6*aCTroX=*p7mkL z{);h*I|(u$-Se1xkLK`>Vq$yIss8JlO^ck_r>Af0S!O(SuNAa5`HtVeC$0CN>&7QB z=|RueTCq}BKwY{--XKzDG#HiK8cLQ9RSV=$zpN~JT3Xs7qaUR6b5I#t!Td43vI3|H z510G_3a}$nd!@?`oq?g@%)&wdfF^gSVF1z|>}es@hGnupOEemgd2+tiys}yx{u0Xg zx?_t0d;Re;^GyLqT*$7iKiC?=kfL^GE%X<(q*-WNnxSbb0$a>@y~ho3{&X(>0Cm2t zEv>fpCf4SEf$}U+lK-@cYJo^0?Vr3 zJ6l^#fbD@0K>@;s76qs(G?dLuGp69dxZU^8PB9=Zis2R^xnUs~LSO$jY8oh#7Npid z?q~*>+;1Ki6VnI;IKo8l?sAQ~-D#l&FV*Tq4H;w{?CaM-KDrA@;^)MDF>GKY(4wM7 z#}1FsMn=2?1I>EP=I3Z4=L>qEiF3u488$U#HXUlx9A7R%VpY&($oZr zHZP9_Eg=(6G2Otn3u%v)033E3@#4>5)!0imw5abjx{lGcnj;4 zG!lVnw2dR0PN{Z(ux$p+ zxVRGFk3-#tVtTJvQLw;SCK_G^H!bZF{p9XxJ)@X~D10s$bZkI&jylDEruO`P|lQj z^!j!2HWW(3-$Qp=M!&!0fbLd&f(4wSK&`@;%1+_U78Z5@}MQxqrtBSUDx)dHx3eDtpxCQBN+RG-@34pS_S1*1hW8xk52lhD}o)8`}{b z%BI~rxxUfhqprvO^nF@sB0SM9%|lkAia6dVhtIe>ojyc=A_fJX+pge zoRY$shWC9UgiT*!aeWof6E`-d12xXRJo;HiZNb|#oX%$Pl;E}Ro#?vmif%X9*dXmU zQnFcV7fu=LxyoVB1Xig%0r|dv+ZL?@NLO3iug}a-|AB$OOcO~MSuZaSU_6s9s}OL; z$Hs%q?-!O?j9pAvDi)%kYQEA=zS%7Ra_PRP$-ae)7LNTNQ_8E5m-Bp~BQiB*0HS1I zVGU#i@NT>`G3k#9AW?EZ{}3YdYtj1X{QSmJzm!{|TE4eo`yV&m5%gyYbS-VeV`GLh z&HkwK3fgCnwl<*qtM1ig^vHQm^yA%okR%`zUnTSQx+qH)m7*qI#W#2a02##8V%zy= zFO7`{H8hRxGk>Dxs|gW&in4b;Ut6zxw+J*00@zxO#GT){>1WTP4TwB76B^wo2!Zm4wiH z_43NA;%!nXcL{?vPb5lDwxuUdH0t(94P#>$*0VQl0FFRkdAXMx2kg#o!6IB)S^50p zo+Wc|R@}ZYw`>*TtI>G#&Y!>R$}Ku(zE!VGS5~1_SpUeqP4rE%NIVE_S93vYY`MAo zo%5@w8~rg&1vFoB%8FuRP}eBG=iWBAn?~Uiy!arjDF8sJ1(kWz9}uRW21`Ly;3qI@ zLeB}BzUImh2fegwideqcotRUaw2{i!+lrKyKHXsy+a1g}_J`t4aE%Y<8T|6^etiDx zgm^Y4k@4Mp@XYyyB9>^I zE>!H7n<{$i&+dAD-9(jLV{52)XsFq-k@=VI>+pv?Y!)3u^q$kVchMvr53ae7uRubWY)>rm%6_So$VQ&aXrf%(D3_>et)OT^Mhmpv9i^2dHDmQBIcG; z8ZC!;oZiyxbw@rvZw-snb1h~YJtV9nhVAGdC-O41^M_A&vJVk`X@yqB z^`)VnyE?Q3fH4siY2IW~5Sg*sfA2HA8<+JhP(Mb;aH+4K?k5T=CTxc8x6%3y6AQoB z)%qo@6Ic3j>cdR|Iy~J{O#X-nFv4$Bbusp`vmrQ+G;$+jNbEl4m*5PRk&4Tax6sbd zMcX4r$JR#fq)g^$4RM{(jzS1v7n`<``xm!-o&p!Hc7rFCQZ_N@t8brWeDChg6b+Oj zqDOaFMjfo1S#dh#)E*b3a6F=!7#=0y8}x-0%O_;eohf~-eQhyyeRnmxPBvY#vEc%} zpdj-vQ6C=CZIsO1`7}(P{vZTrr23twe~~;H`^Oq5A8*veT6YrK^9mkMub>&^)(uGA z?-AcHBo27zX?epCpd_4oYR|V78KP4E8j1LuDOXzCMzgwNo;H+fRoQ&b0IkZqyimWw zO7t=21IN6-$B$nHF0Xn+CN+50HvFR_Uh5&bTMDa=|J7hK?V8J6R(UlO;WtEmFSl*r z%>*C`_fiM>kLqwfob)HhvNAFfAh@{T*_&3_?zrybV&e@_E#+z6N%@*4+RlOW4=ta= z%JQ_ZwH_{s5504Vdg2EaAGGBw`$DMZsZY9z)(x0+vcD#czvEAfTzpFNj*9>U9`uyL zPP5|P{W_kucP`2$zZol|>3yzK0T_0|+uY-JbqczI^cQL}LBWM><+N;xsCYn52{5 zxSf(?Umv7edTHF5mB-Lqd<#i^8HeM{A@Xtcd5MLnUrJZW(BsOS;+y|;cn4y=O)0GU zDMj7kn`AX1GsI><8&(7kuFKxwiBGIy_S>Wt5=su1puH?QkCZVmuR(!ZSf`bimp1_` zafTORumrwGzl2Uot3mN2j{+bq;oEDApAYlE#+wW9xLF{Z3i4BV&w#a3_U~~WBXHK! z;l1FRqU6$F-7>U0h#`NovX=;bTro%7wt7Xz+I-7FY52WJ8_i~7pkuZ_&)yO$tq^cg zs!tmK`Sb1st+5y+2DP?#j;lNiU#)~Gn7vDXPjvbVVnUfYUfE9WDATM|m@L;3=-&;E zC(Cc6ZRyl#)|-fHi)YSavFs4MJzn=st?=??yurzZRx+Q78Z@lx;}PQH%3#%^KhLS% ziMHXFJBQIe-@BiHb^Z|ZJ-}(Oot3{TW6YYi8b^tVJ5>DWUKotfp#IQCODg{*H=@fw z&T%Ia{rd;M2bk)LXtlfV)=|a-Oh+*!nEd5%{Lt6JjXH>*rVliV#Ljox07b7cO%=};e^xRqS+#uiiq-8*=oJ{9hPr{x&}PxH)wHGM-hw0 zf1~0`tNxdL%)AzjvHnxIm!@BFj#rcMGc7GN&9dEz*!xX`@?gHoJMFxeoj4NL(M z5E8xtH8$*2b%%(e%OW^&*U&2Ta<75CpM2 zU?($14FlsiaBB_>OL_mr@&OTW)j0UZGusy({q|yO0I4DxEnVF$#T z9Vn$YF3lqx8-!Ruo7$^zYLQ#upKk`e8T8z;|4t}^SO+#9{Oi=hdA~AKQ^Au?O#FGD zyt}&_1{W4SElObLahv^qM^xlL>?F&bK-~YTG_6z6*7i?so_*DSu?aMTPdCi+ph27c zh9@Ec^&98vRrA=BX7X>a+{Hl2g7q&{xw{8CI<(V5CA0rcyQ6zX6Zb=jC+2tHJ@qw` z=TrWI`Np{~Ia0MAPWW_(kZixEf@71vB=8az9!a0DwM-9NJ&qBt{m%Bb0gU3Yu(8Rz zz}${e7`x+qCkeQ|SRBEp9G9H@6MPAcpqsV;3z;K`bQNGE<6eP2NWf+L?g=QL@nFPA zx_}_}4Q!SIj;o@tUNM3Ej0=DVMv?Tvz1>;< zzhxzhCB()o6sg5lYVflLEc&3NTaGUMH^!yKvDc9xb&WQtNOQX!PwcPT{{Whd*_utm z0n0tFxLlyqKWVk1mTDs3zZCd89OmWy zuIveGx;dz2Jp*hy$Y1hnu2z?kGJC_1Bj5OENQif%XlkvtTg@FQ?+7Z{U-t}J!$?=* z<3Zvi0)LZ#=NZs2;=qWgmfIE)Bd-+jdysD&PL3fNaVhRT-2S@u^fx@@l^B(}4STxb z^B^OGb$Srn5ol$FEIFz(w`bTiba(xdr}KXXToY~Z1O{yhbyEP6>IOnc%wAnEIIxy%es&+*fOC!4xK z(?q5qAyI={6@>zm8@q8Ax%=LLdacu2U|);AzZ8|hEwanncl_}lLp%^DyK=uwgFO?Q z9vZo3YRr*{WI4_xs7YVL9EN~R$C3& zNm;c`qo3|e=9d^+BHXX3nAhVU$s%|*BUTUC@Oq1|IJ57`CXS5S9$nJ)O$NNlqE(Iy zYy-diOG(Lq^Ez%$1i3Ev>h(1O2Up|Rm?1qnW;uzwyKebGc!c)xi>{oh)*Oqn2Xp}8 zvmQyZv9THbSppmTo+LKSpy-ym{a&cFl@%+nJuKUJ0v+0Buy8yS6#*~tU{m2 zFo0MDs4YQBDH+Iea8`aUxYl721EGKnve4UsqJt=Hkaah~@jZ6|)40wMKoVZnnJ-Yc z@7=@XNa*^lQ-WQ-tG-(?)%iY%jM&twzq(9N@hDmzKxJAd_)f20)Ns4+c}x9k)pL{7 z=6&I!&CIfGwSs_#L1u&?H6lJ!sPIj0SXXF{O9sry>xY~5`rfmm(Gol`d$;dM#)fXv zje-v2FIgW8yabg0#{hCv*U3U#d8$^msa>%IWIu23|ro^|IIU)n!$M?w%egUEN!dH?V3h1~Ek34_Tzvv5O@` z%;Nq0E3%HRy`lL;Ywv@phn`;8>|}LW#fT?nqv7I~ckO~4 zq#}0H-rI;Cjqq1+PX^@5vfqH01g6AbzB3j^#XpniqW9&#Ul*n4CI6E5Su{{Xq)y5a zyxG3;B4@-XM8tg11{uQ-e36FmZE_e*+DN|J@($Z<^bTwl1f%2%-Wt_CK?(}gd%bT* zN22V>xu+I+m$g$Pk80a1nxsHcBQqG~47sy^($ z-qmcoacg>`ux4U;ps~>h8Z(;A#udp_)u(p}5q}YcEi(EQBi%zS=!}B-%5QEmLH;Ef zA+0K<3L0W!Ku9VoZfE={JA{(Kldi1eN>_FRw;IWra!4E#RaBHqHqQ2)aDB z9y(0olH4Z_*r<;l>Z)>4cB_$!^wz17>8BU-d$N&~j7*|IWkGa2=EB-EZP&>!igys3 z$H8?%gDbmLhdXs&+ixnHsFe2B7U*Jr;Od*O>bceUCRC89`35W^Diw^Ppp8Fd}$*X7+c{06<=DYJWRA(?jqffApGz&8pRsA^ic@I^R(~qjHcz?64fdqScAV# z%-A^dnV2n@{?AW$He!=b5WJjCd~n$_VXbs{*cn25c|2juH6MFCs!4s&VqQxK-(V%IoL~v;&%uB(=fM953Qi-a)vsY(_9m|l3N(-c)vPN7 zZ$>XOXO8l|<2fn41wg&NzIrSp11&fh3AI5<0FGd6Lq_-D<)Q#li!8@@V21cMGxJp# zm~LCTLqiw+zsTbx7JG)BiN)?eKm5IJuj~5s<9l)7X#@JqDFM@&I4>qUZH}0ve1fi{ zZT0=rJ}y!;7Pmrr8cX44l}B4r`d#D`YtNoRa~C#6Eyh9sGRq{N0C46o9dQ>^Ktkb_ zTe13|2Gi%AmaC^^IBFJBjy%0zqShU296Jt5X#Gr$OT$G^_ErKR#|>p#`)!6qX4BgZ z<`tJ_a~hC8-ZO+o?|an0Mh|-?a`H+iSYukDlPmJN@C4sq)5L_%{1(jZL{@YYq=jZ? z)3-Wa(a!qVRW~7Sc_Qz(HW%qrW#>@A%!YN7Djcp5%2L0^Xl9`VEdk^xwH3JpN?Aiq zI^nF3K*JKW&d8eqUpe-S*-k#0U=9?rrC~*<8cq}M!F=S^dEtF=A7O}mD96xm)4wOV zjbuz{DM!<=VC|MnaZK`NRvzw`uZao# z!6>auPjVFucV#)Yjj#J`n(P?g=23I1(W>x%WfX-?Bbn*c4f8z2(3V|?p$}+zFi;Q` zmq6l0rVYs0bp2os9p;yMzZyyBw|{^+U9hYpVjKbm0g<&p_{FwkdLu&szdk=jMr5E@ z#0S3+xS?nsJWv=}fHy@Nh0jWePvij@HxPrx^_vwJ8A((-oG<^D6|51WVA_isTu*P{ z5fF+eX>78=9jbk{PCquMecV%+bmG{s0q$k#wY? z6sUPw7Sa;8XJms*M~nE0rO5=8kWD z00KA=O&?CUaae~h1Ni03VQSR~^yw}Qu!3P!`#%QgQe2H_3Wj^ZWe z0k-WBRDgM7`hDl#MGfr;ov~E#;MwBXBXj*b8UdFK+>`9IDqaS!-^S7p^UT0E&;|{~ zm7W3OZ4L}_-0KZ)2dp4+qEM5QlMHNZLkGQJ%ejm)s_%g+vbj3KDIq1rJca}iI8;Qz z$N@RKk2Fnq{E?9p^kqHbKWcdUG&?s+k&!lUX7`swcz<3WMBO_wE?LBV5qz7FN zc`}T(wRLPc%np4=7Bic2iQ$&IV5S@>ig5cXRxP`SdC%Qp2pfj(BHtULwOzxhq`L{1 zr)7w5XnNbY`&r-d+m4q2JbqKICJ-8eFp5u@RyXmMX1iSVT=lLb^~+ynkKh^}Rp0p0O9pX8<2t5eChq$Qg1voZG3j}@@H7bMO7YXE z>wKxe8o;9Y^%6`;BJ2z@PT1Tmc6z$g)0uw8OMl;iGMq5Z^iTf4?^*`szN^zcUG!JH;QU@Uvx`u53X#=7Jy@v zH-ol3J{}t9Ws8d^2{NX9{UD^}B+!NuB0VJ#lgZ}^egy0c3q5`N^rE_&+E>KL3vTyf zKvx6K+EJ;sAQH}dz__zQVyd=+LaN0Mn3~za_qPx8)N*I3myC84@}B)FefR7?^a11F zxE@3HHlbh*rdZ0;bBB9s=GC&v{ISY4rKMcyDfGgBpJy27)W^oYmKOfV^YhEZZ9g0R z(g6*Qgs`7Ue9Ker>e)j^Dw$@=tZweL+VtTra*D(dKsUzmPxFW8?K?LcI3f<2-f zp1|M;BOS=!ec*r)Q}TWXeaeypi)=#|upl`WJJ6!>IIe1_!EoUM@L(|E-2)t^N`&3n zvBO}Ell4E#@#*O>SdI}NEboCY_QeWl2*BTt z#4g4Jq6Nx&LQRc;8;lnY!vOjS^4G3Ms2yt8FmQOd>qUHuMTYKNp9`r!MS4^07+B>I zAD1Qq4dSI)qUkq-vtJZONVfQ^L#OVYdJg>)bY4NdGUQAUv1ODjwvq6cWI5My) z69%_fknM1q{27RJz~pa_=#cU}#I;AQseUE7kdu|oh>{VLk=R(HopheNb_zMHZRu*U z(gOJ}GUPoZzmV;i^!#}wH&#A6CYwNuXZz7>(%A#)SD}?uZ1D7mJpm#G@#XQKaadKh-XKVilJ(}nad`ik3 zyC)(70*UWK(+#{bmJ2f~vHSf4M8I|PL{3gEAv5O5U3h2)_YvPMc65z$8K)XXi*(yiijZ(NG zc6eQs*e5pgCQUsCvod=tW`FO{bcuDqP4gkvR4F`GDLnrt_CzSmT0f1e-9y%ftXE2i zOLxZ~9JA6td`uu{o@Z?kax5YC#pkm%^|NP{_wQj%X1?+C(_l>hJ)#MKO8VI|1DLq5 zfFYf-<2qp`8>po?&GJ57{4k(9--C{Z)ZSK%o65X-AD{^Fws6xiG<4n_E!{ zqz90^;Q19l!HlsM53nFn(8V@ifawzP>XQ7II}BoL?`dR;=e_aExqGwlyiS`OxUvcc zF4ZpF^&=1wD+SGWp_Xz5stz&@^m=RdaS~WqVOYF9?Qv+OaIyx4;eGnTHQU#p*n$TG zh4+H}PAR?jdt$YyKQ=Wr-LkIzbmjoh*LwSm6HTypgq~?BE19;Z;MgP@MkAree?Ibr z1!qxz5dwgm#{!-O@$~6a=tidNcyNkw+cf05+u@yAgL(WImx&T)x$Qj)sw2-(-upbS zUvF=%f#d&5oglP{Z{s0@iyG?^@jO670)#J z?l%X+)MUj{b54sK5#gylztTsgyRlLIG>iMOZPofAdd_}@UgctphYN2>=F6WqJ5a2- zqkwk!t67pWH77ocrKCk}Rkc7&UD@wR!(dJXfA{`(RGW;95x@kor#LH7@nZsi`93;>+P^Aw?6;I}{4k zRC6Gske+nd{bG}o^F5pQN>t8kR;pW>#T!}JS6pUSvozxr=0S50n`|vuBK|N=R=2eo z{Be$BtD5QCO_ko~lp>vVyd4uyx?9WG{c8zib$G7ZGUGiP;WkWaoj(Ac!G#W0lqsOTX-bw!g;1#7%oN z_A2Te%7>(8`lZf)G`xix3Y;DbQ~F2iqiK#+00f#b z6NI-I5%K&}L|D14^V^06!G>4O?PHjn>*alKUMFm53Pn6t=F`H~mGq&cNH-d24=d=MA z97<2{VSL*^+j=ombsKE^H2~6KBDf)nHMD^6c&p=lOpGXK&JbzIwc0~9+JPpa-BB4o zzXUWCuZ>Dkz&MspEt1Ef*{v_0?&h7u3cU~k{DLW;LS!X0-(jQxy;FxXHM1oxDp@?5 z+h+D_(0zEddLR~EM+>Z&{}4T%7@}f>(I24*O-|;VF&1CerBp!6(v!4%pz~BxlRJJW z_kxcW_gwL5p^~n)W{mv&_L8IJcSO=&;Av++`N^rYvJ ziz_ik8+p1)j;Gzmk8`H|k?$8A?up@dhkXY#4p+nhPagZNwbM8c(%|*49nEYrr!gL< znG6>t*;i3hooh6It2tH^)wf%=UEhHLx7Q_Grn`?oOuayVX39d}K#l6}wB3Sn7#wXmbXotf!09Og zMg>34F|=#l@Wc`S31x6_@Dk8d)lZ)?ptgB}CKOg)*?ak`#GI7r?z9{`>a^*SeYBv7 zxdeyR+qZ?Psxo?&^->c4ZY7Kj<^iw#I2%&V|jI{#IBpyYUwdyoM0#6#-; zHvQ6oUUDkeB>G2MiXNS+>O{+pz`IPlH+(PQQ8Kz9@5i|!@f2MgWcA->T2!~!@F_d%B^st|FB}&S!sz@}p$lJeFE+D!^x$|YaLy})*8Q_`eJ#$$&v2x>TeA3lDzorY zXXaYWl=u~4*zbRIW(#>89bMgyOu;S-w3Hhf`{!K4 zK5#T26~5&ULaFNoC(N=pf9QL=$Av5Rf>7=St}4$U%bT>IM?B0viz})ApLw%=U4h$b zEq1b`e38tC9g&Olzu|R7W44x#z7!WD3`GBitOAO-rWor{|dtG!Lk#8U(N=)91#9WzPt^Miwl8O zB6MWeu3go2bxfdj@r5X!Y~FD8+&Rfps{;JGFL2Mun!dTV`-Y@_eF&&b0#<7(LcOLcF1lr{({2^T;AO6=A|Y={QWHIObyJC!)T;fF8xm_!fA?AJv!FBC_y+q)$y`vH9Qyd@Q zuw-m%Dy*dRD$PeoE^>xyJ6^uhZLN{6HYMYSQ-W!Xg4%Jh=})PepXhPTw!&Y=H!_cA z9%gixdg%q+F5)Q~YFF%W@$@u}ZuJ6*c5ZQT%p(hZv?1&vWWGT8OHpw>mW>*0T!cG9 z+%E)cfqOd`-T>jvo7pjV-2)2;Ww3N4b}t@xLT-c?ffr9!9lBtjNoNiY?}bV^!xh&h zlSbE4pYhzz-{P0@ynm~f?6aom;l$maKK1nvf1no=Ba&*_KJhy*rg2_%a3Vab=xqPE z?6qa0ejnqfw&kJ^nUAZI4{!X3p&>E_ttFFV1^18D=;6;QK-OaN$k-izxvav%yJ&0Q z0f2Qoy1s-}@qg$iT<)B}JRtl56Qxr(IW z2s#_FctVf2AP{U$CnWu|Gpr=xfVsK<$B(uTHg?z-91HN~8y!D5F>(C{oy_qh3a{$X z=$n0330z(xI-ABn5K$N`ioTJD6j3xZzq)R6yb&X+HbXwX&S`d}H*a#}Bb z^VZ7R_aeK?SVOAjQ_7v(cYLSKDED<$c%6ay(%$La*jQ#3qq@Jsj#wqW)cCS>93U1y1jp56UqgGb;4lagbSO}a)_C;mW;~6r` z>Ko`zqFhP&o9RSj>yKUCEr(?L!v3gGw>ce%Zj%@CuB~xx>k_DO{HnJchTRQBm4~Sd zsy(xV?I$p?&w@CC)Wp&DNut9ZKFWEB{GUu^&GX7+tU zfV$1hz-k+Tvi<52Uq)_2bk*4_xn&CxRMH5qR`J4*hhKhyBOWGmut0q&mi3YtqhjIh zJ<5l!u55D2DRv$%t{?rN_qr~lX+(ck*Z-zOWkY9GOYtwoKweV+*F;1Wo?UNbXh=_v zTWi;@IB#?SBQvNef{b>cIR@u9IGgf2vx(yqWE6cTu~jS>zy*cT46WGCdW|_lB_r#- z z<-+XU(={I*4v%uW`6^`qv6%xCA1H@)b$nhBYk zd(~MHW-eWe+3=^gd(Uc>9;xZr#i&R)XK;?e!QKi4Owa_55n__-xw4P720Bn_s5An< ztnldFW?jR)S*C(=_eV)>Ff$5gm`5_(Ha@G(SYRu6{rM_0WDsKy4q$vTK3iPZv$7M> zvtfg(PX4>rI$1&e$NI;QCqr12qOob+4kPKJ=B6f-^?ymEoS)n5cyXd?Fjklk1y1A|Hp`M$v^M=rk-@Lt?*S}1F#|8@G3 zHgzdV_HtfQ@<^b;#NE-37!JHk*zMa-#tg^WQ%hyU%#4q1ElgqV)>ER}3gV2s+Xvm4 zDT6qgeVKvGMyh}7^x=~uB?A{|;A|X4^Dg6a58nPDhzUJFzRXUgQ_L;$p7M6;8?>5S zJn^A1vPea1c=(m?y}wo3Ua9)nU;oH@o3a&iiwgQ%g@uI{Op3-#S2=}ulrt&jmVaT5 z-hMK;wytXK?FyoKomA%G)M4}Vzi@TgO8!V*`9RBfkvn!O*UD~fJS4I$%2#wR1DA@X zXJL>gF7WPYfpJKL3&2^l_5OjST6*i&n{G^3{e1ZwlBO7~;%)`RD3&tr?#^`^bAaA6 zdbgW6T%AK3E~T%y4bSCDR&^*u%yAnQ#R}s1e*q4zS8sL+`SC&yuybVDFg9BejE>*E z!{qJk^dMdLQ!Yb?g)VNJCB0_7ef!!X92ch(yv@EqQ!hA{8uxxkUz@q4`%T_a27tm0 z5?KrGhv|VD88lK;SN9HM2sk1&dfw3Cda=r#d2h#MG}Am+dVh@)KC3QnTC{6{6)|Xt}Ympnp+3zcndM zG@Sk_2K0u(?vZ6-cXA9iZZ-mzLKbJ=rCzk+PA?Vx zIr`{s%-C%*Es7bri^JeTPD)~uEmhm2e4_-nuyH5%xs#YVC(rUc&yDH3&SKV0Ds=xXNQ%ddZ&&u)^t@eO;>UU6baSte`ty#7 zczmm0rIya4^~$bwo=&(;R#c2mU;oGZ0Ev`qf0`J^u1DD-`L4qT4-`}$n&U+0iL-Mp ztdkh`8YenAxtRS2DLi4OJ6-+FO_&rEkd6!V+jThsBg^dt>aV~lLC!klt; z)WS=+$|RnpTX+R zEM)Ied11YrULO?#?S}B!*yhnrhg!QEOxE`_awu=zOv2OCEIUnnZm@YcdHeY6p7@~8 zobQCs(G!Tz%Emi*rN3m$sO`DcmzY<*&;%hVs${ic$`i8+0V9LJK4Zavj7p7bWuZr4 zPzNwG>Y!@?G_C)b(ztFEyB;jpgY9^6FxKN8m7(W~BkSc6ur{CoGy$p7J9+C7lR&ar})Gb1^&O z-90w6znyif)1v9YzPr&k(=2yy1Ww}g5cS4<&MM(unk@nal)Lec>pnESyY1b`J1G1y z>2=?>XQu3|WyS6QSAaIvp)FcmbIe}ofFslWNu_sH0sSUZxv}GV{@KKAmpl@mJVJ$P zvh_Y=cvuYG2E$UVZdXU0XLZ|LH`m?l-gN!txvbGyfA`MT{H~T{dH2vY2eiz5#Hd;5 zcI^aY;_>Yl@6VB2wx?$kXTbPhtN2YzkE8|EdXu}UW$)YT4(!1R?FQ7GSJK7{ldG3k zOLSJUosqE|9?4s?CrE>dGk9H4nm=T>?aW~b!Uu3!*6(S(DB|Fb|7)2>O6j}MNL zA8Wt5T}DQ4_*{w=-3k2luQ~yhY2~a^S zF$4?)m=?q{@36y5IZX~!g+S6tEaVW{5L3Cpr?TsOEG9vnPK~_P4LV-&+-o-qwhwJ; zrIVg{(01m=^3CM^tx8JffGg51xO%1RCH<(pZqsi&Bj@Ho)#pjQ|4R?43OZH7-vUsw z1&5tyD3u!cKDxJIU*bZ(ThO&yDz@QdGH{ONBpfFIL%~a>2YVT*{M>+K+d6i`x z*Ex5;K-RqPByC)BwdIS)L)RTP8+As@h!ta@UlaboNSPF6#~>X6)#Y6MB3RK8Xf9Y{ zDhBX4z%sHF0(`HR{~z6?N;l6PVr%>MAJ#T0Ipx;Su>0bhhd=X@T565wHM(N2By!|D z&XcA8o9aJ=9x|h)G3uT5=+F2E2b;bb!Ad(leHvO?Itpk;gJ9F5(;(H4>-)61nH~K3 z3>V$2uw-G1oc3x?&1l(@(Lt7)T6*H3hWttC)lf0N-;nh1gIh0-{kfpDvrd^?Ex8XV z)@MFVJ1;A=W^dkO{ofD)-xxXoX&r{dy46Em*utDUQX(gBhPLHR9f#l z4r|YAR4-L(r98JAiY~S`UtdXnaTgbf=cjy9bR&I%);#hXru2p(7M;W!X?)SQZW++7 z{sVLjIRflvq6^=`0NJKzhxkg5)#GFvNsypBhcK9N!`AdTQdo2eY(hsF_Onwf!5Qanb> zs3~LgUTE?Ffb?<0ti%>3nCy1>SS*e?^-#V}SVjwU>(36Ct^CdGgsGbBWhat zYzo`9y?n0xPP6^Hc7Aslr)JZ`3<0*aJUplQ?6?gF_c0qh?Rl}+YR_KZFEDq6eutAS zQ}2Mv`LAgOO=tr(g~dDWa~FGTT4ASi?I+CQFX|9VaB-GadFN!)p><~KeQwjPhVeK| zJmZs*%#Y!;JjRuoFM$3hG*6Gof0R6OHjLTj;`{oc%N1GiBj+c92O;Jq{Wz5-6jU9X zm8V)07!=(%ni*g~LN(#YqF4#l<^$g~DotefjmOBuL+u_fE(p$><^VGojd_=b8rxQ^tnGyu6!Y z;^Nz&&ie4_(+kjWALFCqk#m&oX)DR`x5-Vqy{fjn!h=a+@%#F&Ej|p~hb}V>h;Y>M z3ccmqiii`n(<02*CX0^SrETUCdUA~Gaqxi%ksjGILEL*aJ!?a{`QPhCpEw)$b*1jZ zWdh#8O1zn^abkamn%6&P7gRm<;a8-XUx)hRU;$nJab}^5>fMaRqfITR{G0zuwKJ;C zXxz-F9=Bp+clDLrTTHZ(6!THz7hu3dpm)*Myh6}#dPb93mYvn}t98A#mW1Lahp~nw zXF7!|8!qMNR=qj)@>M9@eplQE6IyuM&;d^PaccJacAS3_L#)mFi~}a8I2r}gSU!ye zaXwKcuaaS{<-f_Sf71e<39A?@ zoO)xH@J?@(36ALM`c5QrYR15oLi^mWVJ?!RxGB1T&!IEsE|9AnZ0iab)x<9C3Tm-y z|G-XR;#u8fQhLO|>{;ufQjgH_KWHgXT1VU={Zi5ob&)e!FzHx#esQ8?cZI-##q*oO zu*~L6ZTm|#*GhF0jq`2GdZ8L6sEvejOic9-1$DwUvTENM*cmyq%-eJv`p3GDqvgn^ z)6-gj&Z3#gz~mlojll%FXy(nAm(kcD#=Cd;Z?qIrTH_SFok#xam?{v;mGK*` z3oGwjE))h*5ck^!vnt8Vd=; zZ4kbBAZ&=he7*bWE9@7fE@v?Q2sXR_z-T%K4R#4#2+st_T0%l%u%qi$XUP07M^t{i z7d7?fbYmWf+!d>x`S3|!ML=G+Xdz!^Uro^q<+jjA_oqh1W=r?|cn$Ta-N!m>_gd|j ztNYHBO69~Aak_d+T#mZgm$2-(as*8-YX6o zt+hCc59~SjR{iy!=8bWu6~l_FK6)^+r~J|}8Q9-8x{zgl!8!QGd8ew4DLu`5BpQZg zocdQ<_S#?Jq(PnQNs(RgY!!{xpU-f1c=d!6b?;@j5sI0abDgm$7e>RGqMH`y=Z9dG z;ft%w5Zw~}wt}I^(oW=-Ho>Bybfl<3j`~0Nb}!RdUO}+g2>cXY1cgk7v#d*ff)BmLh0K>~{WtB77D)e*n8;suMHvfX-=Ipzmo$e~# zcXfP94@)4zgW!`03h>vjUpPfw2%0%sf8#t3gg6S_ZJ1xpQxwRvsomWm%c`NNDceO_ zt(^+=iGxhsxm$S7hAD6T5V0kd{#;Jb8GND|) zmo>bKMJr@(_3%o6eo!3Ra*dM)e~YrYPTrj`e9fQwLi0N_w=a9-RU-REReHkLCNSPW zJD{fam|dJ4t$3!F(}oQ)q{lC>#5i=jGwr6(b~>N7%(uyT{V1qZu}JLDfxys*Qg_vD zXb+NFEFPPxtf$V^&MwH<=r$e84?;)kGLWE1#Q>kyZgTQ8(gr!#v20LCs(2kGr$+Vt zv9ui${ne|JXL_Ke8T`TH5m3~5$EQrn9Z`}?YwS;;=`z?H|Zw>@q5`O<5bqJ|F`?se?VfD z9PoKgZ+(+@36`xga~k%B!%!TZyh6T)C-;TXfa5@oP>Pf69r&cEIQqu z-g!x{)Ag=4TuTGA>tVtz{uO{_RF|JC>u-$7Tr}_85?ka{$CTsoH}J=Q-FeZda{p+C zH>XEYpu~6lz*pcyIh~t>jakco6nvAnkv;ucc<@8*L`2ya8s*%!e90L?nE_D}bA_}A z*_EsP=4-V~XaJr406sFsPMS_i`tHWnW32A_vCCXtA2KOaFMZjgZt@^36Q>&AW+nq; z&gSROx6V6kG7U80;A!gJ2tgiELD&3IZL>t`o|xRsMRnw1RHT2xdozN0Zr<)xc$Czs z{+yVjxrxu2xNba?`mQ6o>cRUfAa;efr?FFx7dY?Ve|_JUSWq(oakMwnip>1``UMu* zctTJIe+Mie!k$Fu6_IgPbKH+nRpS=>#yVFhPmu)>R)GG zEleyvklI1{X)lfrS~`FT%LguU>{6g#{06$n>Awyflx!Kw_q?8DN4ZBY0CNYf=iHP76bl**q)T##f?(%ikCl56kRp*yQ zYzN)w`v6nr{I%}zBEF(*Q>%VG&C*FVb_!Y&;w)$VDh<+vA1;gcJhG*4(wFneS}7^p z6KAICQxiaN*|VoQQH$rJZKAm>juymhIOg*?$LYci6{9^V`&qlf-ii7JQSFXwL0c3b zUzConPf*p9?Rf*ktJiw%f|e%zKi2r9`07UTG@evD8u-MoGgUO%P!e4Y$yOo12u8rE z^5Fabdi!Man82*`H-enTi{3gUj|^jKD+YPa2nHAqb7Qpvz_=QqoOH{9y(;-a_gYrP%v zBMke4?n~JXC--Fr{+Vx5f);PdZeI(7G-qX-y)^F`xv z$du^Z+}zqwEyMJ}uFO2Y!Y_K=BS&Vv)H3s#g{WGY`TiEv+{y+fz09T^lG4&04_UK| zy_8v;hS!JlfAI0~krD2V+EOc#q0P+2%guPi_k@m!BI~H;dSD5jEy?BbmQwy{ix}Oh zCt`tnuD)-3n*0LYrR1a}=z%QWm6k2oG#l*jh^xZX9WCjUXCb4X_G%|O`*HpR+j50M zPo#>^`Jff*7#M|ys3I^dh+i>mer|3nvLA^80<+fH3;dRBp1gOC1mf<3j?>61zgXQW zHD<@_9eP^nk0ko~`yDE@zsNG4(CwO=AKS}Sld*zo#}~rcU@g~f4hAsw@Zs1m80M%9 z({QHyoirln&}EH|6ezyMO>7l23B}QltZm?S*w1?F1=N~+Kfiz9KDtYM?fjjoDSnk- zn)p;N<`jnVSQ{JP;>;A8v#!HA6Q}C>XyCjl0Mhaz&~_7vS1CvQB4kBRAwPG4M`eT3 z+1AF2HES$i>?13ty}f;QaDr3OZOn2(=Ox^=q7btx?Y@`wJ9QHOu8^eq4|99xxgkq~ zuzX28@lBztlUD=RwT4295y}jz7Sh%HtD#o*vr!eq@9o9MJuc zYGL`!JFM(__g|uq6G48(tF*)WmYrBIU7oW)&ct@XO4RA-aCGv0gPl~z8}V0SFhZjt zGtRcZSO#veJWQ0KlO&0kMGBMu%{~)*UV1}V*qsCY)qxJ2FX03OxG(J$x_P^|6m@+U zUWdUbSl{n4)?%SkDftjWIH<^?q_ ztyCL+V7yF?CvcUpx7AMi)nA|MdyvEf)bw14905iV6dD_F80zb`94_|X-`> zj7Z{@>jU|)yLYO!3er?ArgxuMeLKO(sJQ&gzBJp8AkKcFkJcxl$LawIhv**|nAk~b zWL`;$mW_=t4m(>RY${*+wTR)#F3)jZlE?yNBElegUme=1s8hdhP-N?NQD)g4>!LQ_ z?n<=ZcNuMdNJI(y?xePVk*rO2oW*+Z8&<#(0$yPjE}tXftjAFVzzw6p2zglpQclbf zL3t35#hYAOkOrfS9f!2ajVYIGwkEA%E6XkQTFgQpQ1m&u>{hI;_GoT-X}(|IH{smY zzTi|DRZW+}8C7Ae%_{(cm_P?evgh*ba>YwOp2Xg}mvx)_PvtF@wxTSZe!I%;1dza) z85kAM=Y6nd%DWe;mcra9Z5K+Q$K;3kb$d42h+hv?qprmljt)xV@)Kc&`-1>1RRz+) z*JixB@wRC?2*E@D#D~XnKiQdaPY0AZP$`JKjYJ?;^bQ-#TcghRMIqxf7!~C@nMyu>ErHqcgd+LHp^> zRl`t8D49`tWYFJx;9YV?E^)H+@QxixlY?uGxyyK-%H39%n zn8JRX{}+E@^<6p%&qmP3W!?TJKk_8>ZCSR%$R<`#iV~tHD3BmDzT(D<`h6V3WDGQ* zmvg(Ema)dezV|Orej4ir9yR2lx2D8v8XFo?M|ziiREl06bFw{t#!(^6HD?{|?A){v zQTQn;Hbw5|d9;8CQzQsm z`~UoMMnPy~BK(XUT`;#Z&obK1$*)vsN!c^fy94hVTomH~*du<(-z4!CihChHb2$S0 z_}{4XO&@$?F#V(=oSl~;|<_+NMW9-&pP-a`yB zAez_^0XlrM(g?`hG4t))3Cxo0`=0uxT02Prj+TIADBg-_5VeEx2+gfLc9)c7w9OVYfs@!ErQ>k$Z3*(i#x@BP12LheI?G=T~AP&pzM znz7Q;-pk5?_Iw_aL>ri{Nd9{LA}CcYlsri2hkYnL2sI4^@@T9hof|5UdtU}%NW|J7 zg6pN_w1@;?k{ANq)6=KDic{rJd1+Y%1-J2wLpt?AQg91i7hXC?6nmOynZhnl%``?R z^#t6wv3>tVnb69S(hMNhi`EYHZD_Yx_f84C=ope{QFoXxTu+aNar5K;{`C+$8NXQz z)gpuh8x-8NPuCS0U%M9q58Ds~<-hyv-TxsWOF7jAt!IMH0Tw(K@{L3U-Muaa9X=`s z<7P~5`4O(+a8Kkae!oE%NmHL^x2>ZT(L!m#1ySzBgualLD$#35G z|5e;P?epxF$g=64A&v*kKRWw9psy`H8Z^7=$+=(S4_fXn4Ir0J>B0|QRHRS6rYcT$ zbc-bwlhmK#r4qaL+UW+|oy(G*cV%86}2Ht!K zgZcWANd%a}6N0;A=iF?NhgE{?hjZ*JR$NI;6u}aaUOol8=tJ-TQT^=r_6cH72-b2s znG`64cp+3tp>Df2#$HK_WWP?(S;O;E{|&J}>PS-DAB_YGa&wQJD>;Ghc9bL* zq6sUtCq+i~y;AhMh_Ghkk@s-Az?PnIx~k^09DcNC#BH zVeaszd^e^9H@{S(W$gL3hNT$Ht>u@XEdPg$7gn!X&&(c$H6lnzt#g>+TnL(R)}Z!B=)_=*ROvsUq6wfrYn9Y z@=JCk5{7*0_;%PN)Sz9()bYp%lJCq_{_ zo9hZquw&xw9$+iQ-CQ%;o!hdUL!c2^ayC!SBnfiSw(zPGT{%uFlKliqhP}K+`MXunNbbQ0%kh5_5)z~)B%ce{lw+}Sqx#R2C;^fJ zS?Rs|-#E1KSEbx|UOr4l?SbX|I-U%&IgoTToEiZ8I^zusL%lqdyd)kGx0tcK(GN)7 z+d$)RbC2e{&q#t4*bqtWhf>vM@>Qw-_3Koy5P$&nBQYybKT1syHv(j5PY`TLlG*UQ zQ7Cvj074$K5UKM&f-W(Ru&t!X-)Fylas+@3Vh;3M&ZF?$91?L5DBsKE0WFK zriU>T#?pmyk%S2Vq=L-mhx^wvF)@jXi48$~XY}R_2ATL_VM)n-W1s(yQMif*BZ2my zNF;}AeEYj+am9H_MYkN0Q-}{>BEgK?I*m*a34Z?jWDvCU$SD0)4Oan}phq5KB1D-6 zsQ_l?A&B#9tCoJ0&C`rMAGLKE@a<@BdoJG|k zZ}(Dkxatv7*CAAg35?84Nu`A&Z0N{WVCe}j1tvF~CB0B*nFs)4wH2($mkVVS67z;o z^^>?K*(lILa%_TasrVp3bYFInrx`|tlUVMvP}Guj$`M7Dw5X`MlUFTorco+89{P24 z+xIXJF_62){x~*n5`jb{v$*rfU>%jR5*iB2DMa)SuNStNlyCFc&C$8qjTAQq$So1Y zZH*HswvCj&Z&0BjTxTy9gS#R+SWJE&iVs(?Qg&VZY1a;jQln z6cKWxCl*!VxQ7V|2(|_-M@MN);sR8cesBY8n%?G#qXh9dKpAf86jJ}qAuM<3Ef6EbObTh85Q7=e8|hAuu%bi$G=vCqAPOg1 z;dTphqKn54h_Z(~+DK5k?+TFsJ%wa-5RXp%3uW%AxSg{ z&Jb6X6S(MGUEZoY_7|_jD9apo!5$wGztaSqUSo~t`|SL1IM4qvSw=8H6%>5MMJLWrtHA4@t3v!h7nCa-nS-btFGd>6|YhL?XBeq4uuEM&$yFR8SqXm!N7;{T~A(!6_gR z%(!ArJUm*qAfc)(j&CQyU?hUI;1Hzuhv69)6&JscV79sGryQ7_P$+l;pW!owASjPu zkkRk^*qs~K)r|~h$!qNV*Ac6cfTACNC>Xq9_x&uFc66}_*aaCI>iDV%+Y3ogq3vFL zNHoRPEwttaiQfe9>?n2(zSJ}TgNMe(8b0-4YAzuyU4u;IHYAj@!3KdfxfU9h-O6!T z=eTHrk&n2^5m=~}D)J|c>A#(Y|8Eca|F^Azz9ojx3tP?p3NJID;GcaO`sz7UYv2C| D&?f@2 diff --git a/_images/visualization-relationships_12_0.png b/_images/visualization-relationships_12_0.png index 7a2ac56b6e08db657058ab983f64ce72cdf7d1ae..666921f7c02e9f0976724c52d22633b2f51c8090 100644 GIT binary patch literal 33632 zcmc$`byQVR7d?7uY3U9D32CII8_6pOh)9EUcT2}51Qeu8LApUYq(!;~>Fy4}-@f>L z-}sI3-Wc!CHwF#?&pmsev)5j0&bj6`LS0oJ8-pAJ0)b#FD#*NmKoGXUpREU|;5RB) z{)yl(As1O47Y%!J7k48kGl+_ji-V25i;bl*t(%#Xv!%V=Qx1L(9yVGF7Z(R-VNOol z|6Rag@AQ_Fd6U!_+yvc0;gvH4f@=i-gHRxzZwY|}4l2q>YI>yY&3k%iPF$fK9;Ewb z?s^B5hdkb8UbK^SWC@&XsCLb+DT&mIQc@~n*7Dc1W}kRrJ3l-*|D?1lL{?M%No9zr zk)qVODbLNXvp;vqro9sQ@qNnXeK(#Np1cC?`)Np>P0l|>H++Sqqx@+^9(dD6__@4<0crFsr+_@40o_)phQ<^)#}8 z8=?wfjKlAXm@A?3;88FG*Z;pia!%AJZus}B zgokD*XsMzWC)m3dNnQ~CD*xRm+`^14k5Pq(v{QSZ)J?%&${ zLk5%&D%8CghLhIIqp1I`6exV{YjJ+qTe-P1`JZ2r=r$u3>IP{nYva^?^6YW$Z#=IK7j!GybtsTxKS2?nwAd)!UV}cSsex7~mNRN4VG0?II5n-NWipw}-_4Qeu*D ze4jG#k5&`ECCp)74#eaLnA+Jp^5jp&c6D{l?s-oy-{JRnGdFfQf+?eIOieu6zU2zl zyo$_u{f8v&!*DZq_)>n8NjctsIHgsr-z>bl@qtwvKDpPmHtnz8rcdmh2*yb3>+2`A zn!t>%j@Rlh7QDIb7epX!N}SEXzkcZz>(*ds8~C1~4=s68iwuSNxqZ`n?-B+=C4MLQ z_-7r(%6wv6aD)7wi!cI&jEqb)W8=t!%VkrYkc7l!p~-W)##(#RJq(9R%GX!ad?_;eGr$^z)odDrG286no>FxRidJaf3- z%Fit>E}lDiuB3GI=VWMQ-u-u1>)%^@=E%S?)o0jze0-3A>uWEFgq@w;^of(RvvljT zh2^fOB^P1o*zN6Y=CepJW1h|AWAlHv)~#|_l1fZUS{dMM-92i0Rb_58S^O$HQ|;Lv zFO2FL@!!iH@xw6jKaX;zCU?$;cUD>}W5FGKkO@*B^j49n`W-`*!tu^Z>J}n##V#Q` zlO@tnC^R#pXu^uyte;R*QxhVwx!@`-Ej{gtjg39OFvS@BkjH~6^>~tT{CJ_bYp-1{Q0#H_N$K-&Ks($8yiRv@Qb*lq%c0~$>5)k-}ElmQ|&wCmf?GJ zgT+39!-(-y=l7bI@DO1wYYKG#?MtFn#OH!L12(kc=df(I6A9Yh8AZrKzcI=_@*vt;&vKnVjOiWyCx!ISNltfq` z%A`s1!@_1F9iL`a(RPa&fo1CJ$?Uk;tvkbuI%Ck2{4sCPJFNaBC5 zhM)!pv8Sgl%BlR=6aseN>m665Hhwt|i5_}2Uv_c&y{oO|Pjl=h(`oiPLyv%hCCAcd zrxwf3Z+hkc<0d|kV;~2Ks&O7Ce+)f!koaKzq11y29?2KwxnHnVGsDxwU|)99{1S;~ zp>g~UH^l_T++-jF^28PDHd~xO=v5BTTVRrYm-0}mH*0ix2|BT@bjfmnbDuM?$OH2h z4XXsQwLNKK;fXU&GPiId>LbIa<9&&LABnTkSfIL3riz|T3~2dHua1>H-S5*2!`jQb z>p+c#_0|7guJ9a_kzcXpzqijTj$yH9So&{jc%j9k_TP^_=3~10-|ula`venL|2K}% z1iKiow}A`KF&SE_2n*lZ{JZ-H&C{M(mM+o`-%6}wX0}!Gc`&{mAa+ z>e;VpxL;I-7gkOuhv@h}8m6Pa{H<7`^$CQH>alWsileET+Csm7Pm1sq?Rsf6Vr{}t z)cm!QEET6#qGZ`&=NtWs){}&P(;3@cT3VOY!LE36nJ~45 z{cl2%#axuOC(>nFJvP5jqf&8lCz!I@?Aj*su_F4cPl^AH_PJ}IbBV~f_OZ2g3Bh0X zGBn69uYHA0-XrV}_ff}y-A%eZi>U5Q$-BK7#s$?ntaBxT1f2A&8B0NR#|?7J{w)N# zYHK(nE^Z?Wf9{q*Yl&QRXDn|5vAAdn17q2U_P<+23+K~Rc4SS-_$z72r>H|NyFPUq zMT|(*wB*1mAOnks2Rb$fwIz4Gz`T&kCQIk2V|Qx(Rx|y(ds6^&?j%{j#KYSWm#DBF@W4n9zMv1*c9(u}W%zdkk3nkc3<(?j zGzO`Z;f#N=I4tu@GP)BtL5tvwWlKhpV3y$i?cwVdX$OokwGpq$nnoo4ZxA+FqXO_w zi?rl@t5X#$rM#u!J5Qm*=@Plx136Dts9iDVGy0z5axDzLhqX7bAdqUPGD%7}xE6m( zqS6qH1NIH)C zMMRJ01-r~DzgsUo=RrQ5Iy)+U+u7jdWn(>ub`(LcQ;TU&5`B+HpuR}Of*Q#;IS(=s zzASjh$gkc>QZ&0{N2Gw~cC=mEo+#?{)Boo5*vZMM+-!h2&2{qC8?lYGBmu zmW(RFY(g;lcx29E%(MNrt^CZG%F0T8@dJU@D{Kr53@-2U-QfyM&ZdW)&8PUFEC$I_ zdm?B0-wAOvY|`~s{#xVv$o?9&ah}=>6#0uraZr@#=oK(xg#VOp)<7}8M8HFe(gfDk zhzD^v85CFnrJA$l&#@9A5z*PUkpG_*nj?T(jBl^ck_8=&>o%xFJRZ`^!P?$t`i6pf zco6*iL(ElO@(6FT~J*lfNw10yHirP9E2;@*5JD1MU_Y6z03XQDAxZwQ>M?T zNgQgxQfC-FD=Q`u5z(7F{j#Y}^QsV0cvTX4Wh6Me9;ROsqZ_9h3XhW=V;)en8~6C{ zi*~D@==0}Zb;@@m@-$tYxZQB~$G*4P)7P7(tjgk~{MVqCC24OdR1ERGM$?#&&@h3Yd zpb950FFoe1M^uP<(J*YP^xyokTslG&U=U|Cdgh-aKsFY99(oLN4tkMy5uy1Kp zn5_Ssgz&ZDi7DWLHKANfAAHl@XSDCp%&Y~Dmqw#j*HoIX|5X%PH%qCN_x=CMK)vM| zhQl@TbWVBrE)4}v2WLO?V9jzo`iPpt8Ue%RIOPv$ee43szng{RaE;eqWxp)CNuPW= zX(>f!;&3TL_~lbh?NDRgeR_<*3{#Vcl9$jGNBS+1hwh5TpmS1QxetMT@*)Ho;;QphkrF*ek0lj|N9pB1&p;v5isI=`G#Q8H+iSHv1=8 zz+l$Slxs_om9%FGrY>Jt<_}Wx&yyj}m&mI+XWTQ}6R-bWUBD=Sn@QVV9Oc7X!WBv) zK!pm?QU#s3QTlUb$V?RH0!!*uB#i0g;%Qoh zUBuL5+bhsybBSw+eUC8peVs)5GSk^Pc)|ImfSJ|fD)kAx+(zZZv#ohh>jz2}$w3=f z_AM3e2^!hM$_|I>LEL6t?3dz!znL1hp$8bWgLz#|iYQPUqlYF~s;vRbE*hE`A*Uq& zZk{v2+O|Y=UGsQ=v)5y9&I$rA(pyu7NBh-RveVJJgn329DbZBK z@za{>ZkcC&=#KYLe~=|nbP=QWVFangaWjljCU7FW{|Efm)BNxT^;-|2b>c@RFmwcBwNJ$pJm_xzAyeLEdNfhS0x;EMUIgni-=ohS5ds^fY=F>@`4 zLL6Z)%t#?rh|vI%?t>sZoVmw~GzFt-Lo9DW#ookO45D&{1nj)U*_kq~-mmuXT%E)2 z<-Opuo-ks-bYC@y~jf0YFim)VsD=5Z-ASDW<5Rd4c@zA2xq#^~B&ELcwdmB;!o zVwEKlp*vWo)~OmVi*T(k_z@wcnS5;9Hz^==Jx~b0P@pwUy4c@War~$EmHjV%+Mk`B zPIXc)YY)cfC&f^kH*u`A?Z(4dT%z2yCRG1mb28xGd^qCDx+>pu7n@xS2iDZdzv^w(~KgGcLHa95Jv}(iumR! z?k6jg4)*FlV4&w|rSt)*adtpQ-+4QZx$aP>WGmaT7+e`K#{+<{qGBB3ZjpO#dzZYP z=W`=0PFrC_$mQMl>BI^fupl*Lab}8XtBh~5?=g`TvSRxks(=-x9|(3lCY&w3?&HX> zBb+8=56v8&WC?Z>PU(&{OWvap&BJ(D^BKoDz}^+x+0k4I?i?mpL8KqReUF&Sds_ed zwnpun7)%VBDQaxNO|kLNEEjdi23!(|le)8DpPAwW|M&cUTMtI%sr**YpDNs-kd@tX zx|y*NbuVH)AdRO57twPIMB@R1g@M3Lng?jj>I~K`hxyUMd9K9?8hHGNK|CJ;Eac6_ zxk7(o-5_8g1BV23=|L`~HGd^%w@8jM4+72D{PDqcl^u&DW>|f^kCjWd7P9c*^hOL5 zWs6_@c(=QtIL+^5&g!zukZj z&gBTiqXzi<`ZAcCvBA^pthGuHtz*ALmN#6T@>(Te*!}99-8V?j*)Qp(mX7(G(u&hW zi1pfxEvV*84fFF@zqOKgQuJ`PG=Gea?>5yiyc^*cXAWEHisAWa;tZu+Gkn5|MXmpR z7>gd(usRdt+62TFK$4ddHB{eCSjnoY;sD+o>w9yae(DM26vl2C8B$Pt06GEVVs5M$ z#*L^6meNNyP}{{|a`ZsZh(dSBk5CZXc%=l{R4L zmyyr_jbL;7$ET;PX__Xk{*}S$i0N1WMLY`60oWR`xpp>BU6{~jCLMs?WGXPvK7P| zC-F`fO85&19D?AHpjuj!d!A=!XT5{iYU3HHsZrP0*TV?4a5&;-HJMpngIWmCv7=k5T*!4GZ--!#0L->#GMB)}Ru+|~)+lN3HuJy%@`Lii(=$cUE!7E^0QbiNU^#eM> zzI3B7-PM@{Z%|v8uRoY9b%en2?BRanL5EdM=>DU*JvY+mcJa-f(ng$+kPw|(8#2h^ z`J8bwx@>9AzO@VdLJb1xafFM0hr`miM&kugW)_xv2pkxQ2)2Sa z$1Ou}oXqNJ)U?J6!}o{#ylFgr4(S4M|QJaX&0@r58ygRLfhHm(5)0BRM} z?j@iz0dOV=QGfXo<-_)LT`62RENeQ(*l)hj|FiGj+F1b2Ew`E|EJv}p_~ne-q|fPh z6lIWAQiA<9%@I|rOdmU_{o#oi9?%gTu4Q(=Vxn$Q7KyD(HjGSwS6;lCRG~Zx3dwu* zn*suqy7G%iXcJFNtv)6LA(0T4CoAgs zoK7LU%M|1|)X*`KCZ;_CR1SFU@$^j`(BbJG-d%#mnM-^Tx&i@*3P(I-3=FR%WfLg$ z_2p{K3f|-cJbmwCFm__n_z2d z=5lqg&$KKLsyS7k<`4fT8OKS|()Jfv9kmy{ly7d6a~DpkNTXWg`3U3Y^+aTTET~PzsRj}$j*FvKZiyA+UtiWU_Jgr~+F1^aUacqgZp`270P)LU8%^NQ z?8?mtsCb4YRs4wEwzAQW$BQ$C_13oKDb4>!#9|2H?pB}QmX=UQ!bEVbEVzepMqKqK=FW|pcJ zJeWmB_#cH$Au^sQv`~wtjmyxI?_&Jh;hei$)*zFy&KGp&T%GRtB-6u6*iw*be`Dw3 z77HMLJkk3Q@;3;pSi^;z_PBM%GuzFeVPJAntaE&O1ic9y=3WzJ7z@{%TTK3sZusIM zkn~2EgCvV0ygn3`!t>smHI9T9=@)F39(ztof(d9-CsT*rcoxH0d}V~nKP~Hp`kPc5 z+ZMz54IOWPZ}z*ZE}%gP6{s%yXg~P!(!sWw=0$0>H%b591 zjYOh9YgMZ<>dIa#E%0{c{w@f-Ja5TM9K z^VMfh6&yB3^%!r*ohCPF6=_SPC<+w(Z*FZ$JUDe8*&0Pz(d}-<#JI6H3v(gcS~SI8 z*dKpTg>ie<7PR6#q^ya;=&ZLn$;$ZeP!i2g1HhK_Y2@CX65BpB>GNK*a5?Ga-8o!r z;=$?*AC%(jCe>{c2{lW3FWURx;TSg7;IG_p!aBEwswih92yNjvO1^=NQ3@WezA&{= z?eyLtj*92oPiVLQk$B@*K`-g>m=#livx!VC8SW3NSYD0YNN@1= zfJ!PdAY%BfF989*r4@~F$^vxrX~>{BS*cG_k2ZU5Xj!lbF!t&%;w!k>gC#W<=I=R% z;&aQgn9t1N+c`yQ?o%uFJ5RE>4A&2_e)+bOZt_+PlBoXg%ECT^+dZAXSEZo?_A8cn|Oy`YwYP-PizMJOI+ji^F`i^W~kO5_QKm+l`oxUB_=wE6X8p@x3gq z5dYQktdk&4eRyb32jCiMnti!{)U|N~)?U2y32J3FB>bf*Y%K9Y5e_5c7)I9#0A~zy zsVX(l=&}_8BfzTrUYnv#}=nKn1OSo+z8Nja4kwuKGi2-`i4$W+^lQP8?&~Q1k zd8Z=fIWoBxC1*K%%wHJ3I71w~`Ni6^6DR6E=|* z?ZoOm2~rksr;NseuM9jV;Qt!orx8KGF0~B9Qe&#p5YMBY2X>HBie>xur{br|1l~tdfq86z@Y~h7 ziaYmuqRf3e2-;%IiCj;0hKoCZvOMfwfYM-JTIXZjPbGjsNQX*k&=GGU(CtcA zny9@KLO;gdh~2W{6*4-^gt?DLx-6UJKtcA;S^tv5;OFbAkpbz#6aBk|{Q)lLp5d{KE=Y+3zC^B86X5716q_PvUJle`O~f1+{h)rb>vnjpiLYZ8x&fs{Xe5%K zsJDv@{qY?rBG`7+A(nE4V~Osqjxg@YDJGR_zA{z7QQU<68RfSVFzFslSp?g4UO=|J2Yy+r3(PSx14FfwxQNTz~jTA z8HM@&h9`^!YuvU$CDIJr?w4axCgc63o}TC>d!JdAoNWp7av5^OyS{4VhwiJm*S;O1 zR!-slIyH6V)tt<0iLX_xGg5T&_j;-|r?iygw4k(9PEHQh@3NC7G+n^&&t>@u5RC`) z>mnXXEr)Q2rfAV1<{(zJ94Lj0&5Z@v#|px03$HgXFWx$GZ14bQ$Dk7PV3n~*j8X1Dm-qa-ixbG&dM+cf&0@bn z_tZ|j*2!_A@TG$wrB1n_A6AU9Yq2+KUXwc#qJUaCP=@`it3Cix zN$~S#B-Sq&@UJJrCC?%@GQ4rB-VSvSXD?kC;!p|(0K`j*h593f4|CunduQAu>4xT? zz+zDDvNftBkn~WhVWNTxSR|T0D1xrr8)t|gw0qizVqJv;rb6F1ytrJ9kpCKxyf-cl756W*OqIRnBO?LJ!i`$-RS5jm;c?L@|E=bQ6|;2aI&Z7hMU9L z9xKrThd^8|9LqzM%NR+L`WgU%Tk&j22b* z>I|LksoeFKDgTb1SiQzhM@rLIG1a2Y$ACkFkjk0Eb9zf1i}vBehx+qbYm-?II)=9$1x^wPRPQMuR-7`GdqUqB2m<9dhMH4`en?bnAdqVRhC> z{4|N5+(*UWA|_^J4lW!+T%oM>02(nVA`r-brcW ze#ftG&fLIrF+MrDe0OsY2DUfflpev^If0Zy9-JuT0;LK8C{?~0$718V?M10Y5J;<_ zwP0mQMYAu-Lo=W>V)bzunc_U=Aye?ZOCXlT+emk(22nVCK=K#xHMprk`4bNcq}*bJ z4*m_$KoB6~6BF5>`@bs$dJ2Hc`8QChOpT8(rdXFsT3WJ{HXT1VH8)@0DQlH;b8~B* zQ+n`dgq9VHD4JTc?mEt7LVB*}_GeD<;*r{g^b1mRoT0XFpM|)sEaTJ!KlYlsaG-3x zBZgv(?C#pY^I@)Bbfj$Ra?Fcxd?{mDDCv__kpi1z+JT(dg2Hj7RGgJTcD`~lUY(=d zuL@7ke1E&ze?y{c3WU9%F$X(RS~fx%RZqqs%I`QK6J8Ud++G7I?K5|`L%~c`kP5YF z3O(ki_s*NkA$MRV3E7B&S;o0tB40ix1F=l{QC3n|pH8=wNfAH8|IX9reCBO3zb*L> z0J{W1-^W9fT>inMuYuffq5&qR@N|n#H=O998Qb4o2q9{kMoRRUoM~6qXGx&4KH*62 zWhjd+8c}qSB`g>i7~po@)`Ya(-QINi$$wpW@Mu*=e(sOp@Z!6PtPn+#nU7zR_^G-_ z_{Dh!h5sD?z=PTusms$5NPE)}6h5Z%$7_BKq#}|%H^9^T3vEwK?3*co5dZPP1(ki7 zW#`Q^;EHR#USQV28u{JI#)^dv@71$+ug@3?KhRZ&CgWlKW&?O50}4X;HSeFZ@oJ!%bu`;0@|L?M=0z!@lxC9 zYQVT*Gl$0SX<7#F15;Eav%O?yJcH zgUnL{8G}@@t5pJ@KSw>xPo7{r69b+XN+BnPC)nVrP1jB%rr&HJa`LJ#3?F5s4l)&+6E@X5my-FsWl;Yt=r*SE8!4MzS1Eye%E6q;jhKwP|(A^ZGI z3v1{LZTco1IaK_5Ggt7S>Ev*)?zhxKWVrDLSg=TRU%x(@&^C~5j0Sk_@J}FIVU8$F1k4w zYd(p5Nje}6X&9vPlEPnQG!yA3pimqs1$)3gM1ksFgJS*sqDF7+NNna!EYp;hMA7u^dQnG6}8kyHi0Q4jIt>E_v=)`?(#oXw}(+Y-D`7P_D)8c zvs1&4=Mz-5@R}Q+JbB^(QgkQ~ zmI@}U*mSEOfKB{wQ;^FV2~O{}XA^VsC|?&KZ&`)ma@t`rMqO`hJ%*x>?gxYifW9Hh zRvyX7Gn?)4ui4&X>3cI(XbFre+wQp_?C`)kcsrK&MY))m@_mkFVr^%!2YtoQg4iT6 zLpv9IK(rK-l(Wnr3L(r((3gqo^E)dtSOQf-URD;x{AU_EyvlV6XDPUOz4|MERlZdk@+0R4RR zL{&*)A{m!h-Ot;ev_BmwNlg|7aVpv5f7N?rgML8V3Kd9pY9*NF>5Nu2S-5=O<(tua zafG1;L)6j0d$cum1{@Fh2H!XJFo70!Lv^ZX9KJd41|Ww;9ng>QwVJD%zf@~c)zGr{ zV^IHf5oZW70{J}cb;^9%jw|vORERK7Lq+DGK3h6Bl`;c-;$`l$0I+c^G;fPoe4D2J zYDagni|JsK|8n}->xZJ%N}D^#WM~@mAitu}`NklxSc%P8sc)`@Ptm`nnJSf;mJsQ)Z1OLx$5DfG4Dh!uk@_h)l0- z7Wfi_);ss??5xy9_SooXxzE+HMJ;e8F6Yd2nt*0V{Es-x2>mO4{rID#p>t`YwpY28 zj@P}#;bou@RePXd4e^+Gd<+S6iHu}c7YF3UWBt?H!<*lK#cVjwPPfJq#AblkmbU?M z`sGeA!&B3XsxPNUcek!Ypmmm)T3x@jyM$*DmSkFeeQ6l?6XctII(=n+v;IVan4L2( z;Fa+c0A2p&&$WZGzGoZ-LPR`lBdPnS0dHzln;Q3+A&a#K(SZ{WXGHBKUjRjun{5n+ zC-l*8gOn+PJqOPfaI0F|Ik%3Zi6U(i0NihF34jF-plnG#%E3DW+@>73d5{qixVp-{d`;(_L%xAJ{>F)cM;JDmS#W%5f>6sVCZX6zH*56Xu~shw~)3uAf{j9(lwi zjJ3jqBZ7Gn@OT6P0}WEq2YG>RuppW_AOn_^p@U!ymc~J#7R?viRqRE5|o(6e?Pz+j@Shv!|p9_E9rQ=<%0yDc9?Q zICgb6!7HlyPg#o0@bImHTLBmpfEAo;i+9+X>l zUy8nDE~rQFXNE7k(EIV^+MnSC(p!o<6??(@a%n}UWluRocZ#dZZDuOVv)BfBK+h=j z=}$p=t7v)#qIyKS{#aqh@|hr)1RS6vZ81^-_z6}}p%VXq5eI`B^yhR*;C;@SXm0FL zAP#hpprvFl2Y`e%pAT*9AO-(s`s$Q4)jmph-a5VsUe1qu=>@@v>bkm-PlrSZActKf z25oCjMtie0P+QtZeISrgNn#`A1bhNvKB?SnLb5Tkv4D0EH>1)!u{qjUZabsM?3TK= zZ;`yW7myf-(`J^wv?R_0oQZ7RA|(E;$sDsMs|a zP_cp<+Zfxhh_29EM`lc(M`of^(So=i5WMutTu-REUTw(M0R?=(*rtV@@#dSN)Aohf zwx-NYfucXaJ)k0v3*9ORY^e%A0jQB{dpub)QEn^^I=Q@5k-vbgANSsNqNhpqBt;Zk zr)3?&`vk}Tn-fo{*(dKak?z3P<)8)9O)_mUkBC0DQ)ctbZCB#eD>BU|MBu4LR=yE1 zsqVUWK2Vec=LJ4QQ&(T1tm=B#>9C9yOP4$ikRGIl^;JQM@|Z1MP|EWcP-GFDY(kS; z^%GKiKxIaT{ITec(?_#}Se!(0?eGFTlj4#+_0H>fwGZ?w2W~Jd5TE8P@ z$sfj`m|`x?IxpzVZU{Lg#%{NM>;f>}*UHAiWouOS$fwHOcDCC^&es)XKe1z0;)vET zblw=jmLh7<7KuzjHFUg6%+VLu)*}6r6MTf?HqES%zyTN|jj+punVFgFzf8f%S14rQ zRKvL7pK^+tav2AEXg;((XKL9n0Zl6i)$+?UT9W2?g|@Fj5QXputF}8z?SsOe+HL;L z@h88yy)`qR=mPK2t{jz9aRtp;!s_@=mnk5jC_Rp#L#>p=5t749D(qsB6uU56ZiKY{ zGd&9E6F|&(S)_I5ad&;T)9&~S9az||%TIu=^UkO?M%=42EMs=ZKl zMP@_EyCi6GeR##~`IXO?&zs9((9QDxj4Ef(V zv+0yWR=T4*K?=l9=nDoGzn0&7kC82g2<8_%GK5L0pAb3a)UU~xEXP?+t|%16zJQ&_ zgDB$nbjTW^Iw}cMXs&A}ZnSy>m$-e;H^rK98D1f9_A#ppK>MDL=7ukf0Lt6}oR8t4 zUylK-dqFdlEe%K7t=BI#$*0o$5}1NEJi%^W0{Y&AH7XKh1o){C(7l%4DAauNBSVxT zmEU&z+)HFAXd~8_xk0aVnlFQa4{r~=?URkB@&M>34p9emi^|AtyZ?j+gzSk~?BC)_1N(}cbwp^`KD5nb(4Gs>*nUQ___RVN$ zU~sT&q1n5!dH+AsSaS8JJk-ey?rn)6w7@*tAva^hgawbAM)IceBQCi$ox^-qMpy4> zmns}!-qGau;%aFl9&<_Rdk#EB_78}s!cUbn@=QaFuHN1}>c`Ru%QO0U`71&ED*;rC z_9;pi*_ZGIc~ggodTQ6Om>Y`{M*>~9&y-@7ju5U{X8xbBln zql)vt$9_}*+uL!c`EV9P>I;|~@k6s+dxu;At|+ZtCecp2{9B5EuL<{uFrVGcLV*~t z=Qbf$vU{0+vgB1!8R(!x( z(DBpK!a@Rgj_am|cg}#J!w6R@!0=Jn8~Jpgv9#F@%T>oGbBFr-`!W#bF%iumKsf!K zkxTTm=Qb?IpG;#51CWw4BYjcy>=K2{dq)o#x#$IOB(K%0(8}y^?%v!j7vuF-p0ZD4 z#3Q0+F?Y)J*(#LDoZ=W%nxfma-n#ure?|f~+bsB;sKCF6ll}_RzIcne3VEP{NdvbH zL?VC8Xtvr?r^;Mq^CB|Ga4>~08Jvy@sEuN11&+wMqPgM4_4jX|$|Wu&aEE@Nz+E}B zF9LvCl_KZbatH`S-sd)mLWryGxVDghZrDk?12 zBU-}0`L5LpVAc-v;l+>6a_3jR?Mggt2(nvXi#C%$vw#=~w>2+aR$GqID!wQyI|14P zT%^Fh{pFYmr+Pi$gd0>_JFKvMwb#91&x6~g_;*Y~m5!b@D7HueqJ_YkulyH;3# z&2mSj$e+3rAsfjZ>3a&|&* z8Aj34Ftvp!O-#LRuqxeiWdo1;OGvaCe_V?Y zk3ZTziNnpwb%5FnB(RdGpgLi6i z*P7}p9+e%3m-#mpOA-W{l;xX$UZjaO?A#<12cZh2@!$6X%I?ZA-bVl2cQlHhFOUV= zMVQ+B*`IgdRIvGKYI5jcY-xba7;lm<@A-zy9VHC(#Tgu zfoN)JAwDRr|JmO!1v(*{O&+(oba`bWO~|pdkLK__2aSRKYMSY$yrL4tiYTm+leue) zz6ukgFtC{WNaGq`19ZB8V?U(>U&2*w2CFc zzO}zw=(;>_D-XyLkjZ7tn0*70o8>|}s@vV?0)c$@&TGEGb;J(sk>lDirg}2|5#nPo zc+cPcuJz86;Q~Rn77Hv@_CArV6HUsn)FJAaXZpWG%buhhz4?FylDWHgi*DDW&b-d| z9~W=86)s$u8W`QV6qI-<;&eynk1%;Y`ny4}+OABT9sA2+;iW5w=%g8D?|cKC;u6N= zubtlpry-kQ4N@bZs+hV5g0%&m>2CPQ!2WU&@7RnnO7*;wE!!C9?`0EyPVuQn3p77e zt3(PU8|s#eD1ij{TFlp|GGjz}dkua7M~eP$(y6Z>2rZKH)3x&ZN>>5g8(3aqlA&Qq zhLMJuE)t1Hi#Lr&Z(dTIk`uvg4qv4kY4F@Pl!$dy+%*QRCGNM@p1S) zY10|XnGygM03No*wntU55i&Wp)*p~)_OR?q8gIRG=@t-%*9p{!l z-$OC9B{r%G96GuAJr_bHpAOK4j@Ool^0twOIed0Ya=iTX%7^Lkn!7=w&LH3-TdL%k!FYM#J zZsyt;EPld*zO0Qy40XpsF?OxvL;R0TjhNu`Tsz~JolQJ2&hm>Qs<*K}yT40412$d& zy+yXJz=>4;Ae^w2W(&n-!d!qG>%1!RCsBfQsV-iQxT=c7?_sCk0c0OLL0cV}DI-{W zR}^qBp+5bAhyMs;+*Ccm6b0yzU&IpSU9Mz*HCizN%Zbs1_2KXzbkIONzrMoB3?L7~ z?RR9s0xeO_A!>x0$WDPU-HI#q9mO)U5$i0jtV$Lk4H!?i`ownUf)}X5*fx&(HWRx` zjt7NK)z`>a1H4P`zOB%6q;Fv;fMYQrm)^>O6}19xceOZgU;l{NDc)Lu^(9Rtf-Q;~OdK40R!hf>qWd>+^MpjbPT2l*8- z6}g_s!t4v@(Vap;9I%b8bZ-lu^)>IwJYvNHa{?WU(D{PsoAL6nr1I5fC%{C&Y3ifl zrb@qgCiiREX{?mQc`LKb`mi!V*#DEZ6O%YBX_m>r#Nd_O%EJ;m9QupBCneZ(g@+;6+eZA@TS*xTY4(q9h;=Ysj z1l()~1ks!yhq2gbBdLjh0O4<9$gLbfl6?My{dIitqC^lyn63yo!?`TR&ISa=I}2R+ zsmIBpqs68pX61w5qGtJOGAWAkxt92R@O`khE{lvz)=e!Z3XmzApZD9%mbJ)M zRaDgGgx;*R<0$p7^>%e;FQ577{5e+z2UH0^Q&j9$qW4yuizzhzp+kHD-0^&fQw1*p z;gEch$Wis4D39zY=sZ$)$j7ljyQtyW3mCQCQFdRt;Oknjd0V^$3UzNm#m+kD+6&cr zLE3rDcXM>su4OSnx!-I`*}Zz!`a(ZdO(OJFRGQ#hP5Q6kEmSn@q)eUyUitY zPQQzDRrux_jSBKEnjT;ID4dnv~w&|+xWJ{Fr@0Yz98eW3}1R5 z1`=l+-fR-2pA|)mQ2afowIRSmA!Nn4dLS1xZoypjo&&ed^#+fk+84Pc&UlG}?+I z3e6YLJl|e;+5?aiDHycpBYnyAlvs}K(c$6oXuxjW`Mqf#`1=8nKDWZuD{j8B(17!{wYk7E|u+cUa0i-{*d zCO3xm z%<5=#N*)3c7xg9OU>k^)q(v5bdH;fhvhLYY3ULzW#_dPxY{( zZXsGL7T6B)3dQbTeeVE*)n!kp;oWJG8cVmCMr4kgEmR9s6z2KFhXx7?+rTu2N`=eW z&e>Z&6R0r@;}*Hw@+Si(AA9Cr!6*k9!cv`;hV_$(PjO&E+M6 zJdU8lHI2w}H+%Z+G=!#O6(TzkXAhaO+^GUJ9aqri@KAg=z?9uZFJS~f8aP$}Ua8bf zCrpV zHMfIvi2NOJQHET&j~ky)>tXFkV~k~h#Rp$H!k>?Kb-E}Y64n3lQ;0-->3uj^G*M1I zQSO=|oMak$du9jX-;-au^^PrPt&tu_Yi(OUly z9~(Y9&|Vu{IJ7Z+T|@~9Ko2<&4?GRG!3;G!<5X~GR(P7TKn6OL9f9UymeOO~;MfyC zl})=wruH%@M&Yj{G>Zh2UC3SZ4}X#(ak2mpS2PC#XwO3gLE6$>qS|>13p+c2 zEd!C1zLK3e;zb-Pq)0NV!-YQ0FMDocUR>N+5FkCbsc+?W1}2*Nb#;Or?0cfeL`IcMLEgK+igxfpl|GVt){g1p87MQIm4j!feD)5?T2hi%KJ(wF66**x3u16CqHq* zNRlNuAI{$z?q6pwL}64*C=Gdd|@5Dekk-6c9rz$5};j2c#SraajORnG;QW7!}-mt0;{4ES9#-HA`L=9S&51JaPA0 z9~1+%AG7gnpw+$a>&~Rx++JMb?oP3wSu~I%O!qX~B#z)Pv@VoCzaBaFG&j2qFI8vuc$@NvRWNzc=#bJhv zB5)Zv8PnuF1Bo0sN)~r>u*}1NiiVi0743^{=hM(=Br*HJqNxdBbyoSB&RBp9{FAkb z$6ik3WQKR}(%YbdXLtvWwqaqwDu(s9a9$V9LLj-$C2#CP5Cg~7fEh*l=?~KPw$#Hv zG`yn8yT}+XWxmaIkbfc;_2Z?lFW>Eo4qG~Pry19P!ubbUBPd%T^95Zr>mMG~;huHe z^b^Dxj(=@nd;MIY7#L)O0u2(Ea1^-QF?y-S7Bm_^o#UWxK|uGFi>C)a$rw{eOO%IQ zxY|{t90{_n%GOq{Oz^8I7}#5=>$|%^$Nmz2oZCGev~R?7y}8eT;Q#5EWyG+F;rX0#9vO5P=zD*T_` z-a4wv_3ihaNJ%3(X;7q97HAHcxDUd@*Xtp$@l&Qw$X zWwra#s2$=}yl~+su*7htBl;s+N^a*?e2E^M_rx7(4F;Z&C=Uh`s;(c zX5gc{>Q+~-{c)NoD(UlI&hwnAAPr5-2`eZAi2z7cQE`_zEn>32Q(rNAO$5uX&yH#( zGeWaHyU2g)vf!7=3~w_-1y#$`8CuJdqvcIh)#ZJ#!(ykV!nM65ue9TURz1pH)1BZ~ z6_i-)pf#~pZhTWqU7Kp9|49NGwAW^KoHfIhN@iEw>dwJtg<@yt1Bea!nT1v@oaAjK zDjAb~bLxfw|JWJ5(1K%7UwW?IJ{@iwObvz;HqmSvv zN6A%vsu&-f{bCBec<;t47V)(&H(39+;H8NOSTvhVEzz4vE+;sBrxyNWHNKTA@Fswm8Bt7Zrnp{5NK_$%1;#&1g%(;g$`!5Jkw`8*_>H_o{{-P zV%4Q}0hS~i@P_JHS`^8Og*7I4Bpl3R|R3|Rve+YjaYR}_d|SFX2LsusP}Gv zAQH~LT~F1C9`9u#N;eAMcsqu)na%oJ zl5iaDexWUVjsx%f>F36>cae%}ifm%KxzD?!)T%=Avf$V-C}8-gUnhBUHu{XXhT+rJ zzSVQB1s`M!8Zq=ED!HpcJZ)Kb+RW9Du8`rW4FZ+n`TOMz@$)3{52T6OK74g0E z^V|G2hPz2Jshx^Rg-xK_2D`Q4@)m{K;ifm=x@JM>QROK#N`~l}BW%=~eoArp!_Ju} z5YOJit!|c2F56|~^)qRn+H!<+EYCDr57vULJ^%vTU!2e4z#&GnK%`E2 zk*=fp#m)@1VDOCg4@_Txvj*mr9ns|e93>^OGE%;i)Z;W&l1qL=R@mS3Wp_zY5KH-B#D z|AQ18YONh0G>r!p0JS$yJbG90#cc zJ8!4ZijbJ7L4#5vt*suP!E?*8`VS#u7X*CCCW15623fdh@@Kv{6ik=sjKYD{wZM0@ zpeTE5aTimYFVC;I{Q16%vl{e4nTuKDPfX2g!gb9-fbDx11zEr5j^m4wFwPgX1R#5h zMw)8vPiY%v0zoPzb$Yb31vm^d5G+f9iB8yi{hs4wo%m|Q)*L1m(Rlya?iRH8{y4E2 z>P-FI5RXSzThSJV>w9CbF{q}?@D_70c(#b7IGe~U71f2pmJ0<_x5dA?Wd7zMA(wl?+gT)sMruROP#RpciK|tkW?u38h zJrZmT9-CAhzipCTY70_9m-nqJr^VpDQ4k?%%8=)~yn+W3IS9BxgPCYPugLH?ai{-H zdJYdX**iPWY6rPaH{;OI(3t+&ocRN!k{BqfvzC4U?#;;BeqU~FtyEGE7jE-BeKyb8 zOIPjph`}g_OBhD$mVj1yE&Op^+uOR2KyA=ODdY#{oLgK^P~@U^GdOvaa%YkA$l1@+ z!FGW|A5wCQ%vErRvuW|S%DZdMQRNvoo)NPrx7cwiOEo{m4^L3%1X1;BIR=C&u3+no zi0c8>G5_87pMhty1zn^W@aIZFCuGLUyQ#}_YqlNCyxD4=o_klsGC!Y%I_b|%CqtIp zrE}7BBjai@IVGUzOSCrD_lB@I@0Ew`PLzMZd!zOl$kzY#(>@1D%++G;=HrdERz=8D zQ*O)Yg86-_bS#PtbQ1b*wNSKloh&iS_Fu>SvP9p4ZcCAK_;HDgGxYk80Odx|vm^R- z&{*C7^^5s>@6;nce`r6X2wMfqT~$bILzL&dOc8>!JFwslBYh*d|4CJFZJ_jrf>@88TU9E`7NtRwSos$u~a z)FTPp6OZ=1T6{Yodt88|(LzayaWI)HN^t4S9yqz5LThOnq@nE>lkYwJu_Mn)!N<@4 zEK{+}PekLW^3bQK*1~12OO*mBU#jmIL28O>S#o<-j$EW&BL8V5zrA`=FG2&W6Y1Z~uRXr!aNCXetDKF-O}q9S4m zN8}dJPD<;w$Uj1S>W{%*k3exGoF|@iU#=&$uVNeqdQ;GT?B_@xepjEiVk=L}3#kT{ z6jrZiFXH=F@#X9PwT8M;_44Ujaf3Ov-UyLaiU&9RxMN8F&&Y7HlOmYK=sI}w0g%XYW7w|DIkAI<_N27JkjBBG*O zd&3Vd$jbVe%Bsz_QYTEiG#yN2ThQ(d%vD>xB70pHl(9O%M}BRIi$~y3czzR7wtHGFz6no>DMu!w%Y<%Zd|MUIB6nyK9k6tp{t1aOwRa%Owiw3t6!LM)$JCf}WeY*V708Xr^sas_%EOYWvLH z#n@Jm``^FkY1*kNByNj{*mj&W>TNPeO?Klh@`egWaA~6=v~sKCUiSUb<>Y^KVABscwKRxOV5=8uE@1 zL#ga^&obum21;t+@4mmt+a}oMip_uDAK~?SpZtl)?%1!d8b z%M~tXio66NG49U^-B7=uW5FP&HI9>V{TAqz^`$3QsOJgheagW66ThrmC(em{x;xLG zl4`azmJ|QDiTM=h?C?N+=#ep0naw2aZtsVt&V}SIL#h{`6z98c|6D6{{2Np3l8R`V z`F(u8*K)OUdrk?K_{6weG-Ks|a)iq|9(9Cldq3Axx?rCu0yaE8^6bF|=y5=Gr|1qd z7Y!@Z=vHFL4R?F)S`E>q1Q*GyK`;!w{VC;dNte-JP0U4KsFV<*bO@pK^z=yYhEA{6&MN z(sL#9w=jO=)bkr$Z@Bgp-*skzvTO4xm59upgt4(fNWvm?l8vy1^%kPGIhgDp)W<-5d+BQsczuYz5k1pPIH%20+?!Qfw0 z^<`U@;Ff*)v~AN-w9=j&%OsybldtVr{QR2Q$vRL1;gj>)xRUY%xA6&bF|CiwuS}L- za(L)wR1}uO$q!wtvSq?y|LbvcLY)0ETlf;4G1=|Z_4w9Xl$2Id$VV`vDbo1iPRNOO zRobzBaOjp{cV(Y&CVN}nok;xM7S1VW@CnGm848#lT@GF|c;6Z1f&)&Ma|!ItXi7$D z+2ixz5P{lD`wYn!k*{^P%;H*j#@}M#FGAsP`F?Ofa%l{A*VIjd=oW0$HC=ePp!%ND zs@hL3gt};Go#$=zm!F^5X&5KLdC2T>HrbLj%W_&kr{*@kgQ1zN2O)T*nv0lMvQD9RG}Yv}HrrD{<28S9I)+u&`t%eDx~yHd=+JYM13X5VN2IGF6C1n%3Qq)&Sr(sWCin>{de>KwhF?cF}i}S_sOX=r`v482*7VY!@I)|=Y-v1HL z99Q`V@Lt@OCXSH5&(3G-xMdGc(&T+Hg^C5|B_-YI&1j(|S#3W;wSKTcXY=ZGplRs7 z4qVg9yHhMAGfePKGd#4%r1M6qP|aDI4(MfqZUG_-aQo!{QgBuFO+=qE5=8~cvbPGV zcUCiZD-Yf=yl$ckC1qV1{=0#1?l4E#7-#9Y7uoJA>!VjY{sfe7ZBmULo%wN729&Cx zFI2fHdft*UNBeSOr^Wu`A#R zuBiRhO~;AfW5P-hOPuRo!gE9NhnOV80HhOnpV2BG)Pj`US1;W&SqaM%g61jD@(WcF z_AY2OIv_$hA!?w>kf5f)*wG~vP2~r>eg!q zGHf%2y5>E)tNBzPOhQ5KxO)4e&dTnEVf!aiOlS+z_d$52?C1MSFnu>fD+FYW6tAdL zAXgXQ2!HSxUZtPe9J*Z4XcZ0-uWcS3emZq7XbV9_ckn3bJbRbz7IE3{L3FZ62wcJZtyCEC>Wrt}Z!x}@-YVr>U4Wbs+Hu`C zh}&BSaW-8kN(&!OeKYlfH+R2X2*dl{M3?CCTE0cTnuT1fc4j`*FJEomKn3HU6DF6+ z@q#dIH&gXpD+H6UJJBKl>d>mx7?&7fV3hs2#vna3E#_UPalL;cY!^I5iF!vNq<627 zcB@U6|0@j{EbwVqtLI|-bqaOe&`DMi@LDITlALTRhi-QAvQKRc$XeQMKkCcB%;Drz zhK)+sZO7d8V$GI;>7Vx&ryhlNF3@Mt?>}BLn1NOd0~eIrLEo4?+6FAB$dONd+V9S& zS{g$XuGx8>EsT@;kmiC$`w}%o-q}mHwXd`Wt4g9wAswqo68UOGhQEyN{=k%_L--*D zXx%MtS+fjbR~h`DKFd2d;m6-xB)?xhY0^&+j?=ybuez5#cd}oZt@oK@ze2$G1+6P2 zE!QBGVlEConIMV+qZg+gRHsdpWSqyapPdX*Swc|Yj{Qxb`C23Li&zL3Czq`!p$1Zm z<@``4(~p5P=duH@N?}1oQdq(O)M+_mttBbmEsq#icg(1Lh>X?RLZ(|aA#;H0?v^Jz4bRv0#(kV0V4LJ6OSu;NPBAVHoyq-fFI5| z!%M94JTkJpe|I0KOkw+71}dUAv*!YIBHFWpm9D!uDXZIOX^SRqHiX~_3WiT+k~?+t zX_0iZuq1F=zJB9)o`cg99&w^?ZP%gc;CplNu)pQX1SMTcP zPCSf$-_y{~(s^T=UzrWOk~ZNEg9e~kuZ({Jf@q3jU_i~{(Sl@COC(#slkM&8zH-QQ z7@eG)fIBUYLUhSe^Dl01)-)ZHp|W_0pGHT!fi7$Yes)S8p8vm5=fEY8_-DOe*_P(4 zhTW^;dnlYaV0+A7T7`CUz;TBJy2`%c;T);$*iJw_Zj1j=VUlIo!(g!9@~OYouDqEl zVFnI0Gt9!*SE29&4hm1H8GHk+y*h97Qsn)-ey6<`_%9Unn}q76Jj89;1=OKpu8zh- zpU?Y&W4|Tba*68_z8zRRHQs7h0V(v?!a@WKs9(c@4=}Z%=I$MTf9Fprs0kERDbI^_9g#SOBnMQ(7$0%q~oC|UL#$eIibgAJ4Q zTx`HB{W9F`P}p;xYi z<2Mf*sNSQ}q}EuFXV)Y9L)0?4VDMqlb+c-E_F*>%)pyP z7*G4_lhMGY-S}rgUwLpU&xf5s*(c!*&lnZTwKx$>PKpi6y3LvD7G`{M%X9kf0TnTm)A& z?6bIUdl^W7_*Ti3Y~Rs_7n`BC0uCqXHwlnUUt{pSGzq&zo&@r8fPMw?V2FPHvS$K8 zoYjTYduarB3VEHICgc2Qi?| zwjX;8gDA!d?ZvrYxZDu`j}Y@Ll}fevcDo70%C>t%eGYo)yRHH%X^@S$@)_(^2EL|5 zx~UknAa9ZLUTzY}mHacijN&B(WT4qHAT>(yWJFiKeetDaaDjxt4ooo?qG?A&lhEL* zsTo3{Adk$x!$5;zxXBSHZ13Qq*!*=gu+CVwM0Z42gtJ`=dl%$g3OMTmcp^%X7kl5ueE>1459 z;fo8^C?tCMP!Brge84|4YG4f#{$16wv_<-y96Trs`_1n(H;uZr0)^E59x+HCr>sMq z93Rj?4;;sEr~|$y(G>PKP#ux3$k~0AN{<-4i3i*ue?)sO-?F~cfd=^kfFYLlK)#@q z8=_RGT3|?+s>77FJ!nV8=URWJg?(-2B7*t+MgXmKioi;yafdX}W+FXm>X1ry-adOC zCms&V%`EMDyjC}6QX@~>aznLg$p0Z30ewGc3%TxZvexvVOJ*F0?6Tr+PkRym^G~r* zK64Pi%A6+v)}$OX+N9vCk` zacxUESEnWKd$aQpdrwiQR&EF=FLd1?fwI+O*1NZPn#=MPUKBuawMXZ-9iI`}fdV7Z zyBmyTB+z02h>x0GMpd`_aZZ?-gu8MN5BU5Abh5NWWMYYBddhR?a+uTjN38cc3;i!~zRLoXe&eB)ZNp9Mle3^$ zte*!;GNO`ed1M9n9PdY$El7z~GKqcRttxV_r2ne4r>#__bxaSrt9Io%EkSsdBF&XV z20WeM*1Y{G9Ab1c%H!z=`#9XfGXu7#rJDHSQbmJnrG*RA)RzBonU_7)_t)7Vo&M?V zoznv4rW}mQP8Uc|SN9+POUO(Mu>CNOAxvRQmlA`o*8fb)lRt)qWV@?8^Ww7>L7p{y z;l5J#`;*IUji7HFy3psMJ=GZpf4WD z&ko34BIt_`6?Q5pJFESHdaEnA-oMNNbJb5Srk|Lerf@9=!M=I=f2K_lSC1EveqzCJO zr#d6u1F>rDb`5xZ#GYTCCjshGC*X&lrx-&eCGfAKA`QV;#*C=?#TOB@qrYQ=^4RoGrRGL z7Tl)1$>iX&So|ax=3O%kT;X(Sn!8$p>%-y~UvacCKU%s0yS6n=k%jGH8R^l{S1QL6 z$Cep7!G?yIZ6o?Fhx^&?5DUCmzz^LYk>dw}z??o&F=U4`8!P9P$$zT|Xf95|L%0qiz|BtnUiCj#n9S14!F2;AS9C+S`vRYgl@5QCi*=ih)Fy{CO zUfiqgZalq0h*Ff;6nvW}zTP}O8xF2*+?^wC15qH0&R(P|U>L{s7V@F^B6M+}$T)#U zuEJMPg3TG($a;6w=DzBT9)EgYA_TTj&5Exyc|;tcbg@PCl+ourgB!7LZ?VuIxWl%e zS}pY*Gm0~E(1!m0F@4>0am-Zs^P+6>gM_V3wfgeL4x}gBP9NK{YsLUC$iojMo&*Py zpNzkq2t?s3gLbr@vh>O%t@oABp9s8NKTn=)MsE`>(n4>a4-*2CVFv5T@<yauKF)XzP+Un*G)xjTXAa*<4K?IkDR7@s!Q7W$+xfWMjLE9 zOM_7b1h3^D&I|y#IbJV~Oopu%1obVOj<2_YXU(YN&GAfipmAoKP;C;bwb0UsL$Kwv zT9GsVAh6vlw_4tIC1I4etS~kH7}zBg4NWAVk^$(boKz|4MZ<-F1F+l&CDVXG1ZoO+ zcg{>ka)%}OWS{dSE@P;YvN9mhTAKYSWI?(fL_=2_Px0%W0#4k1(E4sPD2$oG_F9?> zvSSL^i(WuW0?S|lGh}WR2W^E*{K9NrCxa7+iFklFZcb_>#t43qu9yuJr&0F(-Dkhd z3MJyRk=j8eLLgz<0u4!LIm6+gLb$M49WHo6K}deSUpWeR&3U5419(?lu_=>9pq*KB zW30cBHBS2a$?Xs?sPzJl1t4coZZZ?)JPB|EjF>G%GMOHDyC+nf_%}09+iR*&d}uAo zeK{FM`GXdTn1FKz0w0c7Trpp(b<4>hga(43NEVc+Oq8I!APN=)qL*f|KrGNvCbjzC z?U*%-89+symRb+PK-Y&#W)XN_K=^`T7Bg2o!grw*!_NK%{oJPQi6ik3cvB`fHl3!E z!xhAwlo4=fhroxrlLawp((Yw0QwqO+{YrB^0e~x+5~Z?YO=YF&k35Y(GZcYnub<)c zCQpzd8M_}$w2PzWpop8@{jugr8ID_S~%A)EMwRLnGqUnxoOLp7$!+_aD|KA z;Gzc9&fm-5zIApY*0kSSFsTA8Md_49d%pf7kCv8}aKEQt=8XXn06ONQ6(nc9v_Yd; zN`^R)C!Jj?h6c3~B{FRTtc>&nVX4?nVu#hHg6TUo!G4;4c(8xNu{_d}raHM3B19B>#LR8U#r?`bJQ@d+jo zJ#!vvuh)P;&tq0*Z*pRS)G+B;YATbLoTMbZ-@&^4(vGCd&zSA)hjNf~m|+APHkA=} z3Ru9DtgJ2u9Mn(EAYJN$o2gm)nYCoLqZL-r$h13^=_iASk0{&@BDH%brmYEp%7Y0p z*UW^L2B4-P%=`MBHcPlT@sH5)Qc|O_fNN(to;|_JFQ53Ve_RwYYsE|RU4CPR0r%%} z->Ei`=D_s)`N_EpWiZhM0rha-vw@y1+*F<4Hp$)Lv$L~B)q|kc$hva@W8Lg(7z{|Y zdHV0u3p1M}lo#;{ZVK6Q``sdOZlZ!20|>j}1s0}5ap3a450-%m8qjL{hbm_JhbkVP za|dUxiQk&I+@I-CZvXWEGG~LpzR^T6E4l~53RwG~Z$>BDML@rumh$^AqUQPJzGWx| z7n=^*L28n{Y(r2M48UKw2+-tK;Nw_wGuXWGfg*{0*dbD&$D8nucI8> z*pjF{4+*5EM-K)w~Gfy$}I>@9&cT%tg1qw-Ux8~1jd_jPMR$D`8zpmeyWybZ&{+ITK-gB zA|zIO3~7oG*EfRtC}IZ)0ma-Lg`C&riT?XsuCyyU=!pir`8=CyHY!T;JQnDaWBjV0&t34Dh|MfgjVKG8Ub3OOYUF6#qo04K%*$Y}!2OXM&M_meqH#Zb6p%7}V76ldQ|O(7CK%4?KF-d@hj6L_pW-$p#;vdDW5Dse7x^-= zMS{#3f2Z6+REc* zE)eO^;8#^uH69kYi(F17X>V@_3Zuf(1J#Nwg^Q7TtJDdvk8|Kp2D?$J1Lt(#=m9kA z>9V+!gmG7cq3o^9L>0b$BK4jCoy^3xD+f_@&taOuf1OH+NiiwK93MH@yo94k84D|!}tpDXlg(xy63Dfn7j{sZ& zGNnP4{hg5w*l1t?on#iQXs+i($SDKBI!Z4s*ioY7c_#z=g4W(HfZu#N)P>G`@Z@t+cc>lnxc(`JwmHVyA3II`pqz5kBVdHC2)VZ1h5@Jt=aJL`>ko>16Ctk5@SSePJJp8jazmE+DrkK@MA##Q>JKln@{mS=Z-d{$qujW2xLmfgZ0VPFWi}y_EoRn!Gz0Yf5y&$Nf1=5!t5loR7n?W&vextXFc=~1Gy|M5`N5H*33U~*)J%ww<4`PJ9pnP23biC%W3N-t* zZU1=>8AF(tfCT~9*RJmFQ7Aum!NdqGM)BlXrN8f=naEM#2zA5R%&)Jb(*izkP&Lr{ zogN=xC#;DF{9PYs{j70e!)=DYtb(yLvMNTJvl!uhur7v*}V z)@^R&NB(t-f#(+HlZC)9eLCs4(YOknjd;T>1(TA)-Ko=)kb=3p86`udJww~!fR{Fg4p25`qw7b|$q zBTI^ePT;pYlihMXn@^pVxmtPIuOAy2I2kvdgVorPpTMcmf6a{}7WMT&r7VQ51UJC;drVp^NmVoxF?CB|vJcdFYeSLjFH9vhx z0PN-V6-#5+W-66tC@OW&=)BISxgo`Wse*O(Z4ng^Go ztTM@2<(?oB2~0BafgK0fWe*$nhKy_HlZ+FqwPE;#3~W$V_h6;Y>FcjH;~yG z$e_9+y%xnWP|Y^{T}btT$I7hSz_e!k`_NDX!XxfAi!p;~703udxcI?6sgf2aM}Jdf zy`6bdFkP_k>zJ6t4V(B~Dkv50BY67&nG}(9`Tjo@A)FGz{_hO-G?J{2eyb_A!m}Xk zyZgJy1Z!#j_aKjl7@`T7D;on)XIcc=#tMSn2H5e0k8{x73Tr9;^ruM6 zLx?ffXRDpwVrbvkrI8kfzu+JcQT-uNh*Cq?Vd}-D)gx%`{F|q zXt5Pjt(WB}U%wlPydr2SFZ_h=33b7r+)GLR59=rY00z(vChjTce!r6YeY%B^?K7OF z+23u;yw=9@R;W>Mn&p<2QNqw)k6s8%ThJ;uZ{8HBquEhFW&tA~5t(g=5H;ZGYk`f# zTMksk!pFK(nXnKZoJ?N3UVBq_SvK`fU)*jY?KQjR}Sa_n#V2VoxFpa7M zPfw@=rpi-hVO$C^%Xq!FOESp=fTSod!r;PFQ;F1A{4+Qm2Cl+}@Xtt9>BoiFDVMmI ziUNc?M&L1MB_+T$hWO;h;SV$RL(XoI@sI8{BXcm7(HcN8j*GqNX2oXD^R-zNnPNN2 z0`C^O1J}V8Ro0CD0Y16WT;f)c9sHB&3I3>^JEwD8&w8bb(+&;-Afkfhhgy9;Mr+G z{s!nfM*;Ia0^;3Kct2LJSYQujIE__C-O>gwwHa(5z!Z%R&njv!@d9eRJi z`_u8hu>?$+f!`%CX{S07nVkv!UnfUc_X4uA_1$ZR0B4dM|6oI5TyB2tMvV=bUK6qz z6nwWGfi0lbq!1RP9oD14;Qb+Mk;2DGXMH`r&oHQvxY}X(GIFwg(8*OThi@lrhuv)@ z5fqA5Z96$RX!-!p!#;e$ilzR-5AZCCFZ(~$Z-O-dBexwP^jn3sbCF5j*Wo?1Kj2Ch!RYPVL+t$ z4PF$94fy%^%puGmV-N{LPDF0UM}K=<0@`36^(*~iE1)r%!<^5|S2;Xpi$}0KS|E8? zcW0-me(_5r{PN%Zt|q*6`|dGLGgM;2`=kS!GAAE)UlNd)Pk(iT%L~Gd^s++i=1kiv z)CXmrSMkV6L)?aECLpeYMb^39)q8)g%=ZlH81di$0!g`6re?B81;Bzol} zs|GmEvn>FE_h++>VhaKpng@@!@R6J!5$=vO`bnNZkY_sI_0k8TI+ev@Jw9Yk7lPeI za_*A*^>h$SX^*VHtX4VT`S}1mx*V1+l+8#D*oZVF^yH%{sTPuqom-$rg7_zJ&c-F& z1&G?yr^IPc0z-JdKmecZ`+Ew@+6|buS=H6m-7AgA3AzMgO(;3BOXZl9nc^VYX|QCp ze^LqKltwy~LU7)Fzb)NEU&|Iz5{)>cPSyA4&XE~w(|H+H6{E^#%Jle>& zRyf*(Q9PKr7C0E)Adku1l!FOsuqNja*eFtClRMgML(t~Q4+5ex0TE4!hXWZL%2bSz zSDpIDbtG}-My8XOL!5wc&w-1t>gFblG6g}(2t>uIam=IhJJpV(X8@VJsCdf2cgL0J zE3yTcu5oeFBI#q=w3_1KIYbhUu$p|9@{^S@$#CStbB9HuJ!AtZ(&KZS`ow|+CCK=5 zsLDLac>;4`sbC&LJEUph$Z-@W&%yck`&$>~PNG#WS)`KFY+h~(!9w;NazY`8tG2>l zyu!4H#K69dYC4)11W+Ci3Mqp6fVgF=^Fn-9NeL+utU}aDS7<_+$Y={w%k!>7B*Y4* zdpviB&-tG>Vc0f!TF(;Axk@1wx_fTzw8-LunfG&(oXP~^(3w9=Bnnb;WcCECBWNjT sp#Ep#d#N{b-fDIz7^HP?f`@0*!5 zYu1|oX04a?0>XXWSDmxZ-uv)YO+^k9jT8+6fnX}g%VaB&x6XLtPXA9&{M z_L80H53vP!2&#*`zB>ehZ4Uc@D-Hda(yWJXdAx|n*W$l;yh2ZWa)|xu-%Ory^tx0s2m7%@jiN}>5NkrZX%uoZ_(T1doh5~Haq zN`MuGASfu9D(cTyTwL4~FkEFll=bsf4y8@C;5KY8{1!ilX{`&LU4|Ox&zYx6 z0iLI)XF^}LbW~18(9L1r;mNq_`s~Zho=8kGv+7w6_uon`!Rm$(KH-bFN9DgmYM05C}>jrK3C=ql4~;g`jw>!B{qbb zmNs|(_$E+XQBhG%ODlYcy`5axYxj+a_euv`!=e+IIj!6G4L9@ci6XuBzyJqQ6>!F_ zYZ-Zqj>F@3c%+jM&%X#Orb(1Bq5W;zd6w?lOF}H{=Gf*gwTo4}O(!2->URYQtoZk5TTQ)ozylPn3Jei7JqB$=;YmtI? zq781~Qj2e4Y3a8n&z&Yw=c|*gRIvcRUz_8q;uN{Ev0dVKhuAlV(4gIMe|D1=;%Gv) z?Qwf>U-F)*s(oAX6aVf3nr5{{I-o8SVejPeVd*|T5rc4MEzk+)xF z_##7G{x)vPQUo3L5V@|$^20;y?Ci281H})V9UXhv0}s)`k;p43upCTgzSu6Q;P5;7 z(=T|wy z#MtSbh@p+pzV&Qd7pX@i67VhIdvYR=-f~s#wq_ocABS^zy+KE^O(Cu+cOSSfK?D&Z z2VPxAZE+In|A!fE0z45p-9{W5fC(q?9Xa)+$lJ7u_TRUY zv#8CT!>G6{T~aaMI;pfjWCboW`M$)o8YCpEbDCp4uAGPWmw3d;i@Ns8@R4BLgreOT z#lPPVN2Y=zD8uC$#&YE8X(au{NY4NPf~2M;{Y~qs7_p~;UMwmbMv>6NPiv%6GtU_A zORL2vWJvY!`Mrb1zW8LF{f*H->j~@fi+K!-*|5RrtQD$4K_D+h4p98>nKGBqGj)*R zuGZw;1#Xo;1k=PsV#`AN^{nw%$h)up#d5mmzS6j92sgo$$_Ni}Jg*R$3PoMVjPD!c zhx#sJABDF={+=?hZjcD$(k zxW=94baw1>Sc35C2z_Rm_|1@i-NUZZeUYyU&2^;F!?AC$0ZE8hO9h>A|G(dVF5!d}a&}aw>#_ z+}y-)<;|~skZbwRaJ91RRL5-kF`TUW+L)3W9Brc!B)M*uXC|%BA4VEmlOgdm!NSsX zkQ-<5=3i;1r3B~lyRf(3g4>&O#D^_XC=sOY7Jay;{eZCkg~2o?#FZ%Jbs; zQVILR{ZmlfGpzdVXRIXGFcR>UD$qpAw+^$K5$o;j^$EehrxfuLFC`KTwJecg^Q=d= zDv#O)&ySE%o)7B%*R0+A1zuS+(6cbf`~23kE@ffB?5rgBS6V7)|2Kw^n2Jmi6l!a- z|6z(sD#=u$Z760(g)I(@LG*8of}ee1N%(p(UuP3*tA9j8>!#r#zd!S{KAUW~dYT>L zcevIga5|y6>LL)IloU2w{W2GzhWTlc^96T-ozm*~jEuOG6Au_vAmew65!&n}a}Jly zed}lB@$>oDT{IBD-XA2!0FV<$yfH&)jTChInjNwds@|BYmP(j(uKq#_;WUlcp2K-b zzn6{gUfoF_&;s}Y4|WwAp0InmFg zjE#+d9bWBJ^fd{CxTH0@ON6uXe8#ederH%Y$~BKSoTmiNeS|4?z`u|=n_d!x=*OqW z0P?_QGyI8veYbk#?+I^3+m+qK$cXs82*}y@W*~E=a=%ph)i7WsWnz+X6$_v)F8AP9 zHhqTASaZY<140wz9qs&4ES9(1yV)+^vgU~wCc23gc~bRq+;&sM$LuPL6j zU09Twwo?i%zC}m&$v_!7PRMLEalRLlengX}y4_071Hs^&NjzOW6VjTzHsjrP84{FE zdaC@&JCQ+cYa?CrpJGBp=+`HOC8&jCFXpeXu;rroBHpeWc*m`ebBzq zZ0WCHSJH#-E*Xtpg7cwQ^Gf|*2vh}mrmxfAL=rm=*d4g}Z0v+Vg2`0bpXV>;UHN}g z)KCgo_L_IRSP8?fw3~d2Pe^$7hd1bIJo5lHT#~9-=f&ZAvuJ%w3%S0&eqnj}-;+xu zbi$7HLmA2_Y^uMWQ~)@fs3t*C82gKz2P|S%_wCO@@Caglcw78VoiJ!m9(~MfiBZ2C zD7@smNl|LjN@{IwE$X+p4i%4+qx40j3cBG`5!^^l$_V<^|CooLpH^JFeSA}y0Z%D^ z;&SgD$ZBb4Z2D)!G5OQGw%>kBmyO!ih3Z)N(z2yL2@x=?;io@$$2&8=(x_tAS{{oy- z*Mk+wQlm!P52k^F018KbMFPN|NF_gXSB2;!b949gSiDA{rw)22NlaqK$dUzrROL_W2wPDEs z!>Z;oBe-NIoPS+X3Xnsl_2Ybp3i&LM_2QQ{nJ2{hozhdp`e?ocT>lIC906VbxvZ zDh}yu5jS#%n~@1z?FtI#e-U3P35vitSV=nBjAyuUwtBlC2M=))_163T)TIagA#9=2 z$fL#8xmJFfAXAR63T-c&Lq}d&c;}$Rtf0F$_g3m5QcKk!BKim_OtR@aI~VnI{-#d1 z5p@!(HmcoWzABQ#Ct7gK%03p4tg5wlr6 zWt_z^lcf0Z=G?_?%hy)_ey*eg#1XsL{7<(cCO1dakd=aQ#e{Vp@B2`(6?&4YF11A4 z2z9FE(T9pt-iY_oH(YBjv4^;u+y0D(Zm_W5b7jo+Gm+_b#cv2Sl!vNIfm+YFtL{8flbN#~w8G4f}fTV`if`S8g?IoEtP2F-0o>4)`MfUS?fV=v8n zx$&y5gRv`VNboEkIv9WFoLAT%8cdzTGhVFt={oe^)79`Jg;XCQm+8Du*e@v+xRVlkuGPJy|C&{%m=HMCK{2nHa|skCE4b5 zCIo{lp7E5?LBoGP_`LN)*!R?@CHdkDI#CSm!QesSUch>b~p z)HWnh$zCZC^$+?3*s_S^jBKjIIcd6c9uQg}{Z`Pt4F}=RFe$!jwT$4bK}N#2)=RKa z-i5D<`*%i2ROMwfB_z_m+=uMHKaI-bFtgJ~mfaNAeq~%!m-U9HNgU=F3!oYBB-HzGF&c-y^@VQ}4Wa*vQmJXt>+0uiNXb zID0F1OF)>WiuwLlp?FkQ94hjGL@@4xXiEz@w7e_1Yl_fvWRpocRP4;>HNnI-iAAM4YD#^z$p6J@IMMkokQ)ZHX zQI2Fq@v!+hY4OySx}S-LLk>hu9mQqGb4q2Tsg%nYAKU-M0B6$G&PRa^F$yx^RPytzR{|%kR95sIw<9WhlPlN1UqWXe zD0I7CIdkcEPt#Uty*x`XxDY^%*dqK+{JunrrJa!l15Q##A(EHDvvl%-)soMwMcD#3 zs_`k(7QndP^;7VW-%6V82eQ?faw&`9H$2hB)3F2(8*wEAD5b^#fjL5{@@|Y)mCx}< zz5Ki@^hgAaSV}A-S{rG50_w=)kS`zkh_&pTOTWmn06Kt8 zuUon?C2qUOVmNuOeL;3fFn^JeL-wD5PywnBP-c~t_@qRF$Nqta11+`h1hR@qGvn z_kK|WKk_yG3H)k zEFPrFicTm-2{VJFK{CP3vEFJdD7M0@Gbiif+WFWAn1*Y5^7alNa#BAkv8BKaen*?E z_*iLgYFV<0`j#v>XHApALk#$ZetWV(4WYVmgS@5dZ2uSVy`5L#zf)Gv;r2^Db=W2b zfHJCp6ZMH>P_P&^-~j%mQjay2(-QgY?;=@=6JS(>yNIO$*uaXc7yES}iUL0e z-MLV3`_vuxyC0ikwZmxs3J5)bBb+YP4}&o=I~DD{fVV}>mU8$Az|nuy5zsC-|NQ75S2D-T$M=Mh z5ygJ0v=i`#i(7)zCjM-IaS;O$vi~cL1zP*|*5_>YWhb$;q$J$mwri&a_YqMD1lkw2 zuwcY$Scfrf?7gTkzk2Go>edKotrZWU$t`lgk_C6ONrKx{Npf2G$&x6~FbqEMa*)9# zCv@3_2lpk$kjCDeav&vN5*A+cnD(-4$|HqIg#W_!N9m_K)0Vw4BdlGteo zh;NfW>u|i9TPuk@T)z1@B3M*n3)AI*BvC9ncPlJD?#!C(B8Z|kUR>#$YhCRk1IaLF&eJ-gll=|T zKxLPcV%mU(Hh{hVC)JqLW&`L@y+$|diLWr$dAvXs1(N*!JqU$NNR*6A-0OO*>2kL?6|+`Q+%e4`d-?=lk9e{ z@1PE8pG!Z*8WWjgyv%qG$`vJh!Bp*!t zn3sIkF&*Y=Q18!!?olA4uXq}E%9{@ky0I-U4py01Sh^9gMS?>^;lF2y3e()ug~wZs z|5^V!v=@O)3b+Tnyn0Hf?x}7^unyw@(7NYfw?2VzG`v9BS-o!hzIZ)5j>!LNTak!u8Cw)-4Im@)gzr z(?}I9txCJgH$#oRTou9^Xc`WeS}ii-uE2H(6Sq~5tMv(yKiT0$pEfvrK2ATFix;t- zkB%#eJyZ3PQ^qb^nz;{tKLRzIhhieZuJchC-unh*TLqni!D%p0T@}h4gLo`dE~{P+ zo_R5|FdhjQCPj_~7=(ce`dvWvaZpP&r6(nptq#JoOb(g%_D^H7>HBl(y5E%wC@(Xj z!Qwm#BBFvMh;0n5SXTni8qiR=mM-!Eox51nQ>?vecZS|y^GPk;mO{-xU-$v@B8MPT zMNI|c)H~|!E!~zAf{=dsjN2wor{F+VExv;X!&;v&^#s9tu=#;&BUu6LsIof_UoK^n zK+5ZraG91{N45vVu0=91geGmTCc?KN>M|DY^+3R4xHzdkGEsT=;`i6Mr3DXS8ui{v zhi1FUuU&7IW0(dji``na{>`&8i+a_?{t;G^Soyizq6rq2V+8_a!Nrfc=4p#J$Y(z- zMwNW)AL=E98F0tp(-GxjhIG90I3lf0DTDJklvowJzva{fnsSS5uw~J8M}C*&+E{cl zvwp@1xQf*cnTfi{cpKhcM;^8Tw2Z6Q>}?Cv7?@qwtdpa^HWT(ZFpHV@yMoOH zeeI2scC$K>7yXPZEK%vx)9EvJ+!GImAj)*35`Wx$5L zq}oi_s;5{(?coxv9%w`4H-Om&rHx2|(D=w_-}~lVpTE(!W{@AG84;!<#M#^INQtE# zLvM*c?}rbOE+-cZJh0gqkQTb!eELTvl0-=`(ALuQ75V<^HwR=TYW?Uix_U@k0dr10 zH&d={C^QrX7nQ9a))`WG?(zy9t>3$dYQ-vIb(Z(K(jtlsa*$Ni({PsjWU~6Ruk;fo zWLWO!*;s^w-6aLrbf$H1B)yU(Pal^vv0RKZYF}*YDUKTcpm-PE_q*hZa&Lcqoj!)y zrMGoZx9Z_+GXDh(KHwNb26MN-iB7=wHa9Fo@hd|CXdGORC}y1MX)5xPt>|=4PK@-GVUhxqe6{5m@f9ZY9m7&)JWG43NhJ z;03rhW7-S79$C!6D9a@>_G&V5-QnUUVto1IKY^MFbe2@sP%Y6Tw_~~AD`!*~&`TZ%&Yg7hUOUTfxb9H zup*;8od*$CefrgXT}MrXS4rk9A4MWl_C0@e%lsHDh3(1VtE1!ozkN^GLA;(GDLM4j zMu3?8-TKnt=9X=sysL4Y?Cly!(D-z+j1uEv`QG7JBk{7q5qr*wZFcETggGa<%KR53zq zf16*?sjv*GHNOA6PEXRpYAItvS}Kbs+A0}j01gtofO_xhZ)#TLfJ{Pv&fbGxgQ7DV zXPq`_w02tJ(GCOEQ3lzhcw|YSQGJ0OgF`#u>_6` zs|Hp?tPb_{umKeI0uF2p}U}Q|p1?wqecznnYJbd*{RGP)HYg7RO;0v&RA-XkWn>*ypezLXSs1R zhj~{xr70uMBeSk>RJ|%I1?Z2U?V%$&VvE>c7&W$UvPd|W3 z0=93B?whio3#NAxJ`lA>-~l{HsGy@ZjvKC$yXQ$Vv>#Wq+WJ7eiU$#=2Yk1f(gg2t z;iDHL1j5@B=>9$k*3t&S$2Tf%nYbA&8myyB~QWHn{-Kkk`rF&s@2~<@-A# z0N@QK4vRDkEM}{$3kwS+jEyM>*$l#~e+Z!ik;6rR{IiMue{>6xG@uU~3&`Ax)$3iLjF z*?+&4()6Ti=-G~@rQbWwNFoy-IPu#p)n?2wNPJ2PjOq7iCS3$J3#%L?obdQ>K#vB| zVJ4=POt~HjiB+HAF0k3n&D8It#a70u_8JuRS3!=D3{vQ5ONV{^*uR!`;=6wzD`*cwy(zTY&}A z&~b-9+6)yV-a)38es@T;eyxfv1v2`QVNmJ7G$aCFtieT!m#ue(1kWD>gNhiSLgx4R zmuqbC7?jh(f%64OoFkb~@QL|qR|F)usYwWwQ!=f+>xV1i_m`?4a<^#Z;#PoKBlr9{ zQhDQVQY#yqHE^$Fy}VxY-2$}WjOc^fywmasm5aPpFL`n_yY~cIK$y$Q!pEE6Etw`K znTAAr%q-6+l}VUn{qp5{Nkv=N!D_eV&;0OXzgCwm3u_4_j=HTHqeJ5DC zNhfp=aY@seEWJNt55u+TN|HjvX1ws{?L;}YY8&ij9qg3cb7Ex0qY{-^A~!YSRr18x zW|QbpVFH!d^)9#4M=m73Pi)(lj2S*s?|UDEav2|M%!KCxlq`ODdD!)chhw@?kZ^k? zqP!wg%QQS|py(&RoK??o3=@+*Z&MgKVOG=C(XlxCH2?_~^*@slm7^a9$HhK0&rG!y z+lhU8=XNZybmi^HnM6DRpcJ}$EGJdpljG9?M+nAHT`uc9WztWftrDeAt9Fz7+*Mg{GCf^Pg z4m|jgwtoFAkXT$;h&dh+r=pdO>7f5$6bcRnq+=xL&V3=^e6g4>9*`}cADBz^aa@_Y z#fhEUA1!q2?3sHZr5x#ktmrSXM>J{!mg3(8Q)fS!2K+zSVwVzE0NMmBKbmt8t7&Q? zluVKe2JY2PTlBmmDCUiWJu-)5*ZE}K%pIcdrJ1Rt+Fo^sgH<0H@5H;3;vQK{Dlba& zIGxqfstw^ei4NMBLZRw;q4?!5yw|`|$HdASBP0gOeR3fW`S+1v!o`|^_EZkswLbv_ zcc=o8oM`4j9AC8L&ELQ1bkVj~sz*lZe;2Cm`y;iKl5zWwW)>DAygKcc7aJR!)IZZ#YKlF@l!V|)r4zX=6v0IrXdX`NC zBhn?4W*#9)p&n>|#@}2W_EGg+Ze~K2Kk-T8ATEG-H}lmJ#lXPe07Q!7MOjd!Fv}T8 z1J6&?qSYUF=Kcy0I;)K_MhA)e z#Tsx5%2DHVyw^2(%Vt<-_GdKPu08?mK`*EiinjwQNj)n+T@mKZhr-_x7IBIqTA~>h z*OUQOHftKZWHflmElu^fkhphlI8s+#d#jbzKM-1 z7EhbmbPM%uycJSzlt99I*4AIGv3k>UNX`EW#!mkHOcnNi#>F*ZxC^SBqMXh?^ZI%8 zR-O4xYD`E;F)4Unbun-LZ3}SPa5e>pdOY18XEfWJt7T$i>j754*r_QU@Wi#Pf=pR` zeG-6fO1#JbYAphq;coG<6awa0S+AHWuz0Lf*`LEf%EilwH)d}uI4N+gE*e~VIp;#( zr(N-!iaIR_C}oOKz=$S~rUQ5s{S;R~F|Wa**4f^?w(~2IpA-Bvc?AaW@LrUs03lXg zxi0IPW1ugWee;$Rfk~2IsZQH_dDsVlqlq}hvU}7)n4VifJ%ChQS66raZ}WZ}qAdhO z@>KC4F_2)i?Ewu-2kNO{KtLTNj#YpOQ#qA%d&_n4=5Lyg-jf1pCu?9NmuLK46)W0U zQK@Q(ABZps{^Jy2{^)oNN`Jg_0c4u>6@1*h^Lj<5arry|yB_)LgPzs+bRso{AQEsr zT^=lvztxHcwWbStth^UoQU10Zt7z%!TF%wjLV_#W??_*yuy*D`#ojs2*FFD1As*Nw z#6}N%$E)iyyCT~WP@;tS5o$IT3{}b!PSLMSm>*86duzIg7nX32(rqwCYD=n!W9f7< z|Ek;9F5dUp^N@1%0yi!7kXt6%2PO|dnvK1Ou$#a9OvDB>L>2e;g5+gDQB^n6Q~YRk45`bMG>A`@ zkKG!NvRO-iJbT+@l9U-WTi9JF@-mY<5iR1tc zXZrpo`JO3G^})yub#89%$$9qp*x13ZB-P?sF>sBUBsJ8)BY)sYm5-My#xJ=}gn8FZ z0G0o`vog?{>o`(I{#|Io<&Qws&q==~3M6i)+wTZQM9;|s@2{8T_P&U1Bx`Dj%>s$5 z2G1G^n4$|E(P{e3BTXU*CTJvklQQ>^5M1v1$(7iKc8_ZT?U2P}DN`OcsEuV7a5X^z z&`1)4vd}8b-vjK*4=3p-zz?2b*m4G8{hq1X^S@8lbWv8$-1@yz52C9FuU}IDw;L)d zafW3#jv}T|*6CIf$a;}whV>aPuR%B`=C#ubnwNP*gWB_!%WKjX=v(0q&3=+s^U`G( z&R@tNFgDG6XFZ2qQezbN7f7FSu92}-ahNUvSIMxI0#0g#K3B6C^Yz|XAK--g3Jk9z z_czB6F=~yW;{{L`M^`rD*R|N?LGn@!Xd{9g07VPE=Z{#EOqCH$n9#GSDCm; zfZw$`v(Kp>n?_Q$u6trXV2mO_e=%H6cQ;Z8LF6p=koe>D_5S;_i7Y`ZZh&dc`P8J6 zI&(%o4$vvUaFKbf0r(FN0^H^ion{iYwnb@QCZ;H%!dy0R!W6@T*4FafNrKactDPQCmbtbVgtfTA3f zG8V++)inEZNoi?>*J4z^zkdu{Z1%R?o%sqbM0_&+AR1V^uRzraQ;7zC5m3$xl_78G zAYk#K{QR?txAFc{{Ozl%K7$KiC)O)hs`mYf2O`+&^W7;7`-8tm%u5+B{@Y>aTRcqid zUspEo-Up>x-j95oI5-yy59o|hT%7oM<;gD?pB~GJ((F28m}#{oaVhsmfP&`zJc^_i zpr89r__~AIL_>@Hs2pS|{$6w*m>}8eqwc?drc|FJGA}EcCUYX7rkXDB*r}cj*5D!F z`hQS#gjb?>wPksEh+uDXm@IzgJO`#odV2cLVt#f2 z1Hh_8;Oz&=w(|Amk<*B2s~;~9=`bobOo&|q1c;h}0b2EJ42%Z=Ayw1~k0zk=?ds$= z|Lt3s)YDd#jMW-q>cN;gha&10xjCrlY2b|VRVs=t#K%z@6N@kE<@4X4g-dnEcXCQW z;gW1M$HdFDrB$)1i-C*)bBPun{SJ|U03^}@2J<^@DlUFHF**61k^(&xX3p!nxja4u zX2-R8=k}g(R6JP63l9%Z;h2q7+$I1Q0^2aOmqNkOEk}Acw||Ax zHI$xf%f5AUX-0dq=fM~aUI*W{^@hHTmzuiITq?zQ@#Kru%AfJrcwo!T^f;NvBQkx> zNf~%yZsgiS(CTLljHgFOM^CWJ&aRzA4!_}DfM$jeK>Jt#NSq zKl?1_A7iK8!XKp*5}yXN*B6f4#hdf4sk!6Cip^C`8iE=VSZ|^XLi?*eu5$?isVL~u z0ULO+brWK@q=9G9&m^%Ef^VZ|OGC4zkr}uMs4f9YzdtmuFE>7Io&P`)X zD)_x(84*HrfV_igVVX-t`bx`C*@1H#2cHhym=33@@su*kqhnl<&Umg6e|c69nm7)% z3B3U#6>Ib3b`k$q6{gF$IBM}Wk_=x^=okNt*LQ#lIsq^zzzA#!23H@kX-)~5QeDR- zi!(TE7;Z+{Pry%|Nm7S+N}JzYro441MzhAc#9Ku2ar1%+$h=4CzZ-6S9Yq%+vFm~F z8eD3Z8GpfHN?a>I^#OMdGdIPSPUen!y?y%!LMXNYU?YH&_=$LC;MLYly)zXMcH37# zJ+pP}NyMrbe0jVn7kK8^%JlTMtvh&;@-8ADiyOSrybU@T8@P`?6#!8Vz zu9KKQFG^3MN9rWu*oJ9hy)6=g| zj{xEG^J$QqMnDFYL6ZkF*gy2@SqyN^zFPLJf!a;C+ELVP&bA=CNysQ!l!XNyI8jee zPt`Xkrl)B^>(-EcsuF|1=O2YAG=27%k7m5SA=LAS8_8{c>}`4?k4AX!&EHn)1P`e} zdfw8ss`g#$`!GjN{Ti{j8DHM(MqK@Jw?Zb7xt@BNYU{AA3eeQ87i zh|f%U0mpeL0D%&LJ~kLHT5U7jW$4@*QNQGe4*R?!=++)MWz_cgyzBw<+CMUa0wIo- zh4COPy5%t<6-;P4tFvif_smUm+lQuWooDB!{}iwpQgHObGGJV;$seAyhKdxE_I8p?U0w;`%oDYg zsURxj>|I$!#Lw6F7d2KvE&w?%10ZIYs~*O6(e^!S-sOs+5~qaOnZX^(rZn!`KbMp3 zmhe#wfW38pzl5tRCn4DMxj6$^_ZuXbG4nMpa6A)p+h7R9bpt8`3jFNknXiu&evuw; zj`U&jF9d6<2qG1H_9D#y-$jIn`~F$Dp52%}EFEa34rnV9nh=IoLct$PND)BHTLogC zzhgt<7=k!?ENX zI4}3t2*!p0uW7IDgPsHe3$4KYm&+~bh*7h_G+SB((I=qV+yL!@$>4ofFOr!xsTDM! z71g%m4C#PbO~{=KVs6Z2Ux`qfhp*@@%o&7 z#dAwbTF|xlsD3{7EgmC`TVZ77p#5b9w0qAms#-_MJpGtflaReldRD(66tCt0U|6{5 zwzlNBnjyL#`N7l;nsn5)_qz*(cR1aZHtTJKoMzqhF*sGjKJEe*er6sgc--O55am`J zv87&B6Dcrgk14SPa@96WPpc722NQ8Nbvz$XmWQ4e`AzNBFJpoBI>4qq*}f1xUkFoU zn%F^P7>F!>`Iw#20y-ZB><#2E_jd^WrJoSC>Anq!U46d_6SRR)Ug*AbT@FYRSBO^< z<;dMgvJ>|!-fQ1f3vL>$joMu0fXRKoG{f_|ZwDidhi>tTX4 z1Lc5t06Rw`DU~rawzDTzCJ6_t?Eg8YDKkXt#@SC_^bxE8szqQFzvG1|#W&#j-akqU z3mDQ#%9MLQj~=G;DV}=q&-x*>_8JZ{ovE`>Kn;us0_t6FT6oaL@^rzCWMN_9^gXhI zbhHIrL&9~9URqmcgH}PeCA0QSS&e8A*u_%5$)IB%rMI?6&FpR-UT?gI)pgx=->6fk3$gXST zi#mr^&xcr6LG@Sl>7al2E0g?=*bMZ$_gdG_#tW;Lq8a+ev5Xa;CpKQqW{r0_O;`q5 zLa?f{rv<-gCIBzQ{2l`PplG>le%-xO1y=Z=DIv6h2LNk~WR_>1cnjb?gk>S`!UWa*=+Cn~A_Oo-qllESlIi^==y%-b~Hl0$12G&uP$i1A!sHZXGA z0^2Gq%_AywUPuu=qsUw?*m23hh$UoFtd|n*pCZKZ1WriARsSI&$NhUj@>fTeo%8df zxcF*mwmoZLkZSDQcF;e?$u$xZ&$NE&iP9wMouxaAyWvtac(5D(Wk~e**R%cMD6nXt z-MRZSI9Kk%fM-H8vdL2~RvQDB+<`1cc{Bs*Cl0OT%KO05;k~cbHKahC=GaYJ-AB_3 zJ&&y=1;@ghsfN_d*b}d<%y#eWb+kGPu&e~c1|mjeY(A6s0>1jimF}N>Sis&)Fe9+U zD7<*F8R>!*1?>Jyo7d}bCZPjaJvdKWB(H$$l;i{`9q~9nS{F2hta+o~ZfXx*R(6pI%n z!IA&eZ@$^}&=u(^T zSR~5wJXkhMhY&mvA;#C!he4Z|d@^Wk1KJCt$UU%g0F6+6bM@dXg?7=TWId&9ZpsY0 zB(Bd1(hsi6WST8Ey+h_DxWaPtHqIN8^-!Ac<7Ko zRzRB-P>?!nV9T8g6aw=)FjyQpkOA9% zzh~NN73ohx5m&8%-<7PO-U?&l7HPJ*SJ3qm{=V!yyGGwAx2M2xYJvp_p-NH@*OBE# zr#^LT$~zZEx(IVWUxvRTK{D-xUwuQLjIkpBYDD&S^2))2&HmUGSLW?!k7Ccg3|WyT z3x2wY)fjXAi@hFN|JT^s$pqlmB-Hcu7on^uI4Eh{naOQ7C-Vl`UhppyosROZC4!*hW+!0 z-%P3Gmqz6oJ}G*dd2JysC3Q}_p|w!8f%-0CA}hd{ZP_#`4MFe1i9S@yr?oTGe;kn5pS9t*oHE(-;rOVm*2hM<;m`L{ zKxTO_RZ=e3Tfv$+Y39vko@e9^F^?)Wqt0UC86Ysm6)XEu1o}>?K{}e3DSEPhcPK3L zciV(RRsXUX0`5sWR5Oh4LSW(EiQXV=b#5%^Pft$A-*C-{G`zDR6p~cf8V}*&XHVJ* z8P8t-&hOUqW0jtPG7zm1y?lS}gT!Hpfhk4_9EY;M1)C|pY}Jqga-cI<Zkb3^sP8VIQCaBU2}aEdRsF(=47VU%gnN znD5?auL#^DC*P146pi~&LJp$2hs?+9zpfV&0cAkNuhnX?3Pyr7+@dODZezanSy@yB ziR71n5{OZHlYgQ7D2TtBzxT^aFspD?g6@g1#7yVql+)W+AAoY)CKAlg4>}qaeEgV! zD$t-S*#y%$#x1Pc@X9I6EvD>vVF5lDbD3YEf zNjsd%Ag!rmORk*A0#are=y%Req2?-;6%p|-wbPuClnhlUcuoVR&Iw$P7>Z&lp?Q`4 zp;Ul$YW5OOamM`c@n&*%BSCvwbOZG*pgyhIa;I~PLC5B$3b#QMF`TK`SIF}%LQpB0 z++CSL%RgH4X9L&ZakkE`DA~t7&f*CyjgN$&XaZxi+1)gz` zIAQaTCL9XbVVW(SRF658Xa`~sg9SGgAM@FFiZJ_$il6dloiLFCBr`B!NZnM;>L&y? z(DNnP`ayUrg`Kyi0C{m4Um|icIX<8#r*tI&>IIVk_;RtZjl~FomOEL#zb>N}+axw! z%EGoCaR%OBF-n%OBF3Yo<+j})7rCr zZ77RUcO${986-o$wL-3>3E-l1LIhB`{}KYt;I)O08IS z6pI|uv#<2*MwjqK)uZWHd>ne597Gq8t0kjRUdDEg0;lTq%NRhLfvu-wEg>bjfW25B z01)(oRiys@WhjYV@#`F`E$^1J6#+QS$M4zSm0i#7b=cAsbbnGsM)FMoBOzJ zm^cWG!h;s0Yj%oQ^-C4)We}iNImqHwBlzVpV5eB+MSPUX@vU5Y>)G+IwG$IIL|khm z(8FW>kuTYLR!d*Tihm0160V$`%{!=@_@`3+1wD&1sB&1I&K%U3m89nce~NVbIFZz)^|q5`;4S(K0T39EL+EQt#6 zVH%7i6LCZen8o2iU*GWe5~q|42ZL^W(Bt*D%?uG{lDiE6EFzafuUMG^bsj%#&w8da zVs~e5$3Sxta8Ltc6c5cwJ{xQRN*!v6m7}I8#06Mcw>a}jFime`qhWRks!CIy%kO5XbaqqFml$FdLm|7DgHx4lP*L`L@BSy`2xO$br;-ZC{%4DDY9qwPRR<{Av417INi_ldY;#B{PFzmSKaqr>2hA@^*z7eV|+gEBhEocE_lVk zWa^OwqL5V8v>Srlf4-v>jBY>GZmjN;*Jpy52wxgd3rrD)-E&BYL+vLMl$Ct-us}h- zrG|Olb|DiJ>hXm2%Cie&*{3fTc$oX`LJFd^s;7&)ARWa*eQGSnCXl@O)4{G_)NYRF z_Tv-W-`cI(!G4YP^n>&_vY+g~kTvpE(E^qLYd3Qjg!>uVp$SLGDkNZFlX;cHy!x7SEOl9222(X^OlG_02`WUK4UVzV)1aaSFfD<PJkxdjhXjLb_Zzkw z!TH(egt{y^=t9imQYd-fJc-N2yBO2=bs}E*% zNzR9A?wKq6e|F|hUIG{98fl%=tOE1>*K8HhRs5Y>`t3YMmV)UzS(zNaOuF8FYig zyQk7YPxz6V5qbd|`_+Cs`S($ALHtkE zw1W?lVF5Q5op_H!9Qr7l1RWL!v5poH;u-Q|4KxZBFg%C;52PkMG6-hlh0Hj zybDZ~#>dRE_ee=CkA$ytB z507`#Cc7Y=N`J#R7?^Vj-F`H^bhJVJ-H6ui6ML-p-CEQq{W2DQN6JKg+5@IwJm2H) zfS(I2+X=Kdjo?IuE~~UlHaKVOttDukU#V}F2Jzz+E7JXa@S+8?)mQA12RSJ=6uQ{X zxH}GX>m_J^ogTVRdVL^((q2=&CF%QD_b6*aeL=LZ8OO^fbFz%H3btUXA%h@sm((q( zpCA~5g7xnQ){Cxsw4}sVmS3Zl%Ue$@?XOATj&f}~$=2SeN5n)%qBo&6c~&F(_t?Zx zYkDqL_tuF$1Uc?a)nws@asV{jnT+kUFz~egJ~KP03?Lhh-?Z#%8XFVhvM5+yC=wPd zE;L^45R4;9hm{vs@}L(fjWKzbJzk-)7rp)~>akFsU8PKT+8|Y=R3CM)OA#8p>`{MH zQ=4Jh755Y|@nIcZfw{vi`|#vM9?q#4DH91ah)0~g{iWDixRnaKEA!&`;^JB2hol?a zHVyhx1@N%2u)v(9*XZL}yWDhoF!fp(srN1*qzKVvLjNNSe(F187K`2S zyc<}`I*kYRmR&X5Je^lh3fSn}{lA$Hwfs|nrDBJao7HQZ2czaq`0J1-%)h~p?@jVU zS#3&)SBd-%2i!h1>=f0w@*&QRd7`tw7u~MC-)fwVPiXlzcMRK?mSeG2jl^(A->zUQ z(}UUTzqOQH&OlP_+=4|h2l|xOpZ#gh0JbojDAu2>uu>iK1P`JNLO&^YoUYU3&tegI ztQ3;Vm|##*!vz>6La2T?%NfP*2FZR1(&6L2x~}%VH=1AdixrO;6gTypc9gz*o;m5^ zi*6L}{)qWf3)Q`S9F1rw!k_Ialg%9cpAUG@ab2mR2J8;|O-j01|9ZH>i!fPc>4vhl%BuHRWN!2F zE)z2|^V-o&gSQr-Q-1$`@^_IDoewlKN25D*qubI~S%(;I#Co2r&zkS%OiZjk0HkEpClpB6}+;(%1*i_z0Ni<4jtEw}&5SFBf#j!3P* zH5!0uk|ncBd)GMut}^}~VVvCds}ZVDc&jlW3|Nt-6L%vNGsfW`vmUaA z0t5#4=eRod;ICA0Di;-y&THsuNNag{m>e+7%mzY^y3VKYHWi6#AD=Z4KvD}fw=MdWr7=i-U9_fN#=% zo544vrbh77pPy+Dj32cGVF8UKz6(HW3&U8%a(5&pIo2l!M7hC`2TAKl-&XB+Of0HZ zLAkMyZ?8>3x3X=_f%wIH{QjB+?l0=?#XIv3Mqqktd%!!>x!+Qg=dlt@2j^WUx$sUw z(Y5x5&Zi&?5FyW3tz=h9Tue%6dnPpFfgv>QLNepE&IP=oys4)kDdI72zYKCNch4B` zdw!O`j(!Oj(dk5#rHIaCUC~%q=Twh6*4Ck1uj;en7`7Dv6J9Rs5Vn?%*Qsi_a%mg) zAbsRrC^x|>gHrQ+roVsqy2g#p`-yn>i*`A0;1BwjGceeLH!od^?-Hy*@BL~3$D3beg z>6IY>y@>R4=#!WYq>CIu;~Hs+w{E(%!4H7z418S9^e(gRr=}J6ATsgYCwu?l2kwfC zC_-Iw-lS2c)zA#lDT;`Gk$NhAr5ZB_ji;QQ>xr>u93X_ugx>gNL#-ellkQZRY>kJ; zX|@j+6fl>eg0b=B#A%tvaObnSdseNpfQQKUlP!lypF%Q4IENZ+Sl(x9lOD#~E5!{H zFY@wtsmrA1zW^Q|Xg|$H@|ELD?jt>`eC5P4r+HZvNcbO&MQ)y-G@S>tD8B*_&+pw` z=2+VrU^${5e?UJH_V+zElkKFzYEE{xsOAC9b>2rpEmOty4nlRT%>v${Kn{3@0CbRjg|bf>wtb z?yL}v1@;C_5S8}qyBH9>Pd9po9HUU7fCjAiUW@u)Usu=UsSglsEu>M4pE;Asr_7Iy zxQM$g9fe@8{^q3VxvrE*iiD$-h&@F3)&8u1aS_emF5;{e&G_|aw1l|C8`i#KL6w2I zjMM0q#^I=0*Or(WjzMG}P;0j$0etRxiOa%(P>rdEuZthh4!7GMdT+0VZF3d%vXRam zCP(X7xy%~QGxq0+_lD(&xQ*+Sk`Mz-;&Z@17h#tjnfpmiF^+<*mdRK;3v;g{b)4bT zbZZPqUcFwH6thKparrsxh|o9saDvE^cHikDh*+n2#CQWAs`aznrR{6)6m0~WAqDQZ z^YA4bi}Y`8k9j@Mqzt%+o*0j2V)5-H)zP^>cUSpJbsRhB+R9Z^3u_k^TRmPX(AQjE znp=<`KM~1cCx8c-FH`^S^J?$3?Qfmb_L5_`0N$DEZLuDkZ;Vn@yw4uRW}Gm*xU7|` z%xufYGxQ8@9G48eX#XLDtrVNW8*4Ve`o)CDysX}MMP!v-p0WqU81RMizKyXGTHi@a zVRk;mVm7_Ch8#N}srq8udR}iQ+Zt5Gcs-s`0_qx6j5hLjurdF$8euOnf*p#cu$ol( za#}`4Hf9tv(Qgjh4%PisUvsK6hl{0?^W@t{G7-uLbM3n(v?z==hh+i{C9<20f2nNt zo&rwATrWnVB0Dbb9*}wQFE?6z?XK9Iy|j2>yR~rJJ)tkojOOUNML#wjMEMBzhz(vb z;HPlk(KKtG`IF5|JHnBU6dn9QXU({47`VQvp9AIyA~Z?m--uFKWF%FST49MkSWBwj zDDg?g%KM#8WU0U3Vf9(|1;j=8xFeRPxf<{p{F}4apvJ2(hZiZJ@6PMieW?5>Cb-%{A608 z-U6OHc$Q^?C0AKqLx-fwfS`&l=&^Tp=E(dR^lkX5o8z-BX+N{~I*O8S^V@7Y1K=}R zUcW_4<1#tul>6+%&l6eBnr`i`5tg4>MorOM^z_Vp0Fv6{G=>%1G z?WEX5#_ODR)GoU@1EXQT6Qc2_=DsJ5ldQrEkP1UT4T{Mm)WulJG7k(dL%Ve$Y6LJ? zG%hDI7uk`rGHhumSsw;`~a16ySKz*j8kY?Y9jyr+8I9hq)k(n4jG-_FDy%3*IU1S>2?XGo$(bKj^0 z2SvN21y<wub{KhT4Q`SzM>Kx42#dnTMn4LJg_Z6UBbrpU0U4b@OoV#gYJgg>@wx)_=M7_OvMo=E1-=gaQi%l-A_Q zG?+qspz@+Df@~k6N!8yWAH|opeM6RVuyyzi8w*D#Pm-fBF|#sl4;=9FZ>FC?>9S(v z+!UM&;K8fdxCR0UWPw+7{4+v;T+2l{QR^^A>AzF zNz<6MwTCSR31rYtS#hO~zTsk~7nAV>L{oBm+@blTO^hvrs#fIOCyM%?aFL}lD=B;a_ui-b}ymgfI3UvG)|Ki62 z%QNCA>gT@RoDM4=nBEt1=|K%@^j-K@>899s9p+9-x*@J zZPQ)?iq<`~;5bRBplGWk#!8te(svi`pH7IBq;WL=AO0S3J>2b4)ib(z|@sp z95g-XVjh9eAeu7OqQIOwWDktQ349kjO{?|s*_n${TzTaH9;2vcFK)1U-gAyVnK27N zIK-Dx0VF}yS&4J=@}L|rw~2WkX-hPsvB&)^AAhUdLH}kH>l6F`Y!2iw_S1^ctJA!D zj=LuRU_QPYgPOppiYtUR94cRE1_ZE42ZASqY?M(R3zl@xHl~72HMNb{XGOu+EE0B+ zV(d!Y&Z+DXiqR>1v$4goz%aKGf)7x_j$4c=-ye$GFBtzLpj(Nx*F7m#z-j{`=$Yh332-;>_IiAirQi9py=NMYi`XWaH0z) zO4SM&xrEp?9+$#7}`&vALAZ{>-4IVQI3;9q6^TIu?tfyL;XqQ4rUi)U`q0Eg7$9&^DCCVGFns@$saX^% zGB+C>x`@`!4}N`6$YoqgaWfh3U(4=R##P^3fP>MT7CPbsfh@Y`3-~m%Zcd}P+2;LA zDZ`!R8V8khrpVi0p;LggC&EUMDWqLqWjfEe$xp(%@6|u9_8?yej=Tg)nh4W=<`Z!C z|5dok53J(<2LwI=;%8dBE2bc9rP5izQ4lx~!k$}Vf%;6exDG!0WsSu3Y6IcIVpagQ zD8H57bgPd~OQUh+6cVCy=bq=x>tbTiMy9H^tc8R*?I6mM*S7{Kl4E~BkD`5 z-lUxO?{5-Up=AR?fx+*H$q&~2!rOvOSu-;xL}%QWE&>TH@MWVqI~5V08)*5#Vc!np z5Y+Wd6^RE)h!M|&@jaOA;O>3Xg7b;L*T{|)mjcxvTWg!Q$m&3;r23A14mr^3%FIgE z)L#$GN`$6u2EULyfEk6F>Zm|0SUSzmRdF?)7vXs(s*J=htVm9RtC>UPt@oIvDc~XD z%|Q`G0(S&e_Gi+@%O&uZ-4r<+2M>*_(<}BSAtngRrSJTRB(VaD8nB{3ujXyEWT%=u zRly?M=kaR>3&t*3VR8{BXGFc z!EW^dgmK>Mr_ic~w#)7NZK5d|h%pd0-+x}G%r5UFkzto8jxIGm0(0Pb`iaJG-sa8*W8ESwJ!P*h9urfDAI;x25bJ=<9x>Ny`?x)r&<^U&4cF3O zu#oL;R+x2Su?Ek>(3mk!uZt{eai-0|uJ9x+AZ>xHRJhE794&86U`wXKvLhw|rg{}- zdFgPhOVK~pa$CT3vwv%gfdV%~+gGNBLiQU&>jM0ncfh=iTpv`E%pQXp_UV_GWnMp~ z+A?-$rOwNr$oA7yg7UP%H*dph^XtQjVY_Y6~0|-EOgv%8&oZ$as`#6e9W!R?0^=l z*Y=jc_J~DyjjqN-fL&-9*`pyC)y8?D#-)K;1)*A{q57qv#s%;r(71@;(w;?N!|C$9 z%Nt-)1UDrLV??TfPzg0ci@ zC*;xT*^Jprab(yjygb-*dYmJ&7$xs_n;rRV%tk^n>SYQDr2IL{XsYI$v!1P*YVa80 zs3uTV(487a(9N+Tbp|Lxw}K-G2r0RlgwWf#CQ;nk$fd~)50h-5sCp~&&&-V87_8lx zK#8%oX2&sGGl8}FsueTdHPeZ8FqD{%bUD^dcSQgO<|-V?63QQY5_dx6#gB|xp;rv~ zGNNRoOrdzt!pQ=nt1``RnzG&5(t)BlAo<_s_aMaZ_U1_@gTmktIVtpqv&)=_gw_Oj z)?CU`T%A()%P9AG)?Md^KN?S!22jkgZn&L58r!}8FwXJ!E~32wQ$hc44z{fWME^{sZW*`^I*$pH>=`;)dFbv{H8;8RXi&KJgaRj zQ)Yr7-Bnbal~7i11s7p`gUt?J_tX7S9>k(d?@>z(gs_P+OykG-2+N$BwH zy=xF*aX^IiUguuj&f)ktP`XOGJ2RvxulN#Tloqp3&oo_w#|ye<5oxte5KkZOsZg38No)>R3-HEU+;w?C_a z9aaJPLKQRo!IJ4%!V3bw8h6Y1-AFIrj5u~?ss4204q)KO-+_p^uN${*^v2j&Mzm1+2g3DOkVV5oyEOX z14ui+76!K=Gb{LxG_zxJN)K!2YQ8iofEomNmpq`>E|_))&Q z4=Y{xY4<@3kUZ`*;yV#S#7CqBukiSh!7we+5G@hX{|#_j8>rxq98*CX=X2IP-W>K4lP`;`SSf-p`APr{897|mA}TaRQ2GTAsEfec zEEx6tP2mzqVpaU!t{nusFq;E$4YRVRI~k{r2Sh^6;-?66-miO{qQm5*W!nvOAWshf zUp0g1Th?jA3J`iM@V@5Hc;Z7Mi_J={)fM+O8=!goHUJy!Mel5td00CY4t_d#&_D+u zZK&BE1~M+EY%EmvIHUO5z|*kX)1FrrMNV`T`6j4+XvrJvF{&My^7RQkRw~L7OXf)( zlElkfap5opQ#>ye%b9pajRKMWES;@fVDHH4E_k^hqJ!NU-Zun2a;kIfTD83+l51C_ z!j?r7tj7>v;^~%7E{q15GHY#1j#ZE`SU%k(=%j=^9u9TzhEAMANTYGWbeMtso<9{0Wzh3;DjkbhT+_XFKu-I6_+LW*6b;p2@&|(0wj7H; zznPC%?jf3*#a&s%d_&&yRe#V7i22awhL2Oc(4*}0m z-s2Y1msUbdk6z&byA_>Co#zQ;oS+*{LdE_J2mnnc(3O)cx4{9T^3#4{Uy>dAhu z$^K*GOM6Mp<>%N6P~t}zacp;0v+w38DF!6ZEy@4ORMA~Zg@;NLQcboMTWQ^3HkKd~ zE0E9T3AZVZmtSUD6ox&ZwF(oHU9APmh`7XM)zN^k0D>Q}J5r285~N9S{zdcYBruM0Mt5)V@x>)4Q+WCuuNIUUl(1piC4MG#HTLrI z60ei113xREiJoLw13y744z^}`6`O2wOtdti$AIa*b+xO?fD6*FKtS~#u28Ec-|TSx z^59Y$SDp4KOt^@LK_HQlxZj`ja@jaK{`yTVKG?RtuP8B=JB|)@P4MILAA4Y8;RJI% zDq_5DvmHv30*|0}4X^Cw)zA<>3qb(^nIx-4nCL|}2ouPDP1kE2A486uTTwv_-|M-k z->?G3e9w(ic|ddkO(T5v^p`u*IWPA+^;&UZv#vLQWDQ!cV@(4t2*Ut|z6r4au{@89 zC7X*ywqO{hqP3Zi$%qB$iiL+bT}?ztK1;&)lw*)VQ_3oY4oTqeabD=0uNsAVoFB|T zQ#kYg{=u12%1=D(3SA_m^b6qBmYNsEBj;=eTPng2HYOz_dpn_CuM9dgm?D4&dpa=Z z0X(j%8PLTHv1Y5?Sc}~lVWB0ArU{BA;RS^SpNb`XOW%Yc>5P{zu`<-dkB^TF7r@@v z-P^lcB0-OjJH;+NaszNUI*ln|5iRd9u$8i+--`Mc(xoO{S%>Q8EQzR4CN>G*o=Ik*u%)I!28{{ZZJpaZ1{SRD~Hz-1^6_-Ekot(n( zlYjj7@)!U=On7pz*@iH8&Dz4uAmevl*L_U2|IJAO^qsF$aDCE|wy~FqN2E~#6(=^G z{WUtZrFk_HCdJjl_28yLYWH z5N`W3TUNT01l)hbBM$`?Swlk_utGZls{2Q*|6hxqjn@EZ+PO3qPcZl8=rrKz=-X6!_C$sZ4+iwx*i5bXly+YS<2?(E1S(>Q6=;-)@o$(xCV(_5NFtxDoy3z zGuytI2c9isj1n8pPHT%%@HRKb1FT)A zt0aIOC%;(MyvR;}YXxF)6kZ+urW-|{TyAunlR3{9TYezg$mx?`Y*u=Z_#Tt?p#fJu zUjp_z#_eu>0R4NFJ6^!u^onYek`DtZo%jF)+M|}oL zG)($r{=dF8t!&AN|D#Zumswg`+J%tJfvT-nqJvDEnyhz!JSKuXgJil!fg2n4!Wrra zR`LQ%{%|l;;se-Z<6+|hwb!jdagrjPl1Sw&U}yZFQ!#S~=7q0-AzaSd`r3w@81j5) z4E==ik&)NxYdCu#L}oiBLdht~H2&S2hi7_sd67b3aa%E~x!i(p(3;>OQ+$ujoczmHT+ zb&AM<=YIk0ggtKjB;UH}*N25Gh*kMo;@jTAallGAP3S*tu@}sP`Xw;zZsD=25LqfQF|XA?Q@X#igN{ZUGBvQA9y&5*R0w`VTWY1RcM3 zyKT+%BSQ@ zwejSaSk1#hdN+Va@fD5tfOq%a)@WbKt*=qsjolnKZhW06F+{$Sc-*>^vK}gM`dV85 z7=C=hIt6ULG@w_Co$ie?52_}#gR#69&g_;N`>(B%$1BW9FJE>*b&^Qr;rZEVpIvnY zc-<>A#M~0LIXIu z`^?MB{QoX6T%Rg{SyUm@{^zF~Fm==tsGS?Iom(1|BsH9$oisS!!df#Hmeka}f1eix ze;E$HB&(#1jQ&jTUm~597EmhZ9kr|OLxelFj~-c2KM(VTpeUNR6Alh4RE^u_w{8*R z(qyz}=_INI1O)gf!%FKr`M%h}ferf;hVf6~3p!9`5DMMuY;9@=AjwY{F0d>P)1~@W zUHCGW;q#sb@R~g+thBaVfmK(5OsJ|;jV_jnvX;q*#}H;JsPBadxux zkWli-v=4oM$9%lt92PW8PA&iW^XG@Xyga@A)$`M)^RAxW-n^N00F_zGh2clICR1AY zuIt`@;QJn_yH@V)?G+9#fW5m5@CIXB?auH*14d6iv)Y5Gs=<-@j_)DH;4TVP`IT1W z&A6QzUrHH>9=k=TpI@_^&G>2`rc?AhJuxLE0s=Y241XCDJ&pwjct=vmn78Y9-?V>X zfMPx>E(~1yxbaY(Q<`LWkrH~^n3|wGdhC(a})YXxpu<4^a z)SJsyCd?D&;6hwTT205h8dl=r zYbg%Nu_7>617FADsFXEN^_#k7r6VS9+Vo1llV!y1aM$g?6As zZ;C7mKQ62_KORba59kz?!=7VlY1wR7Z4MAXB(}~O4?DN1tgPGtj_^G2ufnGt!+V#I zI0*CE&oGvG3EVzi8mFtcDQkO428UKY$2ZWish+1?vwY95;dvt?-K24aS5G z#yCn zP9BoDAf3M^kl(?uM+);}RbT((agv5V?gdGDhi|8mfsv0UIR7qj`?sWvJUyP6G@c!& zZ+H4`UNNxowKCkc+TZ|SlJ1@Z&@@U>%rmQZ-?EP8J%Fc^w?wDcN77`>6F8ryvEsj# znx=fk;RpoSG<4t5;KUfj8LZ`ggRD?Gks2V9sZ%rpyyW)4pDwAh7U*#;2*>b}8>X0|RW}{4-M|hQpO|>}jjj54eE2hY zB2EyINR4Sr&@0YsQMy@_7WS~z`>ZR=n@%?$pW4B(kqC4#dw9T+pZF+mSa*}qzMX^# z+>{p44RF{Ze*7~{e9$;B4{rep-Cz;-whjJ25#rs>M&=hMmx=CRO;(3J=-?C+s~_FeZ~D{!coLA=lfY0i zuamf8eCh=Zw-n>jhtM*P@XD&Gsd=$Ex?}!vP0ZN$_aC3)va+}buH*OZyJG0<`%?w% zVZh1;aPCyTN;bfAuU7h{5?M7DZ*#iNbp!TdGXS2XuK8*gnMCu}!2VQY)k}U*WO5q$ zoRatI?~HGaJ@xRkTpZYEdj%H*`@?(~4cuG_7?6rw7!^LYj*(H{ucq@elA2H7-DiEFJ(~=_D+rL*0~i*Qay^pR zbpRfkHe|qQQha<1EewB$xaS05-R2_&1IHKv$lHj2Dw{)859hVMmzQXzLCHqsjrYQ4 z8i%k|eC?nx>4P?FZ%>aod;=j81>UuE;O3S?pvRXt+(n~-k+xfA_ZR@-mK|E;-N&G*J1hZ zf05D4AuPNX^UL73|37~j7m{E_6`9LYM-{@t1+NwN3`S>CrKF_Hc}lJw!PCAonsr8s z+J;^~!XSpTjh&mj3$|ro$}D~d4huTazk>U%L0VK-KDkIZ%WJDgz518^D#@Xw!)o^&Vi<+8xdp?}u$3v+Ts>Y)qco5HC0!j^= z+pq5tNJxiJYUn)|p9DNLG{34~Mz!EXt8yet=Lv8ZY(3 zidlecl6dm2tah;EFacu-OEQAbhHvNrsQ@x0%pBg>5sW-SLxJA`V#HS9QhBzn!+v;$ zUi=xu*>?Dcr6j}cZsu488I6u`L_^l3q7Co3?Qf)E)A>~w7~W{Kj(ix()= zHMLg={|6n(LJ+{2u8A)h9B=BH+#mt6;iY2Azl%`GA&Urx8Ec}$cbF_Sk*6bK1gQK- zvF=^b`__RBF)b~vc&N+p6%I?-0rdm!cTROR8S<)Fwz3JR=P;lGNt^#OeMYA8{P(>3 efAGtLbF_y`N=%~E%XldGM_EB#{=KYe(EkGZNxJ(0 diff --git a/_images/visualization-relationships_16_0.png b/_images/visualization-relationships_16_0.png index ce466b0ba6196fb8c4c74096b0ee92558215b687..4300045cc300aa83eddea7c9780631c192bcb324 100644 GIT binary patch literal 30223 zcmbTeby(D0)HXVFcZhU%N_PtgC*c4{j(Hz!vSE-w53^8lx# zizOHH9}-jWA!tsDx~>oijtT4su2{0j8Uk_mQ<9U`^vXI~_Vgm3o<=_P931&)=&oG9 z9pT&GhsYh4U|pC-kBAyZUn@nOa!p4Vi7SgwE`v^ksDe6ufj?;Z79`3X=OQmS-gFB93i!@*^}LRHCyy5Ylx?h1eGQX*Ys7(I0AJTuFS7sbu|JR zR2s&Y(yHKv&m>6vu$N5-#BhP zG4P)5Wg;b3>2!>ADDrwR3Z>$MF&a%+(mVWkN~sb#T0E8X7f9Mh{`{PcYas#ReZzvQ zaX1p!kih#*Djw?z`r5j>yz+96UOEP_9G}FYUR7c6`3IHl34cdKEC0IIuy0m0A9rDJ zwLsce6Qc>3Hu54VyU>`jAdtCQYXZhMIdPWZZ!h^)2`AC4=_pn;0$`}q}ygQOT_rntBUBHcn*x%p0 zUblNi)uz4Z25#f>$cZ_)GKvyI>Aq9qx(yB#e5&1l#tWML-lbX)K6{1$aWjl$AM)Bs zw-ibAJs)7=@xOJmo39Bk?1p_gEmw#LIkqe=Vwp}gdE`0WI(rb4TGH`=aF7W_SONAjzF#fscM!UK`QOtgKy0G_t4NRFAkrsT|$iIFfPT zhkST=`1*P?k;nVoJj;DXcg&rF_xMon1`6q5Gh?*3kaIk>kDdd}?MU|La#o1qye*|sil6UF+${oMC) zG$fcIj7YHWEh)p^S7S!3oQ+juHos5I`EnMp@cJFO)8<_&v87p@nHD zx>GF1oNgoOsX&YY-R`22qv@Dh$tn1K&@(<<8him$qmSF=tY z4tb6pUML|HN~pG*C_NM`2o|1vz+8;eL3@fTLx+(c%%^J|c{I3!PHwQI z5E{~i0zcYGgI4Si|9*R;)F%-0(F*=uq(ytB_YrYzm^tDm8p6w$s5D<2zyi8#8#<_z zb7_(cRn=t95KH{jz3hok$s1N@?TO)>p$e|tqLvt_H1tMlYE+1$&Zl#7nspX$2vW?2 zwFr6SLx&hCPlXzwa{k;opMD^LO>r?7`*zy@FozPP%tVEV1d{i@woUB+X;0gAhPY6y z84HdxHl!&{BqR4)we79mw3}vwd?$@?>oP&YrZEB1)Z6dGAnOt%xpU1kr542b1T*!ec($a$4I^t(@$=~#7Sf^>ja3}L}j|*sv!gi8E7(en$ zqxBIKpUJP+DX%qw&x$s*;hKIiFN`OH3LfJP-d(FgEq>v!3(I<9gNI%Z6qNs@JRpKKABzinEl9&epQD`)58b6L0thH8|Kvzb`O5>KY4ZI z17BgSH;2hVjrn=uu!sC>TUijPjwq5`2&W7XUO`=$jo7agcU6G>TOj}ndtGqw;T)5SlkJH z6A(l*W8|rM#XAQ}pNE-?HKf*r=j7p__T#li;T|bwXXGeKDx(dKCvQ1;9i?PYc@ovw z;j(!^zjZoUYZw@&6o*<53A$ zM4!(hH@W&%rjpdCxLYYPhKH8BL3;wcxKgWlHG6s*^FUy3&GEIQ zf9N*0F1MnJ6xbReAtG4xA5hZr8JW>k6`;0+GNk{@9ckZyh)Z$^-(b}=jAZt^yPe{B zP%UlO2n`WYjUmU+kbRNS9qGZafE!i7pZw@jmgBXkTz6k96oy-qSRXZUMBGd zZui@QaLSq%UF?t;&sXnm6_KIPYHpG^T%+b|D|sms#Wy`HX|sk4`moQ+Vj!I{72_lZm&ox0<5$yWweFY-Y=Ny|8>}1A=DIU& zh&c#md=J^^5y+QSCfyy*O951ZOHQF5x?iQ66A)sQfXHR_$7qz|3)VAw4>M_!To3H9 zYtoF_;Uczd4L!4xquyscN|=LB5M1>Oy}i91NyL%7$AvhZ^*$pLE=zG)?2!2U83v0F3b*V$e%kJp;b}LNBB)$gVLMKG9*dfu-oo}MfN|8=qKDk%f%j+2 zlw3nE%x@NZbvuo@%Quyg5;l`n)%(hFA%qCmy|5 zD^|C6W9f`&D_)ye*AD^re-tD|)_7cZeoIs1{<$x%s2Ev-;HZDlu;HrP_coE2rH+`X zij#?ShGo_T4l67+*vIAkl_x^I@1*OQmUy7}IvW?jJB&5P^u-U~GRqkm8Jpaz!>mk; zt!(BnOQJdkUWi_8nOHtgcE5g!wWN4%k~DnC#t!VC9Udo}hYx8pV#b3&Chp^y+coWS zn#ED6>#b->?&rexyIw-=Dc^sGoeEU`VE~o({mJ_Z{h%QOs%RlXSyqL0EDgD~s(QjS zLFIBtpRt(zqBp+GZw_*8JdN6STpsSPXfs0i9+r&?QTLHBh;z%zFfFs)Q^#eM*woid zM5PD_12v_~C1YfYgh67M&@FL~GMq)FnP*`yRdb&?NS6d&!WV&3S8)IXx)m+wucGpQ zR?=(a6`;M^e5b1BmTmIJmat?*1qxOGVl)SM$$)aX2~xepp?KBRh2WlOcj#?FqJ#_- zN>tHyYf})Jj3?ILSqDn&`;Vz0KimJH#(gu!MM>k$m@|eO#a4B-@p!QU9CRmFW^(nx z*h}q;$AYzSoXN$XaR83Y#02ox8)Nj0Fk?z!btT!j4MZfW7z)OlW*fX@M;T`#XZeHb zaV1X!Ej*Kq$K$j^r3msaXL9sxd>enBLmM=ZQgS=Kf}`AHp3bk34ckhTQrWY+T6#9H z=lJr6(}R?>J#Hku%#7RA-KJA!BZ%DO&+OASm~WpPWzK^ucx%HxNf@bm{`vf;l)iJ)vV;_GDfPb3F{zI zUOvuAd!o>VnHM=3$g9lU8c4QQj!ds!^tH{_6krkaw8A%sr78m0L8d%hBh8)Dah!@; zMvId+4BsptB#UoMBs?VJYZ(3c*oFCb z0BQE?O19*JM+dF5~jC~TkP6Uz2E@P|4gTRO_9Y{ ze->4c-;o1t9U6W)`P`#HuIdK^W)Xdt{ehuI)=F4IAMIL4C+m5YE_2I3Cz2T&s^2Qi zLM&)j@naXBj%sQjQ_knutuXu6Vwsu$&c#u_)_P?n;=vbQ-OL{&6S~*}|xdABhP+dI-3vfv5Lj01# zB&81+P`020h;1tt)`y+|K6jE-92=XD6&YpPSQ(Nxx__?NzgCp6( z=tGfjw*?ViLMiI_#T6Xvoohna*h*66k}oF1; z^StKO54syh!Z%W8K6;kkB8BY_wU^ufz5Q&C9kmDF4cdwWovbbpj^n_h5h|x``L{By zNY-mYgsaYXT>vWZ8xk`sw4o{sWA%b=+I${**-2}SFUR2AYw^6WwSpDmxn5p{`3a8-g+atC33(^(Zcr7TH<_t!YTT4baMQK zt`~aNP$tuu2-Qnz&|<0Y*L0@#-35H#sgJgb{}sjRM#W* z5s9#aqGlDpwLA5lE8kew9@icZiRfMP_rXe^*v(|eMu34x3Z6|E6zyS_f0$~(I*R@X zoHGhIXEyUGt{1j@8_9*3Z^IH{oSC6L1W#A~XFu|a`L?$IdVTb%JYkpxNW_(W#^h&V zH`=3-+vbaEktshHd5J-Fp$49X7mkfKY=UI(eXjg@DgQ;xr8^uqa!PvD%ce>@(51zL zGROvs<_h7(;ceSx*;Kn=x~D(6c5t5MW6QdPqAcTb)NJLi4PajYI!92e2A;%+WSFPSI!K!_J1ji={usl`DlmJ^KKZ@*~rBuE68 zyIR0uAqk8(&gX(MruXnrz7!x&Q>ba2Hb(M0zH}b|qsuxtL^IYw@p)Zfulx>Klmd!6 z9~N9?5ajDCr9?%;v_X4PbzC+j;oj=}y#=-9x)J9{Vv<-eG+yn(t?r*`z+ zQm6dmVEyqEoV!7CRACaP{I|W6P;0EAF_O^6Q5EGpSs4vA0qB6Kjuwq&F|d@#Kk1^q z6MA$T(}zAlZ5D(iYv>gxNoSR_NnC9QN18x(Zi zGHc#9zROa4aFki={7)3I#MZZ>(IFWmT{O{AOniKZ8!vIb8IguKPobE4KcA4Qi4+}m zt_|OlzAixTI_rV+%w=_ZWraRa*chJ+g2DvJBebYhbdCWop6>xG2z*X)2WK89u58cN zFx5XIsOF(fbO%ecaJy3(6IjtqRWcC=Py7U7GR^5doMSBTA>v>KsQ%O`^a7w8#jfkS zNeTd9Xfhs=rKD9cw?LaPFz*f>Ch5+ZK?OWUi}1|vua#NJLCiAOskR+wl(SUVrGiM4qaC5L?h=&3`YEGY)v0 zU#?c@7Ncb4D(CV9Q7kBqM}=32d;+NR*szd(L_K!)K9*A4XL)hNSnlwb#9 zPxTbN<<7BtzAy3%ybs*)#K!#Ut^J*URmOg zhXl39Bb?*#hH@>Ffpo0F?J(%^`Q@1c5i@Hj^w9ql@I{E5tfW}i;;6m&#+Zfo^By{3 zEvwZa@JJFig&NCf0etvXa#K+PRqY3c=c7Pj|1n_6nTcwoDIHbV4tKcxqSjHnXkeZJ zZ`yu5u43LeE{`Ffq#mumbL>J8iJu3p0qikH%JtW^&xHRp%7zu{AafzhiG!{@Tuezf z)xgQ#0QO^Xh?>e#{lGwHqy0dF!R6y`L#P5F)`v!$ChHSyz6VulRTY3Qg}!b<>(UqA zMpzIv>(e>u_CDxIB|8eU(*h^8c@3A#kuTN%$RX<+x+&y!gl}`N9>&Wj3ue~x8{k(#juy={3o`BIDHnNb^eaJbCdr>I9eJ}h3H1EQ$3c;oReH=zb?ZXetG~VI6LUVF>({0T7jB^K#!t4bSxU%1eKx$SQ zr9B<{oKP?J=6i0z_+7Qb)8Np4Li@YdI$fNIu8;H_R9rtiq;h1{g8B#x&6|9Xmc3UQYq?;(wv@h*WD%49 zI3jSx$druSdR;_r3cw#tdJxSMtKVuK*we>$(0v&D>vEeJlJPkK;5Bbb{$mptJIar^J=81@q!ki&AN+%Yf=R>ln{bpho1LA`EeOrB=c(tSLq>hpqb}ftUcY^m;dqUgWvxAjxf@A)ebQlp7n!Q>O+krY`J5 zl(sr)yxAD19re0vVsyHeEOhT&bQg=-|Cas42Cm2u+YyQqDPqKKc9Ii%hUn4oa;;jI z`jl^bnM$l*dd*uyphAhsNG>A3rj}id9V9pG0V~xr_@RWiBE0oj;SNfO}sd2s7%P%^O6DZLcPs-QLgqSVNc3E=#2O&u%w@l@Tt=1|F6u(XMw@) zo}I_Qo>>p__Tka6`?>Xh)=HIM>rBc@czqRtgViat|G<+nk#a@zLmyF&h~JU;0nv2e z)2}_hP;F48N!7L5`*IKmI!1>`J1 zSsD|jg5=tH#Xd7-*DLxGuLH?$OSb;raJ%lP=&%#F+#NU1H9FH#23(sE5)+dOvzyXV zT-{InpTt~^h+eE}HP~oR3!Lc#`IpC3D3+?p^9szv60NnW4l3x|8mvOD5~;NxSE}Ea zX?Lb)(jsQQh+T}y0urMq1PMb#Qqb?(2|+>b_b=OqTpq&ywa*kt2~z^p)@W?Nz10qD z-VVE=&$Gkp(Y*jkmX7820%8a6Y4Lp?AVi3H~QL6N2!p_I+#gUK$sJKCRcj|C2qj*F9-yOQTryv^ePxsH4SF z#4;WQ_=-J`m!kVAeK8AO#&_MFv?m@^G-C@cyAeD-oCJFM-nV%FUAy!Vm1JdO;}tVC zO#y9apOo0QOv0(_d@C#s5ID|@?5JB#L;YZL9AzD!@LmM|(Jd^Xke z^z?H|9-bIO{M=&9%f~4LC`vvWIQjKDjbXPY`ezT^*ZDtnHI5P)aFxGSSXep2xc!=# zrhrGzTKSX|Pc>c{iSkE*i)N_0dhpq1zvse_95AWYi`jV|x=W*m4 z8^%+`cY2MaB9M|!H7vPcwB7Er-5-0lcmF$DJiGrpy7}elp2?wc9hojtUgfuKn%c7{ znu*c9il{PEPi4f{O22P?-R7l0w^@E9S5Nw?Lcz4nd=7}LgoXx*~ zncxw)>dNUe*N0b4p5P*^z&$PZ#Y%Y|GO+mE|jtj*g25-aEHG}bI6Q3 z8m6%;!Pz#r)9ZE|%l7{_FLZbKBc2j@fEF<3?!hFi=yv{kza~NddXQKUwh;C{Ws)_Y zg)mYwL+ZQe-P6%W4p{+PRR2szM8S8ZP?IpkN=sX6wJ#f42-@_KR8)4cv`_W~Khisx4&pRg?>?$0bI6*+ z*uZ7VLnc3di$G!1Kpz^Y&wKfLwg|Kbped#y(WtKPOI*M_BuGO0c}GDf%%-bsBONc9 z;Fa&GVZh(Ue6P-6xng2T2AXbHo#V@^p|TA$EY&=rC9S_pA}n?%k*lP8-UNh3n!%rY zL7Nl1D};GEM|~S3cH^vnYZjLDgr!*6nV0}{(--EqTi2C zIx~H(K218%R9^r(AzLtQX-;V=Id(`~Q4~})w;`}W##WMJ&->=?c;Bg5Ju!KIUXMk%Dq;0^i71ZvPD;y--;9CnuJlY^AR(F# z259JkF0_b0=5v0hEdOMo2@w*Xg$c@c^P#cE@7=G#)JG0B_2G0hFpG&W786{EpkxI| zxOylCz-`cyQF}!lMe+8wNVhjtMFS8z&dDa4Df43gzB;RTahQR#6g5zDpeddZ z#B*??GXQ<1|IH3^oh#*2X@rBlQXOs6UumgJ{p?Qwr&~8YKkkzPnn`gmb2Z`%o^h%X zgUu$U@gtyw#(4sHg{D7Hlc23{?74<>IcVuVAo2f#m6GUUhggr)u5G==G0k7~GX*=3 z-|48b&q9MxaSH6E3R8_%DF=9v#90%aaQTw2L zh^9yOvP4Z85<#u{i4G3jjtAtC%Df!3I z@p%S^em)}^Ji{|xfk+EEqED{~eAklXQkv{Q9jvOD!C93i?I!_^$QEMoF7>(CK7z9o zgd>ZGC$>X&(p{sC+M}r8(pmtD4T>?y-w{&eXv1@cZ8gF3`iT>siCcirN6Hu}elLO{ z#DGC6Tl4({1AZVi54a>Ji)dl1s1rF#rJ;+q)A&m({LViO zW!Pz%{Y%XU#Da-#=%gGtgdqze8W-|UO#jps4#u-NOaSGSk$=ey6bJO1FdR7`arl0Q zFs8f9@+4-@G>u3=PjSXlAT|ijfeg&EG-@fo0gVDlmj%%{NwVr94XfQoY99T=?<40yoodd-`XL)@;!G$kQ5PfL$Ob*%2v z%9j4GWaWj1A}UWDnBg*%eXbanW3K3;QXZ3GpBP|8UlZzxD&YVEk|-1MiA}D8$(b3quU?745-z=C1{9#HW*?9&y7nw*&n}ofS)FjM=p$f2*2AH@A(~`(r;}C=Vjg=MlWUV02 zGuU^pF9|5$rTnM{o3nz)(+&M-QxqMo278(*T8!}1bBTv#lDKYKbH^dI{8#6jLCI zNl>i3&oMh{5Umdi!Ll;CzE+|P>q)ZB{AE&;-z}JVm|#2K1C5}T_W6plSY9WUYAz3R z_xp8qP&)VP8D*QPmV3Y~t1uU{NG|qQlrYSEH8I1qZk*RKOnkKwM1Y#8(hvK`X3vIx z__p%u!#@QA)B!XwW7{Japm~6~#ekk~q=(A*7=G$FZd~VkJhiP9wf&mB4wF4+22WcZ z?Zo;+Ys zFaC{HT=uFjlZH>e4~DMMoQu_AG8F!|QVfuBEQr?kQSEhQxl^U`U_S5@_U?1+QD>)l zxkkGSe8u01C3isjgG&H-JD74N4j3Ga%6a}%K=t(erwjT&FP3T7p(RS(T2)e=7G^r^ zUl{}K0`3H~GUWD6;H^fQq@bW69cg@iZY~6}c6GPzB&4RL^*@T8uWFTrZJtL9(>G@w z2sp<3Q{Q3YvW10(v6-0&)l2~s05lt)9`7c_-vK=meWgBxLvGM#QKl2Q z@R;ns>|S1Y^XU5fi)%ucPyS{U=2choFoeE{S!uXp2U}KLxD+l1qAK(ILrcl-!B1?W zk_|AWndh>*&~}Q(TaiYU7#7kBe-DPXg?S(sngAH_bZf%!+DpTuJ)Jfz$!~Hu;o^<> zB_V8>NABE%SEa)afk2@=wlnPa2S!h?ZXmqdHp|a#P>@sMynb0UcJ|R{~!UV$`Iexg&;!?JV;O>Z%b1N@hnB)=T160 za8P6qE1ULU=tshDLkKbV{|pBib!~j89gq6Ox}vL}xZ7SK16H(Y78yD^@z)l;@9aQu z7Vr=X!QCOTMcNzDqn;bx@mP)Kx5odG{vUw$QTn2kcb<1tEEEXMIvpCi9U9Eew+609 z10O%`S6h(xJAW3ppbl_Za)NZ|+wPz4CN@Y<{&4)D>#k4e+0sM|Mlgd*T4HXU=D%|c zf}OV===mZ9wPs1h<$xEoj_u~=NCrv(d7?;`_fEP_qZ17=r$N-@8%c`UcfLmf@#@$+ zZFk2A{mzCGeF+qcvozn9gf)=YQ#D=&?*{c|W^$h_tEy=(|1r5-sPDr)_Os^zz=IXz z==vf2BTrQacEYC9K-?=xNAm$0ZWIG1B@58Ch3@^Gx-xn^eC&a81GhD}7$b3}O8 zxGM~;@ucm}X^5lYV(*Mm<#P~-gg=XL(GNNCZ@z!*!v?dxv%4$7&A{db?yDoL#)C2t z(K{ro!DXdqn~zTpGVFOKn&}uTo$myq8FXH*?i>|DKA)XK8NzT~ z)E-I-Bz8WV{kyy8=_iLN2_$f&2<21K(mVrFQc}oIb#znlFp-=6zD}ys#W=4XqE+c5 zmX%|zRS3>x-m+dC7?wAJ?~h{OQ=#1IbsWu{WB3}pb@BL3fxfb26`Zq^-&2McuWMi_gpWoSwUz7n)`R6Ulg3Eecw11xUY$BhpHAYK z`^IQdz+mR2taRv95rpT3{1^Qw&>EFCUQ8%E53&>)@BB`O1X&EFu5Ttv_H~70I6vO( zUfou&_+J@@b(_RJ=S9A}y!a|PZEJ=_LfeOf)~2mK-s zkapgKK3L+0fKX+9+qTbHZNIC}c^i?@|^XEJmxe#w04iH@r zIMew+Ul;CS&Pq1Gy9WzZh`cA^{45}}+|3Y{RF+EA+C~tK2%G8yGGqftf_r0#*s4G_ z5(CXvB>4nHO-(Imyg&h_FO9s{*;Cu8Uhl+UGLwrY0P@GDt6LGfVhoZO#MwMzKi#w~ z6$1lbG6XCPB_TtCcb%N?TK8wQr)9M2YU4kFy!Uj;Qp`b&@y`Ep+ASVw-HAlh<4{Uo zUVb5GQ;kT3Ud-u{KCbeVI^U{sw;W5St%#$*Y|Je}L2@NRaF+gr>uIZT{kqdL;@{7+ z-)IHO>O1uS1g(W)O(6i8@bBW$*nttz6S0=FJ~9^X^F@bdtSWL;>0{# zHmTYgP?nKF>i2ZFs$gr&_DWgV`LMcw1E^kPtgWq$B0o6;%-B3a9;qO)5Hng|x0Xm{ zCoQM$+}Cq4j0}WcIP42i{QPiHVv(Y+sbUKh2&pE_a>P6!@9qmp!NfgQP|##1?3^$@ z6OLwk?Dvm2H61@QuApzx&0pw=DutE;;GTFL{n2#!*%U z-slAmXQ(BlX-@%Mv^iNmEM#q`J4l%c5_#U+xjy;1OS$CtclfiouK-LU z-g19F1p9x7pWDPsuA}06BxYK|?ta3@pZSStN7rL1%CCn-$?!C8-xaig0iscBJvM-} z-7yqif4T;kujVGWH|QhjH?jr>O83*+zUQao0}K=`!NthN!O;t}Hcduo(=a{-a5uYF z*49dU5MR@XUUQV1riDZlVtYBUJhR^r!Q*UkN{7ttwZJpnr{g@(VPBuMr_rU3IbG>) zI&GcG>Z=3!XWnvf_dZ+hJ^*^~Uyg&9nP}7qqivODn z`0}(X`4kNZA9jY&K_aukWv|l^C2(j!JEywhh~0zZb+3>~3Ja~geawDxtvKHiN}OhT zbElpTZw(X~d~Z8@Of&a7$%0XEqrp5dvi9>~hHXVB|EvM5&aX!^RNHeSx?i%Oz$ z*Urs*2mYiX>CdjL=siyT70}=MvxzwH(TmItIZMO=0y_iZ^(5l$E9GF>uDv7GH(=4( zXS+-===kMC{Rz&x?BD-nQTy3nwSAt`r}uLJ?AiOW(et@ z1;gL0=hyALee0Ra_Fk5T;*hmS1*~2M>pwO#RDt?66espp9qXTvu7`gT#8YB}TLPT6 z#2-IAx-PO`A9)k-fRm{y*<5K5bc?vC>!*rPPAuk=S48LtpF|1W4T4Sw0CPPTCkOGV z-)ckS(~0!#;ug-x_oyxahmi{CI*)~Y#V8+*F;b7LkVfGevR;rf#qnq_j<_UZF~zZT zZw#yIG`5hoOW3xI%K|*vGF6)U&u5R)f)$9H8b(QD_cF=Ub^mnC#mIiCe-jy7gwvNi zta`m#Apo>jW?s=le`xSz6j%13YFs*1)XST{MBzu*r_Od(-nuyDA@nD(cJ40ffii@3 zEaqSKKi?pGRjicAnez?}qEp|BG~HI*SpcBV{p7AaC)^qgaDxJ@4uvAg?=9HdZV!H9 zc}~I;xz6y~&(aI;v7r>JlD)E%qbNbZM-c?P_N|}%!=Hl0jgr!et{^ysDw}Cma__AV z%$%HkBiW+Pea|hwn#J`Pr;&eXDS0%v)kw^q293klcV9wpPXeDrA8$qjH$ZvCpjYam z@LURp$tGdEHhi#@NS`96fKL$FWCWpW;YzSl8E&ue`K!V5|8sWhFZnhFb%Lr#w<2UhP^u1;Yl?IUxP zla-Zyg`)5~d{f9kgwDItXS@j+(F`qAK@KF7%28=?Fy7!36g;`QsjnBnqU|TgdetX*9(*0V)ojCg=gLQ?w5^?;*9{$ zeSKFM>N8yeg(PcF9n6%6(ko>feWXXzC{*dRZ&*&f#lxRmU#u*ldURr2(J_pj*Ff%i zkB9yEY=8!>A8HlXY1=>|PAH>@d?`|##;yxbt($xaQrL6KMB#?_^y$t^#c#!)+=&1q z)zXj$x2sBFev#y|Fbk0OQvnAM)n~n^$9zVm9t}s?G%cqn@du<3pv`oPa8p&qvaut!hWVog$eQUx8NXz3VO-?RGNIA^RP;}^t2iu^^24*d;K9k{(Alg+v#lY;uy)- zm4mRYCJC5M^Lp4Z00CTm$&-yV{WF%w%*@>JaJ9OsYovPK9c?zKwo#MMQLuK{}MpGLL>9mf=p$&Vh+zv*1%gdkZ1BRZ<;V@|{Oym20 zBnt#$lN-x%^NB>yrnA^-2LcNfJr7eXz&X~Tr-`E;8=pS$3)$a8qTubFbI=zvyFOnX zGxCL-E7B&Cy&;b#=ud%zFk*3bL^S;eN=i!~u8qy;BvzKfKK7-qC)2U2zt-3Y+agT3 ztd_p&2u3&q_sS4b~N(#%f*ZF8meiO`DF9L$bWe0tz9PB#Gz8p)*m=&KcaPP)Blf2tF{5KbW zDcy4FPNb!M2S@Lyl*Lz%nWj=H_cIMX)BLqiMSdSu@7(#4VY}x4vrE4@FDfs`GV4zO zZ94ex(NbCH7EUSi+I{y&i~-_`;)ue@KK6%i#UhVQUSyPpEfi?+>);m7=fHs}ga|$e z0IO?{u1p(O&tCVfA8BlWmGz9~7$yM3`tmOFW8B#DZhuF|j-$%5-hMYS_HEE(!~7E< zli3G}r`h&LBJfA0fm}roVSgE<|B+FrIymz92K5Zv>2Yc0x-22Twu!ze7rfmdjP+{6+(l6 z3K2dEGkV>%Lx8_t!2`&5y*i>*5c!eF?Z1ZR*xwcbFy(YZ23}jq-(igjcYRkV=zDso zI5Xm`Wzq9^*EWY$8;^eyd2JPx7yq3k5>Set)tbrW&(HmB-z#qU1_JS`%7e=!3qej~ z_q@1?(ZfZYnw>2uD=Qn?)z{Zo*U~~(oqQ|OkuyeA_fza{nzE&~g*5V$$XStcp~oUY z4t=-Pzi9C?~tG`W&Lea7h_~D z1N)}sXayi08_i}&$OTIXVehAMbm)qD%d}%8Mg;#wv=TwrRo*|>ph#6%vE~zVBE>LX znH3IVP5Uwj-cpkjKdkr>2X~LYA&n+`L;9&c2|1{GoAS4~CH$k;IH3wvMoZVbrGW5< zBAh++%!^T8qvMGDeG={U&T2Yk2t<3B96Jr#GqQt9TwW^Z74|dFDANUoS8G{N<`ZWf zI-e7;o!*w{wOpw37vivdE#3F`tNDf&s9Qr3Q&Irzmc`p=VxG=sHY!=T6o2>rO$U&z zzPoNh2gFyEmokCG{6ZMP%e3{0=WgMuK9+zWQm&_O5Nq3+ThDGk0P`h)>Inm%%u!&8 z?>D(_2yM~Sr0j>#T(H|$*^=(KfCh>j#-b@J#e#`m3nIj$1 zzr$<{nXCY%(fI@p{_cAGTjNC(4T+{=uxe93Nq2kdF+3zosE`mm(Cp_w6XxPq`yEf8 ztlP_Fk8?@FHV&`*_j9mYrSCFDVY-_`XCqBM;9xUCNC)b0a9SIlXObpwv!#s`_gqURWIbt*{K_UjU2Uv;Zgbn!jRIy>NB zSa4LtF!aoWuJ!DRf{tHEuOixN|^`RFN-zwnIT$Et^Z#XuvrFewh) zGs7svIzF4D3b15GCnuh|HS_X^?kp(pl7f*BF|4M=c9_T-;x@F`AlJ3s>q5z)nqn7^ z#A0=Jf&hSX7ZL_GTD{UzrAZ`BGH?T63WG+s*Wb}zN*~-@)afw>gkf45Q-eU;`JcQh z-7v~TPd)j2uN^?xDX(fyaymZ9NvlreciHwY%@e4tRT+EQ5;m|K#9Mfey{lb#)@#pI z*;#YMf$NPuOBqPwAZ~FXZ8Y}#*LystQSkhFT^sA!$D8>Cgw*R~1eoZS*V+m0(Qj}4Gxu1ij!bvxiG5$Y#3~xU z!U>dPaV5lv(;(Ew2vhzw+TW2cVLuq5=I+rMAbyry8FM=vI>D59r?ol#n1AOxAVU4- z+SdE{`>{{lGmQb`cZ3!xy(R4TV{vwVEAoO8=;TX*kpY_(hOyu|=i{nM@puw{X@xZe z5|cZC1>Y^2PuF}i@szDT^Zkld;LMJxCi+?Zrv{ir+%hq8xC?YjREYsCSR#f*+eCdN zIR;GxA_(sj*gM05S0o-D24xg>Ienk*{Vd;A=nKPCqeqB2-B8}h&8HD^lp=a#;K+jQ zwWPKSS85~g!ErRN8m#_Q+X?ALSqJ4Tf9!)k7UfGUr%mmmM1)beFLw5QAg%EDDAI?v z%`Zp%4=+JQ!CPjO=nV2cv#b6%dGgtW;PiJ2;{=!**YzUG^nPz*>v1qx2mY$1j*^R` za%7?O2T(yToln?+VDE6iJ1w2;-zZ7%R@L_T#0q$rja{aAct}fA4f07@Ij@%-JpmY; zFfC?gW{JAv4vIh6650Piy`J|}fI!}X&b>sSg#HhhdL^q9y%T+O8aIb^er~BtzhEv+ zOE{YIU`qz?e18_o(YQHXXBE#35ai~%a-s2i-^xt`kHJQ`>vi=3!*k#Sul=g&uAZUp zG|M0C!|n@!^JGxCFi3FcR>0=!^Ne^VJ^B3cjD>^!0QP;(TIwCDOo?5pOz~m#r#fx@ zkwz`Gq>BrJIf86~nw^_pjyl{&%R7qnKZ+;3A=QYGd?$wVDLf(c{%Fa0;G$E=Uq+ZD zNHU-b2?)Di;zWN{;!f?rSk;7saNdom34MJh_(LrB3%MYC@-LVU`%CQ;<%b+FL+Q>E zX(I=L1UUwnGOyX!)9Jl*apQfl7RUU2G<6z5{eNaVs&oMx?X&`rvPI( zo~fv}&mP?dG|Bn%QAwLB!e9r0CV8!HV0TT`zBk`K|ws#Ul7`x6xR7GnQmQ-yVgdt95LiQN%# zsEC1!38q3t(4MDk9&BykR<6)9E~9s$q@fF1`*G_ZIR;uYo^EblgDV~Y7dq|knejYr zuzZ#wi-#z3VmIA^R$bFrL0P8{U@fVziUgNFP(P$CJ3e&Bylu;ikY96NK8u7?TtQe} zA$+~Jxl1~UcnL1Jqb6*g#v0vs{mH{ca3YTcIj`>ogf?wt7*J9;7&an*aU5C_XYV7? zs$Jy@yzVXsk_NzNG(LuPpEgjbbc6a@)8wrr0u%#)?P{R-6VPBqz%Mrd2j-T*D}cb& z$=w%YOfyrg5yBM5iG*-^^`>5Sa@c)nNJRy2YSr&A7G>bQvr3NGJXk`gD#>R%;uqFQ z&%o?%wY?qb>7M;T^u*2@bsezmn{5q(#@fn=*h(GSfJfL&d(#gJH#K_UHI(NYXzH(W z#Nj+*gX-$w#Ln@+8s2A&hzwPaWN3bv@gJzn5e9R>j`~9GmDRDN`rQGKi1u5+a2t5c zTL316Nliz`>cS}sjZlPPDezd%Kula0{rum8&u?#giVWHB?I?Oj%I}a?{tc4C0+-fF z$Z?-q%=redaVu)D>~P#Z3>2pO{kUpyhv197ZQrEPA?VV-evz1)3j&q|?9ytcdiu;R z&{{XPv@V^bb9r_@`xbB1Wag!|>eP)TbWrxg3Gngc7yoVl zz)oHFDwkH(45lUbJ7Nu8A8gn+p51%`3>}*nwve|Sh|cc4>$B=^aO?Q(x!8^QLXynV z)C%tQCA7}VmEYd>vpsE1%icqXA_%ZSL}I{+)BQ%uIJ4_jwJH(9J`q%?23zuC?Z)>`rXJ*g86FU^bVuQSj+cgJQ%EXEj0*I;~w}6^6E~X zE)0_1Z%GcF?GKVNXCyciQHr^(o8RA-ossArs;r`IrN;vA*Zs)a0r~ypWV_OS3gT|n z=&%n4{Q-f$k;YZ|vJUNF1Z32fI>ve8fBpT~qko#>#u1i;S|8#&K|A(qp5otatQoR< zn%8E$pc9y-$l|uOq7++`3MC+n{!Oy@IW*fufQh_*>4S%gxOPT<`&#~g4^T7PdI`41 z*jJXK+Wl(~0PyUw=&c02H_!Gl0%heMCP2(R7)IK83|TEt{GdN!OQei>-W_8_dX%`~`D98(JBRZAWVB;>*^zt->qY*(5y zPkR%zRLa>q97ocV&Q{}rkf3g~Tnb!Zfc9f{BTZtL8(ND@A?1JOD~2FoyvW3hFjW8I zcRrv4{`C*7%6H2*VCbr_Rx`xey+2)wLpnh(na$?`p=`54NA|G?_ld5jfuMC{q3NM1 zou}_~dqnI0KK#@5(8dw?*AbYVbTA}yyN+ADu!Ct)VAPAW8x$W*fxBSLN5(1{zd^S4t7?}T8Z*Lh@ zRojM(E$>iXuHQ70)!Vz;qM#-VjRJ;%Lvsqt+vRCv zf5uU3-X4O8LCb$6T2sX3k8zV>|2yaY662)Mv*u(i1wL@fHnwe6@si;O@-<(FYtxm{ zj+7m)xB`dLY$37;?%Ad>2A8cG0>G;8t=2NQ+8h)G{q=iK+8huNot?h-Yo{@nV77Ae zdw7o@lBzS1JUm+)_sI9|7D!k+m?`wIW&|K2sh<1o$n>M8%3^p<|jje@j`sK)o zh1)eUh{U1Du=(-SjoF4a(yR1~xXS~RQWQUWG6KPb19=#;F%v60Lu+k>C97^MCjsq^ z+s5?lb>?EZYeQoyj_aR2+D@M1++u}y)Balx!ee z^b&E((H}_wq;?qD5Avc{oL-lb9mtrlr26s+Q#1~`|_{_FFkl- zW41nRE}mz$?D5_Z6JEqFK^lvX{f7fMF`h&2@7^V1d@u3f1LXE$a3(DSaZ$}j=FEjT zvQA+?rY_qn-m&%zBMoSB=Wn`{&xrILX97gnMlwYb700hDKdW;Yd4ZQJIh$#i>N}7c zJv@XDQexpOkjtgI&=PV+bxHJfkk$Dn$Q4!v?~6Mq?GYEL_r3$XX+eaxK#D6m4X)!N!{0RuY`k%^NY@D6O2*# z-_JYOTcJ`(68(65ew>FuUe<{iH9K@lGVgagCHs@IuI+TF$~Hiz?NPk)=)stfUzKD% zOAcRt91>ZTRFO{8G>a3<%ez`-IwXKfNHfMm0_l9ppw^x5wU{^;YB;EL+cr%SDGi81 zA_N_YmsJakCD3TY{`sm1g?;%e6BbcJo66Y$Qn4D`kD&Pg%~VvN{G-ZK4)%u~)One} z;Q4nvorRn0zCY`$aqmd*PnPmnIqTKCvI!*&;CZ<&e;BeGBYdE8jV#mYK1sy9>41%Z z&b$n@{J|QTJ~1^E&GhRU+kbL0g#!pCQHvEfhr`AF6eu~E%25MoAEZl<`e`HaJ9@*G z*hl4u_G>FAkp|jr_Jhc5CGWj&?^X}|F4k-hz2CD^(Z0>ja&rg0r{^m>{22R1q`d2S zIZpjOc?sJY4UMX(6(1v761DhKWMw`FR)ZZz$-A0Q1wVcESkQ48u z7j&(BunPh3Yqns%yAwLm83FQyCtPQ5zT$@Ak7k8K!jcpEt#N(EDfI8EeLEcERt^<& z=pzR-@I5NhO4p@>euUqGXGuwMVY~D6nDTl21~5XzyD zqCtB1yXI5opg9BJwi-t+1X-M?`P0k;` za}Jj@Jsfu*;tECK&LB|R`~G1lZ|AqOcD%ISNVY8ZtB*W$hi#;9yek*Q;ViV1oIH>c-l>Z zZm|f=9d*4@%a3r{E0d!Tmx)CoUt43rqu$l*&EJz@Oi-<(8vgk+v+?fa?aAZM%nj8| z1aw4yLNDgWA#tN~p?Z>;iT|MH!Cjfc!La=^8jB4je-XFw<W| zNX((ak@}-A*A#%O9F^5FN4sb04=TIwSG_u&pU*4cd~O zk3XCHRQb1eSOYL|jZ6)xNM@0uX-(9%fJTYnT=BziZ*)ednA_jsNs$Y!f9=QGbKbt% zh(HUw-U#N*J{45kyXVG`Khcyq80D4Ytod2m2PON6d6JOqEee#oe@ z8z*cn$TF@Mm*5~93(Xae;dA{~ERM_W!cMG%#>(15>}6m+yG-WMPl`Ge61-ANhvM<% z{*oc;MZf@vDAB;KnkVf*S4oC#_T?)3RTVMO?N8k2#OZmve6A6LI#y!hL5C5uV$I)X z76{w`>i2EB0>@JK8><1>LI44ElT|t|i9&5UrKUHR-E7UVef{+PV5QlOcyQq?KgNFa zwNGr!btqF_^qkG6IB)CNh&tgR4{*uE07f0$U(fg7Ua6_+n;fkU*67TOZkN)(#1vC9 zkop|FzciwE$!IfzrbbE`pRqn|- zdHeG~7sD9yNCZLrl!d500aW;MhDlIDA@p5Y#dFZ-;{@BDwVtqR6d`@K5tpO*T{lJF#C}`fCXI*1w;cp8#al$AwF+C{+%_$V;}dVJ4sBp7(8rhBpgL zhxbY*Y3L;L`nNz*!%Qy?{JzlHtM zFGlg-FQ+{#E7=4s^LQ!gx$XPik^D32u^P9YaDn6z@HENBk_+wk9^ANyv@#@z{M{Q`fOKsWr&`R+VKzsA za|KN3w)|uibjb-(u%diIsZyiQ((e8m-kQ3PpnK$I3Sqxl9`k5dti|3iVFIL$g4^|XAQ^o3Wn-Hv4FasbT znhcgH$d~*9)F1kb1WO6g%AU6yLz0ujRe?>|SOfgCa44{M;=*3!iicVQSG@gaHaZ_l zY|!l0FMq=%Xi>Yp4e$tcR_!SGyzHFhlKuZK(qaKnBhFkhEc13d#}yTBq`?&XnJc2N zjms`qJRHcx5X*bCx0gQ+6?!;>T-iL>M52v>^|+Ro;y7z}jKpt5Z*fJ5 z(Yp(+8wwc+ZITXrc`y<+mR*U2Z0H4tMn@*V6v;a2g$g2}`5_8H;qc&|2-e%81DCKr z)eEi51cAFtRf_ZC9Ke)<@BCj=Z2S+Z_5Vcc@&BK{1Q{Z1{N?b@r{~-7n}~)WG?P2( z*P9&Xq1PNrt1T*#M@qvUL(1Vti=b+^zJGD;zjb~NlG%0;Ym8w9Ni|wa=A0)QS3oI8 zD8PR|6q|#ZTpv`wQkGDLbNomf=(u>%MHSHn0KxZZ7)A$oH-7 zr1)(AXkGs8>5riEyq_UpTN@_!e+}X<--Czj+ux6vMvs^Uu;Fp>>pP>eZa>b_lDYfe z)zh=}uKdr{a^SGA9Wkwt*g>MY@%duOEc|{1smbyC`bI^%`bD}#%D3Q|&}|!8N!%yT z-H0Pbsb*ebLn=DQhYRxfO&o``w-xecHz_m!OeYsFo1Bhex;pS8yH^AL&RyhJ)I*@M z$>3weMXWy2hAMJm{vK}c%|F%H0O}Nr7`xW&94JQ7CuNJVosNs>=4uf-SxT1ct8opw z_B3ebK{Yis1ShI#W<~>DVpwuKw1;u;-e%Z;@^0{iN|vC4Y99z(5a*B+YMnYxA=DWF z+FfA|3iM!f=38A~a^ex(l)Oxb{&3GWU>Us|O^FE!yfGP-n220)5FJ6ZSu&tte^s>) z@-j5KFc_7_v(LG~IEmn`mI$>}nePS$o!E)FQZg6a*#(RkZ^zT{11zN$^fiHOPA&%k zko!F$R(wD>S4tkcNUJ7c(t{4k70;6k=|SI(4Z@?6bzYC5kdp#3c^_R_0f`>LO;~Dq zPZZj|IpyJzIb3L!77n$RGul~i?CLN~O>z=P6KB`<0%Ao`lqgaW1zMR%zpZPt-uF~* zJQ9fm21Yju-uLOOEOi19Qs5`&bHA;?nPo4R^VrH8KySb?;EIZ>iX;gP(V5>(6B^m6 zTbh!NlV7Ow$n@663ux*(7F1nMfTsARX zs4-fuVOOxd_wr-LS zpxxKsF;Eu-A~$>j&*x!e_k;-)3n{0vy0E}}f|ihEsp@igNqNXI)E7N04i$v&n%r=^seF1p?lu{x0q{6}0mT7I!?@R1O=Y+V z0QoJE{sFiK{js@Cw=w}xUTR3}=r9vhFlZgZ-G6Xdk?hu)hhaRAew0U{<-dkxw^LVM zx4Ld+9|w=RsCZTFPdh(3`f^K%D3LMQMSefJ_J1fSb@PUr63)3PX$!4sBb1LG*gEyAKdyce*^#DF+x5h903Ip_=jhx@O7@I`Pj zYMe!DWDVYLkEA~X0$D&4H4I<``NXAfnB72U`_9~ApS;9pHH2!U{Ouxa#PXvXTlMPl7In$up#`p49#fy(ESQ? z$FLLMO<6#P0r)<%2@2WTIRR#h56GYqmImn*1c7u)N_U58BQHRbI2*6!;&nsIqw@MU zm)l&tl)th*I7GC#kskTNQknYtnpZ19w~3P+17ydN<13sWC;9Sj8J@(D#&;9O3o>!1 z_RxZClGUkJ{or60puzwf$yKKYSIcr~ z-~t~!pe{V%s~ze!@{&ds7ho0djfWTwp=IK}?9av_gdJ;dw$m{}!U``Y$d74@gP~B1 zil>4nP~&78D$)WrkBfmI2+z1Mj)q#XL0=hS$`lVhmp#9`mX`QRr+C7ylyH$4XdwT__|#pWoD1tOjU<*N15n89;}K ztb>7!gu$FLU2j77N$+S5zs^7({Sym1?-)TZtY&r_V^9s;iZ-9DGV(co@Hy&qC)iC% zX-e9HTf?Y9l@si(3nnP3G`JMF81Je*;m%vBvQ}a=`7jd?K=Z&5G2S3_$>p^kNNR{q7OV#G#^<9{XOdQS>hyV zd>{I7c3X`s$#7b*`j5{QNbvw^mE`oO)}&Vd_h?{&hkV)wtxN}f>dwDgtfWEsmTgq8 z>ng{Le=KdH9P$;gT}#^fWz~cV48>}8Q+b_Zf70%Uj5y;Mn1L?>K%l3e8_}~>Y=Z1EDzr_ zmvI;nw4mxrlSwNM1+3TUKoRvg$v17AilJ2lKn(Ynmb)Zcvp~fh6(p3Q2JInk_wej? zPf9`051ijSN}ik0kMA~5b6_duRKm-9&=Toav6OW^Ugl7e13I= zAXb!Hf}{g|wb3rEXB})JXy$qfIS&rW)%$jqc+TBkY@(sLdB=l;e&OcFh?~ zZ|dN&X>(;IrjGEF&-6IyqtFL$<{OAyX`RuWEjI)~C5d$PEoS(T#!@e)(JVsW1&P|i zCD?tX26=Wj1Kqdu7k z=#mE<2pRDgu#q2>P`z=w2u#z{Jhf=qI#ly9md6gDfWpam!Z>xJxu*1{Def)-=l=bjLaS`X_;!egE7;cefp1w*=f&K z|Bgp53a5qF2(P+EKUdaw+cohB$qQvU4R+TQYpWY8;ecNgp-%hM=1`qdH}g;k$Pwlk z0*YSkid07AR^}Pgc*eBu2jaqqZ5PHJR*tLla%e zy;q&=`*3W54Ejhjh?~r1;<~<);ZLu;e_wcu-si6ODxceVqWWnL@Ts7$zM6DJ`rTN4 zv|%!8x}YMp2Q5Qwesf1oV@FuSNtbI21B~K-W)AkQki*WjO8h5&&?vhuTH8{R(-O`V zL9AoDp>zuDKm3<3pE7xf5W>F+S_JDs)@euB3l)ZIj|a#D1cHDc4&EOYyJ2;zr;cQ; z`fslsef5!iXN#H>JC_S9_mc=6#=R9{*52(ZFWsmX=30Mm$~<225a_<4W23sEYw;k{svE=sgrfwtyH#x+XANx^my0^Yw8PNmdJQ#&c0W& zhOo-1;HCrVL*PIIta*nzA-kO!<>%X;*80vMO-Uha1j5=hyOMJJNh&aXlnU8x!J=WF zphfnGJ(+t8v0gvQc%-YqlTm!^qrWvB0eOFMW9Kdmp^tg<9N7Id8A6c@P^AdAhS@Qm>I85}bf2HR56IdIa2$qN?Rg!Ag?L z*0B?Barvds1vyb9Z*^KA%mCJ)cmE(pnb8~Zq^<^{h5FZw?p|$_53h>S|~g zt=%%4l_BlS4!k)@$LR(p&w4f-s~aWz!=IeMt?B?_2*t?kou<$1#wpVUDs0Rwd)?_&QPIeW|$o zT-3vxdSj62oGlI{im*%$g-UsQao6yR-Rp2ZxK1MK=+U1NbcSW`JKcSuXL2^`RtPy* zn~c5%Nr}AOp~=aZ@^Udh7!$AuVjI3+@fTpl_xUou{_%L;jlPD+covjC#(c);g6;%g zsgYP+La{I!OZHw^!GY`(I7rYpWKScDcs6#+;#KhY-Q7H*AQUPqFE4MR@#O#+V3s>@vq!hF@l^yiM zg;Q4oZB9+7EE8WjuNRm0Bg$~Ze=Gv8hW^VGDw#yAO%&m@ap^!0$N#WT@|qgo+s-g_FD}Zf0}^6wFykFSjD~*_pz|h@t7uCJRB8ULuT*tfjz2Fi5vkz> z^h;6lfBNF7|LnfQfCT-`e2-8sT%`{#DWg0eYxRPH2vZdkhue7P4C%;6RS=wkx&W}j zYep8Vbwa{=4_Aq`1$cpUtJu}U&#XP1)O?W&?j=D0scHV74GH<*DI6Iza!6t+QM8mK zRP0dVqV4x`s%Bxu{q|PXCH3HAgn<{jy381)Z1Z~kKZh|M=Te9-m!Mdzi>s@vGi^M# z7;7#P`T6s0D8_L7;t*o#+qagMYhF=aNS^BV@Rtox>fXkX(6GPUf=|WB?uQHq^$6Gh z_ad8*`+b&T$jbcR1oG)R?BzcLJ$t$T83kf=21y{{d*FCCJ`W?)3WLbIAqF&bT9UQ z8bK-En7IGaIb3RuYc@Vm?6UX*{{#VY%dk>Ed;WZGXTmumKi?#7AIe4|_s1omEEU5l zOOMz?!(OUSllzT3;|?;v2emIXHzT<3>43jSm6>L|y{^tM5F~^zDn-u2zD~VBo3~dZ z$$HXb!~`wp&IfAO$mo=}84vkwdw}zn(e~_u_AJoqK`03-am+k2cq=t$F-`^7wYSQqFqm@XG!?1M<{h(gFt-KMuarMzAZt17-zq z0)~~5U_DG$pdN=sjlzkX-j_5P8PmGK)*g3hO=bu5getnzq$@Iyf4z15l)x##N-f@j zrif^B{1{2M0;)!~4kN|Z$nQdiuTYvOmSjMpXuC`~mbtwLv#nZX)6HB3i|%>!dqg~< zt#xU6dBD@D!lv62hQOGEgRm{oE3vW7@UclQ6Ym&>yZ8bsR%1AhfG!Xo>xq+F;`8hh z#ku>N=;%nfe!K1o0Hso$0^KsD=+kA1iS$yoJuiE(o@wXKDRzL#Fs@`+e(#&u3gb`S7^_MeXX_W^wEhzT8A0tr?Cs)9uxTex9^uwr6$1!|PN zkGFlH$~p>HJHW0Jt9o?cx%25CMpqn7pfp&0mvO$f)$r<)h6+v5}?%711A?-YEiK zVnjREYVg!j79T=|dOa53B$pdh*t|J-R(Eq`-^2EBZ_{yYver)SDUr&qtSRuxSAbL@ zS-(5&D^5RnaC>CG5!BwgmVcKI4-ZpjbRUBq0VE#>vf_1^5ujOqCZS?}wx+$5Bfn5x zO>{JQ1j=T%VPRn={-)~<+v-v_T`7Z^*JZ*w(H&hZ2eYR1B)_zS>BOA*Cxbcy$#rGKoTqk}o#!y{^KzZM6? zJ+A~Qpir83?-HZ*%PddOKPFa}{r;>63#tOqoY%q;k_Iu#Z~uETqJ>97iT>)-RcKHF z=C#bC4OVE!KPC<<$9_&5?(Cr7gDqP#Z`()gLi$3Dc`M<{WGw?MfitiA8>2pm@5b|EwX1sW( zP4u;SdpTAZ<}S?~t$A_Yy0frg)14Y7XjIj*u>I!VFVf`V?Mq+Xe(y^1mIT+~IsBlo zy|M47$#{b1@-JF@dwZlvjgnc)do}AW=L!ani#Zml)>ln9h2+|$;{bUHss>~Qx<$bg ztKr=?ZHN2Yo72AQ*`=i-=N597<@`6J%@C@7ii|54Dl0piAdx#eD=X_u84(Gk0ua>} zM17kT-2EEy4wu;gUM9Yyn9{R7F~ae8?*@W#e9*~r;YxJIn{C$W`xD`2M@xF%J7cz- zQ5`FdPvJT^LrFp=Q7~@`k0_WSs%3hnJ}00<@F=x+$!HPN{6gIJ8)656iAR1bQPb3v z8cOcXN2|_uR|=ee?;bvUCExt^T@v!0Kw;d3VOX=kN?aP5=`F~r(iiYveLsSXY+^ih zs&&rAyfcvpDf_ogxKDdak*Z+YhX2;#i`}b@8wPCd)UnHiwSBk?1CA{X#@ zBeQ=q2M8y4gAx2XJ|0DPPT8H^ZQSmy1ul;5p1r-IiVDRsP!_YQs;ahA+N00l)4ir! zVVGAWth6Pf{&z6*m%4r`E&#TxoqPn$C8L9*NS!2L&~KgAyS4RzFN&~vX6E}|M~5;Z zQNdoZPTmnG&#{7z#}U;}Wh@PhY1H+Wv>_h}!xl&=&InC9=gUv^`^05yl6^@Q#=#^p zGA%~VD6W6Z{q9srS|z&ZGs5cYot#HAZBbF=l*|%jrX|(eDX#dAAklD`#pV9;&Y8t4 z&Cp%4fW26Av@?N>(CSK+q(E+S6R4Wj^Om!kJtfkAwtQ2m;ZkaZcxBU@5sQczBHfxl z^0WR^V?FevwxR}Jpt17VJHvLp`R_47{60+NV#2vP!Y~Z5che7-1v|De6k&=caV&6D z5gSeIGf4_(p&oX{C~)b+2lc3$)3RKa4g3!?Gz$1>aA7y#be(7Yynjht0w-WGcaZY?kZaO)uLQuO!~};GsZ1KweyKW@ki}v%tTOy zKm}!c+ksZ;-d|lckM3ktT0EQtfNFnJih%Y44vkew60lHz`}F8{NxmA@$z3e`rr-+v>YsMDQv}x?_ZKDz$>J(J^Iy`Znn-xCA(TVFbbW(F*pV|P;sai z?5%^BKL#Qlqcg`l)iKX(A<)V2U6bXF;yRd^IUfG*bLbyn*em>Wp{7K&=ugk!ewZSs zl=p_YXP?rUGAb6SQV7wW#WG7qnYeXJ%DVa^0Z9&DIr54e;fOdc_P<$)JQrtvgWc!# zVlTWe7;x92TV&Yozf+M}22vbeO}t)(TRR6w{~SB`PTPNu9me9h$*|f9_kJGS7c^~1 z0nj%Rr3m#7%izYaaxN^Z7#d_CujD6%88->O?Da+e`S z!Y9sAz8R!gnsAvsg-;-I7w!9*7wl9JFfRXZz{pI8tnqjsu4o&Ia@Sy6oSV!zjZt=sk-REhKer*TWdQ z`lCM(1I?7U4oD>q#>eZ|DT2{B6-s-h?KIH>-yTxa-T-)U@BWnrfO9l~fuPB7ZYk>z18wzfgwgz`VZo6kMj3fx%-49@*zy zYPOeQ=SYx~lW)KxSU~JkYFLz)pZ~e*Bz+qLlfx86_7XehZ<{h)Psktu2U(4u3Qz z(|EYtW$r^vY+8aJDDmCQ*lVTn4@6{ZG%%aQuw7pC^v(cN6Hz@C1(*Obh!W%h9fk{A z5$_MHeHx$#*SVgwAZZ5#2Q0{-NBQGT8lqlMR!}TxI@!qpRf#jE-kiolXCQ)T=;`eR zkA-;CD|@p~^cr z`6o{`t}rq1sYGzjzKA^oqKrq<+0v(LDHn03C^c A761SM literal 30895 zcma&ObyQVd_%6EX?ruRqKtNJ9EhSw7(nuo>(%mT~Qqm35AT8Y?CEY3AQj&M>?>EM| z=l*lg83V+@T6?V-Z#?hwK9dL)C21^la&!m;f+Z^>`3?es+Xvr!sL0?qivRo)zz=?B zDJ^F;dvj+uqfcfKMI&bi8+&IPOXFv*W}loa?d`bPU$b+uKKtnG?BFEu>Xq&Px`EyP zlf^5hT~cH45HtrFZ6^o>#|ZWfS1ej&34yp%%1VlvR@)hcM zwSpGFHO!P3RV7WL!qlFOhaU19-j*yt9F;ABOFjpYsWd>G)J%fZ$l@de8gu=7W`680 z%!a_iQ$|4g_rv;mFVR0O<A7Qj7Gvby5?|U|ez3YKE14Wbl*Lbd{+XjW!sUA}^Z} zT(F4>Ood(MM7IJLd;0!wE)IXoemwj!#^JQBpsud&zX@g4s><%a?j-I0@N}ygMJ-IO zR78M)g59I&fa?QF5Ty9zO^~ly0Vq{r2R?c@piV| z_;@hrC5a*`3!k!If(vECiFS>CYHRb|x8;k>J&=Q?jTl?N8c_uu05;z> zk-M}FJpZ-*3g$DiU)QUCqA|i(T7)DdCZ}tiH@&ZX175Y=z+W%B(G)7Cg%%bvdS6UP zrwDm)DG6VyrxZp6;fRomWZ~clokA2Qd&;zbtXH$@db@(hpKFXFUcSik4m61s zc8y&Gk1~d>%s3C0-{aq`Ghjlwg@wok1qINHaS2YZD;tGW9yExGuI^`GN3-rv57+CL zo{r~(FE-omjwKu&9SfDiz@EazNr))|^VrI5X%zYlelhr7n`$bGGq~GmJR3qA9H*B! zEk+d~iHnMe8zEU{hYqYgo*3K$h9pz*|7-R?c#5&QJJ=eQ0*$&uJC9sVU^@+rW$)8V zV8r$^Dt7!sMu-uU(XzrSbqf5$dMNDMlH(Fm%%|9!gO z=4%&|l0sr{yV($qaTCaJ5Xc~|O@PIO&;sH8p&_{?=SjsBUhDTew*PJ0lGB*c!|f%? z{XYk2)SG8-gkgb$fA}~5zPk{1=E(x07_MPzp%fb(nAc(N@0^ow+!h-ZKaacCI)gZk zx)51)>oH-L28#kO)1<&`=0Xc3R=>y~HY|O@Fz`C!<$3)&H#Zkv^kGlg@u0k+Yu$nJ zbjNZx4Yqw?hwdU__6~MZXBD<|(W)vtczvY!B}OjX;9(aKBo}JSNG2^ciojeoEdp_w z`t0mcg3v*gWnyW0bt%c2ayx8bBzC#rwcfyjk(JY@KR?4B$t@U1+PhV zRsRmBI7I5^L0qMAAzrXk2nx}(4}0|fE@w*Ybc_mDVA!8=QM~uZiG`mQG0pIzGF#DJDFTp^i>6_=t*@vcWGK? zKvThbn{0_EE<>E1y%J)V`Y~px7=xkAPA+Rur-tvyF?@~RF7`xTD7G-%SZo-!G>Ax- zc7z!@B@CIDrMVQ{TwOIQW_F&M21WiV;z4DqiCkdQxzYER9Vp{eu+-~%ez>;j%wQgV zl<(Lf>^v&q!=fiiVBkSmmvr@e2J%LFjcu@ za1H%{ab!%YAv|32rhls?1lJwA5Dk{lKw8^>IOUfrZjLBP(t6LzT8hPptBG}U#m(0$ z7%TBcLUJ(j@AKd|Z%Hv92y7-2T;#UCBaV_YDijLY4m8OoN1tbz=?eG5RsLHX2K0Rd zu)9jC9aq~a<(2#u7(+52kz1Bi(pD1bPsg3VhPI>8_7pM||I8V9PMe}q{e#WUMeT|u zLFTIPvrvq|LyJ7&IAMXJ07$hl;I4p8D4_>sv0e0Y(uP%+{<=;m;c{^Q#E%tclu9*8 zXwLJB1-Bl5V0%PJE_@!8beIHlE0jS-c_ErPjiI-3O9v}FaZC9U6PUq2T5MQANTfsG zr)D}67{^srp-C#YLx=cthNc=)rgpBmqWUzy`m!@YUbp%Y4%{gS?!-l+rel=Eqb*pkhEE&BfA!~$pD{04TNs>HLgz}>ixbY9Kr@|%@3VvcQkRiFeO1w$` z7{gMGVdiV3Ew3PDA}LnQ#|s;5m_HQDk3ig$HisPeW-Svh78r=^8oxUgeu<88xLMVG zp(WQ;ZExpuZ4K5$$$&7sR8)rDkhiFN-@IX#X8t%OLmK`qRng!3i%7O znM<;ndSS*XE2*ab-+l?>%kCOthL<8I(klV05@9(LP+erq<45QghQ${0u#Pk46GgXE z0V$aGCc+G1*(4PcL>Pl2)UOjOaNpmGElab@LdG2DR`7#LirgBD_)D@GN^%D#e^AwU zcF~@XJHP!q1tQbu?*bbo*s&5a>~hh+XPUlCie`c zu~S{gk1VA;LZCkVwbe3~-ZY}8&xWf_k0@c1RNx;ura zNG_2?9#p7(yoWZ5BV9Ehz8dODJ&S(Xdfj(~i>vAEnS&>ORmxD(MeEFFw#3OYYrgJ_ z+7uip(CZ!}(ZQC}%od|UQ^}z2j4)m92o}$s-3b_O)0>!p*L%-`57WxXP=|GrjZR?J zmXsow_lfz9SO&645vm5C>NNhrWLHgSToj0)s~Ph!$CZ$DQV$WEmB1IjqAT2$DSrDY zFL&9Ul5V3!skB`U%u`X$M`{?EmdO;L!&5J(L z)I1iwjkeW1;GEHTCGTc538yU8x4z&i6wl3*pG=G~s3Qn2;xjqOt+B$)Cqjt4i^~>S z8Fh~?hb)}s)?lYd5N1Fu8q5bT(f4^apx9E>C?$&g~4N(t!*lY65 zr%Alt>}3a3TKy1wa(8SL@2pSg>IG$$OvT*UJqI8ri}~DiU<`w-(gPwt#YLfDxKQ%B zl{JVUW+|9#oJ4ke9Vcp38bcpX{8#d_Mt7IU>|>4^@(n=bo=h6h`aXVq&M$?y zsZ&YZizog`Sz#Ja?OIfHIVVq!j7{!H7=0fTt&u?zpWL;!@4AVjl%45$4%w-|(PSEO z{Hxl=lF3s(TEsV>e0BIp^X+V!Ini?k5Ns#XT%<=xxha?8&W6AJE>SFnYbhX*^w z6J+o)c#C_4V%`~B;e<#OIiJkmr{A#ESDh$F3w zaR%!T|BEy|8bRCNPzRk-nCqggN65qp* zbsoflp@gR72K|>6N;*9+dd6zEFrsNCyH|s^>bB~W%K8_N-zC8f{!a3VSnE?!0-7j)sQN^^#NL#c%m*54eYPekXv~ z1=?9&zT{pSnqvMhzPcS({fR$Z1g_!qj{lALxpsejQY+cRS43dgy7g%LNEpP=NHI5( z+wcE~#5VogP6M^FKzm7PDfes#p_42;aPW+gokBMTG$Edhk_5c?O1c_sZEnxy>TDLX zR+BV_K2T}2JAfJ^FE`gXs~?)71kD)5tY>MJ^TGaz9F#}WE%V+n0&EpJGEtMQ>P7-? zJpXzyGV+Dzfj;nbj?A)m=Cd#L4hM+QR5dh0a76EMll5J{O)CyE#cbBF!U;8FaQ#)ktc3C^Aen>R{_06~OP#u6{&2gSAEC%Q1b zJpulELrJG&LJk}lZaC<+8%MM!hDy+3uOL}xneewFH7vi&r8(oqON*ls3C&&)fNV?; z1{15b5+Z!oLvY0WU@ zx>)vVPwR{DNPEe{|&*=d$;YAmT3?g@3xtZHd zI-Rk)(Dy~AV%bV}D)IA>x25f9gB~CcVT-s->Varr0lO3qkF(5!S4cum%da?r6}-{< zlA>8uN$ibNaN$^UP+;mssx-c3W<(q%Numoq&vOQhLDxSn;iwGp8bbq*sw!U%{z8#J zHs%BgApQr)8(%NIb%zlgWra+EEx4c{@$T^!F};~2>jE*C{sm_rK>KTi@BGLZ`yJQ# zfrU{KPUS1p2S_^w!@M*%*!&qwkv#$yxFQU@(xL>{861gd`&&$AG=fFIbU9dFPFWp< zzvG;2MxTu&M0$0d2Spin^cOr1Zx-rnkBZ+BM@`=KKdPvF71^7^D&l>ctc@Elukba8 zf1$ya?PvEU?l_@_;rR6PJ4rFc+g~8<;j8^OL3}lrp6QDbWw+CMP3F(QL49(;E4E!x z!(R#j{1Yz$W~a!vjyp*~0QRQ~>uF1l{Vl1^ie59O{G+0WE(XTZQ-2u zdJAGqJTUlY>Dkw@tzeSOv}i)k8SImE^dyp|RLz#+3KR87C|!<}h%wUE>7nh{p@FIS zQS$iXq+dEovHW(>Q-=nW%Q=aZIJsfq4ZKKsPv1@XJQ9HH_;EZntefG zW#7mvh(U8ED1Juo_FapW)rZxTk%coOZE7_zF#Eqa-G&Sln++ z2w%f_AT_{WcW8GLT?pkXLnU=i_Hm?v4}AgHdGI)?oW=dZEv!DR+Wp z1+7J86qv{+gYj`|&(J6Vu2kDvCy)#mYLNaegZ)NdrmsWXt#A8fL>(O(Rur6f>QLyh za{u&m3Hes$)%VGc?MG9G(+DFRq%i`=s7$=MVG&VTCVB6I50FV!;*?jybM*VB2yM{Xt?cP5U}cxcml`(uy1b zAlU_Ms_Z)Ex8`piqwCS7=E}X@7a_2gS}c-_6rNFZYV0vhtPztsu02{vwB6N^emD9& z;$uX~I3@x9i1n40!o&pO7gd4;JPjTw5*&E?@b)1n^K2cl$~hAQ1^Poa$PwA=^0KY`g6h6je1<;@*bHS=o+aE3aFOG{|I)rSTITLCaNzIsw`sycS8 zM;F^17ZvGGA;fk*C>uIBj<3d+Rr5(!XaRqa#f)%D_Cog=^9z8nQc!y}KyAmN5L(|D z*{lMuh=-Iqit8ZH#9lk=UA4-V!&^v~GQMk{nwJ|H(^!}{V0*OcHp^o6fWYH}4BVN= zQGU>4gqFczKj0{&Bn@x`#b|v1vv$CtHZnANU+MY3Koi338^_mRDt1y=pU64*MLenT z^F8zMMJlEs@MX(&5V(d|=$yYvk)Tb#aZ(ops|zrt#G2}c%iPAu*_(SMG%O>s#9r#* zFlpKSx<112Kw%N}pHzdNdH_I-0J{_-p%Rg)A8kgr`vq0->PliNL&xe5=~ziuqbE>z@~A#Xy2Q^aGi z=iB2@44p}dtgEACU0w+tiB<*KCej~6idy=82v1zPV1hf`CGCQH0UrRtmzPGM!0)P^ zH-7=*hB)WisDsbRLyquqyG3lQGW`pW3_6`nmW7Rfbr4y;_`hRyornMek&?o*qsV>A zwperf{PA-s>M&2igxaMT8J@O;IIqgC>s-k%JM|eOF7r~HSgI2mRc+~xud8Fc=vMKs zfxk257)i@x!Znzd@&!1@@ge|t$ZP9}xJizfDdCv(OVlk{jWBy39n?-pE;t|;xa1&4 z3M+jKjVM=CC2W)=Y&<*@w25GLSg@H$0u_Ap7WMT%>Zz;S;kb0Q4VP?M);vx+-Q|Q@ z5Z~*0rK3Il%ZHmVta87s36p}i3 z->w>o^WrA)>SB4h?H0dFI#FY5x@H%*ks@?&WWa-g`BWnpr+0GP3O2n-BNc(1q^VQR?~nCy0MsAt=-51pR2V*==j2r;fCHMtAU@ zulF5@E=K?e=PU;7*F(k8M)tS!CBZg$Ibp&jKYuk$d8?1FlRJ2XI@s2$LB-pN2=Dd% z>W@?8xMC=qqAF7}ukhPRQ&7y;|I{n%uFx1dCqv>LM6FZ{E=eo4ikLtCosh|;5PCEM z%K=$0pTx;!i1XuIy3bd#m#4!_do+Bq#=gGGf>C#ZIvYv9y8F~yeKdKzka@=q3Rp{Y zu8jJy0e0w1aL@RNI{Y!l{JLoKwkqmYh3*7{)14j<3`l>c83*{7EeG6_?|WAap)liE zQ0O}HNO3(igJhw;9IRGrukw=$e#6Qa$4^b=Ym{TS5PfF!ulpmwv;_Gt@>fFmVu}-Yw8{46! zDHUlW>R82{BDcg7jUh0-w`f9P@I}ETN$xXjl2(yS#g<=H_nj6#g_IGYr{j}9N5}W@ z{rBq_ly`&1%gDOV$Cw8R$qP<)QwgMGzVjBu}V9 zBWL{=F%()fg zSgy#sNpdw+z~+AGhsz9Yxn6UV|M=P3V{vglF_!``Bi+x@S~IDcUpeH6u;w-M`e+QB zvT48Op$KgibkF#wTL3y?1bL+Wb8?ay4gqbuU|Mk7r7pez5dNFpMe$N`4q0XiM^Z8kyi@ zB$J2V$VC7ME>mHNE$ngt#kkfpuDOQ$PHHr8uBV*Bw)5e1v_nk646-ll^rGq;ky zAe9`&$s?`N*mFohdoJ+xE@x*EMI7DAm^o%sWy=w4*3$c*oMh(bsg_dQwm&SYGR`Pb zWY@-Vlm33Hjx~pIN!@H$t$fP?J5b;>fQ`teO>Z_Z73ap)IMfGFK*&Sqzcm}(l(AD% znZ|Dz8Cr*V)U!miBeZsTacc!J`r(RL6|d7~0hjp9`cvbwC{ySbIMzs`_ob?TlY) zDlDP)1A@&95Fc#ME`&b_lq5}um`)+z)hBgxkm(q+EWNve;b>@ZOX)jv50%-esWp=J z8zeb7xi#0HoR+`oSq)m|_RaAy2>;`hrjW`@5tPit@A`HK@kaBa1)RHk0C}AbpEZLN z7T?jmgIit4JX18nTw?@ki@|;tvm|5}U0sS8=mx4xe6ZV!2a5GYw-epE#Gj1P&4iDWixg9-Rq2z6p)BNM-{vg-TP53{*)nAaV{<9NBP_ZzR@ z11{HELCOeumJ8MU{8Qf%h{Bf+>jfogsEoDg#Z}3AjVYqZmfGY~x(#-{pp6)+n)i0S z^?Ic{QPUs-^xKffg#P|Ah;9GhEB__qcr+zdz_WsMVrHs}pNOU?oJ^lB!n$)fq}Oda zH%}Zk@Rw}WXJ`|b)Y~!UGXm-GOHl8(={8%2(>T$0V!67){~Fd zF0lgwrX&9HLmAn~@oErCC}@S{^mW~0?3wRzAFT!9^Z^M$D6F$e@It94!)+x3h1wk= z`t)zC+=jRsuR#LB9RONCawLo(K3r@zZe8v+)v8Kc>q!Cl`z3mNc^Gi9A^3M#C4l@I z7<@?{*@6v4ggdb6o|}kY$ml!lI%lXT%5WuD57XXrwS)A4Qpa`9`H%DWv53OrKq|H~_U?8NU5vL@?k`pVOC8y&1QL{y znuKZl->dna%rU6AYqujM`ZBh9Loc4(#p9=_7_J=GRFhvWBFW(&lkBG^h-ZPxsC?X9 z_X^li*>KD)VTdWzf6D=5my$*8F9AybJ{AD7nN9JDkG`|uU{*WzpeN{x0QwyCP3Auv zfk9efWo|w@_nu*AF=1``oyKW?r%Ku&;XmLsw?GQ&fNTmzojjdU9Ium6W^^Wy+5u;O zdAVNJE*Te?YMO{||0%>;c}M8GLUG-_9a_06kt)NT6?YguIXN8{`tm#{y4s;jHd~Id zt`i}iwzR_Vu`QdIJihzIONX4-DIK@X9QamOp}b(_SOBCM_zOBT2NQAcrN5~(n=g>F z%lem5XuB!8NZT)PXwCdO`$QS`DGLKM3#JeW#uX>umrilZ61rbp|5T+(sxEw;kVr!a z2kMiMNFnUnKJ}@v=7y@Mq2Ps}e%f4idW&iJEKsfbXx0CbJ9z-evIP`&cx3oltM-54 z$Bf=|L?@+0PV?r7lsi_-`92}ZzQ=dRMpA+$j2`S$w0RD)l46Bowi|tXx|&c!;#Sp} z(2en$V!qZ=f8D^IGi`3uEG40SBmdQq;xZFkTPC(d>`71^nliNO0(z!8&*dpG9N@xz z*h2tz!KNhtVVV~MI7$f_F;!v|{V%gdi^GFl(VNf&5-6S~CU7{j>AHst5_;{@o&!lm zm6e?q3%zMrn}#nDtu7iq8PwwOGgK4r3fNQpbJO_izDTugLb3n&lJEo>DJr5yYu9{3 zY4!S2_6G*xKu|v6JegNza-NK9&<72r8uJBTRc);q(6qGmS?1YmeV6sai92?I zb?z6S`AqBZvk0Q`kg&c~bZb$Wi4TLJmpf3R6m{f@&|mNC+$em<8H(c#V*fL2BxQg? zFV?Zp%u#~F5n>Lj5~mR}gJx+By`0Ma3djOOv-fQXHq`rZw7(c$mcyQqEv4lFfahAG zWLafwb_s*|B2Fx*a1M}`2B&)j7dIf_Wy`YgI6<6??AzaQ24y}nwkYi@?gX9i{S7y^ z{vpiwH`{`4&=X|vflW}7K`H5!&BTBBuQKO=;<0AVq*Oi&kY@`j@Nhb_ahibKpoH4k zMTzl|zD>G&w(t?I#79S5hQ^(8(Du=40biYw2g5xB1nmIBC4=tOOIk9tUjJCnNss;` z8M|%JZtCts_Ojg;6I1;3Hexm+*lL`2QX5FHWQ1aGRk~h(b_cu`tP!4?Hma+n`bIkd zLr{mHegU?OTbQzIs>g014zjL;Qac)y+E{ zmURA;9<)Xz*-}svcwv1l(Cpt={OSX`RuA{=l4c|E|EyrIhtXj*cBbC3hRYlixJh_l zTyDPeDK>YOjD5N|qz~2_eI5z46Dq2^O7nkQQjHkfosoMvvdJ(@%%2tRgDnSb`7*Mp zG{$;q*tGQm9E6^p5!W)*uhs2r#LtvGf=(UuK4ND(?Z0)htq z;v!+kcjS$;P4uz#T>Up_`56s!P$w{*@pqC2nO6ySX-)hxjn(4K{)X9XC(cLa{54<` zf;|{WL^mb|c!G2~$;=`;D19j?H^gmnI)G)-N$@K4XypCiDt?9&{K&w@4r`hIQ>t=3n*lXPyv8!(Yy!~HEj{aaQ1ng zBRqc_)$y{jCD3xR(51;|FrEPlxByD(?9fZ3ncdVxHmmQZKSUu5Tf0(fluHR5;oyF1FH91BXVo3s zqAXtlMuilAFtCjOG@i0K2Kv%IH|t?1j(6)}G%?N1%?Uh1EEq}C*=!X$%Tcx8fjCC) z<9og!u#z|z&|>Kr%7}k|cfjp1;n!%d+5GP1AKu2leg_UGKPiCbp`n?dxtFxNRNigl zd?#tG;nl0KlC<}H5#aNDm+re>SBLYBYk?T2V3sbUs(xp^BsaTxu~+14^TxMpbeQZ{ zhSJuQ?N29iOP&kvQ556XHTmzk$-31(*RNj^)j|A2s{*fQXEtjGiHIAbz(d_G8l`YUCo1H0C_Y2QxqBlC zh->-dsBwIxvM&7C`fPu64-z*E9ORX+X0$Z1 zU8vE5Xqoi_{>}2smsNHAp@1m-IhGpy{YYX3;&9*S%k88yERrG zA;JelA@V|ihR@+H%^LJIRSzB4t|t3Uw7yr4#V+bbakkW$zQ}xNMu#{Yrf}&wEir|6 z1te1+E|fk_f9ZB$yab{y)All;)jG-qvg8L0P+kQO{|N*O-4j7@w)Iu{s);isB!pDh zlLyF$mv-*t!a)1u{?8IK>AOQQYrS5@%8IU`3^Dly;}p!Ndv9wCnJjJ}+zLTo=LT`| zk6ER5A6Tzf3j}GcYvF;^`LMWO%m;`)Hx{fbdw+f7K06F1XI1ud>|YG^2MI-@9$GPJ;D~seZlCW8zljYD_TKge7t70SS5BFuTJbcbYC8H zz}>Xxg{~)u;T)X}^u_iiA7@%X@7bmP7vx16|-k9f5*m*M`~H z)*yPWQx54O3=d}fCXq2eR}8{5cxl6h!VZ*4qx0TU-MH1gqA4ry52CSuo1@!BKr*2R zLeQc745p8DYAB!{4ju2rP^b{~XT6+12)Z4^2Bj87#*Ms_@*BbdQTA>lQub@YGAEziu9GBMy4aU1E0HDUYI?Xp^FgV~JkSx-GO*@+6f&zo*f`VoMgcQm8?Lp;<&@qsXD=WUV zjoO5!^X1_KEKhywPC#t;QJkYocFrXBXobp&QsnVw(}1_+XIXmQN?NZ* zdE-vTRqk^$ktG2qp~x#$=lq{-%QKNpC*>fKkxo`Z8q!}=2k;Q;{&Ubrczm2-ywRu2 zY}s8yFbD$*^nZ*mEA#48mjlTmuU|`Y+>M+JyRV2iiB~=qpH!CjKgZzfHtmR_m1;ce zH<_%T8|EOZ@b*OmO*vnW8<)sE8Dg9oXpmY zuo&ju(q_~ynzxI*-S(6Eq^tr3Wi2vKdaX+W^uqE3Oe=2#gT7Maw$zs)JJwkwF9Q4} zE1a6QBE_;@>{dj^NPYj2Kx96p%)s@`NWyXSBET!yUVX-K=V`{+R-ZJ!W4+-;R43kZ zd9|6CW6%}Se#HvwI)BEd3jAxXQVGlolA1TF9pACpOz?K|&~i}mRpvh{!N-69-ji-$ zXT_${q1$=8FwD$^th=B#ZeBzr1@nwglq!XC!{S?yXKVBLHDD4ufiAwaO7zGGpxnm@Ey&iZiwCFAP%u|c=sgg`Ig zx0Hpzp$P{l<;}y1Uo4Ku4P;i&2}?XjMPMOCErwhpbWu4A(m-!0A%V!*+tK)ll;SmN znn03Yv7q&Vinjz4Bp%RpS~=U80K`I+5P(MUBIqme+D^ML&Opj9 ztastJ8p;;`C2WBon&j^AD}`&xV;l5N-+izxdllchzlDB^G;EEhR;&rU;{C3p3P1!j z<>loN|IQ$k&4bEzWQfgTJ(hNhztCoA;_d0Ua?vK(*Z{R!i>A@%(n+~Bd77>9{{<${ z9J>TaBaCmw9RcDn$dJ6&d{EJi_9ERMgS`=Ak>T=wh(e}pvQAS!hzYib^qZb7`*$#g zQGvTDdJ`N$QF-?+5FEt8hv8rL_WSb$zBsLe@Gk}KmX5q7x|{A!Qf$7S1BRt(l0bo9 z&@a3X;+!~c8%@c>pt5fu3XL}|3~TQn9H=cojfDetPA9L3)+*It#>Q3AFD7g=$HBwP zd*tW^>KJfPCkYf4Ui`+U%*Z5OxN2A})h&Jd+aT;1>^Z7%_g(3D36Mv3{izxIBSr7x z9&?rS2&_TR{ZnuVo(9xi7QAkdg@aOMO)wtw=Ua5u;42;ZvV{?vD7`)Ac*-O>q$ zGSw)6{Ap=xK^A@L#QmRv=PZh~+RSr72B|MgG)mVTpaShX4p0uWA;KkxZmjS2wACRo z2A9Go75x-1tsMIj0#2JeH3E{rz;K-JGF;cYLLl+UrVqe)ln3oJ=zmha&P9}v7Xrjr ze;^U>4bp!jJn|Hh7Pen$8I4P5?f0u*$t6%gH4~XSBj)A-o z<{86DY~9OltI;4cpn`KC@&XGoHo-g4dz)mUwW(6Z;JAzZGplTH2n<LoSUmlEf$@-Im&NE{?JFwl#(e)@sges>~wf1H?jW9Rh}={2oKZokAT zIGXbcc2vq6R9(=+s%{A6gU=-qkSCsjGN7m>peM8O%HUET)Ds|XIP^^gpf(=W6}hsb zGVm-tb-ra?o{E+i)z?Zv!?B2v#%^5Oqw z7a_G!ra%Re0<73|TLat=1FcA$S>88%yCoRnpYZxUp}vf$@caAwDh38Cf3A{}h!c{N zyE&r%_hMW{4!x>Yl8Cj!N=%Yjc`uABzC^#o|VPBf`#+ST0QFGN=( zfiUtaU#If*pT^4>T}w4=__e#HeZi*&VqhiR+LOqtmCeaBvmu<93pMMP5vsz1SmA z`j~Pz>M2P`Rb#iYZz8R;oS!b9_9;$8(ETGGAO@?NI3qQak9!!T$J@4q0SpNI!|T3X z%0kKrRyZV0iTblqL7UwwIHcsTu!Ww^lOrlJKOPP$T1g;1`@4GBQ7Uiku%8bHHL*fM z7mh(#C8HI-SmM(NuT}1BX(*)bk74c(j`Z&>AEFY@%&VU)q~wvdrCGJL@1?RY4^i6! zyT;9g+ssU74Pc()jjLA;a;IvZoa1Hn^L59Iauk~sOjx$M@0|u`CJ-Q$bg^IiuDj(oSFpA;k<_tO`X&(NCc-qTrw?7y546o<_nN@%3s zgcE7Ep`in}!bY+G{AR>2X>;+Y9OOeyYGL?xK}Urw333^OzRT_jGxyV?$x{G=V4ne) z8`#WEy9LQ+PAnf_a%DQT0;%vX^^wzd!7WXpb*2y z4J-AA*zLGBm{QVdJdQ4EPZOfSceelTmZz0ZRl9%rq^$ev=XxJ5vYjnT(y|}hBxyewlm;(pn?Q1pL8!_G5Td~t9@+@r;2HDW2J6c{fAV5ab zR3mBvx15K*JeTJL6ovEG^)Je=yYtaKeE>`QE_AT~`DU^7V1hW$;IaZBRfi+Lr1gXH z!JK0lpyzvZXKf)f_#*7Hym5t!L=Xc5Lk{3!> zC9hL<%g+4fRlBd4s??6%)=5NV-j}3b_r9+E9d;!GTiLn;y-UHV(zgl|j$=O$&c?;&Q`FfDn3rHq_j?jQhw7&20@clsB86T!U=6a#8Mj}3uW#m0nqMOA zb@`jT2`WGE%qO=gjwSDNtwmy*JsO8~;MW_2pUu}Un2EqC9RNZd`*p3KS*!nvqW5WN zCHh>tAdoeAM@|I#JDN0t_+b7EOHuX>6R!tarNF+$EZVm3hmqKY=I)G92%BI&>1u?n zw${MA(31T@QUYL%ODT(M{CCdrG0PeMnV&RPzt4_Rz$~+&z7L|)iZ)L4>xTiaR3q1` z80D;Y0b){_57eT$zrwf|cPeS_oG}vXju=3Dgm{t#<7_hMWhbrn_ubHB&8^-7a&SKH z!^*0^pLa7-^WbTaQSZ$i(j>>iTZ!dm-rA|pi%MybumKa0MTAb*-|BRx?GUq8is{R| z{UY6kgrezsU;zVI7k>qT#NZSJ9ZNeSaN3g5veS{$_bQ0CaWg7{=|TnuHDF8E?SjSs z^NppoS4bhK-X+%f@At!vZZ?@W*PP~^ihl}%__2xeA~pyVJvM6G)K50nqmK^*kD$)| z^&vfd==RTgce8#*SNyin_g=PTMNHDsu6VBaBgUaB>HEddu zjyUD|kLy5c1dKE~OsS!MIJ}^hf|@&%DIg2AIB*|jtVn?O9f9`oFA*O)U&meCQ_3m_ z34)5Wc1qo}n)Z&jdedjK*L)ij%Jpx!NwKMQg4;iE5SiTVy#KbGC!M^0o+k}~7~EEn z+m{vBHA>NcotX+f-Rom?fUrNUha31n9sn_;vPM{4&i{5SiyAB_8SN=0dx~lVjJkW5 zg#eUou<1NDl(1Wey=&m@cX+rb0&523C5>CBIX9EvH&xe$Mr=itGk8FUTJod44O?3}V~>35*@2c1x?%PRxZ-{fj%H$}P*|Jsw+g6gn1$OJG_qA22Y z!3%*BogIYY7_zVF_ANUZm+GH*!a@khGw%eN-rbRik_P(!w9k_Q(RQZ#IV~Dxk_O7z zUSFX)5BCn}pvVKQ0(T*H&yo`(j5Pwd0alpJCLPr-GrR%%tfIELP#B6>(a}IzHcjDT z@^4S)Ci8=u>1D09)L?=7@v2c33i3Iij6qf%iMT{IRUY$E3klCP`51xnLYXoy{;rJ4 zdGiH|pJ)ia(nsc|RXv#0jkoy&+@o(N4<&yMAt=p8BQVF=ZvTwm z*_K+&QtL9ZcZ$Wx+pjA6%*K4fp1d`qgUt;kzmYVIP{uaxDD-WKg(TGu+ok9Fi)IK= z1EdO$<1L-vS^-#CnkMzmzj_Ov>nogeG)r%OKtRGuJN;?n?cA3&h<9xp-b+_xHP5G} zzSm+tW5U;JsuD9Dt$Q<8G-mMY3*BWx z<7%S~#Mk;u~sPe$R_3&d81tl7{3(T~1 zrjvg6b1H-a9KRL`8Z*_(4cXv4Zdpgf2O2*7*hd?I7&5iY-yThRGpi?ER2B;UW6Z{& z$N*VGI?dhm`@hen6Xa?W;F|Ukg;oCNep*-J-ySa7SU?y2`__Ga=sY`<*P0ks*--l3 zpP>l3{=cfP<(KHnHIt4e!)E}38v{EBp0c>27i7`4w6b#^#AtG3V?towT1Dvh^pOBy zu1F#Liko!@p~ufb4jVU*xJbhv$h9rN0Wuf^uk@w=H|EPySeE1QS<3)T~(;->qo=>@X46ylaL;}W`l3vo^#j9wc9_s zrZHyp#{HBpjeGqj>yGr-(rs4-e{MXjDO0*vYR z-+P|x&4*~(l`=@xhp$KsM*=Wrx@GG_wHepO?i&#Zl|;Z^3x4Jw^&IvCXw4cVA%33S za!AmZ->-0hSvRFSxo$e#52Z9ij(DS)XPAbD{(}8U#lO+vz=5OUr}5$F_vL4&!K5UX zeRey2Wd6YeG7!NjX?L}J&jE5WfujbkMM9zY_p!W@ZDC|PBT+mh|A^UkHsrm?= zd_3lNkjl4n`8*SHz3HRA zua{1>a3Y4^Yf19}^0i4{(I=t!XZLGVTs|K^KvhElFI7-52SD zothfB@snf{fX`AM`6Q_G>BHSvB{rwn6ja+nmermc_0M1v`bhh>rc6HR!SzY4b(JwG zG(-@P3ZGJDIOLltOMBu=K*jqK3(Dz}%h*7^{yuG-7miIkPJwWdz1n7KPO@V9ZxdS_ zp2L`~olJRmJM{e^(_~XXZD*=|90=6U9fk(ko=1Z-1_gQEkX%i#nXIQN)R6C%Jh%xiwv1ncd{$l<)fjEjz7-kdPzL zvA7hc!HvQyRMTyz%Tux);sC&?+uq8T&h&RZKk8&R2m5)$2E>tWK+a}Kz;t|5lprCo zI9oQ>B&pAIjQ28vQ;}|2VD%tLr237={}iG-v_`@|Z) zygTg^uGbJK3fFaTznzHtT{wS_B*ITCTO+sjjh-bgsG9Q1{fyDW>){^z7$O(T~$FibVNGx5TSZo8Iw;y`&@pY3>bY?g2ad1v;mx!G=qWYtQhl!nz- z(NtFxArWH)-@`S~1zt7x%6WD8DPPBK5q`idEmrhTrT1+@e-QC1zbl`Kr)vICWFUUc zYhIEOeT5UY^)hCye_7Al?vr!dIHgd(yVGX#&vw(%@^L>%(itA4bNWt6Rg;lPQlia7kNfO{0;nwGmK|w+-O`5^+ioo+k&(vNjj>*ui z7lTL5@UHF!4N$w0B7J*jA2Yeu6`zgzcWB01uAl;~!kt~gutTUnzioLQto?HJcL5Or zfMvzZS%svI$gl0#dda{8NO0vyF3hK$gsc&vg#4pQjZ`b57_PXlC3@B$@#@NmVZm>c zldnR(7_&XHz-0W(a%>`(C$+d-f-biewu6k7NLfW^vJz9%FG`S@|QIS7*}$)pdeXz3`Rdxp*ZtB#)5ho+M&NIjgXiU z^6-hfE}u6ylCtyvaSW6fy+*$AX_Nt_;C@l~%i+>onx{C?_Q&hy>rE~3tSkENAh83t zhV(>&mGAMkY)YcYi))o0LYhd+p}I-G92iWVc;lm)^l3Ng$lUtT$ok+~+Uhn;bL-X7 zpnf6NKp88^gB;p@H24ezHX$c8T_O1%=g5;hiB@}xu& zy06G-_AjmpO0eV++9dJ_w1WNbjtH-|MT(pr{q_)=Qt#3qD>KLPTSVI7pF_`HerZJN zOG+qo>q6dFh%B^NVKBm2pH}NtuF(Szcc5bj2L)>qBV}^0yu}GeF-BBoe!ly$fdUD$ zAc4;{#!ph4-E>#U;!fV2x(dt|aJ$DOzOG7GU3*!;0b91sA_fh3Wb4UDk^7%YXrEd9 zbckXN#4HYa^2$`7K67t0HTy8q?Sn?5`i!DEDceZlwx0hNf!qp+ymsC5SJ&gyQ6aQ! z*ipY8Q`V*ITs6{HStKBs3ww+qb*yoXxhVCqySsmeQ}BQoLh5Y4J7f&lf>*CZgw%kH zCw$%2v@+}HgqusmxGG)ep=4#T5V&)2bi(38yLXH=DS{6sl*(GJQ;aerXEUZkw{UJO z=;J?J!6Xa|b4n;+%H=bZed5ZoP*_1~<;S}wvoa0ZAI%3rQJX*0-MQtVwB*k;Sw*|R z0As^#GT36fq9+$j%c{7J$e)E~W95cVRO>VnPeQXCss>y0zX_6Z^3w;5@)~{mfK?*& z_qISD_~OgYTysF(`__G600b~}#jW_zbh-NcsMzUOTq4MlLxBcr>JKkVD_={Ka7DA3 zd@6<}T!`k3$851JuSzu?oWy@ViYS1tjiDh+{KR~dG*Z2dSl}_LX}|B2rQO(_{RLTk zx|Npua&~kZNsEi8-}yrUaSxlMlCva{#f@ay$hD&|9kbFMN+?0B1fz!a zFzipe;(NN#xoJAnb#C2P5)-Z9c}*PIPY_0lTY+U7JA!QcV_aoCJgPjSQ=kcJF?bS|i|7VQ0=9o`0D@O#lyEaqn|colOh^(MpCo9F+5KPN@f( zMi#uRT;Azca4QJ4N(x?kdtdr*z+ zJ;55tpDz2B*&v&*rjRmaZU6pO&erZ?(+Kf{?}X;>b%9u%c*5c>QuVnTec=E-TR5sG zr0H_^57}s7=S+d+`F_60wqj35CM3p9x^?sE;E(mfEMfjVj5k*-|MkdqRXqp8e?4;h z;MdWylEcIg1K)kpyHveR(ftG3@qs$$DE{Wma+R%({cj8aEo3z@5t5&%aB%;p7G0O2 z2YZd7H~Hg=iphj0PfTm;3cc0@Q85ApWR)<@4}19CUu*npMV~G^)3oo{+p(}0xohdK zlFqPDQC4)x zgb5v>cQLkE7wL>#!SbaV{lCKpaMM@I|oE?j%kFc@ct^`l6-cz5!pWk_GuNoFAIQAYom9_ z8%V`x^L!mRsVuR(4$Zb`UY|jmK$VL?5R2~FUBM`%z5R(`VH1n*qlb_N^2RQ~Tgd}( zrG$?ImQ6cr)7t@y|BE8aO$4+0L7|27L+PRXd|P}hA5DaYAAn|80Sh+Odqr)`#q>XA z2PcT-|Fb1HMkIk6VEnEBOu~Ms*VRCAg&#rt!vC>2yCwwMd;ZGe>c;un@_N?Rz3)&`RgouM%}X^$z<9!KQ1@^Ayl)G31Fq8uLzSY11qcI^6sv z-smA{qQ@j$QRNDwX1plG+yG#w5a=9Jtki91IJlm~=t5^OPs}@8{CKvUShi|fh%pmn zapwtd5nzvy*J=9smX?d=-rW}f%BOjZ2{+T0ur?mJG8xWdP+V$;LRDzu2+WedsYel6 zGFlN3xPW3T@I7=MEK!|+^`AL5^3`ZtE1#IRtu3#Iut0zs8k>&_0g?t}>c1=Bws2q_io=rEl7uBy*#+%vA|~5!nWke1JApvXkP{ zd^Tb;vIWS`x#;o2z=uS|=R0YDQ(;O}aiVFcUt7&K|Gnu0%2m>=? zn&5MIRsfSVNDL|923{d0IU&0kj@d}I@4O`d=D|RO+-k%fmj~qlXANm*O?MaB+ z9q9sv5Odk5-@G|R!fr7WwjYXZR6%+O++l_0nKUIkI^eC?X|l$kSu1m5%AUa^STQur z4H*!(HGRoQet66&T8JZ~FUp}(i~mpsxWXe{K75`1dQ`eIgnJJ;*;gA^5)BE@2|kNK z%W2aJ*VqGb9=u?YaGV5RM8WZ)1&CNYz07QAwy6Fm3U^J zDecSxm0xTaUi@`1F5>uma@8c7_nM17jGs;v_-8cz{w-yCyh;iH;t%)Xx+o1?(3X$y#|2Dz8!D+a8+XPwx$7}m62*i>(@>pk@i%$~9DK> zuYu%O{xjZApUVIeH2`_NRmFslEixs?3WIT!8RY$a5#7w!4X3=`?4tp3@6AYgFLKv{ zd9P^Z(i+flp<;SGPE;{%iFuN>Q2f=^W#2=8f9xFVcXm(QQ=HVBR<`$1pMV_@1(Q}0YNDV~jV_$!g=4|*VrSL(5@o{tcjK9>OP$v+$uFY}g(1kC zle}m=>tWr4(}+1Kd0wxtn==b^`l^5t?tMA*a^ub+?DHMoJVsHcLD?tvU(Z{J9m>3n zd#)bAX=YiB-`r$)hJWZOAi{W33kV?aqM6KTXSASD`mB<3k1Oatz~vUaI|A0^d~p3a zyIcN0$y+$#40|Wo_`PKeyR3}SB}s-D&tJY#GSbbA2M28%9c%l(sYj)oR`Bfw73ZE4 z{810r$jN4jzF8UUXa9)-K0Cb#!ILK0oC}wS{X`z=O${{6Yie)}hjGHR0Mj${p0{9$ zKb5DgAJDPHB;^(&z#Ff!fTb*YzEYJg$!Q17ctd(}%}XkrH-`5^#@X;5V%s$!Y+78X z7!93qkb{VDdlWDbZm$^ND_l1fPZ7gMz=wqJ03)s122cqF+4CY`33SM!bjgpP%j@e+ z1nW+L@f$qA>T$E8y1c;Nyy~8ad|Gf3uHU7tSOSGV1gXcDBj!)@9LLTyR7OLi0D?*= zD6A@6-M%{G&p=M*22T}oiPv(;Pb>)$?C->~yY8+v-SjN_MwAk|xaQD9bTsw{rR88F;qR>Fx_}qbR(_q` zypYqrK+{GBtuY5Ez2&WwVF-qO+?pl$A>wDFA&KKIP!oiP0OyUL5fct$$|Yi}oHyq+ zaZ9-VpJEXDM=M_)jvR*#p#I)4{;F+YR|-)9gcq`!7h2nk<@6$d=8@?Vq_F1?ojg2N zUKL*0x_}dM6a?Km_z`VAG@SjA-1bTk_=aY#Cm3R_Dn?#vP{UIv__GG&)S4aTzwRB* zeDe3M1>lx6ad!26{jiT)*U4A|cn61BFMw7fv*eQyCR=T|gEJHvO%J67fI|t-@aF52 zAv5N8iXzpuC2!6s0(v1t{WJeau)>^}`prIOZP^#cgqstgFFw4g9EHVle7SE>_WAnv z2>Y`a?8};2LGI5lU89pi!@LhDqJ}pJxYery(ZjygUw{RGo5iXES{OD#mYh&_2QlXb zDSQxW8oK8)fJ5r_8uS^&Ce`gsF9w-jbk&I%5PXdjc37IXOArq1=B17~y={vrkv~Q5 zW+kliSb1n8H0-H4^vtDC5)5v%a>Mp9*1G5_#WgJPENUWMWn-}P_OT*vurpBOhGG_c zds($vP`}ZGvTxJy7&yU5u_`3=vJLGV0$JPhh}?t^4X63kg+C!YXV8?guC#DJDBi=a z3URK|k>Soj3Ihcr5c};Cwsm?-y-!}0R((5-s0bSk*aV;+tSR>9#OZg2^i)zf@pa54 zGV|l^sV^48XQZLUCJq}FSf1--9AF#%YUi>+d;spDmMd@kqhyNB@giHd-ZKvXRcAEX%DM2Vl4tZ@_OxNnoLG) z5=G|aj^PNmxfv#ZC~O_lIZq%lD)OCR0wkBAGS^hJ8;YP5)scQYQ`Y4uO$m4e+grdH ze%~7f77JMQK)rQ}X=PGih~U?L&mn*3V(9>{3H_=v2yNtvd1ehxgN+Us#YdI(f;#$i4)u~)X>)I?&dbJ;S}-92s74UNIG{RRF&yyDX5+`Z$S$a-1Cp!euI zuaMOgP8&KsnMeUGy3K0ZJK&v4BgIz5Bz4#gXhePtV-|%-3G<1qD;b&N*c9-_(g>Lr!m>Z$_eHTD{#Mg7PRBhP}5G%UIe z2zsFah8Jlg4Z1BJ*R`dJ1UY--8wyhiyIcJ776bb0G{A;-29Z;%myB!?Za}hxMW+}& zzPI$Q>@7!P5Jkqq=@^+~PwAGE^H02)1(E8q&u7E!*|;g?+gQMoh{BpfvyJoG40LjZ zJ_8ANLbzdNo_o|oSn=98`xUARw`2mYY3UU~q$&dVY4O*6=$8);anL0Q7R^I1w~>~< z(BorWd`zPRtQm{QY-X9 zsy!PdhdKt6zDJgiifEe4Fd4^3n1Yr8D5$V&Qg$6;P!G{02tEQz%!zVP*`sN@vnMg& zwY}j>zx=R3@U)9gp2+LcLw!;WC=7~Mqx5&m_k-Yk8-oH3W@4O%{=tA{; zOX=rPMgK>p5J<59QN;;|t}stsGkTK41Jxy=l}8$$?VV%3E;4#l7vzt*++P2aA6lGd z?!j+zFHcExUG4l-!sOV|sa<9Q-#@l2pip;KuzW!A)#Ve$Q3zjeOC3~I1Gb|{%x3$c^?8dCXIlH#HyLi;hO6;GWt{?vF9XWKNj-(CG6WqM8p;JIXU0Z zhJ<~nBf_QmSTx^GrYlW6y_P>KLJ=D_(vaOuM2=CWarl6^57jzOLmm{pfVS)uErtrw zh|_wvND4uI=4v=mv2w>=_d6=5bL51l==T{nTcZnCEH?^8n`*MRmsksL;cl01 zS>H%#=-8MYWh)$9aGL0In@FlyQ;veTQ+V8dMX72bova1SDxZH^}baed~SB3_tSlWyy&wvusrbbfG4 zHjDe|y%S~>7n#8#ifsj)iz+o{%K?r!G$5cv_bQwR{3|$rSiR^`hFk85(6y`t@l286 zl^d>)+R?ZB94QEZkw#zfxL=!eWdAA}0?!_c^CR-^fQuOMlh5H^!$hQS6aMQ`8I{`m1@ z=U4BQHMpkL5WF!wm-UyolhcpX+4pIg-Z-i&6jgj(MbW#nWQO;HZ=7}cr^C0zva*Wm zq6%lJU}s(?3mm}6aS`rCi){#3^w3upTG4<=oYWF9dr_|{EB)S2{O61W3rLW(<0&mi|JR+K9Drx=~i;9k#l(M%dHj(ip z16IL&nL%4zKq=^7%FI?oF2n*1Gh7HTUO@Q`Xy3Sd1YAEo3tF~n?QoZH)Is|mB#XSO zj=BmfUwRasTR5@%3s%!e0S5@mJ=sr@vfT(M4m7pjM>1YPkc@j3lVV5)Y7z%yWVht? z5ZkX0%H^w7S`bowWOR9KW>MYO^B3J=={HGPd+>WfOib*2P>>4h7!wU{$>-M4Stta_ zA>k1Ou@D|XWC65$$V66^D5Ox2EE@g2jSd}FVPLiQN3JSsC5YY%k*o!UUP;ECjkCWH z;*@qj9psbW%i0KjudLKPJBL;hJv|4c+oL`qwDAm#E*VvlANtidK;U{x!z#a9_{%3> z{!)IyrtXD+BSLw$7yo}!1Z`5 zpK*ihX6o_EGNi%Q2iM~<1=+V!BJ_H-TwPr&RG)ckEAU=)a1aLIKjY5h_KV)wp(mY^ zHQl=o72fGqo!fc-8TeP~VOO#B*m^b5OeenCy;7cZE1&F*cDEa80%t^Eh{AtN>Y29y znc`8O5my-1aYJ7C%zwT+!|I0Q-?w}6Z6a&--_7~)l*m&fEy{GHDYCG!u>q>%2>a>T z_5H|5s=f83dMy|T0z`i7-n4*S?;CxK*r8H~BS5b{{rts?hL!DUm?5IAsi~P{hbRfj zbSjX;5SLZbzQTIzi4x3YV_C)s)DAJL4b(t=MS-bM*yxZcfsrZ__}0=Gvk$kka&jnO zZVWNatCQb#qQs6GffD&C^8>YD+P9v>=WVg#*#Ud_!CY@{)10^MOzShh-*dUW0dD7i zcCNs2`3#JpZ@b$nz^Pb;vfMxWd(!@~HNSzZbS(P#8-w(eqTc!EZ5zg{l)-QhXnP10 z(+%kOlvuC84|S$ZY;>u`i5tJcO|Myl>Jmcz?(XS{XCwN4l^r0!2%ZPMbECu!w;x|# zD9q<&6FjR7VVp|fN}aq#ZlAa@al1`4lMo}*37;h=YzCn3&0kagv$s*_uF#Hluiuv= zO$+>KwG7(4P8CwOHSCf;A)}wb7ciT(n3o-Ei%`{Xfr}vp|5^D{0t~4SPG`Sx+MVWp zQVLUuJ^qqlIe`tpDvu8}IRfJfrME@!Yh=8wI8fu<)%#)$=ERuKAf- zSXc~qF6AT`*n$?A9Vk}aZcmbQ%uVyWlvFO$GRS6P-T-@a2o$`Vp_tskpz_Pm2M8&? zSgV11avoD!K6`8U4-V~#B^49c)E9|~r9jNA+DHbLwR9Z5si^)SpxkHa=GHe&MzlK9 zAfVz>%e~rXb}a&zKHgm(ty%;&z5|d@?Byr!%OnUrI%83Nwvd?A=C$~(zrQ7tQJ~X6 zc}+{s;mh+hrFtk7r|%P})vN{XuO1pHcjX}g(RTMy)C z1eDiKC}`u5jW?1hU>CCwTHUu1)=&*F)3$%t9*NK>u&T!{64m}F-l_|b4FrXOmm^EJ zj>y=GV?PyX&84pj_( z)pz_hC)KG_r|hmMuTj{=lmK}rZcVuhICVsHgY{DnUcBlK0V+Cn`uh5GC=!e>Qi`LE zYN9(&M8AZQORcElD{A{?AJXH6Ngl;@jNv=IpMYo^DTtk0Y|!=;?6^3THF0UX|9*hRkn1;Au`O3$kxHJ1DR zf_taC2`OM)<@aoML0(>7`^IJqkGnktHoE(|i`vzl?(PPPKUfhc)UW(>MfqQKYSFJz zD8Qx>U6s3#0|>q?9gpE1`0?5&shu)|crH#{T)ZI}ZMO=`aGd?I`oKM9pw@~>O5%aN z{Jdm?HbMgxGBst3LMB(ey2Bl-cCgcF2cid$5lSGe2^s1>_`T$_cbGv?W5B;dS2R5w z0A;c+{oec^7J|Hadp!hR#usgjq~A$-sC7I&E$nT^}FNruKviF~7X#>6r*G3_|_lPNI8SJuoHt(3Yvz*1Mvy-7t>E7VyFhXO^@ zi50*!MFvSBGIoei8X}JNzIOdEn2!9jnSI+m{#b2Z4~mT71AlW&110cDXD8~_Kw*X7 zf94tThJZlqSa<5co&0|`_I%`n5ANTGX&2bz(AYK7KBi{ut!lbT4rx!R7Q9yFVrjcn@WGx+beM}dQ zz80H`J-3XDW;+E=5n;an%HZw!BhM>kjiO@UeR%%ZH~)@Gk7*odQ)l|QUXM!_@T~xv z4LcF5Kvqv0Taf}inl$eoT|XH5w)WllibIafx1^1Q*o<0(UcoWqz$6&+zgi6y_51XQ z=*$Yw=)0For$fis6PCWhp5W@*SOl@g5h7Y3=-1I{h1f!?`V4f-Adh=(0~q>eIyvng z+1hcpeaG&ZWRBEHzPVEh!9huM^x<-k=@ykw6D3SjK+m45b%lXrfflVjAmZcS0ZZDs zhgC~(c!^Fl*8>OEEU~@cn|W|{>2aI%J!}km3q%K{lG;B5boFVA%&@TtvQ^5R`|>5M zOf3C{d1P+W-TLT!J&CPo$Pdf+$ERk@!ZHlvA8X~V4}QuSMZN8VyXi2IZxPPcisytC zc2}4j=j`m<= zCeXo-Xh;5VqI_VO-Cq}*pMMfO$Of^?@d$^6Jq+fvL4H^>lFr64Gsq{20Fj`8I8fxS2m6|mN7+w`1lmSJQ=cCXflf*b!@0%c&J|yCZqKPlqNSi`0YD2x z2IIxj=6b=z{<7~~kTF_(rp@2h`oj#)A9&)7N3UBEqaYE-LPymbfPJZqA9HZ-^L^7P z$^58TJ&dXZ`qfE=W*;JhAX2*vN=L9YCE6ctq{_SVvs`$F_@2AK^1TbLi%+;egG{CB?UdU|b}(V^oDZ@Xu-rEc4RMG?-$F>bo16r5_1txT9;Bu8{ zAu+LSqXtAwwtw$u$EjAEEWL4+_?ro|*L=2zL_$aIU+9Yeo6(>DftQH)jI_a>)dx*X z9Rmc%g;#-)NK9NDWPmK()WF_)Oh#~!p)7;zuZRC)ZNO1s(p%`TTdqK_s8r{jCvH zyvmF=zdr?R=N3ecKwy7XyAt-_xwv59u&;t_7yrkP9|P;^!NgD^hb|>G^^j2D_at*q z+C)jKSjaYV{)E%Coq!VNOejR#lW;*7uU}_FOffJ_rfWAk5fy+3rKQqZ*+w)EzWLYM za6Wb5Dlw(wkE0gA?g%2b8TRf8UIxv9O^Ls2p1z6IX+P99nX0h-Fi?? zv-$E|+;3~h(F680a@#u-e-5Zou*S(MfpVRo6rzId{NZUs+FDXrD(n3#eg-odH9S1f z5QT?>jF1UGOZ*A~GGtLB4RwLRk|#V8&A@>f8}TQ>%+=^# zgLCu%(`cz8W*o^NmcZ=G0?RsXL~{)7Iius05{ZZcKyc6uGOwXXKF6LxE4UkRBZwtl z6wDn6g7NO$S4{&2tn`XZ#9x7q&?-pDOv4JdWJU2u*Y7X6b4uIOpsZn45TPWr@3J`( zZy^i}SXH}j7{e0mgys_TpV3zPeH46t2!zkykgjz#XlFiEhD;_BfscSVm_&b(#bdNx zi|LpU$eeZa$_n~h50~A6c(DmWLRhOd>A#a>Az^1vKrl9Ph*TordN`pf40S9!1bFv% jY$Y<5^S^mr$^PA)pHSIOyl3gEq#xJ)p&yh-pA!RTsT%;MyM@QJ6$3D4;d3| z{I1&Qz;o~?*~-C9--+9=!=RwS48*Mt9kq{$t|b6?LZvuVFaNSeXb%(5xBT=Li6 zkJUSwW+^38pfZ)F5`GH?h!|Wf;B@uJk zB^v1q2_}>MF9f&Zd~azXLLAIjtQ#q9)-4j`)V{Pqi2%a{zuO@{N~12tVfKe+-JU*c9!)kmRbt$2%~u zIxY$6iwwVRePk3IVxCTbPS#@xL09d4B(mhZ0zXxDdphLFD!`TcSPsu=4>HBlJv}JA z)LzfB?0<5VotJpMx;OVvb%m&6W<0x%c{Wi~L2|PO$-4ZQ;|lJ%1!X*jt7_k{M4PF5 zplv2aT({WOx1?nRgFrC_AbDKfq!(=V_N6RjRn&Ccy6#PfcStpb}G!)4>-$#yALT~0fWF0Bpw zIzj}7(F!W}Tt8}UTz(WYx>}To7fe^psp>~Dzio2LJ|(8Fxjj9U%@e?M-+^S)3DtUD z@Xe#e;NN(j#^4R8Nh;>>eR%I#j+8&nYM6_i7~)Q;4%B@+Gk0q~uQ$AR%Q9~FJjUAC zLMVe8x_jn65;wBubwf+c%XpzAl3A-VHlz;YzS#F_n{xRr@29L=7n03{C~+xE`d87T zkFbA^2M0L`1(%r9rP3|Uzvy+UL}PmyY|lj2uH=_5*a#Fs0w$WMs%V0fVDR$w;DBXi z@abTy(|MaeUd*Bbt!lnLGzhEHkxwP3(mNN+O5!OVX!Om=^pDD~mRk@%{X%(FV8i0J z*x8lsgEr60Y@Vm})uBskIC(@NfxyAUDp!4(U9UV}b@u6gMeAnW3lH5oL#=C@<~$9xnBUAf_=MUS7K%pM zK9q8DXbJTuu}gZII3%zoH8$P;k(JWuS23RB37P7h^PLRxu78%kU<2yLq_|BGH8b#n zGAe<Z6bg`PjzEP}|7^!F z!`-^Ioa=5rfANoSpH_nQ>&KF!rHbq_%#CZuKVtp2F2qI#q*ps;@7wT7OK$p`YVKcv z<|m`Vz=K$y)|(|DN1_(|re4pc598ZkX${V9yBTY}5^(i;y))bDQ838u5AH;P-#s^y zY`lL3VOsGrs~k3p@dqC$*mE+>_$xVz>_c13^t*@r_ZFErD4j8+#QD)689J|rJ~iRa z0ioMUUUlP9y!Dam+mv16bTDay3SD)2tX-dmFgd;$oiY*Lq0Gg~+tYQX3xJmDB@El`hg$97FI!LVmPPpLJB?Q}Wm4zfGP4s;qv|EA}lEKE-N zt$0rls+(=B4fCYA*fwABDRiyvoHf>*Pc~}&}1XcT^KhN$R zj&O^({7~jn`3Ir*7Fqi}#6F17vbM&_j5eJ48Y1=3zV(TJ_J->4<51gkR~%%#vKHDY|$>s-Y#hN#H|HSq_qS1LZ>>5r5dyz{CY6N&hXW2;+Jfk8t((7((r zWh%uc&9go4-r(!(Ut5pfmqOEicf+rEaESJ;p?$i&YF#zMHtWm7W3aVgJT`%Q9QM;ngDr!i~yE-XeNvU^Ikzg;7@e`=qabd!<9LksOkA9$EQUY1a8f*vOc5JQ~x-ix=s zVcXF>F+}{Hk4>g0J^1Qw2QOIG=>VKQFF0OwI!LC6xN3_S(;Ak|q;J_%k1oZ1rZR=99|uJK!R%LzqA_%*)f)1BY%M)w#+} zyp*)B@B3fntw+QJhY&QAhSztbl(F6Otjh@wY}hEo+4(ouVFNEf6_>PR&;4ZRA2t<= zOA??S=e-@>tkAT)3Jd(qZvQ!2;4Qsh)LOA?)R^k2y~T%^;eCDbjjWqV3qp+XV^{g^ zzZWdf*`6h3LY-^$E`4M6u%LTJKh}Em$*-=!uuSqHrLl)vGm6@v@x_mXR3q^(rdPv; z8E*uRaXb9-}PXtpr}vNfeBv97#mAh#F#DChS*i*|8ymjOCW=0#(3R$UYF{?nk;X9YNFdmtW8e@wU zSAP7&3v&&}TxPvFX;&DaGal7cDOmT3ahT%tvwpSMQ}^H&_w%;QtBcYqqP@{Qmz){d z$_fLjNz(CSQPb`C+HkC&5ZazY`pM0q@srllk5TJu!N2@ez%LuFUD4@BB?^S@lRII) zCbke}S!gedIdr6Nefec_&vnX)L^Po{>&5a_9@s$}ZeufMI)pJfov;;+$YSP+REQ?r zrZW=^PSd~Bj93w1T~@3vsnLpWs+E!0xboJi)_}A}hnS69%a61*dncT#=Y~8o;mT5M zg2|d7mk6_G^>WvOA8Xb3L_!~8Si(x+{SaM92xASQlPTbSLQ}x#uvZL=)0IYvJ6A$` zGiLvr{E;n|eydRvm!@KrfIMm*EiV2_B5qK9Znm^7oe@YokzST&?re8@xfagMAj zIY(>IK8rf-7lv&RW)TLciISnPo%|DW-<~bg2rUTb5eB ziDl6#@N*ijs5$G*!~Z?uT8-!k?_n!h8T5T-A@-V(sh+QEio-RY7S^vHkYgVib@UX9 zb39i;3M-CD3aM(HJjasG`kxuFUb?WF{U;*(UYj(w4b#(x>2KS?GF2lb$~hB8qIhjJ z_Ycn9Gw``7Qx>cW{1m={yHR&zg)Z?J-Lhn zb1DJd%x~>x9fDcWRG=sE?@XK?y@pPfQV2{OqkCJNVz8+$O@oXD&e^9Lv?1$Jv+nlj ziP#fmVCPXp+h)a6Mg=VaI>{b zY;XG0cw-+Gt+kD8c#h~z1b+DsTv0XkGoWQnp4FGt%9@dw6amvQD)EvWG{5OpE2liq zs2z#8wKEXU%e?xmjusD{>z>hM9tc94>JV{TX@VLkusH$wo_WX=;2W?d7<$frvPgs<@V{l$|0vp%Qwi% zO4T%bj?p*Wn=RQA-naWqBBYg(mZ|9kaX1Tht){O{_J|b4_SlZSx8y$`Tivkh_fsx)t=)ADwT`jp{o4XYZS6&e-B}p|C3R zhf?&7LUZW^IIGh{G~qDerPj+M$qXp3iUl)0W>eN&HpR16JHTJ5jP-Kwes@6%i9ek% zt8X~l%d7mrS#Kj)(YJ2gA%b{F(jP$eWoFG;x>8Dub(4;R@|vgzB5UPq4T3+6Q`#ir z)&Cx1CQp$~cs#ZWv*i4F)~WX8M?^SFyw0NYuYAK#A&D4#*^y^DA?irU8)B1(`Cs!w zxsJXFP8xi;nhrbZ;hv=KmaU;Vd!dE6!-o7RGNTsx?22a6gfI50#HD|ydz?z{YLSn7 zOh}IxrZqg>eFKH6hS_SXQBBpxEFZ6R@>qqW*Y}Nuu4W$hA@dF8QEn6X&<^~LXxsKcNc3$ko@>lh!x$WT6P|*rzsaj+ zW8%go0+Uwf_v#IHO6zWMG8nuZLC46>f_=f*^8l&CEu*ytM%lqUQg=|MWPfF7VC~6V z%9NUCxy!1oN~vfl@ypQ{b}jPPHhv~{In03b$Hfu>g}SE-b=i!7@fDP zBe-21s}EY_BiqU1=hxD2m5r_NZp2vvn8;88>Z97yQ3peDw4HoC|1t{JQA1)$PK{O7L(JYW}gdr? zaw`+QFgLb6!UkvG$@B4|kv!LDimBDAOT>b*x%s$8S+1!(VYK~W?vV(ERJf8PP z+q*DmyER<@&F1qf4P}_3h+`b+dnwdPTovJMe|DI6Z9ghr08EsV6v$uIV6^1Lns^qJ@Bj}_9#5$tG|)q%SP zmw8J4Ba!1~_*}tSgJf66lGI+>QOH41>(lCBD)_A_pPyW^YFqlp!s6^ZZgAzD4$p=6 zeKs3(xaeXIPS&p@Dc_wKU@!=J@8Z@4G6ttUMBH!4V^8vN=52Wbs3du67w!R?-sFPq!@JnpZq0&|zy^77b z9l9s-16t7tqQ%(NF@5r*E7VF6aEL#Wt~UQu1W@Epl&+`NL>!#(&{_fwmtRA_M0Rd{Z}avXN>TOe(lx-MBo&K0FhBU)U-|uJ zin*T7)&AAc)fVkhGYe_0Z|+!E$}~EBh!GaQBNS};-?Q-Odo6N94ZpajxhqiRJ3N1$ zp@jc`pbrH=pBMF6z4SvK8t1e9^YRD-Ze^>eb0qW%6<;O?8(YO9_%>oFp}6qH?|Ou5 zbovQD0epcYbx@2vuY0a4JdjT<^PKaFZHhd3TzHoX)eFB#M|aP6!sa&epZd;}SPSSb zbIaY)iS3E0gX=g+thF$Eb>mKa7j39>3FDlqVj6TSaP-^;A1TAU=7)1^9iuAz8!g68my~NQSc5&^+0IK)UXcVtVcEm}jcE?v{ zc*3RLx$GLsQgQBgCy4+ac~9jNG&oLn8c`A1C^IeOwE*#jqctX$LcCn5{Qf#j3VAg=%Z}=tC_ro-cTBMv z+|hL~@Q_bs<2EYBv1OE=22h^p4!-h!mhXJW=hoKaBzW057QVzk%e`RO$~0jS#`b)G zP9|8NPD*2$fylI>QhJowxC^lGhotwMTX&Eh)|+jTjJaBM;!=?62)6vY+PidumXiLW zW3I>}^3>L!XQ)OaZI6s}&CiA zcU`8hom~os4|-BN31-ChZcgO7^v18t9I&Hb4?`VC3k#bhCiKasn3u~f9kD!YK6Sx5 zPPyGp6?556X;63JpBKV*THgfO2X3^??&U#w)BqjnMn04dv`+G-sF1;(IohriM)7I^r z8l0@Cczd}_@YThHl?pH{@vytZvKs4tjP37@zx=YGT>>`6WNP={)VnFp0q6v_~;tBz#7 zft>ZRmkaa~1VT^8tF5lAsKiB>MCkRdx78lu#A2P1Ms;@${0e1(NapdhIwqu28k=~n z@5btn!$!jo-G3#9>v-sYc4@CaPtUi+bJjl{@RY{Sc56NXNLf9UU8kR?Lv{QnvD{ z{DnWl|DfLNn?71$^DOdsXkTNje$@5esNee*F5%p+gj@h~1lm_;qwiH-&7Gh?A<7A5 zeZi*3f(Ky-nC!QgiUHXX5_QA!K_)Zv)uVIDO^WcHpX|T*q{xF4mqOR#H%L3sesfN9 zSVhTXzbGews6_NR7^$gtH)k0~e82C%A|zQJAJW73?$7^Wo&4V!zPQIXz{A4Y zOy1rk*+b08f_aYe_M>;3x~r*-Ud^pDrKz4mR{~bD)xq8A9={4W$-_GZm z>fCaAG@-4bM<2S2jANh=YY(DU+#lbNyYV4vT1)nO7Z2U;-Y2)bF;B`mu~8D1%yZ}@ zR3{*ZZkYH7HkTnMs6LOI@Q|mjit5mG5YLfb%E+KzV;E#C&5(NTo#M%Jdn!Zy@#`(K zeE(8B@+V8^R^b&Oj>30-xOv7rt}wUDg{`{z98E6P|GX0#11SjW@1eQGQZn4kEnT#A zH-Fc8rdO}S?zyDhf2wymb9t-WRC5E?rR6rG>cU|^-XIKLZcW{mo`}18@f+xMehM9U zNzXw)hd=VNE_25?=(SXoRq4}TfAeCjjp8D*^cm~F{vh%-ijn6%tG zu(?WrYL=bzEti#*(UJdteAzxdEuW}s4+h+idQFk+RG-4yQ}?nO6ZzuoYX?Cc2p~_g zhO50w5v;YHv=9c=Z8(7&?lT{#x;wK|P5zlkhTaA_e0aYyu+*hZogMdst*<*$I_bHt zhk4;Gt9QQiol0F9HU*2f;kYwW&oE2)`o8yjUOtkgv#>6K^qq@UxL=2B7R=T z(S67*|Mt(t))D#Lsi^79n@JXtvgdoH7^s3(1UsZh@=t~hYKuPb3o=)WlI+iWFObS} zG%qp!L7ky@zL&rzIa5?yYqB5Ams|5-FRu1rU*Qtn_u0+<_&vA#j)^q*j(KG}(G?Ymw?l7~2 zLs5h9v>2K8thr>@F8};rh82^29~gEd2Vtc}ywFz&Z<`luXsxG_KSZ|W=ha+C2c4C!j>$|fGJEZ~siH8MTuk+A8Rrzw(nmTI zRA0K6m30F(VrmiQ^wsrNvgU|ar%>Kj?Fj|-!GdbDMVo}FW*xCEpF^hSXS3`R>7(xK9gw0|0uxAwighWOBRL%bY4|3m8Z z+Uzox^FN&`iG7lKNxg!No1I~#OZ5Vdx%q|pokNbe^lp;5p0V}&#|tmQd1tyC-gxfS z**A8D@=e;;xx{o7>>j<^P!K}iP#>|!eI5{Zn>%9dM2B9U2(8c}7Wt>El_{=-MtzKf zgpTtAYDQgvg8~lU`pShyxzd;i$jZ-u3o|w5Bo?p`2M--?=qj8pFppG|oBlOrU(sI; zED3>fo}LjVQjoQaT-y)}dDhQxCF79#xFxdu^Cq&D%+h4YtG{bwaz6=I;|5O!Bj72Ag)pQSM zeMxK=Us_hPjgqIc?NN zn}iBdTNiWag11^VR7#=8H2X6;6}7o< zkp4YC#JJiNa!tk}EGsekC(pCq2NBm8d0SCo`#)lRl^PpzC(l&}5=EHtQVjT=dqAhL z-hqDZDN!DMW?lZrOmoIqsOU(A9OtDTk}{3A%2|`^rOY8nQ~xC8So9Q+j-|j?I=KR%v*-4xgI|XDa)V+W(v51 z`bMuF_-sdLg^@c(y9BBJ;{fO{3qtH}z-Op2RUmOel-s9>Q4{L^vLJ&+RcaANkzF`& z&^jTtyv$T@f^Q{K26q)x78Z0%9?^fPZst}8#>wXKHC(3n@JOKB7 zA0D03{8Vs59_sDmwZTiGq8dh7Npd2?CdZskDoJT3z#!AX0( zZX?qgWx>Gyt!|WQFBiU{BqG^sbQn1`yOF2V7%g??X<)QdVIhmyw@HtLWPuUWSFs~e zUcG4*oym`JCulRd`j;1M5qO`&W079HjhgYURZWGBjERTig%Q(J`6UJ^|EBhilCl!I z<;_+)nf3vLppAk>D0kmeymG$f`j3RqTIBl1NZIo#wcI-rj@-|TDW7J*^fNDTe*h%xj=iWlEv!siPkDs%g<{a!Yr zp{$3Qt7Yce#Tqk8)f-s4wo=8UM?!V>8~{@s8a3-{r)ccMRqiiS!|H91$;CsLBsn$9*|73L{{*=il zQ~ZGS7j`fOBW+-qYR*dzaIOTTbx%VY;uLD?BtYyiuRAX!RKrRE%|_WZRq38m0yD#^ zk%?w&Dup2uDN0}1uVJ{vL@wZ7Cm70?2T6NR`v5wX^3H)h(JvrLGLU=MmIbimD6R2e z1fsgeT)|rFqVtDzLR+Fs=zYKQG4sYS7M2z3h6xkw-(tlPVKX+^LbiCw&V7HxeXWV& zKgqtRXbRkZ*Q{2`@F2IINZQwEIU+2}gU08d6t|TF6P8tH)YQZwP!LU%z35U^ zN0m~8(q`#7RBhk&K5*w--Yy8JA+@DPn55L&*{QhYj(lKy`>K~0PwB5t$Su+5MlA?3 z#8cdrK@_1z2Po$deK#W5T9ZjGcBDFRWOdIKa-s6biRE;})CFBFqV*f{YR3_B@OK8T z?PP_6edo!BE0{TCfW{Qs&&WKMI z^FhQvbst9e=4*&&=)_GTG()2Vf7T>>5;s{;r+?1yJFNvPYW?Lv)Y ztq#Q`c(piec-}Ont(?f8)1RI6l1}7wqpB0VQ7ulvB1p*9x|fj}9x#~8;%~unG$bzxuZ3-l4IAl^UpQgo^SUshhKGoQ~I-#%F>4#rY|@xU`C8 zt;~I71s);mfZPZR_h0OTAe4D!2TJ(HIAz^6ab#sjR7PBD-$vHBBTjN4{nQram|BeN z^PU;em{HM|3Gtybg6hywh`-dIB%C5#NP$#qD0>RCIh z(7C{r@n}CSidW^W?r*6Pmqo{Xx9Qh&YnK>bJkL^%u&Ua+U0A_OfkJUDY^DlmQ#@f* z+1kBy&3IK_?`GG-AlLFPo!>52g#E!O@@wS$IYOr2(TbdysQ6>-dpb*O{_GMqzq$(#?Hlpd4 z_XE^)B?^|&oDuqDBXvZ2kef0wbqjqkCS5k+cQ;;qrYMgjBI{-m?qz9MF4=SQtsDO9 zxCiCX+_@0DIFwLLN1lN!%Y@2P3LLUy$foOjE0Q}cCA;Rn5gNF;`S|)$@5WUJz zrK(@t^)m{=w=&9wEbh`x;InH{5`kZ&gDt|j{jDn^!@k^_|Et9EAj9<249P41YnEb? zc9Mad9&acut03#_aU^ z)M8RL}S zLa}m|AWIGYrMLDjc{s|e+?`rKn|{|HqvsIe3<5S{p(np;vb-U2-b_FjU58#g>Y)4_ z*Z{l;C=G)^*QOpN*5Eq3?~c%#A$`p2WUG|Kcb`?xV1u09t7+I?d&!Z|n`%Ime%T(4 z=v+H=w$b%M=g#to!?o=FdNdV)nibB9ee)4TZAzuk0($0d;86Ils8Py#(~M3HX`Qr_P%;9`|(pGbLd0 z0QP{B0~fh^{XEyl87lmbsK1*8+V;OU{+24ePEq=+NBe&Dw)N%1j&aHFJ6yvAZ&X@|+cp`Srzti~qKe#it)RI5+y9;ETxc?{{k1?( zsQc>zKpv01QycyMtM?zNav@SK(a2Wtp0bd|)+78Op!35kyQDFnHspGbk#7(+*sC`z z^jod|$?a1#RIhf4s>1s|seEo+AJD~nh_Ojl-Z<`$1?*mmMztzCMW4!1|LcTI0ldSK z{p$C|Rgr{U9fM>7QP}@&Pq$$-o)(zGog6gf&c3TFQCGO;b;NpkXJ_XEgD4aA$4zf| zCdZ2A45Ff)^ZTf=5GBbuZusZ9x92|Xs~buWK@Vk1#Ox|tqt(Oh3$t5TSIoRgHZ#B{ z0g)=RbwwAR1>J;R!MEbShCvyAOj>fAh@9PUxFpT&TX5sK{ACFg4ed(D&T4Jorm}7`S))LirWs!k0agO}54n(I7>3tug z;9qr=s;wiQfrl=E^?&{EIY_tEg(~{FeT~ahwCS!LS$SiyN18Ae6n=Dm!ZF~!XHa2I zxZ|(<*+1%wvaijPQiLoz_Oc=+F7U${hcUE-$_-tec%IRswp&0o1=MH+#I1&YuYZed z3f{kFDqHtq;Q_YuFR{(s{HpePm7^^+0M$n;dWLyppdqZ3q+sCj+3LV!Pc5?T@2mjX ztee&|>dq-)nTzpytd}XvIxU&l+H_U%xm!$o zh5_Rz>g59kAtb-{d8Xaf0DZ#VokgzH;woh58*u$-qJm@Xq-?oVH~M3+wO^uBY}dw) zS}4SlVqmWwS=Sf_ZoHq!#8Q62%Ki*YJHDaTIH0-8NHQ$=HrJj4APRNIaPAM*BW7D^-7C+_J4J^J&^b4VqlGo7Pyf$;g8P( zip;*8Ps)gK+H;7fV*;J_O3+nK=zS7a;*b6{dbWy*?a^1S9+Yt6CoCtk)2qdUgF+|& z9f~#4sc;X~jLZL2MzpT~n`}tS0>==dxceL{$C2Y( z3sujo%V?JWDJ-l3%I!OQOrLbv91M@bHv`2u22; zW?Qsn__a`bZC8x`sAkt)1i>Jw4{OfWSU@AhCzbBigwzgXeOWgN2N0U1E_(aN7T}7e zB^{EO-h9iPo!vfXIjdUKe|E_u`&3IF&R9=>bqw|Fq9c-um;uwFi@C!cq^rwMCv_$u z+o4jFSg?V*>i%80VnOMK@|FKUZ+lo#cY4UL?SgQ8<)s{A^#Hy9IIAqui*UQ~zN_$F zVGOIhwbaJZP~)!IfB7YM|EOAi;NwF1HKku^=9W4&0hqak9HZL7S{kz^}(L2-Oq-17qsJ3U_{%%-Pxx90+gc(mVcYITV zM}#m|`@0>l5dQyJl~~ux{?dVZvxENn|E0AcI^3rw`NX%JY+|1`Q0^p6gVF1h4G=5@ z+$KHTM#w76DTTM$w;aesV7Sx}2Gvo+#xof+8_M5bywC)3qkpkJ68ZHD^d@NwCZ;*o z-ri-SMm!f^1XItN%AaSl(!Sh1uqjrMChQMvZXmwp4ZZjrL_hgHXFHgijk$9Snp?9& z?A4XW5ZWr!v##Z*N5qWE)|ct;(Z^lI6AxcJ$@n5UW0v#$ipt%_-*rB>f;_>+ec2-m zni_fU6X)R{;nBWn)TXt5aITP~;yq{lY0c<{_rSUC8p6_rMYxyy(pRBiklK5(b+TvG z*i>|n5hFg||3*`|PY=f@kqqTXsveYs8E5F3i0SSlMob?(0Q|HNWYA|+LwzyJP9HDC z5J>wvO$)_BK)uLZFG~c$A&IM9tM>3TRsYYQj++ya3&!r?Y20Wqad)oo6{WLY=O?l} zLi7V&2DaDTDL;=uxOHgt6u5>g19^Q~8%holyDOE+h8$v0c52YBs$Vw$H!y#B)H{n7 z+Sbo+(lM-+de&V0oN`VNT*eU)jiL4VpG$7;M?k`3j;YkJBq@#F9?JG`Zryl#_F@i& z4dr!&D@e!{HQ+#@cvY=VZ7c1(J<3OC%-2UjP_=hrbaA)jmMrdOv0_pKFo^_+_jTTy zm{~#5CpEscymnvjhhKxs7WAOciO99*gFL~A<1~*bGkyX0)9?e~R|9el72w+6!glyf z`^UJ&WJxMHCQ1HY0!^wCWOLj<2y48BK!$CGx}})T%$wRe6@%_11brVUJdRb%j7h$* z(->h@rusY4g+Q-NQsU*1J&6|W zg2@beRT6&-YXv*)+KR)?u|<)#MjH>m|H(KlZQzps;kV0LQ!t3x5KJ`f>iNfl6cp~v zDRVBgMiYent$#>#w5~qF*5rRhT%lt3{eLZ9c3C2*^kynH^dJ30?-cP-$zd6y3<+xa z&2p51I1#O;fJvx3h;=-?rL-jmDgd&wYH{errKxaCiNR_79001-~PC1OC66hJB+K=wNSes7RC0#S%00sLVeF+-If%MggE_k4!{&-pMPS?*%^?qhyCko4FZx01o?K}?2iwK=Ff z9F2uCKQ=l4GzcA!c>j_VChh-cz^Xv3JQMy&Soo6Xc2tA$+SA_^ld@lLS~JId^XoJ6 z#9jd?sm7$L-)hDLTL|JOTuid(H*$~a*8DDg8-z-|cDJu6rGO2S&Ku)@as9)@z!uP0 zVf*p27oeeor(&N)bSX;>UxOVG)ftx6I`sW%kExIe4=e)6<)R9$=?~{xV+i;%CiY(8 zM7-A!^Tx)Y-So^2jh4GI!iwB5)pqQHp^@%ACN43w5^{gwII3+I*fOrpo-xPTx0{|r zSyhb7Lu$}%`pgqe;Aqp9LvD1mhvjSiXO{Alv40p)AR1Q9OnsR9G0W+j5>=5&o_>k6 zkLzBb|K;U=TF)O02n|uvyl+H{2{i!7J+haXj|fJ_+`Q7o3p93^y=QV@SN8=_0Z=x%(Qo!ilGQ2rz zS#26u9_hsqz8)CXsB-dLKjUF;KcD3U(S1kyprM6jY8Ma7N_`6 z-X$a3p4Fp!{;9G}Qlb_XOfhe+s*3T?bp+p*4s;BCbF#aoHtsp-Es^HR+HD{%Sp%y} zDlZu@kK?^jB+k^RD1=s4pJ=ZqKYhPDujB}Q)1?_-9w`%kHu3}G3%FHczCiF4a;U|qh`$Nkh|hjNaxJJ?GT3sc?=Yos)(AacXD z2DL-0F!~sGYgwnj&G}WDkh1P92d*HgT$1m~R~M;}RVmLhx4|Q2H$OeTi|@-AF9)gl znn-C(tnIj4m|39=UdLye6y7-95WsKl$5;Dy{0HB!jVI4ReLj>E_Wa$F1Ja6pMd6{1 zG~4Gk^)|pEcy4_QFp^=uG#RiXw6L#eGUg%wk@ZP2Sb%ZX_g1z=1W_lf#&h4Abp%U! zQy*38OctkBm!U0z$5~O+@00K1<{FnDeu*@62kO&Zt~;;M0g9*Tbk$0CuvT5+E8asS z0uQtfh$kn+7N1RvAOJDz?@(Se3-`q5g$G7ClQ`l_Cv%AuW5HCt;Aia;qJ8aNF-=>7 z{Ne{Y<2^ilAW_v;Iaqpg5Kd?Po4!gi8#QT;I$qv!9%mam#r5HK-1ppj zGhji~v!UEpN6UM+m_S0QGHtX$R5)m70HRAAcc3S4-lzoT7vD;|0n<$depB_+uJ<<2 zv>xU}G9qUcfctcQ|Y5Gl?xsW*Lh{T(7J(;`cw{6 z0Jlj=#|-IDiAv^BNc-mf2257As&JXu+o?muL2DJduiG_^o5uh-?tp zma_)w$wU3GG4bL<)b5%UAgNc?XB!#cN0eq|YZC{Cdq<1>MCqNRWG{B?<%2cYSoUdY*}&xjI;Mwv zJS#SunVdij@vG1Rx*Kclb_*2u=t`ry`HWs|I=pT};Bl zn^+=V`q@1IiC;TZnvh0%rH#Y2hSZz}Ss{sY#&M}qHs+bK|3S|}Ff;^c1zSRxrRiG> zfrX*jrz7)Qmg#VXG{cqZ+v7Z)lW3Y!)h5w^CXt42 z1#GNL$2hH2ZBNhmIMQSoI~eHF8B4b__mnaoa<@n{GJ`zV^$U{2Kt%hq8>~~Qag0G8 z@~q3bC5l3DFyWu5uJ6)S<>Xreh*H(wY9hM=_!iAP-pDd*tob@PF%8Uy4+-3&j6YYc zHr&qKlClsxBtNGaQ#6SIG1nup5iAa1o8{1ba;6_E?YNM*dY$n0dQHgL5+qJ*%;bdS zS|4G{ZKOh~dfglo-rF{$*^9 zU-f8C&fan`RC`V8Z(7yV0V|m%!in4RLSjoNtD-X38R0SuHVM~2A~Yi{E%ZqdZ&(QC zWY?!+_EF{d1Pt3YZ*!?K-K^lCgiECCAc?7$yN-he+n+913@?3P9(@O_m4YY;O8txa z>+p6sV*7P&SG=;*s#K`i2ul)@0yNH|Ba!PT=tzfmt)Mx`Z)a<(rKJ0=ljz*g5 z4{~8IwYGo}1yfkvLbJuw^f!ddJL1oCE$X!(MU6q(0_a^ElAg_7&~+anEB>L9_9Rj5 zmJAtMgC(xMB--v1OGEccA@=Y}EfwHeh|-U~L?z{fqIXxfZ9D4kep@$NUke(2$$wAI z``HViUl{e%5iLA2xxw;HKWd-b?d$sb39!{qHqvK`)RSIMS{nixq$+zzYTD6@fsr@c-ai``4#S={IyHlvTr8!m z$KH1p7Gocn){S+9zJlX<528&+5*c|2zGnus1e;9B-b%JZH?V@A!LTpd9(pEPLxIYH zk16W(`HU$HL|_epz4MN3SA7kE=li_<#u*sZgB06LDBGFLa(P)BUs?w-_0>io80NF5f#hG z!?a{Sl`LrO#Y7_akr@D=JW~Q&zvW(bQJC`nvu1Hze$C z=LKO;PlvYVcR*7bkwpV_^Put+^eixGfa>^vi~L0Qj!%9eLWt5{k!~C)kg}eA3)#fC zUEbD{k%%a$(cK`U5YYFNztL?l1%9ne^>3#dlP@f?BjXC6p=0vPMx-~D8HQY`EJsQfc~I9f18 zHB1f@N}*a$3h0_=C}wp?w7vK=Us0rpEBatNMd2uW0d{g;1|87%r)1lmI46Q-)kZLm zrlJv7BjcFPoNJR}7?BUDDl687f}kX@55uD*Vs4jqt4?2wqxD*<-u=t-&y7{#Ye-|F!sq)>NqwwUua&rgFDjV-~c*A)#`(FBbMKu_yh#eksc zW-jIGe^izC4I2%;8t0%iwk!^T0HkNR$8fW{Ye;%S?66^Nu+%^KDlC67$1AFSQ9eC+ z(hTzKMPSbYxWknlna;pSoB6Du-5ltectUCMB3*a&p0{c8_ej@mY{2@V1W97LNx6!{M_tjLts5dminHuZ$ z4wH+(9_xGX1fyUbI|1FjdpbQ{zBbY;(xX2_%Z~t9uNu~F1FStNg&4y{wlswjB~BKO z(1H5NUZ;10Ft1jhfJ4nqEI3d1mFn#I=Hv+R7KCS&R^>k;>v|FYgF;3w%BKqw=)yHwu|^+ZMXM-^brffmsFKPsU+S)B5+*<7JSjeJ@|tm!wn zkCrPDDtI7n1_CnRZ&RR&J;IGmzd}w{vB4*a)L=)AH=w`meb!sqJFNDy+bl12_<25t z;GZh)CBxq&i^!!R7+O#lBp7yk)f-V8>2jtJE@LVT5Ej0H8MF0KRg}lq6S$<3*XkEn zv&ibdv^?E!ywZBV_yCJ_2qzM5d9pV#v>9r>5|#a4)xzoGcH(giiqM_yodA$;0o?l- zfgb6-`x*QZhF9y$ONN^V(dm>&NB=1qzrtQ87BPY?y^k6Ha0e3~_}x@(=MA2^G6DUZ zu1VjOYgwDWwNoerR>A=S4%Qt!RSx|Y7x^tPq-9l_y0j=x+bDc^=hSo0siLsgi8Q42 zwx91^o0GAV8#ym)Q!xq5#L*NW@5^RMS%VQs+FDfJ1#%&HDpmGAlf5%`2kDldys1HE zmSGPhdcxWNA8T&{PIcSG3-1Q0$dJrqB4a2-WGI_R$P~$#B7|fkioa6kp=8LMoq5bW zlaS1|F>_IDgknpXI_t0Jd7t-u-}hecIp;fF&vRYH-v8mg@3q!%t@T@LbkWKcV7QWoVu2CGN|(}F-sSp~9@hgXN!kbV7gf^J(7O0@&y z8a{ox6=S~Ltu^doWz*Z6<;8OX!1UV6&0t^QcYO4IRPSqTqj_LBlCf0`(m^1hp1%5I!TFI8= z=jqp(FlJl7TGzs!vcEUWm>zaB~sVrJ5JA8W>sZX68_h>E&Ch<9Xrg{*GOubMT7&94rIiMIEk zivL%s5$enXJ8RjsYp~1%yxIk4le)Td9Ec*oV-y-et{0TiMXeyShc~ZlmnLp?9;lr9 z<$^{jx0c%C&=_##684Q@Gvyk-|HXh2*M}SiY6-w(9(NcC;(@M=47U7H}F`J*> zSVOqgVM9MY)v2K#YVF41)^Q7r%+k}-7H{d5FnwoMNx2=fpbnls)Z;s+k zu{#wL{9ePrBg;g@(Yqc`q=#yEs8gHoTfNr%d0_go_L%T%$GqEmLCt8wsn|-(q-r5w z+M;^#XV05=nlC%ZiZ0ke0KDSCu8L}}it6d5?b14AW7Br^=a*%&&s1{bETy@!5-+cY zS9>X$)@g+}On7^7+E7)Yj+H5=53*8TfO;)z^}Zs`oq9PX9-Fqf`(G&bMm&qf_f!X) zy4dLs?C>#L_#(= z)z|4MInNVLxiZas`<%Juig06V!{oE-bU{9dNQVZW16Obxt8n}a_I2w^LWGP>%7tvZ zel4@nZkr8Iahi-r--`05rw@~Vz5ZLdIcoO3wtM9w;>c+Oxjs<0P&YUcFLebL?QPc_ zO_dxI+3Qb=KJjvt24r~c7Yllyc+xdr^tsk|&QRa7w!iZV_sxfwlWTIz$5{l+t2*9RcjaHv8cC`W{@_>J$u2nVCivn0p5>o=7RDzW zo;&Mgylt|^6w;MRTbs3Y9Cq)9dJ_m=}>U1QCyH-b>9&JK@{2z;98t4UEu#O z%j+fAcT&%(paN`Ar@jVBHF9*!GL7O38YBSRg|bUsx)9nLWcx`IHoQ`o4=s-F z{#{#r^~q2tho8rx2;ga;7z0pu$a}3p_vYXp%jBa1uc}(E3xVLG43i?xrQXr+WP3P@ zbYHLw?@#$)U%Bo~w~tigCj(}$s!R5w@Apj2L?a{utR5H82o0)iujM%0Ey|Eh<`+uV zHt_sw@N{L42J3-NL(@2@%fj+3dVH~n-R#5GjBVKvFf7=+DW-cb zOwUaWCcR7&9m;^B8z9B%_g=VLb@#$=&*i;aE3Z6dye2;e3B3LIbn>;Gj#KGzgx-2S z=t7Cy_{U|HZEi{yfR(eZ&EE8mTf3CTU!R9)+x&{jOE9bG*>KywUlZsY4^MQm;#Hpm zMJLmpv|+vQxa7^?KCeURop;mTLj>KNDb^_VSe3>_4JRm-$em=luAkZlC!Izp`mK$`({`> zL|xhoAF#{jDLxM@q>jt0fz&a8D7}aUJtv1s7tCvj%uy^N*TPBJE7rtG%VX5@Ireww zfq_3L1s1JG$&7B#6DccE~P35G0Y;r*ARVe?c^A7>p3^1 zZX;p3Gl8{#@UHoz@l%wq+V&*;_Q0j0QIb?CFHPNx9!T~_#arKh7T>mv?2I=(Pmb|^ zVW~le;c_)JAecdnGr2!~P9@scS~fs%&z%oPJ5w1GJ>~>X7?)qBR@i(!-4U0*u~cV9 z!64iXf7drQ9$lfp)Evpw{kS#}pNkAzm8np(eu!Tge}74x5N#EDiR6Gm|4g=96$yxn z>$}GU1ZD2=zBlRh&a`}O{JzU-zrp-+o9G~Ews-Yg1GSL2xNg|lWmUY}A*D+yvBxqg zh&$iMy!rG_SmLu1+#;9zyjo%kpc>D>5RY_;rlj%ymB(dW`pYvOmWK^j>rG^SNgCe|%LViR{9N@fW1+#?Z*-WMeQSDkl+b zL1E#DhEJDo-n@xaH46y|=^Gghe;Jfc&^(jS`4B3ZF;sRrnHWqX)jV9kMv2cOqNk@v z;{K1@C$5#YdkE9)zco~NGgbld+Py~k=VdW8qB#88+qX|BT!wB&+jPdCiIsKBTde!- zB`GC^E|(T5Z`WTRo%H7R5H)`Ay(ud%4;f&08%+)jJlGK{sjeO^vLJE$$X_43bMG~? zuLX|>pKqYA@4hczzGT+cnpRX)1dOv|F#AsY^U{mY0;vA_j^f@Uguid&@69dq*N-u@ zkZk(v?_9eB|Joo72CInB!o_y}c<+b8r@#JAvkTfi{q=|YrT>4udJ2yRx$ofyF&?!; zhYlSWr-ReO$Hxb4+fL*y)yE#hFbNtO?85kmZ0BSiA&_6Tw0y;rnUf=2e}6ZEQQYi9 zC0|PF|Mk(+4b`86%PIEm9!SRLf?znf> zJqY@*?`I8C={zw*3$7s?ax!^K&*I|ReoM1|i$Oo}&&Q+Q!wm-X0+6-5Z!yKqGlW0C zO86dA98K)dP{+prY@ugoIl5Z}|=E9p3XHrKeK$HQT!Gof$@xoxuT zF&$$)`Rl}Pj2PEGTaCyR5D$~PExdv!PUv5`5*2!8nrUk#>38s8**?r0Z`SuNE+eJ( z>vINmS$I76m+9#_e2|C^$aZzDq^18oPuKQ3Q4EHg`Kw(P zkBP@@>TtDt(e~C7Vz)3{BC}Mzf+Hw1&Q66Xg#KD1!zjA#+o&8K9nC?CI%U+s-sabB zSB~Fbk^}weIje3K*al5lF7CsSdMv}_td1Nx!Xy%%JvKFyct7uZuA^t$`i66toHd&# ziQwBiEAcLj({b}>v%=|W)BM#&X$-hpmr|L$qk5qs0vsfqsNs59n``P*2QzGz8FA)&T= zo8Oy9YBbNCd-xr-fd$(P7>v)}dE3j5gZ_e=liPXqX z9|lp=oTT5IGXsMk7F@S}l-2dGuglM9MbXx(FU~n+|<;yqg8-esfxOdFf#UobrkI0M)u0P>vnfiWf zb*_J*v|waGW-3@b$6m&$#-n5)=jtn={OUr3jeQvD2d~rit=`m-+x|JV+NY~E`?1~! zPNK(h3*VQ!6}VP`bdv3FFk#dK{V&J!vcV)Gu=kqjy~D@lzQF0J$7p&lnP)bDFR}Z@Ny{9%!K%ed^|CQ&wo~=>lv>Z@19YU` zq;0*j(Yry5)hn86Jt0!#w`!)#ou)`dNn4i&jh#a{Jcvi{Wv^S#jQKPx+Wp; z_`M4&U}v-uq%B%>P*+PXl~+B=Fic-hFC!%-Wz3bAm)G{zt;=?H*;MQ@JarQjUrxuJ zwx3(}+}@l~up2J6k%6~;H7*4R;EAMUhN#_Kua-h?kZ7%8gCDiQ#fyQb#Kl*?7IoS7 zq^M~xabiAxdt1rUH{!BdJ{78qfP^~$uW@UVvF@n_Q{_VG$mg{Umyd5AW~@<5$3tV; zZaz2{C82UZ3>QYqv|g!%^h`Ddt(yH_H7gvt9sX#~We}ShSA&%;uR3FqXxQS2n3&8# z)B7536P{(K?T1sqn*MrF>)NHRV`LN?Dl?bCvBr0WuYGWBuRK(vFXTLP3>SHkV}cb5p8afw6`61t7n@lL+2t*tpT2&&%g$E(jw>aT&e7NXftOuWBX zkat^Qi`45m9=$!zT?Uex;5uwm`L(cZ*oEiCbXQV-w5dntm}P$LdKUakRN%uCu|H_- zlG(3T10J=9ii&MfCwf8hCuUdCV>;hvwp|FjQ#mGzdD9JhS|wSMnyMTwgSa%GVWT43 z{m@~J8gu8TrOCoZg{_4J2pW9ZKwm$ycJqsF5auEt}dSV zV7bM$>x4;VpQ@VLNw3W*PF6Tn;-_zaFy92lFXi>khm*U%S%lu8K8P1RE%Psj}>m667kd)KO5bG7yKZakR3HgSrIP1<}bD=Vw8bg0&|>RC*T z&FF)bj(6`uSVO?00Il6%Sc%Il=>QvS1E9k4`()EQ-$SgyaO6f*yu50)wY3S0Tcr+T zwh&>OQuzH#YqSo;6FtjSlKoTPnVuilIHf5w%QNMJP|J(SZ+sP>lB)X^f+}H<{l=}0 zy%-*;f&THNZ29H)$KHW14DOQOX#WYTcpWuH6pSLl8*BS1832Bg+IXXlcYX>cs@EAn ztz@Xe_Pt}rjy1gR=#T_&$8Pg`7*d>A2i`;o?J*T5IJBrm32x>@<(2kGqY#rytGi z%`dQQE*)6}wIzm{l$6v|X1e2-#5lmnY38q1O>A{CiCYCfi;A*p2TOGC_tu)Mz4OLG z87tU+--)HLUbnp%reH(ek$D@9vBH}{PGBdPo0^(XJLuG>eSsO|?H*g5ENY}GhfTHS z=W@%&>1`t-BA7BWGv9q~c^-0qv7&kZ-rY{oRrR~sWJq}!j9A9Me2MD;+%n$sXK=)) z;}2FeOzzZ^4TG4aX(q%HO?G3aem~%dV~-^%(zhceZjq zulL)hhRB43+?6f`Gk~uPrj~1qV=^=G&Zy;>oV-2;!nXYD!9uC~N{5t7`^o0_vpCdv z8CBnNO82~4eCruVVmgV0>xh%m5;DlUz4kz2<8KHrUCmQXx8;8SQ2hdjp&EPCGR zsD{*73fS*+U1wKtV4>{0UvdbPE+Nm{it zOG)W`XIoxIzM;~8F^giTM_b$g(K`jwn4r_S;(JwgoQm_ zNA2HYNTnbU@L zfbl*TAPG^A4;Ch5n3rycIc5%vfT7h*yF`F1rS)uRJW zl&i=1gS;yHyUxy$&z>c}eS7{4Tc}9c0VE{xN2<`j$4>$lePCr4UjGw6(bS<07n!DNBIuzD|u|^S%q^MER! z^CY+oTt#B#Ju5{jJ|Es%AFR8gto+35X9MRP$p7=+*$5sJ=MG5}*|@ZwC?f_6<#o^J z*X5-rc^Rok2^ajZ{Pgw-iZ>*zJJ~uCWDQW`9UB+t^6N{qx{lsI!oJB<>|g7)WV-WA z_V&2|F>sRsd~;iC69$O3_A{Q@+KojZst^8}NfIp^$pr_JnC!<RtgmFy zG#j28f>P?yCay7F%g>VxM}j#OOyMyIsMa9oxTpB)LfAmkHi_?q;p;cU)007>S6p05 zKuW0qqu&AmZ&Zo1sj_$_w?OgNvHtkYQk)WLP$g+n(!=>|ZEMr@^pq=W+lA?-{wLBk zrk-`_Us^x>!2ezh=)db|Azq7zh4~r-;R#`-!+X0=6{a8{g!M4+L4Cy$M;vgM<- zeTt6YHNme?{XdyeSbuZNU7c4MXZ{*uBY(cpsO|D_0|BNJbNc#*)-v9oFZ}bJP-SOs6YqK`G5B*8nhT$tM8bhO zd-U9WWcN$af35)y^`T7M;4s|O{GXd16Q|pPPA%anCnBNwNd4n~U55{4^Ad#dj2FX8 zubgh-6gymT4de0fpWj0lV)xBmYCXV_f`(#Gfeq3*JiT{`+56U?w@2T9vawyMtLu`! zN0yTA#X?@SYwwlG_Z|8>9;z6xCt1m(28lSe9;o(Jqhuu8NB7S!UnnUDIrs3Y>0W%K zOzMEAJLmJy-6Pp$&?GglTAYvoevc2?-?GD{37zopqd%NPWbKeR$UxDRnqlz&EZFn8 zZgWC7FtjaPW1$=dMjQ;ZrePOZy!rorYItZCVIb{72kBU&>r{;Psvo>|`E&epgDjR2 zYKF*RZj(}&9zuEW?*Op3v>0VWD^`j;=%S8$=1_npEyB)3`Oo@y6Mtk%N}TNrc7B#3 zkj%Yq6-a#ZQt@9qxu=LiZX^Z|EXw)s0?C(1St?~vT70)48KmA{ephf`?JB=hcnb; z5+#pSfp!BCX7lb_ccF^dir5c-Lyo6s*b&CSC>ut9lep}o)5&rm}Nm1;QTT@Q@2 zq94L|ST$9^&}QgRUdV#>eQ6QE5Q>8nqZR_b#JS|ZB;1?^TAKIjF0?wO;VMGT7)Nl+JRSY(ksB*^ zZm}<{^)){u^c4DX8alNCG1`6W;jR%W$X3v@!#?uu$e+2`Nm)XWb7kn=XDQmh5N5P_ z+`JSpoZVl#9#RyABPPaQeDCkK3d_38=b`2>sHDu>VpU{wQLU5*-k?R;CXiSMPA^)$ zI~5{j6jos@V&XRD!Xp2m9O4Wv5If8+EG!%wL`^?{=1>UlK$_4<+X|N@@)E-1Ocj zGP#v@aloc!#eh~JIN?69;#FscpbvMJBP>ePEU%g4{v~)0H2Y#HgXnzYE*tF8ATi5dR~Y<OGz5R#R=g?3!AoSFtF8ON;TeDgvw+P&T>ePA~ zs11Bw-#Kd@f zes%#r&WQO=&oRSIJGNH)tpBdH=y5 zxV^w3Dk?e%5l0kdtMx!AK*I7JCAb8JBf^HS6#-os)pEqS5Rx7&tD!qk zxv^L!D`x;X)Z$`^FEcY`f2RirPJbf90eG)iEVcO)p|rKN-9h1iIX#f!=)6%_9zZ`u zUf_c$k1{B(8I9ubdz6^%1if!TiH`p1^3SW}hiilsd#;<1?emQZ7}t$&dz~YZ-CbJ} zuFA;8%$wt1Yu&}+xmGpNZ}xlLAT`|$xz=Xx0&$1z+S>8;66>x+?9ySeTQ1csW`i(w zi0LALd~Dl{lpfOmF{-PJ<}TOa0e!A*m|o*DZq%a`AH<_^$mNyeaYlC4ivj^2Q)rF? zatdh5Wc3AjgCmZ0x#XM=E{oP}7Q*QTw`$nM+u+KTtm0z5a6KcVtVkh)()(krtrzFd zthlWdeESR5AN6a1{|H}Bf66EH*5aCG5nSu+*KONl-b4w%Q-t1~(s=acDgREpHYUaR zLH}nV1@V&Rh4iS;#DrW)FoNNFZ)FHt5IxK_sk#EOs{*f%81W0}iOy9>PfN3fT(rxc*K1mAUMEK`AMN-gHE(tn>hK$eDFT@=rSTtLw<# z-Mi47>af+1uS0T+6y85=58T9uwNseZ!?YVz_EoP~MW}0s>O$M>=7kPT(h1OiY68$5 z?97=nG7yUzk&B9qO#Rg0cP-4!{YxY&s0R-ojEIZNW_2h(hdzi?GdrJ}%zRD}BH_7? zLla5stN92Z^MhO8{1o~iz-n!xUkA~C5@dnqAkjgfH!w~fG($|_or|M{uU@ZN`p9%)$&@Vvx@^Mw`&RKt(;AZBfZ%} zeTzgSK)zx-1$+m?opcPi;Qx;_vc1&p;&jhlG-e%O+23zcs=+?*;J#pS|DV-G@r zY3ChnE*otGOa7G9o{W#t^jkjlm(dH48wwbYySjX`Q$abq3|DaHu0CxjE%Iy&) z-Xw^Zs(i5Qe0k?7RZl^wa7jl^m^1UWrcO=jOW#60|r( z$w=X76%>SG(l*FmF2R*lVeo|d6@H2Yn7agj6bnxQu2`p;(Fvc|12#0!*MKZ-S!0J; z_y4mO2j~ecf8v}x6x^Oq1GxcE%up65C!XSB?P@64D-8@_7}G1$@e+I0WBPELvdA=Bea+UoV&Fu z(s}6BUhZSA4=JPnCjN{5g4{6_Mt@nfE^X|=;aB8;y z!XQ-oA@!Q1$x*L&6%n5=hMzV#-70pA1KD#JMVTp9)5+@gP9gwbPxU?`bKy4Gxp>Q4 zHesXq-a6@Ms8_oC!9L4zHR}{97IWBd=Q|))d#I_E;w7Pz3|txbP9q)%_R=Y8LPSD}jZ=>5H=I(FZo-DQMp*bJM`8P#IX^T|AwfS~(Rq%RiLPT0$1N4}Dv z-JjaGM0j&m{bUgm6egsm%XoaKwEhB$U?A)Guk%grm;m$?=-3IN!`?8r@+Bo641?cU z%?IDoiHz~%@DTwXFKbjLG@5~NJFe`v16u5M6Inr?!ejNZVKg&6s6XW^Y`{+;XMPzA z@%P3~=sZ(Wly-(t_3&Iq7J*mbG>W!i?i-4>;h12-W8%t`^sA&q9~B3!J`z8&@4~R1 zhFUXd25m5Vzw1Fb(WIVBZ-@rUX45j0Riiavc^*R|kt>sSW;e#aae?AW*DM^u#@70@ zkMYp{v3*2w=_<^+JQ)bSUS?_qc-Q~>%Ic9B9TcWud#%55f>wgF#z7<|M-OV^{ zPM92Ja>YmQl_f|Sz*ZebQywV;FcYHIKT#c=3`+Oh@yqcP=w2|L44MJPC1d|d4q-v4 zgZ~OGL|FD?D9@tnVRS8?0*Qf7{V)c(^ad6im&$G&{uSpW?Tk*uRNuE831;8ol0XL> zm-fyPy29u2811MRw#OL5^l0}kaAni!*fBIh)30p@7)VhTOilsL&xR`rQqO~^cqmcL zn44aY5AP%5S>a_^qVpGAtx%IuFiHJbq`R>6Wi$dcKqZf3-&`LG5CJb9ZWEw_Zg9|% zneeFV1}e7SPJ%3$6P?`m3?vDFqPyNShqbmpCmLfyylNAwsbRjQZ`ul`gs}639f^5R z$Rwcf+!%*p$^yG`xNLL}=6bW%ahdfDL1>z z*G%4np*d!SWwN92Xk!yJIx@u%hm|eR8OGqvUoPUC&ZmB9jhd7aRfwQOsH0nya|P!A zLGmZY?x5S59h z5d?g~lasKDo;R#^W(wNas^#(6I4dg|n{q0yp)X}*6%oX9^DrEv{V@Llqj>gdKxl22 z?f!QajoJR=r;UpRMBuURA0aq>02XN0?K>^=)THW@;o)cWBswe%j4sY_8o)D~6K$nn zCK?C4;HRb)%o7~x{7oNbWae-Z_xcgL9mk0KGPcpi>QDF zz)W&I(11a61nAUeizDkY3!3Z;NSu3Z2UQm6N?96@?@_#g?n-VN|CBL&<4rdjyrQB0 zWOs0$0f(5N00egz3i-_YDKw_-O+JciQ()+@$# zmdNg)k238EacE94C=l1dP_`Chdx$X=z9+Hsz2~y6mq-lgGxj~U#_N6tV&X+_X-3ky zn_xSnVeU;@CNG#vh~Frp+QUZj0`m;a2z1Kk#ZaDHm^4Ncj*b3x3y2Eez94Q}cxSbE zv_-Ne38oD#`~Ge|$hEk$`6slg7$Q?t7{}1%cnUht-|rhmQI4qp75%9kF$-WvpB6)Vg7*DRBG9|=X3D;*z7}P2?_^#$-|1W!t}DAK8I(C+_$UY6 zog6^|9H2s|sa=_`hm7g+&LWo9<4vIG)uMuko*LByUD&l>0(U|38UP)5njc~aai&G1 zBrh72StqwmF~g|MD~>(yByyE@(wGNb6TK3Tk-LgJ`tIV-SeWaJ%^n7b6yk_l4;Y(9 z4}fRSj@m+?D!e0*X2;v~P7Z`nx8m8y`2xl%%Ef}L`|{{K1wmNP|G9%){cg3g1Y!*O zSp2pI*z|XhsG(JG5+U-2iM~`iQNKb6-$jIK`atI)=hyv}_gNJ;|Ez{4=@P(O40|!F z@Wp4Sh<_RbwMZK>mxh=}s6*MdMe_0ddr+EVhhNgM*XZ@r0HkMrBOMK$eF}$Ce2@+f=&i8ttLMYyVAPEC9S%g1J*n@#Le^aX zL~ou>9jxjW)J6|@sKRYE3(s>BSuEtWbaF8918Q4%AYMUv1Qm&JNxi<9o`uKG*>p8% zsF{*Jmpzb(M#ir5zDdv|@`BX6eGG&qwUQA*wV8Me#R*2HtQ~A}v19Qvhldn8EQ+>< zu<*)%H%9642pSe>_bw9Q{a0!|)Cj$6yob$xUF*(J99f+$%? zW^EL4E&=9{TF-yXy{|%$@c(v51rrbINhsk9sEHmxbkR36%Lf`y zS0zfwAGS%if$)h3M8--U{JLB7dwU~1#lX~Enf3JTZaS^A$ybZ4W`S>q3}_+ix+h?f zIkd!Be|_@f9QgTt%B4$g?G}*sD!13?T_E*Ogal>Lk0~@T*>7N$+a_9P+?%d7h=v>6 z+b_vM$R+$pe=Wv8*GlU(om`wWBL*h2#;e~7F@M4Euanpa!^AGrdfM6mzR*=xIzP_I zbTJ$`PB*r+Hs8XRr048hgtE3E)YUe>Iu|V7`MOl#zeE+UNTC$W;hO)P!S~NigG7oI zi<1bz%p6S|bh<(hNicdy0*S3+rA|7D=qjQ4m}@yx$1vXs&Oz4kXk-h`TDN`C zadj(T~l!}7|?h`pJP4jw{AYC6iw%2m57e^vi7b{mn9kjN-0(f6Zb z51&|Cx*Mkvclzp|VB3Og+k)#g#PQb0RxX-c2Dc?y0xPP2{D8OrcwXADPwdgyBiE`E z&#K5UKKtfvZ!E|VDpZ3w^!#K9>WBLRO#e96kn4a-?UZ9G)4Vqnypy@06{BvtW`C@t z9SO)3JG8=^(I#oYdFAmayFR&CwR8m%;j7s|t|wIOrDV|nkG8!yF^Kpp28T!X_{qZE zo!w=+I$i=u#y3~8Tm_hf3J|oP-s^%NxqVuLmyw-`27;pCyMOv)MuIGmXn{(BKAeuOZV9jl<|}}FV+Xt)D9fnj zvDx1IWdsa5h|%ZRn|iM511;PZStrdxggD>A!Ln8b_SLE@am*o3k?ZBnwy3Kk*dkFA zCz%9LYxZjtin!Pf8q}^yKY&Lww#%S{;U?#Wo&Y4`fX&)g5<@r4HM`J)Z55n&?A7mU5tU#pJ)lDgRTLk}qBS z=bo>zc6kIJYWa+74i(A<#!gR6ku4WF;6@r1-Uuk+1R`D^dLqs^Pv2S`t*8WD&=0I~ zREon9{4gV?p#QXC@eHSK#SY-I0gwW)nXB~eAXFXTWzhh~mDnDg!-KDkG~+46xIpRW z1Jyb;+B6IJ?fjymS{K+|B22x0-Ar(wjtNhJNW2!%lxLEV+EIrxG%W&D;`i$wehtZt zW)HN1Ae)N{I-ExnSL_hXcGB{?ZVz*Z?x9>EG+V=Q@8d40x-i7kop06pLc6M<1QtO^3XGcMgMD7p`{TfYMC|z0-UB0*{|+RSr*s zXaN*#LhQn5rWtcxC|Q|=s>w0=BuFy>Rni7%sfX}`bq)cdgpP~{ing?WX)w9u3A6ye-23(W-F9^Y^ z?;EBk%wjJ{ghAsp!)MaU)q9d)6@@dtWbrd^~XCOJLu60oR8mtO{my&@|7`<;l}?mb++RChaaBcDsyQMx>%J z6w-BnI@rfQ5LqVft`Gc(eP3;)}6DT;*4B|7y zcDbrBe&JTzIiv6I{Cc#D2yY!DC9I8JW4DhoLVE}%+6|%jQtc6ppbAu?J6Ob{76;>b z8`0Fe8cZGtgHUG6S8TrBYU9l$h%dkD-*G7A{hiNAuoyvW8<9Ci-g9UiS)k(?gsS`* zcW&>@PbU|&W7MGU4Kx|IP{whB*u$nz3?2C>!iP0isrZbfrSr>4uFGajWmW@4fksQ) zAfpp#;~8coG$)kgx(~yXIb`XIzkrBcXV}Rbzp?0GpIZ-4A?a0pJ&igD1$4EEKR0tu z5RFb90vvwG1@8zLvr)NEnN(d}eQ%K*V;I{}kB5TG0}g1Ug>Bq8Sp=8q$tN@R2m#!1 zD>|Ta_|g7w8+c7&JaT1>CrRPu5%N!Tio(h!$tW0@s^G+!+Z?z#X0>*_lNTCXV3-aX zkDK#(1dgTY`HczggtdsG4Pr-X<6oC@g=ckNCfpFjM;~g_gQk#ByXZPldP~R26_{qy zIi&eQJs=s4d#;((Y#@tOkaGy_m*2%Sxh`%9>1lYp_Oqnm%iECjgom3o6i@dLRTTvE z8_pBxTrgrEdr3rwM#>YS=}-@c(yRPwkC7_6JT;RxMrS1MepW@bqOFZhz^eRirt7g| zo-J6d=V%0x$}Km!Dzc~dyfO|@y+zetjPxZ0Cmieikl`7O1XEV)L!&wBkH%(ps22qT z>D=p(u2~(p<~aL=(eyIZl0eFg1Q{2|2aorx)vnbTE*qM z)enrd-^hSMPlUpwo+ae>hT#II_tE!rSgm;tK9AS_fAmNW{vfdECzo;l&IM=yy3sdG z6Nk;LJo)Psfj6@{LYk4wbiFTNyr%~r9v-e4#>mJ>H?#ZYM68@=7gmZglkg>|4QO$P zyI_2w7BxK~7XlpY7;mq+d*`Akiv0onGtGqGRwkjTj69zcw%_lVQa0)&1rpID7$m_3 zqT6oD4Ga%wp=?I@S=dnLE~ePn4KYKB6HN{-yx~Dq7(dZyDJHK(heHg9vs!81v}#b9;lHvbm6o$hO$+9H|d^%0v_h!_0O&9Lg2UI#ZZ7lQ^f}#eOx8kF3eW{_q^ki z#{2SNMv(^e3o1)o|M4Jlx~a6=-Zj}e^-RQA(7XJHr%EJ{3((g99p41QdXgaMOU3Fr zhgAS*TH-Q)Weifh0Fa{4thw3ta`bSeOEy}%^k>&kbn>oW!U^0i=LbC@eY>K1fjmg& z{4p_qaJoqb=_neaGWvbhAQ?u&cp&%f+s$OJ!Z?#OSe-`YB+;0gR#tO!NOpecms*T> z3M|IBX+Ih?^;3W^lg#ONECfOb@cQ{}-RHZbq{iZly3(sy(Tjy=alL)v=CqJ7fZ%-; z?6enDZp=Tsz%fhuc`WQK-fU~mU~60eqZG$H6F$_&?ID6b;nx!1Q>x-U;Pco+hY^Tt zHFrAWHQw$M%@_UYXfX0M;FlfreA9kD6i^$WiQ`IJ*Teos`4G#?%bH=FP@&-g42g{z zU5u|tm?)Q4h8($mkrdAMiiISthLp_k<;G|z+Uo;#3u1fngV|1kwUPA5Kz zq}R9IZV$XbTXBL;?u;xtm=-#h2m~0T@2-ax6%y)&GM&NM@8H2`9lH>Ud|lJr#Z(!q zR5qKQ`XO?TI2Oha3i-}YaalsIu1sSEm_-apcSe)6cVYi}E?o47GN~2tK8$`Mq?S4W zQSFc2BR~`wEf8|3{;uL)V~YBI;VFRdX3@+pD*Z1OxxAB8^C9d9Gn9TxuI7#w?!)*Y zLeY@{9M#>i*C7CMjRw=L1u9@0qfe@DZ7<8W51lY4+z5g2`Em~%v;x%GF*TP!xS+bR z$kxtoHDT$&1rDv(hLHd?t~u7|1Bv$jB{!Nk-91MH@z!apB7jboPeGWGNXAT*Gh;3tpSDag_tWpko0IZK| zB?_mDyCdEhCN`td`bpIZ83Jl)KXuXz;$@YTaemA*kn+I1OoGW=@(`S32s49bkEeRq z^|t34p$m6C{q4<*)9A#w+El!@uf=-?8Pna}h}+h>Ksb=#p}z3+6(F>3%|nMoIM+3y z2}H;PU{E8d;8M-iMmAjEHt)DmmTkYxU&M7 zDudkdk51Me>C%j-g4>=gkD>{Xm;SX!r3z^qw$f@3e6Js3uPxFtI+pM!G`rJ?Px%J37ZJsk;1}o7e3A4h~uHkDea^+a&>e;fUKf zg6wCyVnGJy?T#BvE!xUJ-<_Brs+8raMzC`XMzM6l zc!Se(!Lz);zclZj*QMP;8NBMEH7RtO(nkk2_D~9-nnY`DU_Nq{{s=)S7JMGhmK-?J zhm>q_zjDsKf~t2vn7&~ZjT{*WKz$$3=kWoFFWJx4;e_#njd#k4=1hXNr<@5=;>Jh( z58OAaz15eY-P+O;uv&{z3au#jn<+Wu0@>NpqO}-e=MlgD7*!E4$B8-h0Opd`1a_ig zjmGM?2TU~KRgRhYt;`P_G7ywvh(5{wrka3!GC{(TrHUC2l+O>mjltj6OSKI=LT%OG zk*>@S{Z5tlEAQV;Ol0;waO0^M5o2X&vgdeveqM%uzRjSr!B~G&Qr@m3&>r2uMB705 zi848p;wef>u}r?1S+*>p!2@*)o$i`X^5*jL9%R)f%}+jB%*&J4mFsiv^jw^|&$w~V ze=ZQ=Ph9ydT+bpLdm*0U%_lq-TOz_nmq26_zKF#(LFC85FMj#tkh%xoy6Ve&P9lI} z8Jt8;V7!%-b~PRuVDmp1X%IPAz0#?~bGRN@RG(IUeY~5hay&RRl;O)qf7=B9#Af%q zRtEq<|GI(Sqe5FV!D&I8;GdzQ+yfNJV8r<-H-3`FE?`99Sk|qNH)G|RdV+}clWzE~ zl5>3Pn^#0*4D1t$px7w$VM5W0CTTN$n@E=yUE~DwZnS)9VB~fgbMDZ zkf1E#$84g3enqA3rilU!#>$s=QV$Ey)3J-OB(dG~s=ASRY7)NkygA@_ z7~R8+N6!?Czj0TF_y!)dmzS!%c9!Ye1p+dt5a1l$o=G}NJ9NcVKT9aD9RH#DoL+R} z=_1nXr`1c84EDI0tJt*yIykgfo`~b{ZFjG?$dSsp=EI2XX~y7Viahxf#(b}V13nlYV^^3XVj zXSw^~`AOqo?)7`+(lDdmKLhc&(TSDX29F1e)#KL|bK`ZvXOBwWmc8Cw)^_yTpkKqo zxB1j`P9i_%uuBUzyD(qp*9?BD`hV3({B=|}BqSttQ(RiwAL0?z5R8!Dh7u2k4WCdPLaOwgFxU8Mp8DA0ub__0>Xu;bj^vMqf9iy#lEb~t))x=@(c z%Hg%YgRDRdyw&=hlQM)YE56E(z;06{dXKs+%P#KSqebg!8NZ;*8yV0^fnb^dOa(iTRL=$mh&dAi{B6~4 z#A@O~l&L_}FW=>>)QzIqLmo7&&E2Vd-ugK_FO1ycVS19br*JRs#S?eg*#(<-o>d#5 zI`zD(1rhxVp=@fu45MyBF)5>IeobjHjlR+7SvAYG_@ig&YG`r~iBSH$it1cRX7ZrB zRUmov0k$r9zNU(A$8#5MK-*CPu})=d1x~{KBkqVKbA|8#3G$YxhHNzeNq|Dyj}OT? zfWddxyT1P1EgSdFuPS`4A>|*fk5?umOc1v29x#vRFYwpI>RmfU#ZWS7EO=KHR#XW) zSfLaZEX@cvVsGkrzB^j{q#;iDh!5V@o$<|rjGi75h7@d&A5XTeblJvYE86DArp&g# znB9S1JyYmCzkL&X_wJp}_EG$(e^WvXai36U>KjcG1CW%1P)XorLjaUK9|&mtD0Kza zGDGYNUnTR*Za6C!uF#sGYWNY)u1c!lC(Cv6mni8=tZ6;fE*v|nY3ceQfN(jL+V6eT zG7J%bnB5&HW1IvuY+VrMmyrjG-~IYNE`iR}{g6-GxtB^~1&*YUEd$R;v!`+D4_6TRqMKqwPh-G zzVclZSeFZp<@}>QR9u9B@kVYCvzs&pfy4k^LxMm?!TWO{Xi#cW z7(v9&e6-yN5VAU6*(+^EXCRp_#dU6JMnJ zH1PAsk38ewU!@b4!d^~r);9^s2zshw^^P0q9Iy0|vawgcfv;kJxAeNGg~%bALg#7T z19Jc{-6NJb{1T{A1l6VJJ45)@ALMQq#&uyha#>Ps^067-n8!`xTVp%q<4;I*HZ_BB z#Ty+7U}bD-Ng!H1XPz?7;5U^y^N`hRSwf}5K{-*Krk{~88o@U6)=qLGAV8XNg(vxy zT4TlMi2(V}Qd7pajj?9Ey_6VfnZxIK^3o)DX$VOBa+aR`L~RXf^xP)Z&JeFxU9F*r zbrRV@fH61Ngj+Rng5l{@VIMseJQ=`@b{?np-J`u|dn`*FPdC<5k1u5~(48`tVF8-3 zxmN&rdf<_H*A zc)2I&vKmF$yyh<((LH&4LdxH5>!;0L{6P`pfl$us6*kP98`#Wm&uF#J1e9Q-c!flQ zeUumYw6RiNet0@h=`KxD!R66d>(gZ|wJ`IA$HJwI5YlOk!w*@~CS;tSv^hg$Gu*Sc zU7C@KftMS92}@g34>nKlEP{A^l92yaWKF9tQGH#5(QAGDfAI9(@l^kRyr-#BgpABW zHW9KZ&Y?2O7a1KRJ1gVZ<0#2FW+Hp!sBmnucUGAlLNdxe$jT~G_jUT+d;jfGopV0p zHJ z{s!&IVwHFD7qaZ-&6?blSA7<0)@#}AcUTv=-3&DJr{q|58_tf<(8!ez;zt;E81x1u zNz}lPlVuu<$2xTF!%ylWKzVl)d0k&jwb&T>wUb+(Q~-rc|KceHQqBpJbaFf1gXHPb z%EwJ)tS#cPWRi?iAhmy!ajD7~-D_zLTgTRXZ8&O5H5oKz`MdMpRpVoc>QxN$=A!ci zhM`!%##S+9q9_a@)pTYhD)bB!hj>_cU&Y29-K<16F{JOmi~F1^;;>%C(zg1@_A9L| z(5x%zguO`YzQN2*_;S|JGyhra6{C0*P0A(Hk&W%9@2!S^y&-%=&9I=^un4F+#va7X znnAhYcc+;%z68IE!}J|BpHr)cy;76O>97HR$hAbZ_I7-G1%leqKk4Lrc+4aj=(L{r z6lzJa!60aGWAB4eLuUJ5W5xcQ=)Z(p3WfFt&vF9i!oa|{w_ZhaaS_TekcjTAAs=qk zmb~mu+9!3oU_Zx~Zz6_a|1& zvc%r-3@iuDORIc{YvxT&?=)1cFH?T$`*^J_`52Fr$+}`uE@2hYO=tfN!U-ic2emD8 zHx^lKZAIs}=?yogGF8I9s$fsi7{9BUEIYYYZ~x)#S1V7#Ci-!%i~ZgwZh2_YG4@6t zSb6#dY7X01-L9@Xt*CYjk_oIXP$QWr3sg$sJ4ptdz~#ja(e2487)S$AIQK*U79i=^ z>QWcKK`&vs&v+fl6G+B@b-VuQ4K*HD1)G31=LL)9+ST(-#jhX1#JAnSDk5|(TJ zUTX{aHJ6O!>V*UAV00b1h6S}*frJNXe-CRN3lb_p{Vcp-k|H zIG|gQw=WaA=eJ9{dQ7@36wkGuQSm)~IgLdld+ZU{gsZZc87X#f_XR;5O ziWuJgV0@>o#^+SO8WsFBq`u=j30>rEr9jUV0}Q-2n2w-=LY4@yW9`sg>jEEoZxh}X1V?Rt%8!te{hd;lS|F0A(qVI*SNZ@^~pH8 zV+ZqRu!p%*&cn0A_*~iO?W80rguAcZG)-r#^7srdo>COQoYjTC=WUWktw0hC3Bn#- z`$^Ixvn3%7%c+|Fs4!d25Gsw8G$KaveX`7iy^CTWo>Lyp(GSrDvdnhSgaB7m?B?Ek zMtOaf)5_TTiWGII61=Y-7Oy4Y1+X&zd#+@e3ma$9s;Fp>2hQKb#i1C}<1ZbL;ERJH z_Ca*a)Ai)PzI6N@?~Fc827e7A(-*9|WNdHZ>}6q}9HK4F$3r<5wSxUD$W08NMW`T! zifvtCPPZQx0{IGLgoQ)M16OZvFL`O{9aulY8XFtqJCWRU*nn9cuIm~aR4FMb>yWTS zcjU+s!5F!q-?C<#DI?7bn_2n!)R}vqa$XALaq!S8ZJq6tTVVH5a(|)V+Vst&8^ERBm3=5(ng<5U&%6a&7g5O2RvxU{#Bz}9-XaW z;;fO_`|ZG$@2DkOxP@IVUU*;&+wMf^@rW+K3G7NwyNN+}sdN*w%(X9^&7y9Y@0~k< z3pQ6kKy87yi-qggdyVzkxZ9SH&x7lnsoq=4r#pSTurpwqA+woc6$iIYQwxYVB0$hN0}!A8nR{qa(x(-4G$l??(@$uzK7ZIF#+sWksSmdB^p(JTa_tmqZISKB}} z^JKT_@4>&!7p3{4y480;YDZoUn4YlD0mcSJMAMpIx~#{`4~uUIXa`#1Q1+B1~=T|r5cU025j=~eHriA}$4 z0_G(%TbP@EqN*oc#=$paROxiSaU%*$h{Hvu5sweV4lF1%M|5(E7C8OTD5 zJK#5{lo?s&pC+1(+y^))S&Ua#Oc%v zQq2oq7v9*zP?+|M4VUW|PEL6<^(NKjUANiJl>+l7PQ=HrUuj|2hQ&L+)63gCyQ%4` zpO*U}(*V-|=i1Jn2SHC-@1LfnRWlfhjJX*Uog95>!mw%2;B954$zKqc33M8UEM4FG zkYuvvCMHpiGkXPf@xDdRhf8HD*rL360fOB!Ql`>XFK}$q4q1~{^|nL|6P!-gAFD31 z<@1u3Aih-#1MhN7g1a&U3= zfJgJcbqg5GG8878w%@Xvd?$*A=~%GzUAlAyU7WivNeeRt*n1nu_3Qxn;V}ZE-1e`G z49+%7iO86k94sc7_VnqOIXRtvJrLKH{v!Yi;P6OWQ~SbmuEBwU$B>#P%T6Q99{v9= zZF=X-qfWhh-okl412gEQzzZhgLRUx;3=7l$4;A>?>Xx6YgWPG8eoP5|%xi=^n zgXcRip8$N9R&0Hln_(jPzFi8=<3k05DJE-woJNWfyCGj;g5%yRC7o53IM&F0^)0~B z;eWV(faH`5Q33>BeE(m-ms=qB%LUPl{oRSZmS9s4#ThBZ+AckU4p|Fa^B=b2prN7| zt7m`%6&Gv#X(@H}>NI2xH77Q1U0Rla5V%%|!wk6%eeoygvZ6w%nWr^W_UMYRHS?^? z5)Xa5?}Bq+S~qen{Fn>zrQyJmFFq1IfSMeeJnjYC#2N(dR2kc zE1UR++lFu?5?Bu6rO_)SxR+%gb*qr^-HiDQOw!Cv*mlK43z#_q&yqypku`TiSrhC8 z2obW0?671Guiw$V@98c1^au}mIn$ah-TpXZFI0cKMbxIBiX7b6_HotWcL2NS_TsFC z3H-E7HZIN+UmE)b2u%UnhPs)Cr0wxW6sJ%L6kiFr@=cnW?i&MnJ=slHe{h-r` zq)VT$LLztg!FsJgI+XqS(5Kxqi++4RK1OiN9Y$b9&%nqhNy0BZ?$E)ErMi^Z=g1jh zq*!_v=W#fX#iA+ML<3W8L@=}go=4-BF1RH|%C{%H@+9P7(YGJ#W{VH#w+S#qzXCvy z7XZSg#rz?BpQ^?LUPy>jLH0D_^T55w+_ms$9w!NYFO5)`5{8L4NWNOh)@O@YIpu5y z)4@j@>_v1`zq$Kfdx2tANk_zG_YiEcB&~nU80GWQUz^1;0d5*gr@M)W9{+i+Em!;={6 zV;6N_zz;4)OIGprKLo4|o?$VZ;}v5aWT*su#`LY77Q!`XxbIK5qQZK_wq{qiO>8_V zTbR8GHTQThm~Y#5aT#c zGyUH6tXSBS#KP|)ANuWW`Q(B0Q%C`5!`-3)4~aDG|G38{hp)bF9$PyALfve9%yKOJTli$ooL0ZU zgGkIp?y|zgr{Rb3qPrrPPl+pmc*U*%U_*$DmBj)*aFO_+wn$Bcr>v)i;Ke9or8i+5 zLE$M*hoGo_&)*^0KBS8&lCNREa<|9%a5I2vi@;?`FMnN~h+qr)jnUDo622}ma}Rm_ zTHcIo;y>7HR+gDUX&@`EVF)tTf`n9s)#bgXn1++>=M+7C&RtssA_|$NiPpxRuDV3{ z5+A@beDS8Myidq*wB@{Kg`{Shrd>2J<*OP7_05mgzfYLD_nkdOpKOoLIa0xrMGx|4hUewu04~|Lide z7A~0JO!#inqBS$)Q`j3z$l{r0DFyoSjxs1!DR>u8!iWZ4LsiZ(L`e+1)W(3PNiW78 zs108&y7R*Je#9gGGr(;WevK=C`Ab1)$3i#wA9#5|KDZq8sULM8KF>zql3Uk)&P&65 ziO66wV9UV6knR}4(F>A?hf)fp5J~um+W>rQ?clJo%-GPFC%Jx=Uc7P_3$kEVV&v&UdozDkFFc5N)Fw6jO+Q-I$g)C}r=0I+AdenKO zKD!`b?bd~&+X3me8h4?>c+?2*$}+>)P^B}CM)L1XWnHj5HPel|0w9({G{M0K`?0>{ zFuiHtkox$=hb7bKCGRXDn>0;oN`a|l)}?sysV!-+`IiHa#K|hrJ?a#knP%j;^w+nS zlTwvKW-V((D0?IRaEUO;Qdvag>7sAn6XCofNvc~0xH~AHxtEjwoOb8b)HR?ha)l_r zb0Im~O7PgAgD4>adwL7r|2-x6nUP<01^<6{7X~`v*_^F#)%Zx_%KlRXBC&w{J|)gv z3m|8%ygrXx+(OZ?(z;ug2zbklM%e3ggE@BiTbZqCWat&|>`sF-t+qLS4X2r2@SezV;2faC1Ci2Jxbn@(us0%@?IURj`m5f>e0)A_R%t>*#5D%WozF3`prO0gL4B~`(eg#9io7m%O5(y4M;^ywU zARI#3$mg`(n=Ss(;ib1LX!^)fMqhlCd>LR^=qg2f{Op zu7Za9t^aaHY53}gwmT$0ygQv=T@?48GL-czmhf1GlU1>!;WU_(dvA#{3=@$aZs9sx zaEF0{W}AS@46XidT7>XsUcP{jHMW}O4J*%&kHz29?^R|BK8>dg2*d{jBe7J?s1Q)! z31+C#9Sj(x+dsru@v^jLQ-$RO1b$=}`Z9#JLt)Ap4nFxL$wcF?z)SBCEM)o5T7_QIX1?2ANY z5rSSX%a%sTW}7VH8>3@gLDBpY7$`$fQICU7a+1j(WaL;ilkj~oro{%L+@n11XJx-> zz&IRkeZ+!IQPfGRdez{hA`|;>KrrERX$wE?R9gATu{_Qc?BjilJLl7HvN2a=)wNS+)^)+$8CUvLz8}f#rl4b-QhD!! zdEw1_CB|sz1N?AwXaaX_&-jIM25`}>7-5#QR_5_SWjY0p))*hu3w1&GIJ36f~k}eEQ;#c!FWtlhjA8g59 zyxE=^Am*;+$&pkr5D);vgqf_Z7on~k=!9;n8MMQgSNVPHbl2n$R1JaxLNQyOaf1P~ zrt)(H&LcSw!aV4UCStSziFvIs&@+Q#2C@a7bLDpwbm1t)@;XYK$iNJIF?F|<= zynG;!>{W!+kxVzSoQ_sR@EiKstRo%6*jR;r=g%+!@?Ie|7}v&dfH>V(El#)I)%`G{ z1p7Kt4fSYNHgQRT@&Ewx_r`|c0X-jzWzQKC?t!`3Bdshak%j#*FNWQ zTH+4h6%tz+h7j?XikhPWy9}KL5xh-p(xprmrCWHnd4gcVr><}8CWgM}B=}~Q30$PY z^H-<7A1k~g&9PgLIUc;R&q>pU_+*#X4e#rFdU2+3EBh<*n=)sI=)lp)H{N83tl2V( zy%2RXy*JCp6ICm4Qw@o_{*qIYw7b1u+VJp1+0lUYvbjt9a{u&4qp1eSOrYKr-Z%`0 z1irw#9|HS)OOi>I0u>%+5p~TqWbueCe_fX}gK4#wp2Mqdd-3Cdl-;~$7gr}mW!zpb zMwQ?tb=cw+wJvxnKkPsy39(h5ANIsk3&R}lJ85;MxPWQn)#I8Gs$Y{&Bh_J8|@_GzZ=zB@>}DhucT^n2m7?EfBd*Mf&S_}YtfJ$l^@99t1isekl$1mUB z9fJX@U-P-OXMw@kvD@yLy$_ON1lyk=M?OVChdjp3=`xac<+Zq+<5NR z_sep?N~8gr0mM_^E~o;BLB}pfF_(`@ImWQ8A&{c(*W}JiS^yc(K(u z%-A2O{-Et1H$-z7_SSeP4ZKvi_p7#m{uJtLm2uF&AgOUf^ZS*JKI*2H0YCAJO?%A^ zxcYYGy>LSei`FP}z{fjh$9B(e+y_#f=Csa_H5FZYxcS30G{;?iWKUG7bucz~7ES%M&m9O;)0c*=>RuhTm=qd>C56*S z`KIYLipdWXFZW%lp){<#IEDJGq{o@cZs&r5$hi6XYeMh8;w?zDb?#+qtsX38Xt+|j zduF}m?NSxC`1VJnbJgB%g|lYJ>UNY?~*}s|9Q_>$=it?aqG)# zzRDr<LTv3Ic;VSmaz?hAx%;Dy7`BjQIVwDLP zM=Zdos`^TBmBv_8BB$X!LIf8&O4?c9b>y#=z3$Of#<+0!Q_w3-^w7F_4Cf(4z_%ZB zHf%JoL34BO---~t{Zil9>hMk)nj^VRobt_D7=qu0Q*#8L zRcqisS8#{r#rL^u#{_4F?E1@Se@pYoYNTahYZ2iVYm6_fDZWu_xiZ%OK56z2@{O5Hl zVFc!11P`(BT!!+Ma91?SupCRZJYNw%Yd0GXqkhHha@KU{en7m{;rZukYwV2Snk@I+ zV1C&MBsYGFu)oJI9KeelvU0#l#cKZ^igc$ta_!1SO@29p=}r0TnyVc;jUHx>7}HK# zPUX`GpS9PTg>39|@Ef4@8>^vmjAhz9ufV~Y8iN@2^H;;k*w;%)W?!=5j@JvDr(GD( z|LO08hgQ%N*5yw>pH8J@y}}UsgC=CL4-_hkR#eeL5-OV6W(`nXvRkhsryY!ozv77i zNmy%6C53CyvYt;Kh209~4-m9o&c@EGD?z@1p(Xap42MTa6d# z=nSgVONQ_n2h*YwMsK}FNDdwjijld=hUP?_t(AQk{zGB@r7(OUZ5F!aII*GI-)#$V z$s?oBpVSl7Y>eN8A~Q#AWH4{6lI@}6v%uoaW%F~uQZOu6dWbbby7hSdkmoenEV=JeB+pYemgy$j8L zugP8ww~LN$S$VcGshRlVV8P#%#*u}i>OKSAsHRvtneZ*E^u6xYu&~3!*v@l>5~<^@5Gc$RyAeDOy5@1jp&U)|-pQugtyYu{l^m5;FdX%KR9m*vd15Jqv2 zsUq0tctEzA<>S_0f#lrl&cD!g?3;xyyhSc;e4W9rfu+p(xK*rmUOr0!w>*5Ae?Ryw z45UwwNJ#moSG)S|zl|yU0`3E&)#p)vkG11XL~U0%Sd!Wf{HZS7Y^J(wZdN)&S)AWf z6zncu1jD%2)<^L%YAALw)<_|rrF8*>h2}%gbEHBoOoqnUA(7H7z8aiM;pGbNo%j)hCWDzS(-q{ZV^G(^2*$2Ur#`1aOv zie!%ImjaRgukmW!_mD{*k@KKyV1j4y1>_=#OuLdgX`?Q@ai9>-j2>)&ZHL}iMUMEE zKh5RCk8jRCB2|}&FXKnJHu31Bnwky zE>8u6l9?6Eh@Gv~{tJT811k%1$)*2#U`7GpuJR;DA7yU?fGX0GaR>x!?^jKTbL9dd ztNG-Zfpo|eKzD@2yE-a#LrmJKtPAhbb#~rqZB091DKe45LkLhsBA^r6MxUl~a}`JA zh)e+}Zx;{{(%pkB9@fEZzUnc^=D_^jCesO|L`Ni4S;2e}&iQ|r?sL&>j<&5Bkb^ME zb=|~dRms$n1|53j1)oRC2dT$8 zgAV79jaV&Sk3DO^`PKOS-Bp=vw3x}{eNU#_8nZc1XB-R|a|>Gt^CweU>-9K`vz#B# zWU>6&Uz|Y*rG|?A??Skk9oTBw0=)=bm3-hNHhJ5)K`X$##R8Z%L&fu2fYsZvci2f7SBT}@>Vy}L!D+?psQglChD0) z(q_6B{dsSeRi0umL@3uEPrSr&{LvShv3xsD*577H^JG1oB!Nof980i!u+Pr{pFV3%kS z)J%%xeHzX%B-~j3%o(S+RVb%ka{}+&G33#b{Yv``b3}lsO%2V@Y(!+?WS`Jy9g6gj z+rP`EBzN$Oi@CzGeUT;c?r^$OZPCp8^-nsOQmdC|W7x4QkBN)mA%B8esgc%-hev>d zc&AwZZ+0}~{?aoC70PH_=X|$3+ad9RP|6ER4TFIO4a=B+afT68Hdt5NuH z>w)V)wdTaw#D9$G2nud6swbPE#$Vf}v*o_Ht8q3w&-Fb$Q`P>r&2z=Z_x&?tv0*`T zDND<$RKd38IItoRzP!>Iq{w3YE%^K%@M_ea9V+iKti-vmw`I{iu@suG@N*mfonRdJ zFx%ISIhV*?Dgg z64hWfFZ$ynGkg!MSJ%yCa;PW45wL}QB&VMz6X_l+bWX}7$h~2fGVo7fMnA%` z@ZTv%KUsAA3CeOXUCiBO?=-YY zCdc}iy6i$*0B}s%G)+^{g=!q3Id@DGS{&NNSTG zaC}YCx2-trn6yp`6}F2ImgU8bQFZhaqq2~`#9^X0pQQ1qlrHp9V3i-pIfy6UF-pJT78Zie2>y)(epw@4p>}bjlz#DAC_P^8I;%S zcj&3l8!}So+o|~>y71oJe$n+4nmM5`XG&|2<2-rW!{k9ez*bvyuNOU3oBg54+W4JA zIa_+Hn127yK2?LYKT7I$0|vfGFc;9|IfQ%Y>cGMSirfg@45VSq}m(ZSR;UnONo#W=#QFoGq(dK>-Jo zZXK8ij>4`21^PC!*0ow-NV2i~j)8(Qz3SIyUiPvlq7A=1`QYQ1AX$b@Wa+GNQH7fq zpFF9KDDXd^{eAR1IT#9L6IpAp=hO3(h}WsayOWoX(Jkn4i{1YIlbZP%zHuVb-PiZw zHrOPtl^cWALmuu*q9v%9r<)*PZtoZ&Tw0@j&YI7!bbANp2LNgfDxBx9k*E_YvwIi% zmgU+|W-pry`Yh>xy(S!)urd2Ra*KcO+bal>MVn4o|0@m=Mc8F%ks~h--Wn8@8ofog z$N!iN81bBt&vdwwt$nH&8I#Y-37x!3-;Glq@m7ijYikReG@l#K)f&9?6dXbBD5=p2{iRU!CC)6=O$;1S z8qPFKE19qe2t{~oQ06DBHGixT!C@-hwz|6dZqbWWQq3uK#_BF30Z5E3i^q*T&{{%{ zY*yn-8~VwrO_tke;e;F$>C}l`1kA_|y5Io*S+Sv7+JOS>l`Qs=D(L3IV<dUn53(YV8bI&rP|_VM?`6+l1?@G-Zyq` zZJ}r=L3%Lu>7wTFYM~ZDt@1+dxhc`PgcqJZCe4uBr+UTQBXhLi<>ED|7@y>o{Yb^F z0K2d8abQ1^p{4MjN(2Vegf}!yg;l9`b^jXf^kuU(#W3}mZKnRlGL>i)FVOoB#jR_R*fI8qGYC}f33 zw?2{?rUHvj*TMlQ4rosGI$_eq5G6c7UU>j80`|;L%5wUm1s>U3w>ddc;%^A~qao$Y zZ<)5xQJf(7QbJ)+-N43Es}TXZcK|N=-|dm1%g1FXQ5=nmOM-ouh{QXd4Fz)3*Ckmm z*D!G0V4YU(etHZF`dms8H@m4X&eZFV>vozUy{;R8av&9i@gtm_ehzzqMel61puMZY zb9qvJesccZtsRzha^OJ^yhoIG`n9wF-XX-j5zl*am|yhFUa{48rBMzxxA^^5tXBZW zm7%;*`V=RLxEh^lQR~W1$Fm6WUF?$?A+Qx1$rQi#p)$4oSZPwy9fpvy$8X+>(qM#H5UpIr5HS{r2v(ja=y6OdP#dJ1=KLn_YJBrhaNP)x zew^74Wc>wXdLJ*T+)c@N(xh1mfEd0}s3Jirp{B>ct7%erS-JfPE+1>k4U~AIayp z4e!>fgf`V-Ni=y)Ui#4)tod(hm#;x3>|yFiuUCCI%cc6)_h8_NGj0JT7gvtRg1V3Qrw%FAy)h5*Y49=Nm`4iCrp( zY7DcyXD(q)1pJdH%yw%>?nBnpGv1SMs3zBcjYZ4yE;ZOWrk+$8S~v>fbFHT^93b}W zM-qvoTYs?fP(xFb`pcIu>ySf0`{>%zvk;JQ(ZNAa=j+WbL)`ikhz{`VD*Y$cg$#>t z+kS34qjr=qw)E}NJ8n*6R_92?CWb!o5f>`Y8+NPFeva_rA27lx@f6S|7_jN5jVD5({9NNy2a3uGyp_$Ai|9cU-^Uk|?ya{NeojJ+<`1ht^{*msy#3ewEaN@6TxQ!u z!zp3&U#I@8uKjW88Uf(0s&QL1;Lm1eCmabD0SRy4>{Ry8>trfBdlsxs)G4 zUMf6A7Aue#`~sh0^3x^B21IY}H3POV%eeFTd8Yj%R;1hRx3&-tYtABi4ZC(hW6|r2Tk&K-trhyHkzL{27#z#l7P00{%&xa4oDlB+g)gB`h_d@ zUf1-kIBUhnAVm6epdaB?ClV<+lVXzjZUa<-Ddt5Gd2{Rc&GPmdh{`HWj*yArU{}`~ z!j@D|gw3T#wX3|RhqDc!U|#L?^b`Uv?RG$)SV(?*^s)oxhsBX(&zY9bM;;O(Bx+J# ziM8d0UK!%$06W2~{=ij_q@<*hKXPu<$k()aM5TJ{iSRd8HiirdjK2uCFgK17XZr%s z-2-^DIet4yx-qJ{e5tNu?;CK+*z-5V2%EFPxdYX2hI4KxcD4{~W7S5Mv)PpB4KHfW zsYLZNEpVqWQWgdjC%CXYF21OVYh(e?yW%nB9*_im6JtzmU2r#g@6fEZR#=LhD^DRE zMS-tGZfggm_j@e;m-Z!#gawzd$6(}j5o>E_~|LE64DcnAax@WN4*C+c2e>N}pYLuE;LRqUYu$r9Uvk%}vMyP}Tb> zx8D!#K8MSgbGHUD(85utj)HutU%!47Oyl6g^D(^w*rILVdGZ!3 z&VaPLGJ0l)>#r;*j+Fyu*uFM52JWx7Uk;*!qn1S|aYl&ui$=NPx4F)@TO+T7NH~?b zg7M&2{(}dEABgGN+lx0zMn{wSKU-at3No*u!aUMaqH2$)MV}Z`Y z3G~#6Z*XFblro%~J{`jK`$C_}-vBuJXB>`XU-x4$Eo%DNez^or-m0HwEN;#>KX5=p zJmb$PTC9CwLq!E67Ebtdn|)802In#V3mKv4v$=kMqblq~!+AbG=PqOM6!-M!YB!#s z{W0v3>TX}RN_mt%KGg*W_8+rqP8-hH}-tge7mW1nm(_$1P=9e$u;+dEHfL1 zuQ~@Fw0a7_`;?dYrC2)4<1yTG4rsKh|u>bizeg3pS<$;;d%q<56n49g3=qR)}WT_0D(-pXlr)Y2Te;;>#UynaejB6nP-97#w^oJHq z-K@`fv#Q3(>Xaz}#5+Qn;kJZ_qh-hTq#|N@Z~h!eY_6YHio{Ns{4$tmh1>T$)wf?2lptfWC};>bgj* zxwK#NA=W4A!TGmmNWPo_V+Ih_uc(ErqDQcrPHg9St13Yn!?lh-X4fE1iCqEr&w95;ZQK`H-o^vYhAKVGPV@$al@Gl1OoY71ipgax?AaknP7ahrAc!Xl66K{CCTK!XaduKqfRx~JlmL$gx0~lJ5u+a!QW50W zBaUbO6-HXXq}nH%IsvqB8XA8-XH_}NGNnti@k(Kq;2}oByL{cL*|@`wmDqe2{>j?H@Kyuuc>Snlo&+Lv%SO;h&6d!&YDB=c+2Br!99RtfJ3& zzs+4@zhc9v!?W?+#j`K8x*F4k|9ikbkL}F=IqSp+rbt6Z@2n$u(~~LD1ss5X;KV8& zGo{U;odL$Nlt@?<^ib-$mQKc~8`7=(cZz$h{sAP2 z%=~;)R0xXRW}szkV;B}h)Ah=%L=tT!9K%pY2q}c*<*>n6z%C9PHT~j;F(eZ&ZwJLE z*LYppEBGL=N{5CKD;jY%b1d9#&Q+Jl45B>LM3Wr?;kr64M|Ki2-7q+(Geb1nSaBvG zV(Y8NY%F>)-^KOMiJy|-%-I;0q3a6R5Oz05Wl;zj#5Y%6ZlWX6! z9TG6?Yd3w(W7@{?V>aT3?wu-+=;da}{W0|BmlyY_@3;Pvuw6b6xfoth z|8zO@JUQH62Q0_GS;PsI$9Uw;t7>FT&qtkhn{>7Q44Pt0qMBNZ(^oj=`jbGk9hif7 zAACV?h3!RdHkbf(Mz1ggkdXepw!PT29OtkW!uCfz3=29@p=S-=MwZJ3_l%6{n>hB| zNCY3OUi!B>YJ(nY-e`WBGe-ol&YbcV=X-juNzVR{K4_q-awKPv==7b3v@kqK0iL%V2$6LRiV$_R7`{gqPekLQ$ z9aod&^`o`6MB1srhkbeSw6^-j^oNs(=7hFL!|hkuM7;=U1b~HB`Mg|iR#vY)tIH7~FjprY!^`;H zqYGIa0yOPe6jr zn5m?pPXkxJ-Dzx)_T`o-`7w*~e;eGjAS#T*0>z=yXY-LS8GJN2<&3#C)i*8*pcbP$ zM5;EcjNp}MZA*`@QsU4!^L;7hrih@9hOTs)cm!}!DH5G_18AhSH;yS(!`Qor#h?A@o? z+z6x5p`*r!JJj6ZMhOSXA}@hx-vEgoD!8ckx=)SS#1^+MkXSA6=}`SS!L--dUlN2W zBiH!+c%{Lp-7Fi3%zT`SYAb~+Ck3qS}!Dlwu7-_D@<_i}@!sj{~8W;nHaT&1tzg`TE)gPq~t}gR*}qJKqt| zRdQ#@$)Ca^ulr}SEyO>F%?F3*Y~Iu~QnV_Oj&B`DWmFs|@oiVsyb^TiL zKgl>8F_ExjGbYUl+ymQqjZG>bVg`-TOSKu^5_~Lr1#D};|2@#);l26p$|m=Y1>T(m zNL#Wbi4Dc)C#73I3jIHB{+F4kbMfu})%CmfDKw=4uWSja@IRrEv~SvdUSpl?um=qH zBf~6{B-NNw$Fw&s1BOalY#c@g}#r{euN~^SIZq*7MbjO3Z z6|xTwUt`S7w1Iaxmyg#vY7`UT5BZu4wc#uPTO%6onro8uHzV;&I zJ+gSK#E)AjW41aWGM#J?5OOtb*f--(scER?DF__+IO}Fy*IP#COV00kEcW8IJ7DmI z0CRQejCeYY-J1m1P*=7PGxE%#y@vPCuBKS-7`F79g1veT=Bn?T30p%^Xr3u(0VAo- zFlZ+d2ExXPTy(k>lHugJC5VmDX%&ee524A3NS8m?IDISJ48jNw(3(zbJcVw8xHXAa z)}!#zRB_=lv@7`y0?Zd;@to25m5L8}2zk#RHg~x{)!7o_6k&}d4hA_H=5)Nnox|dcnPt+78mNivpK?=#YQBD`lBufy^b{25p>-_(|i#VwY!r znaT0?Yu$$n>U^W|P%8Zbx53{tCL4{*o*x9c#zp~~(6hSV^8llkl0^-hyW7X{(2A6F zvJJo4=E0G;$^siO<^oXcHMYZIN=_{L{#LBI>pJF)0d~fMH2b$`UM$S%I3E~>_rk&t zOMbocVc40U+mvGcLV60B0m+17VPOz-D4WGqtp zqVLL$XwVPo4AocSIIel5D#0&$QM4>8!K$i1*_8LbYV zLkNFr<=ZwyHwxB7$`6C?I~VDGh*->^RI{%LIb`S~W8n{)A7*9|5FeMiMHw1KQ)_UI zVX*7v>U=;DZuyG!6=GWm<*UfzN!75INv3n<_s>muzJLA%kX=M`{oUfByvv&O3Er$@ zpJ{Dy81M!HRDSmFulG~+(Z=UG%R6db*$`B$=d(sk;v*;~t1r(3P9~%^i586#eVtDx zpSeZ|X7A#;Qjh{PAvqH_tLUf+UU{Xaiuf>;G31Hl*J9}>V10~4VTAGzVUI#I3Jk!P z&F@V{5Rp$bY;Fr(@g!(I*B?4Uf>@eESl;Dhe_wvha1#Sqj4HT%o_`v>B{Vs36R9tx zV_X?N_S%+_G*R;}@0zV%rE_SM);>y*wauF%Tb$MG6=1$^lc}L{Z-Tr9+`b zSmG{y7P^hpUtuq^KJ#0oqNIjnB6SA!Rshp;)v=!boVJ=)^29PrxS;C|Th6@_624KS z5Z7qw0&d|qi$6EAHP&m#IJIj^7)||a!Uay}#EE_3itPE8mnx5U*y}#>xG_@otS)R*f5w{$ zHcY^7xBUq2pKxqgqo=bkh%aBhZmF)$_n|XA&E)xt<^~-HEs;Z#;wu(Q1q%VSInXcv zhqJegs2?1%OK_!(EY3VNMM&wcvShS+jAq%CuyHm;~0@AUhBm@Da z`OkGf@AK~e82if}n-2~h0&A@+&TF1?9>?#nOQ8h~LCW$9;>zQc^~6ydjJzbnELq&w zGi|MIYK5COh=6`aqNApL8|8kfOK8<_4wWFr860{U2Jq)j{&Cvt8QS}r_7@ls)urBr zo+lL!vGO~nkA&`6#Lk2azFq!Tpjwz9fxRPI2X1^(y?5DcC|W-^sP>{OYd zTJ&_trIuB<)|Ku8tzjVR$Pa-SS0P%pP~PFqvfM9=WP)K)c#J-Isc|8iL7?)FvC$%| z;TYVSTDEb*nF)5lpQiz800shFP9QLl61=H?^sc%!V}*=QLm&QBeeYrzB&s;@%`pz; z0gD&OFjENkU3eDdYeR}kvIJ%wAzMPPgsyESGZwA<)1_5SFF>x{7K*bK8+CR)9o%#6 zuVQSOA-dAG8nd;qI)d%`CCwC9v~iyAP|d^DeQY(RjPf?jr{iDZLuV?MHWKcC8{8=j z(UYLJ6FFG}Vtev*sMCl>q?`{nO=0MW8UQvUMqbQi906 z2hs2Qet0=J4SHYa%EUi?&KXP6i{Pr+)uBjPwlgA{N0%q6e-Q}HqXm^F-XB;GOS=wH z_g>s!{cZFXQtY8OjrtiqbX|71Tz|=T32M<)D1$iA6Oi4)C*JE$p()%hlz|HPZ!Ls; z8BVU<;90kQ#Z6;$giRM6;k9i^lkuaO_QjAY#aKFe&Uo6J>y$~6mfb6*y4{}WYs-hi zS;Xi`jVnt9m(t8cKv^Gy6R6zHXRr%RvZCQW$f8oiuFLq5w!N@5o?#-#r2$L@$g8Lh zx%x@IRHzcPDqdA-AK+A|(HcP}|0TZJio5W&xwxYrLwWta-{kKVxc47V7`>@$C(^%H zmi7A$PXdr6?x!r5O->ux1-|X}$Xq{zmd!Fv&7*mlzOQ1INmH03ktj~K74s4196O$$SKUn8T5l_n zZoc8torPJA{sR!8``!Yr7#wA;uv=7jVc31_eI4xG4CkqMR=X3^j0tcXH3PXfk_}`H z^pJCLu%{vE<#L{QjiGz>uwwwO&G2KVjTJs~;i08qRrcI$or{0RfI|Ha^o~5@A>og1 z;Z`T)o`x_Nle@zOwBf5*ZYZlBSwppKz+OuYZnZU4npVwq=m-va&GBCRn38}p6{6;v zBOxWxX1XtM`O?C&T-Cgx8#h|wNo7=LMSJl;0&aSf+qUxB)$%(xI!nIh9~tB{$Y)28 zw=1hq|6G;eu3;N|*!TKcX{sN4Ki1qvGKnYEMqXDwbx{5_nVdEg_3us&B(3GEG&NTe zmd{xWEhdC^mq&;H+gG!TxZ#=K^{#!RSgnjqs_-X8B=4=bV{1mgy1_`_ftQr?&WG8$RCmHYcd&H6PFjU|56=<-9)&%s<{}lYbk29j-Qg#YJX6AoN~vB-Bq+ ze&U;^N+KoNMraMi7Eisu>iS~(IhN+c?C*@U~2(Oe&dQekXFOvRfVl>DNSIPg29fYr)|IUVL;U8meDj zR6mMR^T=>Xb|7h>hjzyNJJ#&7WpWjsN`M|C&wP*9%HFzR+}|t1D1dyo^kbWd)v{dy z2!3!4FGBd0pBTBtX|%5jkG@P0$1q6&9YFLpZMii2@4+cG8soTgPTP+sqH31Qc4OX$ zOh1}qxsFpqj1DRY<{Cli-UAIdM`q#%2&lgEh{)?g)pQuWejJOGvpNitXOO8ZJMk0j z$ua1f?bf)4=2_q{>RcK9nwTe!BwnaXO6RAz?Zp z!`5sE&t<~4u3D()+=eTQ)!X(z^KS+L9s{E>|Gp<}H+t{4SE$f%|KzAA17P^w_O(ea zUE?aaMI4fQea2^kKGf`%_$I3DR2fxM=hY?g(WBZ3gdSc$|8b1J7 zdCJ6!J#6+YL$tJNqu?PC$WOr&5`nA9?x^Q^Ke*^yIMVMB#Eokdt}5(B$jI0q@nlYX zTJY%JjHg-C9r3|2e?StQooNgBj(*l`tv5-5Z$tmi36jm_M@vZ4w$6TZoqF$|!Y)35 zJhT27iyFB+?8AO=^5QpDAmZ!6c&coJoR1Oo<(@1(}H93{iF%Zc$Ia$R3@ej zh?tv7OTmtO!TsRJmiZM*3WNF=zbP;sp(fsC4X}9vQ#!~#JjFKqMVw!1#=6XG1RS00 zYkrb=$c*O1zGi*Z3vr17!J`Ql;H81}rYBN0g!?*uT8-vI4PjV9c=S6p+*5dOaDHl8 zZ+-w<2}`G`<@t--Dod^+hNa}X1*@GMy%N8rrR%OPy#wPIT&Cifj&bl*70#H`C4yJy zkR^;F?fnLrwnvcYixwj#sI_f{vU5{5)24(YK5VrV3j%4r%flZL-Tz1kIp8t>V*|uI z2BSK+KVQg(JI3`Ta21)whuj$iVteK;lVjFtmtxj`-Mc2f9qZZr{kG50h&JAH-pK~K ztgbTesH-Hyq*>gu7!R)0d@W{c%LtLKC#V=OlwG0d zfB*fUan%EHf~V6!ht%=-UUZRh_^JP>uZx7kDQSjS4r+kG4j3Tfn5;EQHG6-~4%Kl$ z6f}R=PY%WD#Z=YTG7051B{0txg(LR-3&yP$(gi<%O5AY+MP&83Oxve0oDpiD42zcw z_~ksniMhViIa1rnxG%p`B0zzW_cEzcMX-jzTM}6+c9_S}Ef+f+<0CltzB!u|tIh?Z zvahOzoR=SZP+4L0PgexR_E&qgQ!s?(!j?V=xEy6nJhXjg z%U%s6Z9lbDi}t^t2eSvWFvFuo$P+@vUi-`~HgKUkHT0t^3QU^t>2+7>1tvVrWodqns;XL zih#wCeO$K&2)Tve2d0!kXMqeXGE;wvkOvZ*$dJiL2&LmDWBtLaB- z=wL^?rtXo@t6zx0yOxNh42nfL4xmK(*pTRc?3bykH_DKk|UbQJapdo$q`GN5oiU(i!F?;Qv9{HFJ zOQAi`-d%h+OrJS%>mA5sEGNSd#GyIXs4qEm%MG7Sg#-q^plJ+5 zbx$Xkp4T2Gpna7>;845_{Kz~hvg5Ig44*&WIg*JkxvC~@S-+x|_Oq9SZWIQYb^B0P zQ#@tjuvBp;CSq=O#prc{$|AL=jyg#D2cE@;t63uRq}&a#sYDrfN6kHHFMe1uvTH-l zbC5q4G(9mDVU;3{*R0eG5cv#!0Zf@?-sstq@SlKmfzK=OU+F%FXo{8Yg*Pdu05%;ta&pf46)fV-$oaGrrB+PVd3kXL{VpEIF}f%={nrWkbGe*KP85bDbm!ihkD z4_Fkq0T56LLh_q42C2-ot}!-M(7W04zB}~d&LeBnYtgq>V{Xi?B26T>jM)w+4$KoOef zbI{Gvc)EGrf#c7?J`|l9(~Q{QtGJ>QciAtVGyp-Sb|ZJ?5ke{Zfi2@f2T!TIxAE_f z-dJp_07gCG!sRO8McpW9D9Qb*1c)ANsn&&z^L`|8g5=W4mFJ#%9+gR>lN8=;9Wi5b zID1#P`v*BW?K|y3>rxivhO9~tGgsuOLOEpu*8Tww`22L-K;O@$AlS^`IKyb;l$BSi zbqtHo*c9S?{5L)Q+6N2pnHh-$>(tV_!639P?sxn{m7u}(c+VG4kGb72=QOZ?TSVg^ zr1^ANg8k}3K621Y_ zDUdyjWBUKDn3f;OdjNI@n9;8=rdQPQ73ZSc3z8yhP@J59l2eiPRKWlkI)4izqNq)j z67}w(Pp+~gy3PHh%qdmV6RO~6=aMNDDne{pwMbzmZgzuOHheU6JFY_az=fMJ>zr|1 zgpy&P485X5Ai?SGcM|`l7XX7j?6FYXYNaYv2$X0#yPRe$8VLf+%`x4Aghz4|fwDvR z;lLO1uWAfM3Vttfrv@%XMMLGFqVQfnrMfRR1)yIa`nkcGnGkmGt~+DkBi8$^x`js3 zS2uf87`=TU7{) zR~Ja~)H76Bs>{gx#wa8D@{ZOE&DamN;zY#Ah1u7i?5ZZav|!(My>OYDu;Uu8hUP%8 z))J`>VMas`D*~qcEvlEnH3tZFkK0y_*9)_0nO(8o{mg!xU@Zg9XJyt3?2GKpfcApQ z6aU7ni;w21)IrRRTJc#i0TzQyp-?A*cZvG(~;m8c(yt?!| z$wqxXw2ft?>+q1>b^7b1{TT?NnPX}4muBsqx~Z(!^nqfDCp8daPg+{V2(`=FQc4Ym zEGDmt3sK)O9M1eEg<6Y1l5%dG)OLYb&`ni$xWO)rfRW!&OGN_dNaXR~{Jj8APpEIR zI%R!NBZ{W$sJx{E$dM{%8PNrY`T1!vt72O-AYY*xt&PJye+$uaIDQQ8UR$*I4rEQJgOY9_T#1)P(1reVDQ;l_C}xnJ*(7Syxz}GCQ)d=mo?M$ z3M>;(GeFq+cqVYL$@*5n{z>@eg2O1bwx6Ildn!)zjM3-|{iuJ^nGL>-;H6Exh|itN zrjb|F;>yjdy)TSCkpd!@J94(vO`6>6uhb~sm zRMTE_=6KCn0o%;Hg`wSl+GE}EKyzDMn=|Bm#F=Yd;Le+>LT)Y0@ck*<-!q!##o6AJ zDa*t3OK5xX%7i5agHbPih7iC%qwF}%^+y8u6&IFK8jy?5agQ$-UD5L1+an(3fsAah^hI&|(Gcs1`GoRHm)Z$tw-HrslQf z4ciCd?))>L6O4L?grFCmnHP2Zj;zR zXTH^np=_FhQB%k#`O$P8(vu@c1f$k9CGjtAIGL?9e z8L5-yz!-s9Z_eexMh48$TiogCkp!IJ3y$`EZMgY+r|KSw?}7_DYDaD7s487?K6jY4 zI=`&v=R<0O*g{Zn)vjX=+h>B_V$DFG{1(D{`7d8M-T8@B=uK|4~;{GRqft9`w0b>}>@D{dF6(v?UUGnEu_|uW}!IPtL%Ot`dw{^6cUTI47}@ zp%xhwn513XU0rAJfIOtnu1K(iP*0h$cl{1`CrLR6wUwkA4d_x^(u^f7o*DJHy<`&~ z8X_RA5tX*5cYp=n-M>(d-4Et1FFv9lRH;I;R$mjrIWiKCTqn;7VXE|pUzT0xlbomj zxqtR#spf69vo6vy2z!r9Jx0sVUCRv53Q!^xs)6X0O~rZO3aOh^A$Dh;e~Z{j0DVyz zAT;BJ3NB*}0kz3B;?c75x&)eNObkT#G(6ki_sQ=(RCysAQ?UL;`EA&;hJ4V(&2-ji z8pc*XaEm|->h;Ki(xv$daH_pIRyB}|dr;PRg{=c5oxm|jCHGy%sf(U4>edZb4-9z% zlcNm%wf!klUeuSc3{bt3ed0PiJf`X=V$gx@Nc2@WQ&EJtJy zAHQfffl5_b+#g^IM0g5{MuqMEVfvovxNObhhcI!F-^m;Nc?K^J6=2(~*Hq?-M(`~z z-?-^oCRsx!MXrrm^Q8FZ>OFEqiPyXm`j0|szDASZfhgXGuFSfD2cht!t7wCW#_lPe zAL5SUAhIdcmrDb6D&1&0Gx70DEBE|guHu&E`w@Rr-%Za6 z+y6cCF6@?pB}Jb$!8y-JFSPjVBNaJptc>vgr1IAe3>ts2cU+y8;S1G^jav1XlN84= zjLcSjt{?2wCOmh7qL^S?6T^1(lk+jAb0A!< zUv*H-{QK=u|0IC_5+hf07~PFKp)>(Ma9LM`+Rk=A_{ZgHBhG`JtAD;`S&5k46X(A2 zN=f86@a!&ARNOjEmAr_z_mgg*a^y)BqFFg_Qz~Bzi((aYa_}}`Z>cAd@tZv&OFT z)a+t$v7%74Z*wOlrTOD!yHf7sg>v)PDX|baCN$4iZP> zxF=H)l;U)eUBvk4P#R_@k|lG)u2=K9yEX^o$mvF#L(^e)1y?RLSP=)02E&1{l3evq zT)tAId5QR&viw6C-?e{$(1erCuorP2u{qu-M7J#5VS&bMP!t<61Z6a39paz0Ivxu= z`KR!7?yb+UWAq#lsveD`saAl5gp>14h;acNRpzGOm~(AF2v}rL4ZT+k=vv=9C1ctpY+=O4Uphn4+r*+)-R`r;q*wNRtKeKYFb@V6{=XC=TqZqzV zWs>Fr^;ISw=&HLhH@I#imflfsct}{IfeUE`zVQ7#{qpKgK=i=V&$yQiI~TD;ry&ng zi2|BiH#KngVK-4$kyStQTNDiIyvco1 zI*x2m6u**{y$h<8P3THWEUW^%Z=BgHlXVpyxD$Vw@bLT>wH?ApTS%c=b#!T6F%8Xo z406Cal7j>Hv{21#hAxGz@n6zmHvJy2vifSy%5}7QQ*$ON8FtL{wR%+Gj0UYMsIgBC zh_A-PyQ1*$ubRFd8R04(Z|v~#PLIYt!BM|;wB^c`HF*<;OF?tgr@6a!-PS{WY&e#9tIqdk4%xBH zsTVcaS)ql{Ts2)=!y%JJ8M@u!Vwh6O6^L4sf5M!|Gw>;1#12tBt6?jCP5F+Zg+1GW z%e62d$Kc@&n2bm-Je5d{aFD{pv)q3^YPaFxCVnk(B~T-S&Su^QXEuV~ThIn2 zue7VSJyjf60~vrN``qXb-nb9-zh`bMyN$7ss?uV>VAV!Y25)1`DH z)9sOcJ2l#OVBi9$qvIiFfGxTrpaQhcUfqE2YH5H2yd9_3ptH_5bK2pz>MoW)-^8uF znIQ5(mfxZ{i+aQ;VyYN6K!T^+%=5WX1rBvvxw}#{OrTAH%aKG?Tvv&a?ckHcD3#DC z%YJ-vso|Foj-1k4-q%Jsn*0&@c~0rw3979@?_Urvx|K+{?eeRO=YpvmOC;sZ`B)rn zBW(GkLE&BRi09Pn%gOmh4{m`N&{31|ZMS^dRA_MK3iYP?I>=$@c#O?&-N4IyBJ7@! zvI5jQ8Sy7_HGNw(`9weeC}0QmA}#>`j=613?`vor#gaJ|oLWA}Agl5jJdpCgqX-|; zg870OWc5j(CVJvMhpwXTZ?enGX!ENn%Z`LR-KCbE8B8J)*&QDQ_!#NL9S*^hd8;l}5sm>IKA$1qj+LwV+G-(B7Jfk{Pxo}YaD4Kd_=w#) zHIFrk(b`W{p&R#OEQQU3u$+K=a2F8r4^7HO&-KQQ;N6fWQqZQSRxxxY2Vlpklq)$j zZZdkX?QumCT&tdldN>s%G-lsV+3a9M*f{0-JTXgVjDEuUQ*WP%+$%|@Cz$*7%ZI*c z%9XVA{1G;9bhdI8uy7sWtcx|OnM&8u{?NsiPq!1_5cw6W>kj^)@z4#|&w4|G6%GL! zsX)DM;UI^B)*1JtM-t^JL^P)d-m7P*4L1Dkg3c(WvfH4$QzW}9rY1>6NsuTi$v2Oa zckn`AO5v?qzreMAEZFZkdkey~B-7+`5$}uPOEr(V0|H7js!^Wgy&cAn=L0GAL>K;L3xfDL|rW z7C#Wj^#pu2s^9b=zPtLGgOQJE4VMK%dZ4X$J++ciMS+}4ydZ1X!E+(RoO7IZvh3&A zv``L9TzNRR`S7aLEo1*(LK|IAO}PqNpp|K;;;OP8&JtzMdXz}-#s1)rI}V*cruuC9 zoqMPSZ!Y?V1{dv^B}#jPX#dXFhh1Bcdw1b|H17E`c|c{6_0`6>;^OvWx>9MKm>WBZ z@>={)>c6+i1t}TImyKSC2L6kEX>Hx5nDY>HKutu>D44VX&v75HwRRM02EZl0c{=TV zUD{{=^6I43x=_uL+&=V~!{%YTOPv^j9>cZ=^+Lv>=+FZmG)S2}KYyTv8FhepYznfh zqvlg4f_?bbJ+2&EH|pFuI_+|M@uOp#7f4>qxN;j^%<1ni8&L3_M9kM#y;h35qg66* zhc}DThd_}j@vX9_5J_@0wRi!KbSnH4%AEuxu?5bP&u^y@)TtkCt>gcRTeE@uPjI5G zwsvu%lUDnI2&bi8Rr&#&I~IyaGXpP?NHB!kY)X=3MPR!lqWf{$Fc^wz#W7XuG|vmq z(NR@e-xA^$2?=Lpy7b8d4V-8a`L-Na3qnd)N4%@r+FZm{dU7PsApGaX8QcJyX45utmc zRPCGqT2C5aV9XcJ*GEdWFQ@{b7GR@%7fJ!AeIVkjF!Io^ly-6Vd zizJf$r7EE_0(;Tc=Jop3E_E|*@~$z0$6Hy^#$iCHSMi+`7ku!#W?4%GGyxjmPJg1? zi1v0uI?*1&_oLi8drJ9Z=H4NJ*)-@T-(#->63>Vo-AwCYXt&brvPw2+dw(JiHfYwpi_Nb$27 z)B6Y`iAG~*o2!En>FUyhJd_i8KnFLm{1C!NqQl1+B^ygh#oPMC4a4Gk_%A9yPf)Jr zpZVbSEzH&V2lLe#(4|8^HVS5rlgzYr5euVQU`|dc|8x=4JOIeP*2^mivz5Xml8_#l>CJuvVy^!v`ak{~Q zo4xf_?EHEHzVXX+;X*3pd|p?(W7;|5I9ct=y<%`&EcgCjX zwfWa$nX%TNRlV1_KYw6?CxY^TtapM$K4rz>?Cp^7KkBbYMkA7P!*a39s1hgc72D*m zG~TiL*~iD*S({C~DJ7-f1TQ5dEU(B`XJNC^Y97dc>=)h1NC*#LszOVyzATZWR}v~@ zF8n#d9rMZh3_G>vmmgk~QeJDx9qz^EPAok7m={S!#!}lNuRnE2+L$I2ylDWjNM@mg z`PH3teJ?bQ=P;EeI3rpKu^F^6i>&LvrFfOu{SHi5o+K>4u!Row@!5C%ubFFo z(LN`nSWofWq^}BBM;>B!-bzcjiCKb~!}a(=cmctjn`V@CGahv@;s=+zrSmxR7 zRXk^Yh}npjPY$o9G1{jUulz*^?uQciJ{>P%E5Kp$_*pZ*+Qg;N~U z#t)W|R5ax^ybqw#I2JK^VN!p3Z(@d?R|KX4;9ID?ZIs-5S#V%sS&46HxxYt=-g&=; z%%_()wa-WDrZ{FPv!e##7QpgCMuVJ<=AuJ^n4Jd4O2YCyHZbrEz|N9OUqQt4h1Vt| z$AvcPv)`5e0Xxf4T5sIa(KB?9a^G`58# z!Pxeq1%SFzd&Bs=trEPC1=iPM!HQb$lkzYIch16o0e_1RATe{l|GcZ;vi}3Yh^QI= z<@x-MjggCS+7G3KQ=f_)BwWIl?1NaTjL=A~=84|-+g4{tf@U#iVc|4)@Az5snl(ev z#YG@dNbB2)@A5quAWKYxtaZGW)8WLl#5bA9|JVAGY1Cj47}WOWnY`l`mPkn!>^V&9 zXS|V2E0^%r%`FVfH%LSCM!4ThUypzb4?nw!j4!oR8_uwZel%mc2nmBK4aO z$VrP|KZzPrN-wGdW*K3>@iOdilR^UPh4#GV?>pNh#|=Xw?RzMM&t%Jr9~k;mN6@$I(NzN)wJj5Xj2vWYq_(ZuJBu% zH){DM_r^~1_?xfVPagb*Cv?@&^(^wQWmf3$F@0d-kx8ThX`i@*+<)l|OYf0Ik)BxI z_g*%2X0o~rOk`3K&orOLb#(T!t%v(@?jv;0d~>s<@sdqqCN^o}5B3})^OO?u&f!@U zD1)p$O0Kh9T=l#k1F{2o@ZeCu#=EMp;Dm!JJ)^ zyP2{oA{+DEL<(^~+Z3=UHx_W41fvq1uU7Nz?;*v=oxb7<`P-zUE`7-D3^N36U4UgV<6l|25V1iUsx6Ut#`1ko4wy!--GGePOiP8}tScv9L?lkFl&lr6Y zFS4)-Ck1emfIzt)li%8zp8jEYSO(Zy&eO%l<73D_`Y~6da$w{Wo*JSSWCkrR$M`~E zN3l8tJSt=;;7y^eIx!HEzEoStJ~CSF3>^MhyTMr~eMwN+sVbH6Wk-+OhBTIu3XO(sE59u5eFCspPg5G>&FzyURt^5G#)1 zS}E0b-|ESWxH3LC)4-LL{!|W;TX?h6-e>Tf>fKle5@kG}{iy-5 z@|JmP#HpScp*|8R7UFS>w z$*nJ7m|!n5P8mJe4jN4f!k6*AaN^{?1%h=A`M}YYI~l-7vtMxQ)-y{L+*loKpz{aV zjIs9wlJR|71owad$r6c)|FM4AiA41PEzjpw2Tr2YAkDi#>;`93{)%1Y?+N>$Ww}Am z-lW1+9g+t2==oAW!vFYwSA;S`KTulGs<-0saxd)qNMGfyK>q|Yyw>8Mhhl`7R{%H& zL5eS{aY-ftzkFLrK;t>=h4#&>Bov5priw>12OH?ATU{x-6z-uMXo-mEf`U?Ye!U|& zPys7X(xAyJd}-ec)5X4LJQ()I$hwMm>4*(vOV-Jk1ZX4XW=_0$!HdH6bZMSU*NW-O z*zj7AZ0uFI1gMT-$>x`r)xuoW)Lvr}s?CIz{$=6n7Y{;)$cl<{`IIQc><4INOGO+L zK_jMTYrM)x-(3PuI8^F%C=YrtBIW*mfBG^sR0m^1dGdeS--D^LQ`Qyjp@OL)!Tl4+ zL#5F!b}}X~t}+WS?ppB_%Wui=pbW*$P`|uha!^{h&TRB&DL(w93pC+`Gf(Ne6lL|G zBYnC(r@R^L{u`;g^cG}6Q+J-C4RP0a4N_EMwExqyVmOGXdAu~vf&IXi&)Spx$58sZ zM<36?0&FSpA|mQ4uLSY|K=5Gzm8W^$d{`ly(j#*MEL8RvkN0P|KlH(I!->!UmL)1i z*~z{!u1`_ZD5o_OeAb#o3h)anuM5oLplOMKh>0j^$~WA`SF@q4C(yakiVSW)f|ByK zkd__}v~_at6P^ewJ1>!pa62IC!EXu$rADmB-ey6S(*X6QYani3e&S)lOkX8lt`;3a z5_S`m4GMw$^n3)uIB9{>rP( zWjsclwD)^`_N`x7)hPF^PYdrvK2l-olCJf}?Amm*j)JdhE1W(044(Av=jqZ;qeV{A zQ9uM1ezwRs&u{8wa=HU(pW)5-GQV27P7Zxx-^pVz94a&AV|TaBR@YMm$8i0p%T>H9 zNl|VH!hC*HYHJ~qlOpHwzCV5|?*Uc;Xpv50em(j9qhh#UthWV?&M?!Aeaj0Mam2uZ z-gDUGd>RvjOlM-^3qbvU+$&d9u9HSEgLH|(An3_2x>m;tVx5E6sO$k;WjLKr!G9wp zVIufFCIK}CvY00A^pS*toLIHN}{gTT<9bb6fxmN>or>n{U6E_{yJy)Yv_*C8}H(EUd8x->a0ON z+MwCPewLnJ&8({KNl_*_hHQ<0I<>fMLFhN^zAZiQ=xe&G8j28dnH%kJDnpLxEfe)Q zMI6HZs4bSFdRvN0kECM%w;{>Q-t*;H`DQ4Wt?*D_;li zMxO-#hUm~uBs zNHnA%tLW^Fkq}tRUzz6$YkAy1v*l#IxoqNGd$y`!J^9_eW|bfM(-Ay!Zd*r{>-Z!n zPQ9U_2;O?9l-=6Cj}4f}%8MdrH7;<8NB$b~9FMj&Yzt?PBxpdkWBbnF$&ph)Wv8TX zelgn(8oV4J_gPaBE@~-VXHFcQ57LYUHkn{&dObKLlN*Zr?R`i`onU5}DrMhCKJhgP zaTOOEU~NF99&LfI)+f2MtBi){ps5bPeV}g8eD9!cI6MpLXkQ=qn(^I4`5pKa4%E*| zQ`kF!e+_MF;2PnE>kPj{@za3EYv;Yw-zm=Z6y%JFFgM;vta^4!dBeLGu* zlBNtZkk!w0SCC8oVIb%IBVem&wO06p_0YT+4HJt1Msd3jr)9uluxACt7qp-m^eMGo zW2=6pUcUO|Wd}4Cu}yx`OLSt0oLmRFrcgw}8`Bk6fOV4LmQ28WL&b02r?g_XJ0LF5 z2dE!_%4g2+!&qUjMPjhy)PFf9B2cc(Rm`%_VVfBYx%J1@2(^mEPEm&xL0kU1x9GO!COUikhm*CpiTO_Rgn zp{}h(iPUD8$Hfjhwoi#PUMVs(nQU@rrh zUHK|wCdoFV<`I(o6n77@Vamq4pYVz~k6(1jD z4rWe}?)aG9?`v0HEt$NBMtR!JfrXO5Hc(kZg+lobnJ|6;Zo?4;8%*u{9FH6Kq4j6~ zQCUmlU%}eo$p$M(mT-FaDJEYU9WSdwM{@Hie~7Y7!(E$Prtji#`OvffUcMb%xE>b` zL=V?KmedLHmZq%8Qov0%&z&fBnrD6=iSuT!<-UmSH{_t0I5RrnTvEA&d~)!Rn7uuC zR#8^74wH3QmP|_wNeHuE-6MFk&EJVQ_&$Fshpe2&zkl4nEV_fTi43$vf4~M8i^`_X z=ZIrd?>t-5d)*=@q3nRleZsp?gYDC`C|3dWEb(Akt2dM6bEM9@=nZeGjjJa4Aa9+p zhNOw^tN9vGN}%h;!jYPO1^yq)w*ROzFkZk*F0&+pZtg=vC>@CjE@(ekyZXiBnrLt4 z1?F5vb1KbBHIHj0=Nxchns>;du@ATp&>4fe;0oxIAY(5*9gk7KCd^3V4p<;OgxI`L zs-vNeoH-l`4r~Vvyfh96T%%N#o$q6yKysWdw5_{}yy3y&W`G_dayone=cEzt`p24@%x#4SBBF^8M>QUlI)--JOB{$L$3|ak4zsU+RkcLvWkAKj-kT zDUG(yd<}kP`_%7NmGUq1}eXSHx41!5GEd0Ee6gGcX1bG%*C0Y1P z%b9qc*ho*T>JmQwIZ^Y)^l-Cp@2@#2q$QwcGwZw_r=8BRgp@$Pbkynb^HJyIG|kCA zJ-*;mznylmRMBXdZaO7SL;Z6_L z;HkVG96sITjR&1~T+Y~II>Ws`1|k&oTo!EWkxoa4bc3D0Yg8#FZr!g4{3ZVGEwqPE z<<7%u34xNGkYaR>@AnsnF$a->wsVIUHvza&zcgU;1tjXDPVph17^LxXoSV_8>7lQ$ z=MtpGqX zMCfoA>Pb;CA^V(rEUt#-^$kE5lw<$=qj>s0Qzf7Pc;VeMr#Y(N>PRVOVE(_Y-j->hi~g zQPTma6PO1UX1@qQQ5Diy+9Yy8tvnmGSy_;9|yWfFld&ZM#Z0# z`5Jy5h`(hFdkXu9GT?G)X}P0Hw8@IrdO85Fzs(+<<*yd=-1nAoM)vedS=g$wIGn~d ze3MY|5(q{43e7jIcNBIhOT7|wb46ct#x7Q!YdQ^y(`SNKJaD?8O@;r5a6Vc>9lIsl z=CiRUnkpe3#e3{a3>HsF&t**Yjx@5-O^ysNgLfPoiLIIH1dNnLx4*2lre(06Xprhx|6 z=E+SyfXj<7o~{Tx@C(tTkg|_Y&3DK=(KqX#QmU+OI0FS^ROG8-xIh0SCp2f^2X7sy zZexbNK0l?<;IY|7w2UI+Ggnc0v{0N)6);v;A9mdy*(ui(c~&?j#ANccE%+uP61oN$ z>d)N^ueX+4%wRgS>JIK2%09d1qsoiiw%d@0$J1w*e@tJRs>6G-HSDnU<`&l$wkv9u zJ({5fCobIInA#gT#@~dfnz>!NB^G+!g03am_L^4+mQ(sDeCbhRC8UtxxORo1X;sVIQeznshwqAoo?cpJJs=@AoU7m{^OABjTHCllXk^I z!xvzZqo=zxzwGi45J!i|NRm@gvmh(hY|P3Vv+ycB1Ukx5)xPWX{TSI7Ku3~|L4es| zE=1i1E0aPrnJObY?5t*Avt}no;c6SdWC|{HmU5Km({11I&Bbj>voB07X(p0^bta;b zRB91eDAs)}Pal5%`##SnH6N8`on`Q0@9!YeXW>pgMhRu@a9oiQ5)B`Fd!kFbnbbzi4n{P5Amon7ZQp0Sm5=pD>v8fhgQ^Qb%YmM6N8Bdr>HF*_*@VN7zkYI zFWA+W#i4jIgB-NeMA=pe+No+&yM2orpz23_ID$=8f_rbath)d=Ari1J##QIQSHPHc z1!4%_8ZB44_v^o}PuC6S9 zXNSPvu%MC?N6InyM4AE^hSFDJkxo$JSh$7|12RnE96xl+?a46`NiKfOS3+*I5dEEu z^SV6`P2!;FMt{~LvkQ=AKJYSZDacC(XPJSkq!sJYyux>Rm0*Hy7VBlhj1GIy$X`{O zcL~O2n{`WS`hq2|-dccpEVpp+UAFN3m|{B(x|3QPJOjTaopOH15}HBZCpXUH`E2_V zxE}9^gL?a_@3lvV&{c|77c5@s?W;I7Grx}&xVTwCh;Um7n|=l0c!rfEVFBwZw7!& z5~XsMPM?d}kTr_DS+CEyyZiy->m&GJTKEshyaK&VO35wKMPUl~y}X*xq+Opv;`W9I z8`_?I#qR*c@p-YZZlkqsdY5O?wTq#8vz1`0!1)FA`G1CkP#(T?(GGT)Of64>{WYkqq zC{$RWgZ+x!Ji-ZJI~PmQSE-b|18THUaKI`;S2;;YFgxELC1&Vx2Qx@`nXZl$j4WB| zcLEuDtDQ_;YZG$O;a7A4%D_rju<-F{|5=FY#eKzxrk2gknPumOZES438}#<}wwP&r zM$^Pj8_7%?`IzbO_#}pr1sW;^^N9~2H~^6})D1ix&uURih_cI5t(qxTe&-s zbw@Hr3cdqo^!!{ce6x^5pWL7ZH)Y`9QX8;64GaMYJF?_lJ$DfpyI4TMrv8>n*x2BG zT#gcRmy?q#YZrcxLS_3@7m|{Y^b=tX-F|r0xo*@f&A-5BEQWBi%()i`K4WvF$aMVH zQ%Oc*Nk(;==ot8s+pemt%*>pOg?YGN)5d(jJ?X#QUp*I0=Q8cPGzT|DGY&a^KJae+ zlGLx9o%DY{`@er^Tq;IM6FB?!8t@4Ty~4p)ako>s9T~j8#+z*l@L~VwEBiJdSpyPr z6d?21z#u_T5f`ISm;*1^(dG&7+t$zR6Y=x^elxtO$IzdJ|NWn@|3sPm_g`}Q(DnM? zf5`oR|4-<@{Qvz?_(@T&XL!4y1HpSf^9z?mNZ<+ zOEXJR#tLuWzQubkA5N*grvxADfsMI2g1b>zk7*1wLs8krE=IV+9(8X->poRga?TGS z)wY$PEak8FXa63S*kYKIMP1Q9*!8?xMlCrT*)+F=6T*t_b2c(+_U|OV%djYX=fK%K z^OVhB_0iUDd{|MBmcMG|yh99U+-TdzDkrk^fBnS2Kii{a_NiXSirtT3MuyngP3CdPW5f-C>N zq5tc@a>L6$_^o0xO-)}#MKcLnnL&k=0;NWPbTm;3+v1jB6(kBE`ZF?hRSMP2`S zte!aUO5y$uX9B16M*XP9l z_YYnqd!qr?s_K)2Roo#I5)v|9AFtT^Q`IE3;7TmDb9F#$iQY$&G2gI;)O*_3=JP0% z?+=pt4bP&sqy25%<6|>KM#UEfXRf`ss!XTreQj-Rn_(qzoo#+WdfWpi@^fCY!%tx9 zOBg=e9bR5uetzTr_ZoK_yOW3T-VlmMg`UEU(OAK>{VM~~hfjoV-!_LF2%piq>7b!3 z^|(!SMN3|Y1A60_oqJhzDD0#j0u1ix>QV&&(cj`PRL)t*0g&U})7l)XrmUqFfn)E} z?_eCrRa8$Z0qkj2k*QaIn@*4SdQDEurP!#im}5I5tKn%@c9L)4j5JWp><@UmbTN3( z=47Sbv#?+(tXZU$V}64^t${aRniC`}Onqhkt1@p#)9GOo)$!n6SZnCKOmt<_uckiT z5IfqIITif(FB{%XvH-z1K0O$PZ?+-e`MvK@)S!cONlcqP zI|`9Gx;s;k_?B&K`RrKr#;)LU26lZUot_=j&Flp?1|0iMEp4w5Q1N_|IhrG0g}Y;9 z6#4x&Z5bB9gDLNsf+C|j9dA+kgEuUS4^EbbJdI96kUjk4&s;_2(kJk;1!38ZB&%?x~j7unU;13 z)9Ie#>i^;G&BLMW-@oyzR7!;?Buh%RG%8!BEM>^px1zEXg(xb6qH(G2ED_n7EQ7`x zNtTky&~hVW8B0>35(Xg|WPi?U-1qnSe1E^^cO1_jzvpq>$8p~`GuQQA&iA>z&ewUq zy>H#R^>Wz zcrijyP|(fGt5hox?kRZcGyEa0#tvqS-CA%ZuyNa9tOw;tA-l$&8 zmC&62;!J*0St;4o)g>P_JUSZOGj{ZVn7*#=+lZ#mJw0AfQ#TP>0Q!^sEz$kK2&Pcu z)^!}yeK_ncE%4e^YhtS%x-eOc*P@-QhAS8Q`mkQ=SikUOybsTMA;nizzwR*9uX3&n zE?o)Qhx8TJNEnqR733=Hh+cc-A^&wP$URvgaaMlYi}3$HhL!r``jm!>JSp|8?BF zVnH3lRm}9G;v>@kq+%{x0gTh#5- zQ|QbMR!O~LeB-;K%i3euJuBTcmMo#Nu9tqjAQ>7UC&6*hp7eXTQZ-|`I|=<=25-Rr zw{b>%58==eEojC^7T zf<``7ntgG9{|!%kD0{>4Xn#jY*BM ziA5GP<9`vU(J#`_*f=zix>Vl%r&@ieMtiXk1f8B6m3jZ@4~f7(XHdq}vx4^ihNNe3 zxGGZ*352;#4zA{0$D>Kc$rHM%K zgC*oS-+bG`BO#K3FOEFChb#LbK%VcF>{##cYo)kPo5d^`tH-*0n$}+atx36Bfr!pr zZ}Q1bjbkxWV?6~_^q`-6#}oUQ4B3>cM`DuR^{!JwSf0r?yAKvL!pPxH7v?QKt(+uJ zI%ly(oY`!aLP-y;A+)wV=u1)qD*Z6 zIi-Mv8E8lU16>@-D^Lp&yAnD$GNPKK?xlta@&)Mxl#82J#5tl2JjwUX&E{Q8yf${1 zZ%3<)HElX7X2GU|kN7#6)IyYzh)PP2()#q}(%X#_T8=}*$zYlnJ;ZAEVZHkse*Jn% zlosgsDF~om10^`L=(h?f(Q15DmFhT@?EiM7dffGfEjD%*)0MJF+T>-2J&W^B1MT3+ zqjB@)(%x_%PRGL7x{_P>_EopJ9^y;ehMD`;@fyj3Cb&zaL2EODd=ee7Mv$9tuWiw} zCqm=Osk_0&O={AdW?^dtL(6rJ(tO?-vI@~T^*xyf(YbV>U}X+Bp1H!hZm;@Wj!+dGkTYlU6D zWh)W$ZU24`LBgFwyLG^diHeH0{P}aWm~S-_^t@VQ3ljA8lEZ4`^kvGXWUge&_GGSu z=*joGO%a1zY`PwyOI6C8*}!Xpp49M*BPZY6M@6}Je2nl6xSG)!vXb-u=1G{LPWV>w z)M)9u*{(^~rI&|wI+PdL<3c*LhiGW>|NN~=-!7)B0ga3ENtIJpAuP$6cSkq#+`fY@ zK6b3^UYdXZJ_1K)?Z~$)vjnY#pZi&?y5I84rgG4CR505^!^5p`ZxwrSy3(=p!e##n z@GzLQvZ;>=J03bmYUrzXU+pb-?xg$VMIQQXFv(`K+N{jlx%dv5vuCbEu10QtmHp2F zw8pY(B++ts2&%Evgf4WTGpR4xEk=`|A9XMXh&0BS#$?}rBB|#mszs?Ed|cdUDHF>i zPj_V(1WxAB;qncinLf%~L1&?JNF#n&kTS>{Gjo!m=Opr+B^`QCm{&nf*{& z0_WHMa@7|9U$41+Km^?<`Wr;W#rMqFBIx$Dk)-1d zj%xkhLBbYN*(BY4a$mIWJQ&D zbl^7f@fpQ{O2LzV-I8oe(G1ueRWk{`hPisr^0H z=NCVtDhChdwVG*np(C@C!#;n$g$yswjZvh#(4_@`xRUE9U-Pc>uv~_jmi|AYkIr{& z4%|2=I;XlnAp*XAoSk^-z+=wWO*CpO4e`|D3h@fFTuAs~ggFqk12I-|`84NCEC;n?b=0+H~`+(diHs zPnDl_^=GaS{#Q33L3JuVp@IDgu0v)^Y%`xX>tx+fm>V4|5$V_0!_4-*zo;J9 z`tjp~rGdfhRL?1?6>gU&Vpz)3%oSnY3J7xedpW3(bF>Dnpd8!i%z~3IyOm31WDO2UIUK4x(E6SF;9TbE5eCjV7vk+wuxVP zC-v#Y<#eaQ2czW^rb`oMhsOW%9sTmiBuR}JqjvFAMu>#J0odV1kI@&syt`tF7e79I zjhcMxcv?{CxD(bG938y^^s?Ad(AL>YiJW7)_Xre7U_UxW=iLPsycYYt*wyM47DvS{ z{{@$?W$u3R;z+as0lTb3RYfIZJ?@3hspl7%ced<~GnSbI@7g9w?P3drHdlx(TV0bM z!p$Zu@v*BRT9c2=&Vx5K+Z>{m5sst3tIP`o?|0}E>QT_nt@UdKV}d%?X7AUPi9MP= z)1S1^`?2U;c;msbL)0sE^8TIm4p|r?l$e~{HZzc_L_8egJEwULlL`wzWVM+??RmS1sWb0gH}i)0z`c9Bsiq#V@3U`&E6}e?b1)(G zE>djwM9Q>VYnI8-*jNX|0@)C;wV(|aN5wOfyedwB&-Vxm#l(F-o|*kkseBAq;mj3W z8$Q*Os~IrG`dzQo0pWm83sH6uEbX3?YV@{3M2BC$rb~KOXGd-r={{6&VLw4K>$f@^ z7xU3hfh2E4H*P!+YNhsUQD+EO+G@scLBGMyTdnxZUHcb)58k4)RGT{H)C;_(&aBuI zf=S=&Zytd@U%cfdYwp z(s!)}{xKic8=zl}Uc^-+J<4=d30kC$BN`Ukf)RzEv_~AsG zgY#ojg_$;jR#?ifgG^Mm-)F==v{Zt=sudVRcj@*!*E2w4CV^Xw-SS;;7;98 z=4JITtz=`lO?Txs`Jj5)EIn)xLG%X=8luDoH?;wkIdi0BFZSY<5&J}m*NE)b62z9Y zQoA_#KK!&DRdZEIG~At(t}poNjR*?1biILzYkV!eHl+R5I-+G!M?Pt5cH?T!Thq>C z3$p&{F`O=AAL!N?o)}guC<4wO6K`Wf3c4O|^k&JnDCA#REZzt8eM0vf6+ZQ%io}1< zQ!D4Ud+`oC!c70;cPM;xZ_JfgR$lCk)PF5e1IPLYnb7$7gg%tr`)>=qQlB9`n`lWS zf%~#N49>~~U6=JgEI|EN$g-Tl9WZf;V7k@idCMEqWdGe170x~ujgyYI7Hbf_(OA|f zKlR_CPwa)E%M{DAUlXhuE*~sp1`J|aPGr{}#e5$UFD4gf)8${< zmbi8gTu{OjQ4;dXvYN;9g$qmrK62v>_EI&vtpKCLh}H^|v_0~z>?TKc_{BJ14-{aW zrLHHE5S?p0v8?4o_nPxHmFPzI{jssu^v2t;4?1PlS<9os9H$$#)tFh$H4H z-%Z(ef>EpBk1R#(yoAkDzGQJp2&xmnVj#AL?s)VGws_#jQZ{CDiJ{x&I3Lrud@jf! zQH_cyu%l^* z=GL6R@gTOZE;KT&Wd@eKWs*+)Xou$^3Y-W2?WmAwEVr3w&mVe5Pq-;I=TBd{w*Kc* ze^=Tfu4v!q)agKqVIe`cBO1hM#T+fRb_1rU1kgurMQlrp`YBqriwL$2hDiaD22J}p zXX)k}Y(vgwP_%Qngi#7X5(iqP0e)xxsr;W)sB@Yl*AbBcKDcv!G)#TUHFUe#cMqf} zFN@0Zp6`z-^1=1_(qiGkaV~I<8QY4_FE8x!6Fy4MUW&oiTTLy@)9d{|19*!K;Ixa{ zK=vAx2%~d9*R&~b&G(oLW3`U=Z?S`o=fUQ2Q`3P*Q)1)p&TaPWXSEL4T&pZNs=SSl z^LOUuQa3bYL$t5@T`AM-f8JR873w7N_0ks z&A<^@)~Eaj367{L>qD8y&U50+qvq#`Vno&#&@!*9D0d83FRL2Rk}uUy+VK7GYIMmV zVIy40*{suT!vsmw`_Y84XW@F-R1A|ohvAsv9Pz_6q{@wa?-TZi1vF!QRFsqQhA*!` zK1KD4ES=BnTiB=fW)yw05vB!)U@zy*KZL_^RDz^2;hbMo3q0k4$Bx+eE~&(yVe%4} zmBzPnj_GTTZg}eY1t(;W50l^xQQ2{$g3`(lC$^xo)}!!Whb0i9tdX%Zk;QNV1V zwu9Z_e_#xnkm50QrsR-zm_xs%g}gSQlu?Qxw%)^b=(tJjJN1^j8v*8k0MqqRL4lda zhsR6+gagkNR}mZFO2DJCsn?4H!v4arny#z8cPA>Az`gf@I3zba`zRJjNL>ATgVsdx zR@5m~-oJ`j5B9ae$)cd~Hnz5rtB38Dos^YK0bMo*JI&Uh^GB(d-mKG;to%3LME|b_ zoG*wZT`@8-V7`iWOq#QD==5!G= z+{c;{pW)-@_HQM&z-^Y<>5+It3=sB##PA>heIHPbf#me2>;1}$)0~Gx-r&?gDq5j- z;bR)yylhG)lj)F;sn-%hHZ<4oOY$!9d$X`$Z6VNgO3@Gu)#)dN=cm7%o_3XXS~eQn zRmq`&z&6BU_7(`C9N6OkDxUZCea`9~?kMQ^79#m%ZmiNVhP1RWJzRw<1r`Q}ge-Kx zosuUWSsTLr+o4N|WsU*hqAzy5JG=kW^NXjL9&f%qHPv1qEvfd2tw(Cl1XpA*1U=)8 zRK!~DR9x*`k^qwvWErt9Kk8|J=%pS~rk z=GleLB3cw5A0O%gfytr=4>xOSV#+(5Aro(S-rxTu0KDcn%I=v&45|3(EWe9t3UR~S zQnF#D(Dgmd>)Z&ApK?mANt36Ke7ltM6K(RPnPn7T5wl`et|zT*e57+;xj3>?Ck{M; zzU7E9@jd~a9n7AD97D$}Bs-p@r2G!J@foc>W@C><^-E23pW#HZfsQ@1zo;ZSZbVn9 zvQDo~o8}dv68*4cbr%Ex=85DZ@&de%v`1x{1${$P>QzTxASG&zc?e>ibzYZ^Ei{Q_ zjU5~sGY9?|WlTE&OqOb;BH9k|G{o(^5{GQrV|ODW+#t0Ulkp7o=x{%K_H6gS$beA5 zKY{7-{F9jm(w4tfZ#z0aa+dG=&xjZ|7Q$5`A0j^+1HsMTO^IjEsq+akpH|96I*>>^ zv57l7#2XdK=9<4F8`jD&TQQvxSA7lOuR4{Bp^NkmhAE`-?mhSF8C}xoi$kqQkmjCU z(hv$Cgm{m=M8)t<$d$EanIuUQv49dV(hRt0eM!~t%jJ-m+6)lQua#N9JU(`OEZ78F zdAYZm)^Q**{oq)6E80+fcN^uK?A+Y5D}9Dby~1{vZalxxN!zmf zxLktq5M)XUun-%r*6xeRP;NY+3;2KY!R~Qh@{m<(3kcZcLq4*BustbSV4a_i4=2?9 z|B7_cg|U|aP(k|R8on>iid{ru7-PChRYT(umgzmKMJdAiK3NQe2v;)>x*CXh{O-cbpdgJ4tmk2LA8VR^et~Ic6a#2?($Bw;Z)D; z@sZBrqj1M|8GthRv8H%pX}7-zvxu1)xjN`uqga42u&s_Ky$S8A>x- zm$iaUNgMwHAb#?*1CUg>*hN2fs?^i|SC0nzJ#;4tvbBn{K4u3;R2IGqSK6{wg&nUK z!i~h=S8F>q79w4ZQgHq0suic=`t~%!(Ib{OY{^T;IgP=I=ux@4TuoRa5NVlyvs_nZfd;0k|yrF`6}FsCO>E6Jm7ALap3A@mA*wU^-d#jVcdVF4I+ zfhXk$yQjKhz*gHnN|@0lRSGUgSIdv>4OJfo=yv-4o#V_9sPqB%MhUI7RT)Afs%Y>) zou}XltldClSKZC{Y00e1v&*>NbMX#XvsbYvGa4~>3P!jA8{u1i^5sAQ%@fX?pfAX^ zP|81X`OlmQyxl;)tSZYfFz>&0l(9FHXh(Pa6U}3O#`e9DZ$-%a0_LSre;-{=FnQa> zJ5okjgZNL}5yqL@5yvmA7l1`Qxl)*8vK5<`LCe*{3<`s(&^K&%CDP*lVQft1%A8e` zo&BzF`D_<+gkO{D6W7?k@*ob;2`D;-;|j~6MbDpOn9z(eIFSX%gIN1^71;vSsBs%3 z=*N^~)d5s;xb9MNAKZa8S#7AeCBAzv+T#a`X1K#5-nqa7XH9nYqO zW1eMKW6JuN)n=#y(Nb>n?|^>=H4*ce*4_kyr!(cw@y-y>jkEQbW2;koDyLB|=KH4q zkf&8tR`@n-J9$5-5zMCiiR`W5LN<>GiPMhmjLGrFgybefe>&R@XiA=#`<-X6;NBO@ zf-^ySQcF6{oxLAz(2BV4>Xma}lmz1DFD6-qZVvHI7zx zDnGhqRs2bvC`#TJ-tiBlfQ3Oi+tG*(huL}&7)oAQ!wm4P*7(%ql+308i>XH$ zdLgX&4KS6U<)v8zOA`xG54O)c=RjJTAIT`sB>h#Kkt3`MZXjWRjKe|$1mVPDH}-9& z$Ne~1r0*fJ&qT=JaSt_`rf1?j-8Uzu{YXjg5o;aNyb(Kmb^9l3_J0Z6up@L zHtbwGA+_(54-1|Yf>HIu0yb>iib4*1Y6vpB$E0MJzL*29WU!2Ethxc>uOqUP##;ZB z$UX^ikY&pl!8MdOO_>?yAQ1oz!M8(Udi`Xrp0JdpX$_by63;nT8BC+kg3aJ#FTGnN z;CE9f&$-0W?fk2l!Y;#hAEZ4bX?*^=q#A?RtpHAwQr=+5*!p5!wk1UP>JM=seekGd zp^1VjI9g)($o8nX^7sQLI9D8aTw|Vl-1zCDm{63oD%=)v-W)!A z*s!!>ldSbac10j3P9d!IGR&Q7VT~LS%mIsm+(4!7YNgsM&}GuJNYJ7jq2@1-*wV;{ zRa4C*>~2RGP3Q22c{<)jJ0e&Sg2UWy4VyZFB? z+L;YI*_IFm0*xw`rOBDMj;p*K^id=@hK}e){iQ2vfW}GCWS7+u7!FL6ZV1;K*jw!; zy=C5sd0iF{Ym2Wxn{_~y>JsW;S?8!AdQ5J!0(2MQDC@7-n!{dBWVjR=2D}a5E*#D~ z3AUg)A*;nZhP5HcsEEk^u@VG$Ie@;0S+T$5|DfMQCoNgEDLJUWQ}nBfCnmI}_xKG* z5mHA6(VE78`*hr!Z8x>n?9vECiMV2MXh266Kvk z0R)&Rj*Ra8<&6Pg?x1LNw%aP=dpK5#_i3G83@!TUY_De#IoW}Ph@W+8HvvQBrT_FVQTS@k zMoe<|Iu)|)0tLwTzz2wX>q}D_o(N`vkQV8(tH95S!+?+*vt8XpPU;|UdI8MBN(8Ew zFd^Nb!7hX7evkk#^A+QBKlwFrVYeTwe{?mpv1t>sa(tpkvbmT$+voGnml)_8v<6V) z?feaYLT>xA&HJ7U1TFX=g=g49Q!04yBrcZ4P>Z$>F63 zK7TIokoRsn=6L;El~;SwEkTetQp~!SwrzRd37PdTGky;PJ_2EUP}-038n0|u2$FS5 zF-6PYR-fY+X^p!?qX~(U$jzAD zhO`NS+&^FcwpULnroj7=nE*pw2(?i8$@`$%71A}$i(vmZEsTdcIc!-+Wnpj?Oau{a zyvze`hUe-aPmWh2@^HW;t2nS=ED`TR3&AXzsS@bf)2NpW?Tp?|=!I%}hiTm4IF> zICm?5lkEkbM$jndy|$hS>WNn(uiYJw8C)(Vw;WkbS&Z5L)FKT!yAsb9A_pex%H=e1i(Wvy{tjz9HHA#<8ho;o- zXRQd@egK@+peOBZQnP15#IrDf60oHtjJiAgtbm-q_`__GfWc4FgFvut$5^4{frC9v zV8-Ryzw{jh9I1F|Y~YFpMv19AyC0>GRm@?90LOs;l8&pKzp|tXbl~O_uGGwq@_yA% z737x~>5DOJKh^?t;Qq>f2&3;~KmwLX#~>-wL*oPpuupIj_4n~YX`eL+OmZOAhyk`7 zymwM05mIoKBZTQSufV@1Kd;**u`y3p=)~{IbtnpIoFBP)&j&1fkS8`Rpz7)~zHRhs z#wcbCi2B=l7P@-QpFXXFL4-hN{{Iz2ME@s<_+J>}WsFws51g5N470$_I))K~@EI`bg zO-@3?Y9Ik6^~`6<$jUxD-zoz@mkC;2T#R2}w=Q%5iOB(D*_wdtuYJ|6{tjoOQ=oe1@R7{a@bh1I1KU zAQi?u@ll$dKXH-=Jnr@1%1=_izk9o!P6$5RJ>IEoZ8?%QVf$0^nP;ZB% zW>DFIg5x1o5WX{pKC7AsUp@2$V~53*T<+BeL`%C>wZkqQic#|6@ZhihI&HD?`q{Gt zkB%qt()qw1=R5REhuN`h>(+5?*ClkW@J)wwEOBybNbA=9q4pgHn zv=2RnOd;K--o#F<#sW|M0D$3^@G8;()o(U60Qg}gz>d23se~9)0)nQ=Zq@~|*rcO3 zFuef$bBApNw74>ueD}zL==fDT0OA$>@Ae*`Pc$A}=!k<{gu1eEGkK?j0D1ECLQmWV zp+k*kqT)I)i^KKizDqNOzju^bA0U`vPLK|z;cv)5UcYYF0~}NiW%2oE&(`MVd$<>0 zS6=Ka(!)rd`xDwQ5*RilC3L2K7tuBOaxezZ`<3^K&$eZ2Wddz#80hEsFb?0+liAzC z4mlXNU-Hi@Zg!(zg%uPZQ7RTjyoUReyr!a@fwqJnE1w|M$!D{G2Z|YcQYVYnb zTTV9dW_&u(Cg{h3k88o&x#)8Du|7XvaCI#ri@c)~NgD!J%{*O{|y55V_ zzRPJ0Q2BfloSN1kY5I>Tn%TK4hTx5(+|AuGEP|tDANc!KwCV?RrSdgFrW|jvAd8n- z`8&QqadzfEVM|qv5#?FdcVDlv@q9Kl3#*n0ujt3}DOJLbcCDc1>O!~E`}}C?rwem_ z9H;*@CH6X);gFJ@&Jo%Xtmz@U@0$t)sZ#W&0&jHikzyFGEFPkK1N+GJ2wjiq#OzEK ztC17yU$YA#-MT*v9%|qPSv)1G1&edM2-NVnu__Y?8=I^5Yt)!cPc}UAJ` zSLCvn`Lyq%T9_92AgIo^V%^Xigunx0;rj`x9*^Ht(JZx?W_=K*d5-dv{W(tQdawlU zE>H+AeK)H-leQ7dW51SwaG|7E$K-@XL71cfeYr^Anxj3oPX2Tz|d8d zs~1{Fps%Zgf(o&VFe0 zTR1$+bw*>QPJU50KbHQF^#R{bM_4`}R7*w0x~UgwuC`SiQm|9}BuB&orl8vQa2&73 znX->eO<%79klZ#dbtlpWTpMmdi;;R4EP%pUPVp}UZ}ZF9{a3HpzJE(Ey zfRa$AAmf4KK#Nr;KgJ?j8#zLd{2Aunb5_5#81^mgR9t0z&R-bUElf7$p0s$t&%%=o zf1mB#tJ4@FJJs)W_gS%BfYyVB#7Jfg5Mv+}pSy~93l9H z$oDFr*s6O{5PHA~lF!SJg{7Z`>8f|7x_~RKIuXKJhdB%vb46)hpgpI%0}29xearg# z`W6_Rw2EoQ*kE_SSo<7s71N?N>4X;_W_zN~UEi2Itl1&8XDsi+D~s^MN~>eNHwcd- zpFUVuZ==-!#O5p2ulUxHxY`HDh}Sf5M}le;Q70zGd}&tA^&eeI^mxLA(g~lBXF>*{3O7!A0Z5b9 zW@b@9%YLrI$FDQ297lubSs%CM89FaLs}dEv(#=e*wj*_WSjD~EVY{FFR7`>|U{A#} zKX-SBm1y}5#QJwe?NwHsC_yw6WK8k8bVXn&;ZL?JgOh*yqVW;oT%UOCt^-H zm&DN;H_t>wtLrL3>L;{&v|=vYb+T!C$>HF%*`QBNL&2UkNZ!y!5+uhlXIC8Zb8c4p zibCRBL9@r)mHan~GXu8RrBI26Qr<>|D0 zROmoFg$_3B9O5TSA?H;=S1+0iujXR^bw04q;WmE0UOKUIBnbDSa;a9Nd8 zRz7`^8_Zhz6Sb5xi4J40!73^s-~Xil*2?C<2xIl8W>tK5IcDLx++3?gO#F!zHwb5_ zMz8r9_1v#|SDT6M3Q!2Rr?LsN`ZvFBo)-lIkgLl~*Qe17{IxPID^5#+RQW-!P?uNZ zYLW;0Zf~qsrW|x;?CdX zaez++cxykT`ORIi0FPWUN>23A&);1#vnLdJkY}|*#>|mPbs~Gp)yvwfssGQI;42!O z{en}arrL|+Q3K?8tgZ*B@6CyPJUWv_8tF{ylbvg{W<4VYhcamavitW}i=%%Y|BOwyouD0Z~Y&J$S0P`q>((1&MVaciZ4wjpB@_`$VYyUSg=4>FtmFFu;H}hdQ?_7f0vet>h%2Wsc40(e5&}A z53@6w>yhn`>ZE2dx(vp5MrSDKBjf7)y{y4OCb#yV!}h+N=QzTDCW5XSsWr4qC^+`+ zm@eh_!iz`PDgD%xG0h^Kk)&@44@NUpd~lFwYT(!01SmCf^YpOY5vfO&r#DT#ztAX| zo4#12arB|N+|zBsp!VYOa(mbh%?(oLf5=XL<3nwuG^ZZ;2Lw#s6fV~ZBY3YdKoaXk zd`1xaI;Ac4U4Lnj9zjJWsF@Mh{UcgD+NA)|I>%(lWyJ_2iHpm|9e4?*%F_IV{ao zvjN?AEb7ca&-%66>yh`Yy^)fD;*Pf{(;Sw2gEGB6loAAWDV+h<-C8K zo+8k(p?xn}?Y6`I9w8O{q|;|WW?fxe*fUM2gI^E1RR8GFz5`XleGsgl-p3^iT|IG!5f;waE-n!!O)5 zaQq@pGi$iAvD@H8uK|xss8&L4t^A9>MRtXuyr(z8Yn8y|?+Tn7!9xWfhXwEu_vA8i znsP_fXIPG00_iNP1T4Zy{jw^^_q1?0Bn)E-elt{-CI)M`6cR}X31eYpx9nnAcenf) zyl}lSwj4N6a_v4l{K&YsiO?Psjaup|ay|BU-`M3+M-a&858SPBM9Y z3*%X0+=%tt4`po1Rh6U_Pj~l0v=TVz**ZUXBKQzu9-chCD)5Yey;Eqnn}+O*?ACs* z+IoKRS5CQic597YYij-a^>lO1$~2R$=}$cMN{Q@mXT68)oT8ulGo&}f{MC)>w=ZU!zbF5D0k z3z}+fAhOAV=QZ?sLNemH8n)5+rv6rmF~k64-wOhaA5Kg+KOfq`?$g`Fa22YWU<=#s zVM#(nH9?&)owAB571q7CTBI^bYwZ-Hb>jY{yR>S0XEHNoyyQbZYyHmvge7)tBg*Vq zoGKmebWLr?3L!nNUVQ*DbQ@$qN7hUq<65_LlfE^^LCN1e5j#ayj*2H~f?YDqmzj5d z402iB(SH-TqtS5nUV@pc_*Ul^p4>qSo!>5gEbzWuP&wks*Ot0(G&K!qs5)lW^>g1v z#mziO*D>Nk3@FMTka0S?v^a;=MR5e;%w}lL(Z4uLs;g$8Cs6`~%zzY{R+5Wnb`&@k3=R&aMXlCJ+MgA05M^EzAYXl|0Xdk1wnQu@Ns`YK zWEkZdTxp!I93bF_`8;!pG+C#a`UOuSn@dL%OsKa|xT)1Z%ihT7n}=dMk(SeD#xT2> z-(zFINCVTB`sZ(1Hu!sH5Q0WQ{Z_WM!Z9|tj^Dc9(R5$uSe^zm+RJsOkgxjGfM!gK zTz@3(UtSNXw%LGBN$KMle{@D&^u7}sEC9ZfdH9!P#umV*r2Ko^c86(w-NnqDkF7@b z+8p!2p?^Y9Iii2pu!9Zz^5^0Q^_K-!(C-emn6jfUPw(*XiH&95!i=a@?D=W><+Q(@ zn4ZIgQm(`!&Q_xh%(G^Fs644we2VZ^>YR8w>AnXE$+_RV(JTGTkX>TcgL#zi@H<)N zgf5ns7qSG82by#6!aav22L*?!x6&a<_q+laI`{!<@n&#&qIa0DjjVsI6ur{AB)8s| zXt_i5xLWK^NDHXG!+Q&d#}K?!)Wamcbby(oJ3(j_gjOB%QC;j={EV*0p1ZG=Dn%k< zDy|}{lge7oC?+NRj$ti?OEX`d2^~G4UnUT{VlIG@s72Z>vC$(2i}L<11l&oWOVi8b z+*N@Ri=k3m6`7a!&teYd`W*Mr#dOI9H)d1iYl-Z2G9ZBHjsZyiG!rfjmqk z;l8gZp+Hirt1WC)WT%x=^~G3Lt!M}&xiH`USUpg@KZ79-ELAgX4%f2+U)=ZhI|*!6 z%wbi)<4&3`G?&vpk}fFD!c~)8MY}FXOc{T~Q-lUFqEOmh5oeWzMy1Kb`Z2=T&2L_f zB7IQCpe1gMV(N?+dG@YxD{WxdZf&8;ofBV!y`S+2hs%_E_f^zJ>_1VX?YA=MSi9G4 zD2m;@uvJ{VJ-@U&mr}vb#99&E($YuvG}#&*nmk1=tzYtx&XXir=EEw|=sR=G!Y5BrdrE}W^ zrFxXQ{Vwn6irg5MuCDHc))bHi9RP8{O0J;#&RuISGV*rgL%*KQ+ofQuEefvv&K%~;E^d1)B=?Z}V^zy6ADx|Ic3!YMeiiGQJ zYuKls^|#fjW8^(GZab)siiwGh?(I59URo)G#u#os$GCA_5~1#Fe$)gs!W3v{u)R_m zTx*e5AK=ghdIuC^6p5k^hAdtyb|a~i7io(%8Jn!$v1m>+FAoP}SX442DY?F=@!b8x ze2BG&gDgGY`RiwkL}S~aU| zAf;7SYkVCQDvl3}2?wdQWGa)EzPpL#0WiMTq0sE(O3h-+P;bARa zJ27!0i}>}5MvzW%A0mvUtjU=ucehvT*_NOD)5(VEiS)xspGt$=4SShqGXhZ`@0 z)m0L~@<<#nM|+kTH3UsT+T^p7X%HFwjk3|zI)3}BJkw~hyzzbiJp1Y%Dr+1!3m6RJqm=*0ZCDO+vT8@-`yaNrPuoY!_CF{%2K6pI z9d|Qe6(1Dj4%`K9E!N~=6;vFzG2w74?;A|QH>xH^8uz9Q301BHNq-8Z3)B^k`An?U&(KZwTF418|@LYM>|u^5Bx}pnl`zo&u#uV*PtHC!9lYr z4MMAjho%RgOP~S?krqXNhbfRP{kA^ub|Hh%!6^ePqghVnCzhdIQx746HpH=p6p?WdH_If_Z+cJU6G-yN@kU$(7uQ zkS+;DRJ~UkuPOQ}P_DlUi|`lf~!0i^fl* zE|rSbm=gnlP0*(d);Ao2g zM4NMOU)C-lFiOv!mC06&`pM0M$FfkYOg7^jy9yZO9Hk?Yb73JPxIRRkXWB%^L^Y zKWedo8>F3oE?@LgPY<|yTviD>AefC9KXiota}C4fq0(^pOw^_4H?OKZPI)lr(d8hr zQYQ~hOz@e1J${7Bx*het$@dq3mx$j1{uJ+{_$}tt@cb$%aP8Xb<8!D35!%M9`ym)(Ci4?HC$Az>5 zQfm-~&1TZ|0u?nv96f5K>FNYY$Rp^iz)s_UPuXbFyLbCqLMrB-YF!%!p4tT5N{P);O%?ML(wKuypOD3@E}YT9>a z2zi9p-g7o)eqK`Qp4etTJA#ggC-`p@_Y++AmI$`VJYPPEV5S&Pn8q^?UJdnpKOboW zzgV-E0EN4e(M96(m=>z*H&nz@5odmyL~K`lX4_WLfHtUFaP2PCq&zXgl@YM+V5H9%OJ@pZK9p8u?m6|G zb!YdJW~|+gpxGe{Xp-}R#d7PcSxMS?5TDx6r{uo4SXpVyykyYxxx#3`ekn+MEeqYe z^O4Xfp>#QC^a6^!pVvuuy_O$J-nZXd!n~k{-+t&PhH=M=f7d?(&LR|mb##4cKECI| zSGlsUP8P6e{T|TR02&Ikr$XzbVQ9wH0oj+FZC>RTSb+=#0n$WgXXn{ExSuhvpyFf! z)P6xVjD8oi;-RA$I|W;-7}DHG=`i!CWP3-&lq%*x<0sxLPZmazjiCnPm`rT6v^`{q z@k2T3>_Id1B-YXdYA>9yCMUD+UA1~8>!FcWKGvHHzcfGb?9AIW*ypjPFn~=vPC>Hs zoyfEq@UIr9DEX}$2P&hX{ z_re?qNfNf4iAmy51#vKWshzqVlB27sL)LUe$H&l@R`bQ%_QO8$g}<$L@73p7t)dU9 zH{o3G%RK{kBeT13z7U=J(4y|%CB{IvBPk+A>A@sp79GrzXZ$l%qUzl1e3iOImq z&agy`>Y+nFD_#CK`j|j#BKd zgkc~aR-qIvjrG*HQ`39$`GpfqkC2d%X93fmORBfINORZb%Frr@Si?*eP0f5pz_bFT zKK>s9ML$#pK|dEgG$`_H#^c@!c_rhQ7Z0dF1EPAHp^x7V!>UdS!#+Q+jP+74;hQ3~ z3!b|Et966#$NecXVUdk*G@eZuXLg;@T@oO&uL_fB2dm{ubf`xBM3OujC=z%C^K__$(hDLn(}-L)y;n3A&`G`diLrMF08z1n=~QBe`PW;%VeFI^^X=MeWA76m z92`8a4SjDspz+ELpiGP;{eIJZjEEihK3{twRN`6J?+w?GOAh(^kMIQGp`&g`jK16x{^mSnbF7s6;9hLX* z-#@loFPLDQTUu(9cRb%xT0nj#@l8QtTj6`3&T}XQT6?@-nqaq@QN~-5PvQ1sPLf`V z#AFb zEx}~YI67DAACl+*l1#Wm?}128w;3qHthWOi9`r3?@ij;D2!&VEGSU1)US$UfX#Xqg zx4d~0`e-?xa$Fos@@Wl3er z9+8YJWn>E_OZFm5gtFFX+-*p<8e1w$gJetg3_~e|!q}IPBx9X0wlQYj>+X4f?{XaP zAMc;f@l?z`_jkFj>pVZFRl`vw*Q2pJU@&I@UHen;$v_T%;}-ZX{N?lN?4vi?g_0e(pgIfi31UDEb@Kl)S!3j{FV9YUyhQ;*(H|aMP?GX zk_9zNvFdU8zjJcy2=EPoV|*P0>dwVqDbm`(D)>@CXvi4BBWhCif5fVj557R~>%W$@ z56^^Iej9o&7!ouVl3I@na!ySbw_1Rp2?no=A@azbkBFxzHwBQR8Oy-_?Jv0&3ywyA zpaM@o0Zw=D?Yy8n0g9k*^z8I_TX8l_DBxK&aI8=|4$ET*&{^)SDe5HVd^5VSpa%zO zvD+phAxh34R8ERRsd*~jAIU0V9j?SuXY9ru0e@g~3hZ&m(HrYk1U~0;eed2jVfliV z%-FCRuVh1L{YR*~+iwqweF1&JH^wb-#>9cagU~0C9zVGw#H_@Io=v&A-dyIoSYwYb zNmy=ZW?W4^&;*%T`;8rBd1($NihvMDv=Scw85D3Y4j&J0cY}DATT+Tyotvql_ zTLNe2EOc#FyUd2hiejzvwNBn{#?hmVbdiKb|Lejy8SeSzkT`fYC>ZBY$!Et495c;e zFS+6L5tF!YXgB#AU&L&ozntuIELRwKHG1v+p!wxy7rRfMcjoIzfx_8nk&xeazRsfC znHSHx5Cgp@HLK3jT5tQyiBbfPSpLk;A9V6ExO2*mrEwJGu+!nP*7ynJug~iTD8SQP z>i2e5$lOq2AM-AxzJ1UUoO)ReWCUey+;&Zxj8>lu9QoJV!CWx+`P`{?==rKPe7SIw z8?P9<&>H{u`vT!}iy|CT?lSK$b<(io{go+#7w>$sA}kq^He?y36!FVDWkY>eqk>71 z%hlPSHSY8XfopYr1W`U7)yf~`-7Yz`f5y0Ue2^LL*KP7F?-~U(Sg)lrn5J-%*SQ!U zKn$er9#kMWJ%%DqD)E+RUdp9oiBsFrTfEVA&Z9+I5)37MI!UTj^D6u5SySgV4Y*H; zg;Iys$l2#w9I!jmDnSr+UV!GPI2>-z=s^s?8@P~AagCm}T<$8*c%#A;*25;|3A??{ z2t0ify)Q>7*1LhN%fa!{Y_cU(DM=fBBj>=7@=+`2ayHd5=DFpOzojB!anklTC&e?l zSt*(7AMbnaf&{Kbfwh}V@O_bAC3sGTm0^h-ne4gRPrk%KLJ>R43PZ@=K@AsSn?vDp z`<961l1v{VjQUmDOLw;uUe(b;LPN8a6QUX;QI_Y>k=Hdx5f5OkxWY z?Q5v+1Q8Msd5>T^QJ@*jf~<}W@m&>hi6Fzkq0LGysQ)*Ac*eZp^h%T@DpdAefGF(N zIz|l0{`wrb>cK^cB}3^}a-z~qX)ggsggZuhvO0EIjj|IuC|mUDX}vG@pe+PU84uo` zTm38uk5!|CK2`kD^}a|o1<$l%Ky;o9RAU?APj!CYuM*{@Msa!?BCH0yjnr!$qKuTA zphp`-N7mbgpj@|(x2x{vi}-5Ob^=LMFYxn|Af*$)=ED(24M!bZ=Od=iX#07WH|&L7 zesuqGsP7eSJPjNC$iA_C`Z0kz)1p(QkGIg}Nj$71EvTgH-37!hM`B~$b5|C+5V zTw|$t=jp^ptNwCA{V*#yaM5<0kn;(YQa57>$vAX@epAQ{L#Q&m`I-&y*UWYx^fmE? z2QvmOo}=(7t?GBqnA(cx>qjM?~4E{f~+cbyTH4{dfxvWpAK zkQOnx<}n04JWhdFK?^N2&(^QS!q;D|rhJhi5}03W@)t3roTLY6jk!9I*DhU>VXWa} zaT5*5o0`=`2MZ?c_gCh}AoWRGF!Bu0m^(T0KL`_Btz`OnoC@8@2V%Lrt?K;c;^CWi zmZ6m?r@*iCm-(^T35lCKSnMDZUR|X5cIXneUayj~Y*^&xiF@xzbyK!mQR&&w>9kjx z_Gh`(`x(j981+O`@o_4}F8eXt&MBiJ|BobXS1@#S(c)j+P#h-dJyA~ICyQ&d%9i*# zE6h${<&i=vKP=FrXb;0E^6B0kl2f}>9AQkP{ptx)V@sbnVJkCV<`u7cV1is6VjEIS`1Zh6BlVjwSZS2Pz(QOo5=*Dtd6L-(| zl|%}U!s~;Yxq()&*OXQ3TzHt&S>3FYrDzouq@8NvAmc9o5Bi~UpyUse;VngKyruPP zt)dk`e72b9du$x%`iLZFfrmTlopUq4yDe(@Q$0RPB7Sc0)~EgParC@r*Vj z4Qb{FoS27kw~Qrl^8SdNziZ^$>*Ax~_GaUztX2(lJiVUc1#Tykuj+{D#Kyn;}B)*zLys}3p`Q}f$RL9Vz9jCcE*iBX|#iAJOXEdJq-_p*O3BPZb(fI&-w4W*(VHS%mA9n|(q z`*eyv{VbT-ITVW5JPyb4&l-zRoRb00U!=9s|L zT*$>OH6GIVIL-0B^4S8*BR8 zvtszyqKJFVG^YFTMv%Op+f=xg{R#BU^q2I4hn(ukt^Ng!v>;MAA5ohX`MVq1Q#yUe zK_@!(F~6gc9e8=Ijq3p7lgizKc}+draK^OjUkX{`>GBiow!hEd!G0&^+p@FjUccpe z7l+~+ny3j2i4kQKI3vX=0{}VzO^w9~D=^gxfR5C{)g1TIs$s7Lg*-gaIP@dOHiKz2 z`@a?E48z3*P4Cn^u+|DkD-aslKe%q8S{Nj;$uNBl21N7TW&^wTMd)mR)s6WA#4(2- znfywpl79bD6@Dhu#kG1w*8$p-2WKD(&Nk*^Y9g! z5Mw|l>Zcw`)!HU0_{>{m6VXw`H6+Em~hj+N5T;JDkIf*jc?lMa6tMl1d!Uz3Q! z&-`K$>Zb?ltSG9V*F-A5nupBv&D(VW+}P&N$w#y-!RqPvq|-0>GA70A`yZvLU&Bx2 z(XmE%K1?!ao?^>mX2pnCkduRxe@}|q*I?AU(Bep8ejx6Xw)@RW$rqiNd1k6l#{{C( zr@N0=wdq@UHJ1BPfSUhPKsqC-LVqw6OU}>h3pT3$&ZEFPN?fdCrtK$FwF3YC_*zk% z2+x;dtAR*49lrPPWc+&PmkfyGiI11!?%XNf2il;v9H@TW%jQK%ozJ!D6*aEXxxP0& zD9{zMd_s`ctrbv=tGu&|<4JiZsFvvrpGZmTTKtWEBVqynBV=vUtdE!DfGDo$zCag@ zPjksixb&sy4Q@vNQtojoo-jX&^}d`Ok%*1asde6!G~-B_OS(=`D3=NVUv7wu0`f4HU@0NCRVO3yYcPn zmT##hN0B|!HE(5*bW%}PM9)eyiYFr-fDPb*l1R8$oJomJ^Cc;%ipEdon{MjQJUuI1 zXs8oA1ImCU)LH%f`gq{cIER3WXL=`pamiXkM=9`Wpg$NCVvIT~T69psLcBGprH;HL z4)48c19)_Qic>6k0l2d7Uy5|L?^9&{iWK4hdelnau@5kmsK%NDG4X|Fokj6-t!Brt zH4BA%JjrX4NflFlQ!+4mjmabul%4_jI!)Oqb8v$;a>_bDCt*g%yKaP5C5qe9;3l|i z(uhgC8%Cwv_#)h$Sd2b?*D&fxCaP7o=TmLS=Zya@Fd1+fSVE@en2gO<#RF3>GMQ)PThiB+ef+*WRK}Ki4AZ(a6c6^mqpBu9i=*F=bx& zakEBK2EpSP@!>hC3T=O6V8J>@l;kj8dwTWoUc3;dIw)fNAYGs7Da;L~0#nh0U z6Zh?9q_TVIme94b<5pvi z6p-n#$?|t+!G}&g6w-{9=ul-l7NiJ{skuw*6NQWNbYDGDJNC|QJOcQsG*6Hfa88dR zPv0dhZqaOelX&CgujO4T?u{}WaZXK!_ZBVN!Vh{(7}Mc8j5+)2z6?pInqDWeFZp7# zdE>k?hgM24Rs!c8iAluWj1>3|7rCL?f_T)SmQj_JH_aJ)Npv{f{%!pFO`Y1q2hxj% zDmPNk{kKhJC6?}qm#aStH-V3c01K-`EFHR^;FA!++f|`-EZi%IX2B)?n75{M(~Ece zQK3^vFNwgCnzXep<{4D)kz4jEu`pG2ii8K~3GqK5Q5g}TK~FS|8~h8^x00LvLjM@F z2|86Vire++KHj@yz?)F`c(^Cz)8YIjOs{UX-v$!Qfzuv*H9|gpvkS1`3h|dK+%ajJ zF`pQLiN5B@JvgQ9ot{Zdm|++yyZwD6MWJ=X{J!wn6c5YW-fyM#Z@UWVj@%bz_z6Lk z14C2Agn|tm^KhjNQPd`*PGt2P^@hYSUf_C^=X_-a#V@_G@wgt~_ z{QzQK4rdgnv~LCVZQ%r1Gx(FR!i&{CHw0us@tZ1#&g!n_JQgLvb@sltUr>5GCq-Jd z{(8%WEBjkm*QI9MWi6$llX}+zw3;$cE`z7x0CC&5FJJb4O73g z0d&=TzJ;kdT37wl`}3d9n~{jiy60k-IE7D`IIx$r9+U|{3|9f)dl-WIFq|`C;GD^K zEqZNC@8)OmJ2A7Wr=7;)#VAp=TQ(g4w?FKzrmN(_7V<$A*?Zs|t}YkrE0q0+SBvZNu* zRAt}zD!eXjG4JZvjHl?i&n;hzdIH@GAXG{&e^1CMY;it$4ZW1#^FnX=y92VRmrcH! zEPtEPE7;~V-}u2Gj5=lUUY`!f1&rz!dgyC5y#nSFj`9Qxt}+L1^MT>TUnCe{{pj+DGnWUm->M-zu8hknS5?ePygHTWFMUilWo&`u!pT(e_FZL^u3 z*vgUL7(fi;%k#a7cnfr>);I|@tROTO#b{BHkTZwBfxaiTAm6ueyezY&=ENnlnGSmo zm_e&t{@?F>9%!RE!-i*+M8mx@tZI13wE$~*R6X^h1o3I9<#Pj^(qVlJ&b&tRt5>Jb z1<+^h3Zph|)p*LmG4_03%5b_ON3hV%qq`#G^}>2iS4I_dc(Zs0*ZZDexrSnb$-3p5 z7^2?E40*Cs`c|F`>(hbT=#A`KRefPw({}YPOHsBA(Rwj_*}hVCf=-zk%_A%)=<(zTS+uR=bjf(L*NCu z{R^bK>o;viFR*u>Y}oHCw0z(B)z$hlM@F7-+PMT#3@u4tzy79ApDvG}y+O>^gU7Fn z5U2pPS`#0fT`W6CM5~H6-1LnrY0m+SEM1k{T0Gu&)w|QAHeM|)ATo$EO3CNZK}qjb z>#WsDd`$@O{`*VA!K|*KMliM7kcP_MhxSC2gpcXD z9>OJK5~mj{;W&mQBQrt7t6lnjDrTjDM~bNzJ2@~=Ql@FITzfzCrY0}{us*%kn0{ld z#*{fm+-4x3zq(#6d0^E3X#VuQLl+b{I0&)&*wbb)P)~Fsz*Kvs`w4t!5k2c`TfV)P z0iRx*fjCIZ;iK>xo=2;fOLda8mrhsDL3iqEJR(_<8K>q(6-^&KPWs&zYO zYJWLE4(|y0&X%1{&0_~a6BrmzZHMc@(9Qo0t76*aFGncxsu+l1ecjls6F9xdXhSTy z0L;9KzGxM_)s@N*wukUlT=p^#P!K}5UQsxsR(F%3TMDgNgTz!!yCC=W>`hFTw^A${wxif4hj%%s^L??VolwavjJXmoiF}cE?;5TLzGs&mMrSxk* zP)K5?K^-QRE&n^E2QF;Q3TG8(Th$%L37RJTz60$*gko35123#?5TrLk(41W66{iTq zYPEDf!D@c(u8?_m$uA5_E3Z4;c%Y658<&mm9<)CcomDJTv!RV!oUBqa@`S1La_oy` zW=S`#sPi04@|`<|A|%pxd>jrM#3AJ@H#uOqZ>c1B@#{0#`S5?ZdgNCbJMI1BhW`94 zeg5sh`dE)}XZ2QFR}MGfF&W;)SgKGPV8t&)Y^In)B19N9r1|u^#77rC%^$TA<+;wE z%+n=X_Gqa>V#K)6OH&qW8K!uG49>W@=^J_9DvkQZ1)PWj@z5g7pixhTUOtUDU9 zUFVYJ&+D3kEBdX!-0Dtj(8ui@-;^dY7Z{@#LU{ETzI7EPQ^h82n}p5_IEjkXIDXc+ zz#9|V#gp4AhRcjUKI48JXOT);+^*m5kjmP~-pX`@h$oHPOWQFx|C$tm7ZkDK{+3;C z9M#ZuLxCP^4uOc;S)We+noY^~#lC}fS*$tLIJI6s0JFYhHeOknn#(wx&a zFd8ycjk#Bz!}LLAJI}q_gW^b<_I;pAP4kLUp<7ftC|e+NX~X+P_MMWdLE6>F^Ck<1 zRkI+Rr+z=4zAfhH`2OU=E0>Tz_q)vT$tvVuw;9Dox_Sh;^=|n^`ov*5_|?3ph~w3D%>Ex+Qhh7^#rO;?MeYd*NVlgNQC zf&=ooE9jQH+4=FJFFIq6umk;6$yQr3)&rkj>2-OW`jjpB{MM@Oh0aua=spxgq7Ek#-bVM|It04ZRidPz2k(y)sQDe?DZYX=jIUciZ#9(Rm6Zs$ zHxwqtAr2=o8l!{%Zfi3_mqOZ&^Io*3ft{Oe7EDcmXG$I;whA77>)QzY|D%le_)c=l z_Pg-%q6cijbiuGz`VdT6-NY_VOv2?6MzoANV)O;dE#e-3xn$%NHnrs!eeQ*Dtf<|} zWO}KWj)Red{GKT4&heDIF}#90^SXiX`bUw|g0O`#>1GO%_!Jy`OUmO;Uo4)x@6^+@=-* z?0H81!co!nnr$iFfx#@lLk@geYlXBx-k^D#ZVhK;^#PX2-RHbHzKsVU^dP=vRVCFB z(!qS|5y#7K*JEdcUOAIXlbuE>?-G_PXa#2*T;a>)=!dj{v`xQ+C0d7{F2_>+-_Cvc zJZsoB99Yi?9G$a${*?_4dt2khtnwt=^*g@FoZ_$AV9(%mfFT9LVy0tnqwb3mRXZQ@#2kx5f zrp&0A%c|P^gYf#!TYFz`%!N~tld^1_u^!PfZhG9nRjBUBVRdgS z#G5i@seB}SR%~Z?$(-qh>_09j3+J24NFdP?HpPoBvP#UwHFI*-haJP86JwvHepA&k z!NA|Jf0jTKMUZAE__sVUxJ>kHx`(Vs*!xD>LlKr)96hwK=*i-_%RvfTFRke1$$@hO z?AZBT;a+<=Lzo_qSlGEJq#gTlHSm>0KDa$*&d<mxlM+w*sJySPE@V(4!(#N?9jXFF6%7@a#F2ruKFWhU}t_eL(oH*{S4rL>)i?(bufgfg#-H+eEfw|an6Dg3l7zcM&mfDZN zytNXu1*EmlI_b&$$h!)apMcn%E?|YU)KoT1K0zJzR18{=9y>7}RVBLX#2X&`3D>nY zB$w^ay(7f$ndO9IV#IHN;{7HMiBqPm#}&Q)()zT{Pp7?a7sV+jqt|(n>?G2zp^Lr= zae#LVNxa45aMb1rwp@~qRhpJKF!ieA@1p4V%=h$uZq;c zT~lE(QB+}sK0w0DbL3~`)geToc&v(#^$)WvJaanwbk*_3^GAOXJ+W%jw2i+r#50U%jz1JcVO|wBee)%$Sb4IUS(7|(vYzWyx9Z8~K)&@% z!P3xSp#Qns5jxwT$HXVMOWN{pun^zO>_4X2z6I(nJ_v8%@2acGaR7W>te+%gl+CM% z@Y+{*8?$KZH9fKEJk}K9o=ki1+v?<%cZcm(8yXA=tdX(?|6%W??)9LJZo8I-MjcIt z`UO7w5w|sn|J2@+OvQ^O#5N@Mt}6T#qx5VgpxRl{|1FD5Ko6X_XFEP*{K6$d#{&^0 zt~KkB50etHnmM0$17&ehK5nurVn`L5sR+*^Yj^|nu8!E*aia?2Esi%2u4PyjsjvgH zf1Pv%o3Y!eV}MLZ-1o9!>eb6Jj~PcA);e`{q(DrcHhd>9lrgzhTs*{R_ebyXK9O`w zHjOV>2Vjsuy5tom1{x#D5ei;As`><-e(i^j`GHDHXI9h-wsZYbwy#Z#LjUnSm${Sc zh*~}9-R&;igkeOf^?>y5fdNt2C6>AdmY9KX`%Tu^)c{-P8k9~g4=$@+ebQuzG?y14?-#d6wO(B$j*BfOT&*i(0VY3Gr!LUG&IT^#LoN6HRC)G z-fbkN!E;XaZx^U{*jywIuvN=*a?c+fz`r++zDItXXi`me2Jt1Bsv zwtP@5snd~?8A?_4zVJM`PRSiEd*OPk@yGM2!@+ZTWt#Z&VE$t*eO)wCPdFa!kh}bH z>5hK;Hujh$&fTvnyJ1sW@Jq!|gsQ$J-s+-fwXIUm8GXNo_aan9GKv#^~ecs8|>OyGSB#3OT< za{u9z1K-0E{O5P28Zy^uxbnNau+3=oQz*Red#+69;L~!I>}^2^3|EchpU$7C7y8m$ zM}!(=Q-YJYN`>F9^ z3V(8&GkfWL^C{U4hfYGp7(cJ3*{>cxWRQ$dqnCemKh(rJoD8>jzqa%!70V@e$az?z z$aXJP4i2mnu8~$HEn=~`-ceyjo4ZM9XL$if;WDm3QqwIHW3gPU+PbCR{%1fOz;z3~ zSH7OO?|T8>vMuBL*EX9K$LIM<1{S_i2yU1H*#-MLzam!Nw{6%xgqC>3jFdhIQpD%{Ui2Jw5lR5l`q$KE|!Y;?)!Y#9TxqKR zeH}wP1V(GN6DK) zIO;3FEiupp9r|r2Boak}qCuULGc#Qfg!2}SWuYpsEz^3y&72D`ROjY|2^4ts`7@T{ z0ZwO!2{Z_`6I87b96xa}mC;${1XASc^u?*3T*y2^y$k-3m0@;AM(cRSj)cc8LIz5X zx7@=HoIYh?_YCXsV%my+lWo3f_T3dlBzEVi35DmAZGW>DpMP2UWI;0Plq#3X+~X5H z=e98&8#H>?bBF9)Ho%;1z5}pwC(gXNvGud>p!t(q2xjZB|G8 zYXY)d=$6CG5Fgp1fB3XKr`fV$iTuO{ICk-2R8^<%BmO)8r3?xO>5UE{YtLA>GJYZ3 zSVq&TV`F16bDw!i;lmPA*(k^mjdUhKo;JNBm1VZRzK*7s zxVX&MylGKiwpE}1B0?ICR`Y`t`w3l5##7c$c~&j^j#T{Luu+ldlV=9XJUcX*pERi= z!mBXc0uSqIK?UlASt_rwLsMMf0Xk5Pym7HZ^w%mAXcQ6k(p{JRFH&lHzq(_i!tx2* zkA!=Hqc0+>O)T)HyUEw}l+*HjrQ!FDVg3(8UX=ZDDt02I@?7(kAd1bEM;aGy_>zu= z+b=m@aJs6?5s>W$Y+Ywgh7D4uxlS#|;n*e6il--L33W_=vTBDg&?(mVSy;G?xr=M` zB(>ndY3+@>In=N*30C9nEy>jS_l;}NI$yJ+^RSe$69RLrT|fJN`VP!01lo59MC=`; zzugDZDK*eQ{|&Q6=f{{?7f2q2I!W^q9vLR zwNCq+4a3F$!?lQpL8De7jithviNpfF&AiBi{X|Xg+XYBrS+D7ZMx&sy#E7kd$D4t} z0CzK?1Z?VSFv2Z>RT%Z32RBu2fgzBuw~34`UDTptll#R#mTq)_5EVZN?H2xXD(Hr_ z4eho8fnL*!c{|CTQR?3r`d=qUpR_caa0Zm13sMaU z*2MmQe8Z>@cK%ztFh2Y|~;ts55REOOn=O%Dwe z`@aFQ=+cb4XgufO3lvnSl%}#Y*R$ErEdgNhxM9Kj+zIcYJT#~Xa-#k~3Ne1#V|w|7 z-$J;JEBj=i9dmnmEH`WShySZ(*rL?5PBta0A1t<7{X^q)+93bLvxtD zxA&z$uQQ;$q%@XH0N(#)czFJqi;EC>`pZ7t==LzBwHs3N5)$er2HyGb!7zA{zUrow15rnN$*((mjxrDKB)|T%U?^lL`Tz9i z*!=X~WhUn^uE@TB#9{P8t0>8GoLdVJWMCzd)W?jxb2h9#0VnRP0_lSH+}9@7twR$G z3m6rSZ{(VZ@O57+UX#v&z=$$q36gq2OFm*M9r$Q=|0vg1e*1CL-wG!N)@%B*ULcDv zYY$I|03y}UZ^2>`J#fgs{x}NI;pKL#r-u1Lh&%bN7d2_+dOt?)^tLS zf}SYEHAk>Ya;Ik3qvV+VC-8x5yu}bc|Mkl77kPO6Y-9Q@Eq!|YrtOJ20-KK^zJejY zW(NV65WgO!N)rV@I5L~|D*n!TmfGUV>`mFJh-=ML4!zT#vKtR;lNrnb2jUGqMt5s! zcX@DGabMVGJ+OpHzIbGxBT=O?#Dd^cr>mkNolHqk(W8LEwLXyL?i@Vy))Kwx$YajH zh?`$l4XX*pC5X{Rtp77DnP$fYGdfb;A*Gp+fr7*V>xkO@*v~6xNrus*XzKi;!vc_I z^oomDH~$t2{Qk-*M%@BU(EHySg(Zp^WR%Y8bUC#?#d<44`DLo@x9qfNgytI>z0t5z z|M7Zhsq-*+<`08epLub|BEp1HS;n~*;(PL7Y_S*y z^O|AS)cvwH5n8_EFjUIb>o6M_et9!5LFMQx2a|$RF7ZQw^@W5CE`+v6ojH9eHs&9# z%p&Ii;&MIU$<{b2LLJP7ym`*q*xHmpaj=&DHf{h%T<*4z8{& z^knR;9A5WQ|MOuJV=e~CL)~uZ2JZ*xO#=d}fxRLOenQfZ`#b4hL}I8Yt{hUY5q>}s z*J(!Au%>Fd(c=Rpa^aYB4U11>?qD_9tF8WXb$o`VRt@bF(P~%E6X+|mbK=6=e-};s ztcZ!L6pq+OetmE{ElpCJjuEBkg2Z;bvqI@-_-06}1!W>h6j!ln^6Y*GVvBQj-17C7 zqk>JA6?BOsERM7xW{EwrlPPGps#(sq&Q8jURuj!GubKYiB5ZtlXkj>|peNrU9V$78 z;Pul{MmL=V+$4;XwCUBHdPKEo>q8G_n^dFWf>U$J@7?Dh`|KY~H8s~q_6>LA@HP9d zrtQ@7KrOc8n(PYuc|sypO#XJb=rsT&;~EX^iQo{nCD897Tz9l+cv{dRA2P>>n=o|9 z2@l_n2G~zdG;)g|QW%4c_92J~N3 zj5s9)_E^8McuN%TV*5uK(A8}!)pJogHLWQBnaylv+tQU0Mi!Ezx!$3fKXD0Tg&fHd zv7k=`uDzyzp1qlmdF{J3a^`K-VVrs_6|VAH$<%n@`6HuAAF5xI|C#(O%793v1_eVo z?8dt|_&?_Iyq?J;1?tN!MxW!=&~enrdA&7=kEu6L=sm5C8L-}T&?)lm3QI)sEF(6S zv#UAUnli1u#4dx?vMW4=T_ODJ`C@Cs;y-%%b78=`UbMLg&uA+7Vu6Z z#S6<#o~tp2Fjd@%tVX|MDmx(dGdT{s%qqX~U#6p$?>XG25cert>uesF#G2ljl?`0Y z2DcTA?kPPV4&##Ik4G)Ry{6TDfX4Mk{vgHK^U5OomwxQ9Zf1 z@E(pvyvcFGbE`ksvWoa3aLLq*#WO+QJiq4?Wk24`IIkBBDNO)|_jZiAWj7|x81>IS zSNux)MZmVU)&0cu>r-TVdP7P&A345Pw_7}OnK__upg2)PS-)-ktzn?wT zIr_B51+tu(>|oOlI8)s?gNlp$LGaZXUJXbJJWmaf@m|hN+J5(Kc?^_en|CeFN0Pgs zQ6;BOS}ARCn>j!J@`2&)X2YHd*(^cv20dhv9sFv%{xyo5?`i%WdG_Kp&6^su1^e}O z?$dtAVt^JHu5Ma8htA6J%AO<2gQ4Q**11{8$Si181;mEd@|8!?MM8m(VAy*Hc%T*| zC&g1krLD$)246ptY*&KG<~^}zzh~`kyBz@))Q{O#n(FUyX})NJ&a^WmkoO$l_IhIw zE{l69Xh|Z+h**AJf&m-6vsue8K@leeFsMU5jc36D#$OOmpr+PL>4Qt!|8tXu-JhIv zs3&*b980az6M&u~0F(Lf>mL(H*&8lvRDL>S?ULMlPJoLt^MlkEsh}9G^unLH>;`^t zSp#BB#iyB4e_U;^IOXDTt8XPYw`ts+SHSA_MK3@PPB7_w*_NRXwfVo1cWT)NT@}3% zkuRMl6GGv=H-hvn2*8{DarluaX>h2zO1`_K#)RA}AO(wZb_v!J`8WG}x^E4$BUE0w zWc<~0K&|}X7cB*!wyLBzC?o5?f`^E#PamF5YFlKNY7_icg+1Rii!A5Ak>I8HvwhPE z>KD}CFQl6=G9Zt-zc8?M>Gek*;|xWo zluvoOBuDIpg;LVOXZa#)g07{1C6xDx}A zGM<^+*)$;lt3LW^Px#QFzZ^K9Z+E1Fj)45Tw+lCT^V2ttj8M!S=hU~s&H9840oqz} zHM_Z#(g-p6clgWHxs6Vy*HyRx_xruT(UQ81D++Pc-kf#LXTnD4T(BG zvC(f!DD|k#Nx}9)4_GFHbYl7aJHia+Ued3WUQhnP*T3((gdJE?SUX$Xtn=Xgn&u>a zm)bL$C;)(?4PAiMH6YwK!ybplIu*)kDgoAtNkV;oJ7^o`y!9-KFLmx;_IQ}_Ta;pR zl!Ek(rjy3Q)gSAeVf+#HbVHU#lXZ{SL9RTn60cLs-e+df$8N2WaG8NTRe zP+%J|Yx(xB^2huL%TjGv;fwp0qgl9#rp}Y}ye5I%R>Y^BjC>9t_V_l+-0fcKq&^HT zb~OcJTJBcv{tCoknAz77dIuCrN~4*da`Jt{6DvxJhoFa8W8nD?kYr%Z9F}fxGp0W? zYF1GZQ-$_Iyo$P%KIwX|c)4!W}XOLL3Hu58v3>hVgNRrCxR6 z)ZpuQL=J2x#W6>aj=tB7ZM?TzZQLaqp`BOYpauLTtw31&j|IUM_%FrgjQdm2p=zGW z*G@JZ(J{!=N6EGaftPPo+_P{d*J>-zVrA0CH1+SlGus^InC6VB4u?aa3rIFOakcRc zey>dqzR<0hr*mo9O@`alByZ)rrLi>vg|(pmwyf_jY96RlLQ}MPoMkjU9~LlsIM;)R z<3PIPH|G&^ZL(0w282M$-a+AL#s5M*mhq#8mE*N@WP_Q6AT6n8zk3C0ctb|PIxJwmqs8|N7}ikM}O_?0x8qT zHFeUvofofvJ4oDi5p`S(oy5|zhrjLRnE7Z?@$x3~-Ov(@WE`DSK}SK~=bi1O-nZ9E zNiYW&b~aB3L{B{GjVZlV4TC(+qLipnmg=#wltjxD$3o;v&q^?SojOQMZ?i=86UkTB zi4UH76}lgKl|PQ8K5lju;;gqgoEmzkluO3$q9x@yt zOE_C*26^Wv7xN0e_MFp!D^FT5%CbKd>p`cN48HQpBm$(D`H2mLRj;mGVLOf7&=Y2U zS|ns3>>xI6@$0>85}w_7P9xkt-^GuJc(2LLB0HIeP9E}< zU}P+_oC_!AgQ5=UPgpgWgcb|^wgb=c65@fWq z{xp(=v{em1CU8fb&V?YYEKm|>dILLjo^TDK(rW%Sd?41B<&q4GbfRR^Kc z;@Mg}eCu-7!63QJt0rd1XxH{D)sW!Uv)&pDu`X2B@N7p{Ad>_|x?dG4o5GKz3{%Hz zG>_4IjZu5X4se&90L9I!iQ(9=TK8!9Z=YW4r0__HQCZ=Y~G?^T@!F#H*Z>=VS99M`?glU4k~-;$8m(!cG4|C@{&VU=wX~_>b%#(>~j`s z%as#MyKPzPF$2D|%i&vGLkutS;f^OCKl|zlNIIitvA_xP$UmL?`CenB27Zl)kg=S6 z^ZFoB$(h zQ%cJeXlK1&qn^%2Gx1#EbzDrwPYrqn+T{RVwy?$tqG!#p@XF2J%*&^NQ?dA-&Vy_z z^-mwYhTPJu{!*bL$SKKhPpTZe24|z<*7egtS9_jS&vhgdGNgxYRS}JI# z@}7S&0%`hU|7DVUA!PY^Q&B_BU8GCeiOR(TY zxauVwCaJx5Gvg+|>#yH`tvu1a*n}=)mTA%Qv!&6myI>n~X$U6lTe&Dv3JmJ9aJ*AS zvGGYPOdpD7hl^uBr(f}07nbmFMr^^1k22zJXnWkc>s5FO%tw?@hgEJ@#SLA8PSGGM zFde@|IjQvFjp_FJtlUfXKuiX$*&3G|2=;HWgswpuCc3K_2A%w{3CAyb466K$QF+CO z;Ja=1wtuN}%x|J$<@G-4h#bz>7vH-Wy6XXytwPXF@UBjO`a6KQ4IH3+*11zvcV1iV zP}}^XRPZ0I(ZQuh1L;+(E2W0jbI3P_GU0Kq;eEJ+1nlus20VelaV_TJ7c50n6a0XN zRY@_4g&bX+*Af=%`BR!W!?d?tBO?q4Lp(dNlKz3V1Tl8q?B&qWN!B`s(*Nopo(0Oa zlcFg6g`S_Pj*dkz(GUnArGQ=bvW<^DlL+F7j+v7%m_z$HOzS3zkJ8G?jjL+8DMJo} zXyiE4i=OHA84WO0w`&Wp4tT@TrYjGvHK0fdp_s#%9K;9qWA1gzIDaa(^>3N!EI=10 znL{YNX53MLaq86a8!xTIkjME9y5X*|O^gz@O|7^^jGJ>cMyor$f1B1+(l=GoLLqZE zUb1=ZyYXj64l}b~h?H0UcDNvx{PUSPw$N{jS91WNPqC=r8JRLNxf8Bp5r60bHS<};B)75lK-4Cuw>-I%;E?Y z*!{$Ml#G<@Q~c{tFmom^>#ZQ8l>({Qu-re6E`_=Sa5`WFR*qa6XzrWFBtkj4+tK8s zQ&@bz6Lg+|4MQNXE^bHVMSo(4XD_;o=Yl=W^OWN%p`g6<$hOxxY&+5ueVWk?BYnSt z@S(eh8NKwp)KkNBra2+Q&S`cx{(FIGZgoqYxKN@>&?Ect)G?&HGPQlSGqO9M+EwX* z_p__9RC)iWtF>pM0ZlogqdonP80N54TRwc*3v5~wglSTM>Ns<0oNyeXh$@HzAG8y#zxo-pk>K%ZDZVIOoOgj5~Ul@^rSmx1RXZltdQt;ra*Z~E#d3S+-EVWhe z86sD4XUn3i@D^H(E-!v>)r}AKGwHW>7P1GIyN>PMejjRzOz6E*tvX%-&1^WPmHlnw z;7FNnfFZ%Y=F0m#-L^z<*%VInJ@+DEqLY@--fjxw5d>$S2(BuXZb}XNcX6fX)T$^B z_RI(&*Wy@e_*PL0QXXjPz-kqOn+#WK>1p-C-}cge_ivocFsT{C3W3ZIezWcbZ?>uN zhYj1)Y<4ZiL&o^;-Gjh+bnTaa|MTQ(U5~{gxCPX|)2~Mw3Jc-Q?a!m@P|nt`CJ1ouBY{O)0$ z^J?>%#b%-SKu`eg2X6sM+FH`f(9V!R+}_fV8~NG2QdUsj|rXoDUiq{iin zWiw9<>vn!SfaV5g^Vg!UK%ZtWF-W|Sck&+yaS*KHOB?^Sc$${tl@5FbR|Linggt=& zGukNAyy#W<i$*liHzs@ zn7wK+r5EhIr2j4v74mu^(>wq4IgN(KQirO#R)_#Hf7esEKnyg3^Fb3~(M;(N4J)Al zZwP={++hp7pw4rgHYTZ$7Cq`yu{sqSyWZa;M@by!-bEK{vVYfKYxzVv?4UxZMLzyu z4G~y!?eD6V5DVd3L!oNaeJwiu+Q99NNn0H=3=DVdlo`RR0IOVc>8DIp3}_T~`$s*2 z(|`jpBic_QFM!NcGV7=RY{%lY_9VJQRy$+@|N4K z)e}ppJ)S2GEPTad`*Jk|m7f8+FN5-ysZPKSJvSj+7WC4!vB4iFKTJ{Em}L~dn8Af# z_m{mhJDQtLZFs{Cq7@S)nA?Y<5WT3SFkH7yfK=D!F z77)kfou2=fc0)UX#=7C;c)alrro~1}aK2+h(oc^@B!S+CVXF=wkpm(z5cFtD90i8^ zXs7Yo?@y+0cy1Q~@7yLW(#x@`jdYYmV3}Yc>5?E+dRy~PK*DArOazq7YxVI^2Sh#e zefd{te~AUN@l2H7E)MiND%l@e^(*v_>gNewTg*kn0biWxJ>w8b&CD>R#;}j*fGDGAD9u}G70oIEDcblDW!HP zDE)`;YG#H6le_L|C)P4UZ|UUQdX6*%DMHX|sl#>M5NaL_GNQ!fGy5{%-`|jN5GHzI zWfmS&NWU@y9=u;O%Lm%N<@=YN4zU~QY_eb|H}Px6XVqe(krg3Fd+z0(FA-4=p%2e& zcfRI+VD@FxZIHitxAQ`Ntkvc_IrDMlst8XHnd?#`9(^Tnep@b!eq{gyC%i%FKL|+I zctK3r>hdC%eL;ABW>QW%q82;)#gnTYVe2Ga1B1kmX5fB$QY+*C^M4Pu&qxa{iGU|phc0D6NQ zz8PosH6c!VRomaicN#1!2HGuy7H=1l;U(@B0=$uFe&(Q^CKbaD(0;)<7Y^t*8Z&RK z&%3&~&vv!oqGIXl+dKF3U^!Wocd#sa2;5JzBQ6yN$KMqZxl zeCin6EnzjLz`nwI0vNqX%wX`y)lBXXS^qO*!T=wWUuD5Hy$7yK_p^JIPle{l-QKO* zae+qX|Btnzwdy*}qmQ-t0od;ECZpE|6>z>CmibHHMBPjcE{Bc_xJ&3O*MD}Ba+=^CQU#Aj;8h#+hlko>yX$Pb;@;G8 zNtcs@qbLA$68tY3loO{Tz7R54?GR;>8x=b7o{>MQB^7HU`!@)V z4VnHH)bm^GkRQ|{w^p2Ow-c!7*Zmu`e0!zM6Q39k?)U$6h##}8&;%^rj+Kv}u5?LL zHLQF5zASRz$n}iqu+Ut`2Dm;%*E_ZCA>=QFXe!mr`@jHU&{7RZS%itM!1L(>)!xGg z#U@#m&AiKO?OdwhZ!To4ZPqQi4PQrvF3}{lKsaMGj~2c|ZLj(h20|4MoaOZe2J8QA zu1gxM4ABRRXBvP_q!NSpreY&Dy~qq&ex4R9cO*=?@%oEswD$kE2EwGY@b66|svAie z%}Un?8ExEW-mh8YxtMR7^=q?WK-&`%HS~m|KPcGhY24V;xc8`K)kgs|C~Z1udjiR+ zN6J*aT3|c=|5k>{f!dF#Zd59l;Q6u^NuSp@%;fm$dTYwd-{A02;%aoH`oCVkGG(^@ z>Bt-$d29UFZ=Vq2;8%shEeQrY&NMBRUj0WYE}{A3U8OETFf;S}7V;j?@2<^t+y(~6 z$6@YeEI%t*3~DXT5B){G-&;ec>uE^2*GJ*)c3{o@VQJ1FDnRYe-TP1WYswfqa( z*DC0+diZ6F1Iu5NaUAJH!lHg!`uNeDS$0b7^cMH0Pv_CjIbU#(FT8k>d>5BVs55e# zurf6S^|9Q4DmWUeM9o*!2=?XsG&k z({=W65BD&WjjONvmZ7hDaPvQ;*ymrKo5IFB9!&>JPxVWp!nr5J?mgBQ`^$;B-66w@ z?y&8X^x{h9>!@?Z66J(22EIqn=g87ri|seUrmKib2}5B?i0Qw+HYcCiBV1V;z2H;l zOm+yY-ojcjB$vLC* zp-V5bbO=vuO>nQAz%*AzxJDbCmjyGi)m_Sh)>ln-p& z!1?EGRCIs#OkdK6oJ5;ndI8f@TALid8pr?KNbxP+P`^weaz_=nGSSrWiBFl0G!8K( zt|%v_sUlQ$-3SsIOjxbZX!%W-5zZ7cw%i`uH39?elS#GJ+?(VM)BLd~L$c8D0$m#? zqhF==m6>DqVVVz3y%nSU{mu)o`tfQNd#qg;%?tcC8ud9c$IN=H{C>b-3UkFs(%0}y zMms`{8Cz-NLI&ObdqWGO+3BA?rv#n%-y?!~Z*EBc^@NIfe#s$+p>O9lEAUNIjcCn> z618o2s2!|p&=n(iRfsiSBeJa{Qw^^!AI~>jfy>Nz8AvbTR9CxCrV|YZ9`LlAb#eP< zUBn;g=g?G>$-H$4$FMaSYOm(4y*LTXdlzbUnPT`Zo8_^z`A`^gWxcO@SE#L~$^aJ+ z84}m#$)ovQ1LrTf5gAScudkhi0$Nwd;DJ=)LK{W)qT;~=!eyk!f$a)*H48@V5AHZQ z{S*DI_x*a<3TQjgc~4&xHjMcMVWW4t48QYU3eVw3t?0mf^iIMmNnW^`R}*I=&qpYp zJL6*Xu>4J_#Ct!qS7ojt(=l>KmX36QoOghsK?SV4r<|DF2=Ss$4pJlHx5K1jve{7| z3(uyRw)DxmYL5t!{LcQmvyMwo1&O7C*v__Uh^e-G?kClj*ELEwN!{hmAzysKiSbIy z@9~>Z#SySKTn`f$nVR+R)3>J(O@^wgj7(``ZBKQIjABOH5FYiqPg~pAFftn7LNe%s zUgA*2s`X69^=65Pu0NC{+x=Tf@Lg#nyKwA{!SvX@;kH}o4o;rNg@y+tUI=P!GVaH@ zA9zYGXAxdSBQZZLpWV?Hu$}C(ZcSPZ&X5zV9$#c)DS(UB(Iu^NZ=);NYnY(S$m;1W z!!yq?mr7$IN!X^Ui~1r{I35>RQ9a#_=V(SkX_EtPIa>{kg{*xdAy`un_+;0YM9Oa^ zkNwf1WKdQ+*sgYq!^^~)re@2@3F5(-_$U2Pu_STEs)ldZ*nQ|jQ?PL;Nqw!bqIT-k zy{AgZxSwkjdq$F!LEGR2f`V|o%tp<;j=YH)$F_Z2-I?ekJb7r3tv>cmdnAqC%Ajvg zF;Jb2Y*{iA*ZJ(jM67tc8AejC`s<~rZ@_I4z3N|6q*IyN4;y%A4Uk9PRcm~| zSqB#bX19Bc#rAD6P(@b!<=ePpAsVWRb{89dGRu|%f_`jz_handSdgF(aNPag?N6gf!O)=Sb? z|GKjZ;y_{;EZrgs6u&c@CMPDi_5;sIU-0#*E^&MoI;iMrbN~j0_oXE_ zI^VJOMVa>NKfB)?+f<`uIZW&~6a*TjV2=gwqS=3lVf;kEjND<(H;s{tWf-%bIon6D z+4HZ3JSMuIeKfV!eEU~DL2csqgM6l);;(Ik%it!RxFsY@iozvS0)oUwkXC#CmOtK z!xC>t;#K@CYO8j05td05_()cwBSnUD>d)I7U|jMWZ-(56mh*GMAeB&V#DQ!=-wKnA zTq>Hq?mYoN3fdkc7ZWSpF}IKCIDA%g^8nlb{{c>Eqm0!t6k5FN=}%wLpIEkSSeT9t zKZeopC#`C7QA#I@WJcf@EJgM%C8A#Q_ZhoK~2*$A?5_r-&wTL6Zg@& z(7plf<3df(yfh^XHq3@Wi8cS&Qe>w9cj>?U9M7cH?gxa-OTEj+W@$4iwj% zShCX8L=d=jx7 z40a4`6%hN2+nDY;{V2|i)klSJ^mmhsH4wN5KgBK)*0RB+FkPFBg8M z%F^UCbrW9tyE8#92Cl5 zi7WeM9qYis87hGlAUHVROD!B~X!VQQN)JBB6U zVp6{7Tkp?D{cX9}7X*RY4+6MSkjSR$KU4)FKNJm|nULO7o zDIZV!hz0xJuXRPjbU1Jto*Ly5UrlC}q(vU%u9=>p5i%OvD91rO&$(B& z+EgVvp5vY+b@G6UYfDnN-_^MO$}AH4jmDW$lMnB3S2v@FKT4Y;a(y&mP_ivWsq1q-7}c zNE?n-{O#opeb5!~VN(D=cxPX>0Bn#h8i$~krHKi3t!O7w9jOAc-PwkP2RIr@3Uf(R zbfGJ}DFD3sS65N&*mDycKfEi$T#y@SwfFu&cY=ck#`0%dYyQowRTUZx}>CEV=w<&D*BqyG&4*5kx4 z_2i)f|MtuQvW!n(ecbfT1K7_mmJ2DjDD&+rO(7d{R*Rm~fayID&)l9MrMISgOq;FY zsaL?WSG@m$XWg<(PKTv25n1;aTMccnr7C)IiUn(rcrK0Dq*IG?=nrR}4A6nZ8LrRB z7%nzp-Bw*@W}g1_q>=3CZytkZgLAF;6KNf2Ry&Kpm0Cn9yWJDXJaE7v<{7?o*SKPh z_aEvPlL)7pB~!zZ8ump<5EYg=3s6Wa__;ui`IFpQMKqc|w1D32G|CIj$;?DBHKawd zN1T|RD~Mh!N%E&`g=;o7LIhEY0;XDxSlL4d-<1R&aEXg#ezHS`XfIl{<(vHU(nTMG z8T3XPlrUW`YBhpw=EmOTpx*WOw;K<qB;~}| z8H@+=YNKzDXP5H2+m&1Yn=M2NAuHHKFfWFzD_{SN6M?nA;mcA$Lv;YmuB{-OJbAKK zQKjo5D4s)U#t#%B_0|H*(aPO*x4A05WLExWZq&LbG_L0Att|Ukl`)NJr}dxQ!gD>X zLS$??bK@5PsIITpXkxVL9&pHpOi(Q!{>jqdJ)bJ*toY|G)+(llN|~NS@j8BDgCJI> z2d&wjJTZ>dZm3;I@c=J@SjCb~^Ptr2K}sho)-wqkrg|@qSweNi1#8l}_L1u7>8Vu> z20L+JA^$De+Lm8oW}RMl@%8aE?>sRbA?>(b!?)NQSl zj#oul*1cLN^(!h;>Q(l=nr{3Z6b~sCak1}^g~xZwv5;JNO9|M*I$dNM&VQ)2JGUwL zo@&RwhI+G}yV%n`9450J_F4N(KGEWgwS)VjcH*qiE5ob*}F zC&@7P5?)I1g_2fnbFs@zo>gs_yR+rneJ(IOF_+8p_BeS<;aHT_DAg_4_H!ts<>2ypvcIWMytig~dsZm6&q@}r^p%6l@} zrPquFj*>+q!D4K56)P6mqjqaGoB(l|yMM;=vGI*^WgGo%R`VLlKn4^*{dPaeAnHMUtnI!GWROHL_NTl565ISj=gE5Dr!D#Z2PxKXI1@oucAru z!N&wW8+lbPUv#XhP-ZdaaUIlK@t1y|`m6jpDt(hrueylW^2LNslXVUJ9lkGPOM!zN z_RZaiZDYFpl}tP9mIII(p6XFJ6SLaYh=}^4!%EX4N9Nj+^R!Unm`fvzKx0A*Z0GW3 zf?VP+BnCyP`F5dG98CHpNKdJOR)oAl2;uSU`ZpStGAe5KFn<3&2yP0$>~$i1UHzAj z4?#k$@^iaSI$NBKF1H)t^iEt}$FFB-ThZ&w*V{Y~Tod}sXvIMH>g!cU7R;k^_|z%` zJ7*g8UwYN%wkZL&xvvFdgN4oJA08?aM`GZEK8wA+UJ?h$w1I$oE*NzV96fqfEx{B7 zedE?aF)}tYZ6FPbi>NFnVWU;4Ew4$!G90#V}i{ zccWPik|z=(IgJ9YHE&}m54H`JAELioxC!q`XBD-KeKLP3ebl)3kmfOAeLOK(!`vSR zjog#`(9pTURRo${S1o$LJ%Cyv9AkR+9%(P86IO$pRBzj_p0Pq->e>|&S8&FlyJ$Op zs1#ex>E52bqzqFyxXg_{aqdxowM(x=n|JNQ_*frNK}I52UIFE|2a37BCQf>%ig2<_ zhRINP?qRkY9x(6?PDcZZwZ{*iXc)f7{bY325UjmeQ`m-4m(N)zmf%*UVy_ zWo|5jw`3CyDTW3WzqJN}Qx|Idk7~lIWo+c`WiH&PNR!DpPgc69uO&SIC?X;<7gqmV zMECk0R_oJ;YjQasqy3A8|FcepAZ_>|9StDh%<%PM* z!&a{Rc=824eU|?3JHoHY3JDvJkQ(25npDxf7CpOU4xdO9wNQaaZ|{Vo!=Y>c`!9}t z(O!9A4!P@{VMQ##u<%AIF8wJ3XycAPCB@xD|38I^;gLGo7z^oW%#aQIhJkgO+{c0a zVnnhgH5QXYL(ICu{C3kLcc4GL)=h(pqI@iE-*Z!42Yqh0;#xWV z7JRrCA=c>{UShr4GIfkf*B^5aZ=WgNk3vuHb-p|>9^g8XM;~jQZ$TSrECgR=M7n`S zVRAC}1U7ro`{`pmU1OUSMIhLX-7yP?-c}m~lSkV;{w^D3Opf?G8YT%m%tD{X%`&U# zLS#I)sVw8boZ}mW!2k1>%oYjT^u%(hRK~nPD2aEvoM*t*14?L#`9ue;RL5B6AfwPi zP<7G#j=fR8>T@H6As3s}B-Yo3xAe}}i5WUQ*ZKXX>AH#9AhywR>DT=a;cUFA;aOt8 zjI6Z?8v-KPBBz401-RLZtz|2kTwCgYgfG-^TU*z>-lz}(%XZ~3^&1WGzUI`H=@2o^ z(v^Ufn>vJn#G~2gmzsc>QHa0gjG-Q-?>?U}qEvUm*h0S;liuK-7VJ|e9Koj;+p|iM z*S-+$)xlmMtUb@~$8Iu<`4cY-S9wTQZj*#fkL@L5{`KJkHgJ|$pJ*seh()?X~E;givHAW+Vm^N8s z?al}>y!Q53*}=Li^F;u+RENiEF%M6hel+PVnGQN-GpmI8cfQCDs&&*TR2=Ls{a7l_ zWMvSAG*G(HoRgdPpH0_$QgvI_66151x>CXx52fH@&&2mRF*Sf2_^tG&b!yA{yJcd- zod2yo^1H0h-w|`(*4yND_|`fkdvR3)rFma_RUwqocZsR!YusGwxiBGPs7FS^g0~0B z1I%3n0JOp>{rn7vs5|Fqon-7xhwihoU`}J0>D2@6EIBX3P!b&7C_rXc+z0!+{vDC0 z-J!1en`X^#@Y>U4Rp21OlLz+RHe5<0_iobm2giVpIf}irFWD#Ob)f*74B9}6^fq{dd^ zAGuuG#?213;nA}JaJn}0-76&>c(ecIJ;~7fGsnx*O}={HZS}wO=;p1)M+AJ^3D;y` zDiR4Bn4~BL3xbXM8D5Q3{er;j_oH6D9&(6#UpiV)zEUr|2btQt@4&# zRk6TK~E;FUm`kq+*Hx#x66zh`O;z&jH9TZT}E= z#@i#E6?4*81D7K~vP(%s0bQrJX>DzD{^}}Xg(;5Tu)1*Uy1|;AzVzw*HtDhH3JMR_ zJ{hOr?LUTWqvku40*Z;tCl{LJwM(O479O+CNr(!_ctocq5S&=F*|-9-k&~T9@wS6z z?u{K&PDZh!Uhx4>(%N2HtVv|ZQtScZo~4DK?{y4Qirn&9O6uBvA=yw=d0D)-rp`rK zju2`4%zNlrL=1HI5PCKjut5k!1k#(G;Q(*WO*ydWnP^25ca79L+X`-rx@ncAvS+-9 z>b}YR)Qy+>Li^;YKz+ii5X2zPIQi5X#gc$BpY>AUf`=>@#rDOECm|~55yMs`;{(*m zmQ}<>;*&%$J#jATfBU|WkR&rI(vk&m3w13Uq(T}2fQfB{dn!hk9U502m2s$0jlo_?r(!Gl3&jEc_f^wUy&m@`n`-9k$WNv;`Q1^B#X#=%i=cJ57ITh;X8DOqF2D>0MfYw#m;Y8H`m(YT0}PinOO2 zKLS`Ck3eZon8hW~xZL%|748Z+Z0r8JmvNnKLN8?#LNG>vIr%+iezrfz^yc8W-QMl1 zt=Ac|UwA&G=QcQEWJM!!sCESM#gPng0PoJp!4d!KSVYqlIqV`mGI z(8pKmnh5Hb)LVvEm%sU7?L)nv>gR^%yd4%Gjpnuz90{t?*`9gY$M+N7AqMU*jl3yt zvW=$t=s?2UWev_mZz!yY`mB=Us%S8{)~vX+{}ETpukz62b)6`2f(?H^qUyG#>9$qhBec zOMA1{e6ly%fRX|hKt$}3HPJ$$G2^Gg9o?pT?3H^?@KCKl*~j433u|Gbe#?4^o;;)R zQ=)^x$SdcuThX7%=Fr#*e|8qQELvhN{fubIB6Z)?=_{V07 z_kU2vRhFUjV;Wt2di>A;L>E6?75tzA6C7|FC$F#y(8I7IZu}(Wbd79Lvlw4(hBms4 zx3C*wpaz3od17)TeR9XE*j%c{Sg#x48rPLyG6`R-8Z^km-D!cOA;!RC>%vCLuP7tW zGj5Z3<%ho3bU;RqU;*w8AZQ!6i90Q&ag(ix&b9lUSjbHtDm5NZi6Bro)VX=fg%dFt zTdyC~Y|LOQPERdIB)3UKw+!BnoS<5KJ&N+Z&@&9V5fTP;`jZl@kRhSNL&aleVN-K& z6${=IMQYI-Iv>c1m^}5+M76e6-$lfXN|#VL|2es1@l9p{L&Q4U{ZekWVJC7A)1Pos znhBqwgtW|hzulRvc*46n^&JlMhke;+W|O_&JVLeEo%kOKDu!0Eos>!49*2(^ZCNB0 z{(QEOeW??xq;ODZsVmhMus^-+3=nTv-RL?{iU|){fsqK>BIJ?$gr){u{IMZ7ejdDf$a85r9^Lv zS_bpAbj@iPjY&gBG>VP^!bE+5(@JzU=_zz@&Uz{*7uhxrbP6E>#oPUgqz2 z%gnhzE9?2?D+V@8IU5bfaRQLn;9Ewj zhI;Lqb^&}LDO=@tT=e(RKSG_1ni<3n#Uf<~eHqPg^u;mhD3v zuL6t4f#&nI!baG^olyL*3;bH|X*`tywA^GsdF@$Kmlyp=;P)zCFi8o5!ulZ zHx3T&IyXN3S>S2OPA7k+2;MM7zaCP`yx)RyQk&f0?)m6ww#E@924byU; z*sI-xnVuFuq;KsGrw~hTvnLFM#_>g4zTnR=6hq(S5K4Pv+fNNe#pt*Oz7y4l%Kevc zj}WLyJEYpR+F4#hL`HCH19hK#>*ni!I+A4X6Y@I&E=|qfcz|+rX?Fz2730}N{~SN? zGv>XP<)0LLvKa#=dGocYdKat}QSWKJ$7!iuCzGnpsv(~`;Q{aV|Il)mif?F7Lt>*F z1`fhH6A?g@({n4=1aBVpjQ$5!^23hcgRSGbxf#tPzJV}qOfy?2> zM7g)W$Tq^tzV0mevjYi*w&1N*OBUav8oA)2%HAljWpH7|`url9!K|FQ*vWmrx{6<; zgpW_7|N2&ws6o1KwIdrds)-?OxY7D=M-Sn>>00uWzNkr6Mw8#0imCEj8u6ka+@Vbq zC#v}EKr}u=l_J=lqrRbTS6RDUq0(OP^AIhDyPBQa^L+Mr}wPG)&mAob>`|{Eg&Y1mr1Oq-kbsOh}@8 z&(GHzW=Mb?t%y}LbuaF6kcBo0+q0;X4Ry7=Ob(F5jbLhWtl9J+!al)m-sQSs!Fh)5 zeD6dk>HLJ|Ia&gITxQfyxB7g!qcejw4s_$oBZ&GY$kv zn^xUPKndTy3g~21`*+2$#jUG~FZclX?e+hGUwFxJ@MI)K&SZ#7l?H9g17isg+6oO@ zUCJ{-@P+%b@|Fm%Em!yY1w!%x0H&9>f2OEwTJ1LsSXW3EsJE{&n2l>7sPEE~Qpe&9 zWrP699%Htn!E)J}5UqDO$8f*Uc?n4st<>461oe2GS*f&w?8+~UU5h6=5*<#PtzD{@ z4Br64n)TC(8yGKVtH0Y9Tsx}4fpbSC#)ak2OJdjf0BcueB$cxI&W(J{DO>cFy6%c_ zpqS(9h6H`*=s8z;Yd&oq@2^e)w=mqpIaeS_g44{Rg*87AO|Y%_6f)7nKK$hcbpaZB z<2Vw%QP#SnhFRDnVw?ZqA{MJH6rYH=2DiTahc zb9MFUsJ6%V7U~pR$BlZqwLO1s8Aj>&(0MbHP$k7*)o|+wr!js0B{+GG5r?%Cx6y7_ zZP`7EAl{99a#to@r-+`8bQFTEwgj%e05dt%hHK|X7>%ei(wNGZtV`}6OKU4Em$5Yh zmJ{5RG@0`tVYNjv+a1g&A=Zh+0TcrmuEjC6I=3uSZe7>y;lpOXoIc9L&kPE}`@&_p zWVW*B>)%{N!8J1$%IoxL)DB@1&ZGh`J==!LzRyQ~J*|64mk*Lq(bwHXn)?Ng9iKyz z>aF!_{WJRJz~yL!2rL!<&$?a4guH5@;_UOMzk$Uh&~+_YO6>6KL$#jW?OJj@J}dS> zAqW}P*$xy)&oF$IYV3{3LXAJx?;a|KvKSpmCC?}Ul8ROP@KDH5i$Z3&Zah1QW;Jq0A7F$q{z^xj8JX3dpz_#g;`;-kH2``7cj_w5~>jIeMZ zYXjBWY;Zm?u6KV6&5kY{o7b-3A?A0e{p(WyW0j{d|9wWb4k1l?v0Qo+OO#fNIJ3rR zb_@>1C#HW1VP^v1?X{&oqoP***&UFv*#qd7_W@KSeWPKD`d^&{alJa~EinYKSVEYF zEsHxXi+%~oaGhRL5>i6b;oJGPxXbb5{vDli5id>F+WRG4DJg2RF~^<@MH7LcQT4O% zxuFmB7A=Cz@vSFeg2qnTmle1ormcz|TDQ`p_2Hb(EvE3Cb~!i||p!O*5iR zFJT$2dwt#)MbaSSVTx3|bHhzP#_~Ml2GR|SzPAJ;}f(SJ5bKr=i3;4 znTH1z4C4E0Yilk{{RnKMbS%2$poQk%Pje#t5wJH8X5)yu7hb%26u}v-ckc~VDDpCt z|F{6tLickHzcnrL0luEdbE2C&RLv{dmj%-%Hfx&~Up#6G0HiQtn`V9VAPeQa@^0*8 zEm{BKazbiT1QVnyc)#NYY7HoL&sTnWPM_W;l8W|^@#|PD4)R)2B!D(v_@S-X+!?|y zSulNqZ2H`utNffaQxZyyO93R4gSIjel5}xZ4a^)B`uw^R8eOCYGfEVYya^6${9QS_cHTexc z*dJ#xztBdfIH+pzH=gD8Yz$)^>+Ns>4{A?DfL7nZ+wLEMe`V7hLM-p~_}=?u^Q=Y} z;nfldruA{J8y%6TC+E;sKvODe!wu{c>?UcXE@K8=q}}dThaw2BZj0OTGo0>|9YLw~ zFN_N}7WpWs-vrk(H;&Auy*sjBf)i-#55<(kaAG`YS3GMEj~hU~ z3aEk3SBuI(K)(xaMM>={=#^vVo)bVDKq8PT()1MZA7%tTiI>Gw;DNsN2pzdm3We1{ zo7I43(utUnIj~00zfDJn6=?uNT(anEJSrI2Qo%KD70*-Io!sl(6jqzzViRddUYlg3 zQ^ok}3Ix~(nPc;3uhJ=3Nb>N**qI*ja59;-NEG04$3R+j-Zj))5kPMIZ5Oc%`iRU@ z1OrVE_!taUxPw*cz8MejzemN&TKZS(hGFHsM83)<=t`3HGN93ozjRKz%bIcvKzE}p z@1yFL4?4N+@?KJ6yehF8+kc(_pt1hkm26s($ zK#Ij8T#U&BzYhH<9ZhU*!Av#Dz|9YizSLr&tX8^Cnd5Z(_T=*)5AoXzt7LCq`m2Gn z$rv!(716r86S1QU1x}I9JM-=5*^FhxDiQ}r{j?b|4;Aue&mgCsy>T7G-FY?dWub%? z{aadfMaWT`MBt8?);`B?zH&c`bVpK#3;?=s zAX{|xZH}U%wp~E$;Fs~XHush~;o`GtumG|Kj8q<#rHbL?Maj#0O7W}yN!k6)Tl(i2 zU)DNmTlHdm{BUpjM!;gALbORq06&!_a?D?QS2HpmDDsL7hi(bta6c+45+rR&0{;VdjQPGKAO0a8~_ z^Ky3B9fgPvU^U%rvVr5o1&}s%&MXEp*N9{;*#!v&@w*53!eSDX|9}uN!WcW-drdjN zV3Z47@o=zaAx_e5cM+N9woB%luuE|!k7G~c0DTly)66IHC1OiqnNi&F(ugHjU^}Ll zSyhV6x?fLQyBO*1Dx-xy+lP-9Anad}E94kiYpVpaV7%^^brzBy&C5p@@m>Ly#d~(r zMLvA@SfSKk*Ygd@7=cJ?`c9gm#49IP-Qqg!GDfKM=~pwa`4_LqNfHHoT6C)QQKAhq zz6SAPAPIryr6m?rM!(Dm2bwTQe%4#~3SRB^2Ht14`+9SO-JVd|9nD<`co$Stf3AWB z1f`Dn+N@Dr%unt8MWIlbp~2+-Z}X7AKtB)?*!?C$zIR^d2{vw<>2f(vY8<29zBE*d zR3mKt+{$%x;Enxgs9!5dyFti87gmUE39HAYpAdIo>I>kzJasdP-UQ{)a4XV{;7S2vkyNEI7hBDFgci3`1!B%U;zrkj1=%f=EcA2lS9(j~Ii8F>X$Et4 zCJ#G|qX2{Oe$P!9enwuPEg#bB!DHjahM}C2x8P1o4K-qeXm{7PH4TNFJ{pDw{yA~a zxy^T6#6=hy1WvYKjs^mt%BfQ5-gB9j5Sjxrmh?dkpHR$gj2tZd z+?OU^3IU&Q=34jdC?rCt;V!lVM4E&3Uv%qq;7^!jrgu$nH-^#yaE))&q0kX*IxlI8 z-;gW33D}h%TVzkhNy4)=%q%`*WosUSo5VQz+3kEUnWH>XV&Rvr zj|+wT_5Uu#j8UuoiNlAgERD}pO8ve0VjVWlEwv}$AnHqt*YW1^m z)yg=qVZaaLpPxj9fxuWZ19c&@ubdbrnhHUp+r-mc*T&AsGjL%^Xx!$DS1B?!#E`B1 z+TQa1JLWZY^Xl&eA+1bxZWRa+)q!_u%K~x2@Oj=!QXKy-h&YK`lBm1|nb?;zRH5h2 z;lA3bhNx{ZJ*|;wBWWdw)$&CF8F-eDfC1c-*YpzxB4S7H07=~&acKJr+zaa(5$B1f zroCP2+k2AO(B{R2g5uJV{Us4Nvrf}>Pk?${>!(lRrKc1%v{!@3{Q`Komek2uP;V+G?LZ0 z*=#IKc`Bc)3QAD~1IM(CsBJDsgJY5Cu929dyZ&RKrIP5pk;?a3s;IrsLdeKQvJ8!$T zznv88DcgBfJWq^2)Ngj#dVC{Y4nQVRq+a#o^{X|UsS^s6jTn15qaw;ZjBP_M@$7h< zJ%}o_jx5ujjCHJOD;Swd%dj+{M6~!nxu8oa0Y`s`P4*C*Y4_;ELcUXt9`nB+RJ1jb{gZX}0Ml|k6~mOQSkMmi8rhsxmp>=9 z6AmP7F(cKP->0m=&A?x^pMS20Qhl9Z8~*iKvTDbK(66uIi8KI(?uC&a%?e$QM+w~K z0t$K4Cs+~~0o9(cYO+<-4m@9=SJs~%#7&(wq+tpZy`j1N0&ql^|3ltNcW2wYtU#o? zcKJH7VpzB)N64HUo(J#a>9(syV7wiYm7;8vRKLl{Z7UolRfWx78}Qv~OOarj41>qz zC?0$eFZBhTTM@v&pXYo8(g%6b>zCx*99Z^l;ZMdyR5uye?Y{j_MrROpN>y`xy&cYc zItpctHwT3g4`uPMR$eo>@3JMPnYwz=~1I)Roh zG%PuWbgUnamLK`k-<5<+o@j8d3bI~Xd<=U5e1!XUU8z|u(+he9WH$=%?v9=15AN~) zjKsA%!j?bQ!M%<>?~!Su!@m=Tb-HFC5&?iq+yDL9MCv{rbh{}w+Us6k@U}7liRp+j z>GzqxGrP>>s%23W(yQY$2do9~mcl7h3`p_pZsZAlCpZAWbr$kU{edHLnybV4KH0K8 z9(AwY;WdL_wj7KV!?6i~Y*d*Og3>EPfL6m6x0a!#bNP`6tkDF;lXd}(-qu4of|$;+ zlTpi{ldy+(a;JJD7n?>{n-M<&>;{llbQ@{^joX*iHK2@Ee0Z$Ap#p5V2VI#m9#t|V zn_HtDZs&&nIN(wvd}vm9_Ynr|Vk3O8`^tOc?A4q&1ry=>;UE7kmm?egQ*;`#N!)k- zHBQ1K4|J9=aRj~wgwy}&Bj$DNQNyG731c-nbO)NA8FO5puo^e?BezM@JR4|BrK7DO z)od&niD_*@SiQTfYR08K6Iz}%O)32*-!+%Wg=zZTkLyf)E7o)1Gq|j0Clx+rJs*UD z_zy1Qv^$|rx;Pxr?xTj8ISO!tztPWae_QMg_IW0x!?Bq48y-^o?-hrp!G{;)4Y27> z87y6_u{OXQg>D;mxeKL>+^1G^BW`fyAA5h7Zpw*gRso2$+nzjqmULGq81cuD1Cb(~ z@{RX%b2pj)WOY5J){y9A7Lmb;Rt%oW5QNW6J!iCPJP#^JlB!b+CpS0j$meNKUu6XO zD-=+KmdXN{fF0y(51xO4n|=};fb%j7^20}(@XKG~>q#8=Z$u5xmAn|W)l4?I zdw>fC(D!a$Rge1#Eoh0jKL}N;ZyCqGdp$0yx_z8juivh+z8rcyJvg;P^p0HsEj@hp zg$r1BVK3h*KAe5`@)Ej!$V98my7cXlWS%T=?q?{qK=nt{GZ4w^YZvx=QxyGU|5ZbP zc=K~$EH9>dXDrk`PtCV}+VIZEs^?)>W++f*PONLxDksTCd=T<$P^#d^n|yMrE``j+ zQo`k5b;Dbsu*nK%aLc$GSwES$uU>?c<6*9GLApH$>XJS5&YWn8{Kv<^#-L(}&;hw&;Bfz?pVmE(9X$#JjD{yA=~j(qP}AS9 zc}yjs$OJqAd0PFFzn;YmuySYR8RFDNv)YZX>jnm@-iPasHRF4Kb#Y-qDa*0QFBw-+ zK-f6*>D=9@uz84Ztoe}yd+&=LrQv3Gcp^y_1nu1g(*j41L#K20glqq?Sv^FwuS+ta zgLxE7zWw*i$W8plsUrcq{&uJqX{r#_fU(HEI-c)Dy?jSnpvKBJ`yK%Gpe`x%~l|e~X zB8RtqOBAPloEK6MKs%FlM3dY+JyKr!8Jkv6xk7h+sEPc%fRU>~fMZtQyobC3REGio z)W5dr4p>znFcz`-*4j{|x=VDLS!9T1Z9kqdiHKGM}lnYt(>p z0!|vO1}ARRhgzc53Q&CN6!)3GM=4L^$K`0#5IF7MCXZfY!|Gp8KPfwM77Qb2GVJ_u z{+mP}*b-DlT@~Xx_}I>e9MToG80)snRaE}iWndoHQDg|R>5}sC^<(Z$fF~J|?%#4P-|M=5zxz8pZ26f|ZM0V4rb1nD9w5mNJ`~Zp1#4y~ zrEysNyAO4C6s`9@iATDI3nNq^(=DW+lCEXaN^*|BBzI|_;e*Nc% zcV^Fx^?LXpFUuZ3OpV%x2Z`cwG6g0dZhIFJm3DpHpn4Y?YAyj)`EX4M-lVXiOvv_V zcD{K(*H#)cnT^N^d{)a!G;*~dufTeLCe7~s{Un&7p z-L7?>WTei<7Ouvy^;odwzI~PfzP(#OW9nI?c!K9fljZtGoPp57B%(@-QbR+Oz~X-) z39_5PP%G(Y{-qHVa@P*FDR2n8!lqsVp<_+1a@BwpibxT#b2hRRD!#B{3g86yWjC9+ z7F(%a%2qF~IyD!)VP~uDnJi04*mKK7070G~Y-JFM?|d!16yQjE$L`?~L^^#&L6r}7 zf{*7R$^b_lGHP^i9k5hyC{36C23pzleik>HYGpLC%W_nH5;bZ(f)W#wrn%#E3WtBQo(Gd&-2f-so(u*#QL9Oah-vMRoP1h|C1iNQbhk;mVm=$$RUbM4)6PtDCHc~ z%Al)As}+B6`eZa47j=YSUVj(3ddqwR51Ph@2RS*OWT`^xq2>M2>&#rC)(dSVwGZ-h7g0j?ZwX@e=RzNO(!orBKSqc;W9+U@Z5oG173`710LtFz8hxE zPbCkvTvAyOiOd!*~fD9fo|A6c?tH!+4HrqiY4F1iVbYHi*To+j#(!c z)Q3SD&XjDWTwvJ;1v97z|8Cl**tp8iM}JU@1(JyiE7#T@CA_E|KFGQLo4vHk%epVY zhAsoU*Ur82UN3Zag?vOlT3vJIX`wm@*s?XJdK8?Qe!rS? zkWv*PT%Wi_tys0Kb)KLgSZ{sg7dN`O5e@NQe}@f)Q05St)diJ1jWY?9l!!EXZT`L{ zoKs?<1=&4@`r<4T9TO99*RGfvdTk%qVsB-ogu$FR&c(&d#nn4Dg6C_6a#OeWOEv_- z#51y1b~9-a4hIvgili4-p7K$axkULQ>WPet1%O_x^ZC#!0kDAW`A#lJ7bHgtQ%g^? zmF}lkq}ysFPArCO>Em#G{YJR#{#9793iT4Bj^x(z-*#)=$J(q4ucc@&oQT2kvBgYM z{b7*vamsmpp_Vb-1#-4{toREfTumT|;t(X-0R%1PA(b!BB1nec2lNida- zLv^&bR}DGv3cvS~bulnFe&nP~`;e0m+aV#gucR4|KoqU`q!ubzb=L#f_=1N z1Y9y5>Q^f(`sHXQX69AyfNGQ?ljo|1SlUtMR-A(q8dE`LSVR3?Xp&lE2!gmaev4@r&GchtW@hC-t9@*54~&mL@#xW` zl}+|nyZ+Y0VUz=*{ECLnL{9BgkrSJp^P3QmTY zV{q7G7=OGmEceK5QeTmOd0XK3goOTVh0{_}kM|sUhMuku|Ko5U@m!~$pycAH*Cz&; zbMcpQLqv1&KaMvJM1;0Qr#9ewW1tn^n>3t#sWT9sD)HAe;2h?# zXt~`{202m?|D#D~EB-tNNZb`PwNDQRuW<SD5rk&rei&;9`E_{2U}ZP31Y_k zitGnP21P^pDC%(k{(W8d zO4+X^^FP~=CZ2nV8P^=BtE=OckT?chNUTjwO=Vb9-W)YOMDYreOYc%XrSfs_5&)olvl3~14YT95v{cd z+uov~SUqfY9sXFk9goe7mZ4!(vD1W7j_$||v65UJK)VR6IHyjXQuJ+(xh0Q>UK|mv z+!img`Rq?1a0nR`(3!uM4p$xUdhR}auxzF6<~op};QjsgT>)w~cVwyY+~W3f%eyGf zN$WPSPHHh{0Wx4G7j~}>?7?_BeyO5*^~-A-L+?duDVuJ;!QF3fd{)_%a$ieY+S=9w zJB{O@&zkYXhlKUXl&IVK`ncr}vMn=?`z?Pe*_7qmfSJzsST?_JZob*qHP{(|?oc4N zOND0-aNOa%BU^(Irmgepb;#`>(77dIX`3b(GmLE%xd9+)}61ICt4Ck2V8q?lLd}^SfxyA zoyYR{M)}~BbLiC6)G)OF(ne8mFpXArN9cSRvaD%%!X)wTANTR@vxQxr{V;CgjvGs3 z@bwBwDqde;!C9K$@3BYA$jw591OB-fo@Jm;3-jm2rKYC(xPC29-FfPKf2K2s54E_y zI0E1MD!KTE``oSPEU*9gqi$zwE$mwGVP=Yl+o*Vu#~q$25}rB0p;wMh^EA~!R_kE| z#Kk(k5SMQOw?ch%kDo!^^CL{z-J zucX~d6j3lAstLL+z|#GP+08^Ar^{e{;XxC14GsG_ysd|wWgLMW#-t-lhvSl6e9O*$ zV^ETN9CykoUDB96VQOVW5KHP1mN zfwc3j7wtBO3FlGZM%~uZqKZ&Cy*Cp5GBq_RIhpUU>gTNipS62m`-+djd@L8+i{&;% zpH^LHyD2*KL3X|_ad+jMO>Ysyn*q-Y7mqW53qDmjUr=z7IKeO~SqzA%6@0<=wzoj6 z`eo$Akt;wus9)hNjXK;UxyS;BA|vCfl~q>Pj$kZ39*++&iD)*Lm@A&(#<+eq!$m|; zi>-H#;?F(zQ%|h{vZS7&ogJSa9sNFc-#gj`9jE#2M?a?{pr7Bn2?k@jO%ENbw&MF0 zTswJpXA8-993eaKsCR>7`cl+uR|}KE1Xz8p7EcGh>r?uzhLk9IdK5w2jQ-pFU{su; zFDDT1&@HzHHEhjSMnNAB*;npJkt4W5`b*tLzV+IxnwyWmxOa>`{=IoEe;j5XKvNhQ zD81B}08Nqmx6c;&P7|7R{!DYVQ>;jMW_aeV7-fP|pBrhoa85eLqC0{dJJ?OLM9DhS zB4q8jittREiMCrgnBt=pE8x36M0?-D;@z9{^z>S*!sMi+>X}6_>^E-RnjcB|>Lcs= z^{S2zYno;PeXKflta=bwv=Jc03{X#1GBD_QVZexb`}S>BcfM)49Ty^Depoa9G8JlR z%T8g{hnLuxrIYP2U%oaBZLSYIc+3GrYB*AMt_q00Xh62{=~o93PfwYwtgN!RH@&kN z+1XqltiETPDWOilAT@d_Ag%B>yFz)j7ZhTq-#_w^Q+KL zV~tskk*rH(1Po8wCKz&a-i9AKSn*v4T_YU}O~W&7H^tM$@dGWei7@tp-Z1bblGg^2 zDC62-kA4N)o{JeBRYW zRDy`*G=kf}mwT;w`gEF`n^V+seQAG;MpbUW3eK8T|GU53gcuhdln}rr+R1&wy(mc z^s>c=6OJF^rH!vlSByz7VpwPgJ#G3+bhIG!$YJHUa<_!%^ zO*Y{DwA(=M_xb7RvuE}9N?q~5Z+Vmox3}J)PzR@t$I8HNTO_zVzHHXS;s_3P7__9m ztnA7numc|Ix;vf!p%baIDh!=SaC=TjND!VIDDRzF?lj4NOGN+P`7*om^lV|GyGZDc zJ?M9-RJUoCfOu|E0|C4|Gg;d(KsZ-CjmA6=1V`KOZ~lJ&i`qRbvg5LWJ{zO9y)%!9 zo;`C0CzGIA2Hb0POG`@&C!Kk$_v(@RV7$P>ibV1#VB4(i1DPa z>nr_yC6@ZC0mRle$NjTe9Nx1W8y*qCN-Q2fo?l!neR%%tMVY%uOp0pM=1$oTP^FG` zaon(O>llpwCbMbMM)B2!))a3=aZ40m{imz05`%shHISM}J=~^Q#2ffbNH>|h(3$xw zTu@dHIOz4?LE}FVB|-s~{~J>NSG@V(FKQ*aFI3Z_J(foOc#yB%XgYsCFpOJ1%_S}~ zymb4HA3yHt?OkrWI^BVbief|{i^SZDs)o)$lmVe<6G5GY?rbYQ<5r(b*F6aJY)Om( zINYySjlRc&3=kaB2SU(tRXHF4OANsh8P|-R!`_<*z+y$p|6*?Z9)BtYKrp(mTHTqC z9)D@TeZQKTTAscT_KhfDV?C^gS;*Z{tkb?xWF=t-S50%HzWVwuomJMBi0lT=r!Tfbua3k^ym8&rI*VD1}{Ic5Vs%n|@cWBivVTFlyA< zdc?<--Z!|t7ZfoL)zsZ@?0Is_zZrOMjKz^auN=U)nF0|mB|ta-5Px1_7Y393ZMJvu zvqj<%Xj!m8=;f`iuZ>@S_Q&3YGz?is;a@uWI};wKG@ACz?kKw`R%mZGGyVC|5Jnym z(AvcZwA@VRetLRl@Djuti?eSAzj^M~GAangU5Gqz68N0v0Ut2?=^Gk~!fyVG-OU+3 zl;iUF`z2F)dU|ElFj#eEEtc;(4Av{7Yi1ijIJ1Pf_~_t%Ch*^`#D?Z45~`RAZ;z1q z(u|B72YBsz3e+lc($ZAIBO}=ckv*S{?&0BK8E<)JW-V0?Jx<7S2wbEnCf*YXm21Td z+_xhQ(KHj#`vI4}ZEC8S?#Omr?a+fbi`Y^7zI0XYN*+0J*$GPnv0xxqbcRjBxH%kZz3)j~K9fD-o z$T9&CAVeXCgYYD=;q$Dk&0xj7IVwE}VIVw!WEu@h%w-zX zjm>2AZM0%J5r6EQ$!t#{Y5b|R%oVB9{z&1wMPGnJmx*CDyl8?HR-9Z|Ae0QPGsYNjr`Pq1^DV8AT zRkVG5Y!=ho{KwEo(Hk%Ap7fymM~Y7IoW3h;>-2r|ZVDitgS#pXD) z$gS~;iZX(h$WsKVY^mvj7{_4}z~$)J*dT~A6xOew;p6+w^xu0%$v7c6n#T}OVBCj- zKF+M_mpEq*HrzvYRw)tH!sZOov?lN%K>?B1C1N80I=QT`L*usBD);JvG5veQITmL~ z2An&+d^tfg#A~jY7KBxL{6oSa$QwWlZdD+y$=BDx{49X#nUKRdp|euYA*4FYDgN>k zvgXobnLZT2C{Hm>!HqHJM#3dNRCVUu9osSlC#>;IieVz&=?Em@_5&L3&@)ub(RIr= z0e`iN{x{(agWoWU2%@s5;iBWNH# z11atP5QI}otEk|HIItER%>uJZWHnWlystz27mH%sLu_|KeiQ9#1p_ca|(RTMY#-wd+)YZY!z4peo#G6KD^L~XJ@V@Q$06%qCmvDS7|JR-Vr+lyT zJ&v6!f+g51dt~jQn2gXoXIMu0&-DD|wWmiN!2MjuyoR$T3KI0Q9|{*nSpV2>s~j5v zzb>?PMnF9KcFBGAn0s1eFI#^!#DtSVFS}@eX?!)-FgHQAh4V={2l903BgM|i8izWl zylB_)zui}OxoWGw;oE)g60fUT3yr#ZIi$k@+=YjtxWKUb!m``k?XPjCz6|&0+E=MY zS;+-G#t7~&dFl>@T}|MfYF6F}f`Z2qF;`{!obB1dwM6FqKGelg<8w$$(4)cgfjmYV zHIxMOvk%?JeFwu{<-cY{oU3X>C$`8VUNLZ@WRx$? z`bH*^n?(D*eTOX8S14$_w19?d2C!QtH#t()ViDGAVOoyPf?=lS%2O_g!q~r`PKr zi3lP$=3&wy9h#B!D%E?V(yP&H=XJ&;%wp0Rjlofm1uwRP1C*_)~YrhcwgPN+HS+EY^@i*V|Al_>DXD-qr>NU zY7^E{*Ez7Ce&j09V!7purL|(a)u5Y{N4+yjn6uO#ZH*oy}MF0jWM^slghG&-^cOY5c`f>YiSvE zsql$j*G!-E9psTbe27B-Qk&9_A)n z&cOqy?Mnb!$a9;r1XU(pw)Oe>TtMMpgs4CAx5J=p18VZ|#3kKKzD1RWYofN2QMO_4 z2iK%a>I-)-;FM1Hy6*MZpoB8=L8ee2}Q$k5GwTuOugOix&r zX;Q(QqHSJCJRdv&ts{lTqmHAhi)QG-5EPm5&PZ~ZKeZtYjj79*`gCNi^5?6$T=0oZ zX)$}|_-kvvS&w5#LTjbTmw6&ZW48uM+C8%@?no`dqt`MaALIiz6L+Q)fgcfO44 z)y0s&7r)kji6Os4PG*$?+BM*9V(8_*6B~i`VE}P-WR1dQkEYM(azX zX6{y24(Yd`nENf|!Rz2%YkL(=9tv}y9bpf-IG~Y>X z^X?;P9Led-$5#8l|6XtuNO8*9*;}MPN7_~+M}M;X{gV(a84(358vj*6c#YPKEISB$ zJ<(X#Ix|gv@-ia|+(RgZTkxLJz~oOGCGJP1eAAN`TbMWgL~9Y|%_Zq!+gjwhHngn{ z^Sf}ZUeC>Jgv*H6yju*8wcfNpnu$f@@Ndq+Jlkf&BTMV+;37f6l9{8GKh*yXX_@qq zAjfA!skwMkw;W3L=FlyIN`qHw_f&cesGFJ{jSHDth@UnuG#TyLApqU!@zM2zbUPN& z5j}rJR~>Q;ms7c6X&%WYxTM9y=+B>RpD44{Xs+c#>cU-GlweVM(zBHA-|SI3YjFuh zuF1m%jYp%9;o@&5IhWO&IVy#>DFHB1dfT-e5>r;Q`PY4Pm5@l5KE1P4)e08?c?YP& zqLNfRS?{>JJ=;SZm04fb9m|#fu5@0t0&V)RN?o@;+cw`bU84*+MxN5zAYq`8@=T6v z@=PzaZN~K5Z<>yh((tix+*9eD4%kXI6Fi{Oi~!-4QLJ8pBsU|eUsp4+Sq4;2YmHCN zI&nQ73JXDKf9B9VW?Jq=KNW>1YFjdVB$Yj^lS0oj{rKgg-FUV?z%tP?v8N54 zN?Q-GT{2Q0#5e2_ZsOK870zlzo^>v)Z@uZ^jNZcu`sTbgpdQdF=z~~~E4s6)sOotB zRA_d6HyTCKJaW+4@oUqAok!VoYf+be{kPS_DzKlpf?Uwrn2rJ`01jXvn)NcT7UKO0 zady?aqWQCm{z(sfhikEQT5PRYk$*SN$AS^>u@m9@BYq9@+75KeEPZ$CA2Ytf+bv=$ zridldz;XSWwV)?jjXn26Qers*%WR>3reHi<9SIB>-J}*IVFVt_0XyF;`QSW?wmxu| z_~oZ(j&!rBMUIM55@My5P>lPuLf$y=x%M4&_z!97EuZwGtU@v$XIDt|^Ny}FFb(5( zs}B3GD{YVl{0u`s>J%L;`5%xgyqX2S@Ef|Z;xkok^J;d;wCwz`70B>!%O=Z+vqc5N zN;2+`i7&A6=N(GU5mR9ap^o$l(D$R0V<%PNOXC6j?nL==i3eAMV8z8wun{iSJAyb4 z-qrN1Inzt7)Swpv$Eaz6$MLtjvWu%<>ruZ+Zhc$d`W8afkjRNGi+t*j*5Mj#4tswq zo7K5-l6z1FN7k(W4sq2V|ABEB7$`Zm-azjwn_hXI0=B3}fwqtyG@U{;FYs zGf{x*?j=$2&ej)rQ^lNu)*rM(md<<3rMeRv37bTj85qJsErA+@f%;z>hD+9Q3tniOrK|a{z+d5@p>8u*Qn4JEYv^ zmSH;}N$2-P@%6n!yNPTfiaUz3j(+RfY;B^#-t)F=iN=tQmGVx}hl#|?x(cW|ba$Wp z^%QK-juwQa_Ln7$#To5_N}*w|@FBKQ-sB1ixf6}uX|hqaZ{W~WsP-fW&edV&RNk4M z+v$21%dQu&eihX-6)?m1(`s429lyt|RTD;7Po8bRS*}857xlk^Moz1eShx{E6io$A z7>k}Lt`~;I4JydkaNK#Bp+!xS+#D#ZGoXe;y>@cJlQEM9!Nh)ptX>%BP;cM%{Yb~h z+>#iz_~mY(sr;*TuKSSR zcsW%6TpYtLaQ}7;=?;^*Xwb_TQWABsK*tRh7?#<5{9vg=-xlt4QTv{^w1VG{rGViG zIIjf<&I&#wFW}~(pG>g|>AH`#7VSilDZz*HkGL5%d#XISZ&h=nmqI)a^y;}*@=I)p`I+;;@J$rFx!40_*YAqVH8QPZxMZAf(eNAMQ z^?;hKC5xI(I`cA|@Kr6fwiX4u-c!j$h84@Z_v`ZTB`6 zX6rfSSL~%9zxpa|@@L&Pp*|o6ed}`IXAi?5&90J z#cEkN1uWlYe1xgW^esAI6&54gPed^@jth1bClZ!{4#4Zzqe5|)$t7mNRNX%T)%W!U zTjkB<19$}qsV#_s=CN2|`uN;nRBWa#3ERbNn#pa|z&CYh2f0K@T4D_WgeuV9rmWE0 zIi1cQ6sZnr#QobvCHKe$e?qg76cpta$5v&4BeQo*x-6)*yL=ts;gNz_L@Jy+5dIQ*z!J1R|0wJzQYLu)Uiv)&ULLo(@KM%8 zNo$YHk%iyl-HRV_6ME@6H|@4Wp|cicQtu-SE8`zx-phGPMn`ZSE16S}f*W6QCB?ZF zs={6bTv3++)#Zpw3*EWQXuWpOqt;-WNlxe(ANU~D=>$!mNv}<&xQ3kfS-v)IrJm0^ z5B&E&uez^LUfCpRznUKn5c2dwO1JS}${Eq4UgO5h9@ea=Ag-GptA@@9G2M$`gDzde zhDlmwKkWS6_g?@yDu$G2J{-+@=~K_2R9A5Iu7&Emiw^~?-eVA)wQ4teTMxYC;+-$J zOhGm1^xrIsPd7Ngknl&>Ym+s1PR2FxvoTmi#f)vy)Y+m?RGX3N%oRZi!SaGTnjGY* zi}4X%n=((a5t5LvPVQ`G4q2eUMz0beuf>RH9x<^9g5H*}-&4Q;W^jGTOUFoj|GR3U zL1-X;;C8W`U3z|CUPV!Do)^PDm{-~Budm0FyuB6Qhxgj4ZVk@7n?>qtvQE7c^!;(! zEgSG(EhM${*WGW~KJ9?RO>(V&9gijTN5zihK^ev)CHNbOGom|9O_oWBJ|hvt zmv8&UME|EtLxQU}ZKwsd`TZ-!gS$Dm4psxQLjC6S7Gbw(gOy4LhqMamR(sjAoF^|u zgqlm)T3pBLgC{iEqgf?C^rNMBFH_jK`w1k+j7j?qf$gANGIiHXE%BkSyk*1x|9{X?0qs7+E@&d<8aQ7aXq zdARpAJ6i3FY!k@#sLEPLJhq%qOq2|6=a$gsL>zbz6QTtr(NRYzZPAbHwn;HP zbLctzMLQdd686yDQiDH>Ww@0>{Ym>-KbXo3(lzu6ff|3bXv=H6w7h(1UQ`1M%4>%Erl)Je-eA*wqc0~m_%P9d(XBBxfOdg6oA*GRN( zj|$;L@26>A?~9SSZ1#6ZUMaD|jwZTxxKX1SYgp8s1=+p(LK~IC4_C^b)<;A_+mRD2 z&x=jYHyb3OzkZGr`!-?-^{L)VLd;f6*lHh8BPVk1pBK1@JKH``b%-@eqNYwPX4*_{ z={gyD%4c!$8(}QCa?6j9^ryN*2UV!jqR&3k(NEHCD^73-C7)df{1ZEzBX+tIV@ALe zIiC@44JMCA!#7mQ_vTe;0N#o$P-~SvtFq&?6Fw!;8?p}Xp1csOJmULF{RgK8f&mDof?$HVkynYouD=2V$9hzWve4F-r33GU{rQ_+Vzzsf64=-VBvj~e>_tg;(M z9^xKsz{}q33A}2#^XTYtt&Sm7Q#8wM{K8ZV&|-&6%7a(PUHy6k#V;R;&W3v<)>Yu1 zG;5v`TWRjCI|HwG2~T8RULg>7J2_zAVadGHhXGLir;Pf~`Vzghks+Lqb4Z^!2NhPm zN9s=W`YNs|6{H(U0>J)Y>sEPq%8Wan*0iE^Sow^bo}M6Bp?k%atvdQ^&j;lZ{z5=E z&e1$tWj#{*GNkVvzR%~&eLU@4q*LDWx$EO))~pk6ZK~kqgf0Q5)b*Mbx{PQityX4; z-wJxZ#9@n^ysSI4lV?}JIoCI@dEak*WK}T)5A}Y24&#o91wgs$vlg}V6cXQ{0H_Zq zs6>P8+0#0W**D#uk1V~423NQEm*dQNhx!uYUpfoV2E$f0>nA)j`PHtD8|zB~rhN0P zhMf6%)gVzE=kkSkW-?_N_H@eJPCFAS4)M3#T=Si**s@PhKj*I+y=t)WE*7wJ zjIg3`PpxsO9VuQ6AhGMG7rH z`AT`W_ap$F&V99kT{Wbwu+dLch+@3wHr3$BbZi3Dvz2P0$BN{>cP&@#hO+1MsFLX8=5Y051%)vN@xT}Dw2+<#EM(>U zNE#t+yZQZj6-;>dve@1OJ3+-t36vyFA-pQw2vuqDRoY&bvEw-Ziv=)@R$RUnipJI7 zs-0hpl);d;bl$v`av+s7%waYxX zC)(+?Qtm%yWIS(k&%=E|C854TIB3jB(s*zEZu{$ROa1{l%-&u7p31O`-wY7CglT?c z%SWTJeVWDre1faFspSEnvmd@dI>%16o~oavJdxkHM|qH;_*gcCHG|NhSe_9r_z!QF zuj1nNNyMco=nb6fvyAZi`f1*Ld>-zn?|4NlT0o?NUp{MJdscaHmS|pf6zq|8nVi1d zJMb%e9IE4f+E~7ovu3OL_Cfv=Z||({9{{hH{Aq*c9PGV4VtrJr4Umc1#5sBsyW(Th zq?pfnZ9w+2n|O4^{=b2dAsgF(pU+i)&u-OH>B&@x7U-0cu{3}w)js$^u2ov^bEbdy zTPX;IPwzT(-px7MTf|X5vDF^j!A3e4eupRL?mHxe9{j{Shl1}688I~7s%+&`#h~x2 zDHQ1Wb#iyDF;miy-0W}G>bjF)xPXNxEhVMP!gK(O+&BNEX04CZoDY=VDBvMiW9z&i zA35)+EE!1-{hx?&S>bGE3*v~MXb^<9`T6hUIobA`)U01WyYv-}C8+!;SP6 zhB|3KGhMS8e{cJGBi6;^Fyob+cFIk$%S=}?g&0qR!BF5k$$fK&dxQ{_D>gliZU zyx7CQ2=AD+xn(Rbe1&1j+fsVzy;oIteygpVX}s)=Q3Pry(RnO~$UP8-sT1x1rKQ@E z9>`2w^=S`E-BYV;e>TWfWxui=G2?CU=Rs&@d!_W8^@#9}cxG)dU(Jd`?5&|yC6twJ z&mMF^O2F`szPFd+`&4DtuEiSb^Cz3-%478q*mvh7*qRHHi#S%Sw>lpr!S_2mOFhV_ zyQPv-Ipe?0cMi4Zj@?JW?f>JA4_PZozM$5iDAJp+9_kU_#Vo^6#f}cr*`DN%4(14{ z*Bk7#RBM50X#vJr$Z-+LDsf%Fx(V~pMwIW=EHU)a^8U6&bG?L*kF2WO8vJANaHU@Q za967wp7nncO8pa2?CTkykEE_OrbXt9ys9^bmE=heaKnx)Rz#~|PtKP?V(6?RRpnLr zMQ7I498VVmsnIT>?EF?6H4F7WQ?fb8o@@F-iK6N4m7pYm>OEvXODq(ERI%pVDh>B! zLidvl_D9QbKNH!gS=~WO32uLf#~`ZOW)P~(Jh`353VLa{Ryc~Hc{H)LQoH=93`is+Z0hP2 zWA;*7ed8ot!K6y38suvlIuiT0E&1Z|1tq4Pn&8TU#FH68o2|?yy2|VEZdDdB1&HA;7)fN@>f~3B4fDhgUSuct|j(f1x-LZU41jmV7J$U zKA&Z+oCBFF;Ar7RW3Fw@-d5OlhNm~v@S8(I#V@9MI0v$NrkT-#gt_L9=NwHGceXdK z{x|2~kZ?Qf?xnY{K!aC$^0cKT$g}aV#kYR_IXvgkcUMI>|1{~1U|wd^VZd%)l9E=d zXX$Dq`}7TTC-34DUheg;^7A(48>J?fTwR}rYU9JBzLm|YN*CA|R9#!!z9V6T>tcwr z$Yu`8J?Lnu=@Tkm?INtBQIlg3Ii^cd1660;pNpxl=N|w#h(0Id;eRxiKpqW!m-GHR zzdX|=MJ}n?`~w>N4M4CRbIiWc<|)aQQAaC}QM+M_K~U$v)B6dAh<+_BJ!I(5Or4eL z!JwV)5WqhE-+#|@ynek;N{}$qXNY-8(1(6K$)OpXIb)EH9Z_=+m&;4&8~u70Ke{TI zAbli_NgwKEr8KNdvudQK&bw5~1X%B_uZF?6+(PDTRAjmqKYZ6xJ=`uemzWHA zuRGk1{I10Z43mWDNaw~2b}6I>Mg};8Oq=rLtK8NJyMNvFQXeR1+2gAzsWyW6#QAD{ zpz!TcJflXo`Q1mw`AW;zfd8R?z1K|3vQkWYAtF?&d(G_C@fYnTH#D>gA0OTP<<{mNX4Ckj2Xw9~HdHHU#Z-5FUb)mHsQH@6KO`g_8& z&W3n_I99SLTe`v&Qh);7(@(5a-FADK*%W#( z_r{BUIPAd~SXlhEr4!*S48a{ck5{mr{Jq(X#ZYz=c0AT*PO0L9^0c|1TG=A?*Ck^} zQInXE4aJdCigp64d~m^%z0T5qwCx{l;M$yz_mhr_>0AG$)b7{AU$>6O5Oo?ayWEvC z{L_3M%5jjYsv7DHrlbNCfHYVOrncP_@4GT`8h%k*Q#9yqPgOG6my{a|BR9=Tjcw(v zj%5t*P^K;xjXbQzF@4iyicG_CRS7;{GtnLTEK`IC7JuHPFZO*jd^Wq{p`cZXi}}WI z1KQIT`kG?b8ZUKjge}j~;{Y|*mNszGO5*^E_nYu5)@p@NW&3wEI`yxO)W-{z6=-vl z(xp5{TGb}Y>?Nj)!B8Bryg^k;QZanPz6#E^A?-o*u z4-$=3K@5NS$=}>kq7AgZ3So_)xExZui7V=%->aCPCQ2L}6zdRRtDX}pje=%Pp^0KH z?>ipb1drYsdH|7o8B>P7VKMwUf>z?(m}#0c>}2r&L=cMp`33}OfWgiAEiH`RBxaB> z`#rJ(p4(Q-o=ZM2)m^F2@5*qOVJbsr<%#XGFqAR;Uh9z+OY{?8$frdaP zCu~zbd{?cCIvACfT=J9A{t}WOxcbZU;72yu>iLo>sD>&*%TFdivL{8e1+0KS*2LZ$ zQUg2vl><$JhZXQ$&j|3vgZ2-m>Fe`lsmXJm$T^;ianS!pZS3J4WS(xmc;~FDQ*~(F z)9}!G&)CrY2$9RW23h)1naw$;(pOJ&4;G~?b-|byo4m?B2Y$2T?cUcDWXtL%$`D1i zGTO^K?z25}*NAMg$ctS=YMEb}=+h=w={oq8n)*t!3CSpfii>})abHKXtJ=h!KE*OE z5U*_x+%rEHU+HQw7}AKukySyk{RA4|k>F+_5Vf!c z4NUfixc-D>(e_BK`zW}^(m15L288$BYaJ_@;2TI8;z#Y&e0QfYr7ZeVDw$m<qdH{snC+-#%OTdC zSGClQN~(}xDqqV904k3QC`3a}5nnlp{b10}jFo;Lr}hJlhBs|3hL_2h-ANR8`OUX} zS8+5lQ8$zDFT6YChU-Q1c71It5^!dy`RJ?IA2Sp=gVb0C;k zY|;qRonO_@H(a)}S{A=tMKg)htK&%3i1*)dZAW7E6b5DHN{Cu-w%Dmv(lP^g?IN%w6$W)_o%eWIz(6QCA zuTYmZL&}@YBhMaF1CH{a|ELAi`I1x-?L}Hi@@l4uC}mWC6gcWR4E#s$cHRnV8klGM zd-R7vsDb2*uv$>sY*MrT>M~?W-4%mF%9Qk^9kE=!>65;~!8|+TJvce79!^?}l?L0N z)~c9la42PPT-CC96U{0wXw$X*@DV6w7ekYvOpS`UIRC6(OjWNy0Z+lEfA6f?NZ%xv z?XMrc2fwn(bi)3p(^BRE3XexZnwoARhFV%%%zz*>YM5&+<@O`WBj70)yy@_L8pPX` zs{Z7uogVU@{xx^}$=NsxxrBY%W{mFFrknvJ%&)Bdgz>ov`YM#@r7>&O6zWy!KJ@h< zKc2=iH@jkunzR}H&p9XV`%SaRXZJwDk7aR1ASs~Axc5>l2Q;jNr zUNzv9o={R#*!WVK3Ycbx*g9hay#9`jY}xGcE2lG9)3>P@99N$Fs<$ih`2K-FzTcXR`Ia|bfT3=DERZ~cmq_R&)y}ij81$&rH3VV6XxKmZi zJ8ev8#E1Qif7i&ujC}Cc%QI^#1L(pPG1{7r`oQq4Vp|N;N*^eYDv(*~jOWAnxx^;{ z;v`eHL!MXlhtB-HH`YsY{ImS~_5N9weqD>?PO0?vnaW?!7K%euk<-yQa*1IL!nP28 zw4>DAI{!X2@X)A>oUc)(9@M4T|7=q3mbwWzHV{9nI{a;`oBywmMJVjv=WTJWrR8Nd zUUT4}OV8lcq^F`=_8em6UQ`qrP^J3#O8@|5y0HO4@1HhiXPVi)w>;k=1VR!MKUk4v z_5PLK6>i3;GDGotp_=&Lmw{UNl?&$P4&Y$dCeWctJJJ!Bx{bpZ?qr>+H&i&9XXnu- zp?Abr%5Xg~@=USY9LvJBLXwka*|C-%X8k{+%%7)qmt6JuSgZkfiY2*EQ0fUx8-ezQ zD&Tc}d08rzThNEzte?KOj+|S2IFL+`L!=O8XKi}Wm*@hME#-Q zvXTXb8iE|va0mGJsEPhO6)A&&`0txBO#7EWL)_e+8!5S>6#Da-#H>}>vf4~hnPJ9d z4Q>1?yhMV{f8?Xy1c%in1#@{#lSc$$x04LmuVKA2N2hhr=+XBp6PhKjV zGmTXkFxTAB5)9H|kMW}(_+iL8{pF)l>F^PdeZ%oDJh`R(5V(DG{~sqDevLn#cn^hM zr1PM1%uQXF#mXE?pwj-Vj=T1(z~ysrzL0aLlaBv7TIHuVf6Y$oZJ+ z3hNR89NfMZzf^-ZhNI?oIbg3|cXB_vn^tBrC=aaT)}tlqAX1J1ZYzQ%=rH-fs&XoB=U39sH)dK*5*qt{`8fR8U)`lmatrER*M(5t7Gqk}XIF!K z&iY6??UbB)WL`ATV1qI+iVaw?f&3Gm=sQ`xz>uyoOL1K-MXMbNiIZVf8u z2CqY^Bc&y(<%w-TvCgAwzJa&G(zrH$<3-Wz)BMMu;<{`}ZO1z^qg_g?cD`<|(nAsKZ@tx%*7p^*$w&~ilOm7sr>wuP?%0Tp03-6TnM zpC-^2Mkp-b;8-^T>91xQ`FO=N@x4?pW$&>34BJ7u7t7}es}l!w(NojD+cgb{jSda#^V0+1 zve_5}_jH`el1SM(_?{b7c4^q`^6|-sNF`a+Q@bKd@mhUBuTsyE$Y(|9t%Us<_r<-a_a97glMI-|IP(=b?3&?Xmr*77DO;^&)%7OcXojzuaxX zflQ341p4SO3+w-Jg6Q_mznb%DBbBu1=ie6I%@DO_>01v}f3NKxw4C6-c%M;NNdn7H zGL>5%U1=nj!l|TQ2|1lyc_m3_r26?(4D&?h_^w% zedd2|PJ(V6VJT@Q-#}YhIi4zWEHgndbQO{NAiga3&tG>zgEKI;7R5ciRu<*&vpw!;wRvPPL^CWWWMz3E z=GD~(0rjJZE(`LEH43gj6MPO+sLBA0f+T&?>e*AbE{=i1KCKN!rzjc)oAC(Z0J2>m zP1PSQf}2w$D}@^4;u9L!FP)REDX5#^b#P~uo%Sm>+gq7t_{Sbu?&WK?toW;G3$L&Q zzltzShay?Gwf*G9I6&@ji}rcl9{a>fuKM2B_0=|I6SiTv00cF`2>gjlaz@~~Syt_Sbrj1E3Ac`p8f zKt^6ZiUwa(8y9Y!eXYdjVXdDW`up=K-JuE>L%_GQ1!t=iVDXawH1~(WM(h8iVmMPgV>BcGt#0<>BTn#B#a|iP9QcJPU9^k%7cuwj}O= zRW2%)G=*W|-v&;x)Dgoeu5Db*A-piX>4a#3#dVEkHq)#?EWJezvcWIckIItU6zX)7 z;76aS2HYVoY24p11E*KRv<>s1YFXfSz9n*-!Xr%pb_OiRSLum3F9!@?^QSd_6g{Rk z3U&_&AkV`{mC^oFh#!1)oAdb8%=)~|hXGt(jKF6B<0zI!KP6sWn0~oLJPGx`rhH>`?lBehld4`O0K9_u!n*kZ1a6g`Kpp#W3hejk2O{ z8b8C@e#S2oN=n-bPIpYu^G=$8u;@Dlb4EzaL}--&M4rb-LZh$x^KA_9o9Lx>MkST!Y#yol))7-A^Aoiw-EUK0CeT3$rL^oZ|{BT zNB0r*4bvSsp}_LH#VCm$s$8$na4ov z;0%{eTvtL+$9U7GEuZAiOx`IqRos)J%Vgyu1F(Hz^0eqH0M51u&k*lk1;4>rW@uYy zM_Ri`+@=3w{#HCsA%tqMV9wirEETfz!9ZFz%Btr!cMR#jx%CeJRI6qPZ(s=qoP8AQ zx~cDac_O2n`$KB#ZO>2NJUhL;suXzQE{G;S&Qq-}A0AtB!MGXg#@CrDkek<-{1GYl zKdpycjQ3UaecG}rpQY0Bekdm%uG}gD4#F116nX`f^^P`vC)9kZHnMLz5;&mj7ffY?Y z*Xj*aTad3|K!-(ZkBYT5dAAUwfZ~sW=b2@K9>azbXfI5E4dEUftQ0hZ6`0u&XN=hm z^;+~7$`3nSow2=AP|Alo6>8Gd`1-yp_wrD?79n;CO6k5zmfBb!aoSj~A*e@9W2Vl! z=yAJYhwd%&?@_GGI0aw0a}9cAs<^w-EYFuD3Whk9nQv5@fa`L!ms)UvP$OT~bO}fS z0%GVL1vXpvSU+i|7wJpR9~MrowV{EA!UoKNmffP%AV0r1TxyM0J183IgEr-_PYh2R za_~nN{dX6FYiGviJ^r8|KSt{9l>?;j+DaqXB)VKHK}s?;;_6Z*a1vNK^cB#cgiir5Ej)KqIY6hbMt$kfB#8 zf2AQQM$J$c zHS5Gw7IwcG<)3u}OB#+7m3Ddm2&tFce|R{ni(B6ia$DRE$1QmaQJ@2Xc`8_BSh4s$ z#>kv(HJaYIsS_Hxo8bnWj}0^o#EmwV3_CV_ia$)Ntl2|Z%GwM=6aZ-#>+{Y3Zi85wY>l+SbcuFC>+s3mN}Jn7HbAH+#pIZ0$4+wv z&+B8vsaq300zyCpYRB4|bCCPOB{rFe+=FB56=Tg+uV9Z3s8b?x!sTS_FnBw)q&sMyC_LrtqC%rN&LG17Bs+=JmJJl`_X~*?*Q`$*k0mNGWzOALy0ya zS`P{st6(=l>iF`;{c)FsYr}k59@LrbaG+$F@~+F?^hU<_Jjs$5Hsv7QzB1iJSF4q+ zx8EHHm{ohh#T9DC6NQ6};9!5Pq=J2VjhU2RU;pq7%Z6TnP5el}FK}%jOkWPq5qYt_ znrLuAARr4C7w;Y51%e^#xM!G_ZD@nCA&y+3#u(?E_o?>iXnY&Z%1;0ue0`mOD*wOgRc2kwoN$U_EOV_KtTByJ zSg1-byH_=#yz_k*HsHmsh9G1^tp}o8j{r-)9~=8EwLWUbZ>2%tpucxP7N)$!*w&vNOj^0>u6x?%F=cbwzJQn$?- z&e5HyQ<Lv3xG7y1)UtESQ(vwVE^HNxCc!Z@3a6L!HF4L1Ek$UEXH^&M^NehL~ya+d6att zJ8HR&tM>VU`BWDaOw`b#9@?N3Kv*|oW;)d9#k3SH===F~w32|E)_CRPgx zyVlVO|7o}6Q(95WjaY5Unjsqr%s~G&w`4?rw>4xsO&V;Nv&2yr*74my-!Hw^SqKDF zRcufduuAoMHmpZ~5C9pR@EW2f22NTHUv7WY8Y<6Fr@#Zp3n=I@h8rVgw+!vnt+zbG z7?hC?1T2;u26HzH{baH?<(c+s`lA;RuW(cYk~3KQz&%ngy(A;do+C_mfWS(kX;M~x z($rZL?7=5m1L%H$`b>Uo&6nW9R2wmXFTlTG3QwaTRz5djV?h=tUWc_k z`7XLg+ZWwi{P@3Q$LeO~SW?s39Jyvwuwhiv3WEB`?BJ)G*$-EdX{n1Yt`Gf_htOxa z*1Aq&b;K3gp%ONvz);WNuJmI5!<;C4!|N=ZMV)N@1mLqX=+2=7k=OtK6TgC8ZW?|L zyy-$k&r+{#N=Cx=gEP}w)3aAAjoNR4tWYT{r$8LT_K~Zh(++^|Jm_H!f`1rq2(yFa z`|CuQuu|kJg>AS)SnCHOv?-M#{05R5+?S&%Fu*!q| zUUpUCzQSvw(-aOU5S7Y#wAqqzf;&o>4o(d!0fH5q~y0AH!*s)SD&%bzq9PFY$2zUwu5Y!)fyg7uP|Mmo$fH-^eO=ViF`!V`b zzqc2Nujl~%l}ZczEi{n&55OLJ>LIWS(BM}}%z|s42a+TUK}hszLWdK+7h{6qS`jMS zrX+%fG3wOqq{gFw9}w@_1U5<+_sx{W7%$LW4D!rNm#dVG7@Ql`#E^&%@60MXqam(b z#Vbp(HEr)5r?1YKXa@s}p@uMW+aMZLMP*k|y_!s8!}1&a&HUS0!gNRB-t%HHhSz&X z8_y?<)jqEUUnA>txSql)+d(6s*$mi?t#6rL0eSHM{kFIipS(AWb39c95|WOPKCzR_$lx0+!xLrF6R`1ghQde6qLj z47kamAPXPskK73cOcL^r=sN-VAD;DqnF>39V8ml{)h0};KyXN;1PUZ!zJ1;;emU}{ zk1wu8%{z`_)l8=i>C-!y`OMyuha!A(Elzzo0cj!lx6{BXNq_l_XqE)R;}=*bbO%ud z3eH57OcXVAMV9mCok8JM4d15`I-fNkK#(tS5{n z$?f@ftE(FgyalOCv@N#>(%_w}O+Qp^5BMByy)HacUAiu8q71|*oxXD2KU1;W%p*3L zy!rWtYT#(d!IST&Al2$8MS{;!W#(%tA7)W&uBi*Okm|Mg*Dhobg5ikS+GJ8<^Lkj< zk=|zpSj^_<7=x-YyRLut%;moc21JJry1a1cpyB6!7VcaDg&g zT`^{`AX7VmHXFgg`$YNEZPD!7+%h-kz|xC}Wq{#VLx{u+fW)!o+7$qJVwSQ9Mkh|_ z4{HC*9It}PL%>p~Q=NOJ>}pYB-(#C!s|By#Ja8Hn)R!cqo<{{%NL2MVJ)G{?aN-A8 zilA(=cdkSMjTXEOQf0cr%0$8rc^Sy8Tc4RW6SoYF3)yYYu*7BnafY$21Ta?75@-nr zv>ZlI_vh|B^#{a9Wb^`%jZJHZn+&}D$^iqmwL|4Q?g;!^qZ^;#pZE?u;K5&LZsk>xp$O}mHCx^SKtDSq)Z<_+r z+=J> zPK<3LO4Y_%wPe!v)xO2D&a{=9m!|fF|Z}{+uDsQv9=9vaSd>$5i0QRwermXuO zwARZs6WHQ;{?X@MXxcklJFio7ycvjHvyBfiPv zVnC*8&1|_O5U}8Q90|FT>0g6ei}T!w0pfbRpp2eQ zf*byq^TkLpzNxw67#6}ElP#C|U?Q6p_Qn70P?ZQzRlv1B$6fE?MW`!8z0|Q-9SA0} zim6I)NF*gLJ<`s!<>?z3=%&g>-OAqnH6IWClHaadE3Z23mHs+IN43QL*-D)Y(6kR{ z$;tkjaUDcvSo#WB2O=<53eO(ZPh_>B0U$73mOZ@lh&4;!((O}vr0~2A0~C3r^}>c< zq4_H&tgCd=HwJ)O_!O&)L^)%8PyPA4(X;v2NgPx3g%0mY~n|SC| z>|fm`UpGD7U>!KEh4``nFlFukMcbQzQ`L8Whux*F@*?JPiOPcbXZ&at9bNIdmwoDa30`&C z!u|)S^Bi|M1zV$6u7ZM(N^W_#av!|z3_6^uYnWi(*mK9{p2dK#p5^D!*RF_RKc^f= zb2DN2%Xd_oeRXm~9o^pV;g9_7La!y*0{Lpaw`iuM`Pwg%$WKgy=SW8Cy9z1G;4JtP zZU1^lx!@?gU0ss(nb@xuFUetHvt3wJE;sne*tt}>x}aF6`kXC;Knx#L1UY+RieN7j z-0m0dD)IhOKcH79+;_M&EUm_lQxiubcD#gJGLVC?5y))p<&rG&y7P>-dhqP>d z%Y@l-_ano4 zk8?1E`j&-5qx~!@WmWHE)))-0yek*AI%huW7q9D-gPi7vRe%6LLnR8Dslh`lNn`FVGzZ*P+NR_DH^{+e?R~Sm0Tgkl$IwC>k(-Gq z`MC=j8x`L`JtDA3!zJ8Yan@scTkm+t_+5S`EmqL1T!pOB3r%)|VuDHMZUI$lwn%|L z?3#l3NA11_iZ)FHZ?z+krQ7PoPCfO(s3cv8UEf)1uF{biP{>0BS)Jn@l;LU@4vJCuTtUG)v#F=eNTaU|9Ouf2Ij{~o%zTLiMLYl|vnbgyVGr!HG^G9f`Cwt$?e+UD z^l{uJ66Z>|nM>M!inSx_PKadoi09C5;+3zBx6Tx=Jt5`05ypM{1I_o$j&Y{;#X8VJ zf`(E3vvHN;q0BK9s(5Vz90$Dnc|vXAp)bGu>gOBr=jMDW6dM!&dT!ZILZ&onO}u1N!=l)e6ynF%p0zkV!EjO0`1Qi=yipe z?I$6s$i+m;A+jxEGDYTiQvv@Q*3~JnCdWuvAdz5mpLb7^Q$wLDO3wv*duMfXEv}dw zWE_r?W%;q)^=S9ET7ji9j*OQ8w?)O%^l*|cCpIT`!{~D$CLx;h%#0QV* zU9?tqp{Ub%qgwiC6I+7`I9CRNA0ME%# z=t4Tp4zfFO#$n}NS_9vZsAl7luNC#ip&wqWGgB*LWopnwyZXkU9{7#`=81oHk&C5T zk-@NbwwMp13qd?OU~QYeU1x_pSNjI?u2|crB922m48j}|sZR$d3TJ_ZH4Rxj?Z2u^ z(Htl-@-@115l6D^KF`s;nCQ&ojBFJ(ea?80Lhj_S!iie|P*w}sC&%yJ&z%hBrvLsj z4j-$0^(`b60aui^eS>iZBL53l7SEk*U>8B0&296YNIjGN^RLWjS-vU%*n(epGB%fd zUH^!8@aY(ZCRux6FMXKK%j6T30$dLuF9_q{P)0GzzT4;z=APNLFB*K%q@Z-F{qSU$ z%;fZFUwmQ$cYh-In?N(qNPYIraUytk``f{-DIZsdpYLmF)SlGVPUl&u$|1pLBfb$< zWQxQ_zN}0CVj-ggio{9BMo((%eOINbeXo_*S6cTT$W@eCj=yKNQyQ)W)!e9Lq@r2fDM)(qJLyHsASIDC7( zOR+LX!D~f|8LKy?y^i!fit(-R_9mH_n#!!MHgI=j z3(89XK2@}Oto>))Jop8G(Of;CW5)4GQ43UnqK`g=;flVD2(ro5h#=lvA_7}^tw1J3 zD+0N@kI+Ia=SS^}P>)|*nmgvx*Y$<&6+&Jx@`=dZ8sk%wRG7+AcsBZ}-^1h8@ZygW zDI>4mk#&bOLtxHwd~&3;CBfE~N7Dhj?L^gjI_gNMrM`GSaqoo@Erj);{y}5*o0+AE zio3E~14Hd)1OTK_N_crkHt>7Fcj_H)x5m&uIEUZp#7hUP*8JM8$;is;Mm|OHu2qcg zDB4f822EQC^IWw)>D@8$s1*^bRJFFs>FAu5cy&Idsz$?xx$xnRZgG+>WLBi?!$=Oj zNhQV{mB`8@aM$s4x6c4*a;wh1(~o1H&F9mtDKzm9#|~c9D^;ct|B*P^5|ie-SfzFN z1ZR7yLX5hqYUj#fOx5vhHRQ|2=*#Q@(`VNyPJNDD8Tnu*yatwPc-1Kke0lB%tG}sD zUd=;u*?0!S99o+2hGwC9+e+VgBBFe?^9H~B7EbKP7q6zKrcNmevFCI8bw`1(os1)5 zKtGSc2IDldH(AFZt5Ew){?%=+>B|1P%6!GFkv1?^vp?X9_guX{hoYP49&!29yTF%a! zl5-pwj1NPvItDZ5<3Nq^97*zxmn<1^$()&;%{HuXT2x%;BEs;T`+LGLm{oFHu1g#o z9AS0HS7i+ijf%$1j0|;6&EAQ=KH1scUY|2$S5n* zi8OFA%Xd2R=h6_&@ebFocqD*JRY4)hs$yP1LsQedH%mvi9A}nh^y=?B)_Jw?ke%rl zy`;{^$9GOb!fB#`*#V!*l`@XE&$8E{H;^D17ZiTtPR0b8-*>__ z-0L*Rm!N3X2>1H^sDC`S0PA*^?8JdTGx;x*O}WDp8XuoCXkDW}Jw5$#B;tAG_Y&f3 z2#W+2NdWObWX0z%d6Iv zs?g=WG2CZX(PxP0H`3b&c6N2~n{~2YG^i}?5(qePv9r{6{CQ|-lJm->*+f%Buf3?_ zTu2LII=kGbrX&{e!I~1|NpwlsB7+sq$IMs&x2BFxRDMB$!>3D)goIx|@8PTYF&L5| z$(+nvC00F=H9t+LX=pBRb1TspJWR^S$T+r^P2@!m+t=$l^HF6U+Q9AE9Ni*$Ha0ew zxi^i4R>LAYUq~g|vr9%Ywijzg2TZru=S7gISbN+|dK&O`ddhdVW*zFOwFvbzhK0q> zV}9&~Heas|du-2deXpb7x1YRuQ9Dnvr>6(D^RnIiXid#p_^vw< z=4i`pLp8SPTccYq1S|)Vkzd=Rx&@{|t)h!p^dEkGxPYz)1wJ+8JoM?g>znawI_ z4Fh*NGq*a!X~bE^AXm%q$2*#1%kD&8VMLg!)emQ$(LR0p)O&E=YU4-QRJ?`TO3Y~C z?(QevHd+}b_d?iJR)I_sBR`g&ArF4IiO+6UER;73Eq^!@l$FJKXO+;=(4%E&$tNJ7 z+a~ezd);*pkLsnlf;Ku>GG2Ow+~`6H z837*jzfT*X*iYQ>A@od;=wc=B%=V{f{^ruT{N}OJDU4_B6Mp_= zZVPiq$KoY;*^*zk|I!AtO1N+|@tuMkRwm$kvvNMNE0QNS$fH zN$#4TcKB-Q+saVZMKafY;)0q9F1l}2 zjP`7;&93=K{Ja`K!`<74?Ap&-%sEzgY!8l_50^W*d<&IXoyp9dNsX~G-!Qm%@#0ob zu1AW*&a{$liB+6DA}?P)lolHsYlY}L^k`IVG0x7;YG`ZU-*K<^r$+VHfMvn$TH5^_Vd%xR)uguaQyGz;OD?d3 zaNoaNJ>Yd!Z1=~wUB$4-#B(*5A_No;>8!b|b)UvFr11>U$yQf!7BPW=Wc~AwRXgj0 zRRa=VY$k55lVfPzF7xuPt>q&66cRu4s+S{jWy2U<=Pm`Equ68WM{3{BKVY`qQrK88?Hw~Yx)r>V;?l z{lxlK1-9c2T%%Jk-vwZ2q=GaMpG05Z;P>l`Z+;6ehmFJM_QOUvPSM1~WO_O+p*LAB z+;~I+^Y-gg2ma)e*%{kLgduHi?!mCzO3PL~x5w!^9`t?A9sTS6uic$Xi%d2`5ExHX z%BftIXK25PLZJ|#)4Txk`Z&zU48CMp}YDk>~Icj3Z~ z+{$JDg~}C0%b`-0BS(%bZ|}^ggplS)PUOf}n z<-OP1{puMao>9;$a$~kP+ro*zGCf_+X~@$S*DZb!RlS(v1<EbkD@MUSBfrJ|`7sOF-IT&kvl9XCH{>w+MvYGafVgGxZJf z%VSo{!J(+ArPy*X5ajrH!zpV%fd`*&bLtj;uo0qf=uEkhZ3$Aw_KcX=uy*CcH+xTo zEmy3ftb7|x++x?7i?@nt1!7u$z$p#?zIf#KUba$LbE#^8lNcDTDDn|`2u5q5lEhB; zj}~i>I{*>h`54A_@Rv9dCOycZXk#jaLTokUjdA^^UzNjxyr@-_iS7h@`9;3%gpnRQNvPX9ooElzU zx2zJ)A(giHQkN`LgX!`!TeE+G>NdW(vcV&IPt3&Qm8r{iCa8 z+pQvV5+?pWag8YE?d^Bv0|rX7GcAJ1=!54kUeKADnKgX-7#@VG&c8^!4*p#5tOc*t z`;v|OB8FTrEy1HaSZM689gqwP>p5VMzy60oKIRAZkhn085MqGrIOyBd9?-4vs7h6g zi=NXb#@tr^hnvGn>?KXK`msZXDO<{id|In!i<*=zlHnckUkK`XFjEqKTk3nJnrpt( zADa-fSM%o2fBwZ*11px+n~shSOD2ZF?9@er`|>j{hZxf?=1C4d<0h950L_|th*sq8CIb7Erp;b#>($La$_=bOR*=d&6TGP!&A{z#>>Zke4)#nhdCnm=>%_AA?T96^TO z_6f4SIBLD)vOQmtJ!Mt;l|*b~$le8v(p5P0_rV(yS*%>in%eisvsHMC-nq))qG7e( zvn$KKC%6r=2CXVuew(uYH+eU`8U!az@;5!%0$aL`A!&bj|QOr!nSZjj2 ztH%{-RlRA7T5cA7IYkEBnT9(cQ)dcs)2ecvmCh?TFwJLf?`|(fvVxfe3SqWi77hq^q!lGjema3=9ksBm^-SZ;^kx{|jtYRPNxK(+S%ppS}4q(b{eN6zKFw zR#x$R%3uR&T=K3Lh>RE5wOtY;P>~F*pq+fxwi5*U$jF2wv>ap+f`i3T9^M92YLI z$pKt3e~2)-GHE|-+11{j*xRegAcB*9B$?Q3DPT2pzv?=owB1SltntjV#ydMzNl8gQ zO8YSw+*5u4GJY6=!<^_8HsI&6-hXfQg5joru*l3g)ZG9*_ZTK@^;@{oS^JW)Nw5vn z!Gd4QtgO7!U$GzaHu3#GkG-heGkZUEW#z>4YN-T}*BanLRT|{N=Lam+5Dkr#{QS#u zs_;v2mqf&@#ruW@oSmJUK7CRLqlTVbCK9ISIt()c^t%S&552j=6;6%oSK%BvYO4`p ze3^PRFc=s16n}z(g2F(#L+15B+9W_qE?m5*04q@tKU!!O?l?b?vbi#KBW$uQA(!6* zO6isl3`|ZSk%pQE2Jxv%309U=n{<-`lNP0VTrKfp6~h9*F_wa2KNG|9FmRIrAaJa~ z02uQRF^gGMRORjXHHGZTp#Bk`KAwgW9#?TFv<*Z?5e!i;2?;M1T7H*C*BhP~Ja-cNEf zSH;cT>aC1;w`DolzwZa0Jv~e_1D1A2tgt4SXc@W}p;HHjvA*3$wylp!9>$hXH{~IEj0A^lycQ}J#e*2dbdjyDghJ4x z7BK-_<+A+z{N?k-gX%gu>7YH$raM#Sy@S>ZxqlA}wm(O;LiUgsPJEl-90JuZy;9x-rdo+{GV^W_k7I%kwW_aMIZfs{=aDO z{~2ua++VSj{%mc6bR=|;Mi#U}8-^Y(UuF3A1|aZ}5)!5fta3 z{);XwIVd7XZsZiEN}3Y+gZIfMW{{MuO|_uuptatA8v-Gc{6UPfZBXpqi{hVm$v8DA z(jllJ(8LqSx^TpE1phbQ$g1oh1(kInakhstZW^P?^v}4{e z%49oJktT1}`GcO-|G+F+L;C$Z-ha3vhdva_kNm!z`O&AFt5Cq@MwoyWl>H*1`p119 z(|RXGUoY@AV3iwC?Maqwmz}gCA{_YV-@A)`d^@tAO|GDkTn*x-jEJ(Rc}#faJ&Z9_ z4g9U;FtSH^DXJjW3AN>*?n@}E+qB*hepcisB9i?tBLzT&72%=%=j$YPjB8mu zeE9n06pNf1Q0Ek2M_dKk=TyGEZXz@C+InmAbm9!K)jl){z^9hPTpN-8jDj@3y&szm|QtEcl3 zbo$Z1G4~X?>@z1zXm;%JutS6M^YbD0 zgg<3nsp0`JsX%VcZaESxJV~39mS)kJET>!f&^B$uun?H_L8sCH`D%#~RJx#*^I*e` zbDNmiHu{RCEf?e{6JI^!=ejpE$&HLtFi~Sr`;-mR^W#~~c%^a7CMj6Tot=%*KBnF8 zqzn$-D)WprU%gMQ4%xR&r>Dht!T^%ME}aI1r~ruv*b+6~Q5X-!xd0-CalAo8G8Qpl zOw7jGw|2m%GQjYi-I~qqqt?<(0%M_LU=s9qJGi_KV4}~~QAl({Fs}#{uZEUZVq|vi^1eg}%Y}LPp?~wlxzdOECjgigzAVlLQyXTHb znrE6lIK?>-cRmF&!BaE5pDa>&R?E3i?x0?f@Ko$8-d3Sk!{cBxhqX;vY&?{fe%cUt z@)h+3P1!KbEbXL|yr!=U3%dtQYabslzkk2I++jA$QlxtQ@qxoxecxTGbc@UpjS5RZ zW>MhBB1U^XDVm1NVIs&0iTAwHFPUU(V?hsh*hS;Nbyn6hEftZBmhS zZTkfWi@vA&^Fo%bh2e^|;YANE1nkI&(2gC;i(WlwWC7sp**^GVc-4)!i9Ji^Zu*C% zaktMIDI7S8TtMC`J9x?LVx&Giy05ME=>5u%eZ9^WW*{=c`1pr{s!@5#CLF%jfZ||) z{-6hD_KhTSqTr~T+QukSW8k(V4gMb>kwvqZ+>8v=lxI!P%DTCCbjra+?X{m=oV*h{ z_-$h1JcMP)eWb{JUNu{?7`{qF+^6MTT*^DUDryG)VisumdJ_jVD03xb*+qEX|2^@N zV^Ki5_tA%VyO@mZgpGsy1LPT zwVArNz#c5L=;J~GxiCIt*DYJ8;5v-8R{((hd^7^c2T^2;m=AqCC6^5AChW`rvYRhH zNaBU!c1107{ROT=G#J00W35=GD5mnqO20*6NXDmgkx;f60*s6$f}$OQR8z#s$;l4* zsmaM12#-A2(1vJ(HwBZG7{H>D7GK{z<>2I02VWznVnGBQO(TO-EGse%p_b0o=`II= zt7iLZc8kDqL$OiiK0W&&2aTPK%$!b;CAl$H<#K48!N7e@LkxiIJutlbFb!8XTcjRd z*naZVttJK4uCnSuH!-?VqIgIs4g^CWZ|EN)BX$?W>f^g?*>|rEi zAWRectRB4kGZn)*D5d}>0FBh|qquTgY|%z&_2)|4ECefh!Doqxi_1o1%MzO(m9i`w zo-yUJ-FQLpK4sMoVYajmpq(ipTjAh4+_tpukfupbO}$<+>=*;D1RfXXMg8)^;k=Ic z^#hW|Xb$n2!0HgziRetvW3Tzf2tRcN& zvLD2W2&g%wYEZy_d?IY#jzi*t!XHz3PZqm$_!-pNAS%ozpzcDJKPBOHrpYJnss4Ga z06bQ(e^RYZdbLGE;SfpClQ|mCYEYug6VSl}D7hL~Yuq;Vm&Cm=ZHO_D3(aF(nWiom z^Po*F&}sur=5pN&M1+0lDB`31;^)mT0P*i13c*~s{aXZL^kmZINLz4~?*i^Ke;KPx zSYfCv4RZ<@7a_}8H&<~!o%D`SX*Jk!3^BBvvLGYqE@#rJy%AMYyy9Qc|yla zx=ZwZS>Ye!HTlJicQwU{2(ZXvz;-$B1t!+>zGK1mAj$Xc(*$KINTb1~6({?B)j2%! z_hrX}?LXSVPCzeA1`@adv=f74a4yYSdi6XMhlctCt*(!bgT)E2vGmeQ8Xj!Jv$rO) zr%j*VFnV#rEVw#i7|7v}zV|$>y3F4ShceJ$9izqO$Mu%~7~rbP8n14JsShFdAW%X_9lncYRsKw?}^euY&o zCW8(!q2+r<^bxE~NqOEC=t?6L3FfO#j`G#GKSn?X4>%&<*120vjOB`fe>QW=J>yW# zSmhG6Mhn}#ct>Y0zO@b=6aG0p^A!nMfcWg{Kv z6Y*h|!hEXsMQP>P-?Ae`M|$;~Ef?xA-2PzaQ_zlhk-&kJ{8^b_EiX#W$L=b~^OuHT zIa~d`*RNS2j~;bLvB`%+AQcoIIcXDl8e9p_-~o}2@X9j~W@~6@BGF$WkfLon*fagu$v{jyz_kb#&7ek2(%-v(DEmCOpo=S z=JW55h}D;M7r~NvCV`{0L5gnPu`@@jd73MatUeXiE@b5njw7TbDXuD@kilK>N|{rN z>dOkDpC+nOqzp2->8Gx-i(r@)KaB}X<5r~=Vo3w!!GZ_(JDY?Uvk$@zp3jlq6I0jD zieM7OoJxHeliLAK3}=ob5PY!j%OH);;$iU(@6(p)sizoZPwZ`>9zRC5)|8IcNH)9F+ z{hg?5q!?xcDE!)cVl}M)Y5cq$&YXBQ*Z(qX{@2VJh%fo@cg&RCgju+r4x)m z)g!vx(IM0GH3^?$8*CTqYfq#~1S^l6&+hMXI9vYSMg>FLG!!b0JH&wT6uNZgo%XHv zTa(HiV?r{3lYE2Pg1_>@7#~$6pt!g+(ooi)NkzOtSidQ)3?2Z|J|qQuB}?CNsOGf# z7PBxi+#-5{DkqtW?@@J#?Jyu=Ow@e}!5cnmuf+!O$wD zEd-;g8BnsVxcc`(4yO8%ln(Drk;Ne|Y03+LOtEt7 z3&dPBTIB7aLtTE_`+HA1s}vYTxQI^cYrjv}v=4A}BAIQu2woZBuFE~f>)lkl(ef1! zr}Ggi-kZ#WFSVxB&QEFHz|a~G>^0QG_#)wwgF%X9C!{~2I(GjNYJTW+37vwz1^j$Q zE%^>T2l=|j^qd@WL00APsB@=5m%?k&nCciF&75g?G>v7_2uUBprMVGFLCIUHEd$H| zx;;&xRiKW_m>wj$T<*H2KZBlz_G3EOG_|9cquf_X0`L^jHn1Kk^PAu6R$)Aer;gyawmd%NOHXp7!!o0NiN!U>*qCi`a4;(p>f-Y6~hXs3o zf-eH6?OYS2sdeSqgln-JX?E0MSd0OEO+p55aXyo6$S+5VSK4XIy!Da3r1#d|LD}`UxyG6|T^R#?fLXlRa z0q`5o)9DdFG?gUY{{bt*4J*7)2b+5iMcFdUpVu-_z4b)xGPWY@aT#MjdoU0%Qa;>A zAN0Am&aY!UA0F)V3pU8G`pW?yNq#%F`CBJ_Kk}dxxYFc&&ZKkhkCFn>liPhP*zV0> za$q4rA_Fy=-iC|^m$q}Le1oZ0Vm6jDa=*%%af-B>N(>6#Ly28B0NTioqx&X|U!8Bb zfBuPmCRNo_fYr#Tvl;vesPY?Q`w*u{V1rX{{RR5l@$tt7RKLkLk{m^7Xfx0Sl52^# zVRR9MP8(1Mq+>kImlz}Uq><*qhLb-%jC_f7u=k~;=h^`=i&LB;HmJ=~6bO?kiRwKz ze%BU7oJ`4Jlr*j`gl>5E$s!Ggc@z2|kUmxs*pEq!1Zl<9iD!qTxgrIaVNcPHJ+}gm zCh`atOj6!F*w=nKxYdRy;hY1eZH`zd4zoq9i5B`+6Ck{UFKZPNu!;B}M^4_ zm?cMkDyzsrEz@Yd=reKys9|D*hRJs~YWh@U7*Zho2oW~3-JhFVKrgu?w&+-a#?kKo z`2Mx&H{_k z#9GG`xAX6Jumk~L?c~Xm(Sp|TnmKy?3!B>D#r^~*x}psmiEa|*adL_i{C$6k9Dscf zE!KZPh7u#I1?t|M2fX!B7{uQQ9k14!4R=)mN$CVeRAQH+D55YG@0tU2CU&{<{|+Op z7C-tI0bsz;zS*ATiRLvx7w#{O)uVB>EX!i+(HwXanY4J949#4F?AhEJ11&w`D4xl|N~=lyX6MC2~O zU%fP|Zv*X55|Z$#{+FR_lcbzE<<4QlACJX1%G%79zkQ6pY~t^+yOMB$om~cqG&#U| z|M%cSd1075^Vgh%B<`79S2(nmdduF@~W!}e`ry&gjVG?XtlU2vFAi8S9@ zop$+NOA1l$6dy(x*)Zb)8q8A9+z|j_j!qF{2+$MkU@j$D7cu5NP_o}`J&xD5<&xvT zD_ulIM%Dw_rfp=Olw8wYJh1doHY6H31(*Z)lpLFG;=kFH)YQ~;yrzMGC!UtmePjI8 z^wZ0v&Q4W}7@(iNPD-ksF*ST+EM4&%KAK$vDyGJK@tfai23eNIz^qv6*>mnFVMzDe zpe5(H9^p8c0&?G?$I=krU`F+)q8$M%VN_F>`RS+fUqQx}IB^KASjoe)p8?oHF)Ki} zC%%0npln5eii!a0`U5ZyR{u^)2ulWDo8!M?j0_^lD8?voO3s z-I4aU5m%WtFUF4`PIy5$#^krM(tW#a^IjW0DL*jpcc#F z0Op_?P$qhFfq8Xz@fgHZp7M4S=!wyE97giNUm|ycr+-^_jE}i0D1vz(?7&~{7)Jo1 zLy=XBmz&ws&+=R%Jj`JRSf?_*Xg;$r)3*3*^tR}RMzJU05d6U)2dgtOc~bi(w(TqS;PLGgh0mLUHjQ6qR>iYW1g&DnD2Ob;h8kjas~ zVUe;qoWt8Ui(%de!oVc+<{=*WN)$?#MmKzeAQp>vfF`KFW9O%(SA&7!2f=f6aD|0@ zz;yfMVg-z5l>Y&-b8fk438Wg5EM5VD&msnB0Xoizvvah#dwG$ni&3fwM1u1Eetg0SM5=Oai!pu9qRYUUUoCHoww#`J{aquNvSz0^Vb~bvYL-4oM8HFS+YLz4 z<+``*qJ9Auh6Jk`KmZIENTJm!JKGx2_FkpDMqhOx~0nagw1 z>@EPTV`vYFputVw2B4^HapqewCi@0ksq;Va_CL$pBpsIeB!B>gec%k~Of@2yu?y+a zs}jF9+koy22L*$i?DQomJbp~j+I+uJipE4 zQ^lcv5pXp>_uki|!ZC`fp5Rq%0kMtu)Fy2P1P#m2n z`Fe>&(l!Z3R=k9}+cAE^yrO+3jhX>-lyn~LHvj5WI*)qyUO)iF2aQmhMVJw37rEUM zoa76AQzN2Ia3qHWkYju#ppws-meVpn7S5Q1`S8$}UR{BbVK`ke6w1p)>z<$^uT0NB z4R8g0HHv@93Y$I;U^Piuqn~1t{)X0V@~n#=EDZ+_pN3Mc>tCDdSoa*jQW%eyV zDo*m9z#QCz(B63amm4Rz-$YPzmE7r})%DcOY+v+qM=3&`1Z*Rz%GHKnir8{NelrwT z>i)8xd6}MfA2SRYMtpHZnNo~htoR&_ToahH7%A^TrbCi#kStkgwF#i84ehKffq90FE~E>AjnPNzN$+_BZ^ipDB2Hdp|~&A=?18vi$&y2}?vK3wg zyUpgIy-!7Z%6c3DcbFJ6mZX1H1jLbS3fhgqcNYpz0s;_A{*K-Ap?}%6HK5S4BX+>N z?>yF8-ZHHad*cLvOFYL*-IEk?X~U^}KEoV%=);OZa}1A{#pV?=N6&m$?oj8zM^ZGa zzGzN@9n7NHd@XZ+*Ha{;JJwk{2cP zaX~H!Q2F1xG7*toYKgDDi?3h>+3#7WZ}Gz_g$yb~Tbbb5Eh8Z#&@Wipo~xaOj<+>M z=;>Z~*zEPTn;JD>Vk2AXSi@4Aq>+c?M-Y@&nUR^Prmr6t@4l{6wbXEGYh2= z&wD=CYX`!_p|30~yJub0AQKlp?J4=4`8}5+`A$b{E#CJmHNaY(-T7DKI#YqnvUt$u zhhNn->aUQUl!nsh2_QY*Fm4Y`iKl(~baOA?XJ-*%%H7$=vtK6;A>@qU(2lo3j5Uw1 z)^TKDFy!1;);>Zsr{H`^y8W2O$^@Fzsc}P#JB}uhy~k3N;s}tj!g2B9{OUtFxr4A| zTiN}C8#n*>9&@Pg0rAN|8_MAsY#JbHgtTDj+9w%sKjYLjTds6XYyuq@e(}m@{0Z(U zq+asMTDq?|7&&N86QrZ`-pS6+E{7x%FnoTN&eMA)rI%57N$V?C^hC&lXF^{+RIU8O z87&I6`Y;3zTVjGp4jY4L7m*xv*z2LM=H==c1KLU_|CK?ux)5jwEf3j>J`v*eWkV3b z*3G;9=sNVzjN-i~A11zw{I~;5STwmRaF(2y)+OsEPHWKvi`J0uq1ihUmkOwc{q5iQ zWbEzft;}(Kh4*D-28f$|=I+)A7g`OPqxqS2(%{^+Hb>#-T>%Zbk1iK+YC#b6Yb?p{Rxr_{?DeOJ)UaW{`2-w#|vmaL(8f-PbR45nCP zDBG2e#@Z)2Kw`kUQ0+iix*Jk!yQh~>3%dsLl(wqWFx~tAzK1@PHss4($G45a3Mo_xD$PhA=@s z7iz?Bqql{??>XyI3+6P6C<2P22*sA|B(b=Z7r3*FJSE3SA`Wv`?pdC!1pH)RKMvmq zUSe7L$*IeLQW!w3klOuvSd4cD9N-HOaWsDKtN4tDhQt5Ui&SFJHwK#7(y6^#Sk?1_Rt zhW$K+s}2CjPu%maPOXl()r)~ttm4ZZQZ%}85K}7$pL3`C&3(qdRHd1+KDliVOuj#I zLZJurZN|A~w53=fATN?btLeTT<3WNM#l@OvR^7KXZ+}DsyxQ{3$ruMP4;vgviO4Q0 zfIxha>7>F15oBqw!sr)t-QicdrRX`38-QeHa;ms7z0zj0_GR5Df|PaMYgDOG!X!c4 z*S$udJ0p}lphWGiyzD^x+>R%>PCAqBTCPTP zWVs3#+QbHqlE$mnmj=-wkVvZFm?R*`u5;D*cZWs3KA{?`l6V`koKO_8byum%KvzqS zQY`CytlvoFCkTP>8Hl5Fe1|YXZs0_7RY2QSoK+bqW>szK<|^y_Ut1}6D0d|3eFDh6 zLEH1vxKjb@QJS|g5rF2#4Gj%FTs+M4?PY-LU4ud8dw_%{Z-`Tg4I|TeB2*uxLA!aAa$aPGK>bnnNnPWD1v|XIIPIortYKe6fiENQFUX`ZQ^ul|Zfo{vqJ zt$&W%b2vK0F2pay$EMx$HX=UBN+#lYQnSzV;7aBNjxmb?hYk%Vhov+NjC7yIs)km# zhKf-K5lINyzI`{5nUBsQJ~K@Y?-rlg$Ezh}mSD!DYKm&HL zOZB;K)zP^tv^Cqs~#cIp}yTYtLuSc%$o z^^UjAe6Ic}G#y^`i`WDUFU8f(Yy&>m*q4DELYL_a$Mk*ANjPhy=KzT!R>a}ZuXXER z-U|yr!DNFDJfBTdFSpho;~CeZ8!mWePxRSO5v$&;u28}im|csX!?LsBSvoq=H|vh? z99Q)T==ZaFbrUBSmRFv3QZzWo$gn0s8iyyI(7-}|X(J?RD%~D$2&xxn#Fw*(v{M`W zxb^rzLs?;-FWk2P%P0crhQRuSS*rK9M{EJ)?QNeoGmpKoB-&A73BV0)owO7EsXJUE zDwN+M{Hje`=$_PlHD)@jGOY5cK8}I>U_EF;Z5UUE^hasjGo3F-;|P_f6|mT+ou5wS zbA|e~o+>PU9{)>BH(4n1C0?h^#0M-s!n{Cv+Xe-ULj856KLJgE{Qgl1@i+##WJj-G zzy4)oTW$9=e#qC-wDP+WVEmU`pZfZCK51boZ#*w05HJ;Jf0_kvOxb6`c9RBe{&&+0%R`oH=cYm!)mWh?} z9H}tY*BQ~%gTCj22$EWex+DJZXuZJCHprrc8ZIKw?Wlp^HXm!=+ z#;fX)fS=687wiWHMMGr(p6Aw={9BD>!YxJ8J)j{ zn$@6eswoE^?Amp`?LdwN^1E}eKx{WDhzst zb25DCW%QRt=!S&^j=l4Zx@Yj03U<-zjS@Q|avNLzbN(&Q*2@4z^$^$?w}AGwEG#Fl zd-tWE;`8v*vm^oeRYbDilJ-4)Uq&mvx@2Q}Hjj!@W$i<(pViM8h-3J^R>t36ke|V7 zm05gtd>?EbDOH?9;j{0lA=BA0y}2I0kwJhUKld%>eh)p`A9H0zDwXcksT-U3Y;2Aq zkTA&9D)GzhC*)IKT)%Xzhx3xM`d7b`80PzvNuqbpr!?CLWGSv573}~C6GS})HTb9S z=uyHRIA-A|TISoTh#QnU-ob_wC?mqWs%1Ie(E<&zV;t}sj;HFRx3}1nRu*|xMwZRj z9#~q&Eth5HlpnGxIR)%JUdOr5h|2dzls)@Em_4mIO-toW2!1|%v7p2FLos;;g!7H3mY2#C4F6=;7+TS|H*5V0dV7Dp&2 zzj^)nNk%xrj$r^spyvU^gVga)COYz;hHg_1JE~qrU+b$e4!;etju`5sDlXC&j(o%z z`wqWDAzCRjV8P$q)b4Wt1|SJ~w)4!oQjO_pRP^&iI!;azGgD5f%2EzPMUB}oNHZ@*i+AbM|^!>zr(^GhL zTKo)kM6L~Gn71oC z0#zK%F2)~RS=wPj=)>bwMi6YI>)4IxuUJbN~kU#)c(%%zGEP$GC+55QIl22G2K;RABSI0o9o6Nvju zS`PCzmaVYh>knfa=JKdsCCM|9hhCiMS#X9_f2S|tmfLPh@#Nx<@ZGD+3g z8CK$vggMrRUYvL#Sw~_&-xR{q47|lu(;rLuScV5Qaqja-T zJ>D^Y^3GfcTh@%#yBsx-x!HvGovjV>Ovgg!zX5k7pxy@Z#gA`m`_2UW+NzWyqzsaH zswzKeIA%@E#?&2DX?b`xlow+-wGcJ_p+}fw~+0W{)mr(?9!2nP&d>Rd) z5RNAw6S_qAF3n?wI35w=Q=OJNjlX=XN`YJ_pG0d#x5Wcn5Z(Mq!WuqOcYuth2+Wqb zelXCh#1t@rdN`KoD%k3wvis3AHCxESzfZ-w~2zFC-j z6Gv*@Iq>2G)=4yQ)aYJ#hnRsZ`_|j!D&7vF#F9n=cJz-dMc)~?@RV@wh%s{mMHeP4 z!rmXO!IsG`-2dViRZGXIdp|bd8LC^0&K(ov@(&m7XgSNiL)aX{P_(r3ydE2 zzY@uu!Hq9FFWmaH&wQPV3WASv*JQ$d?LXE~xqq;3DEnOMTb-JA5@Um7eIl!;U?$Iu zkDAa(AEyB>2T0*RDQc_%cbAKSh%T2OHprY!{fPjSoeav zEVejI>#PVRHP`0dn_c}^NinrAY0;NEj81FOxvtwPRwZf1pR28pE^aM#{e`90E6rk% zcsM1D@%-qk`t{5iyd9_u&KsI~w4?z8N_bzZpXAc)TQ*319N|t~t_yLRC`lE1*yrstH$VxxRnT)aT(r9a&L|7iN|c&h*R{nMbK z$d-&8TT)gwm2*gmWOGOe*?a4yfx`(6k^OdLbgYn_m6hE|$Sfqsj;x4&_v!QdJ|6v5 z@mkO4^SV#MH&WexUv#c3M0t8qNXF)6 zcC?l;%Q6H?W&k}KcZv)V_hSp^uC!>O!Tc1F2-y`UGIz(<{#_O>DPB9wu2GHRgCg*C zgM0!Tqz|#pLle3f1NHY*93~NX6knG`8UF6Bc?2&Q_o|b<-`$%E9$o42n($HhxFFku zog~HNzW0(L2J#hhb9q|lFc%3g2xn*86WK4Acz<*YmfBCag96&57Uq({t%_(Q6Zgon z6kit$8LX)dBpR1le2Kb@ZxzV|<{9GrX!v!E!5ME0&1P{sAwMFa(QVXKw{-ns1jB?^ zebA9=`ggnUTee~=oJ)>^GDNtm-mD8NOyU>ykQkk{HIJfTzT*6Zc_@sP=b4GmpcixB)xMZ$X z7f#J1LlH%L%c`h`h(eS5MYxJ_v6uT=zvkH$eHm&!wTfB4oG$V?Yz%ORy%754;T5w)hYOHDlb)RMLm$;xWHyNK%)W)Hc-LN;Ic8aY1cbNf=VbNM z!vs7s&M|r?r+a+=>W8zp5w9Jehn-J9$#!*_bzlVwC!5p|`g&xKg{$O|TkRd@@c{C( zyY+2zn3<}BdSf5gUSqu>MDvp0{O}g&VOQ+Bk}&aYA%YOqNGzkaoNHCiqM&|~F%PpB zI-zIzY07-Awh0o_ov0Jj`~MX{PG}FCv9;_)BhNR?sdgt2yx7*a-n5pf2#s&P9b4lg zJ&glCW779-T{{37-(0k;iNP~@uclU}L`r0x9ywAq$ym4=a@WH9(Bv_(`9a)VhZrw& z3igoUhtE1|+c0lgBbvVHazxb8v+$RU{Ve3jG)qiE_q@%E#Im?Xf06K0_g0Tt%1g#* zR2)!4swaYR?}+?4%Xfqn^>!H(Y#|Cry*0&Dr2Crz@5lSXNt&NeO?`>;)iL|(@m{ZA z=y+%1>mcu`F0@afyNuD7>8FAKfKopOIidyJQ_ZC;E@dxpBA`1CzD5k zT{BB7%gA9eo>D%_Dvu?R?^7hiThXyu*Btmpc_b>$&p7SdMr zD2i+5({RIWE7-XLOxIuzj1c6opSXCBPe}j$h1Pi-R-9YAuYUKVpvl;n^85@V*&WJB z60bF4%nawTc`FoXeR6{tIt$7j2}N?g;amJ3*g~;_`dT$9IhowwA2wfDLmv_n zA{rZsL2rG~RDBQ=LoXvMI{}gxep*`En>=2BwmjbbkS)63JELxF%&xlrTKAIPO(hMU zKnfo)NECkhE1Oh#3W5hwk7%102*(f`kYs}tsuDn;6_C>OZkymeUs%c%Z4wZe7h7}1 zLqfH+>I7py6Rf>|r%~LGm2F!~_H{w+T5SX4=>aC_u|7G8 z!w7FXPvM$xkj>iF*#o@dX=C_qFxue$m)_FKDfI?@bYGACl&Jl6Y-`8kf6 z#r|#;*d zErDH6`89tg4Zfo_whR#TT^fx9!ORixyV+R*Q#SZ#u=cB?x{)#?8PCEjg-C@Oy> zAx`JzD7Gl0d&+u@!1p(0N@63$TQ>rxvK+vG`WBjWPO@$ zm+ffk*`Y@}v2`q!(uEO5)#&J232>-C?7Z*A)+O6o={QV%FibPo+={`#bB^* z?Wq*&HxB1%Ee83tZf3isTVDhgwYz>fXTj{1 zg=U*(uV!mW_+kEO$r5oJFsvG|@l=TSCOfd)t5=)mMc=+E9GGfPBaFUnVei|TLMLcHx2F}gOgkQD9R}xt>{NQF-;^U zQr<_)jpM1*2!AlldjqzI^S@M7RPZg<9K5``vnXB;j*GgwvFk6v2}yDKHynWZMUe=h zS5PfGD~kqHoM1@>fBx^yD#o@Qh|MWqGP=3)s;%nt&c(M@2DS*1UAU*^|6qZi5mQEb zsrZFRC$T%7RJ@9&gfwepuh^d+u@nB^e8X_S*#T75Wq`g>hcPT~xBVq9l|7tyv?INU zlxS?%@iu1~gkcaef}8I$+aEr+nHcgR63~Is$JuD)ad8giV#ASz^NLim;U8cuwmoD} z#Upn*Ha8`c&^yvZB zGbUE+9{mc(3KuLdU=X@?*vMRO`X|{FO0eNeI!@1a{SL?n2!3v{kjrDr__?G9x@rA> z{KKl}$2L@_0>7;qrecu*)e8Oa!LD!i0Jnymn8&L>lQ;RCJ!vOgeWvNZuAWyD#Hzy@ ztOvU+y2oTMn6N-%_YXsjBSiTUk?;Jxjc^WKqq6cGTwTjcTFlMO$sa$4g3-*o<&fp3 zZn>|IH#U6VzJ2>GlXq7{qHfEYdY+*|fg;8U+qDUS!dqt)EbA!C%WWV$4hV+dS-g~w zP}F(fyHt#YgP^d_e>vzY0SJ>P>i5=*JbG0&P1-zvb<0hG@UQ_|sS#iSgrYjcoj69j zlD7G-O))z$Cd}bN_A$1CP3<*wTNO%!F{FX_4i%`N#junztGJlhdZt{fU7kZo_EDsX zr@INTr?<6pjRE%Nn5$g()>3_i_<$+)Q&KN56?^f*JQ1MQG zIGphgGEq*2RkUAs#y9hkHbpM_KVSvd3T~0NaltDs4$jWa$K^&t&xOoh8?XTlYdAQw z97^A67XG>DhMWQ>RWsH24+l#30h{sF_zEirhr<=4o^;zgJH>bVgs4q!(IyRhMKn5W-RhXmW`?k%MZhPBWPk0W4jSXmq)x~bhx@KBwY`K{7xz)supobD4x76tf;4Q zB1A{Ww8Zt3=XiK+b9OtXViNbDl;D+U{!krD!#Mk?4d+cfSq!m-Z+7LZ^@yoTlxUKV zeg=z&1T}~b-I9k!%XN@mK0BzVX%F@!iYh#m`@1s=85h5KoigWB=OX4-r6tn~w zIf%#eed-~t7s=g(;qz^yq+8<9ydj-SoW%J*9I$Nm+3-%KG%2u=BmR`}&H$JQm~Q-8E}#0euKhiOU8#cx zWyT39pB<68p9b)-a=9@pvX0jqio^M&zHUawnNJoVC(Nr(LZKiGXzZ_Q89mW|hI;cD zt$B>@-^#RunHslWy~ZPY5)iNe(9;5h@N=JW9&>6~Of|EifwHeV2kK2$#X+n${M`%_ zX8mGu6vaxo`Z_@T_ThYeUcnl|)!7H86mb0XTiBFqi@rp;z!a0wr2|mJ5)-Mho=<-Y zHz&ue0*ZpbDE8_7C>K?@1-v7+ypf2?pKuc=4kGC}v5(O#`sDtFM$=#BQG0*j*F(Y! zkofroLDAyQNWI(TOzC!Saz{kXqm8P(Eg+XD1mfkPXW;~?Phk#b)XM7$EZTQ5=l-aJ zay1jmY(Uyx6wc%Ejl`37_8;sj5?e28js>`bn`02N`D$3JJM+?n?RRGl~i*}5uBJ9*_;qh)O&_-49>y2zA zM*mv@$B0)aTfMRYL1vw~S*}hL;|q_ntg>^}O8W{}8!Taq6N9!TDfpu{aEay@3lFjP zo88GzPlgldkwgnh``CP0#~if^Bfq6Cg%chTIPcFb^IIKiR(3@88vHn#mY^}I{96!R zQtYl>wl|WTQL1ex6lkF+#nt?D;xvx_$T{;N(`V^q04bsA=PM(~z&1T>ea-`@GPdKX zpUDp1FJceo#CkF6Nq8kI3l7a1TpxIeUEAG7p1*SyN}`2=jTK!^6PT*OSevHX1AQ<3 zr_y9>TWH~d=X$ z1NCDy>~ep$W>d0Vjgbe|trhqOp*Pz+B>ur(AAnBGPpC}daJ_~p6aB4`um0?t_fOga?v}23NBemBgdQ$w@*%j3LPelf zGd-06M5==-<?AM)d0bF!7mnT&a5eWds{j8af)aBq%go^4f4Pd`Umwhi9(6|jrG6YbS5%M5I< zqF8jGn=T#7iWl~D2{Z;AKk@HGGZ9eg+G$2MH7ea+8bR zDEnoMeMaWEfM!*k=eJ}5EwGj`5PtirTS!Alaga?Z={0_Q+yV3~_Hd1KKt3poj2;qu zM|qFvt^d19xype7Do(#K%&w8*YTNFSOczg+6^86#Y&KSWQQ_9CV|FZ?c zfTm@HWc8}EVt6_W%4Z;5LmwbxK}zrTVxPh*g&_8+HI>Nj+ek&k+CjittvV}ApH?u|s#|jvXc(#*1X;z`E08vW4vWU@L@FdO5%P2*iX7?urIC&R~u4trz|Yiti9AW;+e^riz8CV*4ftP5$;tyiR|DUK0|a~*!no{ogB7YxQ{7$Z4z9NF z6zardBPU_SDcnJi%*?0%+Vq!9yovUaOIE^xyIUiTe7Q+6FD$N`d|o=!+3UQ)IU`K{ zz%E3SrSooGC3sg|NuO<4vX!n7a2wKZDci7)J&(*Ft}{)e*L;yv*tHONm^;m|tXRll zdnK&g6qyPKLpP!7lQWYnsTBCc(1N~DP3_zhU+2rS8~@NZ*8BOvom*R0<9o)fA*Bju zHT`3v)cnAp4^xc0kidBeFr}NyFd;Q7Pmw%MX}xkjT$6!b_xJXH3I=cUs(PX*cEa1Q zSI)a}A;wTt!gg#ha?)yjtyr+lL=Z=7+@xJeT?k6tm)Dx z!_BaK&JE7ew^0A}2k2;FTAmhAG2lfk&b}r`lvu+hWm$2X2lZ`fM)&&fYLJ#WuEc*k zoM)We8|_-UbMNoP|K4k=8-$o(a*!lRO03mPqz9_u%z&?{MR)(H8HhHVH2cbQq{+|S zJZ0jcwNLGi?L>X&oOyp)^Lo(i=Y!z~BxM3p z6Rs&yB&YV-C*GfJiGozaZhL?nhu( z^?Lz%r?Aa&pR`DcN#B$b8JCKSb!N}Ytx78)4(JY8k;SpziB)Ajw}a9>3jKyiI+dx@ zHIMJw{V&2ErKbYY@z+2f>}>ftT##G!ku|9-liGkzp3kFRyCxZh3fcYNu| zMB*2;Y>7do-n>d*A}xP~3uXFGd_Rb?x^^-mYJa=ZeYdD|1oade6e~Q4cPv*b$fKH*JExp0GW# z_3aMKKkyDEltl(YSDNVmEKb#BR_xMMm6O1q(x+`+dup!l>$@Hj zMg|;y3PaEv^P4e2A{lh0UFQK2<{X(edwIgi}j(@~Tic)eE}(TYRk8A8#Wc=)3NTjND1>)${i&E zvCIez1iw|ys>74v$`H)TI-|UvLV4O_mkb}I2>0~>sx1a7OTq7Qz37paS9SA$JgO(6gGgV^iBQN5^GPBy(7K>&Ybl-Sj^v?N? zW;?&fq-_1MfI5pKA80Pzyh|8{mg%A+&H@Dj)LV9D@ZdeRl+%fIp2!O^62Lrgk0h3*O7n{o46H6#KpeAlQfBNSzR(|F4PPdWr2%n8k~OY+gr z#D%`nSu^ngA_a4k;F%um;QZA01!LXx27i&5EN<0zo*}xX_p%K!3@h&w@E=?e^i`r% zS{d`0a_02Uiq*iSFY>6kx7V&a=haI!#WZjSokZJvKd?fo@0e~Us|e8#8gIVL zx*a}Vy(J(x7)*RBaWMp%++aAlxvp!pbp=mq`+VXqI(aMaxxd7+p4spW!bWb7e=o@z%OfKtRSLBgAqHTN?AewYXq)G@9gkJC9jqr^Oul9gBsT{XahYbLdGI)fuExMmE8q>nP;E)DGVv zNYd>XElBBKy3H7+i%JEL1YjdNN*?i!x!)^h=!{3IlT;jjRh{RFn)+r%jb=u`ff0-G zkg&ZL%fqE1P2`GJ8Rr=D$j$x!hdcd*_b5u>8lp4>TN9b)`>SVduHPaVRbTfMtS zM?<{l3HCbR(ishXr2*ESrGRUGbe}IVIgCCGyH=v$>Z- zP4XG*lZfdbjs%db`3-ZY7->R?DTF{a}AtVbZrtsmn7g6 z$=F79o2Qx1^b9ole`7?=$fx#U5ccig*G9+-XP3J-wP8v60-z+Whtci1?B|*Dyubt` zCPbVA$r9XI;H-m!(N-N!{QDu&Gw>`AM<|?P*a!nY%tlq;Q^nsFugThL%WAf^8TAt> zG!)krqwgFq2|AFwwLip`GD6y*(4l#ZmG$z+uNB_xinp^*riY7~DxX5YlN z^*JNPvG$wBk|tPhxR-wq>;UQMu|w7l8;Twis~dND&C60LcEzKDr~cAKF_)Qj4J(~L zAGxzhfALu;gJs=2>oy2nj89d-;$mz8QzR4-aX^$eB1#@7!(sUI^MoF%A%1*LglL{f zQI0*0kW8)BuX{3%ncZ?+mMRcxVfm#v(g@ejhXhfC=Bw!k-||E~3G=`jI~*5w(5#=8 zEGud9SzeSGi7{JnubjFKM{$ymiiv8)YwI@h51_E%Kg7KM;VM<+^#dJv7M7-1EwhSA z^8_)Lm-CW#{~PE-pZReCkZ!uCqmhNkFT3M<*O{tj+7Dozs)k;(fe#z-zOco>!dTwa zJkL1kBg06&i>0s0AJo$$dx27A;Q>jdo~EO4;JemIoK9?n$7YW{L_`-;J+ciTrqpK# z7#8$7KZBP@Oi`lp(v161GD-Cb;5n=YwAT7}6?u-dO@Opvk-mbIduYFvYlC!yRVDs^HMl63+(1|OEG^-xxM$pR%4Ih<@64S3mp(Tk>RSx1JV}hG%euOX zeB75Qsm{^|%fuj=Mbbp33NNuDRFI0#mT9eG(M7Y5-J0O%BPrLFJ}DS=)2PC|eb+Q6 zo)+@~ELQqSVmHhmV!N4TA_8)hE!9U3wy8`0+3aiEXK;be;$Lo{GA(2BdD!)qic^Tf z;{0Y4ujtopU;i&6#Bm?nkY;A|w~&&s9M_AR5vSF9mVbpEp1)rR zPMOz{i5?Og0Mw?66WIX?UIuDBBkY88XaVoe`ido9AWt$QXMVsv{yKbYWakgO~pY4zcQB z*G$$_cJZ4jzzVIh#R|Xc`_pr#QH)C0&lQ5t1vr<>8K88@Cs@xe0u}RLjERP%wwLD= z4eFh>i|a^`1%3P6Mq&09cCx5280AQjon{smzWwKMKZLv*L;4_1?ZSLWdv7GH2(~v& zi2mD>Wm_QJbP3s!(1uijfFZsM(9m4Tb`z>jprX)hf+>N&UI* zMk$>Q0*9RR$EK9%hFTv&keh9&4mfKf-+t0Mskx8Cyf)SFO)6NHL70#0w9?Bd8>{mjAmfl0gMxgeA#aPerxUNC zd){`Dk4NGBLBqacQr;25u$R+I5#j&g-?HuhOC<|2ZxcJ=getB~m5TSdu;1zx9d(1U zQPTvj^W~eCD)Z=S3Z{q%DlYj1Prqj`K7D)Tkx*SxlO?A3Pc~7K<1P-0h{#mR^e1FF z_B4zB#1lbr*UiQmQOnZz8>;*ayB)IqgCMx;2GkjDxlAiHn+geTG-$7Vx&kJcB>NXd z&WzLFBGvg1w-|Ietxx9vK3lpyuJLP9;)WsC+sm;M?7I~|^>ZpH5CBj*Ac?x@N62}v zX#*Xzl@rvg)tAYztC6^bEaViFaS-D3uHeqjr<;GzI0yH!824O?OgE1i1f*dT&gnUE zVucKV>D0UsJ6S7}^^b5SSO|VnECXxql_HFQVGK3j!p3zDFPSpDW?}bhL?3@AM%&Wi zc#T)w>=gUohtC0M>g2l}Q`8|v=3l8EUDCza0#=5ERLds>_T-=4>`G|T3ZS5(1|s(+ zUmtmV&<3(wkMU0mVcfQn=Yiu?9yz9+2so5S&U0?aO@-l*>>sg_ky?TycaH0;Y3|%z zDBd=HBt+0RaEf#0zHcPbmoi&;zZ$$srMnIHFO-GX8k!MIF@ruMJAum*@=%m3 z-OAe`8w0M|F%9AEjK+(mGjC29CeJCW3tnA?+drnGLH_PBNt|9R-P>zL+xf5&@Lr6B znhzR9FKF(56ek*Ai=(r$oehKuw9*Tw`Ozf|zC?TDr3@m>K)stQ@ zP9Ua;PoP-&j4=2Q9MXY!)3SQfRkE>6;CXw`n|hp~^*!noy!MtaS<6 z-iI>IPos;K-l6fn06USDm5ddx?gR9;KzwjtJ@kjhCJTN(eKm=|A%fnCY>w{0>O90c z*>ZOq;`&dV^YZ&XyK)}I&&+*gVT+FS&6JyiR1~|84hmJCpJx7zF!t{b2wUi&{wQ-A1n@Dv=A&nl9p*3ItKk&r*Lg4%qE8{r*snC4+f)Vi#I# zz{dS(cxQ&bor=4RG`miKW`_#-(Z19b@#R8ZI74- z{+idOUY>R4*#(o&d?h%isRd}3Aby5=|HIv%a))_AR^TBa>nW{hENS?V-YQ;tkPh9G zgTbYJSz(tr%^Xs5a(Z=jd@kB^U#MLvRrvv5MWW>y6sQQ8&#u#9Se;^`I@`6^tmhXY zf1tv)jw4<7iR|Jon#sMXgI;*TyNmZtQ(FX9uVD{WcfQ*~ieT($qZU|qR#jKG{{uDH zEd~p8yo=84+|9$;6gyN!iB8x4E}XCSQSGUKcQg zNY^JdoIROKzbJs%Xin~Ar1?BrnoMwmctzD*trM2T4f>%t9#Do74HID?>qE?gNkhnE zFHt%wX1*Yp?Rer^=Ag=T;cA2QhgfyV{-_es!CvNb9?z@#iau(u&4AQQiuhkGIXaqd zB+BEZAipA6U9!y1mw`#|0p$YwpdAWe&#=OIjw7wvGI@F{`47>ODm3DNvWf z0I(nJV`3n_n3-Q>tUWq~LqH)FGYp2NYET#$vdv8XOQ3Yn#hCv0O5N@r9tF5Fa+zMN zkHy?y6yG@AlVvN)Sk(9Ob7bL+2eVC3IyvlK%UqR_xNe!_g_`AkkR$gKp_udGWVe&c zco}77pe2(B#}q{|S()POsXlmr_rO0i9}Dlq&?)FEa@yd!rkkHMo8Q*zy|h+G;8M9B zVqqs(CtJOvHRFQH1 zEIqQV`=MHDda3We1J8=o$mYoa%I}^!QDIOcx$?l}41%BqAby=&+{{hx?xGNf;fY9L zU!(}`P6iqw_kIxdQzv2f7VKTSmXr4V zgB{S}h8HTijK~+5J@l*7XzN>8jz^J9KGbWaq2`jpR@<+L_YPQ832eiAkb zwJ|%K1-A}QDYtipi(Wwix$q*Z@FryuL<|emgOmjhQZXzmE5kZ#4wxzU80onh2O1^g zeO`yrN9;pbLK&x}EE+SJK(faJoM(-!VLh)?`H#UFZJ`dqKz0; zf~W#V|Ihj<*9;6Z<^oN)kTCq=p+dlttTD+ak>Ww5I-Tg46_ z>s{C!#b!S?l46a{Z}M_%!;J5@NmgzewRC9Rk5rNFR61-oFxwwbO&Q8y9^;Lf`F#DR zE;3Y&!Ssv3EnygI?~y3?b8l{R4gLpO`Kf{&v z3K(~_V~zpymwVB>gxRo9k`r$}b7Z#owLx&LN;lv@pc{IN6oIl+5xrCj3fDx+Xc}%Yjz6KKatU=WP@ObG7qh@QGqxfza zlecWX#|DWP4K7{L%TKN{D&+*vWji>HA(x-Kf&FRe+errJNfNjPQHoGjGHt?|yn(GBY#NAEwvF#K*I}Ei0P{Sq|defB!SzAsCs9 zmZ({f@~^doA&`e*?)iM2&2K7o7aZRk=GP~|ajF#vKT7j98Ixbi+eC=B$_jsquwQbP zE{vZbMj;Rnha)ZN*#CmSi`AD1<%540Gb!@p8n-QIi=j`ylEbc(F!d3S7kP-6s?k~F zG|}*4GWKaUJS$jH!POjKU=t_=`EIXd&-Bk5C{4}F?g|39YEo(CAyezK$DubP4SQav zRh~V$YxL#g=9P#U-P-{D`dIG8C{UR{l*_vdp$HQEZhyfcahZ%>!G+cjRf<*w!n`h9% zkDEFj0F+ElMs1hFloZ(Bk4xYCz~nxiH0dK0xzK|)yf?WhIlV@Ohk*B%>;Mb~i`HF>nkjW)6X7 z2I|`bZz}c&yJK-hv(+(fA@k;2FoG`@27s`g zy5QWo!E?9!JdQv}qn`NNTf0ogKuFYf%%FJ08&7jO0hhC?asxIqf57Cyg&y7T*6he0??tmT*Un%lUFWN(*VSzx2 z%ARVtXf@mh62H3`RE-o$9w*jt=`%ynZNB>_z!SR_?zqIw2@b8!7?UoN-76a% zSjND1JW)ShX8Zd2 znctdUUe+`=o@=k@o5chL1$Ed+sc5eDe%N^Vy{Ok)JTZ7Z?-mw@r>ytF5KFr){lSVz zcP?EXo_#3iv)0r?$x4lt5}L`BhBu{qa^?MCF!g7W03L3`@&N+doDx;(l)cIa{jU*o%wHU%+;NIipA zL;F6xERX92x=;OM0AoT&6b@?21qu{ij_*J?)6e!`WzIZ;dV!z}nyi`2VqU@_l7N9b z(onxarv9n~Z%x6t5=Ygg!#1ngn zM|Yi#Ij{SIG<06jet^elhUz zu1+PHrN6IYBR?NU(hV&l9uMEEr`Is76ni5S+4ZaSExP(#+b?m8L6DdfZO%4dDu2{1aOMNv7nz#j)652gGzWdz(tKgt|uxAf0ge@Q*LSNw^mfo6SS zZDYf_Cq-ev<{1*>|9DHGii?g_DBEEG+dqH?>^T&SJd1)EAzU^W$g?XD;4v-8=LUmS8@wP7(BeZW+g!Mfyoa!S7?MI((J%>9yIB=kx(F*vpUx6Fw05iW!=sH3~}q}TVV6AD0wU8 zm47y5HiAy&KXy`(+ zKBltDCoGWVKz6XEjHN1zP;Yz}&ECN{_vS;YKldraWF3Dn*Kr5OpveNakTdY#7*PHr zBjdCcBhj0+%OPKCgXE|#t-%lhTY>5A%-z<-F=vGH9@%b2Tk=g8-<~? zs3(2JH*Tk?N=3Ef9{^|g!a2t?$o4PeJ}dHfLXfeUaP`=^KZl$|dax`q+DDoH?OF#Ba*3y40F;h;!=T=G-coF=?D z>YX}|zdM;M=SGVfh57Ga-UUdzR!y^^8gkTj?*^}B^0pjO+q#s3?EOA`aDOFO-hNvb zs>UHOjoYd_N!GvRjOBfpq1;~yW3pDjFT*|ncw3d}@RQy0S++dnYQxdk$WL;1Jr#{;z`+AjYdDR1L|;Z-iiT4-s` zZbFTt{Oc=A)+Y#c{S!CN!1xky(4Kh-Q(7Mwp@2AtF*t&@2?C+_&0TMhA5>TF<29E3 z^Sed*OHlS(xuDD_yV~;Tw9or1@qS0Tk@G=zJE{=PTe9^eLdiJ(|KBDTCEiG5qB3!e zejgux62L5NAp8)k`B1X5@91)Fq& zb0J4=ZGTEAQO&Nc<)%()%h^?+CIQsZ?{|5BWy{qbaSQBAK8h%^b;K6VS0Zk+MDP>P zI(DD*KxfVWX2!c8w1jOi)LdsHj|7)?V(Q&Zm3-4U+R~WVh4FX?5?*RY+q-*wGt-_$ zUq*!FIu?pdemuOl10doaBQsWP7Yt? zJ*JoVGc`=iwfCeNFl8ou+AF;c?X~V{5GWi;8SZBE)^kcvpf^JZUL9P}81y-2mP*-( z@ruk#V&!vhEb&D(xB|CWkGs!@`@r6np^8!h%>U2>nxjH}`EU&louF$g;eNdJsr8JE zhPU0KVMkvoz2zK>5v`&1YR4eo8&1e@gMRQ)m{+i%Qjh09XN$`Q`UXCZLe<=Wwf8z4 zhNgt-fHf#KFq3m}CU3qw-DM+RD;nhdcQEn-CKXkK!~$qBM5+?(Y;$f$B;RLpO=|gl zz|P=^%wu(nUQ-$J)<42_N9}^x$J25-)XLS(yJ;$a{Pyj3aKuy;!)7#0#euQMZBu)Gswo0- zJKMo*$WMD(5tJ)Ddq$tsNtFP}oO~7NE#R=b+1U6AIljq6vnsUw8C@-sFFcbiOl7w% z^6p1DzYYVXJ7`mZ0C1M^b#lAc1ui?yQnMDNaP_-#=lj$O1t(rcJ)dHfskYFs6Z%0Y zrmIy3eg&}Vrn+-oe~yKT&2?copcLiPYUsQsZ`&c3qA@8rHkU%@;V~P>{C7v8>u-!P zveG`J4I;@xv8Bt0m};10xJ{MBu#6VYgQ`w-5Y7PO=s$<;)Bh0|r!EhULZ^#&>ym0{ z2z&tAOZA>=RhN7m#>8HT9?oLHj0g0|q*7W}u3MPjQkK0BZJBN!;U06v9NRV%iEirw zdIBv*7Arl-ki!qy#r9zQnn(dMODtPh`s{!B{*}=vr|V!~mC7Y%#^$10!8+A3K{PlA z9KEP&q!&gAkG6Py95Se$%o9mzHLRT+8NuvB2Y6I;HYCk{xt%Lw#bT|jGgaV*j{7}n z{Jk#faw9ZkPz@7AjKQEm*&jHoQ#!kH@*x)P6lO{5864NcmR2tyF)@#B)>(GwtZAKL z4so1#KNVLnsHVU2;}SHPOZrn~$$SniRn+c&cCHZ@zP7OMQ-q?f-1ng#q4ypsTy&WQ zjV_B69ibjQT*>a>$r?aP3ZHLM&+~&{EpmzFi;w`9$Di+@IUjBnNvOH1Sq)35o&72C zKi3(q!TU!LJxtM(jA8H0<6o&PaGeKnloeB7o0I|z0$FK7% z=#J1o#Lj0hL$Z*+>IHb=41kDc_g{R)>Z7boqFVP)@z z%F1iDw~aS?-T}=)chUU@Y3sYQ5SqDmSc!c9Gj2_L|J^a)`7ZP}`RRYG>!6Ww^X5L> z)@h816^TS&l<<%!IUZimDwfSrwPqx|{e~P_H!v#clgpJzF^yseS+?c7lSz*!Tb?7# zsL->uUe|nsr)`htQ(Iiui=!y8o9tRJd6Q*=yFaGA)nRg&07uj8%3&~2GUb(aq#xV} zAo-~p7ce$qfiSiH0JiE&%?$?r!Z~Wck<}|1c+P;goXQzo~9@D|DIV0?! zz?=ZEP}h}(*@A+p zReRO?M9o{yQWoLn=$W<2Xv$@^pi5_}lk)y@@v&10x7R0yoIN@5O|*k|%Rpf3sHhXe zDHpBMvoLd@M(3oQvz)l|nYP=Ez(v`i6*{9D6qCzE<)20kmFMtYoUQptBN_Z^66*~d zLtzHCG9;z*zw1&Ut6>aL?))02J?0DKG4y_-N3AovmUVcflBipdVhrb(e%a?HH&bGW zj`FwJSO?Z*Y+`y%M(7hnJ_#0IsFu2C;k}myRmI$?{V1F%zXj!@r;s9mr)8MV6EoHk zU>bmoN2&r-C=}V2@J4;{85SX?m*y56)5N0Ql;j;LIrunYk|XJ{(Y8DODwV^JuOykO zXJ1W?ka*j5VnR>C!)NZZd-2(tq|yyLpsf_$*Iv8g2(tYY*?Lwed060D2K5HlO9zT? z(j~W;6iHX~8A=}R>2aFXCVCv7T$n(d8QB+BKi6$@?kqS27t{ zbS*GVXX8hUSBHrk$TUp^`JR+LQ7%e*&4K7&3h`g4`&X^mux0xH z&h>(iG6=Wz?bl{XIuC^Bnap2!zI>g?S(RCFWNsprBcw3sF+=Y zjx;ZUVsMChELKt@>E5cWg@OxNB0TYE&NLHnUBL>0CR9vStrPZ47-{y2U{_^#A!pai zNS?%D7vXTi(lUcd)9pwAXo$0S<`E1#b`3{;uZ+~Ky|c^6#hn=P9r*8uTRy+aAhvqp zCx3s^;SKc!%K1rg$9t*@&qHbwBdA@6J4#>A9C{jQIeU8@W1!sbarUGVId6;BMZVyd z@~%zI(H0i)AINB*D)CLe!@v5`IFZIeEd4uR@MeH=y+|#b|59FoyaU{j=x#P!$kz|W z{h#Fo+>HvG`@SC^d(JwqYS(lZntfLUR>X}r4lxW6POM2rB@$|AqN6Q zE&<~j7=1zHYv_w<(3l%4n*co~XZK5?PIMR}Uc~6pfVZU-fs$8~d^N-*&h9z`$eQmN zAY}x{p1u1hoyXx59vzj=hW5b!?r*MonM#pRpjMgn)@6Pl?|f3bot{Cw`04lyXMj9z zd;=NMhmuES)|HgIK&sFSxhY%V9QNp^GcalkwAY?--y}bpn# zPKFH5Khsw&F9mEOr}h2IK1#R@7$AVP$bVIIPGBtCsq^l~&LJTe)6UaL$AN$LdZBz# zvijpWi=n#~?k^rvI7yJZxBs>1wxAz6rX7V2TxVdVv8&5?RxqN2sa}AVJbupL9W2MYNO-H}VlMcbLD$59O$_j0JdaRwB@XQpgUE9NUp*U^|CN5O_^G zLNaF|S_Ab?{OyTUF0}s@`8`4*b;k&Ho_*{dO5@*(mYu#eR8m}`%UyBV(!;TbSKjpp5|N14? zJQ_UbAUg4s>Qr%w@e*xdnr}R zwGkZjC@)>(wCiD4;s|2qj zL-IX$+@&5|LJlq}_-1HMiqXFu>z!wR!(4kaum)!AJeNl_L^1d8OoDcq>e&@k!$F?N=5QLSy; z$3#WIp_>hYG)PH<$^a@Q(lB&~bl0-z5=A<6R8TskOIk@s1f-;-TRoY51&KLk;T{zR5hW5 z-L)>0Q^EkA@DMe+{xW;xz1-R@KtfopVU`XZ26-dr8{gSJYU6Dn&E&xSt5?Mcd$&Dy z@d9(cOA)7rDsn}1>o=5pOb(GgvE}|KnVb)RsC+Uw^QZ-f&OE`W_wHZ6oRsnP1kCUS`9ggZFAsk_=DNbmO z|4ZWF%%gU@+GFxJKT^3TD=)dmqu*E`pAbS zC1i~IP%$4}BrG{|Ldf5O%eW>gb|+(FI>lM$NdqHI$RPW4=U{$&?0BFozscA|Q{etj z&6W(Z+weKUkXP^=X^O%YpC}#N|GoHANK))2{@v+t$gId#9PBPx$@53#2r4Sn+*Wu_ zcV>!xGsW@fa3H15&VkSYU)fHY4w;{Xaf1YyI~86IPD9bVW*g6YuQW@=ifMG+mh!pb zWK}b?DACfTgL97f=}PQ_q*nr@?~o1O{4mmLBOA5SK71L1GT6O zltCKk3W)MUOg$3jxU=lT>=aQ)|62>?N_dVL4dX883svv7%e&^8e0w5?YzftFV%eXw zeH~t`U;5FKXYJ2s9c(G!7$&;;&GZW1FebqUvV5B!xn?KW2(sY?Do^yJzLSY{3h8aB z3#7G;AX{u9XK=Okau748bFKO)A_+;!n%?p`8|`G%VLF%`maZM;_A#&OU;f)Sj|tO| z$ysz6l-KY9tkMz?V9LsCSiQp;OP*P)&s;SU0uZV2={3D!1l0&0h zmOZE_`9q(*y{o~$uoOQy^Eo8=;d8c$tGWfBVOCQT4|4QPgNf(t@G0w181g@XVfVq> z?Jg8b>H8wegT9wgN74SyM-;okVHQHX+X}ZeBnj`zdl7g%Q7w*(r^;-|^{nL>#+9BL5 zT^K*T(GKlnnf_9wk5-R#Lj@fl6K%}f7{{m^A*JV?Y!<6R;Apu^Kgg!uNxbX+P=&cN zJ&)z#&OpMiDhas;#(#HmdanF-gTijKa8q^Jb_tWm*)dc9+gIzOxx1(r%N0ImmJU%K zn0_8Q69fK(Zs{$rO!`fO6%>y_C%B>T`U+xDICPk|7sH-?3Pj&7zg|cnlu|K{!F_HI zN?NMKyLvoYuTh^gz2?M@aCV$a$_isjt`GaQ>}hs4l$4+-bPTHb?06wdtdf0Y*lN60 zOW9~>1ppsxW#f=KtpAW$N@5(;Glsczwq8Jwy7u;-ok-$m%CieJ-+`a4lNh4R!AL)@J~MAKJOwTJ$B9IAs|<522iY>vz zFT${V$*GP~qJ&?`?^gy)k{fE&`#cWYj}AcB-1k#At5vzB%3~xi?AHru1`(uHykjI- zH;H9Z8&bQA)*`jkzpce})Vk*=j00Tu4M252cjr~Rp7WVY8NZ33ijY5D^iHOMwT$yd z7v!V}xu-=6EbMq#IqPvl)2%eT+~q!JW_YlX$X${tcs99b+Nsi#tH59|Ix^AwcVK`Q zOAi-xMc^_8`cIj{V6;&~>kScb?(8U0@W}FvfrUHogo(H<&jK|xheTTwR`=F6(&cTa zc<^*s$!>njy<7Mn384l&=D&_PQ{gHK@*U%e?lZ#U^(W0r5}QSrm|to&R80+ULAF|}BmH3k;e9CkJR5bT1EwEjnQ*B2V+7{)=EeiH-Q z_Vdhh_eBaM>SG(hgKYVGzu(xN^lYAYpWfFYU*!Rz&J2uz)@)E)^$7fnF>nn>_cml)=+Q)lyc)9005M$B7SabqKw>zz{Dsw_Lv z&OK&>EqK;tcjU-*TJ80ZgmG35|c{@fJf&EkvT^+4N8zUuTkDEaMMF6PK873?&|MtIxcb&H*Ucx!#wY4nqQ5le2RE zQ?|HR*dYvyBbIP1)SukBsi8xbx@4;1u3y$ktePmVi0QkMI_Vje!>wf$TCgN8Yj24a z;Cq0Q8Jxtz!~3NPi9esci$tEg80=_=GUtU7OEGUx-4tn;pelu}+i3zDAqrgR84ZVa zR{-c%ikRO}3H~mG3-o**9%Op`Q4$vK?o@C`l0uDDVQT;?)z$CV6mX%x`f&sA@8O<@ ze)Qg}SG7M;MkEEF)I2tdIZJvKG5x@PpIE>Dd4E)|XbVxqNx%?f;1ORiS>XFI7_7SVoF9#2Lw^ zQf^FlUl0t~0v8q3yNxq9z1_`f8o>ATn2ol%v9IPI;p8sC#k>rV_NO0Qr%wNJ+`_I0 zMTQ%y?m1)gP?*^p^ZcdW>zFP5Qlh$w8rn|DK!Qhcj{qsJSZay2`KnWR&YZd*055R3 zR{ta2*Km>SL<%mkO2K3K-ZcizjfykPK&I-+dBN&O38S;fnXRvDAUb1GxTw(Y>c<=P z(jxq2ftw|kG>JAyhR=8;{WF^lmcyHGw$$nf{3nf8xsoVtkX8(O(q$vADCiPTUvdLs?rM#o+==@mE?g!WbHOVJ7mY3&Pvy%X@heX zb>gH`?_h$X-bruuv^^OdRg5L)nWbx1aEH#E2evdUBk%ns>y;}Su9hq4#12igNyF=N zH)qwhvSVrF6?zRN30I<>2tM0>+pXV%`I1WEjG9NWlVHdDeY|I&SJbN$8szq1A<+^- z5UK0WK48s2$i0;^;>X>+C`+O()WZ%I1%0)>eMe$7Ma}vOX$6mIwq7Ub-At`L$vX4+ zUDxNEOojtM3m!ZPx@u6XR_o(-dVD14LnWayTFb0q$d#<(_&w>#<|x;uu;i5fK<@P0 zTbEPy^W~5~G{$@RO4c#~5-;MVQXP=ANSgDy-LCwk+r;_`n@{CWZCbZ%wbMs@bdh|Q z=Q|&fb1UH;m)M+*xk7c?R`0GJ6;9XzZ@BNi;-EBaJ^39h`-7VFROP1t#}9r$0lk5k z7+`+J1@f1CQxL3skv!k{;lb7*H<|9nR-8t_$)xMIVq)VA2f=j1&_95M!5Zku)6!NrkSgt(>SbkZ={6~ivw!2q6x6BI#;(W~Oe}n|L z`Mbeg@=uOwg}#U^VkadD%qG~p3XNw5&K{Iqt5-Qu^Ahsz#IOPPDuWa7rwRg&)A z?)Q)`^1gC&8Aga%ue>fCd9N+kbML*?1Do@Ee(ddMDBv=2I`#llAD zvy4DSBgg7+xWBBIeh*_jC^%Iv%SuTyJjq#bx${DMUM}}B*^(`$Szd8cEb+^8 z%ebTs2IK6jbDk<5L;&>g)6&?uKmHuq-gxtdAkB@mX=8cpiEBU2#G=<1aY@I^l&WiJ z(pE}dJLhM@b%Ac@K{!QWlSLjzrvUBeY!K=Ofn;_l!`9NxQqPT{E^EU3gjl zN__s~sH0=Z``v7Bf4%VeN%{FMXNNn`U1j98_r#{I^)=e=Ma~0-1`yK7#kY+#86+_< zb2b#CcSmV!ElbFR%h(*k(D?%;BR3eaT~=R6h&z8}aMb&0Jtm#K2u84j^Wr>F_N2Yf zKC;0~yczHwRE6Yo0uF^+lX}u>gth#%ah2y0@tA@0)W=K3S9g2P5I$hqdD$K_6)b>> zKJOiL?weel3mph7k;&3R1L5~!+~-5HNU12(=l7ff$qi?E^`!}W8JR<|3lJewD(RZc zCj|(wo2jsW>Jg$0eljb4{yk8a3o$iJ>ddsQ;An@v18GIAlMyZ^G3>*GknWg@q@2m$ zdKXlgvf+GC>56jBdL9&LhLgM-%eEPerVz}uys=bNi6r%SE9rie33566_`~UJ-di{i z2Bu4&S(N*ns$xIFzD*v36Qql{g|DGCz&XR1lJz#<^{>NG^c6Tn}t=z4xoD8NRByaU_vY{dk-p&<8(4^_&G-Puu}s(oM8f7*+IzF8?~FW_E6 zjb=ho&@G-GBWXfNL3tYNPM2dHDrHrX)n3WsVSD{iWsd4c|0_eZCpR?j9(u-tSa2q# zAjiLtf?C?V@afGPR?!-(d0*_B9a6wG)=a|-{4s?+Lhn!C1K`tGGEvgy{$enTwoi{+N_-2rde-ugL=!H9y)a(2-Mj9Fd&Xl!&~dtmwC?q)_;gO z<|c(!kyJ~$n!9>kyMLoUNB@*Z$K`BX95O8#%1+{nMk+6;h!Vw$ap=~D!m zepUj<8~qN&pPDOQOAFqpVX=LJwI8@qi}#s_A|a>kOsJnKXrAo2Q!>n%A9h)#%XXnS zbfKFM!yLz9JUm$T^-LBpmezPBak+p`?DudK?u{-lSSgVtQI85n^=Y+~3JyZ|FTvmQBHYv4Dh0a^h&(|gJ|gwJKZy_%)BYEleqnY zt;<2Q;3JHqRB-Eu7omUrcnCL!i>I11uLqqV1J?GS|h!!5Hy&TDGZ$|D zgc|Sn9*f|DW(1$lp0hmo4RV!T^le`DzqwAuYlPR%jkF_GVGTqa?ad%iz6Ot9bBasH z3vjL~$3iuy%?>-6cPIk#(CAlWQQTZ3xuhiLCZE5Le^PZtmps@LH^w_v{P*|sI=-;l z?GSy6(0sKFkt zqq=><1JOEYK2{_PzX4EuVV&8To)qUiz5};P-(Pa5#)?&twN@TKX+4)OYVNJ`Hg!q+ zefXWkqcgChdkDs?2sIA_BXAN|S0W#-L50Z{GZ!0sh5$fBrD`!$J%ZKEYB4j^bF7kt zP+R$=34tv2iCmpe+kW+nnX{@MS=rQVZmt18#0Ox3hb#p^?vPR8&fHaah2J}UNMAYut2;*my1K#o5DNcMjL_g5xKdu=gN)QSBlKw6au zND&2&fehE5Z@mb}i-x2NyfR(WvzLI;VXg2!e8<)#Ss2H0)%9?b+3OU6tjmxabYLSy zH=|D5o1FZP|5@R2;ZEM*$V9z8FAaLgF6D8u(7HpS(dTz zNYAW$-9J1~hnSKT^D+)DH2Hd9rSck`U-@Q6=hB@&MDdiX{&a7PeQ9ClV^l)vUg4s4 zhK=Uj6+|3~sTA5y5>-_a$+Gyu9E@GCg*~;C0>K5IOS3nsh!!gy{#F-_9;UBK%6Mjf zhLXLpFjMB@-P6Zw{dK-4X$Gy};T&ceh*4Sl_&%k|thGvneo#|pwl)e%6Wf#+n^^F@ z&832WJj{dkBG|c7TitPSOlpgG_tmnbs0OmN^xP&kX6i)7_cFnHzgXJC{2`}o$JSoU zNRRMbI;SdsF@g!$TNZmM&hQl2yL@@^Ftx^BwGi$>Svu~Kf-p;0?dC|1_RS12rFdf4 z(P@#c(m%_hPgmU>q2mq|r-iivjym_kb4VhEJevygvE6!@qWYwf1S|}f5+DR}frp%4 znHi6;R;vINT=0eWsQ*z}DypaaFRKmKhWiqJ23;+K2kWrWO8c=EJ27#e02Ge3{6p2Wd>%LGkXU9CG`TQ(l(na|GUj5d_EPUw z*~wVwV9<_+gRYh!Tw&JrHu^irpPwiOhRb->jJmP*uIlg| zi~_*%6`?VEiBXjaVlxo+9n!NM`=x|OD9lMS$Hx8$Q!@ao-sQ=q+T$f8TCAjX2KfFn zI%wuCVF(}sx}{Rcf=vMg$wt$;RA2{k%u4Zk$9_z$SF^OOoNU5|%$0Bg|n0fuIS&=6;kdQo|O5Oc_z5tTDdB;B!(3SM+81(m#DpOciQ69iQaM$Dr z2zI-22PoK|utT*vJn^irkxaJ?y=;P^HTLo7i$L6Kd-B*?;C0sgvhf`$!0m_sW*OfunwJdRj-V zN)u+~y;fE$GtBUe#?9$Lc#n;X9FUPlMm7N$F7Yp#EBUbtVll3te9}gSVCj!0uwAvkEpI z#d(h4<}*ri`Ix7?Hy=FU*hh|6u7jNwS_qGw>pa~xg4FoPkh#doN=Yl-^QfW7pJ)-I zG-W~O?=few-#l(6Jc?=ip|Ul3lLGb?rwGy-@&Y?{yhLaR{jh>cF9-_zMi+j2+!W~} ze5)u{{WCDI_D-~P;L*$7V|l_;1SZvg^P&{ie@|i;TCU^VsVXMddiC|o#+~_&gi3nn}20afOIAW&qBz8dof8Y<>@24ZSy_F+Ssfshl7D{JMS|z?n>*xv>@QGFr`2B$7`a$gAbUQ7yhe zN7}Ag&OSZ#H_piqU8B3un+FO+^CGYr@G)>+qnek;pb%|o^(evgX&s!$5^LbzsG`F}zLD#U$hE!s(M2+;bnnzy;1m#2YLmhdCVCgVuTFIncbG`ojl2 zCy?%!KWtWi61hDv=cd<+=qF4FJKqd7Z!=XF%&VcPG1FFUw>h3uXwhag9Q2yjUh)@` zRcon&%aJw3qu{x;%9iqAfdFD#p!7#j!m8@^tr4w&skNI08bNyzE!qK#6#`S4Yrmo^ zbEZYSo<#2aK$;6}2fuf;{m){qmc z_6bg84uc#<3{%@;aECx;$bMExs?R1BdQCsW+>)o=^%;MxM7L!YBhdDF^9CI()f=gZiEi=-0JJ1 zqMVc0{m5HZ5n1y6A`Hx;PB)$J(2-sHgW1VQ?y{2#5Qm&*GRF#m_%HJ6P+^$X#hf|j zJdE3g^a;)^1n4K%|I=R>^9c|yXj*!aPfrnSzfqmXzmp9Q=4o%4SojR!<6F<#jOb(0 z%S|I0>KKQF9ym=7*Cm=g^ZJGbF*SxBEOs zoqzEa&f?QP$j7GRi?eL(2M@8*Qn=8k8k{L4`ln}ay!Wz|ViY>wUK==by&M_c`+n(6 zj5IK}GFd>K8n5^qy50@|0!2Q=G0CcM3LCg4~UGeFCkM5N1Hy`M%F__zOYn2VI+F#3sQ1771L1@%iI-Z(^n)29JoF8J<6t z+X8KB?|W{pTU3W)9Rz6K(taY^l zCtJiHq06~V4{2LHomt}eAAc}!?IZY%Dht(saHHOC5)Si|wk zQx9dSy)yq!kB}}44D~`BC^*rOf#6tewAf%OAmKjbI9c6l*DfUwL{s3%8Ldh5o2q?T zzgx{l(#Dm^=7OQf(-Z4FB1~XJc!S@u+rU=OiG*54mh2v|1aj$EBSJK%+vs?wh6(=3 z$@?aWOeq0IV;#`bzuy56Xh2*;{`xmY#0i>4>#eFkGQoAfwiN~u3hsWaD6 z0I)v!Po*bf9siFz?qd>&0ve+@T{7Vw9su@86h=0sBe66EX|5V0-{5w2ddcydSAg*kMl4>pD7~Cj5W_x znjw^zo!|J`&~L2L)Zc%}`MNe?Zm1UG@aeZKEw5T!l_-f_70RkFEAacO;3nKC1UeMN zrROS_hROQ{F%Q4~w|3EIgKmKq${sB4K?srK9M-Omq z&B(+(#p=<62Xf^*#EmP@H_F5^(lrx&oz=~YEdN}`iBZ`lahfjw^PD|ggJ1jJ56%ct zjK~%3^*9sR(88lNS*T94+^MI;n5%!L*d;pV57icjLii=R-)Mym&&BFznmJ9wK{<8% z003|9KmRcD;+0#Q-`ppWuIVYcoDT!oBFT?oB%c>O1lXvJ&{biBOCN@e#7(Vt%fzZ5 zHazTEcz(UGJJLIKX#VEn>!Js~D0rt;c7-)A*2t zdL{G1)dE^EZA$HS9Li!$?>kQXz3?h;>HUL)IrT}zMAE|QqYar5B8=+`by08EP)MH# zA_?Ap@mzw`2ryOT7A$8i!o{E4ViYj_`TA_i-KW*AXTAQq!t1yEQzCNCv~^SwQ-VDs zW>V(|1YzY!-=5Fn)U5s>7Ev+sZuw_kz7#gXfODu(x2bn^gai{&wr=I&8Gqvh(BL$F z2b1g>92()+-#@2#OE8la8hI{DCV!#d@yY6(j+bcfI%5d5JlbVEEkDgSqk~}{*v_8l z!67(PSP@n=9~ydkw`PR7xlUjkbi3;_O9Rsb4dc(tCU1+l!^Y&@*P%rUi3L}f_bG&4-H z+goT93K=lhQ8Cla4L{91jiDb+1UIRQUxW7-vV`Of)^^3_foe)^tuz|Z0i^Nwt>Gq~ z!5#d^iQnz73uH7OAp4F3r+%43=!RgVIJK*A^&e3W$8j-mKUlzz(5h;^#o?=bKj=c}2mDY9` zW&`X@-0C7EJ`?@Zz`AeLoAJ3g?h2rNcI6TUdiM^{FB6kaZTGN}kW;d{5gkj;UPY}7j;AO4I43>G>UP%52gT# zX_{H#@}2HqhMdGJ4SU~O^&`iiD9wHCXD_|uv?Wa5X0f?|?zN$>4s#nSDtg#)n)OoS z+jFpRw$4WMyR#@O+DuGXir9VlaJ2a?7zW7RwIFN#fTSQ-JhMhO>n_| zuD^xZ?p9jQjAh7p5Fhp%h$*`jI_J{ocaomw2zx?w`Nivr%h1b*uIapF5%P~|`Wf^T zH@-0`!U!NCI88t=DnZidlyy~Ju(>|BWrB=L{0>nV;%_DcU5p*hNUPDhYWG%Ms9TC> zZcK`}snw`VYu?oo@Nr8#k+05Zw`HKea(hk8GSDeoUXAOWO(&YVv=o?l*SuuAOTw5U zxM1+5n6TGwTPo*~sungC7!t31RZAZ`db% z7hU~32pb3DG1-sO^x$Np;`5klnP0x_z14c70e5pUc|O-aCI87DR4V7M0lerKg53D^ zhr*H6@&bOp&~Xo{Pofi2gU%srryBfb&juZJg_j&TvSO1j>!-VYT-)Kvdz@tE5b4NP zFqtGF^|nH4Q^&cm^Kok7YU@eRp%A9%6C-St5EvjCdyiQ79PcJ=SB4Fh-KbIVuwcyh zNb6)a5sz+2nNutry6)UDI1<1Qv`Mg%BQMzWgMm1AD>oMbxYl^BSsidHO4wK!G-2dJ zB}1BisTtqmx^4vQDCL2}cNi%HctkrLRoDiQc^IkZ721u>LZQ%JQIJx6Cy8Or7g@ifvT;83K_JLB zE(yUlYRIBZp)fsSzDnq_Ir(WvP(tgTp@Yhw7-w6xrU>Q*e0!cLtWgcfO(EL#n1R38G z*GAd&S4Q2t{e%Kd`Oc${p!xn6)X>D^2m?gq5*^=>ZfL}^Lf<=Y`+<}=&1XLEwbKNn zJ~Q{yM3Ke)Wp^oD-&E@}+LPiYx*v3CU~1S&-bOSiv%5B9-!m#sUcI9E?bm$H{;AdN ztX5vEFw{xET888Dlda>1Og*o+W45Tl=Qw9_hX;Gme93%PwQno+N7X$h{uIy|nYMj_ zWwAVB9?Dk7_%iYrt%Q;5w0F9$R=$# zS~CVO3iu~mISM*tUzg?%5ry)yz$L)H4@)+@+y^X6R?bg3#MVPKAJTb@2Hz~uNzyqu z5bE(=Y5tNNu4d^xECL#_qHnbWGUCsHTMpW*I&vd)Cau)VKdJIKpyy_=lN;&v_dkQF z@~9eZPL^R!w#}a-NJkaQF&(R=sUtc~ega?^XNAIV3CpP{~H=^cFDArCg5UP0=k zSb;R8jlO;dX#62X(2_o$YfhXXp8M@heyxf;u=?>|bQSFCF1ei;Th#pNU$W07VtiC) zB>=E0oN3o0=a+2xk%c6qv`*MkoT8!ien@-X%)piZ%_09{i%u&gL>#tgi-{6Zg#VKYB;Ew5;cFx;rwr0V^X zhm7@51_|q4QXpAlXe2 zH-8(NZ$pbadD^BkkzS?HyrQiYb>2eUl*+ybqy=%6xQByXd`sF&h~*FUk}x$(2jPD+ z-vAmM8)~lORn1Eqmua3wK_HEn_7?eS82)NcWtf{%?&Na5BY^c5yOqGc)cahyz#n{7 z)ap!U2m%&g)mcT?bZN5{ys5((y=qsyX#RP*{&)e%J~@*-$giidM?0Ia@5GenkR#O_ z-=Bow3KpFZJj4}B6^|IP*s!c-R>>K@oDV*g&KC%Z%C1Gubz%nyk0=IuzLb$PAzASb9NsRl1Ysb%DV$Vj( zne(<-P#Wp@%CJtK$NUZnDdCmyk6-}8#3KR=Uz}}*VL_a#Pvx&TAM2M^BFZL3jkV2x zRorJQP0@U^lPHVXUmMxj!fA+9GE}bYyIXe!zGAz$IZSs&Q`_T4HE!PZCeCAdEfcMU zTmSyib^f|jeDA}*(AoI*eZsuLh!Vn3n!$QsA{^&3)un?LbH2h%ce(2)j=SUwlIXRY zciP-dY+pX`DM1tqcJCfIsCv=r6#Z5g2UMM1UrHsi?nBhZm8g$;-$3Y>J2xAc_Wqsx zblMgAE9vuregCQqYo{ABnqvPY+K2M-xXk(U7qQxJ&bUhEUAPSbD|1s+`k%ioZ%{C^ zt2UITB{Up1g5|YBJQ2AK-p7`UhSKdSTMKv_x(>HafY&aX^Ij9yrtq zn5o`|9K}jRj_H@2*5p-ItREy7ox77q3TrtOW)2_bU!0yAYni|`{PH;GIS+?1aDCrWN})b# z%YesVH(Ggge1vAuJsDr*?UZkyZ=}o7xk%_Nwj7JHJfckl+u%*(v31fxzr`{QnCwt%6X$ixvr`^6J4bCcnA=kGU z+QFcKFKVy-R%2>cqs?h+R$-)V|E~-jt{u08B?BZ|zTC?oeCeGdut7u4<^Qy$!nKx- zSP&|`wv|lq+AVtbR&Z^4#r9qgTD@*E?a=j4v{A8augE4(&WFnJ+5x10X!DP3+k;E3 zS|Z|rF0endX@KXt;IS^G=QQj8=4QuEcY8}ehIt%s=15qLa{#SzRedEghvt_AODRGF zJO5hS6sMUtCfZN&2o!y`a*NCkmhbP8CLfjh^m!5q$Pk4q5j-1En&hPqrfmqW%!X@= z7qBv<`n7vYf`ez>#U5g<-o^9nL#LLfJw0NLsL(JJ6vBeQ^~Wd5b12G(BV{PR$(>g5(Lj`HIzx7S= zaaPpD15G+Vx(DmYqqzXhqhG6#UGo7u<=)_bG4p6l85B!+y?c$^AECVE4$KH=OZ6Uj zU*z!Drp{+h0eo8YXJ-868>#D|weKPXNyHvyK6xZ-0lfC=(fG;c`NO!VR+VBTUtmqm zL;o^5wdy{1`I&Z221It;)Sy4AYkA zM&=B;;5Atvf)lSbQYYpPnOpUH(e4`iO^ayE&N%I>GL8WL5hIag+7?(HRW~rq3J>3c+$;|{dOl2N;IXMk#`QM2RQ>KMGQ61QD$8+a|w3EgV zBn4rS8n(M&QEqx97g225)ghuT9h;5|Z;SEnV`|%^!GfjYi3WKTFkn z<&*45vl58~^h*oIJ`og-i_2wKCKsDtK0&tUQKNgi8a&@0Ld6siu*40SYn6gtFxcsG zu*1(^a%_EmKhiL*GPRS^QVl(8u`Z&`QK;NjF+w_9pu8TX^vHQR1TM+e5Rs zu#x;*GXQbda5;LSgHJ1I2%0_Hqk@K~aix#1S+p&eD}Tlo=+I&z9W)AAY6N){`5T|M zGWIOn-6f#79WQc6y8)jB+#lp`F^=+=sq2t60_eQsQ^!8ts9ayEaN_pSZBrShAKTp# z%ZQ$FPvtH*d|^*G?#amk?cw9_3;0k3d+8|1G&*nk`^{j`C<)eB!GdXw9l^Z z^2pNc?kLT=l1+MKMn))qSd2Wuyg7%TKBm}@U-tNq_PWwkrLC_&&;`TpEzi4Lk@MTS zp5P^7epl%#el7hlrW^P2I4xq{NcHn-OFIwu&u}CN9<7eXqai?x*)*j8Ha2w&d_s)v zZLnj1RCw~9)Z|2&xkrCA#6gVjGo;Lj&GhQ@OjUgwo@g4SBBkoyn1q2k$ddI>-w?=n z>VgS|NOa-1n4AQljd}GwxyO7SMR`ZKurUql1ZXNXzOjp#2UD(D>UI^R)UIzKaTNavXwEo7x%T*u*U?GkSSjlYx6r^ z1EhwQQcPUG2Wg!yD7>F%wW#%8!3$+b>t0((O(A z3{I37vGj@y#))UD3xLw?i_eO46jW$FsrNV!p(o97vWn-TkdEh{tP9B#^B2C?w43=_)ekAKrP zrsvd|)c4ZZPHh_0Dr(gA*-#E9dcbK6C9Nm(G}l+y0y4zHM^2valD&!EH=0b|hg&~DU= zq$NF&Zm@&fP8&N_^-m`mOgv1@{GVzk>5CPfQ)S{fe}vllmCORrC|UcLq9eUkyV&#>;3t_6yWk6T_=4G1Ln3ulI&`qYFZ54*a zR&6Nb;<^+2FmJ)G*l8bAV<%hxH-uR8*okZiFx2sJoh;M1r_C@O8khrj4R2E4qrHd3 zdf#SSU)32U_30f*SjyxZA5P~EPF*$BnQD(^Y*c5GdV&`hZjRM#76 zBwk<;+Z!6@ez9FUV3)f0eZWIVA;EWnfFjxsDK!wuz{Q@)Z+LvbkhyU{dy$62ZwF4k z_nLIHO>FdxhsuJhpfZGDp<2J}aIpI84Ge|FVyaGqNe(RCEx5@mr$JlA!746;Y6Mwv zR)D&0X*;rv*)g-r-gDlZzWs+i^fcg+LfL@X(PDc&1Qw=fCXN(oHP~4-vM58l3}4%9 ziSs~Qbt1#k-`P#7$?iG6rq^;$7l@h;NfXKDH zN7&fYOI;&IkU1yoYL+e33sbXlk^~nYjj%M&xvJDC$KNxveDjG5s)I@$wyW0P@aRlH(i?;iiULuTak;=o9#;c)t&2gFJF#E+y7dxpN zeD=)<068nuG}orQMf^aY_fbFap{y7z>@>t}kRPY`-!myy*h=^4EJ1aFg$Ru@MStJ1 z3{!-Ki%>-4SI!JsNy(W#03+R1*#4pR_r~~E>(Fm;>TLP8Hid`lq0{h(z%gYC)058z zuz!L=63S5Vu|DnK0xE%D{>Xw*?ap^AaY=?2e1}eMSvt5`zA=KL_Z*~p?J3Vq5XRCl zXVzGfv^^2@!H_t(u+PLST|;#bz={@Ck(RmV@KtP9$5WJ6Ve1V6ze=Yl^STne-tB}( zo}1(jzUqa4 zWc?fWFE=J#PSkudG6~!S`fetUS|>vA6+k~0LJ2u)zCD~vDdqOI2>GA~)pK6KNLN6+ z3Yczx1x=ETx_o^wx;aG~aPmeT!0%@Xx*WO%NEr#>*O~UVUP15{RyB)CbA<3vk;SsP z3DKzynhvOSnhyBnVU+Ni&L>h5Ssabb&{SqN09ItoMz{Ei?@Ya`y@2YL&o>V+(YNFEI!1-P>)xWI&g8jPI^la($xOv@&{d(%s-%`bAaHxWG2HtOcmaCpIH z)`z`u=-Eq9zSWa&YcXstoU!@y&IN*XxMQdGH(}*xJ2ac)!sp;2H3Ique_6}q6S^An zqZJ`l3N#*?UMA!yZMw+$Qjdd`is>bj6UqI913VluV5erh^&B3Zs_+dXbhd~doOM5M{gGUy3$*gUcW!zJ>k~o3i|~elS#2c`23uM#7{&w+@bM0j%88a@N4Wz&b!$gDd>8!%FljEzwS?F9KTz z2^Up970#@QUE2#vc-c9099{fa9f_}aO0Y@)9ZGzgn@n9k^N;yp&ch^nRKILNZdG`T z_ThS5Gu+%lL1WV|HVPsW%^NSfroDn0ba08iNz*rH+!1lrg(%$j$b(c)Th_~m*#@})qf8j{|_vgDJqca*Pnz6Q(M~$c=#&* zb^^}vsQ1nBK+TY7INJYyX*@K&=104C6!fXQT*xK{K8%|fO?bhG&?R`^xUJv!mninJ1dOIAfdW^5P69;-a%puozwdGNp!bd}<@^zrXRH?>^r1%?A>r& z&p}9=%a|Ne9RBy5uyz2}yi@q@tJeDfRdKy|xbXh_#YqHx zyhNY4GYqHxzyF1hYmE8B(&BQoJ&6C{ZEbBo1EGIo#ToJMm}c^uXGwGKky!VU)~j-3 zUxkY?zEJMZm#aQwOU9vln{)Wpev%YP`ojR0zXU_4##-OaZ{NN>!r!=`AD?00e+d`V zD_x1fA9wpAzMes7D#Q_ zDDbW$%2v#&dG+3IMsCf zbpdsLJ!P==ysoh?J02CC>QsGk4LLd3NNhN4^;5Y{)6y1A?+OnenPSvSMa5Fw9k!XxL1X{?;~4MS z=KWn#WcO)3;=5@*HoY<5nZVbFj|EuV@EP6T7pvbO4m{f5uI`=dqvpqaKz5s%2RJx5 z@(WLXbI9Qg4Gp(z*6IySYP|ASUBtJpD#gSf_GT|tACsP}lkUILHMR>pgqMXVfxOZO zOq&T6wF(WhDGowGas)>^4JUyeb0VsJ{(gR2g^y#&jaipPW`oY z?L$t4-0?>2z}$I4Lf2lIoe5xR3lK~=BM0=qwhO!`A@V@{@AA<9VeQT1ppHqb;>C2cCib&%ZLzR(?%mVKsh|-} zbnJG>Vq4nRR~!;=;aKX?gtTp&Z~T~ATb-H*kMa-PMUj!8zk5(+|Ni~POD*Br%m>F; zgk_|qTl@Pxf|uc1fm7q11#&TEFk5uVz_;c5N1{a!VHnmh4OZ{#Yfh#69n(C2nooRA zzIb;c*$^WT5;k>N>#KBjkjb0Cy+42c{90;wu8qd-U>xC$4i^^}Iu<-EZTXvwUt3E5 zdffa%3l?1yA?N~I1|2dBN!Y9NI!nhtfm^_Z4mBnX!hzR&wO2+>2RWVQ*Wo^Ar+7R~ z^&0(#F%yiNvj9Hx`8{wUSv0i7=sya2phk+ zI{r{LT|(1m3tWBTB8WHV1>0)g-@mpxH;AGz6AJzY7&&J!nVntD2S!AhGc#u^$E#fG zwz?*Vc?J!N+&()P(vPl1sffvH-E+0vcd8a7<0_I9IXF$UM$joTaH6&Y>#sM`4a%~AUH_WXkJGyBO3`lqgl>TJ>1mu z^lU_zsrcp_B>^)Ri67wVkX*QI#Rl08up^a5z5~If9<;mZA-Eu1@B ze0(afz^+J-?piWd&EBfA1=s$WG8L3_yvX^+Jqm>~SB4>ngrrcpva%9xl}Jgd{C;*A zq~Ph?0_aJP=+$>SvP(<5;8^}{5cTDV*fSvHry^B`!$drk_4W0=*EH>~)NDKap+e_~ z=oJEee6nmr-0K5T=ANtS#c1tCS1$+=-!BE_6?*mikN6i}5v_ySNvJ?XEG-am59_L& z^d3e5^wPkexYk9D904pO&uffJ{gc_R{kHa34EokmaiN`c{?F#8BPh1Mlb??NnvQ#~ zHTTJKu3Dyb>$+MY%e0>dLp^@bx++cTB(MtYwS^Y-B{Lk()$P6|8}0}9h&3+6`R3Mi zd5*23t#BDqK3by~?Zw<^ty$xb=OlP>xJzU&c^q!_OU34NaR!0IEHSC#n-u=?=TPmL zJku-Y>u|bU8aZGoC7SbbV}DEHasU2s{-Fj}U;X>zYMrEVpIz#J=U*<7yySmA4sFKi zUiz=E;S{2G1h5+)I|lK~Q9eGtCT)Hku4ns*6%M!j#veKvYgCfvQrL@=CR5mVVXi9N zTKgW`+IuIht|YanqUoR?nz%mP`KRKmqn+J1SWH{_LO&<5ne`XlE*H4-d(Sy{XPY?H z*kkGoM_Iqdz2p(Yop}F|U=f#aw_f#s{?_ibF|{R*z`^>Y>+|fbbe%M`*@Mvv83s0mmX&{nB>nJvPFN{H6E#%L1K z?ix1=wSC*QjLhZ_T5+EaW!hDy(cIDmT;;!iqQ zn(x6ArPV7Fc)uU%9_15i#1DBnsSlH?m|3*h9ycjs^q^}W%{u_@rOH7zP-)z*0U|S1 zRn^R&Kd;mb{(Oje;P74j^_eCMZ(}O3kmW&7GgHa-x4YJz;QMd#v|o#it$vF)9c$I+ z?w}u$DDZ00vMu+Sh?BfDP~|X6I+2qWLYwQE8SfhZ@rJt#<|0W1L*E9MhB$kMDiYxu z4x62^t-E3leyz;@;r6lXV_~deRtfl7Y8RMIO3319zgxqBI~H;EnY?5IT>@wK-frh{ zW(!$3fX>F!C@kb_1!%$9WIRC!?4LKOHuv z_rR>ai$5ePD>^H|P9fV)!KRy=P1iOhg^>0adF#=y_c!B0(=-a#;mq!3`%(py@855S z0QIC8nB$%oS2A|S-b7cwOih~}{P~a1L{FA+iW)Ia?NU!>xOl)(7Z;a)H^_ucYOuj8 zmp(pu6$tC~q_D_o7p(DMZIl66;Um6%-br)GSED!JmX!_RU_JDsYjoiv@5NJrMaw@*iJ^9?74nB-Orf#NcuF^C`?a~JnIuJhypTGZr zOGJ%<+>G`LHfrj2<_rPuQwjH`8wmRQb|_W+&~t!DZ1FRPPA)=@XiJmj-fhO}NH=~) zqmUIpRWVI!kjr75RSLYPJy+Ip;o?O@6yHlGdMn^QbHp)NgT)nO!M2`H^*@XTR^mCJ zUEo-GqA;K%pV^kSY6S{=M-mI3El#sm7HaQ4pH^^YZ(dW1`Z$O;b#5wLZ$}^8FcSbu zo)3$cS6%IduKIdh@yl>({}D0o1a$9=L%?Vj4dQgt$J61XyPXzpsd@H)uN=PQ8JGeY zLPn!fwLJ(ael#d#mACs^pV8FU&rG;|jD&m9$Zmbm$Eg0!OI8?Ys4|iS<$vHr%z6#Gn24S&i$x6`(Xs1IztqQEye9O0Y?yvi*1?GYE>*Odjz0hR~y7-jKmH(PF7R~x~ z5t*0xzgOb-@8|?Yauq&Rg4*_I;+bmlueR^IH1X}AK?z5#=wGKA2)>fL#R{Y-d+|JrWz*X^Yi1;Gut zgh2@pf2*|-9p5oBo%}nHX;neyA-|<>)$`-7S^F9NAaZ9da!1 ztD_aDRz@=tp@5tf`KLw9eG8x;SKN%VYjE!|mmfbG7bl!ke*{BvMB2()7MD%sb|vTg zN8FY0u(mHPYB@b#WW(Fw6IG`nb~09bZpT~MWz5%Tdk@muRwSzlAV_uf@LG0}?Fd;^qSx2!hj_sY&d=;eS*ewW?4l(B>B?dxf6Q!umX z_6FXH$KjD+6P(ao`TT6h ztcO1`STabiNcxn`F3zV(kO2v@Gjx{59-o4FKqqz*R}Q-<_EHHgJozx+bG}Lv#i$|) zgdzRlCf2)k9azh^JwcP0!>-wUD0 zHbHGpH1^m&mVzw5W{tZfNhgufVHqiMCKO_5HsCN z?!0~dchCObmvA)CSMK=ntc@5Fl8a|s{>?tT9TEd_ov(za__9-FncZi`|L~wf8U=a7!gC)T)^}h22V;!d+H`fTs4gNbVlqV#gQiwI877E)3<>i9S zL$>Bg=-XqHhsVeMUT*5S*=gja9z9Bb zqDg4^#e}pDf(0ZN>oa_cT!Th;&?IXD;qz!Yow4WK!SA$e-+tP$=$_27lD|KDDlamF z-Q(hAzssX|LE`rB$nMKF%|7Ve5ui3gsoO>oqZdX7joTT(uennY0Y%F9iVp!W8k#Ni&5d1HzTHPrj@XuEVk z1U@UZeP?$KRwHZM6Dbkpb_uW~rxZ`lY@5T=`|wGsEN}FZ8wNaItE{Wk=xY7jp=J4d zD?*t3dm=h;E6xhwC7J8~4pl7s#yjOwTwF|JP$NpN4jFQ7*}{O^h&ve!S9*1++nz2( zl)R0NkGCc7cVqs|9i)5j*cFTE{=lh@dYQCG5EQ#aA2_Vu?>AU6Rh_h2%`S{hL~c36 z+#6|ZRczN@;DvVPuFEUD;BRm1RPvT*WkhGKY!wi<<1+Uz>(T1~le1WXi~cUFv>n0QkfW@t_}vD1KkbJr(}NwY9Yk+5)&TN!pI+ zs!XkZXS#eGOAdyQz89mGM;QETBb-!&Z)zVnkcSeowUM=Di9JqLpO)q!`>0y%C>$Hh zFYJT?ow)Srg}M5t%hxBX*Fsj9IhanOWZ#uKu>dCh$jnS3<{(2M#Wf$CJ{Ao3Np?X& zGSM(gk_cE8B^o~_8$7%(jSipAiBPJtgNu2iwE@^W^k(bmQ^N z%*^QGc%jmg9S%142!vHrXC~(?4TvP)B3Uqup=Gt_ua00F%XM}MAfE>=CT~=q8KFo! zdYS+)kmB8>1?8E3 zx8aZp2*(4Rb|o5KSel(MDBQI1Ivzm#%B}=21)OBK@M7Go$?!w_*RMitm^!?l9<$-Oom((WwI0+DbnJNCxGcORCkW`<* zmP)aFgs_f{%2f-#pxAqNSi^nZzg8ceEPdP^zP^3iB}F3<dqhA8~6 zGkC5qrv+P`-W>i0R@p{A@x!a@91*LPka!k2l-tCWKt>uB9o@WCvGU2ekX$!7HZjrh z&^n)g^9{o)NbD876|(Goy3cNxkeFLVWs{+m%b{vR$_7p!J`xmv7E3#JH@&gbU|@T0 zWeAG(-Sm<->v?f`-0;2r}_Qws8u8o!l4P-QNc`QGEOJ{0=^b6wtwBi&j@d3hc{1EX_j!JAKc| z=dLxkw%w{5WMMCm7LE=nVP%q|k^7ok!?-XJCfq`9nYPNz*}r!$6(Qcpxba5}ZL~r+ z*gmeDJrVrlx1Uu-!EgmCQ(I#54bpUz z`Z!dy3K19pvxD{Yr~PW!UD+k--EK}Bx^t3*@U~>P$Mn78sHd4X1vLVOQn4_CGMm=7q-8IT{1D8C9~$^j>XFrPbF!R$cy?{;FEZXOiA#E zFgC$G`w7)^{ecmyWjQ%VPL_IffK3uy_Knu~`bQt!;T{pv*Jh$=jIJXU3~qvQ!Xq$E zey>`RycBdxy>3#K>Q5@1sNv~T6r>#83#$GtVLLVcchJ=VCt%|+N_ZvJC_k%NDvglS zya9LHrDYQY(+_S-{*De%IQ@fbAG7A{)96`anm+TyZ~O*#0D|}PA-r1k&gQIfA}Ue-c_E(`+^6pxN|P?*)TUH`G%!TxHRD){n>>3uAeq%~{3K*%rr% z|E3sZ*4*@*K7p2l-yd=|PuVL8)4H8Wz80Vqm|@+}Rdz-!W6O0kru1`LFtltY%$g|a zi$+w4hxQK2-m72qvB!nZp2@f0=zRKy{z79w3L)tzD}4_^A&X$xrbX)0XnKErg5(9` zL?ZL=YYAW0H^TK(<55X=^72i>)V2uZP}(D5G)_Xh7VQO!F!`)UF8qHSh0xeKILb^p z{ck&u+s!#wfegKyw)W}2}3K`wWxO7CpS9(|A5rghaR??tJ7 zf+GpX@R_yeQS!4O#z92V6_I*|<-2~riU&4Tyxgj!L7U{(dQ#C4!ZKQ)p0{EgKNoBf zJQ$@5p-K$+*vEg$tw>LvV><#WAU#Bgd8kJzgGWm=jzHmrPqHG%phLXDS2D=Ts5_Euc#d=#-+=~7XskA7VQtB=DZ98yJK@e9yHiCdZj)IM#!v#VAK-wOg0;5^PVeug5S+wN?iWEkFSg>- zlCaez=b7g%)kSB4LRNGHZu$mmRfVrHB7{(;{7g~c83pA|r0mf%+6O4vErI5` zjO8sLouSD{IypBoB6{P|r={oP^zf*FtqH{_?)N6`gH2j~v!ybVy-n`y{ZHKIJ9G;o48U`? zc4u!Mw|{!yPQWG2Q2qdc`@adWlAQugIYrN@TVf{e?+z-)C#IW|VrVg9v9(Uc@FPAc z)gbPFjQgRzfZEvXgTlu}4F(Oq$abKCD+uhVJ0rhqZimd&Co@@rt;C(MWH9o-e+wLy z!TE&9Jdt$E(BjiL%TK`Jb&leJ;x}(xA0z)W9IQP+PNmEpz~La;NQCI;rFtgasCTf< z!d!0c-RhaWyOQocXBWd>3a+OMo*TFCeCsAb<)-PA>W*5{w$uZ9c|EaXiF8`GfM3?w3lDrN<#-LJp%pN`%T8kE0u(p-#c*{W^ z|J_o8M&K3GJ)dGI&|Y>%qe$WHR=VIZYPdTu<+p6@Mg{=W-yWSZL-CANE{uL@Z4c{nszm0~k0N>c!JO@7 zFB%_}{fW$eI|BVAR1T*#O4Gv!S3Ao5Soss_u2rqv_Qj`mB_-XYPNTbZeO|Ba)yS#u z&lrV>!`E~dkWagz64`1boN{^G9tJ)4Q4$Ycf|7MPFPFd@yyH2y7C*pbm`%V<@eJ^a zke?#dv`Tref&k@>PzL>|=QOG8EmFnKH=u9LL zZy|T&v=TCv;J8p)Zf#mrQ?OCzS6XR8*l&Yk&d#<=j3WuvB}aU6#-rp z7F9j1HaQQk(d|Nttn(g!Q0<1c5NEy;?Z?;Bi`}m_AvLMbbWj-UEXy4IrI@#jPr5A$ zS^P_-<8wcI@2SGX7_7axhEH+^mkQMfd}eFbYrG)Zj3ZTiTI!!l?PdSy#~qz!4|RG9kU;7m8~**eXg0&(m$%{!kvex6)7#A9#hy(*4nr!b9=&#& zfT?EQJZYdO6QGhphyh<58s>HX^$vXXNw)M9){qY~{4MJvyT;42O(=}Nbzd4~Kq#2b z_i-Sl=(5=tvsMvmJXO(#NHJ1?n_~T)H{q6V%L!3U(W4%-hW`h3q?Se%K*m-RJ+z)!exsi%av24sjY!680AHi8bMSewW8 zd4K=SMgj8db}_L%i`#*Q@BuM9fQwpiy!f!h{7a66dVcPN$;vrLO3<(RTQ$yziG|o6 z&6;{ zZMYgzlx-p0jqmr{pwF}lI|TOO)oG{}kP3k5!masTIrvw6TKnuo?+lcL^$LS0+-7pH z#hid|u}36{Nsa+|A;4)J(;Qfco-Cizp6IVU>FM8ivI5gdX&QS}+-w0r%gWq9A^IZi zr$ViW_rg$8U}1NeS57m2T%mG!e<2;{Bcyt%BnHrKOFgPre5Upzmj1J(2ankKF%gkz z$Kv)PTwn8!TazF%V-&&^n1gh$V`UKrOP6G5nmChq>g-2AnGvq-THjR%bqXDQ+zTZS`O9JN~YDsv^jSDZ|sH<|&zb}bzi8xTXCj{gUwh#^ez{|891?#fJu?YP#I ze@wH^S`g3;4j~9~adD9Zgl!{><8|vun&%h?ibo%*w>w&nfUg1>mb9G2lwWt2eKaAB z+5eIs1=yPv%fA$?VVP51^$Yi)-ldk0fW748WCRic^Ta2s?ZR)~NoS!`Auws|fv^%U z2}q-{QpnGU{RaC%)S78g#`B*c{I zyg^DD>U`fe-_nW|Ig=8zx#<$XLkEakRv=;&7`*L>x8wFEjBC5Fu(|5?j;CiEZ#n85 zJoqR!_D|x6ckhnUaedf-2P0jl`YTyrq~-knJNP>mk7;A_KojuC079|t=icC|e?u^# z&zZ#Gz~l;r^N;`- z1Y-%RMBw+Lo+6iUz>U&I5jxbYIVEvWYmt%Bq^;oeKfu2xZOL>Gp)21$CI!7=7sAMp zojHH8f0zai#OsP3lUbN19@4a^5?rtL!NFbE{X@S6*ECDVsvQTjdebfTvaXV5( zFJOPji^rfn>v!8+9Tpt5vK=O6RCR&Qc}mf?qqztTYIw2*7emYIzHlMrUWef#qR!@2SeUvDseFuGZGuiZ4E| zLj{E0Hjm5>igzvb&uOC}DPaqZQpEH3uY>`0I30=>ltoa{0uY*DM6Wjxbokb1UH#)V zr}xCOt}$S!rz6JtD43^CWA(nwlOAO?n$dt_GN22hO)lp?6|p(7MQA+8$;*>Nh<}__ zXA#aJ<^U}-h&NcnaZNHngWn1~=%|$qU-5+kMoi~Q;5yyPV}ag^ponn7ok-!6W{@b{ z{B9%Ul91`FtF2`UVm}1~fa;0(K!{LPIuKIsxVG436o<+T@}Oo=>#>2=A8x`@W@?l| z=u30@4{jq?YUNzzR0pVY`@ldU(Cba12_kDQIU^cx2(3X8icqp~fbItT_a|?diG@K1 zK-HRcoPJ(fX&gBFoj#Q0^ca?dLi#|YO+4?tbtg*E8*Rzqy?Y-{i#I(#rAhBn{R?v3 z0D6w)aVZpsW3Ha@B&t&0FB9gnv$@N$K0!xz-5iuE(QLthIsyGxa3u&_%X5#uhu~=x z=aY9uYv`5s2aHplMoQXD+R(NbIC=f75gh*-q4anZ{LWbdPv0**UF3 zsf-}5Csw6ayr_tO@Q=Zr9o2j-}WCC8j9_80L zg3CSb)2t}#V}jG21C%ZOoEo`*!j#;SU5wYDh+I~E*j%G1XbgIwE0SV@4NH)xyxKl2 zXnUr5Km9(nXgF>!2~pZh?i&=K9Z-|4l!FvwcOklzus^~NRl3-968>0AFJ&CEJdC5ZwDxHhb9ZhFSSij z7*US$@L!ll)OX*;gPFi!Yr$-6zf5cH?9VPwAgn3vR@p4+(vUh%}p{^7y5W&%1eF%>3+a3Yq z?1cmCbPM)QLbA10KJiKtTRl4;mTdXLuEhK+a*sI6yaf;iO|QMzRi*IH|*kPM&=3U}rAQtnsVC73Xs9VtepXY~>D=p_hP z@DrIwP*P~hgmgu>R2JK9z6q%mpXtFJMEvYW%;g#I*qyd+)(uoSTqYZkWJ*toB}f1w zoX(zLh=Nr2Alh?QxSZ?I2?KeNcnd{T-lTFI>nXXl!9&eBBTTZkx8~Jdu`+DZ= z2;|-v?qbrT^Y z4#M?>8tZb{E%nhgaAbjowV%W32w_aM$~6jP0jIO z_jBhCODuh?LoRP%>sH+*#w>m^h_@1kkoQCo^f+`@6+2Glqil~uLc@)m{Bckb3aa)x zWIP;MEi4<}eyP9Wc(|C)U6X@93B(VDAv3#Ym`nz^w7D4^TZy*591X13Hw*JdpnU(( zkb|;7e9($Y9D_5D)?Bldj%2@Ax>|I#>2dTxI^aJ#X2LfPE}3maDC$2XCd) ziB__B1I21@bnKwehU*SNaj~i@DNDlEc$T49Rjz$Uc_2ul?jv~m4lE57FD6~WS|6{p z1@v8+c8g%cUOo(9cW`n_>z_`YoA+11^(6cmVQ@qSsC0gVz_TzxP*6`iFeyZ-;nM}z zFVvYU2qn)=dGi%EXEm@0L}nr>dP%>!2HML?s#h%Kh#ws1>YZ_RN3AIgTL_6uDyIGbR>=zRxYox|_c=s~fZIhgNzcnQ-|RhJ zHy%}}0kc~&b!aM zt0Tw^*Ao*vIxI}9l};`N0VLrj-V0^Osn@IX?0)10DYfqc&X4*TBWC!Sp5>0K-3eM9 zDslgs6VPTD?#TlM6U`fA-FJ%N1S~+TfX*8ZT_F`Qg}}Cj_Bs0|jt%Jn!0DpDb=Max z5-uY$6%*_6JtK~!0%3PO7N{CJoA_R%f7h>II`BXFx4i32_g%Vbesbu81ecuX!|%WP zq!*7Xm~6&9tLHyPpO{f6GH1_wTD4>rFVAf{We!5oRd6x~^|wuHucCe&AUV6TUVHBm z-EL>zF?NYy^;*)51-&v}PB>m<9?C#!Np{Wb;+Se>CC)5@3RK7%Duw#vLZKFu%5F!n zjxZR2T}CYf=6DK=Y(e}09c@|MAwRAMtSt>pAvp`KU1=*g%m*}|4tA9d*Q2UabY<|N zKIfKN19u*}F}%DrD(sr!x%-c&2&V6CO0BFKxas99hu7oUALjD)iBWrV^0495>Q-&u z4O0(lrQ=TMRFl|nlGXBl( zn{>T|Gaiej8!co}^HW;G6}R~y0$lnESg)AZEd}6_kIMRbjLx!M-s7zZ-u|V;^JXd0 zEx9uHC8(x3LR9q+#T@7PH*X|;{H5(w<@lwo0+kFEva<)6?Ck6Tqef0+T}3!o%k2C{ z`%F4v(%H>8K8|r6oZuk}XQ`pOK<}p(iGV_$oyhpOx z$E2!T$xr0wyxp(AKT;+6n1Cc*20mzKXRXhKUX|c4oKCIKTar;!q;kOIr@;btom-pH z_=?Sy@9+2ls2XQYIx9uP6G{+Y0A|z2H3aLxdr}d#ervxMJpsIGuPdq&kF|eDU7U6TVpRbE*OPq*bdxg8)yY-oo*dU_E*Ji) z?~c4PcO>PiD9()Qatm0wtB8hiBThLzQo zrQib^xQPcT@r)%*I{s=T|CXb>Ig$a+{Z4jOjfEO;`ou@cfchHhm&q}L?b(D;Katx-7K$UkcA@?E*)8<@T-TKBH*FL0_7j7@I- zPF5~_#3&E$GE-|iL4_-9F4$FYV-OQ2!k{?YSMuo4HI*mVos*WpE}%~{7qUCsnm zNIubLzOu91z1X)S;2K2uS=Jros*sfcpia#PBk!ov*Gu+@XS})IbX*=_eZy-tR9w%o z;}nL2g+ZM6@S2uPJSOaU+0vL-OQ7Cq($|P8fg5|3?{%-(jueJZ3R8&_m53l*!d-YG zLmdh>CoatS;*@P+W~L#(;*k+9gzi&YpoUrQjFnwvPcNTeIOo@78tBh*V51A9_3=$Fm3Vi(l6-*Lvmcq=i8AtS!uuiOUd)sBEcjoNqZr;8Y& zz)|>Rx}E){y>&-f#TPEm+mg_QSh#!f#l-RV=MIo@eYK?S! zZ%*#nRxtL|A&#GuBawI(&|+P#z0HtGNYX_LJc!KHCpIXIx3jml9bB8JUQw@(Vb>Me z*C(u(Bsp;f%A3i3Xm2nu(^UiVULQ?lj^SgQT)R5={LWhh*JT{RY-^EI|f@GG|*XtURm11>ujy5ku={T zM(zYb!u=|+=B4RnH#u4z1&pY^mNGP#$YW&TQe$cz<|axtvOpXFE4ae=rU#tCz3g#` zA9w=fYk0wOy))ckX*qK*-VEuvkkhne_t$NS2awv31YKzRq9!#!-7Zm#B1o)K{$Viq zhQmn#O+z5euYRbzMLw1K2mLr-FVZSNH}z@S`b;|wb;f8|%AYthB_J2eDgzCj!r&@y zwLIA&4=gEawB?0si3k z6Z%fw64n~+pE6&kYZ6M|2;f{f)NUvaNkk}}5sdJ8^Fw`HsL-?Yw(ZCVOMPAln94t& zgGi$hqSLBBpz71~E_huJN3;ucBPalUR=>0BDMB!|R^gn>`}-?ON3{8LSRe3ZLQ^F4fj;AYOW1y;u1R!@-SpMdD; z@rd_oUERtfFXBE1Tj<56aYCuLBJ8A4ozN6H^n`KN-u|}B*NZ+K@Of4~atrtfhI#Vj z)o~|mjmAieQb9-&v)(ks0x?!4>NccDkw&-lmA^Q_=Q#;9iZnut#^HUVj~1!cD*;d^ zdTL~_WMox#^oF-01@mgXVnyTYD;WLdf{Gcqhw4gDurPXap!QvYhONz;&Qpi=*k%Y< zM~I#`o3EPVq^$OzJpdh9{C}(;&cei;R(~ap1GjZ<=q0Ws#=}@U2H^{PZWE?r!oV>^ z*E{flL2ca%kp|`-0$jl-b|su))toaG0p5!HLDE{T+2C@M7KqGGGiu(7Q7(~I)P+a# zJ~y>L@|nM!Cq z4Dd6Np(TtPNSwLp=xgE-#{hr`Spq6pf;#P46$k&JMEp>KCF$LcaKD%;9K)nmXaoO` zg0#mD-{Khsv5U=n-rh5RjTu|xbn~I=1w4>_6fES5XyP%dOpp+@?zP7WmRYz2D6WF2 z)nB(c`I|DI_DAn*j~Nsicu1HClrFcjk{3lG=&7oQVGLAMKn(3l=n`fw`Qb`-RI6o{ zrf5O%q(>ylr9H%j+9WwC7=rZ~=H7U&?YNSbqY)+(P!bUmjg<7JI4K-$L2&GC;K1F9 zP&*oor%$`6ELC}^LMOt@AZsm80Ir$0Y%5+*xv;fnN5;}7{^oayOfqx5CrL{QDatbd zPfDVWoTV&K7_)Q!%71aSKT%Ew7IH3SMeNczFnO<sc(waLtGuRK{w@TBBSryOVWu^_sQ1{is=`gzX)Ul6hgP$?kS&EyB39! z^}&1AeA>_Rt&z6PE*--8ckH;11`R-ErSjC1msarc!*g!C&OBY^dTz8wz@b~hQu(%~ z#8ir8)Yf!6>)1Oe9A3a0ojPMen7b&KUvIiaxFw-f3Fq7V4v$27?cFyA8({4sCaNiw zI8^B?{{gwWHx&xnnrnpkEBF0JEX%D_9bH;H-me_^01;nDqc3$tr&F+=QVqze`afy= zscL@w&=3-SjjcfR=7ko5g$rN(9sjRFx^7_9SI60%)=nhRdm#~n7N1ZxmBjaze~Z~U z7rCl$!Hl%jv?t%N)PE`rs2=SRgIx4!OQz!-QGV&nwz1uVE;WYQWXGUrhkdT$jN-Vk zprsI8j}rt4=-iPh1bRhA2C^3fW{Qaoel&1j;Z$gfyiuORr)BA^{25?fn`%h-d>c_UdaPSM*6g%Qz*{kp)(<=(j$0Gp zxkCd3Q9#{LMhN46Y@fr6S5TUom!KyXErE#1)&;hR|x#^MP|RU3~_U{%${Q**eNP>oJM7ahat*i+-WTZV;D zN@vGMbd`bDMjzwwEK;kLwcL4W3MM$;L2kayfqQs1obl?Ews!kSYPFq0k5E=>&qEvM z*cz(EYP}2Y3B(V%_hKP1>3cIy@XTUWV0+$ML>OF3Dpgsny5g}v+PpqxJyz9G_7B>D z6Wualuc00*4khJ*!kKfCu}+s1!EKG&G&J>T?mY&YxDLf6HzHN`z>Ol(^c;)hXZ_Ad z=!ziWgojLDzhyFM;2ZfD{<=Yhjnoc)FmIg1om+ zns29y{ET*RP;K_N<%eFQpP(?`eiC|u1R@|niZtED43Y={B2a4QQyZ>t{R0sF0ktu$ zYFDTUv{LC#(7tc1G=88o9^n^r`S~?h3{`L^yJ(fl>qBk!r}$L7`l$!tZp`}}O~0ES z$2>H6?t2}NRjMYA)GKX^dY>;96?XjuT_TZ?#Tn|1 z;P$sd_3v_1ZU~A`6k_g=VK%EWI*+(eUak2W9 zS8(y;oZ)ArB3XTLi0Z|t;f9jHY0J~86FLxQ z>aA!bN$=aSC@`7?ee?*(^W!MfCapovL+noTf$TOl%C)b~ddR;@! z@ZnjOvVj+kdnE(h^CW4# zdZw>Io-+tPDA= zW<|rnD5#T+_On(59ax1<>4;O+)_x2~dp->u_e@V$l?@c6+o9-_j?#ZPeauvf==%K~6%?=H+C2US?p7T%vHeY#RN3U$oR10(k{ zP$x-$k$vz?M*tk#m@(a=<0PWy-ii({0cwr|wlc$7hpU{9zv{OT1L_((N5iI_9{z1- zr?b)*LYdB5n)&|fp0s!t7O4V#;BdTO@9D<%;PLh}`%t+Rp4qiSXTtki%9xzG&|OWw zqwl|kXos|y5jgQ3c_g;bv4ro0m~YLeh3iO6KFfla{cnHhYm=+YC`OaP{cvbaZQT@S zdgU`KFxK-gBria7PFyAsId)S_##uCuV!$KBLgv5pJinA8c>&On0O*5x1USsp{{MM; z3HEgC(CI*ErXoLQ*1Ey%bqC{73(gCnMe&;x_Ag zEJ27mN0{EVP2OS5%_G=#53iAefWw3jw8w6p%E$SgICpbWBbp_hzY+`EBOIAK5l`eM z92^5>FB@hL%n7=3peIT+y|<;eWzTFfVdsN;_k<_<%5A&dpML|+LajyJUfaF*tXOCX zNpctP>{EWdF6j-^A6&%dszb7(#l+iTQL!1NYS$&r1t0yTQ>J!Wu{9hzO{c>5@Dbw} z3h&-9k`P#QV9!26H8e*t;bfU{IE@UmDdw(GM@0}g8?HhJPQY`6BUY-Q zUNr$@?6)SOB-Mj!(bO(bb9Pki1HAgzhr z^zc17uSVeR_3#fnh|?&v$*`gr{l#PE^j1-DXt6x?>Xhb+-R|Tmf|D#+k?4kfQl$m2 zap3l-5US_DMtGwxsnozp)B`mf95m7M4D1IS$8(B4{_hbkQ~NVAGN!dXbxJ?Fef{|& zATaRR#SZx!dJp1ITbhwrqdkJ^;Z(v(9aEhZlCTa}dgaIPvG0RXfU>&fs#EpD0;Gth zQ=U^Eq;mUO%+c!Ec08S)r;+263f7{pm7ID-bi>H|4ZuznTw6%kEik#fp#awa2VGt5 z=Lv4+jc|mH;wIyUfCjBipKW>jpzrHl)EHzK;0Uh5c{=K~45Y+}Xf%!pAaHP)HFF_K zL|vYj%<7WUo`nOCT;Zgqo{|gknB;~3#n_vNL)riT-`cNIbWw;TSC+CyN{uXC_H0?Q zFJ)gs*(1(YOSZCx2933B*^*^Q3!yNwWE)AEu}+vV495LBUEllr$9>$#@Aw_Z=fBT! z9ho`LdB0!F^Z9tfJ}{X4B0}!mx!?HT=m87D6JX>u0EXtk8t>X!c-4UOXHMm9y|pEl zDLX|n{|!1ku*0b%cjKTjmgA7x@R+>a;S1OmHeLDI*VEU*hwIiS2qVfY;k^$!Q8kio zT@;=vn@Gl5lM-&lZ1)Y9-P<%{jl74Y(&vc=%L@u>?7O*npink4i<3!M5RJ=OD+oIV=(DWWzEf(%B=1HGYbG^;GyjKzcA|k|M>Kf|BQO!*8gXt zUMmQ-xKPU++S^hqQt`T3Ya=ANvuE?*WE@k-&x_kd)~IcrhKHsjOb~V(T~tzh?c0<| z93!gwh5X(3%3sP>lySqd<%>W&G``RD>!3{V$3-Y0O`M8}Xa93bXIFn03=Wz?V9m+NDgBNxNP zsCT4>0|=m1aEo~Y5370L=&g@`*U|c|xHm8b*nsq~)ebu;Mmp+m=C-?YOAmyGd}~On zEr+5tX0^fVc9zi8)VVTW*tA&5AyGtu1L8bSjwb5lz=)&!)$H~+O!HcQDSpV2JG&Gv zJE0^>aPTs!Nc7fVQBfS+gZmwTqu0tmaG6poD=JR3dhfX}m{3Dpvf5aa&gxrAp+V?N zoW#rwczCr={+MGu^+|+)LU4Y#!-SY+2$b5x<1P37rNl=BgEOSLkWq&jYfHJPWBYf@ z9jwHYp~CL2%NMhi7)twK=MZyLbKjTMXQQ6u!v|rsr$7biJ}t%Hr%4&)^-t8iBa0m# z8>A#?wD_J{h;m$A%LahMYtafe)MkLhsLgwvrga z!Ej`gj3|SxsH)=Ba8%<*&NGB7E`c}~{u7#?w5cym`W4KimJ4qS-w+L!{eX6SSz)2TIilw@}q*~3!eTGyjbW#h*whzu-Qo=+^lDn+<*Me%P$YQO=C zz`N<+k6v-Tr%yeSK=x0bQIlp4QnD^W|q@FZX)+6uIjLKr=?@ttxTNazAlIVUaPX1Dp z!h}4yOjDw_AB2iZ>9mOQh&g(jMMwrlkoOGv))v}`Rf-UYRH;GIFh?)>Ds}k4&fLsD z9IDitF6^LSqTX+Q7X%V0>1D(jEy@bx=G3xM)#5?+^4F2pQ+4AvjLAk|%9IU=D|W6u zd3XEP1AS)A3x);Fe_53Syi%i;zU6CE6*)m+RtNUAbq)+F$`Y%;QzFfgUX$%96=FL@ z*7wsCjv%Wlu@M~pMzu3sX^+Cm^Iq{_vzZn%BPDDOA{6Wwc7nJ?x{V=RWm0t!Ff~JG z5gHo431p|<+KcGFVpzk8@0+nk6%f-f%P5Q4;P@L37F7iT{|Sf3Ao%d-!D*`2<~kM- zV_5D6`|3^!VxrY&x_C~sYCTe34K-eE4iF~2*()D)Oxht*X||D4N!jt=>w>u3#~2LCk_AT)mV=@8F7FY#!K?d13@!UN zIL&#>N2yyF6?a57&2PpU7fpYmGgod-Wnasu_86>dA@otZtLqf!uj|briXeoJRv)IU zv$B-DuliD%Ceu223$iSD| z7i|(a=K1c}Z5a|&^ip(T09?kGp$0HJ!qS7e_Hgo~G?&c>=(czLH#$k!zRhW5T*L9H z5a4hBq(m!?hIgpbg@$rEKPfQ{V6Ih^4lU339&M@?pAdobOl_0F*&Wlxh=ZJbG%Tbh zbAPo%SI**|X!D8_`w8bi0S}L7*FG-=N=9*YXWsfJ925#q(0}XcQ$v+i*3?hoWTQ2( zgzG!WjkASXhL#uNkE6rNqQwL{)$Ue zSt0!WS)uQXd@UG?qt_&gVdAr{oyW=o#}(qv^<*KO50>1?i`vwHBH!}(KP5+E4ogL5QSKRGoW3oEjb!QxF%(P5-<%a*bYCj z6UO!ya_%G^IKxRDp~k!5N8IHJ1`WQ|$^C>K_f*1aPbN!kK|!-cYCAq6cjeEU-zYE4 zy(1c&(N`NI;?uSR>Xr6=(tn8pZO!$Pv9=Y-NFOE@{JuJ(gi#Z#v#rly0xa(`V?^R; z-zYA6`Fz`5FEbw9y`3e#w<5@K;~Gx*^CI+C5yBY@%{>K6eaVx=kC~U98VZ`)@rHAf z+^B%HjvxK1WxTLR^xP|W;v26g0p(UXXG#Lu!$SW&$l1)#|5AKoAdR_e3PxzyQ%4ME zbK=84;iifW$1jScwFN(zf1$LQh$3dPee^HAzY``J%nU!BEJeFMo1veIAH0zq;#KLN z`t-`Xkfy4n>w&d}2d-`-+io3YQd}ifolX?Tc7zXCwPX0+02|zfV>ul#7ZQi}2M(Sp zRZ+&nwfb`tJQoi4yE;|q8@3jO-amQp$?o=*)uawKR?AwhJuH@2^M3@c!LCi~Bw6w7 zCm#aiv`FBI4@@$`n&&{r--A2$V zzgo7J&v2xK?{e)4A zIIch#?DtHk39p*fFt>p09?0X#JA>XR%hpov(&^#DjWnpW3)@j4=rh~M87YH0U(jqs`_9hC_ZSX>4MV35n-RN%%2*M zad_{Z^LFl zn+o5)nV>sAaQ*@!rIJ%Mz>;o1Iac^aQ0#v`_Y(k&)xXn`a}7$jTD0HC6^%%3kXJE* zwXPw3=!ET@Hp)%Nexz5MEW814ftuBw^1=xoJrS4yifQ2#ydr|fRa%tX=L0$LqNqpk zl@oV#`2BkcHbaWGSXLO%Jxf&!%wkb+v?!yO`*b$#g)eYXh;h>Yzu%nSllS+g93O-i zv>akTC-%zM4RM{+rNL5)a^FL*K{0`R3mv0=Ps-?>5qG$iuZMH#xMNaJ5HUWIcK^dG z$H>gH8gV9aPs(@P9-FcL_r>FQc9eFZ{9;#%;gAqxzc#fFXo>yzURncG?{#ba-`Fow z8g|ZFC<2iU<-@I-?emyyttkxxcc<$8dinBPF@w2a9h$HybEeh53rmIqGn_R?;eB1hP$+K!@ z$A!(}o+&t<3|!@9Iqv-u6w z?j_2wl)z=&eW|5@HG+Jg*!LEaNPc?db+KTjjRZy};}qt%sgrcdP#(JtJZMrIbT9|*g!FYC~WST>gAwsheHGL$#dr|1)1o3rftlby-p z42Q?+?PcN}V}+%&Q$NoVQ5xAjFK`5tkAKy|@lA4ij?1PzzFdp^8h>@KFn3uiCm!$+ z3(H4vts$rdQ18u>!oknd_13y4dH#fRl{{0+s{dSH2Udkvkr`{!KkzHMds)(klu*Ac z5@jo3(P}tuz+F2#6(Y*aI+mPM)G zeL0i)9b;!d8HIohg*zNQlhR+B%+nM2&nJB#=Asj~5k}SHM6z?IJ;5;)-KD?dlS`_+ zbAaUuN%3|)gyiZzhJNKUriIUTQ1lHjqkiJYA9J}3WTL1TvNH%_?y(s?!({57E9A5> z67iU^7SqO&f(acZz86j>_Ym7g970Y+E$*R&z2?^OOjZk&-cJ${+Lk>yn=?O2ePLzj z9Z9^8CHumEH>;LvlJvRE3>%&MIHhbG%VG-bhoV3?kXfOx6y@c8u8bVdHF{h>c_Ha) zSfuUXg@E((2!;bh}d-bl2rm?+Mu%ffvZUJ2gUX69SdV~*hS_NG0J3@rnv&p z3BA4v1?S9o15@*jSFv>e5p8O%ytw!UjaHfTHNGK{VR4&a(>T|+>ysWVcQ4kP%e{TK z6ME1BSWraAI5b?A4au~=@Fc{WtK`S2qKAkX$q4?C>NTaCNf_?zBJ_0r9F&M5z&V_t zPxTiEqAU|`L&s)l5eT+7J`+t&}pr_`ju!k?JL9L?0GC{x^iIQX^cn(oO5qiV=PFWYY1 zb?FjxM_cj{8gsMWsCg+)kLGd8$XI!DZUeuA$uo6nYb_Gp-cb9nB>JXKg3^+Cr!2(b z877tS895(U)7!^~WB(OSmZ6_2%JVvCkSAN=tuS#_ifdFpd6BrbovgI=lDyUR6HB8> zEl;-@Hs-uZ5Ml^+1RwhA*Y4eKX70#5(x&1M06F4bsNA963Z>0GyflveyBiwEH6+t^ z-SyF}KlPdkJH!)`qfxd{HMgF;@KHGKf1> z=zA*=DVYs~V}4T6$tm!e+P|yEXg(#g@nRs9=1Haz539I9r{wo!;R3!mw$M*TV^yEJ zkNBtcy-3t!~B96UW z3AH)R)9qgKAQUhO*&bVO&WPN|h?5KLiaCknWp<~!7*bm}@k~U7Fsej7X9;V<(k8VB zDPOh&k-!~x#{cv0i_yRO3!kFIOq?_apzcctfjSdle6*l7O(sk?uQ(SDuz@dnt@D;o z;PVFn&ja0yPf`19lbM@9U3K^*ZmXR2i+rzs%2)dIbX#HFCtQM`d0K~hV0_mh#ms@v zLX2l?`0!y@AU&-4p~tK6x2r;EAIyau#SQZ%2SnPo$v9WU?fYTCGj}6hS`s$ZOL!YA_}tt;IS!PGkr=P|6EvQfAU#z2wAKhc_WDJd~Hf*Sqbc z?KdHLIT5wZ!wH-`#y8yNwbG`KM;XxfuxlBiCs~HH^1(mE#*6F9t>De_3gc;&sa-1B zAPoQb4i#t~Q6N~GYVJ?^-se^59s_?_HTsvmZ;YZu?Zmgf z>ise^5+>ElPNL3Ztg4g&sPEb4BO5gNV^puC9q)`%tR*b3knD9mutl$`5lkN8<4?*r z-ewsM{pNT-Q1#T3-l)a;OMSSN0aP7?%?~gwDiN=B)c1t^V_WC#r5UWqlW4Hp6r*NW zg91w3%M0~z%7|W5%_F>FvefcFZnSG_(1c>q%D;*&Pwyys^a9DHr(RZ zNilDgA&%7#LIrUbt;tAm8_d>vzFaChz;$)4YJgWds`G$(wiWuSKjcqp33)#qn0WAj zHjeMqoIlRYob;285Ge56u-{^3`&>NeU{rzZu9c>D$xQP?>l!Ula}Y?irCIp`i;;Z3Ld^z+NytvuE5_m3XaJpKf+BoP9i;ly>vec|Nfjms8%6vR;I&=rgaS7jHaQ>xSgUft zM#K0XHJX%)^(}X0?hX*LyI}lVhSwp<{}=ksJ^&yA6SS0})QEVkgwA2V z+|Ki1B}}@NL6T7DWK+O&e?+Fo?{WCE10ox*piYmVCWpBLgn-mGgtz+Lew(4NG`cm1NK!ck$elv_E8|@bPLWdes0c;WaPYQ$zgKejFV|UU(1^EDB%bz zO!+W=X>;n*HdC@0ozsI4YNZ-;Olcw5%2;5`Rs!&CvTk5lHi`%gR+X9Z50CD-V+fTc ze*%=cGF>L{$aU$xX7hK4WNLj~3!kb|uiWk!z3mlPqh8Y9H|Jox)1D4d>?5gz7}T>UIje&*n8$nMiaE9!CQx3 z!|SaJ=EPMS;5*HvK-H9GajllziATBc+jec=CLKkL#BdJ>);OQe|M3s^my&j=d~gV4 zCj-??TmV;Ni$!!m$u+fT-1>{_4T!EVy=Dc1!O>E#B?Sg!%MXDmgAMxrq;oLHoIra2 zBD?VqNt%$}{4DGY=4A(SPB6{%B+Kq@pA=NBg$JjXF@|tPa*>)k2fL))z2M59>`Gh~ zSvE4T=(8kou`>1l+F_!Y3d0eN zuj~>UgczB-L3t6K)93jed@uivZvTPu27V3urmg=OA6d=oTX>P!hSD9cc$XaWTYy2@r47dfsm z(N6jBqxiS%s6e$R4;%ZFRO7ebr)Cke3dq}FV+A@0nPb` z1(<&ivwn% zJm}atgPDP@7?0Cj{Sn01VQm9;e_rKKTe!=vVmzn=V?kHecyD62WrrpK^%vyjDx!5V z8j>7psfNsQNd+}&Yqn{{y(zZqcUiMWN>dJ)#R{L-WEqV_ANvha#uWp#(DD|cC$VcM zgBv^Z9_v#N!vM-RYB0fjdJchQ3!uBTsc>^U&)m6(Ne2>KK#6ag-SHt-eHPdJQ}WmW zSR1|8O7|{JnNyQCBpJaO!gJ!t?ZYRQqbjzr9HCMK@sj6mW)o-JLK$yFg|v|n25SS~ zpXj|iw=;SNMaks8jbN`krm1&A_Q+>%3u-@tqu=(InnOnC5S}(ek99V=UGmRio0#J? zyLJ;6fhKcsX?lGn0aZI&9KC|naMuhU+w}K8;f=>(Qrl7TjQw=fPNx{^NYE{52CNHe zR$^eXFx5i`@vl2SiOh7^45j%a zF%|k@<%No4CA^WQeh*%7Oz!8!G@n%tHUiB&#`){r&X7+}oi;;2wQNIIJ_iHl9z?0u zY+#)%PgBrh@%$vkbwKisxm?eMXmwu$o$8i@qc9gG4KK~BG#|gnWx)_x2Jqh6z{@<@ zSg2D*(Zl2)nMAva9)S+!%jR9kJyj_+7x&A!J=?dH!MMT4u-=6F4)yzaKUBv6-RaHVGG;3)B39R1-^@);*-E=gOl zbOGD|rKN;lPDml!{hDCY5p4Isn+@9pzfT$GOzwCtz8}A2LrdWXQUQX{jqBDH44c^h zR^jsz1Hs)x!8)7YgZuUg>=Uyf8MUkqG;%+FxczWn+t=!$P`mRj_J;pGl8-^nCnf`a zNc05;xtF=PAHnJL)a^=%?z9neFLCcS1zeL+r^AmDu_kK(Y2W>w;UkbYA8&e2t&6?T zYT^JsnPL`ea*>S4w`lE(Z>MCnV|`6&1C;0ArnLPWVw9FYXeRl`bbdcw3~H3=SB;$+ zc8eD`KINYPEKS&&S#a<@yd+DVW0refYgr4;wUK+_bB!LF59WR9wwj7}MZQs{mZY9n;A%0x7NBC|H5OFLdmJIc zNsv7M&6L(X6|L?a5~QYl+dT^$CQ6H~eC`a(%`uDCsa*dKIi5EdT>2!Mi(VpOwK(3~~&{?HFa^S3-|9X>U^dbD3x9!_Axm?P-+=u8^RclqQ5nOfG#lgWa#>*y-Csg3nwt6aUNCfFB(b_d8Z6UUy#oc_8do;?hMZw#6q z67vY}_fh3b!1V$8uX&ycMIz5j`|?7e641l%nzoM1M2t!HGgqh6)CBZ?r93X>jTAF? zdf#~XJF70#L$14EERcsKgCNqtxguSU6j$IHnd#qtx!|x;rqp3+t`cqq*OT&+WBSb1 z)~3G7JuZIaEAhmTA(_TIUsY3S(@T_~sO{UPHWmL=H7-RLgs#?s4>+``@_S;<@~NUU zzcpoKo4aLUr|`u2eY>}(>pSB!x?qtzRlJbN^UPz@WFFsLK^*EV2S-)Mnh&L{Ma0>I zVaYNC2?W_YehG+njXkBqs-a#y?!shFe&u=n?(UxyFf#T!1`?w z`%Az(RJScAM^Ce?m(Q-DpI(L#JmTPgHYJWNPqLo_owp z5mB2g6;SKi*zRSTD7)81-~42)d{xq2R5x zyu%O-ozcg5)6KkA)*`1|t->`hBI`0XWbRfb4r)VOLhD34dZQNufZuptVb>5?3!w-B%z za{EV+y*M@sK{(KC{=NRnD>La}k`TdnGoz5c$;Og>G_ehQ(SVthIT&!~?X*9ZnjfI*U~ww)y@hoMhx zpRt~nv?C=55L;5T-XCs1-%{i|=#ohGKelsN@PUb~Wn=ON^3Bu0)&5)#x1w}uO=d;u z^)Y#H$xk4RfA|BntfBmD`pt)~k5|rfgAOS#|C%7OjQq_sQ)TjeGZnf{`e` zg;lJ;5(4%cU9lOST|1Z(lw;22C;uDGytDG^H~tv}0i@u>_%62s)dN_e+ z{WlQIjDHS@CxJCe#rwYvYQwb5SlN9$^`El%Zn^@&%Jol1nQz;sP5Ycz;L#JtxK1Yv z?>X;zZsVX*DVOfCS79{jrO~PlH|?HQ=C74k+!iXx?_rD;5Ek?HEVgKm!@dEY^@K&iA|N_+ zNZ9S_h5)B~Y)@_)w*b0_Z!~J&4BK&Lk8_pBW>rkv=wIe1C0`G11i?~kEkEHuxAoeL zLU*D3n%}=Dc!2BLx7!=S3|(%{y`*q1*!2xq*#|IP^?R zNnD(R-zWBCPi1;&O?4TlqB#*;#+9gk<4NvXYCD4R~!u;AnhAcruOMfv1TNQ&%i?mzFnCt!HLXK2 zzqf%RuR8=~T#A}>gW<54&QXt-zU8dL+x4_?n#1R#n2+i+d*Sejv+XNevb$|k$*!4j zh;0{bHLyYL!@{#n-i%(S&E+c{7bO9P1Ut^;MFr&{#V8^IJH>=@e<={%jtd39%p1(H z_gtuMlUwSI zd>Ll~*(mHCI)6Iz_0aQZv3WJ=^R3@Sv(rl)VHz5(9=m|CEigVparyQ{FgWc2({!o# z`$I3+l{Sj7c50K`13KMx7ySB$7$i~gqx;Ewnubb{!Q}`vpf)SH(%d8=_(W~S$1|R` zInQpzq^uO3Q!52G^0&bNThp76b$#NO(g;wd7EEEe=TF@mE^&y3CXZix*urj zs>D+=UAQRi|UpLh8v{Bki!Rd(Z(y!$*tYw@?(m}_gaV^#rgGltFr9l0TTHi`AE%~D}7V`sC~BXGEn8vgn1g8p$Vv( zLg-~7B$IMDl*of@g+>BEClVCp{*0-D89*IL1b+o;g+G|2Q34@^pw|7k&nkD}f(13* z4w!n39A(A{AT6PxuqY2ukz$TU<+^S#Xwy?u1T?M{WrUz6o&8bw^KiZq9I-r^L)XIv z;;(Xx5C&R8xI#yeJ{7O;r<0L(MkbX<$Io?(2(0J0c3m8L)?};Xp1&+wgXDMp1b>cH zatd6mP?W8WC{YiG?kDJ^>ABDrtd1oM;Yod(Q=iqnUdvk@KiFN+sdTB!ZnW&_$71Gh zt0t2->RjX73u8B$CVv>IQX@ezOgX6N5fdYGc&(n z{Pa}@kYuw__9~i~B{T)#vv8xANdT}4=10~Sg4c$}N}ElIA!nKWr5{yzJvKUb-7)dn?`X? znc$fNr5i>fN=X%rHNVqre;)W_)Q}Vis_<$OF;nX`S-aS0PjCK@vTm|qu!Q}d10~8o zZZH3cc|%-F5}HD={?>h)!){gF``M>o)ijtV_{}LAOqI53WZY3>aZmO~Zb@IgWsj`Y z4cB%G&zQzZR;yM2eKav7*h9=oyqAjy7eX5QnYC63DTKd0Du@7|Mt{m30XQ_W9Zh*f zqp9M7$vV|*Y|!_=VaZ?^K(lIt$}YhFe|Z0HT4mM-#2BFrJoTJac@b2o5B9tlJNB@l zfkucDBpR&&MszD}iX#fAe0Oa2nx8AkDHSUwYI`; z9)^6eM7F768>aIaB?U;FS=4^`7c&mUg>mY7+9G~N01G$9w2h1D}(JrtZ3Dq8`xsS3qf?VyM8xLoV+8O$b2EX;k z5aw?CdnH@Kth_b!qK*5%Se>-i?>C0S>J4hv85ef#=+WH#wUR>qUDAu*O2J6mct_H+ zuVnn#_tL?0TAMi`K+4tq&>FT9DKs@=9RJ7bbxj6LprtcIDom-Gw9oSoOIMgD0N?xW z!|iI>Nhz+mhp65>Flco4L^;i6)rq)6m?*t;nN|AhF}+^zfxgon>i0^&Rj5+IYw&2mT6R0x0KQ zLAo~iAz@Yo1{v)b?vTuK64v>$gb9g5tjtHGCgemm$P@XTr76pn+WjwZem-PH^9iK;i)M;UE^|5_Dj*hx+&!DFn=R1BqN{k}GKbd$}t3fsNqy z7EZOs8Ql5F$!KN|%SL0v0qKjpfY>$@^ezB@M+6XL5OMz&EQaE&7kkLhN%ed)4lWvU#Z=-vlRz< zSnlS*PO(S_m#UEM^)L!}Nhz0a7gTCAt2DOfDRV9EW}*Ggqal_*NapREjT7>hzc~Ai z2;Ra^I7P^>-Mq6z++4nc_uAmilZ|6C_}Ja=r1K4{DBNm4ilh6haE#vS-F}36)FH-k zJIGI(IViXD?k{-AC{Vs+Mt$d z7Y1o@4+IbZGt(RCQ)SHQGHOq1qe)_7VjbX$d%qq zGRmpJcd^6u0z9JbPOL)ptqBd3YC3=-kDC}pO^dcmz$V#3Nux!K1z>z|jbLS-4jEg^ zv;}JBZPc-c8Dx#vgBh;j#VI4`EYEEgMwMIX8xB0;=HnV*RPBowAfnxLWt&hgNp|n+>EGcjL5(d@>vo_M0vt7*M ze1|E=jq=xV=7fSVN=82?93uX@r2Ra@Hn&x&|6L$i7=rk?FhSI)5ed}``MWnt`@gux z6zj;HEVLiOgd(t8VLsS}%wsbm#X;WbA9MfS-DSvMjxCZXe-Q4NU%mTc3y;mh15L*m zYJn*Kt5p7K++f77`WKCnjeheQ_(>i5jAnf7ln#BvlpFv1nX>@bU0KHpP&=%I90R%= zpD3YHUut6%*>|H_7lwgGSn_Jt+P$f&K&4Vm757;AEiodOJNFc{<`hzMSI7s;k%#o8YEe|jPCG=RhOpoJZ2&nlgGs$-76&yKv`skW?p|)mZ zvH-?kcd#9g8+Wr2I*OmWRZ-@GOoum-n<`LCN+~S8br#ScZ6M!PWqi!~of)w4h2MY- zLtf9tzqdW{p}1*qRMk)0jrxkm zRy|TOwLY&=L}gR~TJig}yh0JMSuR5!7U;0$7j&e!zVg;U7u#t;_zd>({#sp;Gj-Gb zt-{*eP0Ktb{L{~UZ=UiFoxafOWkGe(23@hx|iFoDb;^CZtaZixWUIxIOD~rKkRrk$FF~Zm;=7@s*_PlnS5Sl zCEqw(AQ$S{SJyYO3V*gGp^qWpxfN;g7dcl}^3QIrT6ebk#8)QRX#D5T7$o1z?Jp2z zKmnj_dG-n4#g(UOHN(THboKOQ`b+K*RfvV_9?j%Q>-J#M@ff8`p9Ok3aeTE_EtiDAzUEl@9Q{28d{W8m?h5ZqN*-0bR~(iQi^rIs3r7kFQs z;klsUB^n$!P|M@sH~BRl{+r;h7D#dMr-I z8NLdIV@DR4OD^*(da8R~CfbSy`)f~_PJ!1uNM5MOLc(2l-eYI(Zy|!!NdiKjaHyk4 zDZ+l5@matd0LpToruf4B2_Bi!h&E#lwAGnMCwci?)dyu^CyW<>WS<)kvQ`##N+TM; z84xE!v|nsi&vab!I_LtcyAo370jnulz?zcx?I##MrM= z_y%@J)^_Kcl+0TWD9F^(@td(*%)hk7VEUEj%ne4r*o{y9rk+>JC4mwO-Ts&dQIDdofuYCcW$ zkIDZAx!8z0aVcd;TXtHQFvI=CzV>9d4G%8opVmR3ms3-om^;2KoIGFvelDY+ryOoD z41+nVA<6#REUls2J*C-v!z-V~mA$6^6xHk^lFVGDa>F_U8Av=}A?pr-y+hp5=M*k^ zBJo?~xyN0hlev?XEuWu44qo6=;A_zlq}$iEIA*dS_D|pD&`agnjD8R^NrlbH08r4G zb=Qu%-*eK0p`iG%dY8)ri~+j=Pr-|KryV;09LTx{ue9*q*G{3$(O26KwBBw$l6vD_ zW%ty*-VgJA%!?q?ShWVr^x!eEp^s?-;)gJ)Dc1x9o z+yEPWCm3w--v@fr4s+-T+Hz{?x4*^Lssd&6%Ib9ZXWAOKvF+J$mC_wqrG==HGjFm6meG$PIkQ{$z%E$vOBa zsO67lZ0sn1G`7TLntUP7P;A1rY%OO&=k4>9^QQ2)TX&pB>|AFN=Ff+ z&i8s&Q$2AV>YkI&o)Ww@MC6jcxRZ!4Mfi2Ro&al;yU6!cA(x&L|JYKILhXf&@WycpeSR%;J1~&VYhJy_k;k`y+(ia zV|>+I&00hJZ5?%;i@QuA{I>O%QP`gJ*C@rBH$jgVrwm+!us=nk`*!BWZ?r8)RyLGg zeNKOTf|k$8ezir0G2?xatfR$(vdAei;DC6VYa19zjKh*GL{kxF=JT&X2*vr)&7(EU zFa4dM66z%$Pw^rBc)GA&T6B&7gYCIHldZ-C7E1wDKa(39mMPJ19)tgF_AdSyx3V_< z{cDS>QVCV=r{(WxIX_S5x^)Cq$mv^4OcQmr(OqW3oa)$}_1E@z?P}Q=49E z4>B*DwyB{gBgyTegrdF}eJX|Wy#!YNqZ=!Q^ztb6%NvALGNx zFSmG}fdtYx!eQkgwFGKhDt{@rqIcnVYxgt^Zk1M3xM!Z7-NCCTL~HbB8l{Pt@oXFY z;nFl*uo<*+VZ*EIS3{Q*YgksQjH;QP5S>}X544MzwgY8!?u-6PgSi;32@!&*F*qN_ z1?%t{PjVfH781riBBlX6cmVZ6T#t-<46DY{o<~B#OSiWcCNIbS^s>qRGij~YuWct+ z92R)eSZDijnZ$+N`-%Xf)_sXhH;-D0t+kB&+FB;b7!klp#V>;`E#M+7|6gmcUO+x zxt4k?MCwJ5fjL6z-+R50X>LBS5uez{eZXy)vOG1dfP9-(-HsumdMdjHdJO~81;4C4 zH-4ffUGTo5AQrwx;y0sJIub_a%v^lH8DuHnvt+edXZDe#1Df$UJVa%$&T z=*^b3w~BPO6!V*=Z{_@7$bYkdfZ@X9QA9En&>Z-F-m1$-pIx3h69`!tXw!Xeoigeb zXK|*`01F`|Q_*y$X`m9O?qk!oY_4U?3x@Vl&Mhx*L=w5nRjJFYW#?N?dO)=8>P@4{ zOvkSPyIcyn$~6P{e)E$^7$3MRXpr1Ti4HooqS))bjUTEvu{T5zFnuJe5pq0TFAjU- zU9mcffXAIr{VB0i454}&^iJ~J$Z|u985v2j^J<8@#HJQPI0&nJ2;)eVQG-qJ#ODx` zMhkx_BZs0}O1>mc2!H8kR6oGbdq40khYk;B=wCD;H7#mEgPIXQW?xIM9APK#Uf$>p ziV_UIu4pD4t?n}XnsfAgLQGXxfe@qV#v0z1_Oian647@LjQs8qnV0Dtt-h#AHKgyY zsD|J=5bAkr4)DO>C=Pve3ieJ-kX!pTpI_>CMll4Vz?rNn8k`S&Oe1hU>0oujUb>QK zFLWNs8>8cCM@%vy9;wtcx+TD{rYKLC!+b9O7+>GA@+^Jhe7+G=n7~JSOXb{!RQm($ z+B-WOr|bg*ejRHm+9MfS8r&*YIAi(aTjd6?^;nxnt$l zoRvpxR%m;MeNOJF+5zg&-Ea&$Z48a@EwpBI zMhjZ%FT*h-W02Cw#~KH;!(SfTt?#|t8o*dxc8&VCi-tgK2^ zKl+`z?u=E}Bdk~Eo;X{0=Z?Rey>|Kv@}$3Lv$~f(tlElwJq&%vHW2TNrSoHDoX`^z zxQPoK@ahECDCc-@u1~>+wEI?rAOq<3bs-b4o&%A)%s0)gRj>|zfYvx-euD&hc|3ccFJ?`e=of9+k! z&WdAwN-UNJm>F_uEBu1;Bq$wykB>^os1zp8otY~VM2{ZW<A53I(io8Ot6Z{Bnt>kVey#GcRcJ^> zYUJHcd!!&fHK@yREO2*+)(ah@GAo;N-@<7+acy}7)-kiIYf6i0_o=I;Vo>-$6&aa{ z0BDV5i*2N04dAYC8*JMzfBblLOX#MnxFd_7R5$`3KA8UWPpc+xmYSyi_@^)S@o&K3 z>DWS7fBh!4a?oF@Xt$4Qq~fl4epB~&Xz5>|O>&5VFnTvP8z40Xps9wref2`*q)sET z|MAghrOd#ofAfuC7b}U%Xozfg#BhPRxy9*NF8 z%byOi9)AD#gCD#u9hm!^d+)W@UVCrg1rMjOs)$3EV=)dxEl4@zv%ypdv=pRN zNr=Y$XT;(55kQ>5#v=qxGfH`oI%)VzvL92=n*Y6_;-GV2=HYg|ovUu8woPu}oN~Ej zTX@ds)lBQaoLcI^cA=wiE#0XG2DkW>_2CUq2xj0L_6C=M2`j?4xXVJxzxt;*IvtRDxgS zEZ0)4wg{R)Yuucm5(?h!S>^Cl=qxqwps8bq_E0V{oYI^>)n(q1OC?i_mF!n)qA348 zI>-p){r7sDjKD8-Q%~hNf4vq5s~^~xHQZx_Vt#w31{%iP&Syb;!qZ;nm4{|ynVB{% zB_&u~!DCcZ0(N%)>9HHeel3b!U;1}Df1$&CY#0mZ8@_06YTBWveJ*Q(v-hp|!Mc@> zeNS94^A@+K*AjPlvr*?Tt*6IrV%Z$RzJIrVNwJ6f?131&>t&|o`DwB-qwM+b)Rtjj zc*zBvp|YhtHyoU^Rbi3qyB?)O1wnB{%_7PsKnF~c%Rc~)sF?4ub^k_RQ3x$=*A*{< zn7LNz_&i@B;J6xQjR)e?l=J^__2jnif64Uhv{>f@4QDZjUiTSnLzr5eG&O$c&`*tR z$^w9nVEgir9mg`HhA6pZc!SlVe}GX{r}lE*w(s1Y+v`YZIwHn$q^rfsjU^X9&A`wD3b})K%J2z6TAIlcK?atru zF^yY0HmI>R&XIIm7X78A1&SID6)pG^cmn@DTu!*+#k^aWdDG11p$SWk057X0m`>D9 z(8LBh0zvEY5k*>5%^T2Pu2uK$P*hVy+A6Wt4LVR$1v@t~^dGCgPYAD?*_JAGH(lJC zVXWtN=K^xjT{R=+sMR2JPYKQ8#wJk(MPzNCG?*WS+2H(7lg;AM@P%+G@zr_y*62W! zx*p)V^Nl;0Kwn<*JyedG2u~xQxXzEitt1G(HHHoS+VcKZ*93-A7&#El?)bCT3_uo{ zxqit{mmlx$ItHWF+#9OW=F+Jw9liW^LTkYyK5FyERQ7Dph{gt>tjLa|Q({xw2 z6ZlqnFRFpHC2@ee3IhhbKMje-P1Pagz@RN)(5Xj36I|rQOrV{u!j;za1X#8zB~sDe zEOArtuWC=8&;Y0cdOdb650@QY`<7GvmCpg4)q2dKJIK^NYcnn5+D%#6k@@tx=Az8| z1rx*%*X7q7G#XiofY)tQeCEI!sIu0!$H=SGLk!u&ADad)##*_cWi>GE+&)NQ+;aj3 zy20mSN9EG3m41J3a-IF21svIiz-0ZHK~Wn>l#~Jp?n@)V6wC}hUWCk8l-^jWHEUkJ zhKJF-E}sw7<6z&kR&yS#Pn-Dk#XWM!#DSo^CWz6Cg_|@1gtYpu)ad^lm_a`24GT`{ zn_Wd!F%SQVV%xw3O}fpL>=kyY;pPW-BfZLe(VJgR-UkrqubbH#k-<--<$&5PG6&{n zyp+afh5n$1Q4V^8yDJAQH_Oh7IX}EW)%fsBqR8MxY2*lK75K9@=NHQet=mptXYB5J zR@dFXSDEj`nvrl-cY*Y;B&zCeQ(@Z_@V08q01_m z>C^I%E}0Kutlvf;N{wx;DDvGYubzh1b|x1EcH+1Rg7;eQ1<5E*kgI57bR>Vv$m%@U zrjxz%(s`2PROO{R7cV3fy5kzzQ#%nlclop)*kSXTLg!j5U-NY~-I~8&v0MzBgWXks zgdS;M?s5UIK4?>@(CyKOefuSB)FiK%ipF$|+WaaFxwxsRmEh0*NZ^WYn1Bc1fGKZa zWJ>+r4KVn0BB;;tAJNotXugGS%#Zue{ldRIKAhMfZ<#NJpqtf-TX~>){qzTMa^9@% z1pcOPsi<`9;mOVUXC%XeS7-E@8CneiLv=#2_OBaf<|jRRVii?u;uOZMTP{wF=hEp= z+Isij73$wU)Oyl7s^P)NK@GQmCVGGhW|4vijElExSrpMi(H`GX6Mc&29z#ZO?=R8ob3%3KSYtcojDCx zJzKDH151b9yohFf=|6z5U=Er#H`)yEGs*%F+xI01(ly=&^HJE$BSw^VW_S(vUU;YD z12W_5J)Hg+g#EL?q~HNS|m`zaum`IBT(IZJ9o??Lq`zL>)xbpP$%N}bMPSGEcp z6E@u*be6aeKm_BFn{G?>7R^3}@w>5qjPtZI-k~SfVGHPd^d1vl2Y{O(vIQ;a=7pKdGjr8#ovp|08ot^Ys(rAIPP@c)C$1 z)fV~}*Vnc66R{SPP%NkZk1H=RT3-@I-DWQq^o;k;`}DiR_EyLX;`9%B#i{ZWEF|5u z8c!0(Ys_}y#22b?WkhI^jt`0O641RS!w#CLz5uEFo=o*KRO#RizB`T|%>Fd2_4N1S z>>g>4tGnCxY|HXyx!4oDUBumr^;ClV+=I1NwL<5@?~>pcLZL1va&9j}jqGE`b1FQz zw!Kk_0&gDP4WA7a5~R_bW5||0e4>qNX(@huAx~)3OBHwE?BkKy;WA1fSywm_%t?om3nC*q7yriw@5g{EUnAvaZ+FoTHJ0ljD&wQ4S>` za%p2Ol2;Q01w*g*l?Jb)UFd2|aB_dG->Gt4m%uz2Aa=LrpDthaOzl}d_+^o;MMI`v z?fqP*(xyxkh5s>G0TD2^5m2JVWsc#viczbH5<1!PhT5MBC+JL$<2P9e8ECTKq10|H zKN{H+P$fx_a|6@u))dDFg1o>)mCfmDkDIl%Ly(;2Hj2w>f?Hgi_D$bovJG z4s1u~h1?{Cv@iE?Mo)NO?(0Iby`yHA%lYoCOfg23ACr<2s%ARU0%0)*H->}EmjnN+_l%gn=mbpqajjZg<< zVRPIdKFXU%LxcH*eY-e$k~ETx|Le9&;k`%7QChT)#$)r7ty*V~IZMo+Iolgf6kzh} zZk_rlv%#M5#wVa96i_$j?sqoy?0zcpF7&>X^t$vLtX`F_ccx;|EVfs>p$^ZdpBk5+#vvx^y0$Bul~6sEq;C7d;noXFU%8Hw3?lvV z8h7K+;D-!)$dek9EBsR9y0-O(bR;I|SVf27lWJV*UMOT%Wbj2`qIdL+G*c)oZ35aw zDt&BGBdFwDawnL!SUp%#)7LQu$r)m%?~O@M`J#CcS>-~JjNLYfb9Fq06@Dxd)vNzk zf2H`Z#A#Fl_vfp8#JoESZ`Tn{I8^3bM|Y0q&+1vu=OuJ99vSfXus#D7tm+qeFd5zK zj4smtI=xOqkV_GQY9CCAP)9@z*HwlYb8{~*_?|@Tav$>(p)UVkW*mq2NUK*jGz7R> zy1HQR6?j;=so^3p+`Yz^Pt!*cn5N!-JP7Nt-nF9VXY=7o zb1p(dg+q7Vg=ZObO{PArK#(-2C=t%DX=9-MILKikNG6Zj8WjkcILUR@=<}2&!h=hA z0-4l5=bkVTkWSaCudlSw*JNSXtd;hj9$yZ*8;tjc{J&ogP0d#{&-6Anf*nR}3FwMD zBL4+*l*Tz;27grIywW|)M%@(pTKx6NCi9BKhK!yw>jX0*Gnbf;BhX3r4 z1Q8ig%YM)hhe%v|f2NNn=}klHRmrh!EIFy7K7@myRNm;e{+h3)XqRJH+@s1x_c`xf zuSh+LkuiPI;f_F`*O^39N_N7;#Glg8{-f+t%=j}8p+q^ijN%-5&A1!rIw9a~9_tg$ z@8#UW!>yGy*>^M*$sQk4{-#VD+CB*#&re9U7tNQ}e(2xD{F+26=hkis=3Q$ksUTx6 z1$4Jw7+7GyE>%<}S1)?`l(9Lo(c=(i*18gU}6j#mWcZ>BdnEU)35CYFFyD* zB&0pr8%}<5{23%)n8*90L=P_TQjMHzfy_p5Poi#4-px>3X8rDNC>K6yf0Sc*vWt|L zWMTg%b0GJ@?jgXNbHt*Y)w||)KUB|Cp#*9!IewGdTlXcASrbg~7Qz}0ug}#h#`9?~ zu79i}C_oIuQUuvuuIq8;Q6c?nhqDnI*LxxniaVirZ#1!gI8i;ruC#}PO9!18JFGo_ z%s%`fZCmaMYVYVuB0r(;QuP;YQ{!Ex2N+8qc?>j)iA<2frmmGt!vVaK9rI8d>Ox8I zl^9cuR~It1(B5Uc+dHEGAUNRFqfv^lV;^2^%O=zlFlw<8rWJEEP;p>) zOPq1}-mq<8WORWeNA>$>M0jW9Kbd>~hFE`oQBde{{}%+Z;<*Wal%~-C9$TV8sDo<= z?JvjoWqH!GsUBR5sfbd@wj7l?Rx(3f;_#&;i)dOCm5jmK8gr4^FmDn$ZX3UGY$jeX zoT^0l9TtbqEJEC$2@3x~lxp2-MwIGhhxl=aGQpp@f+h#o7ddg%^HDD8naA5M88ba4 z5m@aJg6^+oHEv1T{B@_hyoo^G;=tOP;*sQPw}@9tb#YidUe0hMw~Qg6V(iW0Bdhfm^Br{ zhw?PbUZ%)xo$Q3tdcqU8?hR(nxTsydO$E++)la|1l;?(i?QkQ#+>;oGbwic@?^b>P zlgIPC3zp${fr6T4C|T>>T)wMCa^kO3?j@itZ=m2X41ek3jd7KvAT27psOnkFqhcDy z;f`z;VOWl_y?YJ&@O>Gg)LUe!>}-#NmmnljOyqQqPGcDk&<^El-yukl=$6%+;-S;!BCbBGM5=FSkhMGquN*69Q@0v%;MDWHQe=A=P0-oYXVxj2@*x z3p>2fOreAxFFUpv?mJvKl?odbs7X}_a%J+mSl&^P%99OTq zJj>d-k(Y`?U`=HBN%q}+Xl?#X($auL1A~W)fthh%w!{yA&4UZ%&@fy51-Aofc2(pj z<>T=4sz(0zwbt_*s8a5tj~#4gW?DsRnD~!o7`@*4awuI~=qdb+=(=c0Ee2g@0N}nM zzg&&{P_=J8uRr5!Quthl|C6ZUblk-jrbg&or<@!8#{3H7`B!sDJ>bC4#kTT1ty@jv z^HiPAiU*hPAL6E|w-U0x9QW>k_=hu3%PJ$4g$eiv?^BNPwLzNFggErv)zF9PHq@}N zdvLXZ)yR9QB-8A}(^cT$n`*18`j&~MScMkh4bIzKoPrqQbMAU7*x2<9DbsZ! zs1W>`^iBq28bsV=)Pv$tMH7uM!mN>q#|bvC9Ks;Nug)=k{RRw_MeQsXQdfFugEsi`yOR*Ll22pdJ(yE(2x8S;)j_CL(GqT!CERjd^jz1Z z9G*$ksQ=ZXfqnRj@)>(IF7pYpj1~4sHsbiAs_n~GeOl3j3c17BbFIt$WnUd*9ZZ@r=Qgq-N4~_dx#3;|+YT>}FAx2aUxQYXz&ti0XhFGFA76Q{9gZiV# zUr17Ldcf5cEktNPgxGbqqQGAy{?@H1E4$St^qnfOnfiGdVK>8dKJ4OaEe!C#cbK2E?e`ots z)*k%>jBCGNj43DW($t0T+O~IhyQ#DXO;(@A$QO+abTttfLgzO-m97sbz<-Xkd_WLC zc-WCCry-zAK$mlrgv`_|%$Udn$1wc1+#QULDg6D%j6U9zHEy~trN}n$51Yq%6T|BQ zzxx>Ss9?1)eOpyk63H|-GAY7cJJAn4En@fLy6{q^1I1HbVrvi5gvHitk!U5UXbgX9 zms`Jy))2^ox;9$V;&A`E{%BindgO&G{rxeI@L0%<#$D;U*v)+2^UshHs(DnrIg)jY ziR$Q0$arS;WEcutJvYHf^eE6a1I@-jl#rdTKya_~wteuegnfnPq}S|x-AN=LV5FUz zOaworibNQ5;iAJbxfH5XCR$S~I$LppJSwdCY zZ%mkkK?4i^Z-d9#>;Rvp$}3}qV~m*mAS>)BX7Snsaf+td`+aW$ni!1p`sW&#N#q}3 z5y_hGxLsD&8#+byH6X`8>uEXCQXYLsdcbMaY(~lD`Hpy;RBJJi4$l>NCnns-cWmJcBJn~7$q`B$lz?WQ zc%^z)-@4qGzTA`ai4tr>=nMJ_f{t}% zqqb0)B1{Mp!+MYRM!_GvV6CyaE{^-d?|4tkGq3?XvP_nIk1z2`r|P$?+YzD$F2!Ft zRX>wvp!4+TN}d9N9BOdo3k+$G>tF1Q##HmJ;OqH*Z`*hIBaaTr=U7~_2IBrN3$t#T zUZ{&V*I}qU4duwe&jV7>QkHv?7~>uN=rJ=zKg^PEe50Fd00Qruyba6jA+4+TxEkpw z#-?$yeYq?{D& z0I`b>s?=k8!Y4-5W2@(c`kwQLu^#>Dxq42E25M8lrc>&j>b#k2vDG}wEhxU3^r2Sv z^M1gob)UYHeWrpHpF@daYIWW?Qg0(p?0J`e7x5Hr%~a|Otv_3G1q}rg9N(OZzGH$A z>p@-G5w+}23+2R2qdzCAWc3q=Xv`2#Gz>+*US zAg}D9`_@gARx9o)JP))m4ZTsUOL2xQ!+&jh_MX^(JpmZs@A#7&NP5tX5A~~)TapaM zYpd~B+T0Ng4w^iA?4^$hT@Lkc`Y09*f*Y4&y7O*CacaN7g=7rPO20I3pN&4&m!s%5H3- zY19l=oB7t28QpIK$DXD>3UUem#{ElLlv2+=&*sOInmFP_mgbkAh^sh%hD5d+hD)C; z5(a4@uW1QXJ@rx{?kbm;4BSi^8?_~!_scoy#(nL&m>EID8%Z~#5HwzGWZ6>cLaOV}O9!qgA zl;g94c1SS2Rns-dq%A4lX!fc8gqfsyAue0V(_*6cIMp=q~?G*PSR9@!RVI= z@(w9Zk6@RqiNDHIb+A`qycmI`%o??N^+%Y&>YY@{QA@k?q^&?ol*{e*4gcrVRrIu} z-dmv*Qf1)g#CrcO?e0Xs;C;XR=WL3P(x$P}hkf9^DZ??z#B!x=zd<&&&}UmuU8G?QLFyMw%fy!b7#oKnd{!le1`Nl>z~AH7Zt8~dWzfB3ScBk!c; zL9WhD=#F`Fh=@UDZ8)Qsr0sP58G9Oz%z@KzFZ28as?7~tHE*%0fK--^J20SEE`?eU z`_6Tuae!LVZP96F5VTgOQ#kgaBcY_z%R>L?{8zn}M)I>fLEU)TogWZM7H!s_h!Vd| ztd;uMt$_9O)OPv*y}CkxwO7f#0<&avY!n7LN}qY$Kj_QuJ+A1^l_=C|+d*GC0IPB_ zbBOFAJ~E{bU1`U`L=ChsDBr!b^iKDM7DLz6fCtZ6 zUqh<=DWGvZ*6uHS$;9GEYnId}p8T6n7epyXN1tnXye3I&a(iB4ScQ9={?vmz7eBI5 zKamemFT)C#KA$AMO1@gXjXY|FL6RipN7kHN?~kl5*@YfLr$^Qxhv4iHpIZL-t7`w_ z$+$aYSX-Tey&7rRDQ#2k=~F+LuFgKpnL1D4^g=3r9H|+~Wyp>Eia=JyhmYq6)K8bx z`{&(Rr#&05frtTg%FFdF-da0LkG})wVWauCT-DaksG@7`ive=8 z!Dz}v+9D1UXhn9c1;?jfLEUWSdvz5QK#^dHa0q+K`VSc*+|go6!Vm6E5Q|h6i1L>| zx--Cpv_8eMmk5ygedqcexFsfoXaR`>7s{%I`yOoO1$1x3jA3t$$=vy>G-%mzo^+wG z$>P+yN7ko2mtcJp^4SVe6Z*3}Z?G0)~rd9B!SW(2Nc##-u)!!tc z=WJ+FJ<2NV?gzNvetV2o=`^GQQiGwl-B!%FS;SHg;2sn@I$#kSoh@mXP3CAMM9eWi z36QPk(zWu*auyB5vgi~R0;FB+A8Ba(1hiLG{0yN~e!E)Xar1(o{S_fV(n=IDKaJ1< zt?OCpPJI-0o_>mi*Qfhp5wa(9C}sY~KZRncK<$jC#IW|m?~k$5b(J2&1FQ4mGtgbXa+29wk*+LAjFx`;LffybR8d9jJg;7ksbJkBfsl*p>ol)VL2V z)O|pBx9`$1G?dZe|7PkM0$@e<*-y-s)5!s;5`@rUmKN75poEae3oWKaAF~FGD$^uH z^du^xYxp=(N0bV^QU8RIw$GX>8@c1TXZ7Ux%jjJg^V{xoUl{?hpQ6JzSO0i5 z`1L+hkcY}!t+3vKtkw998hzMH(zSyD+4@x6W3zuSWxTgDPF%YhVPL=uXJHj(TAdeS zEVsHVVMc!iKa2S#i~eLy17tQLL((|`W~lIoDDU@lO;jmIQ9HmqFxa)naJIzz+^HrO z=eWu5mvuy{H$Q}1h+ggK*Zo||aHP$x5mjLU zz~6kTeL_dx?VW4>Dc{I7_gtEmlsocLGILWYs5zGe8G70yLaRZ&?&Z@$LESxQPLR#$ z`kMdvHQh4@{mNh#D+MVwxmQph+Mf`wC;qYG$cL&w8Ny&Mv$IQO*A z_#+wm?C@B6DSwA}FcD9XX`rB@wuqz$xC3bm4cI^dev7P%(=6c{3<*Ef6$L6FM{@S3 z=F%14EM4Inv@)okK4I!kK=2aDN0_CIZZoY{7@_6EMuUUlBc5<#e^ z&>z|}>LGMMrDvZOdL*}=4vKex9ZCUB%kP=BdYNDu z#+#dSX#m?2Ej!7*{Ut5hD7fke-H}zkj(-MzlDfM0i#lo#51Dnyi_>DkX5Rmoher%k zcUjuM-nBGW^kYgpJtn}@{%{9WrI!{fIhMY-GX>(hYB`d0+Y zMld^7zuXd1!f4P@2gxWV7fxIy8l6Md5bqf>a(|6Jr$Wx{y<)djr$^n9eh!h-cB5$$ z{Q1M0rW%~!-eex(H=-@GgQWNFNKAeux7!&zAZvh#hqqt10esYM=L$5%Xa7Y}r|i4% zs1@E5L9Uae{JX@WE_UdirQ7N1(^jDQ{ELF#*ldP9ovPo15wQshj#wI@TusVWV2w=) z`ymjKMLc|08KoC@$(7qd6{odgo_sM}H0RXDk)nB0J19r}x%2eL8GoFj4ZWh?SE|A4 z5Www*0Jm4vD=?nJ^$YFu@^-_}f8THd{pZ^=51?}FzgK@%g4lHwI#~Ho43M(8&QwT) z_*B5%9JMqH2_tOUCKHU2_C0A|$8aE^oe$kppxbyUl+oO^p;bQj2}66;OR<8qtE!l_ z#J=mBWJ2$z=0`VmnGzkk1ok5%Iw+00e?|DLlTjFREXj@SK?!$3_teK;TJ5Yp{dn-| zpIrfLZ~tp9&CBA78yo^J5J$kb@YSjU)H={y-FXWA)~9xv5zsRNnZjh}zJ`Xqfuo8H zRb>!xLNChYJ-(W?f&h6<50Q>Mm$tg$K>cD*nh^W;|zrjA;??vnW9E`c^c` zd{J3ONSrTKG1k_MMqI`F+~Hw^E3G$C*tswnWfTv8(_`*p^{f--z8*^Q}Bp1@}KW4`vZ(0#3-k-B0?4$ zxDqNH6@snJgoLJFrW9zP^nC`XAASOoa=18cH~14Y%SJD#79Ko66`m8vN0B}q8a`tB zU)jCV%tis`@KLL#k%~1h!*E<6n%olZLVPXOQtgMWL!H+76ZN)9>vd*%RVf6s#X zH;_jj+h&AH7q?sRx$@ZRU<~-0GE~zRck#`WFYQRpDo`agdG54qyHe_+2tvwu0a#@5 z^{mQM)ZRhUCgSEdZ%3-$X! z3*#vd$V8Jk!XCKL?S$ZDd2DdJ$WKCk$3;XhXl2$Ve6@V^M4fWF_cMy05mD~!HCQ7gyHP^pMqi$8PNt_OhiTOwO?e+rtD$s*$6XVa4_%6*)`crlcXE_;@g zG1mqHf@Y;r0Jq~6X_}#7h>)LfkmGTpIgpVZjFZA`|HH#U_pO@fGEgfK%3>M5x=$3~=WEI3)7>!!^D3ni9%_<1Bo^TGv=4CmH_3*f zA2rVEEUp87M=zBA7T!vO-Y-RLo=|9x%FTu?bjP+#@5PXl)7UIEQ`c+K7@a_U>lsIR%)!$o!WOjVw1cA>yDF1gEc39cOIKpLBI@wdFz%a z1P}NGR29QsO71tDF$hy*IUvKz;0QFmrjE8w;0P8Ucqg8%qsZ$IbT5k$Cl$Ewv^%8a zsq}`>=Z4)LYxr6Xqq$-R-Z?TGqrFN&z0C48v1qb}yMw;QpR_0FK6J3rKh+DqL0-Rj z_Vx3?#=j?o_wE3d1OmRLl;_W7-y4ufX$b0yu#c~P_^wC>2U*-eihQ+q(0U9bh=tHnaZ5`Z(kBD_%n{e}dDxSB=#{Sq#oEsfJZeUEHRhth^9) zf?VF5_6t1x+e)-}@THb9K#Y|*ht62=4ux~fE!QbJUw?dyF$Vi`-D(4y^malW?2JPl zRN1jR%2UHrwvaERG`{`zT-uZbB+LZi!VjRfMo2W52ZRSkh=GuRQf{?Fla%0~Pnf~f@dja2hyz%ES z^Pwl$NprfMNO^hHfUza48V$}8Jg4a8TiW{L>m-d)i*O3cCDOZXMWF?`*89*F@}nn$CHz#3iQSrfsOsnbGGh%6B6NY}mjRF?fyph+$K+eRs zei4^xCUYNP?66mg7kV?jxrD0pJJH$Y(5u3BR)zFNYyR#X|3`f4hGf&g*gIs3d-f(-LLb5_6ZlVrk|M)SffxkJ`e${0OT_T=Ah1ksWnjV?s9 z8<3pFUl1IAC>6ZEnY~<``KAy8xXS_QAE#?^A=Axay-U#kak@Nd{u)S1OSXG1{e`EU!nTWgC47ho3_xFsH3`>EO} ztGZZp7qDb-Q2yqbrm?P)wOulD-f;?Z3ZWk{XK1G%zlb#(U4ElkA>%zh?+v(=W{)@iow4>3BdlIjt4H$vzNmTgJi&T0!Dm_&VQ^=(%5Zsqw4n^y# zmwH%m z-xHhD{dilb+^INlI{QtXj$AxWxaF;wL->YY2#Py^-ZkoOUW=ZKJ36&7rnq;f_M&L` z&P`(j2uj=#XL^`x+I+}%&*p7$wbrrx=4v>4;$AMDm$y}wURb*HPAnq^N#94^mw z7LkkOU$n({3Z^tsGV7xuLj{1l55J9xEiI2(OhnwzE;u_Uqq;s@HifkUFOrFihk-Rd zdjzn76c>TeqYRRz?Lkf^%Iesq)aHF~toS^%4<0o>^i&|S@z#dJUYwt3b<0~B5X<6|D*vpn2@>6H0xS7sUNp#`pGb~oZvHoa_V z%(cQw8rpb^?Uw4rJ`y%~F4`~{9o+sWhX0F}>$ate zTFAd4T>#neukna~Vrf#rqa8P4DW9?{MwrQZ{BM5;ho0IJ8U?b3!LQ~PN0u+7*0Joh zyIfv6$hw`J*jE2lof-URLF(+Y&3oi`Esdz zk2mfeTaTk;jBF3C53x0w6Ierin#ZFxn6PY4hxhMz@7(x!OA=-6uSgN^U(_I%65Lx% z{wwoLiCHr~kjzIYKWhBe%waxazIWDJSG&HQ`q!(HOz6@IPW!^@S;<%UBbdr|0YceD zGXv+Nf2Xym+{QG7)%x=aqeJnBM6huIO!c00E~WEy`-}>mnof*2N+@U%mw^7j9_cJ< z^R1Xi+M35zXLkVk`F{90AAGU6zeiQ$-D{tCGUPMrz&N0-gF+(9rku)F7-7>av2ST1 zk*`|P3=hp$vsdo|D3+fKi$#M1w&`ojXJPE$RObGMF$O?JvNk8Ab$WAV$o6%TTlEG8 zoA^!BovOcLy8p>-X0OoH)4oG>=4jCNIqB=W_9?jxKOD<1@CgQGY*Y_DKtk@_I&_FvDST}r9+;& zuxcP6D5)X}`=es=olWPp*t;}8X-&S}IRthI`1N(m>&E>*sv)RD*JwkYOl_+u4y1lQ`J> zffXa#H#NGKnGZyXs*);s!Hrp?c@H52CfKmVR2rS#L1>aR)55wu^U-@V`WcD@Mqwa= zgR@BJdzYo|)if65!&hIJY%jo!lcsC<09I=|Y~5K;g#RbF)4P#NNA@tv3zhuLgSsTv zp|PfgjgEZ~Od*|vYQ3TkE+f!r33M@NeUM+G`LM6<4CdEcoTf`IWdSdYnM_t&i~7Ch*Y zi18UK>^SIa2hrYX^dH5QFnVbh z8)ToTGmMQ*NjFdKxXIn6!S#B#tynU@JQqFtI8zh5vHj~zbuKDS?yz6RrtGv1_w+_k z_TeFb+NMV||GvJWTL4*EG7eR4Z9u7&78Ab4o&3?!QJnPt%{+b4S%*)fOP2-^uUMab zO@g9S^RWQN{Z@>(#a7Z23|IPyxt>X$M!`cl1U>|mv%|WGNA~_|pWOn4xhWrv`7Mr~ z^a0uc3w6HP^Gu|pesu~0Kby#qL`vjr`za_>Oum$8={U({GA}EvrM3|m*5+j%|W zN{z`9Nh2f=-TK73YU!i_d~KCS`wsB$zARKv!d^++ed>vvR~dPy(HjYclo$yK3t*`V zk4Ga0T1 zLDKkwk>U^lM51vr4bxRP+_W6dE5?WQXKL0C?>i&7+(vL5pi#Eth?6X4(Wp_82N(so z!t-AXO;dvk)Mo;y_}`mKoR2W`Pgw4pf=RzUG6MPvm-KFe!g^hZP%3lQ-N4NPiY5UM z*1Zfc7g9NUR42>=KNTVQ6fpp)G`W7K_Kg;q;FHFkkE~HXf zngY@Q!tH5Cu=idvWZ%6JunO}JomKE>mvxJ~kv%LuNia8-y$b@xjL-Q`hpV{(w17>c z=b6T12L8YAQMAf+M90m4X_RuznuOxeKS)b#LTYMKUg=9?V(@w7vp{8SrT>_|^xtSi#XvC=R?JueE?jv~RD^;7IOePk8dpuQ&ov}H< zC>k4%?!gu^|8>7-BL6SyjmGs$9eAQJ=r*a*;`*SLe-9Ycx<5teSg>ds4*>(8IGKi- zva=`vRVArHMT36gN8)U}gr0BLPcxwHXHT)UL0d^SWBtfLPBJD!p2Z3S)=QafTSV#_ zbnF#vUM1I>Y8BPqQu;N&(i#q_1r4$vGFRY&P@CO}PQdm-y6BS{!$;%g+{8=uD~Ph+ zW?VRdV7S!Z-?P6{Z3b&4tq6W1CKqfOP7@<65F6QM3;jt3y%4<~0a8K`O-XlYx^5}s z5O?y|$eUSbc4G8OoL2E`hXO)*=I_hZfpuGvv{<0|>NDH|LDXEgtuf;|ZjG?kyv?o2 z(W9W7fvMhS-+0Z6sUBEw=3C;tGUuH(_PByG-Lyfi4uBqDp9gTotg5h}jKKm|O`kMX zI_FSxQ!%_JmjRm0yY=us+}fUK^Sv-Ic+4`a$^O)?fUsj2<(&WG@Tacl#kp>#7zzDB z+)S?pkl1o8c+WSy+a}Cp9r(wQkZL=~oUAJ<5sMSUxS!{=@8|2K#Wsp8?Fz zK_6u5Efs;l46J|=3)FdZN}#?I?I4WFp-dMF*!Fu-?psNR4A{sbWQEM$nDJ|Tgn2hi zGD!QbRj930Kf4BvIU>Q~7;1MWTgK_yYVK#7)q|=;RCuneWC^GVyonCo5)#@2hXAo_ z!xO=2LYJO&Us{?m0TH+*vHBDJ?V#bs<%C>Syn|6V5EGc_Kn0X&e*Pt$RsFgDyRp|b z+#$rM921RAE9Jvmhbb^*F-mVbfg<3APpUNM6DDc=$odN;Y>+ZN$kwm}ezVu+5Z$o5 zv!cZ{>G#O$Ar|;Z4g-jINqmmY{>(N##A7#W{1l@s=}%hy@JYl~ND4x{BHGIW z`(wtViR<1mnX%bK@4m7l9Zujkx-AXTH1~Y&WVNu?EA!y~)xl%$QN!p}K8oR>Cgj+7 z610=X{g|OL>ta1CUsOU7t$n$oEK)Mzpf5xWB>s;|C% za6Z15AK43pI$yEIm%lQ4R<>T0E(2L1ULc7uU(@`x7BvuRffgXCklkIloyCj#=kfVK z!2Zd$0c`!7Hi^_Nu+%Zuz)gV7lsl1pQHXco2eimq07I>TmxWVf1)~<&$>w*sJ5W~R z5C{CEBt`VzO~bOr?>@ziEzS^D1)#~AGI5AumjVfKcaDb&1X1~SeMGEv+iwizCjyA| zi}6Hiq$xjF9z?{@C{ZQ88)FCf|IjmI8dy7kVvZMS3D;_FzyXJ8guIBJIP?=gJmyMH zz%ADEFZ|nHNMGDi>H3tO^38@mRP@)Q2oF}~q%e=0Qg2r6W`4BI$s*$Ae%p+4xp~`+ z@=u1oLk5xt*#D~0^z`WOXa-G<76TIu@C@L@k=xJ*y6q_sSOB=`lPR=56SaN$>+8>h z3a`&0)*0bL1t3ppXIUP{tdn>Nb*DX_re<~IXAqE% z-gjuo07-YfJjS}bMj7~j(Q~qH75$l&T>CYkF|K~8o=oJ-{=;+r{c1kx#fZl0V`ki9 zL6CrY6>_gzGbUK!_zpg{EVs=dvLWpaLchBiKi_l+0Zvwr8ztSK57Ca=i+ z<v1~~NyLY?PNY0~SzcO$hz2N;D3Rp$ZC28J7i(KlYSWGTGD(}yzc z{Fnf|t3K5YB#8=%)tcfh|MC3)c9q@#kdRSRN+MZ+Gex;XAz0BoAhi=LCc^ejA9a@z z--`I&!uLNqfl7##ov=yC+s=(!r7*wbn0mGtao->KH3yJK()d;2{RKA))KGXtCNs7a zV!LEE2{Ki)x~4qtic04rPPo+K);y)wN9AsgN-C>d-*tg*qC2n|9>*jZ$ooZd$3w!A zvV-f&04;)h+1+SoP%!uiyRE{_G+9>;`W+%hp}iI}%Fioe9^hix;pMsv8v+Y0KzBVGS;H|ZBIbX&V-wdcvIY#j#P}jl4wCFS;|t; z6vjSND&De;eVb4t%h-+Wcb%TM=Xu`W=l#5Y{C@BGocf$I$64kBK4kf2 zfcYJ~$!y>&F357iR6Gvu7T7EL_4#}hHPg;95?^C*kRWOekp=*ON|bK%SYC6F;h9yh z79_J*-iU>eASKk1s^`T*4Pb21n?Q{^wUo4)v;)LURUv*DS}o0 z>NZ6nEG5^DR=f>W!cwObAr_TNcE(scM_d3VZxcG(B-Tx;}P0p3-&HMkuM$T)BI8|wFd z&vdkhEV!E<*_V#aWI8t=iioJVL;0@Qm~Ec-Ff0|xuKewFus7x=b_B8`+<0$q@WLc6;$BeCWXB_VZ&miGxrRXodAPa^0Tc@4qp#A7<~#p# z!k6_BqnuMBEcv9iJnw$k2#qQD#1vA~1SPX;Z!`uJ>jkTf+SVCHSJ~8mXE)p;ITzfA zG%kM^{S8WqyoCW@>gAds)6_7G8z>~ZIbKWo@bG8(BRF+_O!e(_yqW@T{%p){ixv{F zWsZ%#Z4wO#kTBl52L)g#I`d_vjD^%bt%FpclD(T^NLd;x5x7V2k#!*iYIPj5wvIK7 zm+!kFZe8*5o+_l6HC>%^mVznHS?3F7+OlXTUWVJY-}EECk1%+g=kYpqR$~j5#D8T* z&$(IUo0`h0A27kRDsh@dB?8ijsHWSf8N|wZq{Jqg`G$x|r;dp!> zO$~B|Z*BQff6m|UJfs1vb&`ZAEjDGt$Sg}(Xqr?0^Q!UXg)v6G)>sXEYCQDROQ*iJ zbE&oIdQr!Y9Sga0=T2TvNN81$YvG4;gT0e`p8&ezha|e|r{x|Mw`peOd<-}kX(9lm zb+tL-op5+x`u;e`LV01Cfjk;y3kz}HP>h^gwsmHwm3)YdtLo?Zj=r(i-)z7Lv+?O( zKDeFxU345|rLXE|+ew?s%F4FQ$E*H~WkV9JqjUoY&$?v&=I51PPq9o2-roKO3IIWG zTmyu8<}+^N5wjPx4KGFot!Ve0n`E}?2pg^mI@JDLSja~o5v)}?@3esmWjAiDS9R)5 zU0GDXRDAcA)zXrD-FfNv(ULKWGD0aV6e=t%bar;$MW z;Cv2yB6a8i2dE`Nu+W8hJ$NaQ00yb<1>Jp@uqpkCiaO?cB>Ws~@ zvJy#HQ+VRga8LB{Rfy?ay{NcFifvU1VtaplxJRTxXJOm@2M;_ysnM^q{{av4&m~J7 z^faVraZn>GC#PzafOg2l#3f>i_WGXSh3E7F6OfmGE)v*Qkum`_b#+;F^}9iXa6S@1 z`g?ah<(=jb6#8?yu~q&vJkzfw&{jD4*EWgtj_bd05J9i^|G4fyuCp;~L`+0EFflPP zGCIQ0=iLswBxJY`+E=o{pzvB@KT{;vH`&+hiqj)Jnj^O5~6A=<+iIBrbPRb(X5eg0*HErZAx!Ef45O z&NIT;L8S!VQ>RXqv9;{&?dPP8wSJum=c5-&vx=vXvN0>2T2+5L8!jNqobD}hb-s9{ z)boh8=U(_9U8kw{FBT~NIfz2H1c>P(f9=j!Y-VH9=)Gk1{Ox{&|NDOMvf-D=$;wV#HT3>#PgXkV?*|b$ zIu$&~qDj-D*Q?s@lDKvIcIXqM#PmmxDi~@`FV}1I1gZ*)h}fxMFM{hyPfwR67<9f) z@$2W|4h`w>C_m$WK_$IsX^6YYRa3SuW#R1 zbwg1}iMLN^Ryn-->cUvLbafcA_MoHVX8maFRRf&=>d{RyYuNXn*_7jkQm!cP+_`fj z_is8&Q>Jl4OY@6GMMV~rz&$WTg5u)g!+9nA^6}XMx_TFVisjWGtex$?vO}Jj6!Ptx zv!kP9Z%%IB0T-8S+7-UXYTub-q!LMwQlU`rx#v=+{YuN9b2+#UVNE*_mAqm*;#uMd zw?oeB%5~=JO-o>2o*i+zhFnK($H9*mBeIF7=%`#?6+;x#gQ)9Mzd$4fU_|_4UK(UQ2F!v8F)|M7L@(GXkH0FWMBH-Mz-r z3i@vYBj-B4S(2f|aJ>RQR>@~ZHszly zEQU3diXi;Wb~A4?Gv)Cb8s=7I0Y$r!<(hr5WL=fyl)*=+aL`Ue^fLzBi&O^HTE zA}ccxypC(8)1v~)tOIAeE-&;8E_B|OGpaeCU)I7XJp18p#D~Nk;(DIr&v`H`=p&Qm zuG9u(ym!A)2-&SeeL$@za56@bJJjO%@h|5PTDN6;zM(;}dzaF0f^pKi%8~sQ)*?2; zo)cdU@v5q(o#jaRZpU|mtb6BDOj0Ddhbxo*5D(~pW)X)R4XT;PHGJOA%wjt$x9TKj zjAye5BS!&#O^eP3+cG2}A%Vg0@bF+lq_li1oL<_28q}Sin3%X3AAb$nzr1HNtySEe zGViqQ)QcL1*Q#q?dv#V8y@;tgQh@#N$B!RZIa?=MI@5l>ZqgtQr|0kghIYS(O0{o! zc50RH5#v1rqR&pfTyx{b4NS=1D>JqXYK%pxA3mh=jr{21{G#s4qAD0o)QJtK{VuM2 z{qU12sCC0$OgfmBmWFV^Ykp;A{)%2p5pazFu7of51ZhxXB!{LK_gM%~&3GK3H7AZn zXD2%lryFeJvMVa$a-*}|u;v{qnE?(~F!HW+tm%SsrfcY>SE9nkPeoq$1Zxe}Cr7au zv{jh84_<s7Ff{LppRH*&*GtSgi1l9<2$6gVai`poFq2vbjZfDU5KvrEtiUT@k~|0MPF zn@e((#R;RuIY!*Oy1L`Iqee#8nh{sMprA6^@KzlGPloLlY_5b&2y+>C{^_wKXZ5( zI*xxp4b0%GhsFvB0RQG8TBrC|k$CW}fh$Y1hls=}zhIT;@1d|#MA?PQk5}kIV#eC zno(NIb4$G#{Y^UTZyEL`Cb#BhIy|CGOicPMJ<6Vx4nn0*K}LUn4Zve!XUXM!)PqIA z@QGMjTB3gITy3P7y^~Ys9JruJFkoW3%X1F+En5srL6ng@biOGy7gtx|%OmY_qwPgT zt2Zt)q*nxC_X%-)W@s|ir{z@toh_y{(6uDcHc>Axui6jFCELuTvuT=^BDu{gfL>Z#Os+$c zn5mUGaQo0_JM)TZNzCn5_Db>JmiR*WS7xb_9*X%cZf;`8%0f>Ri^Z}xGrQwg$tg}c zd-iOa);FD&!#spdu!{IxqM{l1H=Dm6?_>jrzNVlqJtbc z664o)HZfw&wf)f%5kmQI1|QXUhqu7H|s`&kr?^eVC0V$=WK)z(|9y%{)JLM+g7D~13L9< z(NT#o{Y&8bZaxPWgmK%m;j=+auge4!g{XGgnqY+m|~oCeUz zX0vh9HXfGnT^#Uh2ZFE!!mfQPFnYp5CKpvQcV-IDUjxL;6uI2xBM#av!mQp1JVfvh z9)hyd#WWtES)Y4tp~?^ZgG+STzifNd?0OKr7=iaEb?ik62~q%zE3_YgAHm*UcH6or z8p9}2xfV3Dt#92Mx(y=bK#kr{Agl&|KK{jMhYwqevdlgoEuqGH>(;H^P)^kIM=L&V zXu!=mHJH8Sl9w0s@KwF2b!lXBE5j!>2$@-*X`CEMB60Ic>ui9!wJJY+OD0M;a{J8> zBzkuH56Nh1O2p}~6*0Y0J17-^(SbHyef)T{)x}EAx`w9a<~|hZ1_o*aG%xUD*^7#a z&6fm1D{xrz^+3TDcVkW0n?{79B!D*(u7TwbUzLh1znQQ&dsdEuu$fz}u8b4`6GlBz z#VUc`&j!+Z!NEGXD?jj^Aii_6B2VO=+@c`;A{-aM zEpBy@V`c>D2nXD@&L(JDOqtyK+ryxlw$`Ha=&)V8r+Q8)znsm?Eeu-l4FsbyH$Rjr z6DeD-vv8sHLU9QFHc(g31e7qMF$a8tq9Q>yedC+&nGb4eqr|taEKfBajj9e85KlIK zItOGcGG6}3@f1nC{q;HUxPFU^o8q)NWD^g^u9iY*!((N$)53E$T8o!{uZD+%uqHZkV!?@x+~ItWAQRR1snMTU);M{t)XrTDo%I;oyM zeOgdVj1!Zj6ZDq0fQ)vRbucVCq#x*Kuy#{wY6#J|y%GS@rIz`GgiOr;MV100QCYf= zLYgm+4gDrRX|RTERwPiSVQv#NFs&K?el^B#q=;T>tls46laI@I?^snWpc@U?+<&h) zprb`EZ|_$$FHn)P04wN?5d;s~E5ym=pd>Uc3Z_NW40LO6O3=(H=n7jv%n&k|2{_{F zssyC)B49-Te4Y8TQmRhT1_D}`)>8kM^x+@ATE!kcc~c=<6&3dd1?{CquU~~p()3Z{ z<>ghm^z~hc4!tHqq|oV;gq7DPH7VSKE_WIX>qRL2i(oLWuC8b-5xn!7sVg8^ov3~M z)1*wV{`pi;9CFX-+hJuCjiU_@qKty$qykWlY;Co82(Ai(TCJ2IEhdwBaVYt6K-n_* zkebG$x-lp)LK}s`D^LUfGUMFl{=1g$l_<1A09z$&HMgJn(N-5xhjM1G`aN8G_Us{l zOOJYVJiFjr0}e%-$kMP)5N_<6fDQ@ViERx@h&=Vh$nJFqYnpDu=)N+h=kBgtue%c1 zd9iw}-*mIN-7X2wo}gJ7kR~8o!M#z3z<5^yw}lv6B?=x7H;LpNlSVK?YqtSBAdgr5 z4phIu`}^_K{E}t%FpE8$&xq0JuDH%4q5{n98D!0ZZyz3?hKHLQLsp`Iy^4ZjRiSZN zsJr@c*ax5i8Su6zSTF}bODb4CKY%p}L*m;{Uk4;B49_Fw^fBpb+sktdU{#ejWey^m zOIA;leI;~&9HOe8r0u^Gt^IwW>+K2uW%T~9TpBOd?-@c78USJ&WJ&GSX*cn$`p_Jd zbSnKJJq}7HN4bG(rs;6YN?5GhW)b4ap!R{?7;Ee)acx%W1Vzot&xbuDh+RMU(T!w*qi8&(4&r+W`nROCX#?%Cd3z8Er)4S=BhRq9`PL%ibi(-aE+(*|Ym~ zb4o>-+$h>N2hbn+voEh*LA&KujhDO@6g*S3M41!PGB$?62%*`cQ6=S4-5ud zg%BT(e8I|ZhkpsX$Z5OWwKsQhH+C|^C>y&t*x0++SeY=pnK?OI+1v455xjDhliAY6 z#lcyGo7?t(AGl)gWWmkxlhy=ILga8m#~FhmGe-YlWlCmPVX!b5MOkTekEG>s_ea#O z$C7JK^!X{DbRD(wIqI2BbWEY-& z7#D#%;v(h!_hQ`dvo77dd6QX@vaqnw=xV&1=%Qc9wn{I*EDJ?nf4{UEH8Fz-b?Q** z5~;!(`QI<8y$q9Oxvg;u4-YSY*k+wHI8!TMH;0EVa;U~zlqH6cljc_9mQA73KleR8 zQ^rah^0RJv!7FUi_P=LWjQW3ib~WswQrok*(shgdA7>eEDygYaM2Y?q(&nUzU=;t< zXxkFa6dliJv2Ce;&v?4wi9?0{y-!{CwMR7m%ylbn?h8IUcvNElUILS@^7@1{`P$F4 z=u({;kM$V|(UU{V!$rnrqiXv45qY)8A`{bWRkP8Oj2apm4kE9`eQf?4y%4uTZBCEn zg4S<+eblSBKPjy{e{Db&m^L?`Ehpe{X-b-o_fu z%+5}5<>g5-u{F$nofZc7vB#U6E}N^9OebkLEzAC-rn1oc9TXZoM|HMlF`r*TdTwQ zIaw?D#hgz*nlZ9V;()W%fE+hlzk(876$U*?*xAiX87?1jhHuJ6BqlyS^kB8NwzGsR zxUu|bd$c>xP;zL+4StJ1>2qM4=zX|58!fcnL}gr}t9JXgU!vV7BA;5{vQ}KbKgT<@ zLO))a8Wm_ih0{29iC-(t{qTY4rJ;{-Pfw3g(J+ry58LzS&zBv2xodV=f{4#xKWh&( zZVa04yf$f51UFW-zxYvTXUy3cKI`)H_M_eD;DRlN7nUn4RR$i@cxYA9gyRVd3-4~E z{HbcCb#Ki#?D{vH76Xmc>qB%>c6J?4GQA>9w3@W{KCjro8ZG7@&Rs)$ZQO-we`mFJ zvi0~!qW!m8U*AW6j&`&Q?-QjfCkCbX>=UuScA<>p(hG8*^gcak;KijPzSSq#S}_|X zx`t-2DTHEo$?#8DQJ2Ko_wV1gwYB+;uC%nXr$l_rtD#dB-=g-fXa4nR>59HXJ>D){ z!{or@XlroY_s@=yc0>=4R()HU{_HB)4CQ0V1e3~X zXq>vB^vbVSRg$4>(ns{pojY!od4q<&487^fjoh_|{--W$8trc`2>pB$;Ls^Bh{2eD zdG)xV;rbzrhpdl}gv9O?PLj|5f_9l5Ll7xL7?)n@6x@8P44HT!TE>|lKQ_W#^1xyt zeP)DNTW@8W9dqt#Haz})x@x`UY=|t&F5IEXQijUwu-I5iGy@Jo^yN#rl@2XuEZ*ej zlgp;5BZ*eYDxFQ2zV#rD!vTu=y4Q;9(oJ%Q1mX%6RgTh@-C<;Bjc-ln7BHi$sWPLRdy zYm%^bm4{=Zd7G-_5r4AJzLm{rDOYJ8N*sD+c277KoB4tnJvj=Ciq?;ICUG#-a*ul# znqVr!F5XQy8ZEV@<+mhf^xjk(a~-^g*^J>0z$a;lyfzUcx>`j=Cca7TvpY@j=y)&p zfsTPel)pbV_36{IPi08!ch_g9*FEyB`?JK8?IB(r8cD8AO?a(Fa*1vanL2*qZJpYi zPa(iScB6a7t~xRM^EE_oT4^cGSwWkS7Z=98cgA@>jQfBC3;$S z?)b})3gh02lb_{#eDz%eJa0^G+aE6jp)poGnqL#wi{IirmZc<_B^x>u-Z&#TOu)j z0uKhJeE%F62B%q-+6@1FPK-mJn!*aNV03H1=g&8j92$sh<5J*n?IQC|iR9@ktqkt^ zi8Xwttx?TzSt2>Le7kWGjxfsb962HSsI4uXB6E^~+k{iVAD#|o zVmzoFw+n8Zw%nmB9U6W3+H>&(EsqffpNugAg?UDbk7xGb$D&tL=llruS z&#b(Arqa+9O6AxkzGJl5_rZ1`G<7JqOqHL`wk&!w4vPpX|5Xi*9pNh}UBM_PMT>81 zSGqoY_^{y5=*qVDgoXRY-lL~%M3=R41KCQH%S+g@9!W6eR&VQ~uv2?a1yaqUhZz|Ts>!QY{zWc~n^0j*Hh*^0 z3fgEV>mrWaj1urCSxKUC!w!A?@pu{1fp^MTE%DAhpD4?&g1} z2dseRQ1;}Z>5XWy-#4gfXlAAY$R_4Z86ggL_m}bSM zAr!14W0Pysjp#D^j?JeE%peekSGEsK48L|5@fbl!z2Y&(Ht$L%dD-#AzGe^KcfU79 z#Fg`Fs@y**sPC~_n*4O^tt<5~%%kRe5a4QBTETl8^QIkfTpq`J^Xm&4DQ?4#DZa-K zA3=z4T)Naia&62nJ^g~dYrh7@@2p)pR%B#k`Onnw{6~9EHh?MMv%QgJb6V$qGKo#O_X{J@#0>B z=sZT-%fmzEj;sSYdZ*70^Fz5!a{ek@{v+YR8sH<7&IEz-&7NDR{-fiS)r==kUul9$ z8UkhEa4XNZ8E}HHl$ocOXkN6$J|V&u=$=`ekLU#D*RC|A+We$33PV6O6o= zgg~O_u3E!RhQXqDY@*nOVo1tCw5A6q;XwKJ??Fg9>kvFFe0)?GlQcVOxq7RN*Fi83 z#y`Hq0|d0)KUxk)*rRO1^Riv#ieLntz=;&^?K2XGYcc>6ihFqtefH)E@dMC`azrT@ zDzaT~mwCNEUisng4#!d3GUK6q<5yx2uf}m3GG49~f#S0cAj=qPEdn^}m6J!LkTa}% zpYN3+5Gof=Gu=og+4QqJ&GC0T`z+uZE9Wn1Q6eWSUc1t?L@}IH?p*^s;35=2gHcKr zJJTh$L7eO{Lli+TObNyNDh;Q$AEbKsea~XZ1Qq&Ms{R}w2yW;r>(iEa6W(EI6u4Ej!vR8c$J-#Ff^Gz6UD*ksP zYAG33bO^nKQn8on?KGU^uA6g$IrOR9T2q;ifQ`eanHS>PXrHYiFWx#gj{omtZ;CEB;7RmK1Ws^~mlr0m2ta{U@i+fcX z0SOP}%66={%|cz2*VLq;CnZpk*t?$%IjrnJiy99t6#XlwAzM4lzjnXgTP)sE>@a=3 zT>lEEK@}~4uP4nW^^k9&#zYB@9?eVssgF@$Bnof#uMZ$F{WVtc)Jzy*=c?VA@ZDLa zKZKRzQSfl(jk8Z0jS)uR;Nb8ZwrQy+V2VKKvGlldwWhJ4mGNZJa70y=*cg;`+o%ma zWo2cw{$k?d@Dn?O6rWvq`|jPl@jY)yBeW8agaGn6Kvhl4$~u8r17Ol<$)Eb^)2B`! zi?2zcRH|Z*(Sx~p#{Y4}PbukGKE7SPE9W2o*3;5=#8VNTqeeMrcXaYNXlrS(>`Zs> z2*8c#krCZTa9-^Sr}I&eKa-q3U$nHbS#~&JPkBU%A{#QZJHqyGw26S}QU2g7?8g{L zuEq!!BA7g8cP(8ho>K1*#K6?=4(?U}?GXSytKew>Ll{@GL8)+d_*F4)GXBZ6d@<{z zh}ZxGca-npER)CfutkC6tUUVg4MjyPjJmq|R0QAGI^I_L093@G-ZVYPs}2H8W?5FC z`dS2#Zgw3EaLD^xFR%CVCpos9v6Uys!^RSW*hHWa!M3#QY+_WWF;l2oBFF<#-clMZ zpXPC}Qs(YO>K!NlZxVmvU;jo^TRRgkp#I)TZwckzUM}&2xeZs5E%~W6!$81YobtS8kn1# zv)Y&ka26$>ru*mks05OwMOgu-cD@wOo1?>xt^zYa3w;<%s1@+VUNl21u(GT+s;*5w zy4%sw5iXAZrW1xPdj6iiem2&(8WXCfoMt%(q(+-p@xz3-LyGtzx=YaDi zxxolLfICbSwC%xILP-m?H8eEL)5+0Xsot4*;Ovul&EBr4D=8^yXttHnOX;k{Bah{E zpaAyhJR2*m4-%I}4kt!JS^pIeLUh}|er+ikGzgz=3|@5$`Uta9H@|U?l@$ljUO^s& z8`Q1$nLK~Kh5QVK#gsFSfYIZPGX0>w zGf7rf7C9lVN!RFT0Tc-m#aJG@v2xNu`>}Egh_@%qgau~oNelGd@e~Ws zM??@4pB3b!5ycGI2oj&U%C;>8az;r>$v-UmM`z;tMwcYcw~kL&%BQf0R<^~HRSiu; z+%f-7Il+*PU)SlB*mhTu}A3 zF8gXy&~#i|78ufRz4Ci#`$@N@&4xC4pkQ?<@B~L#!=_L^5HXNA+UzCG^D_LOg5xSF zjq&Ub2?x4K+27yKLrY96y=xL!DOvy`YaP@&NdeTn0c3; zp6dJOn8A*_<0?v|NYuc5`}Pf;4+v4}-GY1GTm1-gAhHX?hYKUz;FDy$+Cs_oFOE}5 z0O$jiE4=*~`z+MDQGHOTwZ+`fA!HM6z5r=9I;_RPihf2IMO;tdN6a{x-)xZ<|D zr7fREac#nb6diZwOM_%^TqVOKQOJ=6Qa_{T&vS@_y!Ny+tpAUA zsIe3I`>9Io;UcDwz!$w!+qqX)%}$isPewtckft~TDwrV0FW=0 z(Y1u~TFRe83w__CEuqbCGLFF7>sEJgF#B6e!RTIU4}YJG5}F~@2gvqH&~}88N)hCr zIyD7`Cq-XHPNL{Yw?dqJE#LaOvKKqZX*Nt`J$#o7c zuI4w=0VA7!Z@=pO!|Wi!$Q@7WanJLaz2 z+Hzq45lE8<3Mt4vui{shVJ4S?gHX-c6s^lhEV|*si;Vyb11g;7Tg(WL0HI@HkX#kb zlo%2MMbZk~W?(Ce1Qk?1g7z^m zN2+iduCTk$WvT7`nVBKw4G#~8$ftqm%CT@JvV~OPSFsU7032VDs5fd?NrJhpqZ10H z=?vm7Yp_OVJ}u>jJG&61gJ9!4|Fs!LWc0j84PY0>==p91re@#c4JNeYK;K~+Iow+M zkdfT*$#n?{LVOiPry;oWs(znP5t_yo+noyV0PZ%Dox*F1uXKSb*?W6fNbZJgsBG*z z@rmb@YJ)~-?o)-92J@IuH0paUyf5GQDvBrnkF1l-V$Nhj8Fmo&xTD*Oifd&GOA(sgvehjdz?lF!dq!`Ez zWy5wL#0o8C7a^WAGh`Z#kRQShEobeEM>9ZH`V!9v+9n2oTL75^Ef8y3bq%~XJ2a5e znIRmK+`34fTnF{Ie0$`9sP~nMiV6hXfPrECoV()BJOwsKgX+o$U|lGVcjDA2ID6QiW@mDmOpco=dTDRNr{2r3^|Aoq-!Q6(Zksh zr9xVyXv8|Ywaa-`l$DGqSpoB@8C)8TZK{A=X4)xfU$rhz8!0cg@rAEo;}bx*r_Y|@ zz-57x%)p3yB_4r8@FhXuqymF0b&?AEvYV)i*t+Z?{BG2?ilN$vVff|FhK|MSCjgq= zcMlBQ|`%B2b7RP^u!bzy?)*3{X#Hq%)A% zwl80r096wx_fA2D1{GcVHvt9}8#J&g8B~IaB%lB_#-6`5vTOn2S$@2~#A`Feqn)D( zI{g#?uU05#BQ|9)OoaY^t2GCtsJcKM2aWR2c#8t8k(c?hz_KVcot^m>mzGAkRx_ji z0DWj#%Bzi%{Il0pzEV1xZ!>)LOX4*$09^FK#l z3*xLV=!WRH+kRDAHwUVN5fKrB9jAdd-sT8g=*?)f5oCn{H1ys&bwN2H5D^o=+(2?Y z0Cj`J#ctG}rBP6r>AEz4NRbTCAjpb1I&r*S+cu!6xro%zym;{fQQ~R0N?z}M7kYqe znXtlYkGHsSv9Xd|dKAkS(i7K~i@Ih&vup<81dDll)gCWE8deq~fJ$T(@K}Ch=F}}F z{8xnqA~0rt0Q`->An&ho4r}*tZ(}_}@`wnu))j}vZv#laM?AP}%;_XTYe-o3fM3QKoZfxR5tcBY`4=g;X+T$Zl@bL>AZ7Ade8t6hh%q8(0AU%Vde<#&%>Yns1h)29 z@&FymHfp$gsZ8|Xw@=Ml!%0UZithcMLvDmg*Ep!oKF50&V#m9)1!jQgd4ARY@j)tm zIh+(pIZ)zB5hn0C+R`f5&mAfyAt8CiZ$$}w$Nv_0wM+CWMMiI^MT$4ge2TAxf%ldM zbC|l{a~h*eGUOqZN#e&)Ep-CC-8(yVdsja|3WzA(Y=Up8$DzZUpCggEcfe*cQWTI+|xt zt&8&pAv@b`XTVJlFvXx*T`0Aw^TVRUtbisH&Gj)Sr~iw2ksE-S<~VUk-wES(g8(i1 z%u_&FD!ZThx*&KHNq@ryF8vB~a?Dv$B4z>mv^I+HJ&2_ujqNnp#>J zIXXr1iC4|S@TDptO$sRY76Wc0@%!N*R6H^=BG|(w~x1^RaTr5eO)gXc%rQ62EOggUxYZb=ocu73ki)8TMn{W2EU-Ow3yW zLBW>NBZ$p3`0l~vpHfjx1th?b_{AkB=e~vrDR`BkoS2R{+t${WZD|TT(hnDr5-H|4 zFdXfL*-sj$1xG>2wgQi7L__P|DZSE+!93Q3eII}fb~`owK>Z|rYc3F8UoM#_wM~Sv z+y<>4Y6@`PgnA>(qDOGIFcI%x8jL(h%6aWNpp($M(8s3O10l+&+`G9`_wB7r3DQXR zBnWY_M*yr9-&GYa=`5Vo{p9iiU&;&QGm{QoAHhR-{K5M=ztkfD4^=bVDu#-0EdJ+k zV;9ias5b)$pSGn3fDADh5H}tq&T&PCLrIwx>`(w00R@M5yWH$YR*qg-OB@$OD|@mB z3;1xi4GozN5bg&QxijfYh7tPyREEd=3vCtHeFgJ^f`T)!PMbkn?3t#HtK9+w%Y6Cr zNdP}WGa;<`mfbA+Zo_6st{ky}n4dp)`SRuMa?mS4XKVo+G#Y^~3{sjSf{MA}sT{kI zig_RYzEAJ+O}bzuh>R%;9{!g=O%w?0&EcnKA=UhHNH6jhUY*>Bhd~J;{K_Ye(l3_$ zGwF$T{$2Bpuxba*4^DDdky}|=6|{2YSuG7Zs)A_|3R(ocUD;WruHj1i0Z@h&6N%LD zg!Gb!E9@#sAqd&(mYndL;4gk3{4^^I5^f-8hY&Ct)6wGX(LsCFL9C&JgW+ihqn>w) zh=zI6(A_Als1U z%?S+ZHwNXvEZ5c}V0}{?7`shydqCW~Tj8Lm%23PEgRX2_+R@qhq+`ySk3`r{P%&!Y zz{c7-O#I5li}fQV58SOHvICc7u>I=63dEHr zM{ew+-8I4Ud|db>bbUV@J06mp70ezlMLZL-9BJ(&S>9l{5l;xH@TH@6Ae9ybUblem zfcn|>;za91DVxa}1|*wtlpY=2y`?xfVbB_PUlmOZn_>fUH$g5qubH5wrA1IS8VQ4i z2Z-`!aMy#Qky@zL9w4ErsjK&;yR4Pv_5X@jla^{07^Qnb#h{S zUi%3#5MwZ>PMxx))CBQjCAlnbFcz{a_g@*!Gt!$ups=#`u&m~Ty2h!DWY0^#sy4oo zmWe}HnEZhZal)=*js^us`ObtF^37lm0wF2K*KwKby2ii(N&H39+x4wd778S0Mk z{WkL5M>XCztKMZ~%zokPY6ABs^466KWEfiU`KMMECuuo4I##*@AqP+v2yRxh$>V%?Wl~sa(E_I32KfKQ=|s25x3V59@$t zL@VyekLt7FwFaO$t*CTYUWsKho@ok2%E;%>pG`(>$I1)F_dqVZZ*Jb=NnGMF{p9qB z7>yhS*t{*srOehYNWEvnm1YUJ*>9UDEeffcKuufV3D4?X=(vjXZ;*qHpoVyjw?2+# zBLc0O@fe_?`>U#~j~^ctaeZ@Z`UYxJzRN-nPT1R`e_{qeoyS(cR)KjZojzREcHj@l zS^n? zkEYT@QTHnn2g`g(9y6f`)SHGr1NvdIGE!o@{SY2<7SY#!EyKvPXbHMW-#_9A+58#; zSCA0+?MY;VgALmX$W={4;|VftTA6$UJLVd|w>hUs$>_Dr%YW?}KYox`JX75|G)9OvG0b-XeCjN83kH?(VW`e;X6fc!53sx6cA>IV7ROs$v4U3xOT% zZ+UZI7!tuaQn1P!E%dxcH}^CqrhCp21fng?zlk7k4Gx;DP1PgYA1RIBfBcw%WjDO) zbO!tgM3c}+(s1bpg1U!88jKT6??m|H>+6#ly~E~SU=X7m4F+C=#5Jv7C#Wtc)d4OJ z0+G&iAX^9e!O%*9F)k2{v;?T_038zZd+2h}sKo68lzSVnH(D&H z>Y~Mg9Ez3Lt4I4=e+5&hrnBJm1hvjeLmvhD05C+1r|Hy715YC8u4)8c{D$KMni|(v zQw6#?NZ54*#dLOS&@i}lwjSj3e4~17rPm@QOWYH7sHXr#l6o96F+Ws{kqwF5d#CSh zf_#a};5mSDiyA7{!7)MoJ{~|^Q5Hf1B>}aJ#Y7i$A0eQ;4i_>7=a|7@6ooDtqGZp- zi(g)gp2pmUuBcuWQ4;hyGL8Z9Gm<`HaaZnzAu+=DV004bEW$XvrY%z=5Aq^ycOd6V z#j>FSL-^#n&~zZx8m#V>9Zq`y1l}=k7;dm%2Z1ZBVlGZ^4ZiXA(u<>?JeRnV0FNpCLJfOr(Wap^6cpW9$Trt9^nQYd8PG@_a5ehXr^s5&Br`!I z<0l5?J8-w9-P{C0+R=f&6p@K@NK#Z|YGVAavku%u@&BBH|GUeW%=j+r66p4Cv#hIR z{%vEB@Y{LoO+Y0ko>^E(2~C5U+1U}GzWx2_BUqCtUi~X!{q;Ei&xXhUxsd-Ko1FiD zoc?xeLIOr7%ANY}b1PoV%5)%LxvkDM@s?bT$rzl9=YISo9GtlNSB!QYr0z5Rofu2Q zy@so$efziPNgA#AQhgInopIw+!uQF&kov0;m&}!u5=+n)J6qFeZOTL8Z=>jQYU}EA zHo5EdXJcbxO#HdoOgp2@%WdR0opoYfSO+z8G>a;+EIxTP^>&;J*JxH=y#3kB)2o($ z2cI%7)q1G=XKS3NBpYFyvo13s_Lqy4)EWWo)XhPk&EIK9{G2al9yNYE{$-SxWl`iX z^m^sXgsh$E;e4!oZNK7T4^UFz=edJF1)kpGBM$o$4ORjybJs%8DpEf+=c_jpXgC|I zravpEa~HFxa=DO!MkuF6NKQqznkZb#s_QD>VhA`Q7eU5v3o^@)WZsi zSc^@|y0%)LzdiL#+U@0AGIfG=IVz+*`x>EtscpRqd%Zg zsX^}ay+CBRgOG-LSP`oOuvc@pVAC2O=jk&Xn_=wdaV?^B|2)K6V5+uZcZ4m8&%0qI z2N$(J^v|SaqZ<8*E6*gqiRc$i$anIh`kaVO*m3hEeL#rkHR)SVud4#k1qfHG#2 zf)5}c65$*m0pnm25))&dJqvhp^0W!4D5!S@>E$39%mN_C$26+~9UeaV zYt(lb9{VpYTE9}dfT@Gtjz}P!X_=XX7zco64ZzFb`NNu>q5sBs^Jh2GqqZ-`d8_@? z&%o(|kLqF+7SlZc2GBl6x%c)gk*Rae>H19n zZ0cKOacUQ{@Kt%jjMU}BnnRAQ_NkWysVZ%5&$D%Ub1>uw+7{|VLnGW4kcV@nUlv?U z09a^$a=C~>RU6z>)Bp#+!%F2a87?#{umy4SowgGJ22CNjd!SD=ms)uz#erB{#9iRR zMo-!}yWUh&Ww3f|5Y-d|(K!XtX=xMT&i^+y$FF2%4&9k=+z&I)y!3P_-_0wU9tG#M zbAwh-(y`8d6w@xqAxeBuy%v-@?rFnvQ-vsT>O*cWK5D}&)=7T$j7m@I-o41>Mo z5_}xg!)epoEuqU~>ONX*P+O)gauv9Y(Ce>5gV1ob?KGgs!be3I{MdB~Q!6>q{kMhO z^{lV9yzzSiJ!|h9CA4tyl_SM_H>h!ia^$~@=J15E+_d)AuBawD`!Qjf)Zqsg%gA|S zDzWN%@tv`NA3uH!X&D=XbG0Y}aekNTwl<+G%X(B0nt{xY{)dg)S`!i0s^r5T;>zO` zz~-Y4$2z(vs2xf9nJz$EXCTn^RA=VSlebw)o8()r@O15+op_kOzP@4|gS&UB^j<9Sqoz|s!QEd}VGrYBWczAPZ%%5Cvl78k3nWA@8mo2qY# zBP(cy#3%cs11qh@)A{@c=JQ{3o^{@rs_8wE(Hx?yN?RLOQII|sNvBG9)nbBWv50a$ zqtBk0j-L>G1Jt=@+9AeBhLmkk%ds)2j|liOAkmi6J?Lh5lXVFsSE|t;AnhsefBLAh z1zlcEfNY+|#nFtWZ#n9gS_yxxY3gAwN!EF=H1KapaH+elhS%KBNUh;zEI{`(-XthL zbf_+kOUvHB;2E-?067HwccfnQf7HVHmUsrVMmpeY zNSC$v+JvAgAUg7;ft*Iv)^T`vIHaV9*XxUm=1 zBVquJkTsyso5Taa**f5zDPYl&&5qE+FbiT$BPgYz(CrSk3jyl-0EHQ2lwz__#7V;} z&M;I?k(n9t?@B)CWC$_3C&%}h4!f;5F~&qC>deQ8*pO^>J|}ujT-Hki8s!B}UaX(# z4hiLin?=+NDF#!t(K(?*HF#(??p+6Rb|Hhzd=*^{oLp^%-XxI1*8x8>qV_S^#;`05 zJ;H*hullZvFkULh45$H(NK(>UbrD&I=a~vRYxmcm1^SP?5MUe8w$30|%)WM?sE0P6 zU?A|PK^kd>_GHH)8^lqJ5gmiO>iqt<+=Hb5(t+#5!pao&njQ?}R_H_~>{OX=Z5VJI#6 zrmds^t0gCmrr1Q5Q zjWX%lUszz1v%}hHzNpd8AZ0HQW6hgtm_S047HGSLmCgB}Dd;8{ozMo2T3#csXP+xX zOV^;+x^_-oTZ|uDv*@M2vARsy#%C%>PqG!bM_U%e6X(Yh6Uv=ZzZQIZ zoc_9I)|rP_PF`L9Vc>f#>kYa&{Uy zLZQyjGTezSq&=@4L75sB=4nVPkWAjQd|^|yh^5gksJ)JbEcJdf04edJhl5{qH80nR zsG?iCiFq6n(ODv){wd%_QM?h~*7)eTG&UB|erz4JZu$t5{}WTS#q7$q2QBC15G}|E5ObpG>F5G&ptA)b=4Cgx38G-F+9R-T`bZtj!Vn!FUup2vubdO$7FcFdZ5T zPfV-P6VnTk`!g3Ge3}kAi@|^+U|$AaJNUPKxX?81nz8Bf=98}KZ~BMtBpLzK128AM zqd_vKjAip-L%J6ivS*TX7EUY&bEmm~hjrjJwzTq=@WOP=@7J35MLDZ;u>@8ozluKIRzE;!n%w_4`77 z@|oztIe=<4z4(>wAt&6)FLxy5msXtt_(QEyknB=rz%9n8x_p_QbahKO<_4~P^%hMo zSeAmJ)zA@kHaGZz|oC_ABhBIN} z1MiTwOTUveLk^c8N@ZUl(tLJ`LPzfPwFq5%!UZ>~{R*458@%-#j$=|+5vfmX1-+^T z+P1cLlK@pfPmC$Fz!aE)GQ^8dOzQ^-1ff9Gh#M9jz7EoWyG&o-8Kt$`U6%1WAIoX; zhyDEh{{_$0O8>;?N~DiAF{KlI9K`3xSHvt%^fa>WU#m3cZT&maRSS{<%n#Samr?3~ zWdt*M+RJ7lc>4_6`hfgEl#vS&k~@~P?&J7AH#d!BXQ(VZ_uHQ4k|c;cA!1wSRZotM)7HpXbo3we!E*YcVmRJ@=S{kVlav0-r+gS)h72 zmgX}o^MLY=TmJ2JvAOpVlLz$(Nt9!=ZeTV5I+>f>l2R{bM}ykYj&UbA1mH;6Xh_$fexL?MDS3H(v|B*W zt^yBPh@{~73CSyAsKltrxcDBtc)8U6x{-{4jr8q#G}7LuBRDudY^7!i6J|8yR>qeJ zhDuQfzHU$0UV>DW2|Kpz7t&Rt+y z=H1rR4EmV+DXY^7ifdlY{t2|p1sDJ_A;6QFt~vM>e)nA;o$rY|k8Z>!e;+PYPSJTV z#Pc=#Z&UlhyKbiXbUN+?Y>MyibUijw*dk(+GYjHJu4t)y_o>Qic7Kn4(?aEsFNHCB zj!R2I$%#+#fdaF3^3bwA*NaFyPMb7~A4v>wmkWzHl0H>d6y$_;_pK{`6 zdtVx~a7T+gCc%g45@AG)VceC~D_?Ynhu5S2DQvg3HSO`sZ-ENrrv#fDfG>C5@`&xlwbE7c3+zdICnTH z6UFYPKzCSkN(WwF-%sV2ASnK9>hnfxr|&?3AdTb0dg{b!d58paoP%rIuK0?9Zv%S7 zGe>UG7=Kbbv zkYGospw2TjsGX`Hz1(4E87(XA*F01+cGBpX#o`eJOVhWjMVfMW`HrkS*3?E*qeXiB zg4lYcn60h4dIB7oAPkGIF-ra>p_eX|_8%1FoWm3Wp$hQDyu&HVQ%-(ReQw!itMNkD zb9D~_quXdxLqam?sr*R=++8tzK>m4=r>~`-p*$vRmFPKCk$I%6Fc!5 zjA!tQYdTPN=C4={=kGG{ilp z6RPSU%K%G-GP)CAmc>(&F&wY0J=9&c{o`9{)n#>!m4vXGtxOI$+BK-K9oSfB9K3S# z7?FrAX1V_SwC-rGEuS0YPv?vCH=j_(NmCA!g;A1Hi9LU%f8|Z7Cil5QZA=E=1jYH6 zQc~Q_m$>lMHCFA5E0g8rS-<6_B;$t3ZyhUK(NdL1S;AYNBg@D+hipz+8koqtR}T}f z%l7Heuigl~EP8frZ<9@xhj!I6HXs#aW>(kpUP_JPX+l=?w_&|T>i}uh-~0ktm$eq# z1yFD^e)}G6WLt3-PIW&cA%5%}%ZMtZCX08VO^EE5fo#5tt>GiAtYp*3&u;Tz*TI|43yss!8!I|%F=LzDEf%0mOZiSTaPUeK zF4=jqjG~pz1#idnjDb1r1h=U$;JG-~X)Q*q0LPoYPa+fMDRuz!OXxY+x-NxXh z4$rf-hTN?qHTP7Pzt6kd3lB`7r2HYP=b2cVe8Fk(=_pn-IkMiAkA!Fa0M$zvPlQ6v zeO6WHrV4(5#A|p8PsxM{*|@EDU%Moi`0fkSudDtlCdU=0k?VdYW@fg}!HNb}6Px19 zlNXHY6#;F=PQf9W3T$-@tld6^+MC~7TOvJYC#$MF6kLq>b5@qMKYSSH6V=pe`;0wi zXVgjO9h7rU#&eznf%8RvRgSRKOJsCM6yHUJ@6u4Hse)A+o7mXxW}brtzhd7*AEPBr z@9(5fg;?FTo922<$MU6pNrFgj9li>M8Pco3p`g}yI8CAuGhcjNsYy~DV)stf*|hI3 zG9vW~|8|i3)$9Aw*jD7KhJb#>Ba6TB^@&hG0`A32o$hlx3H$dFx1_ zoW1U{1DhQTw>Ibg7B^S_GqGR>{GpZgs4V+C8r4;K@9qyOSh;XGwKM-rE=1U8_np5l_e7LdF6UZcW_G=mK%M#3I+Iu< zftyJmf%Agffoo^`%n;Wib;7VIRty=qeMlT`uTM@J?eblefOTmBAy zn<*t9Mx^qw;K73yy_cpMT1#mcNkuZ<;4EVQDIF_ z&sL(6FG}9(s>bJFzu$7q^LKw)W?DCsG+^wB+tk>&w6a+J$>f+iW+I-mZ0}wXd-k;2 z_%&y;dn@5z@D9m*a4{K978X_niR4c4 zTE;3Mgt(HZLgi$S%?0gM@8pnqlw9iyPJCcri0iB;%aK! zagl27u5WMsn#lYJ*l5QzqE3YtbG438DfV=nF0<>WdV@pY=9O9eM;&SUa@E`sbgHy9 z`NRRtb;bfLtY$l``4O>%Ky=^t8+OmVR%9}~A)O|Pt&9WsWSFDDdhEq!0o{3RWy&x3 zF+~&P-HcDn@XiZJJimqqs*-u(s}PRIJoPfwT6R~88AQofO`>`Re-2H<=x-bJDgKKj%7Sx5$e>jC(y^;SI4|ye%iUUmG7kPIY;u43vCRX8*+> z%n8_l9>b`gK}|T>bfol&mW=`sTeXJ44K;y4GrY(7{ug|yFY({-$K36>!4yv6*75aS zw3>f&+dDFf1#mAwE>riq-lkHLKYyA+%^z}}=lhWCy0fv}mJZBSS%kk5Fnuw>=X&k@ zjhQ4Opw9wC#)~vKsbMET>=ns7>sEvXS?T_JH=eB4rG5p?&G$~(-o`}>X$pe&1JA@* z6}EGK^o-}cm1cT)SM9A~8P3Awcc%sKH-a{pC}DYDTaH}aXwK}dAc}}K6dF3p;{(?e zDDgnC8Pc88)r*y=4>6!jx4a}v$a7ZqRV1apChHx}O8I?l;yd&50+eb!8&Aw2>)u{H z$vS9kt99X~tn7MgrRt)9x`zGr5&DQX6HIa(EHae1@4nBa`rZ|2a9s!?rW;#0qB~D< zCP#kjx!^8nO@1BbvdJA`E@_wt%4U;ST1UDZU*Yo@=El?M&dU5Zd3se{-(iCa`1J=f1J(PmYB&YdT2W z#yZju?~)g0T^|$fX*GF1l~4QBnz!MT^Y)dGF^Wv76IsHv%`KP65(3n|3+Eh&XMrd7 z>9pkV-JX;3WG1;Oe*|tXCY0pXXqyqaiZofdGh7GTIiM^w) zHccW2c?4J%Gv`O1GqOV2^0Xqa&fO@tIqPFq&H$EVlzH@4)QNnRIEo`a_k#iVy(~0+Wh?i=OToEnwn~^ z?Z`X!hrfS+I;O>yN|_j=dhRZ$G>~!ar7Q($IK`Rm?}>#5)VSIavBw*oS#}?2UtXZn*sPHtsUd_C{|!TXURrhk6^Vl`3FwXa%k&G4<~g#V?|T?z9ZLvOnOQCi z>{0drIZ$ixP5A9ujozyQq7DX}Kh&7j@sc|_XON!+b_ZWKFksBqyo~m}#>U199zc6x z6SPiZ2RCBD_6Cr>>*qI0hRvaS1??#|F3?8p0kCzvEZnR+RSxY4f@3@&*F1uLxN+y6 zK6!1;+w&*if`XU2X#QLPMn>w>cm#N6G_y66gdIA*?dfX>4!I=MAd`H3iaIsIK!|a{p26Rh!M}EuRB* zQ0;OS-D-$uGUt+Vh41khjw=JtIK^YetYYFn>_lGT>^p1Ji>0PcLQ=yM_EB8BCWivp zhyy{YgO1YA`NDdu714GBV~f0G^>B*#i{=ojZSK0$g$c~prJhOp&(JaXj8C`xwvE)* z90}<+vwJ?U2Oim5VOlxaUjdR-A(YUo$?;$#bDrl5J<8>9V^h&9f*45vp(j+2BQY>0I)EUN1IevKK*1tz5ZxF zH>fBKXcPBG&720~UgST8f{YtR?Hx zt8C3cGGTS@vm-d&OOFd|L?cd#V%q&I?T(XESPAoKN#M_I^;5_B{#+#zuOeAMl}6sE zgL?GWxt?cdmIiUAd3bEJCoT6sT6qc&0H&(YwYJ`QVY;Ghmpie+E^rDq_Sr|j8&TyV zdG;|Oz>>7>8{}9MS)U}j3+z|Z*cv!OZ&+=uvu6FAy9fG2$pkruB$cDVgxr|#mV>TR zexiHlRR6uAaEcfSV>#eZVA$UfSSp$aeDa$dcBjrTH2uO2kcPd5Gq3@I>?`a98TyTy z#-3eJZh*}&As}mxL1Q_3H4qjCx+&3Hh#H=pwO-xVH-|(j?$NI>?boZJ1lEZ?qjyH(G0-#$%t*dJfrl%-nHP*>}w4tX;` zB@bZgwz~bRBx~OMTBXxZ-7k1I6o!SQO7(6YOM-?OaMcE6PLJ22pI&8W4(ZOf4tO#F zJRREI3$)Aw)c0MelQw=8`eMAE^Y6TMsiWNQjp6LLO?_UFGUG|Vbu)B$hCn-*x|SAd zHY#w1Z7-;U7rJAyFt=V_fnMOS^X?cU_#L?%1@y{>+d9K0)8<%F43FcCEWD5=?ZbzQ zrOHdQ#WuZ8Nl}4~#vWqHLoWxH#=9>;4dzgN|~DtN_>oZ}WQsa$F^# z9pmW>3H>OelEwFmdS#2}^?ZD*SQkCJGbc>v=To*~M6YOd#hI>zHmB}jWrOQh0uOw~k{e)oY zQbPAn3!QUnTA^*1pi`otWFnZjGQOPwHXpwDCRu&=?p^d=AhdN2?aXp=a$1Y_J;Z@A zYexI?!FtC?si>$V&d+`S-ZY@0rNt^LTG{CtQ17?7xhXgb=4|G;gzf;m<_Ws3Jfm9| z+NvIIz&7ErBcY86RSkjNhN}qy6nzJ2gmU)*P6GU&m*7|W6-&E(kvvt++nlQi@202x zN2hG3I_8yX`UjFXQbW`~hN#n0gnb49MQw?s-tH>%<$mneuPtfbQSI+k(+qSzu*=9t zVkdL&_JwXxG(X8(jAaY60-Z4Jxn zCvS0iJ!L!LFsyWg_oL;S+&9{gH+5z*(w}lV)qlzM3BS$sR~9f(FAr!_EXki1rck52 zwOiQ+n^vgMCS33l2oz)gzMUmC{7S>;7nf%lMhwPbw-V~xGmXA{=@K+Nh6u@1`_^X? ztKOCm;3fuapJkmNPtum3INS5_y5sx$+j=<8>+)^F6+A0LHAVE759;KXm($`5#Iw>D z_#FBVjACUW)4^2k8&m|>=U;9wa(WLm=5v_4`au_f^*LsJ$T1;U)NgeQzzZH1(K{S zoGJi1@iF{ecTvX0S4Q|GkL8+%?_6GfX+r$Hf^DQJkU{GS9xH!neqD|=Y3XhhI_IL& zPf?OdQ12riYE2slK$c(zRpmt^cNWBkXJXNctybmddx29vrcs5+?Mmgpl5gvrkNqM`4Sof#jl>O z2|pUSO!U?nGs_c;7Cl44j!E3snZQKj-npA-e_!p_&qi{X(!B5I9xUH%F%fEZP(O4W zDPjqgYVej)BSGeazdCv%+_Y1uLQwPbe{(LSk+pXZccxROa4uVzLHVr~PbMKeMX@Ig ztcpxYe;W+~K+mYv0$S|kQUgfdQiTt(vrJpTETFa8>Gm??1>*J+ws3({@--?L?#$Zo z(w~_8x>I;Jl9FN%d#j;lN)gnFz;m{;v1tbS{~K^II0uebpp?B)4O+eYSG4;^W*1ORYZ0vl8?HhFAQeXFZOW(w7l#QJ?t%Ata8 zg26dlu-uVMF_Uz!;#&gj&6Q%0W|n71O&jp3&<*o8plpYK6TS@~ReAGE{rp=(C5@46 z`)OH18%IhV?LiOOQO&+EnsNHljQ#*AJ?ZMnz?a!H(7U}AB~&5Dg_Q}PM*7snCSX;; z(4UoBXZ8}kOEh5JSvI`hJhn37R|h{H_3xqFnEjiH$P$lXF!m1SyURS3-b#&#TtaOC zOrZGerfTUBPBf|bt|p=>{x9kT$SA&MDfd801I#Hb)PM6Pcze2Qq3(;JW(Me2ZX5=(HULR zT!sxV8Q&Ne1}*73Fyi#j`WkV8Eq~F`ay$&%?z>I}mqcB|WmE?B4z6(E5#a86i@DZFBxc9=36i8n zhF$TY9qKX>491Y-VUfN*-3g6WRUOl1W;IhyA=|6x!#5v|YAGuWTqNtvu_47^uAv`m z`)N^Xtq`(wImny|GVtI3&PPZ2i%h0Y4h~ZoI?5pUi0Z~EqqN*$8~aQD?9ZR+z!8uP z_@z;)sc)c^BSR#7VG3-hpZ`Y=hkjDR$0^W$BO;jWWG5mZPrq192?mz(t*WUdXAno% zHzMv#NL2$U@jD^g3t1XzOydiPYZ{ol1%MQm43r+ch<_d;Py!pWmCvuE(t#6sn_B)p zGqxLZsHS$`6RDeYk1MV$kvRC@WZ-~y91uljZZiWf)D>9*^?V9IQtuUhof@a^TN*qX zroOPOoI2Cumoj}u$U@oYxoS6t(KtwrjeW%C>U#CMDzCtG*x$wYON;(s0oo2g*r2ETW07X0{d3xkj=v|5@&jB?OY`;`#KcTuYr zRqZxDd@vI^UJ~#d1JI$6N*OvAQ$AJTW0bI-rjZs zU!BLGu?AtHPi@PXxEfCV$puXvFUu6t+kNC{&Q07*AWzLiaP|s%S<>Z8tF%+xtW%TI z{YloTseMxYBrEY}N#f&;!b}et7MMl(Vl|>Ew$kR6b@tq0^6{j@>9a>$fpK96zor%z zqeo7vo@)O=?2mrFv5N}fw~39Ff|MzNL$VoEdhs58HGQQuc=b6m2Is*d z30s@>*Y@Ktr^N66l~{)i(RVmluWtsK3m&opLlH24ZUw>{`4smsyMs$?ckv0Yv~+8U zQ{as+8(4VoeU|4RJaQAP;V%^q>Bj0Zl zjH=46tzqvDNjsSwb6L5G({lo76+-i%LAP3Nu9tG3=~9FwavxkGA&abs)HY zqdx&exy5qu2@X3eW(o$@Kd$Qx!Nam5RnXjsV5N>?A;ey_#7WjY#p9fklSas|Q1?H~RN0oYozFpwv zk#n%H)Ui@`*<2pJh0r^W1TOV_{uDG90?^Jixd(AK`{#D|EkEC+m;ny7=+DM1s zfv-susp+?Gl9?&WqShbdUbAG|PDxogVkN+4)MbNzj!o)%?#bULA5#|q)(Q}mrnW?j z7=T*W?{T?m_|HtqZU&u52pV)4G1-$u--yIg$^Z8tsGw)_3)#JpTnp`pENkciR;>uq z^M-PuHO0Cj8y(O2AFKsiw`ee1tEXdW$}BHWB2!zLu(vn8hd(x9tgh`Y`_hufJ^L2? zpT9Gyvf3gGa?qSy%~~hZQhLY=)zJJ`<1=^J%=TROhaL1|61k2xaFlv~N2D`%1)VPG zzI%J}#MD2Uh6bJntkqs>bfb+RbC0$7&%Wm{7lePB(Ei(Bne!55+f{C6rger2CWT~{ zKLjlIKZ9bla}uF0)$|G?^#q<%Mwx;neVqwz0sUQk3exnOcN^I*mjAW59x z0fS}28wSx4%M`eEkMgT7=vAuljx0|%czS&KH0gmezwHDylOxQ5lO`T{1(je}#dC*c z1p;&Pf=UWlS@Q`xiJ(=Hk_(b#Wuw)i(9xE&AfeZ`N<<|o%iLnPGT=bVK>=)@mnL)^ zl@c(Wrj4;y)FtYyst(22{U>xtk5%)s+I=&zsT?FB|9n99_5hK5l; zPdlR{kE4khJk*?`ma+^@2)PSr3fRHfC_*9NPlUqK&kfm%_xRycsJMsAN(4OMoNZj# z1sWX&6?fmUV<`j>1aLMohjiTk7M(%@Fl+vUmHGSNDqy(HLEV3J0=?N$clYqo+O7^J z=jsa;)je-9*&ye!A|0Ip#o5)nvvTG%O=xT%J!xjv6=g>G0F1RSz7hrnJ#xkKDv7sh z<{FolW8g!8KJAJRuC41QfT~QTvckm;NqzHdat?yErfA_zf+5O&`>L~LKp zgv~>(jS+gEwi9Pw*S0;b}@ z;%~R@NL6chySOXK@2dhco9srV>|cT_@#m3Yjo8@O(XqDLczE1wE$*?k`1)^#;;4zF4Tby|jTc>MiFY*Sx?oYYWp{}QS8 z{zVNIbhp5x?JsjCdy|#@k;#Jr!S*~N{UP!dTOj;_wxHB zqfwch`-j0ED37wH$Gx4wtQ1}<8z9wDi-*ibv~Rwmk#pPs9z{dqi;v~e+zXu|J@M0buMTT{ax?_!31uemm{r8y9OuGQ3n;LLr&C7cE~6!gUorao zvKBe>8utdjGB$Ui!WpeW_~}j8#ow3nY1%sno_w-NP?)qF|G0=B0HdAZLSGoXC53Yj zjb0LAqjJ)xW6d9Cv0C{NM=85HQgft~H z@=FKv+TFju&#HFMM3}Eo^%h^&)XKQ}0_j(~CmoA9|5~MVCG8nW(9x|ayx-M<6A!}~ zNkc-RuQ7_7$q(3yiF`ob50=x1xIX3BXXycMR}OZ~Q@hN4rK#Nmq?NN>#&lu#C-L?Y z)JPpjd`cMR4yTva5@~v#2(Eq~$VfO|F1_U>c=`}1hs2w~G{7Cmti1*YDMC49)RpZ& zE6Cdm($t=p*Vc;aih2U0TY9j8ac-289u+$ITOW41W!qblKcceICkflt>n2nt41k?I zb|ae7dvbL2b9+jJY_!|%C*BtP9g>pA<@LS?+);bD9}(Ww5t7pZCLplI$fJbh%<)ch z!j!b(cYxh#tN9eZPf?Z#0Hn+^sMMJ0(H;%KyroQcXT;7JxyvP>Fx7Vg5XSo=cP|Jk zwxEKT`WHK^=R0%kh%hi~*3*rO3%u`e{(m7!0N(?RHD_WhPS0h4FCykileWf+XF2pT6g2gb#Pa7`hZ*21@U(bOfb{x~*fgn6a*cj76a(-; zmL#1=uy+1lgu7nxyGm z-@o(R=m{H!JBVFp2A~_4jR+Q?`TJExpK@F?0lLQmbmXC22w+<+5(sqdZA0Dn<7&!% zH3|cQt5(F1?-!C?2*Ay*bc;;}+1lw6Lz*VI9aPet>=-oAoeVIBVVW*l3;fOgP|;~V znt=Kt^0$pMgfHt!^XMQ!OL2n?T5k7?#yQef%Zr&}Pyl@1xds_@0VqmYwNwMZeBpta zZ5`RQD}d=83j^ck&Zz=3=F3n>pJY=Bk)vi1CdfDCGm&_RN#NMVtG#@VNL;DXF=o+6 zz8bF<_Ld1Lb9x7Lm6LTl67>8z_T3-E&3{x*8Qo5aFzra0X19Epii1^iIyvWJMdRCh zYMfzl&c9yI>Q6&2e`_5ose>Rl$rAUq<$SZY4%Sc=-Hb_#$PVqE3Y>Z`vq@4PQ@;}J ztirea0n8r`3u_I<|5cOY&77B?DWUD-wZEJ+boC~z_bS;m)5%L=n5pqVLAb&GUAc%C zZa#r%9DS|QN_CBOXtnD+bopS@5j)jo#=NgA&h%+^J%=4ln8zs-Ni3!GW?nnca4Aa9 z|NV!H5hW`Pb4g%0>E{;aoFw(6jJKCJ*U?yo7J{%t=_W(uM#X;Om!W!o*!+UEc(kggohFn8`9O|xbtrw(K6acEA^Zi8$P3#SF=as20SbuHH`j@nXhWFjpH%7{7n<@E7?ai&|53*u=CNkx-0iQzgqc*}$ZmeX?VJ|F9a zudF1G4nPBZ%h9ORpB4sX7)*EeRaYPajfUaFxaer|b^b@n|LI5o@%swICs#o{c%ZCp z)_yJh0^#8}6m+daMuUREk#kB#?5x21;YR#hb2{7g$M|$(TWViW$*?KxEz^CAPR&}Q zr_0Q%iRR@YyjU3E!V{7hXMR^OkN3VgffIG44uK|?{Hye(GnxBt>#_s!SRPIa1Fk3M zrKmWhs8L#hSI{23SK*h?UOB=QVq5|Bf$s*nBATQ^6;m z=A6YSWs&6nl&`r5uS{+#!EpYq>2QuaB`(%KUc16!3qSCDW=@PfZzeCI?McKMK&Fn4x=?pdkmx3DFV)q& z{wwq!&7gyNqcD00;i_D2jc7!H|)E-gENl{`+Ycxuc zqm=!x5d1ZJi;BtG@SC%f;=`oFS&2v;4YKq;CNR6s z2)UeN1)ftgRT%3?69sZpZvWKbBmDFku*+4r2*5r4ngF)gU=8r1T`Kuv9sGXpt=|2e zWB<`woZs?EG#)0^*IIyIfgCH7K!*=YRI#^$N&GEZ@HJjv?MvEaTNA@NqM4?1Y(E-M zk(8M;1+APc)7E}h+09^l4;+4cm|`r0=T1h`WobD1Va-8jsv9b@PMAH_XakHTeTq1m zL67E~t$#g*WIPZ>aMDccfR3wGc`*a+|LEKiEUv!#ec3$1&8+h|5 z_`~?O%tRb5?N2y4+kxr1K)(4x7w_S#MHv;Fr%}32Dpz8uDDdc(SLj~BpjT4=qX9v{ z3t;nk1p-vMU@g$aq7dtH@X7bA1$Z_YZ0v1axq^pV=wr0b(+nm!!}uhuh@-gH1`YA+Soq+QAKml42L?H z%EnuvHdBQ&u`kfd$VVxhq@+OqReL%MnwS=s*3&X5)5}Cix&8LT8B&GPqKWW3!FV|Q zt4b@)4DK-Q49!9Tw2$VZ@3+hHQsL4ZiI&5nyXJvuqY5>ZwGaS80mz|&*SA`=RrQYt z2a3(h(1HaEJ)3Hf8$2+#u&8`-3`$bd_DB}Q#Q@}{TcEd}K~!B}>rIS8EUOX!qBMZZ zkrV+jnXHsU<)j~;f31lV-6R8*gr}m&waVVIwWC=#z`NmMh}l4La!`YE8?mH z)+nw|4lBrjm|g|!<#U$<>pqd6tJ|bbZ%4TI(aDyjQl;6Au${lp0y){+%|IpGtp381 z!iS`0t)!ewOOXQQR9PWUSqJQH$vxkBoKyVDevgaxy6f-z6;~tU%6Nd1%;O?){BSr> z#SNMb7aPfcGcluri77OQyg|CTZ8*%dv?Y5~^x^XT`WB*0PE&Ye*FWCQ$oUqqAVm#q zJmv6)# zn?mb=i-pWxl4iG*BTgsYxHoXbE#8V%=m3QNl4` zrQOAct^pS2Snh@HrwVf7h+QseTYbEzBX~n0E`?J*XD6d&0I-2=KDDHaSIst(V*;9F^@)6rdJN2PP*P>y^wk+p0$BUJ73jx8 zwO>bdq_97^snULTW_M36<`W|30oN$R2&mKov9bg-;UCIX2I}gV*jU7sW{cqM!x;jm zABA5flkrvA1H;^m6o=1i$hu}V`7|qUk-kPpzq1sScKy&)QHcu`sFSODt!!ununca* znYmol3QSJH>05mD*&XMLhAcOonhrFhJRbXx3x;l4TD47rkO%VdgXGAfv6NwL$V91!cl0RJ}~#wqu+Do~!^9>(sa)5l8<6raTo6 z0~5Dd;B25}V|ESvv#e8+s{Hm1{vV>$xU9U<&2FEJTq5oSI$sR4Ha4DyQC!}VShre>NYtm1?}~3CS2EFkrT^wfA_aEeLlgI zZ5^3N&mzZ)CZ$EUH#YU|XLPVb4d4j+@AhYjH~FXOHZ=D+_19&W8cTo2@2f{^dbOPp zykW%a*idZHcWc({ytWBC3Ic4*m>>f7rgKC4C(ZD(F+Gp zoUR(-VySrGQ^%jr;z=?w{78TA{{7laAjh-bd3<-XSEBE`rS{YrK{F11bFXHE_rWw) z-vA@>*b|iT+vyVc?61En&10SFb3WfUK-?MR@?YEkV7*RsT#n#t8Yq;|YT+eC`h;d< zu2NdFmk_mOpEr~M`w3tK^z9trp|K?Q|B(LbsXHgbN&D}uT3@)XokX$_J!>Qs%6dz5 zxcIuTs4gpf$A%}@i7SN=mO9k#1F+Yqzh)9d z#g;Eh3niHtp9++n?VE3`r%B6As&{|$%g7+jDolD?bvNq+V`sGoO=oFzq@^HB;>cwg zPJ+%K#wI`RVatJmF`^;1N`oHeh(mCePkUO3A(6BB&wO^f``nOwu$)}SU22N1?pM}r zuC#73t)hwQf9yr#lB1fO3d}hOH2KTZv)(sD(=+U1JL-rCz@qV~#44tb&E6=kg^i<7 zOB;10i@_UhA|T7KOzcAd_ZOX4XqRo~E_F|pGUkumvv>V>7Uc)IAZJl0mQJ{v9wA7rD#1%fh1uAtust)j`3HimCF4o}bvduAfK zj%;+~T`Od$k^)17{y>nSnH+$uksqK2`|T@a=zeYDiCR#)b^D813cZnIdT`$14C$cL zC$H<`i?vhv#Kd_i*6dn>zHhs6c3teONTy# z429T8B>UimH!pVP8((VT^y$@_$2mp7zmSV5AjWTBqJtX$RYo;`QAP>lYZMAYAR>AZ zwhGlgd{|T*&UA<+(4IK_nE1ZCmfDkNe9ZwtjlF|tWbNmU{o8Vst#ug$%jx3OTFEEZ znIydn7;T4~;>@(d5~D+vTyKQM&X*J!<(}PSqfkhIpQe@8rja}N0a^{N1&JUlSJJz& z^X+NRZwEeRo-%=)l6(FAeoqPFx?06Yepb1N41e9z47Y?IXP}Td=ROpAmXP;#KamK9u-J3dZ4Erc=zWs%z_s8jX6k5C- z|E3PwRU}_8Sxh>iZ_Vq)&U3e6yt4G|!D~|1#>&^eONF+x^Y92+ptJsIk8;NY$u9Zj zc`nLO$qU#2!KOQJ9O9-V2hxbQbSil`3p`28LW6FTZ$!D;zOA%5aW6AMlafTH6Z06V zi-m9oy;LMsQ5?b(mv#Lz+tL>nM6pmyXQx*mUFHr&j?02U?Q`i^3u^M@*rzyCmpe;y z@^jTM{`$`S&ebjeS?I_IfM|^NSm5=2+))?4w0A!n2UTX|#gsekO|uAkJ^hXZ{m8^5 zh!3)E@boNYd|mz4lAjGeU{gL+=MNn|`)gR3KKI~%&lx4zbuYr|?~c6HokcN}RQLUe z=KYmWVMRGPWo2^muI_+R3}e>Xhm@q$Y8MgRK74r62NbyN31gaTx$qtNyG+ufjWqu4 zrWhmSw&?tQ|K>aT9=w0c($2rlRDT(^H{_jmv_JMuj>8&=ql69mVCmZ0x6lNNzk5F>065Fq12{tTSKtb@xf0|@OE+&h0F&LBt@ z0m8&VTqz0<+{J{~DhBu0)-BoLfd36N|-NX86>3=U@^mH}@v;T~glb7huLe;ftr1CI}ucvb)yy zur7LDFNQp(!nxggi7(zE$YrfKlAdAqKZ}mvKZ|2sZ>Aj544}zH%2?A*U~Y(kQ+F*e z%z6b${(o`#ar$qUpQV?;CqeQnf!vY~DH?`O;ne~EU8_tw5$Bd-;eG7!EzKgzU?vzv6{W?gQj#`~J5B8N{VeHbZ=r4{(wI>`Fy7VY)x>Ga{6{Q|vN z(UicMRjByMEEPR_i3T)&!FL>KMbrfp7DVSRePiP21UsNlfu~Bg7C7$!1^P?sob#QV;M2=(SWS%r|Hpe^9{bM~=@TzlD znFZDM<@&VpFmkO$WlE?3-c`jnf65GlmwE`Lxa$q=a=c*-Nr|1_`M!@ z+?xWo6C^+b;X8qEJQCH`0xmAkIymA{&~fc8B*GiFPlbl-|II+CU<097{_ER-Km2>} z&w*>-@o7%-5vTTRysDw=QAdNBh&dKFs|tVO7;$SVHpmG&OF6A`a&yt<^No7?SS!oM zdqFcHqB)>SMMq1?Ty+Qca&g2{&m9~zA&ij=ajpbM$*Y^-xYH(D;pGI*5b2*ki|p&@ z>CtXPQmVUy6Z+rIfL?aO+-a}y?+=WBo_hpR$f23QS?6c2+$uNzojR037Hh?P_EWel zlp+5<-I({3cbcBVIN*!I77{`hZ|F*g7{($zaul>W=TUH#5cUJFVze4Mp~2zdDt(A- zp=V(DFAt^v&;F0blsPjb3D03;p&R~`+)$<*OtBFAZw4RGSOXvz59w`CzF;-f z42~7^-(pMc>;Eh;fEP0u5`L-r13ncL_Cq)e{|A#H(o3`(m(}GbE6#9G<|ii{@4a{A zli8Lhf#VKm>*P@o>|<<#`6PW4Vzl(jj}7W5zivY^4HaB^Htfucz}x={e$8R9wrLT+ zOW2rw!FRqG34Fyu`7=L;tqER2@Fql3{ELtRPjE0`i-3Iz2ZhXCV8^{f+!DsYwYbXtv zRVYLl$4`Ab$v)rbypD(RP0qd?VBcCMtT=c?>t?68UMoT?e8Nxs&ifi;n$P!WVOESB z3sih-=iqQ2DkY7}fG#Ja@pgUB;~C;w2~2q;p#;(mpY_RKM9!U3x?(}K z7BGk3`gXk-a*OA{v{D=~#b<;Jn$i=*P84jO4k1Y4ycYE{#KK|hNt!%_G}|Rr+K$X3 zmP5d+N8)*rY#eYEd649em~8 zjmW$RTYu!~)c8~Hzbv@=_^87-qF5yHMtDb|7EtHw5afj_ondQF3S5lx3z%cPNkP%d zNfaie13M=rkp-lz&t5EN6x(Xith>%*beYyeXJDec~o%V+Tj9viz<` zROu!SaqVBqPp3x`xcUl@ceOY@xABnT6h<=XOUJLZPJa)eEzO&?>v8ZtK5C2Rfj7vi z{I5{6@wGU4h<0$R{U@Eq1?w9Q_AVRQ`D8_kj*W9>YC?azs;My37dJ{MQ^|>$*U}tK ze^y*mGTtTq@|2)SRx$lJssS@QbCp8ESuSZ!mW@nt?0Ips&n_)Giohw=i%~>F0-J>v zJwOMKlmUaba*#wz@D{8*khRH)aDy{nE+!q?s=yDQ`Zc#2=OPWQ;oy{>3OJBPE6iTf zm7!!c`2-(7ak4A)wJ%Acrz18Sn{tx(2)?DcGc~cjnOJ+SlYJfLZWcyAmlJv@pXM&XQ>EZw2DMg3$BREXFCR-#=aW>qo{lGRfcQE@O}WR{Qn2aKC#J7!g@A*L!_!&8K>p?I{&GLIec+ysMwdK>))y?q|^|O@k$1N zzisp?I*zo*`UyM_CNsmM>-|4;4w3~@P#U64#YCu@e& zf3YrLbura<)~U&7b!&?>-yq>O4a;2k1CuisJd~7B(u~BB22y8h-oG^Iu^Ja$IML7@ z;MK~HJjsF;-OT+UgLM5G;apfuDVQIty>b+BJRAT)&IFKQg~3o3sn(x0Q}U?XA$jl! zr{@|KOAeRQ<&^WCUrDw|a}C~A*~?GK9?Ya06a}1&(DV}Hf9kn&aoou39LWQt@wJYW z3*2KW645n;)~~1hK(Y$vt{8_b{Q`J{Efx0Hx#eGxH_sq#JMy z?*l)rrb~|9M+)`mX$vZrj3>HEn5w|ELQZjSHoKN7cZtS z#MR8jPgrx@>KxW;bBZgJ!{jNQESx9)w9ju|e|pA@hoiabik{)yUYx*rPN=v|zUQI9 zhWQNW#e>FspDrM~0<2DSPB4rzlvT_1v_w3aSWnJBF36XMIg`xpsn7npXl>#4>fGT0 zqrE{D`vyf@LZsRitb6+e`8=5g_jIvi#8v&UKZNm5SD8@X)AfxL@0@y7M#O?8v%f!8 zRV&!zeimtF%D*-mXFi>_^37sVFU~;NDA4yVOjzzF7R+i zBB`OPqTFz*>JTK36F<3=l`;4ITbP@OsCi*w*6(lUOK;sGXOs*HHCX@ZEIeyCOq%QG zT3aj@aS(g4#M!wKw@u^y>F#p^HKjKkLfsas?KL}=b|ibWq~}~3>g3|=_NWZ>3H2jR za1KU{QRy}JtnO@SA2%H9ES~vrkUwsBc`*B^4!dh5^SI~;ec{Ub^9XWGJS~3J4=(4A z!JDI7za@-ouT#pPv2u%q?iRH*9b#+Ls*V+zi;&UOsNZpy>mP91&iVA`#_pi@qt3WU zw}Zm;m8~1LNik1pH&lE0?bffEOPt`wJ@)Nw@6(=ezB=zVl_WSrdTidIE6lB0_1CX; zT5ca_hqL}C_k^*JUvA!E#GRmM#Z=7Fm-{t=NtP-^G`FXf-4B%tPOlIZ*I?V)yD;Wo zl-WJ6!;xs<`(rBf`O<-ML!dqZJX=vkY^IycazPRAmxCnDM(sW|9LFS|Ta?BKWy@!} zPaWTG=@yAyZCfz2wr1fs=hPWF4JmtZ#?0qsdC#@p`Nr6tIY#}mpg%O~w|1ZJ$)LTnIjuhb;p`(Q zvQRD2eb8FN3Kt}^dy~-pi!Vj8a6)2!QJXfkm}7(bR{@Q$HScK+udZbt(C&{9biDZK zsK>AzvheGk*Vs^u*e0#Lq$p~T-G?)eOYLf^%AZR+utBuCj#baT?4R}$*z&J3H=})j zvgj4+C$TwQr}f2#1Qc!$ zbxE@byXPez=X1Vx6EPJ~;iNvg9ilL27)lOrSjKX5H`84I=$)N_yZ5)9ulc2((N(i(A*e2r8d!3-F));e68{j(`)zt0rx~eNAZfY;8*%^@2Z)X;`h|Vp>~f4P(hM z=gjdVlmv&}FEYzH+DiPT5!p%MD=LuXx|tsOZl7I>-LwkCdszCSm`wb zR)2@C9r}24XAKPbRDNm7;xMScn8vb`77=}#cJQo7Uw)|4hn3$>uC`N^sA{`^6g6Kg zajr^2>hsl#W9)Bd#}|Vhd0p#v$-nk#i=NA&&a?3>jaueQYLXU@@B?nyJ`60syQk}Y z?C+~8O{Ytk3@q@1Cf`IYe>Ez@62GpB?FP%D=B{`7YpmR@+t001y{JP?BHc!KgyVUZ z;>TTX7^}=w#@}~8*?3x{|7ym$|LL~1-OF9;MD@eHpCVCH73M3hutqP%SxSzPb!Q$P z3q14Ldtv9h9n~MT!%;3j{c8;s9b0!J;%(8O+09Jy>OfshH|SNA0$5SWA@)3c<4^HBb{u6y+IKtEA(g{?h;B?$d9?yJ76! zlN?`|*;Om#Fj2nQmpM9dY#VXKzTnedFgg>3hd|l&9dpb}mTs}Q`(tmM>s$Nrh}rv- z14-1oJeAH2#eVm1OLZQi$~}B{;_a>l^?mjnO*byHpndPP&61!Y=3iKZk8E9oJ>qFU zneHDQFBq!UfB5+|UyF_6;elx6^0Xn@1=Y0aB68MKxK&$2o<0^?!i`&55ANW~KTzQe zEUcyWTvF(DsrbHXkH0jW$hG_3&foKH)S?MXG#XcowNI&WAR>C+Pbdel9n$`F6H^rclQ|$M7 za?=vDLg|PuMaOk^G0OsH-Tey#tF)Nf3#w*R9t!vhD$Dx~iUTD>x>SjR308i!Z^&8o zl^WS7!*RucLBXVl!}AjhjyL{a-_Dl^4N@_R`h^;tkqs=Z?(gX((r*E@oqF3?cF1%* zu?k*0Np?>-NddKJMQe0n0BPpFePQf?1kGD@!xK;cx?lNj+e6( zL0u<8^*#-OdGdsJ6J^GXPt}LQKPrD3An|CsVX*fkIUqOhz0WR_EUzfp(bv7L8-*IJ z_?**J4C%)WYB(`IO<#l4FiY>JzwEWX94|P@{k&>}sx5A~yYM#RYvBbJImvRpkOdmk z!u*!c&V)9q&ug!%s3!)&su-DdEQyazKjQB#FRK}%$UWjOIZP_iiP#7!jC5^rUD!tJlah*$SmZzKx#3FHo^Ds1 za(Vq+8nw7C?7;fMZF1ss=djeHvJZ02rDw7|C${BS-#iDN4m*YrU%D_oduzaB({4}` zoqX<8;p@&>^V2)lcb0B%-B2ayyUcw7^8#5)w?hj%Gxz*H4S-w>c z{mxxaiw!`n_mUqiwl7S8eOxjDl)a*SjS zSKkD7fs2qZd>4YQFAH$w?cP$7wgqv<+u`!4uwQkIcViQru-40aSQ2l?E@%>6J4G%- z(8q&Zced9?nwIAb&9A8gALJZyHonrOc$w-5QxtVN<7qB-BDYwi5LJs!@ALdZ;n5{_ zQG;DSHPxzHYh|&geV)P(itjEPRwb*(N1pt~f#2aWCnmu4zWkX%DA_pbbKC)ET7rh8 zbhqSsi?gtGf|qt}C#B5pIeF>Mj+T4I!L~~WfnUQEJ3AxXbVAw$ONWP$O;6Pfr+Oqf z>W8PvySRi`m3fr54onZ#9f}Q$;mr2afQpB+lF?gm_$xkt+C!=RW6xf3qegZ(&rCM- zj+kKc+lm>m7TIk#^j1_~ZA9spS>$uF**3{SaYX%_HvKr?cusO5@IC#zvBMPstpMql z#bO%WUT48@_EeoU{aXzhy9IXKYT24G~+K0NuH3*=E)@jYq?_zoxgcyXOFU4~Ox_0-I0B z($g=+jnbU@@pidg-u!7VD0>Xf6#885>U^-+*Ah(j&~@rA)uditOpTx?ntgHPvVH2r zphNn^?gfV2RI}HME~m?zvD4c(N1?)f^e5>H=Sv1Uc>CciTH_D<_@DpX74naZ3MtH@ zG;rbQ!^}$5T!P~l=QXaF>E=D^VC{U~^koLjqx-L-maimElU-7S$O0Ss{cr|wsN|b> z34u46!i*I`JHdS+ujq4B%*F+ZANFCZdQqH|ULA4Pv!}l@Z{WnVv?$(l+s7jmmHMox z9h=x$tU&VWsn4HlFo@BBdX$1*^4e4^AdyT=T?C5D^;c%zM-PY6X=-pXv<)&GuA?-;eJ zyiK1y@PY=EPpqGFzW8li!Q^!4J7v;UF_!zcr3?4Ux*tcc`V7f~y`vsu0t(}-fsnYA zfI4TkZW>iBnGE;%!K*P+qHkh5pLu^IsH_XO@@7%U6Lr{oR}?dPoE9CPzVa+zmf+?g z?@9u_um#CSPGrNYVA!T>7~<7ZJxV?wwi-BgqS^WVtM2_*aY?~(#^f7L zf#d;FV7U+8IkR9r{R;wqu84{zLE1b7<5WLdhcv|}5VD@)<7W5du(oGWcC2G$H9Wk( za`ZmsCIL&df>krS%7$m)#MzNR?(2*DOE(M*E~Sfk@h&eO$0==X8r2n=n`FJ$e72K9 z{CVGrkzrWNeUc_-+J*O_x>2nvmCWwNq;Mr8tg1w=M?vaV--U_Y9@ggn;K-Yf@S5|m z8;Yg9mU|)~_gNGo=Yy%>2>nf$P}Y)7j_H{M88I~o{0JR`$fmdVid$xwc^wyx&UGi< zF5cM*3c^Q%p)Gq-y8wD1X#^2`2V?_vg4DRgww25&)H>0!_BAax;7-@LxG)6;VJxzg z2ZoLVe0ux4EAN8d2-t2qbE4TzX;W&Tu#+}#@0}XA=oEZ*cEDDa>P`#AWbaL>7wdn@ z0<_Pm-e;37`b_Qlf-cHm=G#WCo2H8ZAq%Rd5uWq<7CF5rOVyliv=%Fc9gW54Z3n54 zpb*Oi->wTAWmVmLB|19fOaeEmk`l;SSq3YEI`)KVjUz|P#crnr-!QIEZfR3#C{0=Z6HTCq`AvLWL5|9U8BtTB}TSyk70UWYtaV|Z8bQV}j90JeV ziV0!D?@lVVDFuEym>X??MtUPjQ;?fFlsY{o?GTT{WH|B%ru>{YZcJe;RGm4nBFO7H z;e-9-HW^l#!PGJ{I?rK%3Q6!zS3hgh!rbP&E>!flu_ogwHbPzBz@HSi)SFz23-WM|xP7fUa&TBz zn@8sHGI3bNu6sONAoCyW)U;{{HT^S?c3RQ;>`5Et5EwoCQ>hChIRQ?P3BnJ9^={!g zVic070{MH0r3j=T%#ryV;y8Rvg77fPPEw=WHIoityDSRfE<^K&kjR(-IcfIx_TshK zm~pHgi+IDY5LlZ4>1NeMlZS^^9TOAJh2gd%D8L7QFlR2N( zil1Fl-~zG5z?X*)UR!^pViINI5xqJ^V;@gR{FrwPU08steg2_>ss!I|t-f`iKE55A z1r_XNS89@M(jsULKFnX#JY8(y`?ak4tjJKUDXl1DHm-()dc{md(0_67fzr{TEb+%A zD#+FAd=7UO*k;`AbiX^X<7g>;L6I%Al`6| z6el&wp*jR2B9dU?ze^B!f{i42Z2`u;3A@?G7jcU5{x#q1`uh6kk^Nw3)k=6ZxzV9! z4RMeE1lhwLbyCp1W;m>uRW9L*%#Hb&T1Qm+R%xUupXfKNrHDubC{^UVgMpf5du9CG z!}=JQHfL{t9p_u)$E_GixU$|O!D8DaSu&)3;(mO@!<(1=p0cY`@kn`-s_Qy);@hN8 z&lTkQ`^(Ep1%+lG)d!XoQSfl9yo=Pb-#6nO^DQjHZi$U{myM}uau$}-Dvd9=`g_k$ zXJ3^(+HWMd4fdt0LPJ(Vv2wx0;cg-@XZj6syKqzc zGZ2G1_k~L17a;Wu8Np1m@Go|HVPQD(_Q4h|wYF9a;t$)9pmf*-S^?~HTfPM;wH=V} zI~4C`rn$VIzX3D|B+N1jjI^lbXCh@uu}pb%z}0DK5Bn84MzpHZJbxxeV6%STG#=|4 zNp{x*v@As;fB+Jap4mREWQ>S*coPYh&@%k=v0-z$x`lj{7wJp5e* zRxISaeE%8yz-R_o^79Z?V|lna1F&}l+%663b!#(Zv;RZfk50f};wc27JnQ87Xy=ke zCZ(#{sXl$$&CNz-Fp_Clf$S5IpowJP0jFOQjPl&;jJ*GJ8t;2V;k+W&zku_aMN+I zM~}k;gCp3*oSYk6cCR&|_WQ#}zo}s1fuH|l{I0B!y0S2sVWL;BIF=Am@OIoX7fD^r z$jig5{uJ`JPUH;rFIqX#9%?LC9e*DzlhMsH_~i{pGmh;O7)Ibzs+OlsG)$>~n|)Qm z=)q3XAfgKI_vXQ3TBKW>8fTF70PmaZ(}~x=-upbUrceE7#I}>rR_a_kKr?E_uJj>1w%S|{(fuT4Kq*4ySg@rUslu}cb%s4W-K#j2Fk#! z7EOFf!F+f9ovY{c+DR8q#_d^8#nu|;=!L;!#Css(YRuw z8<5E}w$uqp>8DN#{5x(V5P3y2Zvjf2&rHJ0kF; zA1cH-dy?=Wb@JQSb>=vsMHEx^+?JPXZ{}19noWOVGSJ}&YEgdA{0v|0fP;;LM)mb& zgE0l?2t_7I8Fb*447Ic0u8lj3l4l7J*5+TcUi}(ukFs|TfgJ|qid0-N_`ld^)X!|h z-EY}&%5~%Tu+9DPG5PdJFvZ=bwo^svjZi+6C|LLIEX-Ij@rE~uyj~bn^yBcu*SSs< z)TTN*$5C6!!2qJ_2(#yUyoq-gYhjFHFlmeQNe2Ua4Lz8D%>=mvrVgviGy0E^V`>oJ(GA%>`?n8Be?6}xQ}xw zw$OlRA<>x-IC=IMoPr>n^E`w)Zi6k*+nJW&o$|C3?x}f>LWc$?#AWgYa4dwu8BGNC zsH`(vpkB|`9917+4CA$ z?<%cUujLlJ7)~GS>MD+nwLCbhaJch6=ea4@o@V)aVnZEmdX-v%sNEi1!LtL7!Ui1% z-v`}1J>cLep@IXskdS}+V}u}A>`XidFW}MeaNWd>|1f{V7Y@+gg;-_V3A1b@$EMU} zM;}B~h!Y`VONj8vYzv>dI`aO_`SwkB=$nEDDJRxPQ?>~PF_>l%5uJCWgb?43JlV%z zIG@*+$&QL?2@7#nv(3DI&9H8pZAK+UB2*N`l>09(EY+J#w46P|2V~Stp*9nnJ`!6E zi}xL|%{`_GyBat=%FD}jEzKTZ%-?~g_CY9Zir>{3{tc}v@z?)@(DHJctM}c74QO>; z>ZTirX^29w6_{C2@d2npvk$Q2guY@d_ers`GABn<0eG<6XSA;;BT2e2l(c&PWxai(vA6$K1)ANJ4Z%vd9D#^4< zGqul1aV8E0xn_(G1huFy>Z<@nz6KL1ln?W?3eb~l=E6 zbgNMZt<>LRn5fnQ{iVFFELT0aSS0qcnp*7$8I2F_g)XGyu0s-!1}Tsbk1sASSxiw@V7GM$UPe6c z;rbX9bQ`PXFVqai@QsL*RUOpe9ts(NEf{9eK_NiFPSCn{xVCVy$dQ}KJYlklzxC_X z-z>6p*}Rn89ao}L9OWUp?@%vy_+h;#2c2Kj<`e2+S<~}J&=2{ShYM1!_1`Q}iBSY< zdHKf0^VObeTqc!&;g8S(zv}LQGX)?!j8L-1mLB$s3L02+>DOAgUHs^r{Uc(+GE1>E z)aYlQ%`Yq=jXfBnL6}brn3_3qUji}b85rUn6R-<8xKCZOc%4W?GPEPo;($ot1UBK% zpnD817YC!wr`ZKn!CZRZv&|r655D zgrD2MnA3C|Rx*trS!AW~I)A2^E!Q?{gIL6pd!6qvy*+`fvK}~cZFrJ?CvrytbF*f2 z3&1rj$spkk^w>d|X3^Ei&1`VaogOB*s0=T`b5gKrQ6iXeVGoN8T{c@8x;)f>N$!$( zSby|6s(AA?f%+Z3=t%!dslgIj{oE%2Fl8LqJ^$%)iV+QxwtGQIX>_LC)nEMH+ppl| zE8Wv*)MN`PFr=mrz7HppL|0Fk6-J&tFLVY&zW= zW#wIPFWag8a}frS+k$W)RghcumH<<07f5GEPD~mVHnYMGT3hF5U~q|iblgx6pnL}w zm@5Ruxk6&&whN!8L%$d)Sgawr!a^1rN8sWW1a%jZ{G6Mc%XP6oSTb&b90e#q1AC8r z6&%CDA=NzyT*E#gH98bt(4=Gk0E5F02!m?^OW8QE_XWim((2}`R|F-JJ~*U<@$A>! zAx%&Aw{$*dUGntb7u{fdmeBV-aHlYTRE?PA=lN2`SFdfHAU$139`^Di4W&);i+J2c z>-0Gy^5w<&{XVy+$yYUX*6r-NE- zxA+n=2D=b^Lfd_#4btAbAyHe_$cU!8x`gmAcoW-$?ne=#nWwFmAZq9zL+Q5W>K#hCnf=+(U2_3knLNV_+}J#4WIrkIScP#uLiEpF! zotB|}6NC%n`~#N?rx5fx@>e3jdC)cgb~DwZU3=)_aL#gbnFbG%8$V3U$U%i8y0;56 zLVcFWTaO`ROE)4_KiiDBa^kIU)MI=m$*IwJVJrg20zEr^oc8-Jb6UTgXjWZKAK~eN zJ#%?Q1>&hU1%xo^mu|cjq72m3A5Txmf*+^!N{EZMb6o9bNM_l8&iwp*hIJ6|-_ks1Z z7IQ}K69|r$Tr#SBOo}r&FfeeET~XmU>U9h5;RTt5q+G!%8QnQ@m_riG*xUnOtTxZxFtM|S#Ufx)$fzil{DYq-$rbFy-(Co{m20gTwkazPI zZj@Tcj79LDUjCzKo9x*2A?xnOiw*0qj^)w4fOxU2jTa*DPvf6n02VQXz|d&Nz4w}3^PWL1jSw)oxmh6-Dn94i=9HrTU2l?(vi*9cSMazPeiJP zpK4>b=)#Hyrm;Secx;iSrQq2Ns2!T&+~}j}?&|8I#tZy=bXM!I1BE;U8jrfhrEEG? zn8g-!v+NBfRe?rRQeM7e(GIN1i&Yund1bAQ5&O5iZ`qj-K97lsv6?b~V(K`g+~J8; zbpq9>W>9@yNb_1@>Uod50q^1?y5PpZkZkgfy`Hra)L(>{-4d6Peu{Fj_&K6!bmiR> zDTik6kvr##E;?>uLv5H+)qfcQ)QV`2l5dHoe1WAao=YNa{`_zNPk4Ut#l~TKHB7wn zK(tvr+$*-VdRTUGb$KL+wAkQAIu2=_Tz|dMc&Hv-Vnw{_m6g?l zC|KZK`{^P1cnC_FpI~{iyyF5L88adyy*lajQY|;Vi+GwtE-9z`M#X&;e=;W`*xU2v zgL3nbE4u`~xQhVMEj44Ztgja$zXd`28m}(4)Ib}4hi@CDSMZ7tt_;^DOD)^BdwlSL z@U7L5 zYr{1|gH1F&^O&EV{WIXu$qE_b2THOUE?f0SU-;cQU`gm#P1oQAWBLjsFeccYKL?j= z1jI+X!`ElD@bD&UQYrd zKAHkm1RQ|RAs&0P{zw}Tpz6URYK5xoGx|ZclRxopP?1HbHIR4Dx5!8ZI;#l>y!fH4 z-uwyXLlXlsHs_*GtQr^!rOgt7pmqUFB$bXEs}g0UW?b{6>UX$AWB4A?(~!0w%?%!F zyAZPzx0S1IU+t=}CEEF&7viIZ7aHUhK4PjC9_hnXn{Sy{`eACE7#ym|qapHX4QRt-G(jYVi@O;cFmuDY!L<4-vGq^nbX8+ViC64M)|+{gb7Yp=^> zm+6?_^=MI7k~(bh>bMwQLZCYY>jQ2`3|V5UcRI(Jg7@E{6{4I{>=N91scXqv_d~^9 zp@dcg&jp0c4+xpw=2SHz*=7x?zFBi|I1l*wZ$O_qp@{BD7YkM`HI#}K)JIWJde|a? z2V5MW^t?^wM`(;U-v1w-2msP*)gM4wx>L?YruW2)VmmftxsnS+xT2sV4Of+q7V z^8F6GW_X)el|m2}9{<5sVyzhtqeq7#c^+5jp_(feG;Ukf5wqi^IW~U$b~){+Te9D2 zN#B1fnNyo)K907;;rFFkia^vU_tIT@@)_DHdOUwTjCqd}SJvdK`)|2IfS(B5vC!;f z8nQe3La#ocGFmcS&;BjBtaaO0l4GE0&_0-uX;m|Q(S{4Dow*_No>!u23Y_^7<%Gt% zAyZ`$3@^g6wC>-(zxDbBn%YBw;!5LSZ(65f>IJpH&CiSK!U2~N|3A9USj3R_dF@P+ zhe7;z!7HEN=y&vr3a?Z0SzJFb(Gk-9wLeo!7D13-F>EM!F0?ej2V73i9@lbmhcAqi zcv8LUioVHlvNqxL9)vNN&&Ggm^c+T*hM-g-bsE!41c2uJd`YllH)<*K^wbTU-JfEO zk5}{N^EODT;QhsV9VBcxb_<0xPx*t{uiALw0D=2oO70IgHomXpwQAm*(IAq$f3T!I z#6UXb=)bAvSRifkPk{947^e>H6_k}@e0cf$HgL$j zA!_0o#G@de?S^eDZ`@sT%R7P+tn~>Z2Udh35Gdc0MqEM%cBLr-Gj^T z{Gr(@szU2?8L&3xx>zUIiLJ;A%I~0fywOO3s>?;nM&`^a+mYh45~&p}>TgQ$Cy(V5 z3{1YIy|N%5jA%@q<+Oh`FfgZ;gv+mQX7R&;>y}&`^Yb>JW%Pk2YCPGhv#CEGM_TQn zBpstVUfo}%qQ0=1;US(4kUzY1ar9>^m{{zg0>Q%;Kl~XF#+ZM`Lt$$7;2w@uzmqHr zeJ0wcovFrc{;M}tMIx5g)O#gfug)h2rOvh_z61$(QTdncq;`3V$D7rE$t==Vt#bArRRQZKM{{(+-4C%g1!8LU zSZMg%WD*(h)7^(Em4_t1{1|#bv=TV&NGX~gg+m@;T0^$Yl_Uql^PA$~o2Th62dl#} z@oa&w=!WvpaUON<{+P&tZP7#_l3dP)RaKskNp-5-u88^b-6;kN0)xhggpZw~%SH_q zHBdq&xV~tFBI<{gX|;KB-FTfw#9r*kjCf{L`{CY7hr-7u)%#UM=Z^A^8{!{ z$yGYETUVDdpIfBPetQ&;j7FX;WPJ75Cl4~yAG0_P=YF4s@5v-BC05k`oHeI<)h#~! zn49~~%twQHH@mGXhGgfN)Wh?xTj3AxZ{hilF%Qn741WO7Fn;uA<%WX=CY2})35Nv{ zTzRu_0U9p%rR^}A2(29AF%7cCaaxmm!K~q1e*X2;)KqVX)eVwnuD&id!B<7EratfF z7N|UG-K<=Cw`27)kyVuspu!C%L<^S(P6(aGuUmYL%0KF`-~AilkWBE2wLCD%SX^kU ze)TMMg*ch>O7@>1MGKzk&D4`VYBR1iO_)PBRA7|w*Z37=1@#?Ei3SJFYlY%UNyV5R z{01SU3#dWWY8>cqlDklX2mIogK{x8x3IL$0A(J5ssF{kMR4}VO=kfZaJ zSf4*zkaFzeD1}#+4V)!Uge0`VM?fkVQB!>%cgDkl6chhrXl71CKKd2qMT;|PpW-xI zqCo6FYEP=JO3~(0wzC)SVZDE$&)H#?2>42k+FPhr=kg4S9IjrzJ*=9-y)~Vyc+kx~ zbzB{CiH#|DqW^n$I_le<{FGJOANXg+7MV0$$_1Z3N!;pZi8l2~bamEaVMyEgI%xXG zMCSqVlezZlcl1C3ZmITULP@)u@s0QDwebAo_G(tD%4Rme>F$z0Qy1RRR-VS2`*@Gt zMT-OHK|=80;}=^(k5J{eAkBvllFBuKLLi!<0NwRZ&^$M*nIzFL_|%wXUrPq#{Pq1i z%9T=oDn-3?ElZ_Q<=1Z`i|p1jmlYmleeHEhAmqb7yKRfrUcUSM)X#g`F#12^-O|M< zznjR4HoXKKbE%?q`k$D=zm9uz)kDI{7_Eas=d*EU129~<^6~bu9^q}T$3xQ(M*Gbl z&@o*=>o;y*RFBl!i;IirP(LjpM2MB_lrZNwDWhyZMhg4i&pb5!h+Yx+F87V8TXn34 zHFe>^VdX=_$VeC;F5p+`affnm$A7!-h;W6XL3%YdrQc;W4!O2f4LLa@h<-;CnC=)b zjC*hHfC#qs>(@5}eLZ`BqW8upYI<}{!l}q}HH3%CeO&j;ucaQ3v`X$cU4Oqm5L=H)@XI23SDqWQL>QwmNj!O-lDe&D zXVA~)_?T~98Dl6i&S85$q)mSo{HKhd&?AM8i}Urdmit6%J7H3&~L_uPr8oKqGCA ziBfPzAu~O-*Z;h1PBRf#*X&z|12=|T+}%lWEsN3Bc;#db)%H;m65jBQ=d4jtS@)kk zoUCtK%&2LSU@&*xOkiE*K07nT3$?@C-`BwkRk(NRM~AI$hGD`Q}A z76iCZ|7kNqf{2r^vJy`#Rr{ji-Y)s9h>>zI-%k+xkZkx6c6FfW!~eqt=0*H* zLKVe2k@`-GHmMbIU|a#Z-mK# zhnM~l$oZudiT>tF`6N7=Z)B!jV{sGtn0h`3Hpy68z8Ge^rkLGjUeWy}tMksiZoaDG z5Sn}4DBo_A7Q5rn%8)eU>b$Hf+UrQo4mqv7g`#G~ODn@L_X@);((gJSe;Ldd|Metw z-Pd{7zxe(CrmD8Nj3>~m?6~l~+itq4fyH+UO)K|$am)7EMZMY|??}@-`IakD-q|04 zu-p-3L{vx+vft|YkN~Kir_p+!E@x{EnU8Od7z?5l2=aQLmazzR^#od5>i3l@#o*IF zdCX^Z4QqEJPEr(%0h?%2S~yj+{@FQlIA1p$2F_OaH~xg>Q}b$<67=rhth z6#M4?wyub98RlQ-50tx>oE!&v63Tg>%?qpj&d<-8oYrRy!ujXkAoClRVm%@avJZx3 zG@?7;4ELKL)D2nFW#1<2|>H|KuFG%)L--w15D@-hy&~cnydOyrc zP?6N3?}et@N+zK8PULytzWoIb#1gQ6Hize0e-MzdMuXG}?rnr14xRTcs<~g1(iw0l z(AO_f!Hg;0PsEUa=cx!wVle2Pc9`X{ShEH(g5XN#H&w6eT2b*c+dY|ZV|L%tfAytErEI`g(GS2kYYS_9IATVQuB{{8~uB5Eo&f>X)33#ixf`Y{TTB@IT1<5DiE%+T=2&y+KC%lrt8$Mpd zi4RHFSp;6l%E8=?cu{vaP%4_r>bfD?_MY7_xlfNl`RTd zy+KjdE55wXpa%-jn?s&oVuj35H!w6#MW)(D_f2Rr~CJY~t;= z0{NLAAs<>CtpQTyC8)%@?ZErDdLdGpi2W@=tfrk*>^#zGn~xS6&D6R6f5*U<_e~z* zr4SGTv5Gin7S~GyjJIcY zRV7Q!%C?U9$NNX1LfN_HLRra_ZP4}_16q9HfC3wj zGwkZ4nb3mD8{SZl$z3GwJ$?Op9-iY*3#CQTJxmPQF|?tD#Iw?zv&BVguS63_>{)^h z{+m3-f6zG4-go+b&}!X@$UPPo=4=`Q5&`a&LLwnFfBac;NyJOHqg1NUl3`=pfJp-4uHeY+37zZ??4Hth zC%gZ3hsY9beg5~oELAV7Os&X&*Ofkl<{vNVO@3#+yqs&Pu7`+3>JIfV+0w68A;X-a z78zL@E+d|-`YY$?)xyf+_O(AMyAwyB%Y6;fB(!Uy@U!mB{+PBe#{NO}?b_W?&e%6Q zzpCz)J54Q73EZdcCHmDXZY0$=D1lT20RP1T(6|HSKZA<)81c99?N9-9!v%W++%S^= zdkf(969V=-0Z6~`5r^lNH!`4Xgn&eZLWS^9{=0OMa$yI@Md*L;K_Xh$8!&+Ovvvj) z(X!H<`eSDx!H3uz>Hp|=1n#m=yBsBtg-c!Dcvg&Vw3nAoCyDeE3{m~sZ2~tfIPXpS zerIEdvdt{ta^vvT5PLwM$eIzLmQniZ^ZTpk%kp?of^{v-v8e*x{oR=m2nW{7?2$u6{FBOjNAsj*gDsHJPV2Tiqh% z-vq`aT1h{2*tXCw$o&BwN>(>BQa9cz!3GixXrlglY#0#?igx`@2Vp73dNm9O@zDYb zN<$=fZZ#XUzqoe&I<}=Aav(UzDB<_(H}wRpzmZGUZvA~1Pamb+pI!T`A=1lB<%PS1 ziXyy;>~-$wdYa{NBY@tX!{LQdRJVKk>d5P=1Hv-VkR-7lB^9lWgen~1?>VP;;sSY$U9Uw>nKG{q(tuh6=$PZ8ups4>PCYr2LfyzJKI zvx-0FMQ?F-o73$C)YXD#?yiThNG^R{5tCuweOX+FKhaElby@gfwBgEDu75lKja-~U zt2Q<3qRE&n(u@gF{-|+WLm>jxpPruHwvg^b3IvM()vAF++uqQu-=Y$A=89#ZIZEa& ziH(K+57fRFhx*XlaH(*7&td9znQ_D3A}P|H*oeNg6cA^%q)RgcDH(=ryi9qjmv(Oq zJG#qk0;_jaxZLP810ke;Q5(4LX**UXIUOud@dc>1my z=5)Ur8-q942t(RGB;QrbNi1D@WsKANDb<7)v?BknCNYqB`$yI%lLuLC5C6CB(7>q= zK%?#YUA`c_R9BB7Z3pxX_brmGfg6ZaXhucn(ZxlTLQ7iD{AEUXCX`&j4LSlk!qW|$ z4~p3!*YI%SC0Uz9x)lK(jovK$7_&A3WJP{CZ^eA_*@g(11|zFa@iG#8RW*o2~MML-$sARu9bOS>Df?#O+(x+X`7MlE~GTC6$h7{ zfG!Uy+i&jhN{>To=b0p~UoYvtAKXws68tjpM>|n7iCXFx@K9%BQ(7(-P3XieaBWOm z=_Zb*{C}IIwC;^G?oc>l^{2Jj7CJ1!1kU2#A}A>XLP)3AMjI1}5RiDGwZv5a?La{bHd03z@y>epna%Ebdzkk}$v1u_~S<;Ki86 zjT2dMis#nKqm>m%*-vm;7U?5JX_2Q&6Nz-Ls>)~&lXao)o5}>_lnK%M=w7HG`rOp? zj^ZD}v@|9e5qF={%BR?tccCGdVL7xt!f@>pQykQOdV^WLcf{`jCR?cGE+ zbOPV=grXLhyOhiS3I3I^8DP*fon2Xx?$>fXOKz(o)yBvXvzLi+J|Xfk3W4s(H%7Tc z?bhx5A?@nW8Su*ybXsE@N)x4C-gLlnp6IDhX2ptrb&H)Sz|n#J39zq|H(&JrZnep7 zyGBu4zqR$-7_!^7PbxofdVO1;vh#EZOVHWkjy6NH@UAe6zy9#l_C>z@YMME^(u&-rM}4P6IjnY z_?)$0aq#JsRqNItZGKU^w4G-rLbu)S%+dX?a(yH) zJ-f!BQRi$mlt4=a+k)_T%;HNS0SG*6di^7aH3o)9i-ynN-(vC7Xi5-#a~BFwr(W6l zQFk1pUwy~xnpq@|W#3c8N?DqpL>sS93E!(~nYcT}_0w*W^Nf#h*>LjSl=yXNE+1m7 z^vYuejmcLnRO$(nQV)286#Rd$&b!x}<8APj*ViXO#^e{6vEpSItmFcwwLd7o1k#|W z>2jwgxto0PSun@YM~Iw=4hBq}fiMH%*%9uW)&6j_hD}Xv@|WD<_z%-EyzPRL&puqT zsQ&TU!np7MJpm7<%F@>$aV5f`tr<;t!@_Zsfrhwg?x;h(wO%{jS4{T{*GOUWn>YKv z^L@rDL~cc>A{s~IJqyh{LTmXK0KT%u*;Yka7||SSyS^_EpAiccM+H}`L5Fn=prv2W zvhSesotXGlY%kX~Fd@9*8$0-Jf#s}bUE8Q2uT4^#`l%7mnA3SpKbtJ!XSSX7W>)3l z^7cXzB`ya|<_>u>VJo+*p49QjgUE_^TzjK@K2{L5xpKtKjbcg+Ls`OOQ{t>?at$cx z0+TnJB&Ayeq$wz>54mrn!maMDamGS#!D!}OeWc@oQ2 zMk9Fa=rVAm*P9LkoyboC2aN$aiZ`^BDQac7($dnsjkh zI-;FZdOHAh{Fa+L2aUNN0L*u!o z1fWtoEFB0-VqG_#3GpFCGR|A7h!YDp}m1&$S5%0)sjL5okK)l!ox zWFjzfRl<~JNT4^zVr69bY}TgTzL06~dC?_3J6(Y_`Rx9K-YZP8(f+}~oQsXj@(r&~ z*IP7T)*9nUL6UfW5S!%xu{ONTYf7qoqu#nI#hkyWUIrxGVtX$1uE#p{d$o0q%RH5< zFNNo6EuCML>&3sTNQ+pyA5&6Uh>cP!W^{P08J57~!+6BZY`aSH^3jLPoShDnBB@mJSShlEhthMsNUgbWRh{rD#^6( zupF@4yM+o>EV$!f)qOHCPm?oN-tyx~C>!tF#q2M&N3`ulbYP$K(X1lvWkK|0Rwld_H0dMxRddgK?O;GNJLyQN5p8X1fRN;>nk}(FX?`C|s6LBxHUrjdl7S zzdmyg*jBcz(C8qZ#9$zw=HYEBAAiPw*n>Lyk}HH5>#u56jeM2iQRW1<`=7g{oQ{$b zeTr>CxrA27N3Yu#v+Y}b_&z9HbWoa<;UsSUuKn);PdSyoHX!4CK-MH1Gx?sj&9CNp zIOpK{@p$V8Qg$LC5TTh_i(vRGq$~VrEuVNshO;02M#frP*w+S!(8TqSuiIyd0A@!1VEnF@sDbuWELy+MmJXQnsf)c37)l0-!CM+7lX62~WUj@WO z)ha%B0s+-o4f~ihXS;g!G)852{<7hh$52|UsgM6I{YCgzqeZJhpmoVm_Qa34IW%Z)x!Z_!Jca zBLxOu+nYaq-E^5Qr*WtBCcgb4eSbV=9qC=wHG6owasyX+1qx&wRe54%ELY1r*O%)8 z(YbM6lf@+0EA&76roN)8pIKSarp@UqjEj>-bc0TJED3x|vIgIqO;+rwtN`o*$L1H% zoF~8Al}aSLy7RG#(j?LL2GG+GupUumAUG$Sq+VBNI>3c!f+?Atwl+CCJNtU|68uyr zt%t&r_a_9ym-^>@v-0llm&fsDc*9r^Yx;NkALWvWI-<#P+D^Qg!ePk4VUW|f<5jYr zD|*|pQhd~4%j$D1;#yMv4ZJ_JE*I%40Ss_V@y@0X6!r0Xab0dP{&tf^m&dIsayz@9eZ|1r*cmrUdhomFGf$Q}W(9Ze*H^N;&<=k6>z5~aaY&+WvLOMUZJX0;TLv$mdS@1V z{t>;xXjQd6q(YOQAJ#o)tE%KFkmGHTP0)T-VPsMzhXw>eMy5-jt&wq~i(;CytW*;v zS%!w_?v@1Elq`*@k3G{dxgYye%{&**+dyIq+W06I%b&Ib zq#?!mrM^a=yYmapjLJ0q2oiit(9LA%wpkzdh7MNRU;R_iGEpeipN2Ak6s$z$2Y`+-%>&v*YY2xLX%9U*>9tel+BUC4QFY_zED=+_?NwiHB; zsX;B`H{h@y2#vyWp|yW~{p8H|UoJcD1%R+j;c5+JdR*%}SkdcgriLF{URH za=(|3b9^;?1}_SwtK|6Kas_P4$zNI}B}*1FjaPL&)qf!;A(UBO)p3L3<~6#Ar$L11 zVr}K)Pf5v=xSiY^`6U3~um|=(B5C-{pmOc0)4Hl0|G`jCbz`~-AoLJlqM)i8kee&> z<>`CS-y}ep((uh%NUHVb$jEX{lb6aUe$eWez-O z?I%q&6w{VYBoJwop`u5%6UZ;wDxoHbwOJ{Ys1aBY-pdoCBI-8_U)Gwr*u;^Rpc|sO zZl@}>aXhtA{Asn=>AJ*|l`Qd>#bjc^k0rj9vHQKxEJ4+9eK1l({8ZLK$2g_om~5LP zrD)#fZg=POzjsMmX&h&^h1!7?4Kb#2$qsr4HwVAwa<>lrGLBJZQ=A}J-(CFuh8K2Y z+^c0h7v(20TIWYrcg)}EY?|1b;jgVu@P=zB5yfulsh5P?o~)==v3tJ`zyY>=CtRRO z_9heATVma9D(NOh9o41UhVfq+wF8bmFG*b-CiJwt4|GS2RN#Att@T`bF1(sRapWVu zAwK@+AFbG}#*&6mn2wY+{E}C8$7jHFGWaEce>`0NkadpFK*G|pNnM9xZN$v7y&YH}Dl*bKC|569|ATV_MtZ?S(uO9u5*VZ-TL zB&Yt`dz1|EP<`;ckVz3B3t&f|a+wcB2)4%;p2pqrZE&pqT<*^}+bs+rTUPi%?edlFh<*sF_KXzktPVJGm*uvxsjQ5V;dG~ z1!CjVaFXPSwdK-H${w({r1IzYlaBxxJkjj7zI8WLNHwEie($hnp7+7+xW{r#!s=Y! z!vT1uJf?C7xII6wTi@W2CthJDS&<_#lQUmhT46R{H|SU@bYY^HBp-y44M=~?&0k@W zbtiD!Xe6C|C~VXIxv$$GCr_V-3p&Z-*x2+FR{hDmAni<&8*9ildKc4?7_FaKhowhS zPgsu!|2E%3ChyrgSx464)8Lm0s&D4DcF#9Ub7Y9;jND4XBgQvd-L38hii~d8?~^`| z=MT#j>sM6F5nOtxj>FBDQ|lUSdi|(_V$S`*x2IrERw;ACKYHG3FVIDOu3Rh`s+<#&mAcjJsZT82E=opr39et6jB9PK)gA zBOd`=|Dq!}$-1psqz2F#L^W9~1vGHM^FKwt0DnghYR^ z%aSk?)YfB+eB`MzQ{IpWeFMYby>TT5n2#t_R28=s~mvPwxI(7_bP?KPzsTh z0C9INLM-%Vg@*+jU%I<}(5TK;b4qLIE2?uUvT%!?ucoQOGWl`J@*cG%9IEORd$Vn+h5l zJ9QU8qSI-g7(+oA$nVA!j=fy@)U7-<*Y@hS*+44q6BF0g?td9)(9>Ws?Cb4k6yhd7o)VjOph=jn=aqgDK4 zbaZrtYmS)Zqk#i`9GE14vd>md;ACM#`wE$;fR+~qMjkb!SD?S*0&V0t{H@%~^Bu6j z0n1Aa7r-$7#2lC8-kuR1t0}#|FY$BGY)~d?WJEO~4{*aS(cYfT((@LLp2 zABdUK=$M-5n9^iZIs_{Hc*4*#__YO$l|D013z;#Kh}1D>VI8nOW+4ln=%TgD3T)fz zP*)2ps9`1Cckw9ExxBXgrD$*}AV=NJu|Y2U%VR*06Z2GrABDsuC4Ab7q$!0h+x0|4 z6-wiY2@Z}wlC2xXtPPZ*80h3qU9v4!vLVjlvV(?NS|o7o9yd(=p$YgU?aW#*)&*7a zyPVR6*XKTkv+j%Ntd|EwZ`p!2U#49qVw!TVfAhI>qhMGGm{t#yk7h!Wbg!u!6JF|& z%J0oe(Ei5x`0|m=j;o1oUQX8Rs7as8s@e`ShWF|}O4!){&UTF{3D;#94sFN2YnDz4 zHW(CDR;Itbdri?~-;DMN?&L~Y397j)`$)|M?DQZKekQFN$J3u#Oyk44XUbKEe+X8; zb$63ZM)<#acvpWiVp1QqKdUhD(G};*N^cXO$UqC}MDEN*%2hdF#tGsv7+cCh1Xjws zT?}7eUrn1PbcC;rlCRU44Euc-^iHg`jW#U5PKk)5>R!?fXQ`vJP#GKyG^ZEqJ61hCmtd!1)~;8 zCnpZz%REDL8?{5bAm*@X!R9Qsofj7mC+~(B!_Ei^@^L}I0M7;6ahnN7A~d?Q!BYEM zVJQLT<9Afo%==5-PLkRSe0j#XHGFsy>{Xe#rU*-?c)fPZ=?TCu;)51iYD`}YDxltd zSW)dlKJ7wZyAJq|WFO=>VY(Bz#_}DG>nDG`-&kdXC z3>Z5P!$h2&y7YCN^16XtL@a@ObE5_BMU#H!ib{4LhdqVe(sZEtqMhB=h2T_*C+XV1 z&dyM0Uk#gl_4iw!mu$T*r7ZFcDf!+RTG;G*-lUn@OEPnQ3z-A%VF$LRu^`e@)5we1XeNQ!9j^t z68QUAkXcf8`@MVxfX1dx>pwKBiOBi_YzYso*seCGB0Jr$uBVRMC1aJg^X-l&XQ7-k zKOs~zn~Av!)(82!?H7gL=Wbta`wJF>WEQdM0j(a=Yz+?&qb&S$@@VMo?%p_`I0U<@ zos*>$>$}^CUKU(99QL#WyJ_|rDzdU3BgMu0o8&)X+&f);*b7It_CEk5=U~*nQF>?% zVpy$_%OnW;e50ha13FLqP;u_H{4y?BwXSeNp_-bR%@()d%p;H(m_k6satC1+0OA6R z6Y~eG#3uUe#AZb02LjV>5Vdzd>mY5JYYUEhswaGPWg}X(qBahG(5=<)%(i^^_-{En zDaix(pq!dubs6_9w%PGV1!bkGT}w6m0;*7!5%%r28r5Jo1@YU1e(l#%cF@V!N3?E{ z6QH-O(X1cfG10XuD?Pw;JI7uo*V)C2no&yV9hH)%uA5XvJO{i~%AoxW|NFHQtmc|Q z0vHoPuceaEkM*&F-LizL^K&bydH#iA& zY#xJgNA}`&O2?I9&r`{ZQ|Wi$HE%v1+0(M2Xo3`=*P^o98rwHa&&Ds4tmTXZc5bn& zT&Ddo|7MN7v$^}0F!pr3oTVK`kE8+u;e5S^vHWIn<1qW`v$u1%#z@I(GhTb6qE}EP zf{os%I0!)QK_}suJ}uqttU=#RhqR7b!V(dUwZG%UEl&~oSk<%>35sHtj2;j_5WfM? z;~T`TaRGJv`+8{?aBUI#7s|WiS^slTR4oDBb!u^q;x`^Jp{?^TG)nZ*5n(70Gm^9f z5n~?-a@R+|e}(n64Kxh9X~$6{vu4_At8N1%q80X&l~Hm$fglo_fzq~T5(d8YU*PzI z0rQ`nvnWRC@>BbSeV1ayovDF9EZ9kKVZ3LTp?j@Grj)9p=B`G1$@lWWHX7OdTr;D+ z&~6}x1^SX_;T$}({1$$#$UfHOi`!^m9uv@6Xp8hmzUj8eJmbaF_O@bKHkW1 z-l^Zc26lKTGI^g7c--R~$+MRt}y=bZX)_WLRBZ49+B$F)&i_jO?raJd! z=p>hbV@%-UEO1;kGLm{$2c`^_($b%XD@VpGl787Sb|)CGxh%+nDRyV2sJTh6NN{j4 zqLFu9h>+k3=Lb6vM6d(af9tylsT~nwe?OXW4;0mBz)F;(g~!0|1^yuJPPFKs{*v(( z)gKa}yp53S`7>t~yekf%s0b2GizvC(<8+RW7+zN0!nQR@G&_#A~wreGkpj5Q z`DOF3>500k=n2`;UylnT)|7WX(OdTw-_5EGr8ts<05)AGCQUv5!ezzZhtNVs3j-5tv8oPR=yNu_>!B51aJMWhIPkx(QZFzxG<2x`EkAl?S<|z+`WCcq@Wp9u0~cs!><48z z5B??xH)NR@TM8~b_>tCg_&rJ4ljBKnO6ad z_RX5Qo|GJ{bUNvv5cq;Z#*YELBljLu90C6pXyhe_v9rux5A=~^IzEA4h3$Oe_P(Rj z=h~fl%t89yOst85*1drwQuY#WYTAXew1%X%OxbrTtJySPcRJ(U1k@De<>EgAeFBae zrw8Ak+`tG%zj{X7*RV7Lh#%%?Da`^O*PSC13Pt;st^VCJJ0>-r0Ij1XuT&16y+58-)4gy50aXCHmj|0Qa*JQ z|JG8Kvn)x^{;Ci5Y~W9&NXGfrog~KZRJAIs@xfqvdbaD+=Vfl%{=Fo!V1ca%7DjO8 zCMT08C`2vO4hqH<;ZJyws>^M9t2t$v7~)MC+zuPgD^`l3?Z7Kb!tHlZ9<3}bPxoE? z%vA1I+cWqeZo1^N>kFQ^(%?7ugVLWqoa_#;;Ovm0H&k*2C{Lft#&Rv3$_6M_gTWp$ z2Y<7O)M3IZQrGa<*&*}%e4dS_CFTA%Fm*7&y zj1CJ#OPg*7!~jNTWn11WyM3j0raYI1tSO!!Ksb}?@o%PN+TZPkhN)ulpip^+mM!3h z)Q=aQJ*;*9x3EIaa+qspVU#IaS<#xGq0#YL<0H7S)8MvBezqc`nlplryKeUvgC;1j zr{3*#V^Ihsy6*i$T#THw{~>Wu8yg#mFarkM$Mdi(Wd}r44n0lxb|U(Ezd%Bs#`T8? zGZ-9Iu2HhE-0_Z&C*Ixj(wx^)R2&?C5)&H>fRttIS|3|zdwYA&R&Q5V2I#}Pj5sbl zBx1++4+>6JD(zvOx7)<^DPM zS}+(c!Pm3d^tg)|pDW&#mlC2AC9Q30_EczCP2g1Nb1J?L3?Ul6yZ^=@kFE_U=|CTn zKYFCuho4Y1=###-tWA;DUz=uRd?#RgKKpm{8yGq2*JzG$<|8blukLeN%2gG9>5Tsm zTWoCys269q$JHLCScKxgDQVsqL_nVFkok+qeqP+0n**}4vB&E^2|h!n z1?PJ-;#ZB=Vc%){tm`Y`c#FNzo^vCRL${YAB7a8@uKy5aCk-tTCGmO2 z;qAfm=RroH+xmpPQ|DbdtrM#Uw;Eyz_dO0rR9)fMlV6)rdCmZ`afM$e*7{be#DB;f zz?_<|e_mW7q&l1QG|^i-|8qKIhs z^61q2tQb6GgUQNCc(-TVO8x4zpRv-|aW)z=Tny*ET|yv3lqGsfS}XndDCu4VGc?cx`I z1P2+Qw|2$nIJ=hmsh0zmvnU!96TTR~HzRRE) znMs(eu8ma~%BPX0 zdg+Vai&otJTd(|IAm0+jJ?~`K+$Kt&VN&YnoZ4;rjk{1q9q>cEJFQ`eV)o!(c z7++Z!sxODw${u5>Sa;sZ9r{GH@{2NiLAF2ll^xV0(KJtv)tRt;ddM8v>6o*V$C7wY z0YeH2K|q=`^Wg>xk|kI^_W@jy*>o*f1nHQ_$k)<`#C{TQcZ9g(^WPMc_NLoJ5)D z!&Jdj(23C=r>FRerF=N0s##pl-x2lMU?$&t^~8{rA~Rz`oOyb)=E*9#QnrAmy2y>W zwr6`8Kk5a+X9AO^W(@tCKyRSBAny4#5!DQn5E`RUy{bKK$Ua7%P_42ZmU7FM0!D!S z)6)&!)L#RS3+ybr$ZzltNu^hwNCefAO1>IkfHFr?QT?Y|HCI(vVLemPQ`XJ=f^mu6 zah(Uh@?8p#27Oa)R)DvQ0H5F0M?ky#s)%M=eZ@+DtEs}o=eT%`3|1XZLY1W zA49-nP#2=w?4w!BthCaO4^U-J4$$*eFV@O~~~&L&Y{*D*LbO$PM~eiz1DEH{S7 zq-N)Te&f^Z8j0m&EhU*E9aq9tpy`!Fxxsy0XVE(;;wPQAJ6Bl-)fxXJ4r_d}ZWKFO zWGS(CB1KhLH{Qqks$3`N)@|Xg$%)7!8c*LgJlkKW?^}&RYg3jP{qCuKUs)*gqg)b1 zMPs%{VhP!f;S$YdDcIhVD8G5Cy9Ko`)^zjLacIc0FSFm%4JGyYeKT)AH7e>FsaIz7XAePv-hn;`QI23cCxdT}{>agPE1loOsrRN89(Vecy3M#wa z(XHNEL$Hvnez^+>U|h6BhuITHZPbRlLwiJhl?r{{80`dRNZyo&hI2|eOMzmhU}k&~ zN%UIgyhvxsi1=o%s8~7noeZ?%uR&uEI&JT{OqZYPIz)5t@iB6`FAjR}Ya#+>ZwFF6 z*op=wC=XLbZa}&6`cuo9#9}>;Jol~Pdov$CZ%hov66gnxi0@1}|76HQzA@gT$5-0( zbHUAR;asS1niSU|uDf(m(sTm4dS>9Gqn6X%+q(#isys+VVw1>nFY@x-MKLG_O6z1xBZ0T)}!uyFx$j)W#1J zMV*Oln?=E!y#o=*6sI;aBH7U?Su6qt5sB@*a(eo0#tVICoTc{oAA>TZNpB$L!_P1b zRZ`)Q2+Qk#G?z54(I#L*HEpT*c$45Hw5OUj%USL26!X8G>P^ZuQ+e3vEHrKjC10c3 zafp(ydXhs28FM!2OuNqbkn~EDuXr$*azYb$BoTJiwzuKGZS=x#_wEnyT$dz2doN9l zV}HmUW^ov;uYarB^I@k9F>Qp!1v<(;Y9;ijK^IT!V}2k9|Px zdUJVlW2RU}k=o;1`TT@MZ=`1^XB@u8yc6uF(%U8%&=n086%o*-In{NvDG=+sRd-~* znqwTMm%T=j#3RCbFEeP zT=H@*@g@IcCDl|N>Z3OnE13Mbc_@^Gb^hIpuaso|(=$Oy4gEFZ&knpLYVK~ntt(SS z{Zrf<_^TpN%?*em=cHFT&)!qK33esisL)lAha|8Z6syx4YlkGin*V*}RZNNgh>sA* zcV@OqWIVsVAs1CKAP}Hz3fW3oE7s{rXTiQEGfH~&>PmtU8|Xx>EBO=qO%I4i+`V0d z7w=TFJCM^mQeK-buXf7U?4`*FRja3QV@fMh)1z-zUL7cklXNwgzQg&AR5I<2hi?X& zc-vhJN)C~&2^s3UbZpffY~;t~Zyoc0vLP?YVfx~Z75vT~s#0QugM z*M6Z}-Bcp06STncaC?8qoP?!x$nz`M`$c!@a*fHYY9lMUZG-zFI2^~C{=0@dHVyGs z@0MrW<{mKgShCcu_`I&C2^VZtnXFE6`q1VfTr?1yl`t*akg;`}1k|iFG+Z6tSbFe` z1SvrO&#wDyDyusC_{fj3u)FH)yEMsWeT~{Ylm3F&P)T8hzI1T~Hew?X* zEAszrtZ8A4eBXONAG)ZKyy#Eg^Zddxl{KK4M%v=e8Q6cUn5Mb#ax3@t6TOS)kiCWC zDyGDj3l}UZC}~BO`=Yrj3KaIVjG@YQ;^F`TajATq^JQPnyNDy#SoYRhN3YQD+?q7c zWCOivY8($;2XcJsmjlrCxKwL|&=%Bf|4rxUGmr;TmM2=K3Yc+EySfWLQedyG z_0@b0qEi-k%*NVJ^2UuB7eoK8yaeqce+o0+&d8T8<)$$ZJR3-fgz~iAnq_sci%)Op z;F3r)1#2%&O)c8^1aU>y81s)xSL5fMUt=^$TS3%~?u#Y}x%wu)3X!~E9I%B$8EoHrks3OAb@;9o;*nXy->rao4`5ukgD7)i4;eA_F&Vd;)R`j&PNqno_#2{s9 z5`k8?-Jfi{IuWnfZD(ohP5Sm$8Cu6iX)8?V4VhTJ zpEDGaL_<%#+<7r%iawR58$kGTz9}uByR>Fu%>jQ(+NW%`RW+O(QFFiFwvRncu%NXr zO~7*b3!!@{!+?w+TeLldaJD!Vc%`f08azh01{lx7gX}*hi`Ugzh?y!yh3EhHneWs3 z$!CEKZS04FXA|_>Mc~uae-)Q0ZP)pE8iBl29H^z?{4RIE-EsU_ckx|){VQl=d{)%vYBrpbnmB~Mni3%{1XaYX4T?J7?& zqLva#5n3G_;1(Q}7Rq`mF&!r*2PwDV=H0;H=i=o6L{>rB)31Y}QYtzVz`TNo zY|r`_cUdf7C}G$VmwKt#`(shVE(M7)>;^}c>RNQQpqC1K3p3DrD zQlW$jAHoOz(*8L(AknGvwoJMI^PMb8?xM(ze3gx5E@Xy&p2^OfvLFY)Er>&Y} z@z2xRQ>gcLt0X|^m$BfCFu`kkzsl4091O*6J-k19c}9dN@<0&q+YuUQSZd#_fZ{>q z>HUB_SDF?0N|t363Rt1brlZOKSj~@0`L;b2NLYzdWd!RbQ$r+ME3ISWlFj988u(E` zu(P8!4I*1gcxcu7$+`9Quu)oc8Hm+wzS}|Z*tLN2@Li1V2v=oznLirW+Ldntm4%OA zcRqymc2`zn5J*EE3K6InpL=HhV?}6_9!BHlp($4v+SF&x&Z`^}>-X$=WBCBE7V;Hu zKK@0_QcH7liwuh!C7)o8^iti))|e@#TQaV@2K~N@v&a~|EzF3$BPZd7Xp+Vqb7Ffx zO98<6oUmX}-dG;X9pN|cg|KSjTjBcFvvEoQ_d!T3-kEI>*OLl3bXd0+UJf^6v6m8` z0kaj=G|uyx!iUVP1ho~c;%o6or?T2zOJet+13OO^q$fZnpc>Q$mn}nB@1Td%m}uHw zW!Bz62TCI7la1RY?M3LI7HzA6ycQ^{Qf9rjfVGuu!( z$|+YzNF^G0Oeq+-CBj++(=GLbjG@`vZ^~y!qAc8EuGhmOepIU?9Fbdx=3rEr>5n$_SLG z6$BJGLWcG4F&pwgf*LCAHM~w-N&=6~o?SNv|ER3A1EMv_8LG}3ZrAjR@_$^nn%QpE zu8ZI-6F%ORct!up;?tP5)e7e|m#JuqS^CtU7 zT(CAH27XitqJvnR(cO(RH`U$I7b6|6swH804s7pYBj`^OC}dLvetLcQ8`fJzJ1&Pm}GL*3k~ zsj|U&`qHwPPPA2=PmaWtr5mcQZ&%Y+3Ba3D8PhigoYum zOO-<*-mqD2*W?cY2L2OG1(&;my3bEz$FKZUK)m?l-{tK0?{bEtjz!ExAc3K0>e1u+ z>BwBAE`%oX*9nW}`ys5FtbC5F2}?}ObCe%&<5KogU4Uc2EaiT>*#B+b|E)qiG?0PipM18$C~>|Z{+DOU>nZb z6crHDh`fg5B?JWg>>I2r-*k;?6Eu_W9)zq3L$(<-e9-8jA=1k9F?=>UDQJAbZs!FR z0$zGCdu(F^o~03MOxVhMjab#Ov}t9G9*OI2#K72Dtd+*v;ztt{CNpuwn`kyR8e~L| zPFBQc6S5*rKK6jL6eB`6B4o`Lp^O)D%e#39u_76nRILjNdt0azKHP4h;ckxyup26y zmLg!IMaHe)zEOw_S%EFw^3f{ya%-x7Jqt+1Z)=$c(Lf<%4VvoVqX-qwlfFhF7Wjb> zbd@8H+kH_uapkbkRuDuHp|NAE$UX((yH9~_IoTRf4|zh1J((pczVa7G*(PT zK;BLGVi3y;s_1QzVyN#2wh>epUW?zaL@U{L+~)@7_6MGq0TBL&TjDy{%1YsQY_Onn zBYhxl18Mmxq4ECF>j}evDMU+PP^=a?gLbS+gxnnb|9|&97za2YKe85|i`c{#aU7{{ z-oQoyePRV6Dp)#GiC@)$REE5FdB#$%|H_32@tqYA5=DGx-t{yON#o}Xps0d*Co62{ zmnEW4LNAmU3-P?om|vz|9CM6;_>mFLPgn==CtAQ9M@(x(n?+sTkDo-ZrD6cL3*>jh zb4^&=+6tXs_t=!8^R)es(SU40pxUZy zbON}P)WXBGyBi_&0-#s>F76ur+0t1j-}3zg_^zz~9#@tfyO}q5_%sr6!2q5WIyFsf zDIYy9bExK7E(KEQu%0eL%WcO0TO3Gk!4CZIaW4zl|JUq}@2~?jF^{@#npZw90%v|R zf4yJ<3FLOWYofKm7>WODjD!%nSV06UdM4)oZ#wz=5Cy>_bH3$xN2g}qBL6I2)_)hm z@|W9cED{c4f%bw}nsX>)PQ7M&p@r4*KXW6VThDBb5B=swg2wwEWAhuUQ81ov;s1Um zR+pOuRAQ(*&t##pX?}DQgObO-QSOl^(44R3e9jE&q+i%*BY`lefmge7aqszGw<2kV1SMPTW_YX3G z4A0)xxmZ_AOr)p&r*0v&vs08B+KjlmYUBW*nvTf0J~1Xp*E~B+vv{S)$Dp(j|M2?X z`A4;tpjLVjp8MmwMOk@=nORg}4fQ}u;JSLG=QFDS>^NG*e);eOkT127^_BhMIgb$q z-WYKf*grLN@57S{7f=X4@pia1J3APv!YW~b=yTq)_qDXne26@o*9Z3BP1p?Hul^gA zLAOFe@KU(huA3-}gKm4$PuALKuG=k4-+n|Qmn=oUgF;Izz!kXoA7cT~fA4C0{@H82 zAFZ-`Lq;`PiPNGFkd+M3P{~$HxAo(jqVB&nOfmkEH>Eye@J7S$qWspbLS2K?y*Dj( zJ;n}?O_b%)dP)t+^jEszVW?csugg0b}Rn#b{P1-|^8%W}9 zDSn5(K9-mM%+96KU#p?Lx24DKd%&Q?I?i`{PR~kWVx>KJrUnOT*vwUe%3tV)ii>?s znur%>Iy!;;STtQ{%O4cfWZvN2R?o#h$B#*+FC|H3e)CCu%nTX+V61dU{FUrOMhPol zHaR6FrSbmMXV3UtU2~J}bu|4j5u@6)6o1Y4>i}8#liSG}p;|RX2&a$imxkLdsGYVN zizStcI}2Aq$vC_NZYeb%&Bm%fW901j$}0Cpk{n;rD=YVY5?&K)LVqfTdnIeo(SEM) zC1Xyo5PlW1+wI?V_pXL1ya>%ebbM;ehS?ZkJ}p8+n${CJ3Gu`+unQEs$iT<>_m`WWR8c_=d*KiylWuKraGf@+J{oo?8N$hQzq=k z)7YcpMG>o1Pweb4%Kt2dYF6nJlj5l7ND9xC7c=Ehy>?X84T$vqMu(!zPRfU`0|CUf3>~e#P*7X#FkNGl zA$z$Wmn!%WADD3}Rzl*ciO$DCBe&r`lpP z1RqkWP3DM*bm+8`D7e#09EjQV;)jmXqH}SM&CgcuQ9fkw-r{4=q+$2^8F|~2%{3&z zzo*P&?Vv$czJ{yzs^7EfcW&|U(|rO4>OrP&buu}`1NXjsXwZ@hcf4{HRUmn6*);FG zGZoggAR8zz$kQ2MexKm#ai!eG)>>yUV_usIF{4lWauZMu_9oje$pF$ezu8t_F9LJAv{>gq^HkW43ZYWhJgBqGwa z?zWt4;?xP+f>loQ&EMO2q58SDzTOH-S&;$|OQhiCoi2d)BOz6B;kZxh&tMHj;D|!E; zn6M_A`|5np4Alr`qg4G$E`Ld9H_80k4l1CQs~XOzJyD8?hBxv$NJKsI{N`rdC(w-83gc zXv}~rul3$yC!%Dx%C?^zsROF~ayKPdHPe$EB%z%M%C;>*TMH>bzsz6>aolU7dPv*rhF9UG*=Be{f3z%`=Iqj+3)f4XdZ~BQbeM_r zO06$c`CUq%{`|B$?DkuK_%kPcZyw?ZCcD~QrSST}!tS-9BUbOIW^W!*a?-cK*iXWG zyQ3=j}Z)>iJ1Z14L5%^tTuIE-%;NK}G0l3CIt)8xKP_u+j)+19>(*|cY7ysop zlsc?Xg|)3MB@GRn+hcPNGeF|vJm4a($10-7>eK9!^XV`_RzyU^8oOZ|wVh&kH#6tr@Q4t7s)PZFakSD@Fdhgk9v~0m#`V7J%%Vw$QWI++Bc|=3!^|F88}MDPmLpU#5~ns1>DDpF z$SvhN_=U_;wt#(1rCUp)Zo)~A#3@TRazMm~9fj{0%B3G_CQhjSOEunYyW~+*K_Z+o z6Tf(rF0-!!@_MgZ{AzrORJVI^Db{|8-9s>s0rQFsuQu?9QsRynf44LWy;?*pMd(_D zj@|i4-QLA7Q&cl^^j+26?sxlwULw!Kx>RZ9Y`WU%rQVPyxUijka#d0~n=HHRUH$pf z3P|0jP;cx!Vf0XbObGV5$BiC6bMv^-QC%cCd;4{>GE)|V>5Z8OL$4Y(HaCedQGpJd z!;Vd=JpC}^gUsy*_PHfSm2c+(&YjyVz6j9Cm z(FPq&h(=*JgP3Dln*SOoM)`Ii4jOxK=N0aYcTWK;x z92Ed!_c4wR6u$yNa)fPnq0xn@-eEc@oyw=rPE!*Pa57^~Wu~piGmkM*uYJlXgyO$h z8DdA`GZ2cSkbUmkAd+lr2~A6%M9x;8HW6Z?CSGs%zv_04gf*^vC)qM7DbIS#%Pp1` zXX$BYwQEc3T~FCJWlzU%qkOJ-Am-r^Y-1FGM;R7N!ba~sXO|kP98R-?gk(eMZ7ZD9 z7oV3Yy|7Aa^~}$%?OYv6uJauZ!%64?N;2BjriRYN3TOPuiL7D`SBTaHkBIEKkTFj) z7iV{-blPt;yNhqiQwJR@Q@&UEcH+AV6rJ}=-g5VyZT>2`T>o0qe0=kJTNQSL!h3N|@V$Ufl!33aD7gV4}L$MAcA?9N9W(5k; z`?H-Eq%GS~_`hF(IN2Q3)s>W$bwg=;ER?!0`(Lj5BTe-e&;jEPAq!LS{y-gCvaZQq ztZP+6e-#juuT`a}Wkc%(El2^q237&0xE?|ALG;!5eElgN|4p~`b(tMvhY{#sIkk0i0=L0J8^*XhHCE+a>JUKa?AL}oIItkcJM`@&k`M2$ zsVGUsz(U@S_c$Ym`HuzX^O=60|KTLP+A;GInJQa>X`E3;N;JFM~90xg*1ig4?E1E;b5oZ9%At%3g{Pxcwksf;hd zcJb?|%=Yu$+n%e#hUDk{DY?!|OfC0%B`$D<2417(SBZ6JY7q2J4E*&t$SS)=##84i z@Jf`{zI?*W78ftO=h{!TPj&y#AG|%>QiY>v4Okv15_3bjuxfkFUZBDH=W2>NY`@%W zw*tA8`JJo%IREHyTJMro2~AbzGSxlABsL&FzQnoJOU)SB0zySFGFW=a0@W1EIzf zm@uYL&C&U^X`8Gewjjbe`K2VI_KY#T4cY^FhQkAF3batlvfPMHjGcI40AEGXMqaZAL}Wz@C52>&3ITU)2#I88?2ke;(M zv*N8GIG$`8kGm4@`Pj=ZU{q9Ax2)8=LqEUOY*+r?tD?irjP@9C?v&izn6XrJ_@mFS zmEavYJN+h)ZKi=8!57?QB<;5r&)oLr2|?$9SFS!D+*A+fOu}UQs0wZQJRO2ZXRd*x zn(rqb|Fi!R1>wzZW@uu*ZzIi};YiyVbxIC}n~2@(z!HM!NCA7EgK}f~7Y`*Sa*54& zyB=o7>=`{&e7g|Y5jDAJ-bOl@DM@J9h6~qF&h=OHzCVq?2OOwK*C;|REJOn$xKx#W zR9yW!@weKopwSwfL|d8zrx-cH2hWkC&x5|Vf7*N&x%oR{T(}Di+dxuUD=qBsZp=`H zPqREJI6RYW#Y@kB|43oyshKJ)&yOB1KkaAJVAXy1YQ-DZE_>KI~sR-qx22(_tUfUT(?ef zPs*@*4AO*6Yy8KhhUx{9;0`m^({M4Q`uYBga-e?IUD8K~Hi zj~$)BUMG|t#8wNU{1Ou`7z)N#i}{cSs@U&vsphhVw|RBNO|GlUv64GekIz6?A_&^# zaBqm43^1#fndv;f9pKvk;8rFPMH8CQe(t43!5}_6%rA2)+VA0hPK%${6}DDq zH=_k{y=2Vr3hVGxbjahxM%?dS*`U9cthbz0mR0(7m`1r7MU9`ocoN5S`gv#Fa6tBy zp!V{t_EMT=lN|yIzE{4zSzSjX7@rdOlDh-@LiC8z4PV6Wv(e}ha@g~;w|Gp;!+0e9 z^a>a&oQOf}=#uUDGd3H_2WB$S?|mUUvQH%HbAO04AT4Eb#nS!>j+cnTQ~)vxI&%Y^ z9jey7w{PE;R8)KfftwgWB|oY>yH{=)7)ipmTvplE1r4QR`F_RSFI&wq{+@0VM6?98 z^1U7GJk|H+X4>#{A?&|wP#?+yw~JOc@g33V1MD^19}pA~l)>A~xl88#LymobPJUDv zGhA>?dPX!HMf09n@WE9xUK8&*k>kT`oP4nXcX2M9z{wQ2RhB#DP9-1a?Ux$y;k+1~ zO_90Pc;D`7Fb(lb+e5hf>f>WfE_3wBpHCM3&ooa#ibchVw(H^RP#6+LCjv!Br<&l` z(%l)yd%3cerCojf;c54f@^dUsFf)K}ofc?eFya4M1!g<2V=3T!0OzgFjjK@Wb3L6NEkMOf>XXAd#B+UcsT z!Ed=4Muz#I-aP!%|F&Uodp>Mugexg_gstQ36BPuNFgKix7>({JKKe&?KH{-}$9q@o*{^oDurDo!aC4-adiD&yPxCj=<(5bkZvF zseO_d@-a5oo4(Yb(K-&IKpX>YfpmT$ZJ zUm-{o5fK~9+{wjWyJ;aL@;5ZMxoOcXeLTAH=A7IN+>LGRE=NLqjOavN3WzOyzkV2L zf8&7@?cssCn5aKqtJDhv-kD&JFV&ct?jk{zZP8t-bRG3qetg2K^EHHC+hn9%zBVUr z<-2#3R$fgyOBfWD+(b-nA4l9O-B!*h*S(u!rR5;>SK|54B$PNELtX<9%1_ z`Qs<)$3o??5z?j(dxR7{g;hb)=Td2`YJW|Jc9N$BG|9Ydu&XM6_E!d7y(QaoIL8%# z(i(W|pE;F(=IPfok`-IGFNh>p{)nFH;RSAHzBtW`5;kdQF+Xdqgook0S8?0=$(l3Y zA_L-5&ng6Q;T1GxZO@$m*UblFo(`c28UEwQp#@-F*DDCPrFPy|!k|ORufptldBORN zhJ%wZ#6Sn_Bqdw%*Pj}Z4gu&!+dNCj-8+fPcV6m_7=Jy%6xskWi8zMS&o5evtxZKx z-s;&b`b)uH$WuJZBbekc}t z7C=M`7E;@nrXNT0WwfaI1>+T)FAMVxb(Ou|50|2MwJzxy8oh6hcWxR!q?1*cesW3j zdx%%T?m(RH7Y@FUYz42Z>VDAK;w7UDO_?`6Rpk=mjZrK+6cKN1Z}}S~0*?+WzZN(4 zZAR|I*J*d31Ds~9x)DgTbH@wg70Ct+67_a--Tb`qM{wODDY$*+DlMJ;RHjI;ynp0Pmq4YOEqtaT8(>qn58G~tfc zM3+!ZEw7?~A2XKby&;t!Ll2qu{&3o5{E_|;D}LM&SIvcL=0_Q-warhnS!!fN^8h@N zms}TRh={q8Upg1!fJ`t)s>`Jv957eh*$NTK`AqvJF(tchEM7p3mnYQtE~@(^4~23M zVltJ(;}lL?NS4f-s6*pqBDR0+PVd%AOkU5Vvb)2!J%G4!wFl734(_?NB8gaGBQdKpBslDP8ETnC5uMai0CfHHI_o{^bCRd zS11Be8pD5DUmzicYDuB4HT#9zGwywUL2;VjPjvqguOF?%3YWw4?? zOCv%65#A(5VKAPLTu}<_RxNqOv+uODU7;X`ZV(VCXQMc4)SxwrvlDpMAA=My)zN8} zdL*b6cjM(!7BSJ$b6hXPheUW&LQKWm2o2%=nwddNbt`4hYs9zbcG8^ZbyyC#i50VB z)$iL*-O7KxYcLcd(&6pqFh;>96VZ|Gp8#w`e3$xBFxi&@H_u~@$`XZ@EpbG6Oeg!}f6tP%hcKi={tcBg zFy`S}{j)d5Ur>Tk?fMJO8=GcMC8Z?!|K6PcAMaLt1}jyis0B6>W!FC!bxF$D3k^$h za{2i>&M{NOXZ^d+#%JH$tSt?U$3;o3ux%EF4@3U>#6$Xs-zrhcu3{@W1P|w|Z zH0X8@-ahodx3{gqZ7rpWXSp?ESL6d@&+$J`EcojnH$`7={%g{D1tF16)PJwI$&BT# z%o5U%CqA0B{tbSD{ohY8%H;@+ZOO(bOalo2zT^?#zfXJ-VkU$1;11GLv41{{!1~{p z)WWPJFt!y=a>lGGzwHU;nK$9T@ACWuj0@!#@WB%Qem}u~uM&rug7c>%P&+R(z}}`= z63lkR|6WGW+l2%6bV-YcEn#= z#nC6n5j#@gI;cROH$ocKaYkr-a?;ah4iu62Y(JBFwVIJ$zrIqG;S^-)Mi=`BSoBtN zjV{hj_bCKyFaaUdIQdH!SP~Rs&h&FmqO7-50}$FeWZ`Ov4Vv^6+|R>AUG{&M*amVd z>mow7Xb+)ua=11!U%vpvA+P-&(>v4$W7B89`#xES>PqR8F~QhviicnCG$Ebk2t zuKSIIz$f&n84z9Y4F>(b#c097j+wg0E?|#X|NN3>Snps|GeCEBs*1qMfD&SlDxF^l zzxBtQ`g(FaJiIruUWi*GFN^i>mQV{Kjd_6BL~cpm${l0hzQy+QwBRCiZw?L)5@%;; zX7(TnvI0G{A3?A_a(|_F1!RRjwCn=%9c&?_J%}S%b%)`3{Y-m^fGWQBJDxrrx;odA zf&m#8@)6rmB#;h)*w<1+`vtd3G({j_Ovs@FkYNXSH{V_7p@S3Ay$KJ93xqdfMAGWL z8E=-?a^&G9-#>?A1YB>e4oKssntvBOO`#dl-j^)t8;G z8EE@p#UG-O`<;avpKeJj0P)@IXt3OE$zZuRF(o3F`-o28pMX_(@@~YaLXKe9-Q3ia z23R40oNIC9<=~KqTuF`QZ zl?2R;;v&wJLmCC7=B#xyLLJ$}ugF7?dE0-NeSr(Ee9-LnpqnTD?AwNKQT6rp-)&*& z({_jvhunzSVU&8RIP%}qXH=8|om#R%(a}E4`pke`Go~E!0~{&vVUX?`86FM*M3TI| zen}~UhPe!wqVUpEb`FlfB6~YW$L-@r5D897PQHeuuAy;atk3CkW`Q6sO3@Nv#MKGv&TDEGwyZ;-lr+WtwF397e0qhnD z(Yfyn0Ht|@7Vqu4Nkk-GujtXEN6p(zBdpZ~#bb!I>G{~&h#WwGSq^_KvhfT`a9V?( zL53Ud_-|^MFc9%fmLJ0KRSz3Sz^2Q&cQ+Rig>o514U<+%(tT7U=}Zr9B*^F9Z*YY0 zEl}q^Z6jn|U}puNpZlU-L%#1h?_Toe4T92i4G96{QHiCFgwQ!P{QmWgjSc5n#|BHl zK*8~V6aa#D=ma1H@6`7D0Rmr#poBn@DH__EnX^3yUyCEaLI?oGf6;NGNF_eVQVU%O z{ayRIs*U%DG4MlHU)J$yqG;Fr$ye|gafcEG3-klR8&A2Smv`zU8Pp(?2Jy*5t z-4LV86&Y8wcMKh$!|eYN_G%@3Ewqp$f?e|P&%JF(5M$JEfzFmaO-9u^g@X=4NvZ4qevipt7pv_4z>5Zq^-z3;o< zW9Q)T0bo_J&CL?gG?L^RDLnIKdjfxN-6w_DQ@V7tG3#uvM|UmX_AI`Kc)VF-Sm|;O zecG6nyB!2#7E@!_-n=17&VV&RBcq0y{8=jn;_kWN#+WoXfv=@p)bh?;0rP!>{dFz| z!acFSw;|#_u4}{3s-x><=L&Ha6P(Z7VnH1*QbD>lvuK^GZ-Bg^1$1(8Z3JfSJh9Qrl#Y49JE;`I0ae541)Uy@}P?RRHPbum;wIWjB7 z*w8&MpG!50W5N-lfA4gq`P63+LqhLpau+;&dS@L8$&h@!2wl#Akj8}?_O6_c?$vu- z_;^D8#azEcvK;Qbd{aRrWVvh1NHxqoya8OEO<7Yso==$6bc+bUyn$dw%3mubKbICZ z+C(Qd#)(TJd2s$4WEHbOX%^0QdPN$`DMh8T-hl99Mm6HFSEodRT!soAwWwS;d|WtT z_VNv=xO#G;+!Vz_Qm9=kpWIR$;5F;&8xE(Qy1xewiWAK3Hes}oQu z=M{65v7Su;isHin8<3^Pz%0Cc*ak+HMlsn+wm`dl4#qBng36{w;=$Zi+qaiFjtLQbw91 z-oiDBD0UfJF8%>7{?S_zJo&L)9ku1(8@RoF-4ZCXqmpq`mg7>El_OD6nYSo0xADV> z0||o>&i}>$lo+H+)+^dS4oyqRUf(Hr4Su*du{?wx?1Ezh*WDDxG(SY2`Y4ZGV?Jxm z(s;Gx!omKlamoFSbD6*#KAKbbHRbw+D`j_*+&eTeOBCr$RK}9RB{jJ1{m5~GJ<92n z$Am|mxLzeg3CvjP=W#nDw{Ej&L{ro}VS9wnaxLdnRCHhV*c)aWui6JSF)h`Ab$KLy zp0`lrl!;9hGk2Dq5gl<@C)p!BQ&YU5V!CczRHVYV=OKKWw~i!<+#3n01c;ZqbPaWI zAi7n2v%8R;9bb&dS#rsv&sm)G%>1Z>L6dQh1HWQ4=NT zrVWekrF|}C&INz`sJdzMWP*_ibjZa<|0w1?rYAKI5NI$>81g5MN8ToO$7#dMxCFq^*xt zY84l~FG1FrdF;l?#?_ckMNjrSkccVZ;2@d{jaQBM+zA8zM*r?j7)xolJ*-U^Wpz&} zn1joU=H}D;k2czqB*&|I=>nXabZ4(KN;n|KuiA#sEmiQ7k`%7MZ66LTCfYw!^6`=Q zj-Cvi`1AOIxQcR#s3BD;S@&$kW&RZV5PoQuS9XpekhzEov$zy1 zOT%WykvOOZ=Iro^%$0>NzbT7yxA^RzDBn?5sTe|wQw-IpyI1?P^yx_gUjpXvI4Uj$ z5-uG+>N{&JFQa6_LoxVUJ7HB>tTdk`FIR?IQLhCZ=eTB5oad-yQl}60js(om)i!bgfIyle~(i6gjzJ0wQ^8Ds9tW-pz@=)MU53_eO#QuQ4?~%lBCIu?dGpmOl7>Ss1Jxe$Uq&+ zj4XZ!<2?_{(e7J(maTm+i{DS_@49<-Fa~&C1n?lgXnkwaaSh2J#c{t^J+ewU@fhFu zc#4&oGM>f9=YV(t9ZMm3TeKt*m!Y4q2DJ}6#0nhwmM8rJIi<(jA69HA<8328JZHgz zT|`~@?9IjW!w$g41Ogw*eHPLoe26jwqyRgisO+orRWEQj2w(IdYPryG$a4w`m`Uaf zdEh1=dCr2ZNoS`Yu7p|Oi5JL)tSLJ3#w3CY-6~yLw?t9U;$upNs;?%$uo;E1elvzV z$CW`;Ny@M$&QeL>o%w*?+#I1b6_<`ssY;Sku3SYyqDV>rebu_H&7;ui139fDJie^R=q06s9Ua#Plh7!lQk&QD}>4oLclL@92xaKfwt@-kQTYz3ABQ zMX|M|OiOfUzN@U#HWcZbP4X2@rq*L^iYzj>+Emfhgw4h%Y@x7g^RDidcY9@3aUI$t zMVh2~LW{I;@~T_JIc`{YNeg{C^4J6NJO~U6K0M#r{M5nHHqgei-KLd{?ADa!z*v3WCnsn{|W{OK&@`Grm-FHR?A<@j+Zm*gV){W{9 zZ3X&%_4h`zK1$lfPK>3~S5(QNC0Xn|jttcysiTDywOz}@;{=!tgpp~OJ#guTFEuaSYbx0KPBdafTxS3LWDHGE`s91YkFc`XO&) zUZZ8AU0e$bcwj`huk(Le`wFP2)_(7y)1d`*=n$pDLzjT0G%5-xrJ&L&NJxh;2neV& zB4H5Hjewv?2}n1Jq#!aNdH);F``){5eeYV|o#k2UpfK#&`+5HL{DKMH%HkWp6oLJy z&md_`BxoGC;WVH9BfoB(rOMF6PWQvlU95xui8(!M`rl@}KWl`0gnPeaW}l%|cC86z zwwK0~1Y;`5v7DV2x~dFw>NRp4w^;GCL{k=;0zwQx&<2{I)v~(RuaAK@xg;VZlydLe z6I1}=QpI`UVIzo8g&FEdagUoFtt9=AA4&+5UNyQ0T*lB`=b0#4mbi}_^WOE&64bj@ z%hDqsrL6UHbt{O00TdhaM#7anVSyONK$bRkUo8QR&#R4XRFuc@Q>!Cz zL#vIsR@lbV#d|`B>D0Z`J$z@U^G3;}`ic3RrgqMS+OQWq2|vjbj7soI#Z(wx$m}4i zFnnNGthONexEb@=j9iEqlIVxpgm6(gzMJA>oY4 zF+U{qZFuz^)Vaz>bHbKqg3ROpXJr`;sNp94!4q zgRkFY9;*(MOr#zsU|IHi^>_>$K3RcnTP^NZ;k6;7Y2ez4twblk(-hRPF!2z`et~1s z)@sc8xF&5J^Qm2Uyp(#epGHiel3Dbl>p1Vv(QJ3ob)K3#Q-*V%7B?~#jVgLr#5_pk zpFT*`*=6j2pOaj%GlNvQBcVmAV#8ohWV3d^nmDxi7`7vVyn#eY(8nhC;X`^F{Jg>n zK$IS%#0=%Wux1w2h>M*qNit@QT~d;~nekd#&5SqFjQOOtVdIif?5u&wDD^lamBvF_ ziIB&8i=E~nmqL{v!A;gTn^JwVg;MT*`*8Ay8XL9ba@*Jc8Q9s-{ZuZ&e1B^oCj7fF z_l5QrN1GD9Fck@bQneMEvQwkkw%C!EeEB7W70M5~^Vd2}PhL6CM*FrqsBZ2xfpVY& zL}8rzQ+|$CHQ#$FniY+wvsTdeN34ji%DAKO1ywDkl>4zmoX54@Y>9)RHZmq8G0xJy z^FU$*PxqewO||ITC-p9q%*_*UUO=_BK3UQ_9>+z7S3!VR(Tw)VBEBkZnMcvugXz6- z6~Eq#ssFOtp$BtFpF5Y%jFyDzqv_Zc>b4*HQ?Auh(S>8*^sFU~Yp5%g7p|XU866!h zw(H|D1!xOkF=fH?4`w?th~6LSFNd*kAVh#D98a@c&a(F{n6=8i&unkska{%lnk70J zp8^2H%(5kxtI38IQ7R>cng}t8!Y5s429vRn+Z$3?xT-6KiHTn z+!pd61n10sVS9P8r-$WSFRWnUHTFeU+CB{#aXOK{VC6^Ct_4h{bILulV`jC3Vzgd| zzK!Cj;YUxp%FFOFW92Mw4GA|cb!sbklbMuXwx#rD&ik~L`PxuTOGR0kH}pM@HyGtI zqq^%ex>VK6T`ASWi^)C93FQ@pF_)o``qTo-%d(#qUa}8nB6@5839w18+5}3Lk&uM} z)IknvcS?SK@-Ub~91;8b`->V~jw9)~pUN#Y(va4vS$M@xayrkVu(a2%u)Me?_1(SS zYS8?j*JoyaidS(vj3Y#us~M>77s;#@Cs_?HQ$Kn@rC(T9s4x9n{xrEu z%32NcF3Y&S0e-^cVZ-c?9etw~9VO|P^_S0>3=H7hrL80R*(c{!pg1YO|FK$h8l&vX zODK3hzto>cm|zGNg}SnU=s=2mT`r#~jd6`<(<)5$t2;J=$tiH_aDM`?ts3(%aqEEneDjmEThk~{A9*)62$ftZYf#!-Q_VTRsiHj#qn zlI5(<2;6--odo#^ed*L{ybf9?naAVVZl>tDN^AzPmIb?>KHlAlyNAzizkZF=GzlVx za-gzA7Yh}AhKTAShijQ6>&o4Gkd7dy}m98b~4j~*>K->~h$$`)>fPfX!R zcFFHci;GF+@X-&@kS`U{zH}3T&E-6PVS$OqsFfv0On6GU$A>A~4XqNlydxpwiNCUv ze=TuLd_`YI=d{y1GDRD1wyjA$IWyYAuiSVN(CfTT^{7irL?07KJ!u+AnXa{h^Kr|| zc7g^+HXR@4Kk?a4;W6aMp^|il!@0}k_rq;HR?-r~Lla?`v7!&7u-7AHKHlE^->rT`{}1PEon^brXm-D9APqx znj}tn%D^AJv?UE4Lvpp15jmW}vPgRzWqMy4-Q+ce)fTofXNiw*Q~w$&9JM=Pcg2|K?xaKEZ3ar* znBTRl0qTTI(*5<7rg9aI(w6nxn%BN6NsL%|Jo43utB!u>d{(r9l3kMyIT3VgfyV>& zF1d?oo?tlRshE?{(iib%W#-EfH`Bt@saA)haTKlI1QIl^H7g*VZ zO6SG^yp*`dAzXG_jEX7=Quiw~AupZRjHKk*)~BOZr0$Eh3#A$Av}5a* zox>&cKA(z$&UA`TyN^tIG47a=dSfWT$dqP#?srOFFk>P&^*P#Xdj3*1_uwqztZHAh zfQ6D`Am71?v*lUE>j$yv0#IBj>1a!2Uc-+gtfZIubOuIbzu;pJsgBF-KJoU&YW272lO;3k)P&Z{Xg?#>m@p-S!n2Wr!ASj+c_RD?ZYjSz zKkMvdl&RxMwFQi}Dp8UBGr7eV8B^_BeZyqp;zL?RSSAZyJWh_R{i7q=Gt+w3aLtg0 z^&ibEooxRYG5A7Wu4) z1y@(xc_!Ws@y)kT(&=}e?-%Z+5u=Vg8Qww(#SGOuRED}i(iwBiimUi1!6wa5MHIOo z*X^Kx4&1|dy0|lAo9lnI&>vGx%xEWhvuVRcUVYVrG=X>ZDd_|0b3TN69E73*cx37^ zq^|7|XDr~K7B~tolqBlhPl&mV{jAZC*WsK$%xF+G-Z<3+)G(a5z$U4@i@3z-InU5z z1Tk`71PinQd((o%K?9vQSfxVf$`v~z5xVJQW?U&e)s-GL4O&?=k$lqAl3qFHr~A{_ zNgo7^KCs}HYVUStpSmRVF`H5A;V&}FtzW3Vk~?uKvq`u-Gggk9SJr#wao^Fm?gvL0 zevPZywY*xh^tFZ3=Y-V>+7vXIgRv4!888)`C*~^qKYbb1V>nTO@8twok2G|-3}NKr z&61dC2eOtKi`WyaWL!;ta;_}|87cx9X_ODDV?IZmJZ@wXIGCRyIvE6`3aQmMc(;!8 z@exEuE@!-WKG(x~i^+rCCf#u>f&U<#i$j{LZmN&~;KAn#I5@wTHH5rr-{8p|EOoza zd%GgZ^c*Fgad9rISBjcMwHlUDd$s?f7e@4BkOMuDY5Rus+nZ0BHf2>4p~S5j(ADe@ zE>>pURd&nkQ&fScdE2Au`Vi}gnOWk}icq#MWuGRo6eQsQxt|~Mq0(kZAR1q*GLre^ ze73H9Xfrcd(Yy9|?9HnmmLjP0IL)_sPT)VmPo$;}sPm4kZ8H*XeRHg|VKTdgHx=E< zk~6FE<@1Lbh`zH9v)T4ungB7`MvSGwB)Z_Lo@`u9U*2y2&UaffU zbu3RVcbn-21M7;Fe*hIye;ji=NjxG=wER(CJ?58lzDpq$iMy+39j3FCEjWOq!%50| z+mxJmZUyZ+7Bg|`8|F+HN3%02d+dY_VXOme%wiwuWQTXc0xHMwn(2iFDB`%3T9nyL z;xeAps4W;Vc*QQczxz?{zgl-NZ)RYLozv*=9cE=;ekA{t_#wuQL^+I>6u>SL_rtVQ zR7_M8xe3S6@Q1Q}lZ%2aOvYWjHL26#FH1dZDXHq*rHYxOLReXX2s&C~#vQ$6D@N^a zqOVI83OJez+t+G59km|fH27thkLFo!w#T6``2GULmhsW$eq^%T$m!Iw=jg`{aJsSn zRBHXHN&&}k-$*T*P!8>tx-Q&yhSeZkGlJUoP$``n|3a;BsYA;WeruuUBC%ztjc$!g z{#uRCG;eCqBO4#p*P+BUX)&X9o~N3NF2l^`!7R2SD1(1b0bm@b5P(V6t8WGjl`i!3 z?~^RCwjLI9kiyNFArFfrzYEkdrtZ5~i4ldI%}Z7Zd9Ub(D0A_CG_E&3+gH2AjUrRW zhr2Ll?&nIt!*Qb2R6EQHXK;YS>YFFoCyuk>#dsyh&%1JbFTPV*IZG7lv#b96E{_H+ zCekdMWWVf!lSO7-!Iy8HxCXPbicwC_vwSOOO#J+B?x?Hus~ugNxpE@+_BhU<(ME|% zy!pJ(Cq*cSAn3grd?1@n=f_CFW4Oq5!JcreCO7uVrTe9TjfiMj4(x*a|GY22f?RP3 zJ6;zz*n9Dw=0jo4{*K;@6tuCX+^^W$B22M#4!J4(0b}zQ!u4?RTsNi^eG+thWMbp3 zbU)m_OQ=o9bnass%m(@FkDfd?H_+)j@;|m;PHo?k(l?7;n9%d*>4>Z2s(ia^%PPRK z(=xN^JCb#BMCPJOT(<9WPL?-ZxDC{`bg zDREkfx`Uve*|EE0q?M)~L-9$sup?&#I^BK%nVa$t(C18Cau$)UWhwS3Uw!hjXQg)2Um-d94Z!-WOpL-phJlo(RV zQ#Y~S;F+^DBT+V-H`*HFmfc{}!r7b2;kPfz?ukG`IGV&DKW$(WD%CIZbq=K*Hquv8 zP$0=21-OmvkC1p(5{Q-`SJD$Uea+0r7QE?lqk@YSzcj*$U=`rC`1S9DTsS$|bom=Z z2EWl;>Tl!{yhR=64!RN-5ZS6H7WF~#D&0<`*{FUY4Cr^&d5MXfp8$u$bg7hvtreeD3B~_LkZ3<^yprnfWBv-2zkFFd#A$pb+20+U=PrFBp;+yL{DL9x5ha zG<8z?x&D6-I$GGZKzIhoYb6XMoSv+kQ4oHF&A4ng46Z@cBAKrWmbwFdNm ztCnz@D`mGCbfmu0BlZu7eHJ1IkdTmoLLnv{V=f&606hrqTWAre7z+eE#f|Z5_Yd=x zb8%WdBO{SHT1ogQ1c?P6N@NHE1Jzi3@{s;h5Xi|lvj753)M3*iFkdj0^DA+ za{ajezIVGV-I@Dpm#|X{AH^>srsv@*90=m$KQP6`{#T}W0*0vc_CSHdu6n7)vT~pJ zEAzVQYo|;SMeII5w|=%C(Q1h>ceEri^3|;Pe{Ks+ue`Ny;|7qhIZmG@f#-}EAewtk z6Ct3ee;*%ysek^Q5WYkOR99C!OzX@XwD^+TrXvsO86J*+SxEAWs_wrce3!fTes9oF z62~VYFJLuLH7+3ZXDggH}W6AH>jKkzg>+l9K~!0-ryBuDevD z`Kn}~tTTxx}rWkZ)C~Q)nPln26lYaoIr=14|AUT`>v~m@hqvWEq^HC z2OQQzRs|Mx7(qvpknTjq|BeFc%lUtxfZ+WTG)&|Ik66thpAcP8a5lKvLKX&&ULc+U zN)e)jK}x3X1ICC{#LtZl;6pos8yCXhM1&PkH-652V3Km-LQG@+L4pOWe<kC zE3x-$vv|E0a*~9>uLx#8jq@88@Qbzw3jH466|?POgWpdmG3G=7&^>u@xSA>kL38jr zDd_|u{)g}1Ul{Y-T|wx)05&XkTlic@F2wrK#sn3RD&xu0i9Lds0F6JEOWvPH9&0ek zO~$VBLZtWXw^Yo3i01!NvPhF(1aRKF{(M8A zoS`-15CxC2(f!TM&28-AHWkQEG%sz=OdhOEt^vQtgh>(Luks_^f>J_h^X?#S85x_=ST}Gc%TBZhaSpDYLIV1MnyvxX}f5e0>+o zt_*&N?~GVk*nQ`>h5Ub0bV)D0nmgP8z#ad!a(;ofp~;+$L+5ugKWYh#jYT|`hm4qy zyFco3#YDBP9Ue>`DuZ%@sURZ=&V(ZvzOP3=fDyV{is-F87+g{X57nhL8-DBE) zn# z>D@=n=-w>Vd|C0uT&A^O`j6BJ;a4<4CafIvJx_|5a&3bE%sOCAk0DDCE)0Y{g4Ma= z?(fZgh-cTJy#zEk&xv~^px?3BpI^k!S5*j`i!s#VMr$O)6~K{#-%t?pHxOj)WWF5O z0vs11x5K`bs|A$+ozLF2`});g&gbvk;X`aJwNoTT1lrUV%kfc zP$Bv4+eWVEz#RmCvdWoAKBocjliJ_eMAALtOF0X`U7e+MoP?aSA06^^5HR2F{WQ=y z`4E3P8xCMzUM_r(BxvMx%L@$i3_R{yYYj^IZH;@1fNjU#?{5G1a1a`JLhR;LB;T7x zph_i_SY`WZ>ZOw?)~>yy_%I6BLyu~yc3+Ac)$XGQEZ+?H^e~(!MPe>{M+uT@%I)m! z8REDiz;fgw$kJI^Wuw?8APreR)8pkragFMEi;Ihsq7ZKOdD2}|DGVAxNuM6Q58560 z0Z=162FwYHfCH#QCjI;OKs+o*XWMi`|PKJL0eIS#EC(jj(x|+e~%K{OdfiM*x z^#Q2~BsE3?R3PWOx~;!~Z;Vj=wxu&*HzR;p8VPXZ=LZ3{Liy5dP_9J+UN@_%N-A1S zc{i@Wb?@2a-UUh)*~(GZaqy(IgqcsiJlEokdY9wnU7vlkq8ks|J35wd)xI49707Ym z=AKdyUd|%sM~BpW3g^vF$-SKWJepIaX@0!Nqwr8;4xTR0_&WeFidezL+jD6k*|FTY zW<1tLYWM||h)Bu?C(vkhF8pR;1UH^tS;;iphSi;=0r%!pC^iKJR#cJq=I!s*F-LMV zV3UP0Ha12|DAWy*vylYzTYUqAxVwh`Rmvto9zLZ{2|vZOljLt%_)4}7n6g}mB^nYf znZwTSK7tPoUR%t__D1YlD4B$z+(x$|9KWuvE;r_rt?=;%`}=P!eR=H#L}d10MPFYz zFke-e1~Xrc!AzQ%c_d4faT=B3ioQpG;;F(_Jx%I!~itd5bPB)=vYPHp^lf_s~holO8CKw`p+Q@c;Q z8~|vA4F}R+UYQUyOj3dN6`<5l0U%Y?+}xaps`z>_KLuC;%jw8%8exF_kJM1olBqg# z-@bX=xdt~UMgH>T%Y!SO*8i-kwwu_a4erHk{c1SeZLoE8Y*S@4>u*+5B8mIxx`$Xi zGB#`zrQQ2>BCp`-3}@!P##gBWB>sS$l@*kuP}wp%0Y`8~*MEo3?`M4a^X)sRza=;ymW**7jebF5M@vtq?Mk$U947o@lD2O8D&N0CDdx23K z)B9Zgv)${V$4;#wFm|9X$RN=TO7t0U(QQ39Xxca1t-AYu>zeO%h=QjaYabvn1wut@ zo_@B$j%oj)@YF&s=(u13D4tbT#(>bgKj&!mj*UU^CpkT;ohEw%QF~EVCV2Yv>Dun( zACXYA^w_|temf8DOJ9F8(Fv97UpJGN(9`V zALj(H27Hg_B{AsPW-5giFa@MAHqI^xB4savb1fqb?F#$Aycd$+;cAig&jJV{f5Wub!0>)et4v(-DJ&86{Eu@v z7Ye$a-+@pXa!QEQh)A4|DIZnwv1sh;CJItQ^uhqP(E_$-;gAL#3;zOxZ9pMFs^jYc z5`h2VmOlx~&CLy^=%S(<$lo!3X(TJ{bZ{eFeH3ss@c1shYRpgysvcK>Tn!(M|9ZV_ zl|2*=Lr_*g*^L_7_^q)2%Md~|*C>)6K|}{CWosZn_;QVK;gs^@-?&nu{I{D~0o6{q zH%;Z=2tsZK_pK9RV_Y$$glo|7SgwqeedvHy5QHEn;EQB1I`&4Fr)v%#9_c{zJ^nZ_ln*vv~2GT`JgPU{ZkWY?5*t8lB zqKBkKyqxnnSNlmI)G%}kJH1%%=Z7jjAM~7WX%;(4@%dM~++5fU1;W~g$Iud+4otual-A3E!bY+WwCYW&d62uk^Ry4r)XHuQjH2OD41y?VO_?_f-(Sd3A|?WUb?2Le7>LEW16Rn z^78Vi;fZHnY4EGNQst6^c-6K7gXkY`0VM4+M#c;j$N8yYqtSwcZ8_4@v;r9@<;(1f zqxZ}nIeQD_;WNmM^n(Bsm8l%YGnsw*Qs-^R@Z8+oGhlto2>F2ywoMAC7|y^*0;xdM zAke@8!`6@2P;pD_P+nU;S3yj|gaiJVv`APVsfg@7|qW_foO2$lQi{M-W&> zU%o-4pauyg2Ay2PKUILTK8H{s-hY#UI-8ep$Hhk%mx>XkNPIcf<~dkd1E{9fjE{Wv)I;s+h&hrd|;_lhM~ zO8bI4zS0s9Q&Kk^Y!>#pCG1~=PzkO3*1bc|hTZXB%>0`aanzW>BhDGp@jUw@?}4=a z|JtzXUutg3eghA?@l;G=Nti^aR0{#d*HfVDX}I)O53A!$8g#7 zLHhpkt)U_d0z{7rVbUG$PadY;73vUOZ8-D;b{Gp}1$v}KfU>b_bOR#e6!?j@SYhQt zVP=M;K>Id?-JU=O&H>idbjW@7hig=5g2fUAtN%oR9LGHDvlg(9J}TuAh70tShdeVIyrUUp!X@Zqnlw(Q z26sM_u!2ex6cWVi;RDVlHS8g|zGq?r4IyylVxNlmNf<3aztsvVKQX{fn}zJI#!DY) z!8E>l9RxFxUCDVe`h47TN|rOove?OcvWkNL*%UgR;)IWMK0wAg3H{Ccoy{dg!V3j) zR|Y8nC(66!|4!UV@Z6vjs2T1ir9?ZH+=<+nSw_+2{_# zpO4@Hwwx^>oE5b)T4DA1xdy075~7fCCep4z`-%HqIq>pwa|!<*uA(7?e>8`XQOG={ z+z**r+3@}S9tzt{R8F(e5=aNp3bk-5GQX&pg|w$?Y|J27yLKL=7y+fp1QDj$e}B;5 zqCJ)!x;02~hhd;YF$1QOO~6G=XyQc1E+5gRs!?!_p9PsHErAWy{^3It%pKFm%%MO= zxKM@lJ7;yI7r0VfKAx$ZPxAq%?_($?v73~u^}7y8L5f7=BHLaLu!2`mRy$hqa#yUM zAnVa`rX_;u+--VTRR>2z(p=Kq87Qkn(J*;kX6{%`A5iaS#2g zsep8_wX$evaSq{T;{m`^V35yvObKdcK~|>w1jyJRj%v47sYIOiIi^jKN??RaF$OVKBIE z7!0-sAwK-(Ggd)6{EwKEqMnoX{X0&sCJ!ty>LyP1Hus%utW4QlEFL&o-M72IC(L*L zESsg1lf9!jKfmpNf53PD!CiiyA9SX05h8n)n~oR^xe59YR+dbr6$T4~QB{z;?v}JP z>gq}Dd?>Tl|Ji2TT%CE6HG0p&&IYbE@A@h9=iF zG&9M4E0jHG;{@T!fT%H%#AS)u?N-ivrk98~2S;Z%JteW1KHt4NcI){0RWF}0R=I8= zQiXqhsLPuy31t8MCxRd%7WThCX`-#TjCc}6OnTuP;|zIQK`hxjom zBfgf+xN{JVJ2U5jkWmu zWDAtFc>-){{>A01r@hPnc|^))v43wgICzSQ>YocM2padlGoZl5TI|n{bm5^KF0*YU z;!eUmY4+<(S9TS@(-1%ufAOAfeoHU&34X({*RNmONqyfQ_aT>~n0WC1!)C>v|9?x0 z>CRC1XCri5Dr_CHHTvLWRcnB^^oW4PchpW( z^DKbv-)HEV7E<@;=iJ_n%dj#Cb)0GnY5VxGq3YqUEzvt)lEj!Zc%^=QzCb5rd39#1 z#Hw4s;v==>?vM1g&z}{pT|3U=xhB_E6eh7+MRof0>9&rJ<}}48;!HlU5~Ax(RB%`J zO_a(LL9E`Eo!vH#i5-Dq9P&d*O? zKJwsLmEkJOS0W6n&%R)U#EPii*%NRNll#BEMlRj6v1xjC!!TrK#(cm=_)4-QePCdq zht${;{+i%a`Je{#^CmlMlWxB{M244Xak28NeiDC?Ir4N?!9*o{$HWZ;Q6ygHB8-^nyp`Dj>5Dx#PE1;ylbjlt$DJT zU(1r2;_Y7fYvkeFOSkVY?g~7ZQQ4nnJ*s;@m;7XE%Jg+cM#Job$sTRZ=F)z{C-BD% z-nFc*<6a_sAAYcV?k$%`n^hg|F7A9XI`o_U6t^l^b2r87gr?Lc^$EV)!Q%%ju5Qbv z{cEiO)b<)Lms4>BlYJ0wJX;=~lJ zonPZ*-Kgt$c<~qUW50j@7GMZxj@X_IVx8){b-($-S4n?#$FZ8y^}RQY!be7K?@yBZ z1cxO`xbl7fni9#K?1ueSYMY6#a_Rijr%%~VoqE$KxV>4Sn{OC?%kDki{hHrgC>e!> zgeF>9eMY8#Rf+iZ^*V9=tr?w$xY$_Kw6tbx6ZHjpXE7Kfm5ATCUm=Ac^9!8juZ1y+ zkZ~wSH09*iguYRWn?f;n{WUxzfm$4&Z9mEH7k88E(Onu;x+q3$9&C@B&3$=Eq3HGV zGdx2?SQyFKTV*7eS3JZ?8r+5tXKAjy6sM_lS#Fr9_g^0{i=14kT*ZHNqlJV;l1^mY z^TNu9MLx;>wZ@(GR@U`q+FI#23k!?3PoLzWxR6OK30#R6z_Kf6yx0G3ba9$lz!+oq zVV-LQq9WQB9#0Zwhvd=zFN`mgHnWdUPkZEzy$~?Lwzjq|u=w=6t>?AJ%6kHcddi=_ zeieFb+mX}2o+b!jc@W8On(29fB;<2 zt--sZP}A07NvFwuc5oON8Ka**E&1BI3H4!WAtzty=1uzJR8-qLOyvtp9yv6;|2C=C zo8iZQvMzaMU)4<6mX$o*nHJsb(MGj~Y3;poI0KF93P$$M9j*w`so*wS)tIP+gwTY9 z1ea|_5xd(n$ z=7n{1wk7x?Tm2osO3_Bj9J&R04Gs>XZ`?YNzN7ieO)`p;2=?|7XQ^gIDOa{63;Da+ zL-&yfpUyF___Uo2a&o_&(>rufzY_GW>hYfYZLU}%h}>rAt&#k-`^Ss#er-t-b1bm# z&F15uWRV#+_y?3!|0rx_Y5dWdF6g z=7)9(YBf-$urU#0-|6=E#*bQF$@v=#FzuYGZk&|W&>(xxZxpdU-Kt#1549MQ#4|3k z{K4!;vPcuyU3h@nz0p<3Pe>8ebzI$#%p%0_p%RHgG;Z%DDKk4$LtAIO?X}sx8wY5Em%3E3* zJ4)xBrQ)w2maCwNNJ{Uo$=eK*`qeuw5l79vgCvyHaRx5*@2Y-Y_FStcKv4>t=J)W|cSZN%5wGpho!@gQQ0lMb8r8Bu)7|;% zb4aCXxM^ioRiZJsY0|9hp_6YbWa9q? zS3?MJ6f|xmQgSFw1kxJT{rV~s3H^nkcK_!mxl>r)izuedBBdUqU&hoTx%Pb28)L;S{&vPQE?f!$DG>vksc}FzG0c6H0{aK(yOpPdE%UY09?oE_ixM6{MKhrp9YXi z?_e^M-Onh6(LIVYbSFC6pOX=^?#bdyd6HxKPxzG&4PTZ~aGKcKs%|F!zvB-7tv-9G zjdr|v^x0$9;_&p?R(s(MC%Z8(1$$NUP zqi^~qWScK|&ajG3RaI5*gVSk5cz|-K#&V^Wl$4BCpq&u?9&ZN3M!>v{;`2)h+M=_{ zTgUu-X^lK7eINl$%7@q6I3k_gYm5bg0W>l`eE3ixu>;kmb=3d1jv$sqA+1e>6Qf_g z42P`F9DV4WQ&>oe;x8sP)}(k);NeemKw2(to<^SQcqj~@xh6gQ{vsg$&zl3#*6*8{g3u)j~c&s zBo6Crlx#xTpuc$WBC1mbcRCoD96t++E|+wFgP-{wh(BVK+V}FSAE$Wl5|NUU?!cXI z)5m_DYvhQO^b;9#!vXvd^l7%C=dCv2js11y+Ye`-Rc!X%icU$13_M0_x<1v+93u+A zvL32Vq{^8noGuwNm`}>|9tJ_B(I;T5@q(-|c zjaW3}rt{yu>+9<364IhB1^g^ffA|0Yq;?_U`)!~p^LZxvsH*#?)6ZSdWZ(Ft(&7J-J-Foh&>llmK%@WIKd|7CBhqQxb&WpOF zzGV+)FROP8!Ln;~vv_TEx@>y@>nUAYT57Y!4CUS|-rB7=MocV(8G^phJAVkUMw3z6 zvmztg+I$!aTmC6dPRr0V%Y+Q8>DI`8yXs9{xSZ|Y)-nUe_V>@(=yf213BA_6V;-y3 zE|K?JBbb*XfGN?xM-Oq2Ln$nH55njK zO(S`4+YS_9u|yI8=T%Wr3HGF+rA^Pu%4*!n$lwC%Y`Qd17;XC(i!Dh{3(}E@u2f93 zm%|F$LwPn??8}SR17ch6;($5|M03E`xhEs{jpp=gy`=!T?yOHsjMl=+APDcrrcn0M zsY`XuO_GO~chRY;-q>pN(~oa$%S%f(Jv}`NcA8L%BwUv2jt;kF zFuNu1p74DjbgA^pkIbwURFJ^@qe2ka2-i)Ae0fOjTW{=JUofY32fz|s!t>~0n|bTh zsZ-3~#K@nvPS=mTcXX)7qjeg%Td2o=G2^rG7% zj)j(;?1&7ccx~Ox{OaNJpMtX~DTmp;+T1MI$^@A43`jF13__ME(=Ro+i;9a2Ve^w7 zd_0Z8+4Oh8xMZwO_E_2%AW((9&hp7;5Y|O&qB0><+9Lg@I%OImq z#NB>C1Y}px>BrS1SYd)S!aZS)&VMO$8n8FhkqU?S^A^N4`#;r|hDwjg9PM8~jL-zw z=F71;#Pd*F26|-*ibTbF3*+R2_gfG7(mR784e1eOPPlka04QUUeFIT+z*lIQ@JIKJ zS4Q3s6j>Ytq#o*XuxPXc*)aB|RR}uEZ75Y0-xKa33J3IV8We|Ch*|;+y1JIWeki&y z5`ugVf3YH*f{Hg=D0BBQsOF8p$b%N&Rgxi)AZ#<>3(S}a2cM)4e&7FQ0J;xuP~#&| zOXwhxoa0u8jRgLSaYaA22}tec)0s(rz!@2Wm|f^HG+u_r#2h!jbH~L!W%zzAGqe&s zfQn~OWQK%D@fa0(=+dVV#D|{=#EX|wgshGu{Nwq1HV)+gtO54~0H~I_ zM>v)H6{xW7&ujWL0KX1~&1C8~aAmGCdA|t-@-I=Qwqe~#j z!ssvH1F9fv31=iw?_Proy2L*(y ztCM2t?i9;W1n?*;QrCjk_H|AkehGk`P4!xk;GYj})Bz6uN_?i0=O)!oGGoH(k9w)`(<1%WtnN zgZvroDzNgaw;1}~89d>L5KSAEzWLnYvtVo8vWwZL=jT97(+WMm71(Hk+VI+M&w;9k z7jkv)RURPSp)H!j0Z^kEKuxXCnBX*Z3S9HMcR4sXZ~)H?O;R*VrFRZk&1&%eS;91% zjUSx|{bFHgXlM|`3?#KeSziA)>B)cBt+@~N=PXBv_S31Dn}!bkQTWeZ9$)UHH$WV z$s1@UNYXdHz5q0az#P&hj`n>Ekl zfC3gGrDO|)iSZo}W}g7z0g=11b^4ckwUjp*JA0a29g@{IiHgonrv|Y!d`p!F1SSY& z2MIBR`2Nc+XhTtQd4qDo1aJnlCA#zGguq+E$y%M>-v+(;#Lu5UjfE2(exwFXf#?#H zosHQT!}iA~Z9rvavgVO2MkAA|-^j-+j#W)p_XL7&kb0P1Ct5j*H30onAU%ahwgBY7 z)Rm8WKLL%5-ldWm;HKzm)vp5Q#Xhpu14wK85r@`#(?a7P-%?=%O@ajT=Jc!F9D=<5 zinGgQ&*I|Db~onR+S?xu+O!~HDz0`PFZC)R0&TF3cQJLWhie3cei%6lb}3h`EAbTb zjosN98Tg=VDua-6_QbIW>0L{tM!sy>LAQoBNs<*QF1mU8rC;aDFNT1Iu&t2bGv@iL z12jIwTsR^Z0mI3`1wP-opcKv!2*5gT)B(l-cfKZv3!1gm%{w*Nl~2P3TVP?!Tiql) z4#bOPR_7eQh!My?CYj$j1SMrrpn4sMYy*%0<5K9pe+L>txW5+|5P6TsA)Is~O z2fYJQd=k{0VY4L2J9&M52D^$$e9HuUXxcZ6?~cg!kA?GWQO@E)18r+f3}jf%RuZMj!xnj#@CHj;f|8?Ifuwg!T* z+0U7F6tLevzrd*-j|4@4jQge2ai}rr zfhY-dZ~?Ox5++y{9)A8-=)dGCUxSbWj%0F3a9@C*vNAF_-<4`xz1DDy z?xHpIA?Vaope!~Zl8*T9&6_u~-o0x<^By@00T3%*XJ$?pf0b?o#e34F5|Mq3@9=U9 zPk7-HbS#(%iXEiG*h#~wVC0T$I<@$(~Zp>^*W#4V!to3UOykI(($1Eg3=2-aOmYWKqduucX3Fr4n*_QbQvfqwZi@o3FCaD zbfxgnFr!-UYJAyBkn)F_=Ri#UhOvZUhOPN9V2z8Ip(2Y6pI26D%gm)aQ6kza&dO7gIvO;>Px1 z?;~%1kAhYY6r)}fo5g9vBJ&U+PoTYvhtbP;R|$LX@3bvL<|yI3sz#*KHub6ssKH6k zqoQ8DA6;<~%*e>F2HqN7cm!M%C=>wek;&UHA40phh|#}%In)I-U`5kpX|E5@U%t%i z?d>gPlz}Jen0K<4PSJ$bh_$$R47CO!VPR`vO+&z;sRql+`|~gC?Rnc-TQ98D^a`mb z%J|f95nh@p9V@*T2M@Ca0ze64Ib>Xiu|UbNwD-Onsqa>o8vpWzFJ)iE=9thI#Bf?c z^54&cl7JzC23vky!r z8vUis$(H26P1hQzyMNznwH%-&P)&dkf*_Tf z`$zY@^_WSvl2duuOjuZ0$&U8K2~+5?9#w4jmq)QNNNs_Ea|nD6&8yX(pOq73YN5Gt zyU-}o5z04GSD+c%2r~j)>9qTJC8yq>puBQ)x8gB5>zK(BY|vUWtx?_LX4?Dr^q`#r z-C7i|g9&YPz@-~KeSHnfF0Ojk`^M0-P$*M0Z>7kTYRnJyFAgLuS;5AHbE@u)u6hTh zrKPp?R6+fyxXo7u3a=ZmBZ+FG;r>H3&(zkG3bY+AD@_#N8Sb~%92W0>w*3pfI1G`@ z=1>|m_SOQG{Nla72?V3UPM;P z#?UPoh=F&*a13>v-nm)BiWOEkAv@i51$E2F3Oy{s`Zpb#`VVX*Tn&yJepHLn0~WRQRUH?->=?0f$+g;?TiUf(iK2v z0sRBa0Wb%E8#3@Z*qS@=1mUv*@DHLAFsBQKfo@#56RUR1_3?;{Fg{hx;ICK^VgfV3}b@ z_r{GzNE-N+f%JEP#*^!ATfFPQr2L@mGTyH}5Jt0Fn2T2#;3;ZadEJJw1M?Pa7O9n$ z6>t}T$_4s)(V?Mb-X7z9XXxTS_1f*-&$;_oaV-EeUfnYA?5#eUashWu&9<&QlMEkM z+}bXIGQ!ElbxG@~SIyRH?U6JR>_7p3H9GA%@rZ!z%;R@eDa$SrsBWIUS%iDE(<-wD zO<)QTCYpene}?-7$rqoTWrR;~u=_C?GqG&S_x>KHS9IRf;NUnlL^&Ye5g zWtP-yMAOW(i0a|yF{CQnRXA-FhHnA4;Xig5c4gqL( zUM$nbsxbj@2?`|nNT?h3_Vtx99xKVG(|`Zqly0t`!&O12%>w{CwCQPS*vK}4ln|KC zRE!=TU4b#bbSU@z8XqaAi8aNuB`&nKHn7~o+rkIj~ z0(H(GEzn^Vi4kZ)A%y7x;DOrMiY7}46{BGZkc}W%LI~w11mghga~B1CfLSpF`P$*$ zsu|dMRMga-gvr1ZG#cikr_`Ps13rRW{qZHJLRnLC9T&kXhv^m*;5E?}U7(QxlBJ>- zab3CXdH8!y^!H4x!*sZa(s6EpJq-{>!_2>i?&bf{p^&JB2EfnH-FghL##MA1IXvJ7 zkE0s}*+js!i4ZB2Xj%i!6>0u3ZI_SXL~YB`+S(6T)Z5JDq4{4huq8QryMh9Qk47Y6 z0Y$6=%^*57tEs8U&gW447qS3AKWH2%G;W}bdEVpJ0lsS9oI%XgnA;=Dlivao-AWS;n!`sN%1f+-# zdOrlmBM4RoWL9FK1qf->{Fe@+AVC?2)DCE>3P4&{pxodj^O+S7qBc9xsm$6Ob4qOu zkZ9ec{R9-jM$itx6*L?!^5RMb0M_+}WBg05j0-=Eh6XKi}_#||`&vLZs%(!ji<2c+wt6#_*p{JrBGHU z<(fZ;AWIgiG2i6LCyx$Sj{wYoZ7i_RtaWO4F+VcQ12{G~@Bn$)g3ASovpev6a<^w9 z00s_KzL8~6odjV|aep)4rx_Vsva_>Q{QQwLmL*bvikp@QFhjS+ymI@=K-%-~|9A$g z|6s*nG9;SS9PZvj0S%rHG)rb!j{5UqR#Rj({K1B#D?obk(2x-0gCtRw;6%#sLePN! z|1u-~siS`s#{aiTvHJ-a0>S2ST_+qIiGO~2$k)V6j*R^>X?3n&X9Is25YA4rz`uIl zE|y`?7VH1bAd>z6%p>`~lN+J-|L^^V|6|Vi|Ig+5vWb#Gqnd<>R0M+qu3TN$8@1u( zej!qDR4BQ)2t&j|5WyV1!NrV$fx&*zBCZ}9$LZ5Vpx6YpPFsoG0Z@mkAb9`K$n*EF zIoDtdC}^TEpGJN_H0*}JTYhlX>#`XK+o#S5KeWU=e0UASw`(Yb)StkH^k^zvte@U= zcL4Ej8miN((-BAxg~s*RRU2JudeBIgTqHm)50GV}pm&6uFab({_{AEG*o+5@EYRH6 zycXy;{oSNTk8lV~I}$Dei{=)%`-KUCx@bW(E8u%SbNmX3%RrwSpPtr6=0=;bs`qMz z8}teIGjlkKik%Swf9}o>=HpyObQ0DHh3+?SbmN3f@4aEHp^y_+Wi_?v#KhrqUvEWz6Pnmt#Y!O;-O^*baAD}L*xr2hrdH>~vDEC-zT%n` zCW?WLHhyx)udb4^*PAv)2}u+&od`~&Shjzg5|X%hRoqf=*gvzPf(}NxFd{cKPwbv= zf~Hbv+Dwc=RRX#cHTa(DnnI{fhO+CvyG>8;2$GmWj06TK6DKt_^(%0tp3hi*sNY(W zeAmZx{)zxy!0>W}=S2|_)*s!J%q-*uwu#9<{&-o_T=q}my&;v(<+Ezq9p&r!;IAUY z7(HEbvfk9UndfAyRbaOD!0oYsb2N5B1Pz^JiNU*B@#<@UMzApFeYB-wU~D*eLq{ht zEG*1rj}#vVWRaop`6W8ruZ5X{w%e<`&%b<56d~8hyzuiP^f@od1-jVh_(DRM;c}d8 zhGk2%-N9)Z-9i!n9vk=krEZ=G2?z5$ zL6E#LbrlZN$m)2fBcUxGn$L;s>_3xNLC92j(fxZa`_LE~)+QUHlaiR|ySF6s%=Et& z%M@-{wYU3@=W{=7*nj#6?ZvLJPVcuLq$aoCFy^>iWUK88FUV!@Hc?bcoAr&A$P0@J zw#iKH8PuO|$tdCya+e>amZIFep_KeoPc5hVpNjh&mD0Aml($P}PyytJ42O3j`flnVN< z(tBr^Hp*M#^?d>tYg0FhJRk>$hRo%{?5Zhm~RQ}WO zdX_I0h2q~Qe5UT*<8kS#5UIu!%G0Xfy~clIIQ7E{UXWz{!kyd-ijFgtHw-1^lK<>Y zrl}x!7HV{F&JAQ;l%LtMEgyxdu#lZo;I{t9hqC5gjTG10e6&c2nTGLuP_t>s$Q($0 z$SCbFWR)pLt#}(05abCnuZ3&|v>cLX_kjptwj5~JNF%4ea7Upf2`VNUtF6K8of)x6 zaGIcD>J%v7!C`|bdb>jYSSspxE=%8d-7B2LQ6OznCcg^%@Evo;K(4~ygievNU06Gx zQ=d~yHlq>y{?(SPg*!sKm*|r2C|h6p%K0ofYxTI0y4l{A;Wb^|$5mC5PoF;r*SE;f za&5pEEtH&)@w%p?ue}il%@(MOv&A zd)iJtF1d3!+mG&Im*uWZYf>hje47UnW=F$vo2N6!(hv=@e`@h+CZ107XQ zInuUvv>%b(UhJBeaK&y6TI??W^HgcF-9kbH7Eq3}oCqd}0!#!|RKh#0^bCNvUt8jW z1*~NBv|I}mSf$NDzjKD%O#8(#XH{Jijbe^Y(=ZoH1!^2vCx5eY9K-yv$kxe; zu6cB=9$st{Jm+LKv~Rx~F}R#J!wWb!mX(_P*x1_d_>J1gzTw5h@rTu0xtL3w6KHz) z<~SuY6PMeMi8q;xYMHdu7-iOuH{B=%vXo(1<0`9U>xj`&$8z&KpR0t^we;OPZbaZR z`-7Mb>txh#+~nz=S_gHvShJ)Zh7z%eyXC26#y!QHK7CvKC0eBq&vLV14X*Z5%f93e zE=X%I5k?K`TPs@bZtH+i&eRMsxT63$E0-D0o6|L`6qL@)RFXYX`f(cLW$G!}&ytw_ zh7r$~-}1Xcxj&y<>BX?sK`Ay}8tyLm@R2Q~?SbATQQLt2yizrH06ZG!@cXWFT0RXB zjw!D>y>#+yhyO`MW(xK0Z!_fSWn#e}GccYf@r2U@J}VsKd`DM$gXjcKE*B9jUc&xK zrWjLYR9|o)B6o4P+_F3@?mU=x`U9tn3ewU#882CAW1Pp>%y0TPT0@^2Sj{wX4&)?m zbJCk2{m7HM{;EFn#;@0>;?tQKC^rSr6&(KgJhqXFl7S-yjXIXl?@IzI>`A&DpYb&s z#pzs%u}-81xZkH(R5PH9M+GjtdpLL(eR!{w?`4f`;#gd(U8KvOprMw(u9NauXPNBP z2QiF~%A*c*s3sq+^hQ;V_Kn8S^H4oBVrar^1caZzXYZA~QlgcklcOuA z^|Wmn$vWW0XoYd=Tw57xU7$-D&y;oCS?r~I>$uOCk=*<@$ahO$?pE(#kYy30ZcVlD2rJU7cNsxqDoEn6QNSoq8o3<%Gals(% zlB_uk3#@0)WVI+?72-ZcnN#~sh_t!Xu;-!Q?F|)JGzgXc;qOe%rDg23BM{j{WsBt%_Z^#RB{P^ zs3}D-4X$kAkW2cCIeuT-l!ikUf#3oJuLJuqU-iZ{Br=04KTzSofqFThRHTIbc$D>) z7i!IzN%1_Y5I?*g{!J#Wl<#B#h3PFgPvrcX+jS0h}6 z(B*q@Kw?v^rtMw9oIif9lPrkLSMGT9Y(c|WRh}&CmX`Ch4ArTYL5kHjFv&%FHE6lj z{SIK2Ccu~%(wc-4@<+1e9so#;QHGbbM!?&UgV;Ma`FQN08O zar00Kl^VNHnmag|Bb&|u2;sU2yBG`XCkXSvaW!yj`y(m@5(nCuKSS52+8Xs*%FHy) z!9>P*DEw>o!3Z!X%u4@l(Rp zIigF`3l&~NpaF)DR=Q53s4E{eKR*cvrT(x(kdK%^CYRu=TD#;4mJ+Sdr$eUjMap-$ zuIgsw=Uy}okoNjx>zR5!(&gGp6&1Za)011%a_4-VP1LsuQWLMY$AUPA?NzeFNlW&! zz|x!E&1nck3`W#JATI3r(@0V?L$9Ev!P3#`jChP9ne3XCKe>*b%=zOT6g!g!DV!nL zT~rHeZobkCY&UWe}1g;6Zag^^S+so$Ik=QI8%Qn9t`ETQ>o*a z>x74CU6<|cd5){TD10u)P3zW|%+!P5LoE5rhkfgoA*$UNLf>yiH!XitS*q^HVuY%T z12XO_=xGUxj()))(PJXnm%EIN>A3b=3M#%u9>Xh2XA+wV#>zX=^i?DMPafohFhV>If+fJuztQL?#g%>DdBml zvFYrbN6w3wa*00_P%FtAHmvx|6NO?drLEDEKh)#HV+j2@FCE8INvoS7)8e1fG!12b z@j}+(O^uVd#QJuaz22&8iF;{{-{1#lSu?YebO?qtQ7S^-0j*m}HB<@*KuXfVLXsw$n#~ZpD4Dg58{P7~ zNI^jm&Z35%6HXk9y*rG|r!GQX{@K{4PSt&Uw%e17g|mSh$%YXVlVy8#w zQoESzR`6xIj(?7RTnaM07lhD~s(LT48Zj{j&iV?icP!!w+kB%E#m9+C%sCp>)qO5~ z%I?73tKA*lzLe$9AXMK*&3y;i6eXD0*{#t{NZH0|@SjE>SMB!AK4aW_=2eAW%I@>0 zC3EXmR=%BC-2S0Y25}H@6DMpxcFXhQPWAE(6B#{VR#7Y##Dk33aCJz3Lg*xslD+U17TEk42o;My} zwujO}Rpp*OFzd7s^4Jd>Qm~eRVMFQTt@4GhMoKM*r(E^LUheikKbORg7zt(X3fpA{ zPnFU{wveStc?IexFp?-d$AQDc+nuAO6tSdVlqRD^?InK8B-OA!HZdpvvJ2bs;~RT+ z!x{WJ(xw51TBzh7Tyta#V=iThKSgnZz%XODn2FWRSMWtB-jC}No^%C))l_%wL1 zR4t<6Ds*k-j8;#qWJd>Fx~$CgtELBdB&;24_pz_*%;(3BzT;MqKUwXg!$z^p^Oi9y z8;OUfHVr}5s{32qdCpKtDfD=KWbn$e$3rx;j^;{8@D%>yxzmT{ceYaAbYE0YVJHP% zOt1Y*#7fMp->cTEI&W@-!s>V@rg78t)Y68AZp;|j+3g+Vjq?weFNPN>e&3u9PqVfp z3jl6-wVNqGf=ymmXdvvkWVYYXcQznuGhD+_&+DY=6`brBq~w-zH|wkf8`@I16%-r- zA@gMZbg6k7VjO%0iL_)&!XMq8E-U++4N|%>V0e->cxl+q@k!Ruu!LhFg@JK%#z-+R zxozI&V>0Lbp36#4tr3~n>;A^q@3gOz+SMlaytN~1po%(~bH;`X=bBB13#~y>TEi^4 znYc7$w~@wYTaj5t4#~$Nti`c54#@sa(w;;U(At#X-N z?~#VaO0}LAHHI6reWarP7uq|O7jvYVC2rz}KH2=ptlrH( zV)pQ|`h%je0oQIWujY(Yc{7Qz8a9e=!f;3?VP9j zQt3WnDT~zGbZdrOC8D=m@6^j<6tLc&3t=gj3G0~U6FtX8qEg1*X!3aQ+b6HeU^3qf ztEJz^PtmA*KNa4IO16B|*6$0_`Q{^D(}nWgp{{v5k*ilRPoHC-KE1B}Y{veF>dSMt zHZCVmHhR=zIr(Tomckg3EVn4fRwh|1JwEJ74A9hN^7KyHOL-EwnpZU!209+|aXX81 zgkZ-kbBSK$NZ2<)K;Fuq@_oCmx#-yfy59$?g_-TFpnV1z>oupo2vHIEb)#o&20{+i zavSqrR!S|VC%;oBIyyR#+J;ZYM3~bXN~I}DnWLK*y7a#tC$ysJq(z(oK8yyz<&0!` zmdMP}_;5xMG(~^hY$^wk3XU$0pL`Bu*$Ei?fv{B%XAMHo!L_?ALd&&(p{Peg6NgT3 ztT^wD1)38$_)VG*GIcKbNn7N+n&?*`cV^Y;<#o}`>&k4Non;;oS(djg&$s1 zRxU`c1wFNsAn&Y)yeq8EreD0wP*^z@Y3)kEsAiC5yQ0i%p>*@AZb5nr;PrZ|@Tp5= zNWe0cu6KlE^ixO%MTdgW$)m6fUyzQjWoSr-iI?$_M#C*+HiVN30i$-UV85cUEaqH; zWqN$>R@nslD0hmdA39G2hlisN-~jjCBnNz0@L*&>0Xs$=_$b%F3#ANpUa)e`#Ha~) z?K=y+<91n>24R)zJ^CG%gnFZ+`EWaQP8= zdd%>N-t0CGqsT&a#1$?!?zxFG_s^d2vhMH8b1w>ZzoOC?D<0U}vGb+^Ytco-^llz) zHvVgFy{PG)Sn-&FV(pU(a=zV2Kfsp5Dbu-V=B$bnYAv~jKg%K|(wPi>%jLR=nXM{^ zOW#A|i>hs^MeM^?aw@uoZ$|=S-1(_>p15Rrfq@S(3t$r^xEiCU*h5|YGOPsmWHQHB zl}%0A55eX*0TbB>8&;kG70&IE` zCgymUKSTV*+~TVsM}jbotd2Xw8h?cgQwOF4|9{StV328n&M==g#q*~sX9O6p zu+W<-z(7@E6q%WuO9H3rc+QHR@6r>8R0mQlkL`1j#r#8K;GJ%5(Lk*(l1}# z`bRl+!izln35<8o$8YcG=jrZ)-~gv~m2`AyU>Zm_IOilT=(41jt5=APDS){U9HUZ1 z;~$u`gAD-Y;z}*(2vPJ58RklY5E1xtENy-Vcz|7M`AfHW#-`*;B7A@Q%F*cj@87@U zcyd{$C}`!goaXC`Jyv*@sW0<k~-46+! zXaL0}GoCow!AxkT98Pe@ziEbyQj3+co3;NG7Z*B~r>`QQZt?~fQqrn?gmeK1PDjEg#w@-0%r)Otd=g-Z52EUbn z>&gg@+l-U!l*znPoSNp!)40VP-&35ZNt+1#P)!ac_Od7dohzyEpk3+nn)~MV+REte z84IaRX}jS_?$fH8LS5d+0%$65OoZGnp}E4b(-e4E!m*$Ts(t2k+&Tph=Qjv%sZesL zCZOSyDN1s`_R-3WpG@3M?xvixHs(#ZH+)$1v(k)c-d^do=k09lpG*`X5yLI`NIt13 zWHf%(Df=LY1dH_T>5nc&UC)7>2hS6;V9+~Kkok#(4pTfBhIi})I!^wGjv%KN2|mz} zLOo~a=9DE~*YKYswY2NwkD8@hIG36&t4g%?iQm1q$rsB@tabV6fH-t?#-{I%-S}EL2XN_Tlagkg`qo0D> z()9(WK+pyvy757iQ1vIj=PJThn??ixKu|I^(Ns@GSF7(w<4}y!%#9DJR&~D5t;^nV zTK=70sN+DEm_S)8O4~A?@k+_C0uG!u#4M|1%9_o_#hy0sZUV~}UJWw^4jJG6#lYcZ zG&1J{n=*PC2H+=*@4|vL9Ewq1(Kav$2iF1)rU-_0+S=VK@kM9BlXLRH5tt>f-?&lE z*zN9NWTwCEibi)Mcl6<6D<9=Eah^SUvpubQNQy`uA!V0nFzRK;4yzGj35pn{w>S&wAp+K=sO%p{$TSp2=0sG&V zP@!3Qy!y;Mk*Fpr3{u5S{`_ML&IaqLk~AFPQJ{gc#@J?5T!GhAbtX4^(_c9TM{2;7 z21ey6D4pokThRX;A13{ujt?t3y1p2BZPI}CGh$|DrY*i~&WgF)oh9_75=T@FHuVW5 z*Lf%Py;An{3OW_de*TO-M!9b{yovEQIW=>)RTgYJI(B~*Sv)c9eHPuhr`}Lpw81$N z!MxOpQ%z)3D&c!>R{c*GgZ6EYXH2bVE_N1VcNkS{yr0pybt3)sHraVbtzPOn2o#$$ z_d(nue3rwY#ci&rXc5bbnjcJdFPYE`YVg7W*zFk>!cwV}ylR+jeGH;nRjQqsozK)C z>Aa4OxZs89p`#(7%e45T_CxUX!K?)x??1H-r+R>K4xHGrIU0M zK*n8oeso|TIVmWc5Eu`qOm z3BZ#RXT+`h)ilV2hU~4#35H(F1IL&bT-4rblc-+lN$j>8#%J=dSrri^3)~pv0zjbs z%)OYML)YTY0#W(q;wD$aLG|2|jCs{(dABw>zxraiucldAF1Hq&1&!5av(^Y7Mj5`< zo+C<2eRHjqZQ+@?szK7Vt~k9g_g}qHxi>6&D*RP6gry|Q4|%aln|+Tm`LEPvs+0Grj3`|gHoQCb=d=)TL+i6P?M!`|$Ja`ifOgQV{El4ohl#&K>x(o09YB-G+59h=* zB$kDsZJ`grd6M8ISMirSfS??@)kRF;jR{~7M6Xr=uUlAKJi@f-0LdYE9jD<0P$Rs2 z0v!!ya%iHg-ZsD5Z+>S%yOj8thwJ=Ci;`5~^_y?Eaf^mM=Bn1&&Z)0%7I|0KBn(W{ zA6!_cA)ePRB0jcxTI>D$P9K)DC+hBWQ)z^RxKGbYf1!aqxD!}$NUs0`5DMMvXmsDrB&+X7j}w!tqAqZuvzz>F_G9t;6c(i3u#zyxI?vo^_>iB_ z&lg+_>W2b9c}LdpXkeh0z-WB&a_4&bknW9CfNS!*x;tMqIrx02(0R zg%>1p>ZyZV%5tU6YAC-W%&X>yM*C3Wl8uzsygi0PS*f<@2b)y_zR{1rjkePkEs;1t{uUBr184m_VC;T}H3+NO%o=#51fO+?g2Z*)?UEF9Q^ zUw|s2aKBx3*jrNLu1)I)f`p9v;UVqJjt$;ePQka`9V9WqJ-8RBVZ=|{@VJW$R6F@Zr-VpLBO;BYNGmBVEvt~p&+P%k+$KNC6y;qD96KCh z^}Sgr!D0T-+6r@YTaJs&x+qAH#K&N}Ah;ijprf?MKnG7a?XduQ&~E z-(D9xzK%9ttv>Oir2J-6aogqFry2e7k;QYYWn}^lhAYKW2Qk4q$r$G3rMpMn6F1kw zM{K%6?Ra4(P(v$WA#z#dpo`1*K=%h31V*-LO&RlLKQyj<2zfxbAk$rQ}B z@A2Hc4r-(cXoZ&LS%pU(5LQG{J(xp^tHrEk5OHEVj|L>FEcD`(OP zXS=W?S_#XzC;}6A3(H1GttK0ubxC7Ftj~caPo6BRC0prMN5quoYI1Y8zhzWB@#~7E z^LGocBev94z9&Fpsj8%Ej7}5DAi1LUG&tD$0x3*xCf&mggrFZ`tD!_ic}01V-8^Zb zX8S1akKY1Wgx=7S3LLM@N{X?A)MC{Zkgle%!Ss?}(7sY6b8ZfXw@|TnSzl8Q;sH_9 z4jIgn&r~%>1ChSa*|beqi4*jC)HSd>xnj|K#>3CKpe@s-5M&1B_I-=`KA6;^4Yzx= zbd49z4Q$}r0qjF{l^D(C7P?-OBp^;{EgB12w7}L6x6l#&e?LEmeyf#(+W7D=!ar9sFxakdZzHfoE>J-zi#vW#kDtV zI)>+fB9(^CR7+K;cdj~?<3TiEl*q7&pNTSr_@BW>os|C$1*#lX8}>foUZBtmp$<87 zp=uZsm4{A~A&ss`{c-b&kCG8{oT%0G)%{~i>F!8HoK2$x|sSF5U;JIk?MKm7#}Nrg{|4YVo-CG`Uu^ZHcqIoK*5Nh;yk5%!b$jG|@7iWzh-Hlk)8 znjtjM7Ud%n?NR>o9!r3Bo4BE{@bYTk)->j^Y;m>ck2}x%^@Ll)D@2l5V`_Y?B`+(b za}j!&J@POiaU@$Za8SQ=0@{(JAN4g0F7X==?F{SLKuAb4AZq(n$0Zeml}UDvE{NIn z>YZ>-$L@T?z;=^mEh7=?aev))B4{%_@)3t|Xxx4_jnb16r^K-|HqC6@M}-whGzn82 zj$N_DrepbKp;Z;S)TG3y=Raua%pMmw%W;ke7czBNX@u8$5E#ZWIPaoV3sFV#j8$cH z_nB$j+ewth@)hueJ8oLU^dvtO@Xuy;u#?|L;fJK;W(Y(Js8f<8pPqXrPrcL5j+M-` z9cRgb#l*LIVa3{1Ue0))h->2^O#}^IT~+(#WUdablPyG@ z6h--LoGJ@Lzq7drYhG2g;mK96@o9hPB*<8sNr`&?lNx1_!XHJj5^8VkzYfdcyUJC>#|v7LAF+ z0#O$v_^FNeX%p>~kW%U#FG*o1qrUFgqDtm_@;kbqc~DT-zt8Ct%sY8IoSzLTi`x>z zAx*Q2>#it%QRYdYJ2kHY#}!LRFeSwfZ_rVQ_{!Zs6?QB{bgdO7ZsE#$C?x~t*KCe< zMh~jW0>0t5b2u70ewNhu?1;iWDLfqKKPi-_#FD3EiV5IP{c;j$C#D!4AMw{>qqI~` z%j@^uGBjaFy$ff2vqpZFCgC%3T*H&Qc-=f8e2J})ccH3AVI>#$@x-vO!MnG^4U@=)IenadZt@FFB?Kr?m~c`nGZnLZP4>ds9`n{rj>b))z>ljr8wtcv zEPSA+b*_Zlj}->Dzqr?@A$5MQv!w|A_OCuy3|U6qORK2US@Hp5X{?Kna?z-ciD7EV zp~Ai6T3XT?+TMw^gv6{v7uj6f$CECymk(accuui-cGcY)8q4ax_NvO~Ek^qcR8yvwhSe>meQE2ofpqoTBZrB33v8I3UWVeYjHlLAP?FN{0!r0u9z~91E}o9 z`GhFAci%jJ{Pru9lc?vVm0@KHyHL24u0#p#7hYP_aH=+y3{;v3EPRI%9z(d-oXSON`f;hM;p zQ#n~SnX8Lw*`S}K)sOk>l&d(`>WKX@Gv1*5#m<^rTF;!X7))bYSGsJ3yO?|w3l-2z z4tAZoH*i*ek`mHiC-yYn?PPpSpz7Tqu+9~_=p2!gOEkE@s`P-1@Cs2*8fjK!Vj)Yh zBRq2jPO#LBN|6tr;p(&oK`XU+#r@sSEfQvCN1NjG9nloJ!Y3@XZY+INy7Qz1Ntnm@ zauH~?MK+V|pQYD!-f%fXVa%363K4~RJWzMxFYAbtGBgjO#ya-Y$dM+~S9$2f&y)2- zUVG?eQ+lO{jit{?$xY**3MKJ-{aYQ8AHk3iLZ=h{cpZICmJ()^5fTvwP?XoKon$tMSh$d52|EoTZCKT-6Sq@a`D9%rZ{F<5rbi1kHP#Oi8a z{rs@_A=46#dOC;o+T=pf z?bozX~$PmwMs7 zOv?66d4(%Rs&G>GuY|S)P|-=t8K_5|&gvS~|Gc-u9jCddJ3gU#c=VM~zoxk}0n}-r zIfvdHWQqsZSMZrlm7a4(4+k*bJVpQJ!12sExijesS|6B_O*1M7KfE-XAKvM-dwnR! zVnjG~G!P0O%ztLKTF=>lrABQ{qg4OmTcuOh^^+@Ah0^m;CGsH*>}u71j>|u6uf@)o1@#d#?El#aYARB(JgJGrOZdX`jC%~ygQmPmZ3 z=9v!KtRh^vl|>beWqRrz`$Ug&Z|Yb)%g}+6Nv+0p23wwNmFC9GHJaZjTIUMut6#}# z8;J_y`8pfE@lWg%HGEm-rRnGbrFF$#(z4r0?O=33 zmh62HtuxWq$d8TK@^2|R6A=v z;M%dh{S{>v@ZFRAL-M}M_Yi2vq}wbKr*Q==)_Y~}yk`;-RcJ7y_;?xpCy^|J3ql&v z+o0p%@hR$Qt4DctULwpCSzMhrO;GY_6!el+z9}9H0-DXforX7YwNkhD)cD!END2ub zsKr+u4^OpBUVvzFh*~;f|9~HKaS!+9tsk~%yjB(mof!Ij#qdwolfKU|;;iT1R;bfb zQBu%}O8=w`9~E1A;+%ZFwM-&9>nBsPoASgUK1={;NwMRTPiIBc0!G$O>zo&Ixhf(9 z5^^WXUC2PfpP1=rZR0==JPm!c*QH1#Od^2jlANyVOP=q!u&lIeQMk&()C^9tdG&Tw=;-ecbgbtu}k1p z49iCPnOsvEGX<`_CyELM^5i-!qn_Ic6*XtTnX zi9vy`oA&$CwVqhqm$UT2Aj*XF$@*f9$5g;6PQ-(M`l#}Q%ol>4NGC` zi017Gp*ky`X;NlBRskC};mYUcpO_;Q1lFdA4Aia(7jdtZti@d6_1S@;49(jL&x~`g zyF(U-TJ^P*w#@@<4`kZMfff8U3s+xQ_{c~&V7HpM-}Q5fTnTL@_OLLF#%Z5Dx(;6_ zD%7w!Cg$k_JHhCFA2Z}~-g;hub}#hS9}m2vg~5T|BLd2Z{%s2oqnswlVKxUGkq7B* z1+j@RUT3$8d;_P~`+{DM3m=po3K-sy*H-(pyQpVLsr@OUwt}*x2NOXi6My2z^^-6> zpY!%^^09aZPyQe17}3Dw^Hk=HZ`uDB%kBiusICJtfdPcrO;yd6q49;N%JLwZ#9Djei~*+0x-`1b zfFVvNf1-ue9~)_x&Fy~J(^K?s6P!Wh^1cEw*`R84rg~=Gzbdhsb-0WZW!GaJC5%@- z8_|E#_nCT%up~&|OT7*R6a)wj?ow#7H*b%P)_rqPHx@pD>p)e^d<>Qz{pHm_%*9r@ z@sO;Fxa`l073woRVbL&+9IPJYSFudq{-!_C+Vg)Wf3+jmbz93jFDcx8enC4f$>1-@ zdO+A6&2<{X(v>M8FlyXgXIj0eH$1#|w5D&%`ax-$d2CcpTO;cBg8oa3XT`-`CIj%R zLv}DUiM?E%KhAYB8Yj96F^d#L(Y+hFj4UW=^E%7OyYk&z_#BT58K~ZJH#Jgrj*uvg zBw8(0Z$LdoapucZ*d~u8Z}JtD552eWamg4P)|VA3h;5ZF!pnoRAkZ}_5!$2kmfTRh z=ow=|ci898*1!7{N8g4SVjUOCy)Y z3>T$@MSW41I{NvUvB-&^qlEkWyTV08odw+)(#2)9aOg?!mAR93T+kQb6T-R}BO~?v z^}q#XXnXkx-Oyx(0D+iu9I}mN;;K^eP5)))5>$8)wNh#KYcz>tTYU;5;L)y`6wwu&=;e4-u zyQFyN83yH)VAHV>T`0RUoqv**I%Fu*_NCa_B_Y!|{4|OqI+P0)PN;?6-VD#bv5YxA zkM#i6U|+Sg)mdkc6CQ?wTxoHSUkTYI@G(K8v{DC`YmO&}QmqMdK$i97D?FQyg!#|bnoRnJ&^m{%B#h7T#t!vY6o;vryq5!j&!_*7 zAc2nnQH>3?{d0|3@J*jr%82zrVIxn!kg{*)ba3bA5=Nau9M9XvAfLL_WlhWb&U&_i zDtzu-ZxSx88P(Nx4ks3(^e=2$jD;L*3PQBjJXgcfgiL-D9*&}c_1%TRJe{tgYLvCj zouxXH?^Gj3zR0Nc@%W=q?jW1{ zpuj0{Wz`CPqrMwyDu!S*r^Qi)MkK2@+~c-rywMNz11#LggorFqDAbhY3BqJS>Uo(P znT>5@TWUaBH}(S4Y5QG*F0P7A&^5)(s_ zQ4Q=uBD)j_T(FFj2)pZ|seo}>cYWZEzR2c!hgfV|e{NTo8=du)gt6U360B5-CigEf z$0iEB#4>tl{~n*#mu9s!D!PyjCH}=e+M2mNv&4;dQqgt1tp6 zZ2Wz|w%oGcE%$jXRf ze)qj(EPjg*m0Xvu0p8ec6>+I_8pptb;^Mjk!Cn$5qKeo+Bp1bBJYVwxQ#`R(O<4-r ztA+P<==&lQF1?i8+}X8Vglr1KW}D;vO&FnfA#3)&v;G7KO9W*F!g^rg;v&>sSQ6Hb zR_-4Sr;#2VYVuY+T72NB0&>S_ctqh5o7F=NjnMz`ut`JOC$>^mtHz2I)k=_hs_P4; zNFB**sYc`^3;sf({=L+ zT1g7K;BPVX>Y&bh1V8%fje5nxV9kGy3>eAVcStf2@@or9W3o^!=j)Vr6g6D!36an4|im3A$A44U>{Mf z+~N!wX+PgbPC1*1y-?h!>1KAYSCQgb>7zGhg)+U@`_{gKAfyg*h0ji?yC8Xhy*4|x z%U@T_LCKo}uxe1+V%)O_e+JF|0>_fx#eozU?2e=q=!q@dNgN$&-78#+zlTC)>d4|x zuRPHsgV&Sf0hYQav1YH5!07h+*!c)u!jf-KYo42v+S=nSZhOH!)m-x;5Vb6!wY{be zBW}=)_Pnj*7!@X9Ia-khedrdf0e5n39_2*`XoJ3ro=j!Y#gZr&C{6bPSn&pMZmiQF zVE`MY`9rNIuHN1vb#)UC*QWN{3BB0}%bI@Ez0uy6!BvvqEh6t|xgtBI2Qrz0so$U3 zaNux6x8^!VjT{M+MrJvij8}*GPoFPS7V4VB$-gLZrKlMwQ@YQ6OkTN#`5%cg0Z?6a zG(qj3NsqN@Z^>Vd-xXUOmr{|f97k-*4}4Xeg%fqapS82I`&R>Y2{d3}^Mnva`d@{I zWB;CQy##cEIOU8{d}xD7=wT+kg%)Ifibr>%@IN#Xyq#emdK?>lNZ87#Lj@<{k&*1> zp%IdMr?*W+s~#>nDU0(GINR9Ncdv{{3R~_T6(X+!EE|e+l4K8sx*0*p5QSWcRV0k) z7EA1v|JrYH9HIIQAU8*20rhu_dnHBo;fWeBrNm zX=}MFlg)21%AP?A%c?~KoUE)vBuPQO(OhqlZ)~D9Q0ztH&n&Vd*jjeV0Rqk&036+0f+w~(g&Gs2&w zn8{;2NU9y9)G$GzOIr%t!mJ*n>u~fbOXXZ<9vesEZsZgl*Dj{)W3gk@Xh=B^NyFIZ z59dWKK{)fk_oLMY?4Jt|>uJbku-KU?zPKIq z=ZckD?hG;&<`xx~z!p&~@zL8)G)iH$g(R;UDy^>0VzGB(NwA(voRAYSt~n4yHu01+ zH$DfSBc+dzl}L~m$+os^rOf;!{ZZ#SY{0`ogLLUqI}PdP2ERUgt860b7Ha=JK+YKb z?&HJT4N9<{h5PT-Sa!pTrkYg`m*K3`g)FYF&6yjjfjdf}ZaL9QRu>=X<_rk@;fsHN zdrg4}WuV6lak$&WAjTtr12W6dM+UZZ|M@Yl7_B=Iw$kujtxT($J~k|L6Ec7BO((hcYDoH25U< zr$G!GHGICEq%S@1-yfPfDy-^$VDgxdu**6rUv8wGE*s z2cf8>y*h6GvW$q7wZKO8`>m->oV}KQ2j9cjxTs+11%deHSZniUVrY~1mzP5`4wZEF z?5z~?008**?VR#*{-{oNSjh;dqOOsh%=HUtgO}j2q3CTk`O{bABry7=<5e&zpShT# z2rb3OfrqyRRip%0l>hzho5(({cz9@5_MIq)-)d+@=0#~geh7TX3;iv}SqFtnQPTAX zeSg+53TJ3F%-{SvACj0fQ+#|EmbDb^V=}5ZaX%AMnr{^FIX2jED%NsI&&pVt{aa~0 z&YrsJt6>PVw6&rZ-6Q<_c9(X(C)v}!_vvnO7tv&wDiBX$E_Fa9Q$O`9+xz#a>AeWk zM{~#9LOg3B)SdE*R*tS6p-1b`td55_n)(wi*1|Sl#=G}cJTo(^rRj7l)-!L&z6@T% zA|-VArSQ@uK!z-q<==ZFj(p>nM6OZ%ApfW$E_ALW)^qVg+a((k&F4&o;@#5_d85EQ2KFt8K zb+7_joyp7Fq=0ZGLcF~I_T_2!0r6}@n6QX{Ta))H!ks}-li6Z-)}C^*euOTYO79$F zq_Y6a-2-yfkY&?+Et|*DWg0NFFih>PZ!SI}yF}7ee~$n%+HUA!NL*o1SLZ3U9m+j< zb>Qi3R1f=IEG*b4!mRVnH)arAG{TXBRaE6y2>KEzcnEq47M?skJrPncz`fQ`C}DsP z3JFmmY-SLR)glH5^b(Yy*zW>=n{%jr(2w8!V(L%;k|0o2`vJgh^L6_PDJWV6GBr{E zSpUG5Z7*0Tx5CV2jT=R#vY!|hN;{I54dF+u(v6H|#OZAry+gg?WTjst z*|P^1M%rT#yv6>{>^n6N@2#k5lUP`?kX$)08Ayz)rT8T!p`*#&yIv8F33kFnDDZjsAJ%&9we`8s6*rkdHvN!2 zgvwA&L7X#vfMG=xDQJz!{yi-Xd%ePcA-q3Cw~tVffqL5mRM9Y`U_;>8C?xMeA-tTm zU??Gzf)K8AdAZYT%QSm1zN)`8GI?z(*H-6$OK}%GFm04nN1N0rdAUD3VnqjgR80MX zo|hXf`5ib}BvDyIxRVPJ{tnE=hfOk%sqWv(IQOcnDVVfa`2zG9bs1`9baKB@|9f$% zaB+RVw&ahsx)s!t^DCfk1FSCMzX@neDkOv;<{OBY0}8Qd0v;*oKRE<{0$J)|MFp^L zUF|*qI2q6$zNh~`FdfAs`DERozMu_;AQDVFqr}Vg$l4ZRBm>XUr=r9n6}aHOI+38F zXT`_=&~3&!!-q!xt~f{(u=O=RX_okL{_o;=D*%dPoGa}w5q8l|eTMc10>AYGkk>yp zj0pQ5LUS|%Vnz%nuuy=12kQoe*t!W^KE#{>;aWqn@&IswC=>u(!@$^(3L#@396Mhsu8qJ;E8{X zL)K74Y`biHM?qBQyn9z@`&{j~&Rk6Nt}-+?VNmR^!ko{ALY3EIeIZ@7nykmtHH>(9 zufViQ?{VrO)xYPhWAw89a5fOZ0rU3{ZV-5MNT3{GPq*6rJ()yP4W>Q_S>QjE$#$R@ zBXmK8sTW5Nn}%4(r-2iMM34F|;O!9pHey5*KM5=Ch@DrJSpzX3N#8(Sau={Vuj3pL z;3L=$RTBkE6xdj_E6(VT1NK|?Aoq)YUu;knvy7`_ zNyR^B(wa1ng;Mlp|GSn!q^Kx!%$gvFWCD(f3@QN=sO8@jkhb?HsJ(YE(TbT5V)~fYYo_HTNShszgl|d-MPFhl^ z04I0&{GQT37{L|RH!Xy{Bzwy#%p#46uN;|&ErTdxg@^`AwIDkRiuLZ6EN(mCse)XT zN=f*pCp+EMHf*TCqLeYCcO1{3>oS!tBO5-G;J^7O!Ppx&t2D+C^1!*F>y?uXS>u7(gmHDe&l|WK=l+dLVnA86N#H6x z{L(xxvx^(u$>jNS_MCy*UHF;2B{R*5J4>$gp6|VDst*~3^)MsFFKbuNS|3iee9;S`9K*g{L&q2qVFkrW=CeRGJ6m*b*yMN;j& z8cEBkx_H|Wad=7Ry>HwTCn42^hacNnrI~ya_Qo`CkDl6}=ULA_*XthTJ$;^DaLa7s z#_>d40w5=*L@i&r-y|RU5&O@hN38;-dqxR|r0(YD`_O&1;^FNLmDt-b7!)mz3@C1| zN8waA(|_c@9+qFRaXAp%NA@N9Nk|~NKwfe8$Rs!At?gd;4Yar`E?YH$1o>P-{lic4 zgi!$-6aaaax-yuqLl8-)bvOCa8&6|V^v6=)Y`5nhhxrHSKX;V+ z>z)}F!Pq9TZwnhC!3O&J1>#QyF3@z?z+}C(Urs?6I?T|LeEP5fh6cOu$;IIfa-2gx;5VtC;)W+X zw;aPmi*>GJ{x;uHmMXr?9ucm3`00pN_(Z?B_4JI%Ka1kSrRaBozw);y(-)+I>6r*+ ze1hSdu-`fjJ1oDUK!q#bzK`qw`UDSNlYrkj7|iyiWLybe0;u=v{8^z-k?9H)k3urU z8ojJino3*oc{9<)a~GKY436iEr!3^&cZc@UtvZsv8+j~0^6qq)SQ4NJ?SJGi)Hyj` z4xwWLTuYptTsO^l2Mlrh1HM^jXv8Lot>TX!|1cKTk$$N{rRinmx@ye2EW6$$a{)0i@S=arj7#I1!Cv5aClubv_e`?`Ub4}XFD8%xBTd! zN4~CBijk^%P|BrxeCkr%vL&f$M1uwx4Rmaf&S$XDL3ddTpKNwT z!B7Jt{py&sBKgDHFQMrGwN)$&gs@;DY-jfzyn&gBh`e;>qk{H=<4p&O_)^S+lFrlj z#K;lxp;rloVjl{73q6r>34?q{G{|bG3Zvh~@kgCS7bS|EF=xEfNb)^;RMzayk@fMA zwbXToWoT9YFT}OsVRp26ny&lx1M;%=6|;z!o{76FajK^qGIqyv2A?%Kg!2NFQ&~9* z*NQnfSX{4ln?P6Ko{&N}*@K*1ia#~T`GDx5_BqtbnzrurXa0$F8wr5k!8v;!=_n6v z_j=Z8DXj!h)4 zE%)VL)Y{0AW>%M{($o1I&jEQC(ip6}dqv?vB#W?zhhgb9(9iX}HbO#T1G5I=-yJc& z4Gp~AS$B`Xb8S3Dx^~KMxXzwcf9^ibE3Hc?RK+C8c;kiq&8~9jJaVawi&S*SoPC-N zih6C78$^GWTeN&-^6%sCBo6DO5ek{sUIOnfhskl(S1E9RhLIt6C2zdoIqOv5NVCcj z@&+a^$k@ARIJAWH-~C1sO*NhT`{9BzVJ)E{ zrR@t(o;*o?@}w4=I`BzUXDK*JtZTN1(gjEvN;xGIlNoA-#jefQovRr)rn)Gd`YzjD zts+U_@fdG^;C`^+`5>%N>xQ9#9)3rOwZ&r6qNc7|Pl;YJi@4`6@JDP4Ha}Q?mst_d ztQ*tHd7n1lxUM~H%!fA>DE!nD|9RBqgYOP2-cP$iX5@B{?%0~Rjou8B=^PjdC~#)R zRF4R|l6uo#yoiY;Q{m-Fo9k8}98#paPeFW-KAu}`Ev3HPlb&Zc2Uoh4%gCq7kkk+5 zDq=*ke{x{bdIh&nEB|mRn`$<%PgYUg81wl}jEq4&nq`4+P>XAbtM;!vhJd`cewxZ68SbzI_`FTHZdt*D8vcF}tC-W=o!O@^O_b z5-ar1T;A~gcNZ}PWGheTlEZ>#=wk1*;0KOzXc|3RP8D*JShK4!p|mj5H|Vmy$uIrr zs9dEsA{>QVvZnMs^B0;y*zVK1EM37O|Bd9+KR1>xUNp2gyTd}$y|*9y5Ur*@UMo5p z)-7Lb<9Cevpn{``hdE-2ifx`^Kp8vtRw|E_u_d7&O7Qwg^tVedl&_IwCCEN0nRM7& z`fi#$1f8_8~!?A18J&22)zHs~ODyQ4B?~>`H;jDPIc^4})=C8ha zt4TOkq5Y3dZgVH6n5$}p%=)?ibqiN`vB>3iFYz1rt;(Vt#edyzX+Ji4EgSi4EDr9% zfd3EwQAg@%f{R+EgUr(UCG9A?))PrQ-w%q9B8G0dJBOTcDx{QfG*vBHWfk)uVt+br zzFTEUAXk;2STcEU^N+7p!c(UkFnT-N4$P@cD{A~|IO}z;77HhEu{HudARmLN5g99L z+=?c-#B3di&AlM-Kt|H2s#hLNOPSAEpk>1(fo>h^{)AwA_*=KS@6hbXWOw zcj0KcbH;P7VlHa6k@If*hOjdiuAJkjNtU*3+~<9@nZL9_57+0r3CS6iHXns_)-D99 zS2x9{eb*^~ubgt2k=t})`~}C^X|w9tZ3}KR%LhpyTZe!5Z!>@UUAVE4jqgk zDnABa?=+6hM4-*}jOxQ#4D%A|X*6p0r=m%ocW8c6^|BAjTG_LHUfFAG6tl8d z#C#F|)gj&QY|j|7wDLLyLgw9g&7l>gazWu2{8~dRR$Lx`M%?Ms5V~b*^+gT4KaiN2Q!BI0Wk@lR_ zko}Ih$b8?)BI_GSyF||8bi6*37tRe9HPgG>wNi(~_P=p8H*Qc~;ePhF#N2)*5`7X% z8E4~GrufN+>N#zsv2Mmv@*#c0Slshh_~u$P&Ro%Hf8O?g_`RJezjL5lM4>=cn%_J_ zRAo#!WF)Ah!FGwrFF>#2w@HxTeAqta(D-RmeD!&_qL<4h({SVGo=yK~IpAs3k&bU@ zJ#ecpPW@@{v1cy@$IkJ{z0T-{zSl^D_;?j|{*R^aPB}6cTwmed_=00|?PhhG+}d|? zYbO^RCUJM{NB2Im3f{L1kBfULIw~~(_gwAR80AIr=!#3f3Vywzv`9l2mS%FKl_*my za!UF+-f!q@+YfvrmdSDc&bcouJg(j%5U-owKib48Dz5StS!!&I=+o+|pAH0FPET%P zsLKEO9HR5g*IS)C82Nh}oh53Iv3bsdk3NPP=bJHQ(1|}lxC^AHSp3&YUy+E zj8sW8S1p(S*81C%E+JGzR6^m;zh@dtj%n`pS$4t4SpMX*4_Zs;LRC#Av>Z;eI<{L= z+(*+JN+d7;6&9gH4%tgTt?lgDoA{V9{JIaY_^u50#HvRdldO&{7Y0RITRFLR8C%3O zw2>)|f48T#*6Z{-oH2%^I13@TKD7Rg+7XYK+{vhG`j>E1U0KW3X^ZtH#GE!wR`y zVVqma$wQ;yCG=023N5|x?A_zBah%K1VvP(QlLr%Ymk1xxYmLpF#w>dzZ%%S9o~)lf z{!y{>+chi1TkyHc<%i2&9B)?I2F)xrhO|Q1-Fo#=@FA7HPyX83ch;X7G;XATkUDVu zn+gS|W16i_F+6L&fB4)fYpN~#LV5Y$4u4U0{2*TOqV?iPX4+C+1iH0n_-h2^BT8OI zAnPPvC7?M`=8J5oy?j*i$iyt`+7)B3*MSMzxTdSC0(CEmv@-aro6+2I*q4)B+2)s( z%Ij=*qCyEe+V0B0KnfK%r{eJyGpb7atAYjv2OpAR%vv533(1I(y*t9yVqFi}OF0@X zLSgX9kt_ktdqu;;TK41cu;yA3dGgkw23KTQc||=#0Gn26PEs;y9D|Fo-eKRIH4!eM zc82E8m{@-&yvNa$WY%u3a=d(Of?l|h@1HCsCr47oSh0(fuL+9aAW7BLO zr=Q{wrJnxyMSZ%8U-kSJ+{weaTjA>+ic}U~$ha5KYrk^4PCnR{6`)b4%SWI6epdTF zkMX6v_rgSdIWHuEj+i2&>B3mZX{E3wO`+_NcNMAkya&3R_Oj&{b0aDXqb{xjrY}vB zzl|>GO-~674}TwAYWAEA4J)dun(*++$uZ_GFf%5 zH8LtZJfSr;g+xJy&c~GQlEBC?p;pfD`mH<6`Z53gHr|12wrSE{qdH^Vt0mAQc>r;s z;l@oZc(8iL?6QhO4kU69d>1BaE{B>}Q#^Y4>)Y7?R?y$yK8NF$`p4{y>(+-siUYTj?IYHVzbs$6bf6s|(E_?z+x=SgROp4fzHLXtjP zRCl-ep40x$!}>wVx^dYJ$uCu1_s%SeLyl-r0k_W&a^@)CF?xbE@m z%KpQ729oBdhv)cLQ>@d_Hhr2=4;(j9RgXxEgI-4WCtCNs!{2SK85gegGp{keVO?1% zAEP{U@1|p8YfHtGLi853&D2Hrsd z!K&lZot92;WqOiNe1w0ob0jXASz?ApFkFR=HSYC8q_}un$dB6iv9)aFucI^Zd6o{rx4}UvFQfP}nA!`B8GnFZL~Xm+0^1 zmh>v}x!&3UyoMXc4^?|NF8gba{bJo4I7{04_Oi^3B=l9@WzCUghXR`Od;PW?LT7EV z&#uxv+prXy57@zjuj%c}k12^N(ZO%~-?6NC*;Ky3>=3}=qcL;4qv>%&Ef&;Ae2*UG zhpxTT$}+<7_PzQlOa1ri7s|^*+REC*%mGRo8s}g_u^5U&HV>Y$tg^Cs;3sg$w&4aC+D7nnQr?htg8j2P&WgXpFMrm4*$0JV}K-C zX6Q%gFR;Wyn%J?kly zdG312{F=Gi*&6T4)u#KOz!ruB>c_ZWooA4ZU@_@mkA5rkiCx?~GTzW>9FlxUcJO>> z)Mvkw+fFgm=Xf|5zNb{!7FCkpTP(uI5jTF`F+8PiH{k&ZF6PE719i6Wh61u_INZ!z zmwX6nkGqO*F?_C{ye24ETW#?m_i4&#bv2r$@!|XMDSGcMpza95iwV+R=4BOBX$14r)?y-+1g63B{tUO>hw^FX!NqrUK4F>&vc|0+UgotBp*UZgrx zx>c657@KJNeT_)1FpqBI8w=QQT?G-uPyUdD_de5L-G)lP=}ClmNuRrLbrFp9zP)H( zvw;yG3h`Tm=UK>a!wQ^<-!q==tAK*Sw8jc6&0?Qn2ONp+fqCCV^An0 zOQ`(Q*X>0+(Uu&q@`Jm+xiNo_!&|zT>8RA(6C3*st5TI1UW8QD2$KV*!UvITE$NT` ztG=L$WWkX8}o!*-AhD)P@jL^6cjAr;LI@XD;nPC{#ppEX2IWd zF?;GRdX~EUxP^>bAST+#jm`s zlWkiQg--4CWz)$X;<#v6PQFy8riaZ1W5!+1XGpebUv@bW*&{@MmO^y)f0wmuc^*2z-Q$(DZ)Q0Iz1f+AmbOWawUBs8Qt zQ#ki7S#8~4%#*w(>W3vlAK^s4+rCfo@b%Ytr`O--);lmazPw(N1lhD26vzK`OZ2bP zb}#oBn?Hd1uy;HX{<=3<@yFf0g2(Juu=H=Iv)CwEcDP&L3U2c-?#C9}NRC9)q(chI zdNQp9jXhRl!Tet;gBkynWm(Ry4Py|g0v?~cGCuM$VLC3p%5`+gnSRxnicU-~+?*Mc zfB=+$R{6W$4P^4E>FdWYJ?-t;!Jmlw!n)rx)AaWb|FY(ZXpUg?sJ$%K1BS3C2JMGK zb}B8g(C)J0*pffL5iw)BxQN|e1}ppZIL5lS;P;h~rk*bAXX!{jP5Z9RvHC}>AKGzW z(r%*^Se1vwe@S=Q_Hn-1pf2SS&b@ctnN8s%bauA)R?BK934foYz)j&S4mn}ZJzDG8 zJTXJr;5`%`%#FL#jw3~u0fEEZ!tH*Kf}8h!b#*t9S50)T4I*Vpgs&ncp}SeLpZ(`@ zw}<$*qTtw9bUOxylxMe0A~Mrvvvo|j@y?$!(<5@Oyznb|UDw<^hOE3pb2Y5IIx-Bh z40CVxFNc!U7K-~ovfn&O(8B*BWhH<4Kp;p)=@qQ&7U`}-ej@kj{X<61x;z$x?5yc#RN)WM1f z9~FK6$!D*(H=%SiRKDWH*_{s+W%9{dc7`$U*o~7bZHE~XS9aIOzcrp+6>Kvj49!iF z-y$kS+AY`qSS-2NWI=T`jg#+O^{3#|Pkt8zoLKAQc?(C07ax&3rinN5ck3BN|dkk7@(EwwwMxo`4H!77|fGhT&CJNJIQke5I@i@g3X@Xa!SW50D!E9dAE<0^W4F z_j$glcuCARf1V2o(ppU5l?7PR02cBfP;Jpxx+flc8{^Bw(-ypV#( zZm14~^SmTyS%bN|rvhVN=y`2<+XWq8kDSrov2w)QNnROe26i~sl3S9bDF`(v9d zxK*>P355qeBLa1S^Eh^V=NV@V%&EvjoSmmsP7Q4c5UdYq;9AqqST3e4$Nzm}JSJNTFhpSU!|J;VgRe~~0NcP=H+p3&>6Hz4nkYXsBr=vSHs8PSZ@y#xLz(XueD5+8^(%s$NScH^-w19ws(%phcgLHRycf(uz+<5ohKix%tT$yN~_rCfY_u zl2;rkW;f=Qs;pt=c|xTLt7_p#F>Jn%pghI)=kak{h*U-tT`(qP24tp7G5R4hP*`7^ z75ae4eW5}>hR9i%3NnL?x-lxUg%T8X8%j)jsIBZ^0QD~D`nEymX9JT-6*M%)d#G0- z{20j@ok40k2uFqu9|~nEqNu~bn7^BOPt>BLSm5VLpZ4RE_Jtp;mr=c0EUCM`-nit2 z7wGT3+PPYf&lLm#B-E<7?_<)6Leh2qm%v*aF z2bTd5G^19l*{es5Qz8S3KZPkJm6Qatw^jzq-}uKSVqX(Ebj<20Dr8US{ErI~F$2lz zIt(lsv+ROtk!uHsUe7$AN24ZQoz-6H!*WD~t3Vh8EKU-ccW`{%El^S+z^sO38RNZuE9)NJWB6#_W#B{Ur+SDSkwNOAP|ix z{d|zC38n#mf;K`s$`8;2a<&Ay%&VDjBjejMr~|hY`ebFQKB%bj6%>*)WtqkOtSJrY5l;A<1UL491<29S# zr;qAvaZLaYDRg_4setDoFZ`0tUw;6DDJKUAmQYsI$<+-PR^VLKN&{6^P|y#ZMBDdt z@_sec=#q!cq|Q6yh*JMfNqGbk#`^EiKJZ&!!RjXFFnF%_d6la2{4sp=a~ebnKBVQ& zOiWCCj%dbV%<&@99exqRUI`!(5Kn!LSnq7%H26-B5lF!Nh#=4wE+S_QW2l8;_Rtqd z!Oe#+fQ&SS6J^M>4Zd9wFB~k$s87%lBcj2CP5nJbXtrlVnl+0}?!yB#Y+lIBw1Y2n zrK7O&oVu4i>E55Ey^R&=2OsY}Zj_PFIE^EHd@+~CJCvKUFCYEJwU1d~Y$*1Hm)}l?Jjym+yqzsTKAG14GH;RLguUTxCp$+o^9O zRkVbmgXz|+F!>}A0PWgCuWo2CE0$9N%VD7JYrId8fs3F*Ti#dhxs|J#;?dE)PHS8< z@?N{RFs43dGj~Bs2y~<_zb8W`d12i0@P?BHi*m*qJ^{fSb@egZ1j}f%vGcu9&5WF! z;8*nG0B2O@Zf*06^sAiul3Go}grAk&Jv>qWnueBtDXW#WoYS8JZ7q%ydquQf0u%Hd ze?RHNJp^+J@N0El;d{&M`-}bX(2xCqCF)Tq0fb|y+Pl=&GeVJE%Lt0-frG3@*CDZ4% ziVPx$!`7XFf?}dN^oS9McAzUs?d|Q$@XJczKHWYXv)+R^b|(u)28Kr@ z!LtW$0>QJtva(XaA3MhnGpi*s&N8#I*2*pRjylFlYvdp=8I-XqOax2>?bvxmC&Eq* zFwT3}>}064w3J0qA4q0(2WOT@?=wPFmfG9ymQPSeGt5_5oKvLNyg-8?wKd~9tp)56 zig+7ZAMcXJdxdoA&>$haINndeWfz1)?OkDKEvP_XrK|%Q<@Adq3 z_bx`h^{9Vhd?0O>6vo5wZxdF=`^!B6EUEG%X+BF+SC>4h8}{Q%9q~gE2kZSXlK3$_ z{WM%X>%-j0>|kzEBnuW9@qTZs<+tse?IyW+n7f%%OwDb2nDV{Sf0 zx@cFh2SDAg%ulff_qZ-xZ88b`kuX4=(|S_y`n#vinQB1GIt2s91AC&;hmqxPffsq2 zvZmy~!PUzX+WOMAU>AyVzkfF=QFV9|ipkt@n48H$S7fAZ96h5qJJT*_+f9Ymm+;0t z89NmjTduaq4Qh8Vuxe|3x_|r%V0rDYl~y%AY{pQKr!MC5&jmdSbPo^d=rZ(aU&+Z$ z@fAc{;Pr8JM<4J(Iw4=YQ6dhr{~+ zXFa*v555!R*hgl{x3;t(0`qZ~x!{DqDKNo3X$pEovLl!MP&J=`crvUFYd;?gM?2Thf%C=zZO`ZU!+`_fm|9d2%!M zflV$g!6A7Pm03IaE&MkR()zbIbp?V&&Z~$dQ zIX)T*^)2cWV`P%Eump7y4MF4RD|wf77d_Nlw3TEJPqS}nfBZ{^rvEZrApd#f+^d46 zO0sRFmiPw7D2w6zcb3+f^ca=7&gSntUjYA%vwi!aTOi0%ZfV%ENBJa8mj}GPT9A~< z-~8muCIdPGD{0?f?` zGVKL)x>f_E^8Ph4mIo;$x9VOfoc436JPZeFr)mjMKbYjp_cc12uJWsJMthb?0`x=3 za)Lvxdwg6*T3WhUS^kL%0cedjKa-0z9?(2o?53A9;3WJ6~)1e3Mg+mIcHo$ahR^b|hu$?*@ac(bQS0$O)$-}I z;lno}VRNGBXn@e7#zigLeY}@a56K08x|7BDmcM^M>aYOuM*%Fqx|V^I2nxcixj0m3 zU|?{|Oc!Px3GYh?yDuo}Ke?!J3XA;W+7q0n+94UU+-lm#r1R*JCW+!0^=7h4ar6G1NYa&0%G2NoPM*g5g1#O;UTBKQ=XiSUG* z^G8~Mv;BOz!_ytH6jbDS!T&P1GN@PNilX_*97t-D7<(4dP1oB~@^_qXE4YmU_17#k$!q&G zr?+q7O&ss60mj4wEU-*RQeJ(rTI=bu5Qg=M08zk&kb$Yicb&-&%<5?i06hFnOL}+P zwF@q5LuZ8!#bv7Y?O))ha|WmPbs5cR-UV6O-OssmUYjpqQ3Pi@Pd-0(m-SE7GcbHd zP+wz(-=K#eJrDWWWg}FWB)LdH(Kl|zgA5ylS?>r65x~N_;Nbc>s`5k8*Uu?Bap_#D zm-kzFxvZpQ`sUZ131>8ZlS$>0QgJdORm5pnki1CBv2PY|l7sc$au?RD?+y*0xCi23 z&U!7fk9P?Lj0&@kmu<c&!wy$ zi(~XY0kBKlHY&|egKF~x zI{1)Ay%mRqrY1=Y3=B4dkCxF66(7=W@LqgOx%ZeE?H=>iIcoP14up0$aDQ3Gx5_o;-!1TOLV`5-#_2S?jz6^ z{=MNNhJf|!M^m&=F1MU73&qLBi$S@JBE9?Mj6lzsXodKvmqX3#UFnpPa2KRNcXkqsmfA+i)~t#G?xf&9UIE%?2|~>VI322f|EZxy4ggq3 zU4z{EF|;G5+!m3fw%HoKrp_tt#Im46X>(n;iLrUigCd*JnSAmCzy)@)Eam?corK6SSsULf?vGdB zP@@01Y&{+-60|gPh63O1k(#&DzSUGTz)xrMS1qnPs{gYy;Qa`lfhZ&WdTzMHX9e}& zE)+GP>qFX-?6M%LSj3g9ci*>-;dW1H$JGl}`Cr0<_pwpP8UI`rA-dyP&;;c&B4Fqc zr-jNA_Bj;HNN&r=`WY+ceAX9{k%q@5~Ed-Xo~J>ofhal`GMa;=Zb)~_W(e1449`Bu>dmz~u8`l%zS^2(y|K5sG zhMF!XA4XS$q6E)eUnoxMGU?7kH>o~T<7Dwvpkl+{k6pf7v6%)LqKKDRANAhc(ayhG zG<8iZl(5}rT%CNO(_dHYbf~;u{m|o$^sWugKAJ?t2%w6l|GoI~df#En%(uOO$QCri zu=jYMRJ5)gBE6zj@oc!bGALbBNCCD*pjyPVyf&DF;N#b(0ScM{CVCdiz?H-661zPZ z80fzkIt``s2Zvg}-g+p$^$HIVvAZ-lbqA|=@Gke9Wakv;Ei(c0HF@5KM_YL*pkRxfmf+wuV-l{_|kh*BVU z7lbl?-nFO;*2&MA(*ttS!&O$E{?%`KH@a}3+`xVPesFY6*5W7Y%pEB%lw0l`ypByz z)3Mqj_0xnU(@i!K5%TsA>fL-uGWt*Ez`w>6B7ABB(Jv{|(ymn{GN(qu+SPu~l$4ap z@cW}_#zIOst4Ov{fC;c=QGbtv`5hmx6%Dwct!_u87AO?Tmqlza&)fqQ&G_I(3bN)bV`6T#nOyg z&`GeMw@^Gfq7Xg@VQmh4j;!0_4k(}Pzqx#17cDsMs=vd@XXwTkajTMgd4-C4dV~|1 z6oZrjAlx9T%(aKE0!jul7!LMrx%bT=#ZAE!^Ki%JQ6=T;6et60jTIK?nYCCs`6{9m z$Y=k1ze3q{nUu7;bXO#c+S|WE8ydh@{I)v$1_j5w`~uMUv3i zel_S_5b5+worM$uP<;#O6%aX(+oFNrl&?S~$aby?v6b2Z@A#5vRH6!R8-{9`Mr*66 z(t0k1dp3_|XMvtDI>M1f`#n7F?0j+GV~~A(!U=riF`;PSapKxsy4^j4oE^#N5jZNb z%huTkC4h3!0m^~m6O|waw_h>29j^)#daj&5rEyj+wUUOY%lZx1uFdP-;&YAGnJznH zX4iWTb?A5!BGMxZx?bHSDA_AekY;P+3}kS1e1XL-nV0dC%y68f{$juUS3ZW z!VPS60k9Uaw?fBD;J#5pXq@0k00svD5U*xn)y;!pSk@u-v0?P}MDyGVqv)+|s4OQ_ z-=7v5Oca!s2*5G9YF-cT2y~(afA!E^LHh@)Tl&*8$6*GZUc0})jt@nidtLc|d~s%U z|HOI9SAWh8uT~%D5j3cg?G}Ed__st#H@> zWpAIGa4yh#f21Q+++FNd6M}9ZQ&Eu* zD005D^&()>aJ$V3s;;XSlnUd+3DQnAGN1ABnfYS+}BP#ABNxY<`XnO&3Xkk zEf4){AiBY}|Fx8Ek)`)P;@dY6SRq!#+v_@mjAj-2Hj`Sh|3dp*duIqSr|*jh1N!sO z7o~759a2wUdxh#n#ux>X<52mb@Gnr%ii;SSn$m97xwpEmJwe$oc8HVbL*42My_WT) zZUDVNzjTy=Oa5W9Ev^n4n&w3?E7{zM^=w_|qEYL@MqTG*)%|sgtWnb0olm5$-iD~O z-%-x6_iTFi-+iscRrYn|wOB5q{<6Ej8fE&jaG$3^R?V58U{s zeNbIsT6b$#*H!@k*++x10w*JR@Nj_s5LU;aZ{=Z_;O;Xe_+hW+RSJUMS6PER_$EqN zp&f~r=e6V)3b-1v_XNJ1gAmU@h)m33`-`}81e;|tQJ1#@Y{dbG8v-A8d--hDj&2By zjrNnx_poyB?!-x=yuIngU+sgN5&imG#9&S+O=ai}L3dh`;5XXZp}Ir~rFY4A*`DF2 z)xedH1Yf`{6d4{FJPP)rIPsuL@}9zM_>lNP3g7N;F$YHBH=)zvlr=aOg`ftR z%`WPkh0u$Q;t4KUJc(yR2R9U>PNBGmp;8ET$7wlQEH_qrJbMRQX#Z8UmbLTXPzE(} z;7{OhqtMT=h2Xd6550Za0_0oDl){BDvWx*@OD4JnWnH^1U7y|hix{{#+Hq4pl;qy3 z2j9jywM-SLs`kqVUj;4I=FUbos=rTon20I&O{pnJ>$X#ANo8jS2X!x2UjKiMc%1?@&<9PdPGz=JerK7+Q+x-m9(f!?{gIH{|urU3nuL~5d#2M)u zid!kEk&mJ5(0wn{>X_$$HTGFqY4g^~_hYyseeGGk7-mY$sxp~u3a*n5CRdFwC)NxY zb5g9o-EEtVW3H3)xt16+BbK&to3J zS$~UXVAosxPKI<|ZdJ!vJ>7J-@zm(@Xyn!)&&_Kv*oDvN&0`T#ZPB=i@M(;*yXY=X zp_!Q|V;j!B2CiKjN`I)Ff0w#6g+* z2gk$KtXElF*mH`PydN7u<^R_Jcy;mUJ{snC^iW~6W=Wd`l%fgLV{q`9o<2>F%23KL zVy@>paj?V<^{RO%%lr_E}>lBNn! zNB;Wxa~d))){6nOwKj$@JK$II1lHCR{>Kx%>w@Ay-W;b0*o`z3&)vS*LC#P(Bt(Ba z0Nn86xPD&v7vzzfG(P;3-zI^Y{~r4%Jbp~EZXwMhBdjs;M_=3GNBR@Yr&g5-bLrSRgE5aR2!P^0)I@B3h!n55 z_$%ZPg+b_u!{{Xd?K^?m=kI};|DQcq7EdC4{hub+h*j2Afl7`jg3-?et> z#T@b^tJ_|qR|f8jkHb;vGhU0ffacy)3{1{2?nbn>9sF-3_W;Nie+0Z9>??mIjksky z{t?xD``!I_GOKfSouzt}b?WV_F0<{jTxcmMc!mOerf$S%cUk|W93~B=WW0bw7eqMH z0QgC$sgXcv6`BsP_#Z_dPI~OgB6ajMhJrFM&;|O<2p4Y$@hr}xz)zRi0)0^k87}`l zaHN`WdoumbrKM=bos3cW`_eq9un*7mF<>n}ZUXPc%{{9}mWJmR#x{QqR#~bsbAIyH zMFw0p^!8$cOzFq37dx>zt&}q>c?_=lrp!=bs&E$43+oxbQN6-&D#h<{(9(X>-WSNQ z`Qo#U<~&*FFeus1=jlX}Q&Qf8K9ex(NzG||y6HF1!x0#U9CBCW zob5k#2$~?^?jnF|2qUc;8imUP6ok`37;Ypk$$qJGBTV${JyLF@51}R=f6&vu5;`1U z1m!IvP+zh|jBjsK*2=X!e5?Jo#Dc}y$mD=y@*7Mdk1SR&5~tLU8#c@IkBqucAw<9w zU^+iG9|}&6my;@`G{eLL6zeiF={izFxQ8T`1R*QPEn-ZdI2&k!g4rg$G{1s6V*Xrf zw_54(b3nZ!qN19Hw7ol8!l(o+wL!S4kReAygh~6eu-|xN6$@EX)HpNN-e;r;8-ERv zgF!?r9pHLyWrXyn=n@b4P1w>iXH_aN+2E(g)r^FbE=+@opjwJjUZ+VIZ~WA`m(W|f zZlWywpr@)|b06(Lv|qGm=rL%kuOZrME9bo0B@!Mq0crD|phKMu-uQ@&y9R%KzBTya zrw5R1>zkT4_ICS#tIl0;xxy8QVwtMnL(+DmOk@JCD1M>LvyIkSu9s^Ja3EG(mf&M{ zbWQgYFL>te6hF5b85w~zINK^8W4Le(S_3YH3Z>eA@NjW`iHeeh$+~{V>F*7s<(z3B zQn{20^1{!O1u z=&HmM%=Z!LItEAQ%b#v(doT>ftKSsRe_6<9I{LJUj(?aP^KI>2=`2EXF(HCHLK>W= zVga^wC#GZ+B3el!+PDlI>ESsW>K_{3DsvUk7p;t$iL#UXA2ISf=IzekZhhkqfVvRU z@vD913;ynMZ|ofr5ZL&Hs>e5q@p%W=r6qD{UgUj=&vuW#|Ga|Q03 z56COQfCde3{7@dz;5{wZ;{`AD`{nNs(Q{??9iiCPyV>}$IRwqT>*Hsvn%nZsqYbd1 z`ELp!*L->J4d45fA!#{Sh()l5U|`4>C%8%em5~u>Jxi-zP7bkJPFkbzimKO2$z3)q|v$~;uBSl^Mq;T^g&%<20G$qiNG-1s@jKA3tgN8t(jUA4*Y$t! zK;aERl)=$BmzGp|SjXr&Kz)3C?i961i*dQf${})g!>8r@!+y@|%w>lDs<5M#&84^u;Qbf>Q-c;FP3w#O~?b;GNryopQ2 zOfE!a--Y_N-amAG=j=5mIh7D{ERxnnO5lY26y@Q4~M))AMj-Sqc=A3x-xCm zjiH^?36k{w2yLsR_t&PwE!lU^&kjwR&-OB?c3r3c!ACjuOKY?JIc)zwePiK|r?2G? z4$Nv4;3@Dx2*H0$#mDDX|B>in-b>6XV`}V*k)TQcelpLAGq@*a(WRt_9`m1*qK%?x zP$_lE^>%Pl@z^^lP4$?Jn(+n!##I6AZ_Uw*HhO1ovnPLi6x|8qXYNoTU3-0T?Ul^_ zzD&@+e~D|hC8_zwYhgmBrXpUH6W>dj|KZ-@+1>o?HhQI;-_n7cS8~R( zZvYR`#%;^lcO6RCLPSIr9*o|%xwv<;MXsm-{^q8jTD0&P-hJSxM;6wEp$8XI zc`-#xek|VGhY@%?iy>q|8m#K63xw2_KfY#&Q_&~ilaw?H?T96WjrHL3dw|LiD(F%Z z&bXPXdEpD9*d$Mx2?_59f^HfqjO(>B5&Ldo}~ERS%=dFgv1H|{gn zqNrP99R{xjV3QA~jSX7iuUiQJq!4-F7m>Ne@ z_yh-?Z9-f8*Q&dScezin8;YvC>G|rr*^g_6aE0({{oSWGZhcb`1 z_+^nCL#1|Skh@@N+e0pn`^y{Wt&g&r$)vQ*bZ?chi{JkRw9SnRD{#t>WM6-Dov72H--nW|r${q~W2vO;mELQn94$7?V!_bt zbSiO?=z?i|goXeKoQy=>*`B^hoaf=8td2zJYrWTnlkTKLd-Aix`89op?^^qQ)*Ko= z--!%_FZcv6NPb}Slj%W8j&7nxae#9fh7&Dj%M4Uh?isopiwpn2)4#e_P+I!^qgad* zsiY*Wq?_dKxd?m5VVIEcTg^~Ep$gZX{N{z#o_sVNF$Eu~+ToTA^LQVZW83ML>j>1A zvOXCrn!a+YqmEvdT(=|YK2JRAwVGOc&_Qpe z^y;giw@XB%Zi7hm4Ud?gL?fyupJ+@fDu{?q*SAxKHrJ56)f{6D_1OT9QuS=v0ln;#%``6mmHVZa9 z!=GGy2IOXJKyHt&y3+Oxtr8gg1GV|Ld`^1vX!ujX4t;~3%t8yNab5}YE?2Q{d| zne|-AUkYay(CLQy3Ne~{LRXLFQPg_Jrz6E?IOb7E{2O0^`pK0__K9V@QLdXQT&It? zZj}c8*}0`(g*U09_-Pzd;6yd#@Q=~ieO^A(QmZ@vy^$)qd$(=sZW3;Hi`@lzDGEX0 zCjgETfESik>KjF^BHK2JYXXgRBS?N5k}mh@fIt59=~K3LZKAqW#V7p`KHtBhvD|xN z|MiCk&>z0dBLub!R(u17H1+(oug|G#!X>Do^Ye|04h0qXrrnm?D_rpPnKh^>1ea7? zqe)LTUT7f2XfyvNIO=DnK3ctViBjR(@L9UsPH2orC#VsjX)ewjmsy-WS}L9scf7kT zovE&>G162i>79|h#2qLqGgbJIXQJuru0}exox+#Mzi3P;&5!FIK&VgMLE9cm!>(X| zlDBCR5kzOEzZi9%ns&QLxK~>eW)@ zLt~200suYEno|ktazJS;dwE;lqauJO+EO*vboVJCoh)ffOCpAoUV%%50Yn^}R=S|1 ztPyn<=Q0~7zLepdBpcll3y_#gx;f#xe6kZJBy@k4CC6%Eri(kjxDpGcO3^Usq3cII zw`LPEYx+{@BSXc=!%J?b-Lh4C+`BfjWA?okKVKZWzJ<16Z%z9u4uLmdTO`DC8eiWA zN0vQ886Y??^klT>H<84EA zO=buwnUNV=x&5F=nhQ%>oe`2LViTWb=l`T?IIBCV)zz8WhR!LAt+$W8Fyc(?d96|0 z+cIAjje(|F23EyMn~XqdO}VD1dA3|GKRsoVHIj3WisVn$+^zv8lFbKgt~{uZbTRcF^Mvf&z@C(E*g0&!W)R6q9)h z&alsUZ&SZGT!R#tF_CUg4pr~1E6^DHe(Tazz&$uu#OtEcwe%@cE5+^nsIP&8FykLl zOH0b;T_;$nmpp}O#Oh)~nNxSu--U$*BqsLMrZZS$yI=SEYC=tMIA7j#=gyq2JkKE^ zhirs3qx#8|F{z5`(%6jSIzeRhKW41JGOM>_Numo6#!O{fU;o6}UZ)6cu7@qvA@6oFX+%aUfhvfmM6gMR!>f;x$m>M z4pHBF`0r)<#7keQ%SfXl>LJQ+9iEQoHOI@r>r9VO(HhTI4VE0bC@m!FY%2UKH5%I5 z3b=XnvN9V+hkdvVH$BNy9bd6)umH=_y(?HX`S!J905-{c)1n!b3bHiSv9wz;Db7Uc zt(CV#q%+l2H3nYV+q93!DZZ;q#B7ROWGm(Js}AZkPGH0+{7K(3JKUPalw+kob84j2 ze>&Wcqo*K^&+4Jj*pk8oJf)$`3vTX}JepD*5}vT&vMKq=tIcMRiW$_N(XMDS|Cr$+ zoJ*?kPHC5R%j}YZ@TFOxSF&Y;QHZe7fcXtMif-QA-CeTuBMSjRuZ>4-6xb=h!@oMx z84zM6>vPHDZ_1PiRE^Yp-mlR4Gn`CrEUS7fT3}11v-;P4h-NZlL%~>HiEY5ZINf@L z`uTlqV#wg7sx10VcqY18IZY1f$ranbXS*Z6 zcKWUBUzKxct8zZI?P~;CQM9Hqe9qR$wz*%GE9bINq$?EzjTb*tW4f?)l56V zDr0RYxf6<%)wNgkyPCPWKjWGQQ?8kzsv_yTm`U5%juf^+`aoM6z95FyhkZRI7h{wmI|H<=+PT(73erFI ztL*J-6YY4!_Ba>nOP3oe^d18Q)C83%nf%;maW?YKwXMp3S z>t6SGVmJX7XW^y$E~=JU(JtFt{6L(fI~HX>hq=AW=!cmI)|GCmpLIC}-VBs@NH%~j z{^a_7EN}5<${v1M*JX_OObc{xG9`|6C5~?!Q#@!A>cMy~omKKTr%_*I)bOvYm{cU@ z9u2HqgEzY5aKqI%ATdHVyBJf5Cr^E;Qyu7gCT-uwsn84_S|4xwi1|zPyO!-5%c2?>K>~DD1=a<3RQ~4!+G3<0y}YW>?Lcm%9585@(wAM zX{ApOZvQE8dIDSVZ-o^W$~#l{*WQ;jCW-HFC`X}GN-ok-&U$S=hF~*i3v8K$XYD=B zxN&S1W0#Yv=9!O0oVhazQctgP>Dcs>tSY7w0cX+9ww~=sb0oiJr{x=5--O3rA;@zn z(7{zO@D_)eRNSCHMpGm?-<5Aq$=ajeM%~=~_RQ0+=V1%~6oPQDQ-Ls#_>3*(KCJLD zG2ug4By--89K6mmi0VMX?~z=79Uxb~*|j|;_w;Vu9Lf0)E&Li4m6FMz-yE_4R;JW! zi=jp0BjeU`{f(A@BPQq%?^Q|AOjy2F833R{wVz)Wt zwjz75U8lGUlD97%9?$u`=T*x60})bS9^+BQU$IPok;c>CBX2yGU){f9pb-#go5uHb zo)>rbooXLe)Z4Nh*o{j4r3J1J!ZQE(!#x?b#8FCJH70pK058q7Jjp9)yqQ9DKyP`4 zm@Cnf!qSgogcW-q0v6YKv>Olpa*|88k#dvPpc>Bzttumlfnm)Z@!mX$)xOx^smI7Z zwFRa{9IdwX?(S(g3CZ~m&9r@QHW`1V|H=pZGSaYYaVmsf2#tT5J&z`QRmw`HyW>_c zIFxca_DY}KL5f7uC@KhNQ-WMqo;PU40igee`b4tmk3wTel2`l$hD*aHsNfhCm3l^r zLHb>wM_jtfp!Z4Q#mUU=WtEwymgY1#0kcK?rfr?6kA>oIne$K57k|<({-n1tRT7ef z`ud`I%Ns2_v-ke($jaUrj_!_mJDv*Si6Ieb^iTY899dedySwL%ZGI%X z3X(G>(aiqN6i*#i&TFVK6^awE9wOxl#Ey@rX0^KOs8(tkF4!N@I(&^Uh_SUPAxr~} z9;7=wr0U0ZVw|LLW&3NkDvE$n=&pX(VECaeUu!f~p7`FCC#;l1*o}r)m&1`z%U9{` zx9K)F-;x@Fp}?;2i_>-$(H+SowU9vI10+Bu8g%q*?b%DVmhTlA4bie9XFM*U!ZlKq zdD1cwG*5D>OUp~Csyp-5d0pN<h?)Pjk2<3NtM{MJHx>;&h@)_mQ1ul*Y9@|jy0ckV#JDVMQ<@FQ4QSQ-%B zujw6r{rNke41q}%7;m8g{bBWfuk_E%Hej>cnajpSjTWO43Bc7vUVE`&ty*sL@Z{tK z`D^DhcfFV2wkyaBH9{~@=JQVgHjD=RF^gS|x^`s^N(&-X9hRp^WDaw4z&s~rzjU}2T<*GMQ##nJr= zid|n9A9Hc%{J`s&3-IQB$@RY&zd42VLO0_ZuNeZNZZY#@%H1u@9+k4mqHT2w{M(XZ z(G+RKnaS%H#KQeT?yH-2jKtcUZr32AYejFi%;PRYvx@i>GGgut))oF-!lZ{=$yX_o zsYKXx!N%XjkhmpIH0O}Wc3Y7n>ewU?AH9YvEy=dF9STn}xCvJV?uU$6*Swrz=1Da+ z$e)>%noZTkZRJu`+*%rF93X#Y6DPaibN}YKK@3`k<&anNNG4-IS9x5#Eaz@YT~AwKDpQNOn-mB4VZO6+Qqx~k299rk_0^I^eC2= zmY9^n-+)(-Va%%zN0hH1x?AjsZ{}P2hWZC6s5U5`nz4As|8#jBa#DEizeYwQAaitp z?5vXRlDeKanI@jftHja_d2r0N4+{F^NBzjNl2Ot-LN+@$mJ15UWYMbV$@&B&ub24h zW&gCCYsX^F{&nPBspVV$w}FF4p?yMzc)4i;E7kqfQem+}=*D$nnRs$$R?3|68xRB% zYmtQ=M_Y=uW}B@VVCuYoth)MkKGcLM=diH6Fj&!1SWj|^wpCx+o=7>aWBYIRSFMn7 zF4-FEt)aaR?hChua}zDWnkynOjHaJ>!^c zrCgJ7(zMs*i{2<^D7e4zeu_#BrQ>x~)5BJAOema62(;fYtCl){?>nW{d-kMQeQJ3r zvauxF)ZbevUmeejgDDABir|aYmfk%;M64nEu|*u~_?coiXCYfJ=jlQ~(px~bL1!Li zbFbbA0x$#ewpZ=+`PY4LlG+9?4Xr59GwH{?)ADObwl%R-o0KbVqHGH6#FJG3! zwmrGn^1l1j+?)|$8^P^AsK|I65tl2FEdxajNjTGTV?#OW&C5Nh=zi|Glos02{nzB3 zs|%u7wL9StVR!2`|4afpGJz_D7if0)vMP^cGlYQonu4@h)X9o4_58bv?Z!*^4A;mkjx|CgyS;4JEPtNg6Fv4*fWNnh;QV7 z;HWz^ZzJaK#_

WCd$MAv&`b%zXSvEu+24(Lr9sv@IJ5?@_ha`mgu1ne-%}dO81b zdR4YIV4@YRiY>LtTrVtC8tZwNoQmA|k{F{!NUUFEJB z@BX(N*LmRvl`lt$U^HC2y?GfT?Eg2XxYTX8Z>#enIE?Tm{d4G3=G0M{Mv_0<9Q&q*Mujih9$!yBY%iI|A_f}Sv zDY-a1-AW17x%N2m#TwF90{j#KemIEWQiR~M9jn{!k8v49?} zx3@QB1KSU^89O8tvFt;I3`Vkf*tp+8KQVQ_$OA5JLVq-NF+c1D2vRVDp-ALqV{j0} z^4dNs1KZ8rK~9Tdw%nRiGdZDyez`G9uVY>0cY`_VWoTWc-qNeJ4bZ?og5Z+b^0|<) z8PYZIfoGJKMj@)3Ic^vx^)H6~1302>0Lv%@M>N=drOHu}^q|yC2ITAkP?75n0h12+ zX4h^zqabk%vOE)r^Vg~@9{Go@Gzneb|HVBC1VY0r<3Q@s{YPQXo4bUQtmU;WNUt$RKMgf=v*kobtZRc$Znyx2M~rnS6VQH{Vt+2vxsW!>yLSSsdmE`dfbw3!iQsooY{cM>Qv z?n*B$CGdgd7r8Pf_zGiRS_0v&nMQI9pi?Z+jPN_*?&^Fa$Am8X4GfgZ6pK%t4-0+j<`a z93Iu_VWC4@*VQGD5a81PZ?-1oL@GTI3*qbNKowP2DFq{-34aZKRRtKBQCEVBC{|UR z!8g?vgUv47ySTG+InhIOjur@8Om$2Ag1_NEFzKoSt%$PCZx{2tIGn|@ByLP+comk^ z3hSuptC4g2HMz_-8r~glQ-Shr8n#0 zUP7L+O0UEZN_Zk*kGX7K-0d7-BzEcH<4Uq&=x9y|e|v|F7lI`Z&J_$ikFCz$(TPjn znuh53QEdL=F%evcXow}GnG2MEadpTDI{uFkdJNizCpRBe7ZgWHkgBo$J7!;>f5(DN zs_>C63r#*Kpr+ZVe%$CvKHyc?IRD2{+NZ1K-*Q+&uPjVMyf5YP1xV_OsC;$VAb>2l z_R*#bzVAHzg?hZFkgN z=oaxEk$T{xA+#i2-`-~Y1`rVPI;WE_MEGAbGBvsHql3IoMDS?hna%3Hl{Qz(6TF2S zLr0I&++X?_i^Jg-Aw=p-4|A5aoqF#sH~)Ri*(jN4Y-kvka4~ns1CNl<+IgJcte-y7 zb&(haqE}FUf?>bhr9JbrqoZR&y2VCN3jMf4pR9)CfFjK9`c_=b1t#XwzCSP4D}Q)N zIW?1J{ru^FdU`5%lx#`@jRAQX>wj=qZl5Ff)ww>L2PYvG0vQE4IU9aS`OB&VcX~e0 ze9wgCCCa&SN*_kPKY$*6SJJskA*Hr0aoEX09()Bu8@gQ~l1Cs9(s}910$4>AcV)9) zfV^S*-aSUj{+_QRO3D#}vaw^)_KNinArO7tS7TdGtEDbJx8#TYR+4r$5#BT?oN~i= zmwm#=Djaw;OlhT2nRR|Y*jc%MXJ@r3#CL}ZgOg8BgB{iWtmy^A!-mcH|8LkD2nivu z5Z)LvWRE|jYHV~A8QO@%6*-;QLVzJu=W1mG%>U!;8-$U3!9#0?VE06ZPx?S!6k$CZ zKw*;2j+grxBKHFu^GlMFy};Xtj1sphtD56Sq;Mdqw3TB1&%d$t+c{Loy9f1cTUZ2D_EQV-Kg__!agNP9c5eV%6>>Hfy|k5E)37Wvb7e2wM(>tO5AvjdMQ zJOjgoq)11&K0g(t@c~+C=%O1{z33T`GCj5RR1}vs!h0wO&NdbV^;k5fRB-O0yd6qW zc3~-lt1X_&cQ1{GsF5^irnQihOC+LLQ^U=j6LdR#d4i#91BCg-Nw50A;tY8LkZ(#< zeBN(CVx6AR$Lr1_0kTF&Io%=WG7nYa!))f7)E@bBmPO)UoH71kuNQfv_%~H26ie?t zYW)Argqx+ZL84coO6LE6*m?`7DBCt#c<7KW=`LwWrAt7%Q%V{sDUoiFMv#@R8TZ(-cTT@2ly8X(bf*)cG`VUwt(an#Y;ec|9d)$6YEyk z*RNOp@OlC5pyc_*K{rxTu2%?{z2ic@xF+rH9>%}6x6gBP!)rVkb}947 z=lqN@&6!%{0f2ZEhyHUM4ufh`^;e4cuVnFG>66HYn=Ytd@aV3p+nFkGQex#2 z?Ay;z-<-FzZWoxf{?*n5B&7(z7n!FVQ$p9MQ21;*6gZKywXEwC#=1ha&#){#Np||LNR_b&XjU$CtANpgU$Mpe1 zi#kZdv56V`IkInkeKkS)A(f^E!eyA8WdzAomPW>cZQ0#iDpOd_It>uJ8DyhjV>~QD#)?YYq*}i1bG@NRuA2UAqZ}kh&Ue&o%0q z`jWPLI#KPzKXQq9$@^~owqp3- ztF-Rox1!$f&hW>5bRPcR%VrqAluRFWkON(a*PcammTSPT;1Jd<1UVZ2!3R~gE%Yx! zhi>lVp8Pds{PY(yra3?6w_kN9F{MSZcBGI5JrTr_W)lGVKkem*4X0% z)G!mOZC_9&t-Ia6@${^;Mw``lYMIe;YdZ5f{q$LRe@iS(hKW&s=vU*)vW_=49jU39 zKLarh{sGE9W~v)~g425;A4DHGW81oGaFZvjMBi4a7~-5}oQ$5Vxtu@~ZAZJ1qpf`M zTh5H=W$&j&C|KExw6M4K8OSIP4iiNE5OWWHBRgB;^oN-U3oKwWjRdn(MVYv=;88ll z$%)OYu^e$CUVVErE;VEA4z|r`zmjR#j+uSX^!F!IwH_iobz&3_T5Uz6d!YcbaK`_j z`g3BJTF$a5zAURv=Z(a>gy+wn9qu3DRl%?@O1>tH@Sz$~YdmdlAqeDso~*`(UCeJ; zb%~lazk48&HHIWhY7f0nBMt%JhwnSLav85EOQipgj>8$xyo*!SbCtc5MX(~bymjX^ ze7o$83Q}*#3AH$VmA`C&eZIZSIJ&jw-0SA@XVcrjk%Kx(r%Ob0_p#gUrw)+H$jxRy zFZxQDA+O9vG8#WBcH80|Mc0&~L1SE+hX?uOa&#HCf)*RS7;Y1exQfJCH`H$*i$4<0 zhlhIJOr+GzK+Z$ASV~9td+)g)nm9vq5(-Lp2z=d|EGRy@Z;l(Vp9KagOJKoVjIp-} zeY1$$_oq@`PK{xMwF~M^c1A`cHsNoN4p2PZh}-uWR|nfO=XaU5943qn;`ZJ+(Hx)O zvBzFK^NTdb@g$l`%vRY@t?%msC=um`K}+xSis|wE7UE6_|BrTA1~J;F$2wsgwS)UO znSdJk!YNoIShYco_b9{h#}M*{CevfycDk5l$N$kVdMSr3&3fGpEU&{!?=30X8Iji^ zzJuEg$(s+lL*HJhukNW>zzT)|zJ}At6qf**u|Y1pobsF397&Q~57}rtp3O3jEi;s8 zF_)4jxlXyIh7qeQmECE~qQMg`wUsFh&z`K5_VpW&)JsIy&W{mog%0LN#XQSym)B{I zO^u#S4W3OOpw7_#!=~NSbw|~-;Z=;_xWsU+QG20V#iN@J0bGG2jcyO4 zS~I>0etiE#o-%vHzSwC_LBLmd>|0V81kPl zfo5W8aNe%?-!ZCl7^4b-F{&`R57I}5UyeC0eY}Wvkj)U=3k{w+t@1K8f=deV$z=dO zE3^6QasO7*bleu(*6+9nRF7(ZSK~DD<$L7uRk{2a?S5_8^f4&aVS=At`bBsyC8L}7 zqIx_d%l`-%pwx|QQdJJtpIoUg?bap0kdcZry?dplr@jk&>a)F%5P3p(SGJ9)tos$} zVZ7HDZ}%E)3=?(kB&;5m(RO^wLR7S>3_khB_hgFS{#xaCGCSpA74={(W$B}dufvj& zIimSb*`D2?#DY)35PQsN!8Ma4e6hE#R zG#(_8;R`Q69kfpDEGI+L=(--Ff#K^3x3yvJTK3K)Uj84>p@cGbQY1>Uph23J&Elb zsuc6wBlD{o<4S2uOb@i~pw~XbU-7?`OLRw7EdvG~7HZQxnmp=d&O`p}e;NPg|2>l| z`L=Z%*-7~xAm&`uW(;86|57EVr{ApfMSw60407MmAa`YsCrj4(EcDog+QlV@$f>vH zxSR%?*LCVJFe*DsH|be5`LJfG`N_Q*=CJ~)&jJ(ltk)~2q7^n2(!aczuQgpP(GQ9r zxguTXMwHSRtwz*m%=S<`PECe--tGL`Bjg#{K(#lBZ*;uPzw0)M0L~*>n4G>_ZGjQ~ zoErq=lwjpa7)3m?BgKYApYO+-&dfV$6{NmSj@VFPa-84?q?vFfb7DfLCccOPFZGwe zUxW$gei(To$#(|crqo3JMqY=;hED7c9~g)Ixy{;^j1ctjz%P$D3D&28? zTY~>A7e4>t!Aa=GG-H=1cZ_Bw(Vt?J>rdP18!c*~GURr7TG_9`Lw4SfQmwuRBWrh` zRCs0o(6@Yd9|?c>V*UGy&I-|`Tz}pbix@GYmy;q+)qV^oEn?TksuTu$wU5*Fu5^p) zO_{$s3i7Vbck#2@=KG2lp9hEf1dA(w2F+48UcT2aogTs?O)p%R#&BK0^))5poh_=FhMR~o zCu?5jDu*#E_uj03nD4$ml$)Cf` z*LLJjZ+EaWfh>+1yRJi|X}uub+g5XH<&L*n}7q zhurj+qsv2glXC9OaB(sX<)n-;Bj_7k-_sKY$K=UZ1^EU)gMmL+_M7JU8JtfSyCIQw zT)KWsZ=W#wu`64n?nm5vQX3apVQLtI?EaP{Fz~aXtyf9~l3x7zT6d;Sx65BA_$R*G zxTZRHKaF}WMN-?K$84^Pwh6VV#wEDIkq%w*^|uPZ<1 z&A$CtaABG&sNMIHWzW~u8-z_bQj}eb9VumTs$VDEpwt=LhsA**Kdy&ye%MgG|M3g( z*gSnhx@?i0A2UJII*RJMs!(-T#K+jdye9^@idQWiI(`~ClGf4i&>8!1ko=II3jnOo zx%=&%Lpfc7n!SyfOMh=BNXnWIPavaQlx;ZyR8}tSsjPI5EFhPJ+=2Qje`sf?)xB4*_p2Dpxj#eVwn$|U#ixJR zxs)Mzs&53=k%on8l%j! zC5ee|>Enpy<>V zg1=|1ooS6dfmuAEFkkhV8v%@}uST=LAZ1ocVOGlKXD(w|?%C$+^Qwf0Qn1+hbWc$q zUbsM^)d{fpq zk}9R<9F?!tzUtPbPOI^b5fZ6<>#ahGzpZtkv ze)6a7^c-=z{nvNohZhYZj-k8pvI&cWN~!OFgqI=y=VzS)n_oD-q8T?9OJ9z!34aa8?L{CH0LvO;MWM#E$SW-{M~?_?e^Q*}*#O)6b; zW+Z-vw$Y(&y=lS*=VqB*qN`)KgQ%Q%0Au(GlF8QS1h+_xFx2fuCmP!&fQt%@$xPq? z^~uowaMb6}3-_I^wgQleeMDk}%W}+u7l0C*WxT;6Zo>@KHJ@%_Kzo4k30aj_esBZC zWg}>;wfMw~3HS$xo1zK|(&3KXO1J~+9>Zf@WMp{b-kk5x>-GYN@eNNCKc60AoXQ=! zfS4v~O(CL#Use^ARHSuNsPV$8#spK_o4u*?x}~Hbn`e^;?J(!37>ga+334?aqoW_c zh^zK+7rhgD3OssG?&CW{!1!He2T^#k#V!=Gb?B=GVBxdaU~@76Z;`;R-){bW&4jPZ z*no!kzWz3|6=-WVh(?scR2(TU4M|ZTXU9P5n(LBdKB0^hF!N?D_r|EHgI=uKK3$E? z%NkS}z2R|yd8r1xAu>^aE29BEuq<@YIYs@YQy%fw8kqnU@RR-o4WMTlor->L4h_Et zgw*jcf?zQGg=`@XwrE~nEg;N9B}$zfp_X|wjq`&skWZA0glQq?YS<2*t2#@4_u75C zSwsY9g7y063RbuaJcsh9SWrZFQ8D#&TX$*{7N{Rwu+;8as&(c1W zflK^r=hD5(XSD4-bFa&TTjt-`Y%5&!vP}>vx?=EF0HsTO>7Fu|bUe}r5!D_{>42i3&I>43ZjZk(7;R1NBGl?wd7gJoKzl%OuUdNQR!61 zG5HWxkY0uY78^%R$N<+TvO@`1dn$1#`ZI_$01VXawGqf8qNq+xRtkg7Q>17RfI8M= zO~?F8Yz8oTAV6Tf0{^CH#|0FTwlANfTW%qH3_@g48hUnmtV(g@k0qnv{$Yk+=D4}^ zB-dZc{4O3)9pY*gDEQ9Xj5uS$I24>4nR6>LRx^|?At))i5$-h?g|H%jpuB|bKi`Kr z)Z_xDl^agc*ZoFk+RYyVx@;00F%_G1Fh$365r7ksT1Q$u5jVPV?-v=(^}P2DZP3w* zb7=y-iVkyYE;d@_A}2|D(Sai|#AXE}v}sLX&&ueaGs3T%UjQ5>?I?|Wh&Hi$r}bCy z^xrrhB=)GW7f8$SH1idFmxX{{T&6uN-M4?2;5G&hDcl-h_?-)b`P}&@UhwLL$hs)< z9`jx35HX7e^0_K!X#p?%JMDiiFz73ZmrASQyR8dbu(h4O(WSI8@RgCfVh6jhD?!Ke z;lFAtgUhp}H@xe<4FS+oCr8<<*Gf6ouy~oaaaA3pgo^Jxs0J9(>%F>_t#=RXy6Z46 zqZsBY)c$@EViRs4HpVRMh6zfGt`=+6b7Mla0ZV0K6hBdXHN(76J6 zW=bes-7AakLP>0~DBsKYdmz-m!qO%e#itiWR5jug*lE-nm?W=wkub`o4~?t<5acRD zigGreeoU#&_vUya1{JSWt7tCG&i?)nlOyr38)-Qj@@0yn)r7Y6dPsr4W^5w-36~kr@@F zdD4$eU1+jwNP_k_M~pqCO(|G!pe84Y5eLJmAOff3bpycWEg2x}0;>5sIW*8>1R z2f~}mUOT>Ede|pOXZmh~vKl#!NXq=k3Ro=#JtG*`K>?L-BY}AKg8)hgrR3_89vkV- z&$$c~SFfTk+g~H}L|TNu;8Q#j0(hHxjuv`k4~^M35Tawb=7$Zm>%hjbAydSo2L!g+ zTpx(jLaPH=JuK*Plo>s0l>UgVBqmK71)zF@D zHundj8$7YY{@V)(;7qeDr$sFJ^db-zzi%ol7~-=iGeKnv#Y^*{P#4%NrCG~9lE4Yu zUVa6U3#b@X?)h;e)k=9OZcAxZ6vd=xsX)YI-*y2EbST$A_}4Xnz2JnX61aa+y9JbY z8l;J{#;DvzAAuH6j$^3?1v)}T!n3b#g?KuOjEJKd<+p;={~l4r_)W+95=u()!fUxh z-$7=a_(pO!c+1-^9_W@DU}s@Czyw-6uf)U_L(TslZbOvp8Hx!&2gIM6^1;wymT%nv z3Te#>3=2z!u@>4)uWLxkgwXy5DQD@mTZrjFX_%Z9=%55oGeQ2>vVk)|hc5thAUd80 z!DgVWs>Ovd9&j~=*7=%qWOxg6PI8e;oW&|-0gP!5!!abRkN%!Uxas^#RLAcO<&Y5^8aTSMUy-zhRHL5Qpzrr z0Vs;kO^>K5VZ7rmrp}$SjDJIpltwbCQ7IL{d|_oKZVB7&(cj$%KHjnXDJd^M+cgJC za8N@D8m}>J7tv!*MXa2*TH6lnB4s6d;)KhKCq1viNG?+vC$C#} zX0vNc?S<}R{hIqRZsFVs`1su4D;kZ`M_8*UE$&pAQ&>>Q7_I8J_pp7f*WGw-G3xp{ zVXSI$OkgpV*_1LRp%^_O;S%Pj!q1vnxlXNNVbUT>ot!qp8s2TzHTTo|r*q#FNwep^ z`RNnp@st-I!5z9RyPG0Mm2R+x+`A~iT-b96c&IFD_$o3kK0cm%{25OYsnK#l0R8Qy z6l`|+saeEz+Aq8P%LuhVfAN7a)l>!hV*-Ty=dCyH$LBk40mP#w=M+!dTN%_%D1N7x zA%ngLs42cb*p%XK_ajv)x<}O;`bTcNI)tvaQd1{4K9<^en}n2<^auBXf7dexy!r-; z$$fV(F}H}i5Z?Y%R$Qi+m~{^w6jl-xR}$nu;q!$tuG?@A*H3Cq9bIPG8vU^yyhDoK zXQjN`Ff1bTwDM^~Q^{dR5UHk{py$z_A^(okHIT=iXkT_zk%p)5)vG|$4y%G!Ikb1f?LQ;AStZ;AVz@Wv`MeJ7m$ zNLJibuHj*}Yon6tPF(Ctag_b4TcoN=b(+m`$0Yt%h_w2bwX?l~@+ZUts-L3{N)H!K zkba%xG_;$<MMN?ZwLv;#dy$71hXChnh|xb;Iz)aXhY`}4UU+g-#u zGmMGdLcq~VK}pFXC`b$=ii!pX2JI&kbq<#t`*YBW2IIbd)raXXF`+N#t=g5Quh3yo zHF|2}BMeH^2K-)}`RNVQ&vxHGrEdpF=LkFC11HiKh3k&69;HzZzpzM{f-nO)8FAWP zV5_qeymrB1R~pJ_1SGlsDOT3~8!^z7%JF6!&}Dh^_mx@egLUgb_L zstcZjk+P*^uBuY_MWNEe!=HKHz4k2I-$~TlnQu!A3L=$S$8~GlyXSn~^ztM|>P(I7 zwkrJt;E?|Ptt_l#|KdQyS4##>QE&d+DXIEqJ6)N;H99trW2~L?J^UvD{sIeZrR$IO zD5U{g$ZiD#{Ug6#wD|O*M!^9r6$wMyv?aQ@DB95hV1a#me!PZ2^wkO3eIx)TeNYmb zeV@W0g+hhP4~w1-UYrsm=IaM#yFe&Z=-%cnX_)^q1yUjyBZx{!z#kbO$3UP4OKbsg z&jo9BJp!iIf~%&!0Qhm<(R#yBaw@y8`+tz?oH`1Q3U zx^?F()|>U3AOiWl&;z%K>G%^;NTcuZPSdM8wO+*P?Rti0WQ+GDW|RC~ zEc{@<5lMRgvX2yKkPAU|>!NCOyZtq7)?8{ed3(gCD|_(__eJxckt4Gof+ZZzn8?rf zXu%5uEsI)@nU)!kwe@vnn9X1eJH3lym_mdDzZ3~T8!$nfF9wu_7ePU^2grgWHl~`& zDk}*PUZ4fC*s@lw1S74t1TLdSJowD&FxSRwbY>2SL$@)ayKGVNw1{wEGnHh(dNYj-fiGEyWO5zQBr~i&rG!V@xFNRf@ptAcsZKHwCxQ;BMENcYfT-L zeR_vK6+1bJ?!NX**TUSURi<|5Qk|eCHTshPdUYop_P$6;{Elapv1Wz@3xBrG5(zNg z-J6XZnIU}H%pQ_4W35=cGZ#iQ*Sf_V*g1|oyr6OnRH0$%UgAFN%is<;zWS+!h@}s= z=(lA<(Se=QgBb*}F*IU+=PB;n9kPb3f~l8u4wUhag&B|r+EG_ogRE5vBxEdT=b0>{ zt`6(;?i%i2F|msKYLY#w(SVp=N|pNWlZDl193iI4{|4%T#Bakq&y+TjD)hjtGSO4dLa+ich~iLWmQ=Ac~r zXFn|6Rc1{e;pi>kN15#zdm2X?kJYXj*g{D;w5MYm8Z@b(>9;ocT3&I$+S z=}T+Xji+)dNIPPMF~41U88nN~6NGtKV0U<|6vD=EycF!(;b{jKvUXYAx6ohGt>&`% zFcF2!Zy^<{9X7+WU`EBkGX`%_;o?*+q+LwQ>F%7g*6uY1 z#ofTlX>{jR-#pKW_Q+FjD3|e(|fFLg(hb)$m`t!}mOTt^p@KYLE?dQBYEH zz!58Qt^Ujhl;Z5b;5;8}a-WI?>SPBm6}UgqX}s)9Dn^9;i~7z|jY?C;ShuDc-}ehf zZw&VB?$#Ajti_NKDUqQYhsxfzBZ@IIME`A6n9qZsl$WkMImx_o7dJa-o>N+WGR&70 zoj1Fq{>Tn9yDk3HuBStwdX&oQhQdNdm~zKlVXS=~$%}-Ptx%?oU#Ga8`R4^6qI;s2 zCCXWjlU;Ntr$|hH3rF@@MW6i9Aq_Y)!n6vbG!}|q9@oC{eI)P$F+*RdjB=NuF^+U= z@8Dn$2yw^i$R1%<6!_EnTB-siph@@e$Vl|gjyFR7{{175R!fe1-&Um@#|xVB^72Rs zuow0MOSthVZhTwH`5v;KJhc%!)%J(jm%US19p$o#I+r43T}Au9>OY&Jou3>-JQX3R zuf^@mIP-k+^pU&L=HC#aSz3r!0f3Ie6^4SI9A5WS_O7O?RKJ)MWa_y2z)neVSz>vG~X4sjyTI4mYSt2@5N?I)+V5 zOfG}ad=mH*Aic)RE4Kx_((@?^_sM8}i^k&WY9fTLiAfw_)R?|}k)q4ww``&4un{u4 zX<%Y9zV+7*EO@^Wa{2ls)Xr_{BM58h+rin7_kOf77!^9Pu$=2lzdNZ1)k!%0%q!ES zG_hz;Uw0pc$}@*9!@mYg-&WNDG_PcBU#2|`Y@p&#X}4cRw9cVX$S$=G@xCmHmD1g= zP!*9WK>KlgYG7y;#=+xpq~q*fCDhAPd-n07V?RIik=VjO^)AwGNb;9(@cy>JMB}!j za(gI`TlS^uSbpx%!_cI+%Q(;8p7UU4$r3-WfcS}{RP@s-ej$ij(gKhQ@HG65o^vSx zeUR6qcnn%Lz%|``xR`h~>^zu)ii(w*0DMBVJPi4jYZu@na%4j!L1r!vXmgkVvT+Ga z!rd-H37grs_n-IXz47^lQoim4plo8IKnrePwqOrH^I||7=gCjhJKhRdh{=(@FN`9j zKzZ!t&CQSN-|9tnLQruZt+T&SbO1AM{af_OF~MSSG4zL+^|jQx^~YD1!ZQK`i&Z3< znL7md6x}|M4hZud%nKCM;p5w8nsmP2OI)A6a&s8gK|jg#@FMM^Nv`ZqzKE@{z4dEk zL|SVpcd*;louUxzhwfeet;pYPe}=BEJ+8dP)1;b^Q25zkNaQ{~gaY5&&Uql7jov!* z+iq*3dUr6^c|NnT{6Y#3X;5DFE9YicX&f2SD|0lgijJ1n3nuMKtEvb&I5@6>2Foj$ z#>>pSW}!CgKjoh0K!b__r5RPhfx!PO92w_Lhy=zyDwLSa>gwwJ!3m0deGx8n?yJ@h^VR(NzZzl2UQZm%Cy%y~lyH$&iAGe>VI0Y1a@+&Ew{y`-sV{q=gQY^F$kge<;&tAli zjo`kikmAjj_hT}N+qC2AYTtLylnxN|KRpp_KTWJlcV|1?xx{UL8uYBd79qbIT~p#W z;2@-NFcZs?|4mkowW1*9lS_q?yN9yPkv?X2JLY&}6>fC^O$Vi57ayPEF5NK6_1BCL zTICiBlM*uD#NABI6#&5Jv+C-P0O`>)dK9zO%Z|%Z8|WkD#zL}NM<)j%Tdjkcu0`I$ z=WUZ_$1~ zUKAO*6?&C@N~NoGYDnsQLQ`iY9F-eDLWBXq7Xks6z`5|mb6LjUJJv~DEjs+9jF|M+ zIV%`mrIq@&z~B)U?e@Z&BK()N+))|*TK}(bLc;f461DEg_xcn$KPZ>4`wIuA79vXC z6mLvGut)IyFeuvl-sJ{{sp5vF4jyj#t>_2K*FAW4^~ywO!N=$e^wZFMVcuD(YL15*PXqX*m^GH+r@xLWB<^@ z7?Gt>^PwW_^it#8Hsr8Uc#1{~=WZhEjLkS@0;h~Be9c7nd9xhciJw*4ot7LJCu0%nu>rha?hLL5_J%NgC=;YW|A!2&6XD3S6fl~$!Uz_Tfv z$q(BY8h7yt#I)E+-Lhy8zjI=oQxcgJ$Aa^ru2@-;<=#D|!;qmnsvUg1gDo%Er;2de z%BePq#XAT3`g-|mrUp)~qVrnCp45NA6$oKW_bg0bxw28A`7orlhn2_Q zsQL7ziJrC*x~kH_R^i^*2$A)Onna?WQh!4JRbat?_en-XSUabZ2-E*0CaVH%6M+4B z7+R$hENeaaQzfV;92L#R?-##;7cfu-J*_G7;(e{`x2u-+@CSNvB|($;K+!ee?L0-t95ZE0MRcxh zaH56#$h zfSm(>fa_>$yK46mek;IlUTXC-Y0jW+3gWR>M77SM32OFE#GFl21(TM6CMXqIl_YAk z)Sf8NGY4e?Trn}R=Tl5U>sL{bWNtyh9^ifZ&2;gbsdDi%x?A02l{a6f6ST4(#K$ko ze_9Yi?fS`P2E^m4Q4z{gQ_jo*?N4nowP*K*dUb##1zf)@=+RBrF)Wxhd z^V7kYtKsbKC0wKK%k37Ak2YoqF|fieMDU9OsJ;2HS#HJ${~>5747<9{R~g;w2wV8# zqAg{`%-#{;UgZ&eYpIlv4^|p)Q31hYY*|T&?fVQBf&e%i&Y#H8)r067 z_^svdctq+N<;28GI za8rIYeSi;#Lm5k(^(`smV0bX`KKnR&VKSXWXr!SFi6g2d% zj%0B*zdIzDOmVOMgRZ@m5Mj#cKt14L`pRk|0Zj(Je`(Pi{>735l!5e9!>{6bYl>N}OXsF!6l#x#hRKtQXH-k;!=MH`w>$$4;p{qeYjmFfS41qZ!4wG826O!xMCu9HFM&#imcGu{72?x1okSpmvaN?p+Fb+ zvykz7+i#v}>)@a3LZcN|UYY4)N^QMAnbQ4v3wSYd0BYrW=gzB;6MsI_T0}zW{It(t zH}Dz!26gBqi@9Sez+G(vq-x;>&`FNJ+ZRh>l9L@aVA`ktTdPGDlL}l;S~Uk&pCQ_& zuGc>(G!#hCJw2FtP^x+!UR_fl%xxrU-bIx;ePD4ocOOb4nVF?~i+w|Wi{muR_G#Nk zBnA6g$|5qPv?LJ0T?3I-w!94+Q^mfq2a}ja!oJ)EwovbZgYLGTE~KGu z^NZouo=$Z=ej=oX;f*1@NeS!Im1Tb{=2Vv7w0E`bU80cvjSCsSxXl6o-fr>sXI0(p z134vOt%(=0+m${;=VyPIrDxHC=vmPVfux{q*4WZA8Hhm3?~3~}|Fe>MlN0CCU{KJ? z-ge>z(l(*l(i!Vrjs6)qJxs_!7Mo^odZRnu$WXHB4Yo7y&s!WfgOg}n zjWQ>h{{Gxdzin{AyE+qE6pM>13KQbCGX;L(&T;qwCFyCb=fqAY2d>Ss7ZfVu*wTnV zP95kmKHqL{qeW%F{?mtZI3d>6gW_eo_wK!KU64V9TU|xxmwSUQ(=$#u;`<;zmg3(_ z(LDUV{y4)L0jYt$H1^BlG%4ndC_OW*s=HF(H>)epWMB8cp@2#-%hrWe+`Ww{h>Um8 zLfYt)OP7&2q=B1TX>N3lQ&Iaqq0!s-+Hn?o-<>NdD}Rghe1K{j=sA8C?tiFHZ6sz! zXKsHzJ@&feIpoR znK}%#hBIezMDa3GPCjMxK88ETbi~&wPlYe18Vg6uN~W@M<^s8K{Ouv(3q+(ywA=6D zhT%)I>)*kj=m_R6SkTmQsFBnudJynM4eH1EMZr%llCvHR$(=_|7M46EdrH`tu5^HaUFmUi%yCv(}fMA8&8kRpdVILuM2p?tlUk3R~0 z!0R^tVS{hHU~3ra2e1&kDN^_r9__^Z*_NNZ;^Ljd9h~}g{=UFkThC@BDf;Ue_U9oM zQIm3~237aVw~_`t2g1$FiPZGVE0mN)+5c&K#dF8y-sl$U>nmw^?HI@t#C21skB54b zgp`o=pKY!DMl;LSa1@b1aD}RG*9|JJO8=Z_(jV7e7L%yl=NL&@-{^)fE-LXKv!hp? z!A@;7N|JZUTjyT66Z{L!`+tIdXWUw)BPb*lM^A~!P(mRK@$WU1qT!tUlc}MeR~Pxe z&lg+{x3a{5s0TNFWrc)PkM`={t`#e-Vp4+oL6f7d^j8fqQJp=g<2s{g#C^WT@mlX^%bO{S;WwS_x4{(TAde=lJ!YoG@^ zHA3W(udOUf|4&fQN}FIv8Tds_tp$x*FC?Dz0>P0r@6JSQPVGTZ&L zr9};|;P2*{Bf=?CodSfRl9}`GA`;rd+xPE~>Pnfy8j5EAcYD3;cu=Q`E=3tY)T%qD z{deuf%1CtTN2AkviSf?3|Ghl{^&=w^Mq;otnmRG@@z`kpIOkH^_e7W_CZqBj>xk%2 zyT0%~;s0HMGl}$3?J3$Pq}t!r!1(VLgjj+@!OHx5h#A1c%m23;q-D1;*KKgsovsZV zu&|b*{kP`Sq>RM7uz*3WXnno^T;;z{>zGuBZ;Ew8x04~a5TBHkkmTQQwk!GXVYtqS zp(!$4k9xEJ_6W7GMjzB1QbNaFrz~CBrV4Q z$?G`}HGq$c-HCUhzEu7ZrLzqkNo;M|BYV&@Au_SL&w=W@0a*L0*iWF8CI2~ClnUj- zd0_SGh{hw=1+}uDKYw<}1)xH&(hlZ6Ay-$ln~@ZW4uRsz%Da@`mERAKj>Z6i4>5}I z3q*AF$M5<3FA|3xVt9aDJ&JEHN7RLkF>smXEqowUG=Z3Znr+nyg~s2@WvPq6$ltM2 zQIv84t-%j~IwrKdr>+O-iWLYh;kO@s@$>>L>O6!VJ>Q&)l7UH@f6ugOHjo#^@PQJQ zU;3Eb1@iHipa+Y?6fD#>NAUNfqS;eYbUu3)J=wv-$Xa?UiyUq6?fpNfrX(<>R?Y3* z8LN!2r9P{c`+u~CXhC=R`Bf;-0SV+pt*w%4fAxW-wRKSovE}$HV3i5Avp4$)%6rO3ngmGBUY^gruYlPb!H6AWpgY7M97h!5Qh% zBqlE2`NNwxgNlbWD&ZLhSsnL43#{jTPY?EZ%h ze>Q4@a)Ai>`QmrP|18OuflKl=)e&E5uu)dQyU>0a4rto#w$o5DJ#%}%_dd{ySwzY9 zLBOw{{W*hc3D!y@q|${pi{B#aI1kk7ZTqtLfnov!F)}*30RMHXX=?QAQw^Y}Gtel9 zlI!t|syAF7T3SE>GUA!!J_TK6GgkuC{pwYV@bK8;U_d1&w@_U>L#hj^kSw=oGdDe) zrD%)AH^b?Z5m~t_E2K!0r;dT>CuF#oUZ8@w*E+CuQ1mLe|{}keYeoVM2igTmXDPc%u&s+p%@91bST` z1jCN{MsoDZRBSS_8X*>%Zt58XD%o#wbH4G3EMCYEM8MFqTj@A+QJpQc>}w~RnQNf93Pw=oxE(Ku)$ z=pV@6agQZ?An)oKp=&ttPI^L?shB%ghJ>}(>>m>#A)XAob>8xyj}D@7vfY*3-LdUyj-M$Nn~WkRL#5-W(4mI=-I+pN zRcd74SZzioEt+s@$-z&DX!+Y$#KkgQm6A~M>6xB3m*Mgau%p6D+v28$0bF`dW$NTw*OL?d)kKu#R6kn zQs|SCjmnTdb9dM6+!)Hs54Yc944X9xm1d<4{MWf7Js@I7IgKfEn=B)H_=rkhmtd>g z#Nd-M-J|ILDlGpH`%vN7_`p!{tKTOiZl)U7NR}fvQd_O+ZbeJauec2dKVs7VKA(&p z#j@Dz?M88U7ZL&EB<=+wD3A@^QBhzLqwV~q)3=15eF?&e%F^4*ueJSBp&jAk8TS=Q zRP~%RJbYuXWB=rSb$sjG13SaSmccAfS#)Y)wYAL?H^rqo~GMjFGKBSZ^E0U1LZRi*tc(n$V z+CuKRq4JO&mJ*39E0%IBv5-I_?Udx@v+SEGX#_^!IOAWKqP7O1*+a~-7uc>oY)@tx zaccyJMbxFBT~CXrRP!u4^b_?&giU$HNGgd=K)3_|fF$AHnTnZ7OfG z)lZ^o(9UYmxUork7P*!;8&`YgO{B-}q} zUb@<)I9*G+B1V#&zl_w14#IT9{X|yG5y@0Bsk$gE2q&|Y-rmqy;m#!5o7PKz>(?~C z`Z~lTDdMIaPve=qxho?(p|w(sn~Iawvt)RXB>4d^sFaku3Rau0ds9f~V z;~go67tsh!@`o<+!Wk?nXgO5uQ}RxYU$C6D z-;<|&^ST@$66mZPa&^80jjfODtpJvl$pt^HR-a0L1M;O5r5x8CmW~l7mnyg-){ze+n*H3=yo23#jc91e$!?UZWwZ-Wv*IX)?V@ zYD%_ZchB&zG_g?sTv-YBi$$w?N(v)_ZA)D5`IzqN0-X$tjX8R(LstX&g*kd7Ng4-U z0-u7>V`D7%^~izyL27;acA#xwo4iY|!3=paYW~s1B?2q~eiKF==G2QB{QH&U%(p}j z5w(9FMDtvq^Q_UZRa43Q@vubOWIEaPi~%coynGc3xE4*NJ*uS4w`hH+AuAr!L z6Kbl-ibVJ1-CZIkk=WlvZCW3%GOBsyQRJ(ze)#tE=Bv_m0uMtvUZcfm z^3bhs?Lps2e1^3oY(aD4teOr4LtunR2_er%)dhKrkMz;^jQE}<)L0+T4@K40)oE&G zAJ6OH|A@9Xa16-UB04;Vy&(3umWxbesB8-Nz|q9uR|Kv-J1*|R>F;a~yoUsz!vDNt zSIFYvPAldK=aE9oW|h+TZusqfCkxld&kqfbCTFY4%2ZXGhwn!$`&`+6Gg28M@xZy6 zRIzxxc8F5MmR+%6Ck=-KO+xVjsE{yXXr)t22KqJ}EN?#(-jU{+cHMlp%v!qc2+bfK z=Ww#ka3jOVD=YNZ`l2Vl5;V`mCri<)I8YXIYdhQF z!k_z+k<1Hw9lOVmR|}Ph{9Xi=4(JPT(BA#{j5d1wQr}X<#-2j+%=226XL$w@WpA2q z@gy<;-%1xKk;T_BtRt7K%N-45cl0RzbSofZ($su(Z1Y~}`b$rP zU+=IwV;w4HIaa1dt~;7PC?6PLQZu=oJ6@P4>14-T_Cz+Tn0-^{=5!Mun_pWnVxd1i zSP+c2T1~{h2Se42WM0`-TtsL#e!GV499yaA8r^D6XRNA$F4a!)wZY`zBJ9*Lx#lax z*GqKnO)EE#%lojdBfne=&P$L^m3+cW`+)l_x(}<(k^Sw~JB&V2pYoPYDs+E#^yg(5 zmfcU|N0L;eNg|iO7RX9J@KVWezbZcV!XQ`&ccW8J@fUqv#rQj(n&5>c6vk(IsgvI%AHy~7nQ zkx_Ppkj(5=geW6LGNU4y+50)a-S_=I&;NP<&wJd*`&>t*;<|q8`#tC9bAEE|Tgot} z_d=NMlGsi081dJN7V@9p1uHgpEyu>dc=W}vi{EJq$Nd+YgY&<9C2K;jQ{89I(WNAn zD=5gSulKF`DJCYi94@(gC`NK$SXJcPaZIxexkM-ou033+SKRg?U#lPR;%6@VpQdKO zs5tF!5{QcxD_?R`C6H{`UQkJk#S40CqOdN_P3E1Ma*0&{?+YVCkp_d^sOa_KFg2IN zcQx9L3T$+w`RbhZuPV~i^Vnvt*))fMyi=kPdr}pS&gN;PF77u7_1784BIaETFVs_FH%!v9hxSC8g7Gt3y9-YT>94gYX&uJ+2XcG=G|N7-4~ta+L;2PV0c*b)G~r#MV>e(t)fB(XiK~n zetysp|M01WT#_D|xcV<{)8M6(LanJqdOWw=k3B_ngYJawjXA;lLtD$eeokLCEssyv zXrxZJb+B5U-sv`Cc-JTVO2BF;MP6sZqp;5JJa(pejl+8uLZ+Bpv>e}OmhW~>i&jha z#j&x>^iix@KYhEw3WlYxDElm(ys{ptG{y_dAJI@1F_U?gIBFIEd}BctGpZT!FFD-9 zF5Sush_)e#_;8^hjfT5`l|{{Eo3u7c_~tx=dYiWNDG%YB-z;TvrMIL)GA&l7zg`f? zW9^W2$oe%}am1UHhbB&BO-fZXjx_j#EM}m}xOX4_s?W3gRXciJoQ1b+g|9|yF)XGI z%i2+W)ut^MeDY)G+OzL*)DCSN-mL83c@?pXgM1FJIxlFNs*Eq);-b53f3vCQIlYFg;oN1wJKL@h`QpA@;0`t`O8gl_b4EW9vVV}=Tq@LFL z!#A|7oX7IHmg>|eJRaxv##o!>-+&tt%Sb&hA*yX4oqpr4-W1;z*&Uu!voncDigPo$ zde#zT(i&ndiMFns{N=|7@o(=VecTXzbarX^$uizE6S_6jCn*_@msjHhNERB64=ri% zTrw)jx}53gZmf6TOZ{5>)Pjj#E^)%cW~tV~`rhHB$@+-FI6r6YAsgXO0|XC69pCmf zvxH+9dm1_UW!XbA&-;XQk64~8Y1|9mu9V`p%UfU8`2BuCV(fil z0}F#-9?DiOY{905@B?Cp?fNeTkP_$gtPN?N%9y`oKN10=&L5_I3dfN2iWXB0lO!YD zxvKz@L+Q9@zj}_`(U{`f*cs(FWuf==WI75T7c@uOkNz0$r;0u^Qkb3H9+*tnEd&v3>Bhx1=Pasl0^@(v z3I6XW(2DkSiFhNZu+9W3#A&^FFs&=VIv!~>D$RB)vq%iL&c~oai3b78c>3c%CY4q# zAru*@_|j)_e7m1%b}m{uL4$57Q)uGqvrp31?NTm6VL1DRRyo)Ikba1QzjR2x5UOxP{6+FyZrj0 zWWW_rM}T@2Ojg$e1BfF_EXP3EoQ~gK=c=OARmJA$*w_BD=Bl6iVLvs<-;vqIQc|96X)keF^iq@KOe6F2>DAGTvpDXELu`DSqBPRWx(nPjO#Bn{TxU_fYI)m-; zCFpj4JSB{}me!fpsbn&z&wQM2r2P!tD-aj^w_wP449320{!&L-ltK9|7RH$D#zscy z9jk>|sbH9iSXz_Fvx9njLDYHnw(V#wjgF4aqx54MpY z!N;5=_75YP%jX_ek~P}|{?w!i^`#4DB)d{YJ?SZQ#D1*{Z?CaotW$<@CO7(dHCCY* zm&nI3DnLDton?d)!~4z?hZ}0CXW{Ktxy&diKnx}O&=$x~Kdkp+Po*yYHI#lU^Cn}aUT1XH{p;}^|-25e6Y&c`lvd)S% z>q{tfwJf996!X)WfM{hFR=(%$Q-vF_2lq~kk7-iAJDwwD`9MzzucfSy#>MEZHCElq z6+3RAJE=?Vub0GYH&z0O=j8>T@k#{W+DrF}_VJ z1n-QJI<|b9pK3JMx=Ha13zOl@1*{ZxHDa}1Xz8}i_h2KapbDokps;SvMJCF=75gyA zF$OpA6jy1_kZb26&qQ}zOoo9Zc~<+;#}hmE7hMEC43YZ`V|hlhvlGOeEQ=bWW2SP+ zc={6iiaKCX-TQTu&|BNn@QuHS^S}}JZt({?mWM}cvDR;0gWDJx-f84n#Si8*FKT|# z+zN1X(A;z7B}ty-ZFt5<$o$oX#gSREDIuYGph(I`O#P;K$phOvc-}r~_tIp@-43%u z%hMF>r@@6tH$0Dhc6eG*@0CakD*Tb!nStoh5c0xHhhT!>RHdUlY*pf$BubS zcB+P1p0O8haE{XvDPwz?)461QLFuslS1)(nZ=TL2zvL3x@x|#5Gm@S8)ew<#B1?d} z&j|0Fp_6NyD{W#Rw{m`3O_<9A#~XyJGbg+!Ij)^L$Wc`c>&A<3HsEGuP-#y$!a`EoI_Ji-=tx5ZgAjI*` zQY>G2#ddlpYmVp1ke7r>-sD4B)ibF%lx1^s(q}k>PwB)?ICp{BwATsC6+UT@nAxfN z@Qh;jRB~mYCDBY`!tJnvlx}mnTrx3{wiDfWEnX(4oM)Xp$b#brEvGiTjlp%s*h?o^ z;x};LCT;)^a%z^e#Bj%M4Gebf5U$GO`-q5d9IM<-0dnqAYoa?R2{FvHwA=mk% zN=m8sQp(DT-Hp@Ix^r>~gy;A`=FC)nJ%cskkiUb$L@KR(iMmx5#cUlFuN|t>M6>?^!jiqLZE)Y>>5t0kzp?uGE zFP_i^qm!7%FE`XM`MvPMIWd~KC;Rg*X?=P5x8IhS45>OC>vF_>EQ|YiRY8X=A6xUr zC!eCTmBdT%)GRH>@i#w6w6tg)6OFwpQVTUZt|Qz`S@7c%g#F9UIZejaEka_N8I^*hM)9 zGx_J03&Nl4T!rLF6{sfqQ@IbxC2ofctQ$$6W?`mMPVb%GYG75oZy^;#ZPJ15eU&}; zEYm4Jj{5za=6qJCGk1yN9uG_Q`CB@2Z9x_Nj={`z#ya;ORd-jUIw~x#1o!i&4NrdW zUaYblzRz}+h7@WOPVoh*pJn)6`PYxn((6(vXrJf*@aBo%V(T~jiVz#HjrO42!LUyX;E)>mK-UKF--l3woz^4+%u}ErtvmmvgZ0H8NQrRDt z)!OvJ?TrWLYj^neW>1qo8tCqEbFosp@0oQ$p^BF?R2knJHi0Og^U>)MuAn~U>lwUWaRHl^trfxeCJf-6`G}UDY)kN>kIKoh3blycivn zGZa+44=a8?^;7{%@tR2Gi8kiJv+Y@?thr~c51yovz4aJNatUy5+8N&}P4#{Db&8`U z4R4dKlT4|p(cwxfsnuD>CxcRVl5p#c;4oW?xKtO@uiCFNT|T$kdTy0gHQTdE`Snw? zfC4Y~0i8OK0l*n(Jdq1}WHwdQ(}5$r3Hx)NGoeztMVKb_&`pkg!$Dhw~~g-Nw@zg@SXj>0^11 zf|D0N4iPuzcBG8?iyF(BvZx!9`EKX0I2hM1gi5|-c3kaK?P1uTqoQOG`VBLQU$Ypp zDNv0+cicd_Bah{)OM#EK8%bYvP&Xr9QJ<_^3}lRq`tXHhb@oK98+9T?uBtS*otmQq z<=}BW93sDl zT2v5a4DeZ5J$EcVWN^4XnYgL&!1+BaeEZQ*dF3r>kHFWkf$e8B3P z5_(^V?O=YTWwYWR){fvws2GC(Ui|#qR2s8?6IcI`whOlWh z*F$~W@Fi5Krvv3rf3AD7wbyJKekk_`?~vx!h0qA=%;n2G=&Cf5pWcfCCkTawf-haG zuI~#gFZByDv(mkps&D0zKwe^X}##U!-5}xoq!J1Jm0DoWCk~iZdcAszc+}_e^@!JwmU( zpiWREfmS<08kO97M_0eMJ}mq#UTZ0B(f8=-OSTvcB9d)ROCDem^`1xXdF%T8u+xBn zRZinr87~|KulD(G+C7xhqJaE61wH!f(OYxnJqZ4i3V>PtDtiV%Few2);wWe?ncaSi zwAkNfNHT$Z5)#1)A)@BUgmexdAwPC*q3$Vq&EJK|NRQH6gSdEkTZ;qs?jY7W*V(f# zfq#tyO8;rh62OfnBhKKO3v>z*I6@p?+`>~)f+YZmj!#H9gjoP!&rLu>SVO<1>)R{0 zLBnw151IgBA-{d|CAoi~qj1zoBhNz^exUu+!-RVz1Nf&L5YrC0YV(=-kDy zzgOae57*Tuy6O-1cL0+j!+S!;$cPasp+ud&eC+2yQApP}X@7tJrsY4uJ@^=*OPAJ3 zJmRW29fk)VDzF8QjTyPRx;B?RlfZ4kgozE24Nq~Lr+E6dI9>F@K@j4gq1Sxgv*HP) zwGNcJ@PnPEgBE~J-6J_)PjULP{oB=w^{yz^lP312J5Z2 zw5W&zrPfz~=K2ldsIRB5eSU`i*v9Gcf1w25W|urD698`KhBAFi;WuCyHr209J~kxIt` z4)*-(4F6`=s{B9Lwd-y3?s=7-F;u!>uzH`Ya(C31O(&Aqqd#l%b4F z4|=Z6!0w2E{sw%Z1r&|EsVNJHy*{s=BnBXh>FkGmOdtp=n~zjGAu@pzC{1QUH5BPI z0UrNo)i4?6p_m8XLhVn!o1iRLJ(Cq#;=AQ6zV<;&zsy4MHsk+{%-IRVwO86<&{zwC z8L_|ad43d~)bkScAO19bKe!lx#(~}_QebT5{55#pMGY)pAU-3uzn;Ut3qj7pG&`y}t#SY4A z=Kx9fc=Y?P;qiT45LHC~i}J1c>ZL{HF7Y) zQ2mdGx!4zX2D6|dT$b8UI0Z`ai1!OL8fSwciq|gUtIPD{e&X#ir+XHA+yDA!jWf<} z_?ng$HBMq(|LJYr^OKK@BLI8>a{`!;6F)95rv?gjfB)mF&Hw)W;_dNvWmQq3e=VYj zb&`Lz+U`^Cb)_aRgFmR63#~5wd3>gx<=(axvA<7;sYk%_^!lHG+}}Rn*?;-_Kk^5s zvOvC6=WVJ8^_go?fozJKa32R2*K>0@c0nx+4Uw2w*;;z%;7<+oGN&eil*;Jjf<_ukHUHAoKEyxb$}Svhl&TUaI?N zoBWIw*ktuU<+c%N`@)wd*{)dJv@fcy^ID*tUQj<=&hNY>d#Ce8wIswqb({E+6A&~B& z_&7Qm4F{Q6s9PMHzr=#yExvNycl$@)CfrCIT7gh4g{rQMhlj`P&pfq^V~TNT6QUV1 zV0wYV9%?t7zat7B#3Y#mBqVVc?+loLDMLO5aCQ$X%^7eA{OYyx-E?jCqkgUHS<)5+ z$kUo8$2_l{<=$P%IA}$UP+*6c?X1rW|9n=iS#=}v?kT}rQiE;?lIpqnCA`#g*$fHS zE2qGaw;_<5d@j!%<#PcBDiQX z<*s>#XTy&?0S`vPSB(KxmD_*dV&41Unm`=K90m|Iq{5#SHt$XGE?+SI*;E?*|Wn0@O^kS3hIX_L&6?!W!x!$a~bn^G7GaHe2#mVpOF zWRNIlZf<`2?V|sN7(`TZ;*2My37zI&4Bk5vBVIOcp61dmlGWJgUqX&`7to*fR0E^L z2_s8{738IT1V2r0rn+<^10JGZViNR_-}Kc46UF?klI~>~Sa4qY@qOz%ca*34decb< zME2K;1I~fD99=9$Fjfr%1CdYRvVQb$x90CSGzBbzijIc5dhg=KI)oscpd~A|boA*`MD+Dta?EXdf{oCPdueA}66J2Gino(XtWsRrTh#)l88bt;v=7{}O{Rm*qa14KQ8(;s zjwB=`2+x(YIIexv%dV=rY#4rxD8vo-b9T1G?We9dRO%_DGxPI_0`^xjmWv$xc;E+w zt5@nI(SV#{zxg|kH8=BrLQqs{)6W6H3Tf}0O#s~5v0?M&trKLB@wBM_N_vmr#W>tC zfC#5JG@b(f7@9MKF#-R(w6j+Y?zOkSKLil1h#ptM%X1O1diA@%y7cSZ&m9iJ!2Lro zaReRZ;^OM~%5sdS(ryYYX)6(DYG5`_lo$j19K77!-Q8V(^RCWL&8}&fOR*#I==xZC zy`8Z+%K4rMKc(8xIwzhT&h_3;GF~RGW{5{L4>1@0^dD0VvY#$fQGBXj) zzk?qJ*!=P0hIP7uV&fRAbT5LcaeuM>-D%0GvM#>UU$e6s30CMc9A6Q6&Xu-10@$_r zoAYA`ogS-O$0#q`IMUB;jWQiw*+?cBLq`ThQ!P)x=kxol&lO*=%o^pNI29(O(t_-@ zFB}*G=Fpz$7SJ3F24lofHn*FE;$~!+(CzQ&>XP9)E-g&o){3RpG7qJAc-eswvWR5} zvPqCBKz0+HmLSdHz6o$ijOeV9?djKgd^PU5%Pt^?%>ibECfdM&EYYVia(iS0B9*)( zlAxho3L2R7?w?HYyvJQl2v(*)RoW@Ug|;*LkixwYN6Y;Sh(x`HY~d~cm1wwbhmmSZ z$(^AdG?c;&#wej+VhLtZnJ@!8I2b!9Q-?SZQc{x4pj&9m z7yqf0-_Z1Qy7HgLFmHOAY_Idvh7SH@m}z+|K|AM?y888jnpt!xVCagv9te1d(dt}?n{AB z)511jA`wLtwat*gxv|@4**eo^!MAs%Ss=prJ;w^2(W39PSY7m4KE7-I{#TIO16eO$ z7#l`_SzTSlNEKvpDkgsO7qjbYrk4IqjS%b+5Bb)WWd7l)#-4o!@GW5Np{X^40IMLn zQE7V>qH&Cs!~rPkB0k55hdIhgF#W|0g5!Jvzr`~mP>T}seD8)kG=ZEGOl^UHMh%fz zLVPXa<8dzZqy)?RJB#L{wQl)cBQ-7vYk(Le&_Gx0d3j9h$F|57cxoum13r3A8(Q@D zEo;U}Xy`nDh_*{eNYqJ;YaVC6c$AJF&&hv79!>~FVzgngwe~;W=g>lqGt5X@=9*^S zJjCq>2d>`wp0fNPW7k6JyIMsG=|zv+t0$tbz5e{-4*Gor;{@C79{AmRkieoDk-+d~ zN3n9L*UGKss-``a4+8`D%DY7i$Nf;)WA?E?XA+z`Wx(zflbosPW9Y~F&#osXp3u16O0So@JV$PP92zHz`=v@cx_nmp3`tzm@fKW zK>@cDFnJ=$PG5?ExaJ;!lC&X}=luI4R(oa8M*zM*;$6z+$U!3?mFwx^28jD_BQf^n z7IQa@viIFxZa16%{9-asaxWkG3C*6q2X(jZwwP+@>T;m=d#V4P_cH7o;*1_nIMGHF zi^M;7sfPgV%gRTqC5QR=BM<;XX0BwN%yIkn?N+kO zBPGL$wS$HpX<<=_wa8bmq$vsUTLD@18uotD^A`Hb zbyxdC5#fy9To-fyr{rnxpC(VEivre5Pkzz|?EN$zpI#)U6aTR*vJiPlZ5zVn0C*r~ zpDS#D&VueROf=f{Kd)}>2;Um_nodJ|1$_%rO=H8t!d&UUmt0hz_HYQeBe^qI z{^22rW9lK!G*o*cLE3z|(0GqqMP8&Ho~tofL7#d!?t%CAvBa<=ii87hzqvS&<$t^I zUvrv&l*gcnO6c|fR|d0IDCZ@q1iB&}N?t=y$s5?)?;r{b&dOqKom%!E%z(57<;{mM z0S7zd0$`1yS{218K?mrfP@ClZQpCZ+UD>wY-1FDg(?f1k2F7m9u0z4;jHD#QA?=d< zz>29JwYMEAW0yFp07r^v`F(L*c8wbii!aM~VJjXe7!Hn%L_rZ~0)@Cu`)lWsW!xO< z@ehN16va_3fNfeHKiC`3UoPXF>K0pU1zpP}sG68>{rXnD{`t<1gsPevxqai-Eu=^f zj4eFyo&D}n=;9s$5$FqR)6sz;1g$=94G*fNW6*3kWs3Rx<&pOSMd|d;yo%1}+5E z%~+|hsA5sMOJ z&r4Stu1EEnGMe8By;2=0XopvC&lWlz>}^cN$}=h&20$b+870^)1%SWqD?7G;89_p_ zkan~O>0<3XbIwO!RHjII0w(~Rm};36i!r#Q4}$TQqU@eX9>oxK{UoM}mZ z$pBbASy8Aqe(ICOBlLmr`d`(e|A9r=JHR" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Generate some random data\n", + "np.random.seed(42)\n", + "X = 2 * np.random.rand(100, 1)\n", + "y = 4 + 3 * X + np.random.randn(100, 1)\n", + "\n", + "# Create a DataFrame from the data\n", + "data = pd.DataFrame(np.concatenate([X, y], axis=1), columns=['X', 'y'])\n", + "\n", + "# Save the data to a CSV file\n", + "data.to_csv('data.csv', index=False)\n", + "\n", + "# Plot the data\n", + "plt.scatter(X, y)\n", + "plt.xlabel('X')\n", + "plt.ylabel('y')\n", + "plt.show()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Preparation\n", + "Before we can start developing the linear regression model, it is important to prepare the data appropriately. This involves importing the necessary libraries, loading the dataset, performing exploratory data analysis, and cleaning and preprocessing the data.\n", + "\n", + "Let's take a look at the code snippet below to understand how we can perform these steps:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " X y\n", + "0 0.749080 6.334288\n", + "1 1.901429 9.405278\n", + "2 1.463988 8.483724\n", + "3 1.197317 5.604382\n", + "4 0.312037 4.716440\n", + "X的缺失值数量: 0\n", + "y的缺失值数量: 0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6R0lEQVR4nO3df3RV1Zn/8c8lQKKUXAXFBIxIqYKRKqBSolRH5Zcig7OsVFREa/06aqvIqiJOO0C1Ip2pWquDxap0yShOB1H4OkRwEBhqEBDiGPFnREVN5CtoLqJETc73j3hTbnJvcs/9cc7e57xfa2UtcnNy2efenJwnez/PsyOO4zgCAACwVBe/BwAAAJANghkAAGA1ghkAAGA1ghkAAGA1ghkAAGA1ghkAAGA1ghkAAGC1rn4PIN+am5v10UcfqWfPnopEIn4PBwAApMFxHO3du1d9+/ZVly4dz70EPpj56KOPVFZW5vcwAABABnbu3Kkjjzyyw2MCH8z07NlTUsuLUVxc7PNoAABAOmKxmMrKylrv4x0JfDATX1oqLi4mmAEAwDLppIiQAAwAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKwW+A7AAAD4oanZ0aYde7Rr73716VmkEQN6qaALGx7nA8EMAAA5VllTp7krtquuYX/rY6XRIs2eWK7xQ0p9HFkwscwEAEAOVdbU6ZrFWxMCGUmqb9ivaxZvVWVNnU8jCy5fg5n169dr4sSJ6tu3ryKRiJ566qmErz/55JMaN26cDjvsMEUiEVVXV/syTgAA0tHU7Gjuiu1yknwt/tjcFdvV1JzsCGTK12Bm3759OvHEE3Xfffel/Pppp52mO++80+ORAQDg3qYde9rNyBzIkVTXsF+bduzxblAh4GvOzDnnnKNzzjkn5denTp0qSXr33Xc9GhEAAJnbtTd1IJPJcUhP4BKAGxsb1djY2Pp5LBbzcTQAgDDp07Mop8chPYFLAJ43b56i0WjrR1lZmd9DAgCExIgBvVQaLVKqAuyIWqqaRgzo5eWwAi9wwcysWbPU0NDQ+rFz506/hwQACImCLhHNnlguSe0CmvjnsyeW028mxwIXzBQWFqq4uDjhAwAAr4wfUqoFlw5XSTRxKakkWqQFlw6nz0weBC5nBgAAv40fUqox5SV0APaIr8HM559/rrfffrv18x07dqi6ulq9evXSUUcdpT179uj999/XRx99JEl64403JEklJSUqKSnxZcwAAKSjoEtEFQN7+z2MUPB1mWnLli0aNmyYhg0bJkmaMWOGhg0bpn/+53+WJC1fvlzDhg3ThAkTJEkXXXSRhg0bpgceeMC3MQMAALNEHMcJdBvCWCymaDSqhoYG8mcAALCEm/t34BKAAQBAuJAADAAAXGtqdoxJcCaYAQAArlTW1Gnuiu0J+1CVRos0e2K5L6XnLDMBAIC0VdbU6ZrFW9ttqFnfsF/XLN6qypo6z8dEMAMAANLS1Oxo7ortSlY5FH9s7ortamr2traIYAYAAKRl04497WZkDuRIqmvYr0079ng3KBHMAACANO3amzqQyeS4XCGYAQAAaenTs6jzg1wclysEMwAAIC0jBvRSabSo3Y7gcRG1VDWNGNDLy2ERzAAAgPQUdIlo9sRySWoX0MQ/nz2x3PN+MwQzAAAgbeOHlGrBpcNVEk1cSiqJFmnBpcN96TND0zwAAODK+CGlGlNeQgdgAABgr4IuEVUM7O33MCSxzAQAACxHMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGMAMAAKxGaTYAAD5ranaM6dliI4IZAAB8VFlTp7krtquu4W87TZdGizR7Yrkv3XRtxDITAAA+qayp0zWLtyYEMpJU37Bf1yzeqsqaOp9GZheCGQAAfNDU7Gjuiu1yknwt/tjcFdvV1OwkfE9V7W49Xf2hqmp3J3wtzFhmAgBkjZwP9zbt2NNuRuZAjqS6hv3atGOPKgb2ZjmqAwQzAICscJPNzK69qQOZtsfFl6PazsPEl6PytVu1LUEqwQwAIGN+3WSDoE/PorSOO+w7hfrFX15OuRwVUcty1JjykpwGGjYFqeTMAAAykknOB/5mxIBeKo0WKVX4EVFL8CBHaS9H5YptickEMwCAjLjJ+UB7BV0imj2xXJLaBTTxz2dPLNcn+xrTer50l606Y2OQSjADAMiIm5wPJDd+SKkWXDpcJdHEJaeSaFHrEl26y1HpHtcZG4NUcmYAABnx+iYbVOOHlGpMeUnKRNv4clR9w/6ksyURtQQ/Iwb0ysl4bAxSmZkBAGQk3ZyPXN1kg6ygS0QVA3tr0tB+qhjYOyGRN93lqFwl/9oYpBLMAAAy4vVNNszSWY7KFRuDVF+DmfXr12vixInq27evIpGInnrqqYSvO46jOXPmqG/fvjrooIP0d3/3d3r11Vf9GSwAoB0vb7JhN35IqTbMPEuPXzVSv79oqB6/aqQ2zDwr56+xjUGqrzkz+/bt04knnqgrrrhCF1xwQbuv//a3v9Vdd92lRYsW6dhjj9Xtt9+uMWPG6I033lDPnj19GDEAoK3Ocj6QO/HlqHyLB6lt+8yUGNpnJuI4jhG1VZFIRMuWLdP5558vqWVWpm/fvpo+fbpmzpwpSWpsbNQRRxyh+fPn6+qrr07reWOxmKLRqBoaGlRcXJyv4QMAEDh+dgB2c/82tpppx44dqq+v19ixY1sfKyws1BlnnKEXXnghZTDT2Nioxsa/1eTHYrG8jxUAgCDyaiYoW8YmANfX10uSjjjiiITHjzjiiNavJTNv3jxFo9HWj7KysryOEwAA+MvYYCYuEkmcznIcp91jB5o1a5YaGhpaP3bu3JnvIQIAAB8Zu8xUUlIiqWWGprT0b4lGu3btajdbc6DCwkIVFhbmfXwAAMAMxs7MDBgwQCUlJVq9enXrY1999ZXWrVunU0891ceRAQAAk/g6M/P555/r7bffbv18x44dqq6uVq9evXTUUUdp+vTpuuOOO3TMMcfomGOO0R133KGDDz5YF198sY+jBgCEgZ+VPHDH12Bmy5YtOvPMM1s/nzFjhiRp2rRpWrRokW6++WZ9+eWXuvbaa/Xpp5/qBz/4gVatWkWPGQBAXlXW1LXrsVJqaI8VGNRnJl/oMwMAcKOypk7XLN7ablPH+JyMjZ2NbZxlCkSfGQAAvNbU7Gjuiu1Jd6d21BLQzF2xXWPKS4wPBuLCMMtkbAIwAABe27RjT8JNvy1HUl3Dfm3asce7QWUhPsvU9pzqG/brmsVbVVlT59PIcotgBgCAb+3amzqQyeQ4P3U2yyS1zDI1NdufbUIwAwDAt/r0LOr8IBfH+Slos0wdIZgBAOBbIwb0Umm0SKmyYSJqyTcZMaCXl8PKSLqzR399+xPrZ2cIZgAA+FZBl4hmTyyXpHYBTfzz2RPLjUv+bWp2VFW7W09Xf6iq2t1qanbSnj267/m3NWr+GqvzZ6hmAgDgAOOHlGrBpcPbVQCVGFoBlKpa6VcTylUaLVJ9w/6keTMHiicE21h2LtFnBgCApGzozdJZT5z/c/oALVy/Q5I6DWgiagnYNsw8y4jzpM8MAFjEhptmNmw9v4IuEVUM7O33MFJKpyfO8pfrdP/Fw3TbM691mAwc/554QrDJ550MwQwA+CjoDc2Cfn5+Srda6dAehdow8yzdvfoN3fd8bafPa0PZeVskAAOAT4Le0Czo5+c3Nz1xCrpEdNr3Dk/reBvKztsimAEAHwS9oVnQz88EbnviBKnsvC2CGQDwQdAbmgX9/EzgNjixtew8HQQzAOCDILXNTybo52eCTIKTeNl5STRxVqdXj+66/2I7y7IlghkA8EWQ2uYnE/TzM0Wq4KQkWpSyZ8z4IaX61YTj1KtHt9bHdu/7Src9s93aPCaqmQDAB/ElglQNzeI9P2zMX5CCf34mGT+kVGPKS9Iuf6+sqdN1j21r977Y3DiPmRkA8EGQ8xek4J+faeI9cSYN7aeKgb1Tvq5BTcwmmAEAn2SyRGCToJ+fjYKamM0yEwD4yO0SgW2Cfn62CWpiNsEMAPjM9Lb52Qr6+dkkqInZLDMBABASQW2cRzADAEBIBDUxm2AGAIAQCWJiNjkzAIBQa2p2QpegHLTEbIIZAEBoVdbUae6K7QnlyqXRIs2eWG7lDIUbQUrMZpkJABBKlTV1umbx1nZ9V+KdcG1t7R9GBDMAgNAJaifcsCKYAQCETlA74YYVwQwAIHSC2gk3rAhmAAChE9ROuGFFMAMACJ2gdsINK4IZAEAoNDU7qqrdraerP9SmHXv0qwnB64QbVsb3mdm7d69+9atfadmyZdq1a5eGDRum3//+9zrllFP8HhoAwBKp+sn8n9MHaPnLdQmPl4Skz0yQGB/M/PSnP1VNTY0effRR9e3bV4sXL9bo0aO1fft29evXz+/hAQAMF+8n07bIur5hvxau36H7Lx6mQ3sUBqITblhFHMcxtoj+yy+/VM+ePfX0009rwoQJrY8PHTpU5513nm6//fZOnyMWiykajaqhoUHFxcX5HC4AwDBNzY5GzV+Tsgw7opaZmA0zzyKAMYyb+7fROTPffPONmpqaVFSUmE1+0EEHacOGDUm/p7GxUbFYLOEDABBO9JMJB6ODmZ49e6qiokK33XabPvroIzU1NWnx4sV68cUXVVeXvM30vHnzFI1GWz/Kyso8HjUAwBT0kwkHo4MZSXr00UflOI769eunwsJC3Xvvvbr44otVUFCQ9PhZs2apoaGh9WPnzp0ejxgAYAob+8kcWHVVVbubLRXSYHwC8MCBA7Vu3Trt27dPsVhMpaWl+vGPf6wBAwYkPb6wsFCFhYUejxIAYKJ4P5n6hv1J92GSzOonY9ou3k3Njjbt2GN8crTxMzNxPXr0UGlpqT799FM9++yzmjRpkt9DAgAYrqBLRLMnJu8nE/fl101avb3eu0GlYNou3pU1dRo1f42mPLhRNyyp1pQHN2rU/DVG7iZudDWTJD377LNyHEeDBg3S22+/rZtuukmFhYXasGGDunXr1un3U80EAKisqdMtT76iz774ut3X4kHOgkuH+9ZbxrSqq1Tl7F6+VoGpZpKkhoYGXXfddRo8eLAuu+wyjRo1SqtWrUorkAEAQJLGlJeoqGvyW178hj13xXbf8lNMqrpqanY0d8X2pMtyJrxWyRifMzN58mRNnjzZ72EAACy2acce1ccaU379wGChYmBv7wb2LZOqrtwEVn68VskYH8wAAOxmQhKpScFCMiZVXZn+WiVDMAMAyBtTqnNMChaS6azqKp4z40XVlemvVTLG58wAAOxkUnVOPFhINR8UUX5KtNPtGdNR1ZXXu3j79Vplg2AGAJBzpiWR+hEsuC1tHj+kVAsuHa6SaOKMR0m0yNNKK5MCq3QZX5qdLUqzAcB7VbW7NeXBjZ0e9/hVIz1NIvVq2Sub0mYTcowk/5cI3dy/yZkBAOScqUmk44eUakx5SV6Dhc5mpSJqmZUaU16S9P8t6BIxokrIi9cqVwhmAAA5Z3ISab6DBRtLm1MxJbDqDMEMAHzLlOn9IDCpOsdrps5KBRnBDADI//yAoIknkV6zeKsiUkJAY2oSaa6YPCsVVFQzAQg9k0qIg8SU6hyv2VjabDtmZgCEWrbJmmGWzrJcPIl04zu7VVW7W5Kjiu8eppEW5GFkKsyzUn4hmAEQakFK1vSSm2W51dvrE4697/laq5bwMsmlis9KtX2NSiw6b5sQzAAINZI13UvVQyW+LHfgEpKbY02UTS6VTaXNtiNnBkCokazpjpvOvqZ1AXYrF7lU8dLmSUP7qWJgbwKZPCGYARBqJGu642ZZzs2xprE9EAsbghkAoWbjPjR+crMsZ/MSns2BWBgRzAAIvbCWEGfCzbKczUt4NgdiYUQCMACIZM10ue3sm20XYL+6MtsciIURwQwAfMuWfWj85LaHSjb9VtxWEuUy8Anzdgw2ijiOE+jsJTdbiAMA0uMm0MikvDlVSXc8NGm7/JeP7SjiY5CSB2IsQeaXm/s3wQwAICNuZkLcHjtq/pqUCbjxWZENM89SQZeI68DHDfbs8o+b+zfLTACAjLhZlnNzrJtKohEDeuV1OwpyqexAMAMABvMrAdZPbiqJvNiOglwq8xHMAIChwrrE4aaSiBJqSPSZAQAj5aKVvq3cdGWmhBoSwQwAGCfsrfTddGVmOwpIBDMAYBxa6afflZntKCCRMwMAxiEPpEVHlURtE6Pvv3iYbnvmtYQgsCQE+UVoQTADAIYhD+RvklUSpUqM/tWEch3ao3uoKr/QgmUmADAMeSCpdZQYfd1jW9Xw5VeaNLSfKgb2JpAJEYIZADAMeSDJhT0xGqkRzACAgdJNgA0TEqORitE5M998843mzJmjf//3f1d9fb1KS0t1+eWX65e//KW6dCEOAxAsbZNax5SX0Er/ACRGIxWjg5n58+frgQce0J///Gcdf/zx2rJli6644gpFo1HdcMMNfg8PAHImrN1+3SAxGqkYPb1RVVWlSZMmacKECTr66KP1ox/9SGPHjtWWLVv8HhoA5EyYu/268em+r9TRpFSYE6PDzuhgZtSoUfrv//5vvfnmm5Kkl19+WRs2bNC5556b8nsaGxsVi8USPgDAVKYltTY1O6qq3a2nqz9UVe1uY5JpK2vqdN1jW9XZcMKYGA3Dl5lmzpyphoYGDR48WAUFBWpqatJvfvMbTZkyJeX3zJs3T3PnzvVwlACQOS92fU6XqUtdHQV8cV0i0n1ThrEklyO27dZudDDzxBNPaPHixXrsscd0/PHHq7q6WtOnT1ffvn01bdq0pN8za9YszZgxo/XzWCymsrIyr4YMIAC8/EVuSlJrfKmrbcAQX+rys4Kqs4BPkpod6dAehR6NKNhMDWo7YnQwc9NNN+mWW27RRRddJEn6/ve/r/fee0/z5s1LGcwUFhaqsJAfaACZ8foXuQlJrZ0tdUXUstQ1przEl7/OTQn4wsDkoLYjRufMfPHFF+1KsAsKCtTc3OzTiAAEmR+JuCZ0+zW9f4sJAV8YmJa/5YbRwczEiRP1m9/8Rs8884zeffddLVu2THfddZf+4R/+we+hAQgYv36Rm9Dt1/SZDxMCvjAwPajtiNHBzB/+8Af96Ec/0rXXXqvjjjtOv/jFL3T11Vfrtttu83toAALGz1/kfnf7NX3mw4SALwxMD2o7YnTOTM+ePXXPPffonnvu8XsoAALO71/k44eU+tbtNz7zUd+wP+nMVEQtgVXbmQ8vE6XjAd+c5a+qPtbY+vgRxYWa8/fHG5nHYRvTg9qOGB3MAIBXTPhFXtAlkvfy61T/7+yJ5bpm8VZFpISAJtXMh38VL6nmZpCtTINaExi9zAQAXgl7XoabpS4/EqXj/2d9LPH//DhGl+RcsXk5L+I4jnlpyTkUi8UUjUbV0NCg4uJiv4cDwGDxG6aUfHbC1LLUXOps6aip2dGo+WtS5hfF/3rfMPOsnN30/Pg/w8yUPjNu7t8sMwHAt+KzE21/kZcY3jAslzpb6vKjY7FJXZLDwM/8rUwRzADAAWz8Re4lPxKl/U7ODiO/8rcyRTADAG3Y9ovcS34kSpuQnA2zkQAMAEibH4nSYU/ORucIZgAAafOj4sXmKht4g2AGAOCKHx2L/e6SDLNRmg34zMsuqkAu+fGzy/USHpRmA5YwpZ8DkAk/EqVJzkYyLDMBPvGjiyoABBHBDOCDpmZHc1dsT7r/SfyxuSu2q6k50KvAAJATBDOAD9x0NAUAdIycGcAHdDQNHxJXc4fXEm0RzAA+oKNpuJDonTu8lkiGZSbAB3Q0DQ8SvXOH1xKpEMwAPqCjaTiQ6J07vJboCMEMfNXU7Kiqdreerv5QVbW7Q/WLiI6mwUeid+7wWqIj5MzAN2Fa+06VsDh+SKnGlJeQzBhQJHrnDq8lOkIwA1/E177bzsPE176DNDPRWdBGR9O/CVqVConeucNriY4QzMBzna19R9Sy9j2mvMTqG5kUrqAtW0GcqYsnetc37E/68x5Ry7Iiid6d47VER8iZgefCsvZNwmL6glqlQqJ37vBaoiMEM/BcWNa+wxK0ZSvoQR+J3rnDa4lUWGaC58Ky9h2WoC1bboI+W3OLSPTOHV5LJEMwA8+FZe07LEFbtsIS9JHonTu8lmiLZSZ4Lixr33T5TQ9BH4BsEczAF2FY+w5L0JYtgj4A2Yo4juMqq+7yyy/XT37yE51++un5GlNOxWIxRaNRNTQ0qLi42O/hoI2g9RVJJoglx7kWr2aSlLD0GP9JyEWAG4aftY6E/fxhHzf3b9fBzAUXXKBnnnlGZWVluuKKKzRt2jT169cvqwHnU9iDGX6BmYH3oXP5DPrCHlCG/fxhp7wGM5K0e/duLV68WIsWLVJNTY1Gjx6tK6+8UpMmTVK3bt0yHng+hDmY4RcYbJOPoC9V48JczvqYLOznD3vlPZg50LZt2/Twww/rT3/6k77zne/o0ksv1bXXXqtjjjkmm6fNmbAGM/wCA1qCo1Hz16Qs/Y5Xzm2YeZaVM2WdBX9BP38Em5v7d1YJwHV1dVq1apVWrVqlgoICnXvuuXr11VdVXl6uu+++O5unbnX00UcrEom0+7juuuty8vxBFPQmZEC6gty4sLKmTqPmr9GUBzfqhiXVmvLgRo2avyahW3KQzx84kOtg5uuvv9bSpUt13nnnqX///vrLX/6iG2+8UXV1dfrzn/+sVatW6dFHH9Wvf/3rnAxw8+bNqqura/1YvXq1JOnCCy/MyfMHEb/A4KemZkdVtbv1dPWHqqrd7WvQHNQeNulu/xDU8wfact00r7S0VM3NzZoyZYo2bdqkoUOHtjtm3LhxOuSQQ3IwPOnwww9P+PzOO+/UwIEDdcYZZ+Tk+YOIX2Dwi2l5WkHsYeNmo9Ygnj+QjOtg5u6779aFF16ooqLUP/yHHnqoduzYkdXAkvnqq6+0ePFizZgxQ5FI8vXdxsZGNTY2tn4ei8VyPg7T8QsMXmibr/HpvkZd99g2o3YID2K3aTczr0E8fyAZ18HM1KlT8zGOtDz11FP67LPPdPnll6c8Zt68eZo7d653gzIQv8CQb8lmYLpElNZsgZeJpvHGhdcs3qqIkvewsa1xoZuZ1yCeP5CMVR2AH3roIZ1zzjnq27dvymNmzZqlhoaG1o+dO3d6OEIz0HkW+ZQqX6Oj1Bg/87SC1m3a7cxr0M4fSMaajSbfe+89Pffcc3ryySc7PK6wsFCFhYUejcpc8V9gbf96LqHPDLLQUb5GOvzK0wrSTsuZzLwG6fyBZKwJZh555BH16dNHEyZM8Hso1uAXGHKts3yNzviZp1XQJaIRA3q1Xg/xnBLbrodMl47YaRpBZkUw09zcrEceeUTTpk1T165WDNkY/AJDLmU6s2JCnpZplVbZdDtm5hVIZEVk8Nxzz+n999/XT37yE7+HAoRaJjMrJuRppeqI7VelVS4CK2Zegb/JejsD04V1OwPYwbYNKOPt8VPla0gtVU0HJgP7vR+YaS392WoESI+b+7cVMzNAEJm27JGOdPI17psyXIf26G5MgOamL0u+l2TdNLwzOagFTGNVaTYQFOm2ozdRZ6W+555QqoqBvTVpaD9VDOzt+03ZpI7YbDUC5AczM4DHgvDXuU35GiZ1xDYpsAKChGAG8JhJyx7ZsKVSzqSO2CYFVkCQsMwEeIy/zr1lUkfseGCV6n+KqCVviq1GAHcIZgCP8de593LZ0r+p2VFV7W49Xf2hqmp3q6mjfRzaMCmwAoKEZSbAYyYte4RJLvJ8ctUfhoZ3QG7RZwbwQbyaSUpe3kyvEfPkuj+MbT2GAK+5uX+zzAT4gJ2M7dJZBZrUUoHmdsnJpBJ2wGYsMwE+sam8OeyCUoEGBBXBDOAjW8qbw44KNMBsLDMBQCeoQAPMxswMYDGSSL1BBRpgNoIZwFI2blRpq3Q22KQ/DOAflpkAC9m8UaWtqEADzMXMDGCZIGxUaSsq0AAzEcwAsiv3hDJhf1GBBpiHYAahZ1vuSbrlv/Wx/aqq3W1FgAYA2SCYQailalEfzz0xMRci3fLf2/7vq9qz7+vWz00O0AAgGyQAI7Ty0aLeC/Ey4c7mWA4MZKTwJQdns7s1ALswM4PQsjX3pLMy4VS37DAlB9u2dAggO8zMILRsblGfqky4V4/uHX7fgQFaUFG2DoQPMzMILdtb1CcrE65v+FI3/sfLnX5vrgM0U6rBKFsHwolgBqEVhBb1bcuEq2p3p/V9uQzQTFrSsXXpEEB2WGZCaMVzTyS1S6a1tUV9Z8nBEbUEGrkK0Exb0rF56RBA5ghmEGpBa1HvZYDmZzVYqkol25cOAWSGZSaEXtBa1McDtLZLPyU5Xvrxa0mno2WtMeUl1i8dAnCPYAZQ8FrUexGg+bGkk06TQ3a3BsKHZSb4hqZm+RUP0CYN7aeKgb1zfgP3ekkn3WWtMeUlgVo6BNA5ZmbgC5MqYJAZr6vB3Cxrmb50aEopOxAUBDPwnI37IaG9zjoRS7ld0nG7rGXq0iGBPJB7LDPBU7buh4TkvKwGC0Klkmml7EBQGD8z8+GHH2rmzJlauXKlvvzySx177LF66KGHdNJJJ/k9NGSApmbB49WSju1NDulODOSP0cHMp59+qtNOO01nnnmmVq5cqT59+qi2tlaHHHKI30NDhmhqlj9+5mF4saTj9bJWrhHIA/ljdDAzf/58lZWV6ZFHHml97Oijj/ZvQMhaEJYKTBSWPAyveujkA4E8kD9GBzPLly/XuHHjdOGFF2rdunXq16+frr32Wl111VUpv6exsVGNjY2tn8diMS+GijQFYanAtCqUsCVUm16plAqBPJA/Rgcz77zzjhYsWKAZM2bo1ltv1aZNm3T99dersLBQl112WdLvmTdvnubOnevxSJEum5cK3M5+eBH4hDUPw9RKpY7YHsgDJos4jmNs2Uj37t118skn64UXXmh97Prrr9fmzZtVVVWV9HuSzcyUlZWpoaFBxcXFeR8z0mPbskiq2Y94eNB29sOr86uq3a0pD27s9LjHrxpp3c0/iOI/R1LyQD5os2hANmKxmKLRaFr3b6NnZkpLS1VeXp7w2HHHHaelS5em/J7CwkIVFhbme2jIkk1LBW5nP7xc9iEPwy425/wAJjM6mDnttNP0xhtvJDz25ptvqn///j6NyDsm5mbkmi1LBW6qUEYM6OXpsg95GPaxKZAHbGF0MHPjjTfq1FNP1R133KHJkydr06ZNWrhwoRYuXOj30PLKtiUYr3kd6LmZ/fC6/DbMeRg2B/y2BPKALYwOZk455RQtW7ZMs2bN0q9//WsNGDBA99xzjy655BK/h5Y3YatMccuPQC/dWY23Pt6rtz7+PK1jc7XsY3NCdTYI+AEcyOgE4Fxwk0Dkt6ZmR6Pmr0n5l338r+wNM88K3M0pHW6TcHMl/r6kmv3IRK4TcsN0c/fr5wCAtwKTABw2dAhNzc8S5I5mP9zK17JPWPIwMv05sHlJCkDnCGYMQmVKan4HeqmqUNzI97JPGPIwMvk5CNOsFRBW7JptECpTUjMh0Bs/pFQbZp6lx68aqZ+d+T3X35+PnaTDxu3PAbtUA+HAzIxBwlyZcqBkSwKmBHrx2Y90b6o/O3OgjjmiJ0sbOeLm5yCs3ZGBMCKYMUhYK1MOlGpJ4FcTyo0K9NK9qZ72vcMDv/TjJTcBv99LkwC8wzKTYeK5GSXRxJtlGJYoOloSuO6xrfr7E1vOvW0o50egF7+ppvrfImoJwoI+i+a1eMAvdf5zYMLSZCpNzY6qanfr6eoPVVW7W03NgS4qBfKOmRkDhaUy5UDpLAksf7lO9188TLc985rvreCZRfNPulsCmLI02RYJyUDu0WcGRnCzYWJ8CcGEQM/WG1MQSpU7O4fO+gP50beJHjlA+ugzA9f8vrm5WRIwqQTZxlk0WwOwtjr7OTBt9oyEZCB/CGZgxM3N1CWBdJgUXHUmbNtlmLRLNQnJQP4QzIScKTc3ytLzL6wzA6bMnpmckAzYjmqmEIpXUizb9qFuXfZKypub1HJz86LSwk2VCjLjZmYgaOKzZ5OG9lPFwN6+/BzZPPsImI6ZmZBJtqSUitfT3iYtCQQRMwP+YvYRyB+CmRBJtaTUGS9vbqYsCQQRMwP+Mi0hGQgSlplCoqN8ic54fXMzYUkgiGj0578wN8UE8omZmZDoLF8iGaa9g4WZATMw+wjkHsGMh/zs5eJ2qYibWzCRl2QGm8r5ARsQzHjE714ubpeKuLkFl98zA343aAQQPAQzHjChl0s6lRS9enTXLyccp5LoQRndYIJ4kwriOUn+zQz4HdQDCCb2Zsqz+P4wqfJVvNwfJh5UScnzJbIJqoJ4kwriOfmJfYkAuOHm/k01U56Z1KgsX5UU8ZtU2/OMzzxV1tRlPGa/BPGc/NRZ92HJuwaNAIKHZaY8M61RWa7zJYLYIj+I5+Q39iUCkE8EM3lmYqOyXOZLBPEmFcRz8ptpQT2AYCGYybOgtzBP9+bz17f/X7uZIFOTa7nx5p6JQT2A4CCYybOgNypL9+Zz3/O1rf8ujRbp708s1fKX64xMruXGm3tBD+oB+IsEYA8EuYV5Zy3yk6lr2K8/rt9hbHItbf9zj13RAeQTpdkeMnVZJVupSr4z4WWpekdyUcYe1Pc7G5S7A0iXm/s3wQzS1tHNOdlNKhuPXzXS9+TabG683LRTI8gDkA6CmQMQzORGOjfnA29Sb338ue57/u2M/7/fXzRUk4b2y3rc2crkxktzOADInpv7NwnAOZbrvzpN+Cs23e0YDiz5rqrdnVUwY0pyrdsydnrUAID3CGZyKNdLCyYsVWR6c+6seiUV26ta6FEDAN6jmilHct3+3pR2+plux9BR9UoqQahqoUcNAHjP6GBmzpw5ikQiCR8lJSV+D6udXO87Y9I+NtncnFOVpJdGi3T16QNUGsBSdXrUAID3jF9mOv744/Xcc8+1fl5QUODjaJLL9dKCSUsV2d6cO9oL6ubxx/meD5RrNIcDAO8ZH8x07drVyNmYA+V6acGkpYpc3JxTJdHmco8oUwS94zMAmMjoZSZJeuutt9S3b18NGDBAF110kd55550Oj29sbFQsFkv4yLdcLy2YtFRB51b3vOr43NTsqKp2t56u/lBVtbs9WXYEABMZ3Wdm5cqV+uKLL3Tsscfq448/1u23367XX39dr776qnr3Tv4X/Zw5czR37tx2j+ezz0xTs6NR89d0OnuRblfbXD9fLphQWWWbA8vqD+tRKEWkTz5vzMmSGu8HgKALbNO8ffv2aeDAgbr55ps1Y8aMpMc0NjaqsbGx9fNYLKaysrK8N83LRfv7fD5fLnjd88aEHju5kI+SfZryAQi6wAYzkjRmzBh973vf04IFC9I63ssOwEHsM+OXoJx7rgOP+KxdqgRxU/a2AoBsBbYDcGNjo1577TX98Ic/9HsoSXVUuWPC89ki3Y7DpstHN2CTKt0AwBRGBzO/+MUvNHHiRB111FHatWuXbr/9dsViMU2bNs3voaWU6wqdIFb8dCRI2wG4DTzSWVYzqdINAExhdDDzwQcfaMqUKfrkk090+OGHa+TIkdq4caP69+/v99CQJ0GaeXATeKS7rGZSpRsAmMLoYGbJkiV+DwEeC9LMQ7oBxbuf7NM9z72V1rIaTfkAoD3j+8zAHrnoexKkmYd44JFqMSyiltmXxze9n/bWFfT9AYD2CGYslK9madk8b2VNnUbNX6MpD27UDUuqNeXBjRo1f43rDTHTDQBsmHlIJ/C46JSjVB9rVCrJNvL0qikfANjC6GWmMHDbS6Wypk5zlr+acAMsKS7UnL8/PqubWDal0LmsPgradgDxwKPta1vy7Wvb+E1zWs/TdlktrJVuAJCMdX1m3PKyz4xb6QYQ8YBn9fZ6PfzXd1M+3wMZ/lWeTS+UfPU9CUqfmbhUQWtV7W5NeXBjp9//+FUjjU94BoBcCmyfmSBJdzYj2U09lVuefMV1yXK2pdD5qj4K2sxDqhJ7EnoBIHvkzPigswBCagkg/ut/WwKedAIZSfrsi6+1sXa3q7G4CUaSyWf1UTwAmDS0nyoG9rY2kOkICb0AkD2CGR+kG0D88umapAFPR6re+cTV8dkGI0GqPvILCb0AkB2WmTKUzSaI6QYQe/Z9lcHI3P0Fn20wwjJJbgRtWQ0AvEQwk4Fsk1PzOUvhNkk022AkaNVHfgrb1hUAkCssM7kUT9xtu0wUT9xNp69KOr1UevXo5npshx7cTSO/6+5mmIucDZZJAAB+ojTbhVyWIceDIin5bMb9Fw/Tbc+8lnLGJJlMS7Pj48m2FDqbpTcAAA5EaXae5LIMubNmauOHlKpLl0jS5Zu2ctF/JRc5GyyTAAD8QDDjQq7LkDsLIFIGPMWFmjLiKB19WI+czoAQjAAAbEQw44Lbyp90ll06CyCocgEAoGMEMy64qfzJZTt+ZkwAAEiNaiYX0q38Wb29PuuKJwAAkB6CGZc6K0MeU16S1lYFTc2BLiIDAMAzLDNloKM8lqra3XnZeBEAACRHMJOhVHks+dx4EQAAtEcwk2NsvBg+NAsEAH8RzOQYGy+GSy6r1gAAmSEBOMdysdcR7JCLfboAANkjmMkDNl4MvqZmh6o1ADAEy0x5QufeYMvlPl0AgOwQzOQRnXuDi6o1ADAHy0xABqhaAwBzEMwAGYhXraVaNIyopaqJqjUAyD+CGSADVK0BgDkIZoAMUbUGAGYgARjIAlVrAOA/ghkgS1StAYC/WGYCAABWY2Ym5NgkEQBgO6tmZubNm6dIJKLp06f7PZRAqKyp06j5azTlwY26YUm1pjy4UaPmr2FPIQCAVawJZjZv3qyFCxfqhBNO8HsogcAmiQCAoLAimPn88891ySWX6MEHH9Shhx7a4bGNjY2KxWIJH0jEJokAgCCxIpi57rrrNGHCBI0ePbrTY+fNm6doNNr6UVZW5sEI7eJmk0QAAExnfALwkiVLtHXrVm3evDmt42fNmqUZM2a0fh6LxQho2rBhk0QSkwEA6TI6mNm5c6duuOEGrVq1SkVF6W3YV1hYqMLCwjyPzG6mb5JYWVOnuSu2J8welUaLNHtiOV11AQDtGL3M9NJLL2nXrl066aST1LVrV3Xt2lXr1q3Tvffeq65du6qpqcnvIVrJ5E0SSUwGALhldDBz9tln65VXXlF1dXXrx8knn6xLLrlE1dXVKigo8HuIVjJ1k0QSkwEAmTB6malnz54aMmRIwmM9evRQ79692z0Od+KbJLZdzinxcTnHTWIy2wcAAOKMDmaQX6ZtkmhDYjIAwDzWBTNr1671ewiBYtImiaYnJgMAzGR0zgzCxeTEZACAuQhmYAxTE5MBAGYjmIFR4onJJdHEpaSSaJEWXDqcPjMAgHasy5lB8JmWmAwAMBvBDIxkUmIyAMBsLDMBAACrEcwAAACrEcwAAACrEcwAAACrEcwAAACrUc0UME3NDiXNAIBQIZgJkMqauna7YJf6uAs2AABeYJkpICpr6nTN4q0JgYwk1Tfs1zWLt6qyps6nkQEAkF8EMwHQ1Oxo7ortcpJ8Lf7Y3BXb1dSc7AgAAOxGMBMAm3bsaTcjcyBHUl3Dfm3asce7QQEA4BFyZnyWi4TdXXtTBzKZHAcAgE0IZnyUq4TdPj2LOj/IxXEAANiEZSaf5DJhd8SAXiqNFinVfE5ELUHSiAG9Mh8wAACGIpjxQa4Tdgu6RDR7YrkktQto4p/PnlhOvxkAQCARzPggHwm744eUasGlw1USTVxKKokWacGlw+kzAwAILHJmfJCvhN3xQ0o1prwkrx2A6TAMADANwYwP8pmwW9AlooqBvV1/XzroMAwAMBHLTD6wMWGXDsMAAFMRzPjAtoRdOgwDAExGMOMTmxJ26TAMADAZOTM+8iJhNxfoMAwAMBnBjM/ymbCbK3QYBgCYjGUmdMrGhGUAQHgQzKBTtiUsAwDChWAGabEpYRkAEC7kzCBttiQsAwDChWAGrtiQsAwACBejl5kWLFigE044QcXFxSouLlZFRYVWrlzp97AAAIBBjA5mjjzySN15553asmWLtmzZorPOOkuTJk3Sq6++6vfQAACAISKO41jVg75Xr176l3/5F1155ZVJv97Y2KjGxsbWz2OxmMrKytTQ0KDi4mKvhgkAALIQi8UUjUbTun8bPTNzoKamJi1ZskT79u1TRUVFyuPmzZunaDTa+lFWVubhKAEAgNeMn5l55ZVXVFFRof379+s73/mOHnvsMZ177rkpj2dmBgAA+7mZmTG+mmnQoEGqrq7WZ599pqVLl2ratGlat26dysvLkx5fWFiowsJCj0cJAAD8YvzMTFujR4/WwIED9cc//jGt491EdgAAwAyBzJmJcxwnYRkJAACEm9HLTLfeeqvOOecclZWVae/evVqyZInWrl2ryspKv4cGAAAMYXQw8/HHH2vq1Kmqq6tTNBrVCSecoMrKSo0ZMybt54ivosVisXwNEwAA5Fj8vp1ONox1OTNuffDBB5RnAwBgqZ07d+rII4/s8JjABzPNzc366KOP1LNnT0Ui2W+IGC/13rlzZ2ATisNwjlI4zjMM5yiF4zzDcI5SOM4zDOcoZX+ejuNo79696tu3r7p06TjF1+hlplzo0qVLpxFdJuL7RQVZGM5RCsd5huEcpXCcZxjOUQrHeYbhHKXszjMajaZ1nHXVTAAAAAcimAEAAFYjmHGpsLBQs2fPDnSX4TCcoxSO8wzDOUrhOM8wnKMUjvMMwzlK3p5n4BOAAQBAsDEzAwAArEYwAwAArEYwAwAArEYwAwAArBb6YObf/u3fNGDAABUVFemkk07S//zP/3R4/Lp163TSSSepqKhI3/3ud/XAAw+0O2bp0qUqLy9XYWGhysvLtWzZsnwNP21uzvPJJ5/UmDFjdPjhh6u4uFgVFRV69tlnE45ZtGiRIpFIu4/9+/fn+1RScnOOa9euTTr+119/PeE429/Lyy+/POl5Hn/88a3HmPZerl+/XhMnTlTfvn0ViUT01FNPdfo9tl2Xbs/R1mvS7XnaeF26PUcbr8l58+bplFNOUc+ePdWnTx+df/75euONNzr9Pi+vy1AHM0888YSmT5+uf/qnf9K2bdv0wx/+UOecc47ef//9pMfv2LFD5557rn74wx9q27ZtuvXWW3X99ddr6dKlrcdUVVXpxz/+saZOnaqXX35ZU6dO1eTJk/Xiiy96dVrtuD3P9evXa8yYMfqv//ovvfTSSzrzzDM1ceJEbdu2LeG44uJi1dXVJXwUFRV5cUrtuD3HuDfeeCNh/Mccc0zr14LwXv7+979POL+dO3eqV69euvDCCxOOM+m93Ldvn0488UTdd999aR1v43Xp9hxtvCYl9+cZZ9N16fYcbbwm161bp+uuu04bN27U6tWr9c0332js2LHat29fyu/x/Lp0QmzEiBHOP/7jPyY8NnjwYOeWW25JevzNN9/sDB48OOGxq6++2hk5cmTr55MnT3bGjx+fcMy4ceOciy66KEejds/teSZTXl7uzJ07t/XzRx55xIlGo7kaYtbcnuPzzz/vSHI+/fTTlM8ZxPdy2bJlTiQScd59993Wx0x7Lw8kyVm2bFmHx9h6Xcalc47JmH5NtpXOedp6XcZl8l7adk06juPs2rXLkeSsW7cu5TFeX5ehnZn56quv9NJLL2ns2LEJj48dO1YvvPBC0u+pqqpqd/y4ceO0ZcsWff311x0ek+o58y2T82yrublZe/fuVa9evRIe//zzz9W/f38deeSROu+889r9leiVbM5x2LBhKi0t1dlnn63nn38+4WtBfC8feughjR49Wv3790943JT3MhM2XpfZMv2azJZN12W2bLwmGxoaJKndz9+BvL4uQxvMfPLJJ2pqatIRRxyR8PgRRxyh+vr6pN9TX1+f9PhvvvlGn3zySYfHpHrOfMvkPNv63e9+p3379mny5Mmtjw0ePFiLFi3S8uXL9fjjj6uoqEinnXaa3nrrrZyOPx2ZnGNpaakWLlyopUuX6sknn9SgQYN09tlna/369a3HBO29rKur08qVK/XTn/404XGT3stM2HhdZsv0azJTNl6X2bDxmnQcRzNmzNCoUaM0ZMiQlMd5fV0GftfszkQikYTPHcdp91hnx7d93O1zeiHTMT3++OOaM2eOnn76afXp06f18ZEjR2rkyJGtn5922mkaPny4/vCHP+jee+/N3cBdcHOOgwYN0qBBg1o/r6io0M6dO/Wv//qvOv300zN6Tq9kOqZFixbpkEMO0fnnn5/wuInvpVu2XpeZsOmadMvm6zITNl6TP/vZz/S///u/2rBhQ6fHenldhnZm5rDDDlNBQUG7CHDXrl3tIsW4kpKSpMd37dpVvXv37vCYVM+Zb5mcZ9wTTzyhK6+8Uv/xH/+h0aNHd3hsly5ddMopp/jyl0M253igkSNHJow/SO+l4zh6+OGHNXXqVHXv3r3DY/18LzNh43WZKVuuyVwy/brMlI3X5M9//nMtX75czz//vI488sgOj/X6ugxtMNO9e3eddNJJWr16dcLjq1ev1qmnnpr0eyoqKtodv2rVKp188snq1q1bh8ekes58y+Q8pZa//i6//HI99thjmjBhQqf/j+M4qq6uVmlpadZjdivTc2xr27ZtCeMPynsptVQjvP3227ryyis7/X/8fC8zYeN1mQmbrslcMv26zJRN16TjOPrZz36mJ598UmvWrNGAAQM6/R7Pr0vXKcMBsmTJEqdbt27OQw895Gzfvt2ZPn2606NHj9as8ltuucWZOnVq6/HvvPOOc/DBBzs33nijs337duehhx5yunXr5vznf/5n6zF//etfnYKCAufOO+90XnvtNefOO+90unbt6mzcuNHz84tze56PPfaY07VrV+f+++936urqWj8+++yz1mPmzJnjVFZWOrW1tc62bducK664wunatavz4osven5+juP+HO+++25n2bJlzptvvunU1NQ4t9xyiyPJWbp0aesxQXgv4y699FLnBz/4QdLnNO293Lt3r7Nt2zZn27ZtjiTnrrvucrZt2+a89957juME47p0e442XpOO4/48bbwu3Z5jnE3X5DXXXONEo1Fn7dq1CT9/X3zxResxfl+XoQ5mHMdx7r//fqd///5O9+7dneHDhyeUmk2bNs0544wzEo5fu3atM2zYMKd79+7O0Ucf7SxYsKDdc/7lL39xBg0a5HTr1s0ZPHhwwoXoFzfnecYZZziS2n1Mmzat9Zjp06c7Rx11lNO9e3fn8MMPd8aOHeu88MILHp5Re27Ocf78+c7AgQOdoqIi59BDD3VGjRrlPPPMM+2e0/b30nEc57PPPnMOOuggZ+HChUmfz7T3Ml6em+rnLwjXpdtztPWadHueNl6Xmfy82nZNJjs/Sc4jjzzSeozf12Xk24ECAABYKbQ5MwAAIBgIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgAAgNUIZgBYpampSaeeeqouuOCChMcbGhpUVlamX/7ylz6NDIBf2M4AgHXeeustDR06VAsXLtQll1wiSbrsssv08ssva/PmzerevbvPIwTgJYIZAFa69957NWfOHNXU1Gjz5s268MILtWnTJg0dOtTvoQHwGMEMACs5jqOzzjpLBQUFeuWVV/Tzn/+cJSYgpAhmAFjr9ddf13HHHafvf//72rp1q7p27er3kAD4gARgANZ6+OGHdfDBB2vHjh364IMP/B4OAJ8wMwPASlVVVTr99NO1cuVK/fa3v1VTU5Oee+45RSIRv4cGwGPMzACwzpdffqlp06bp6quv1ujRo/WnP/1Jmzdv1h//+Ee/hwbABwQzAKxzyy23qLm5WfPnz5ckHXXUUfrd736nm266Se+++66/gwPgOZaZAFhl3bp1Ovvss7V27VqNGjUq4Wvjxo3TN998w3ITEDIEMwAAwGosMwEAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKsRzAAAAKv9f5fEcOOdL6TuAAAAAElFTkSuQmCC", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Import the necessary libraries\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Load the dataset\n", + "data = pd.read_csv('data.csv')\n", + "\n", + "# Perform exploratory data analysis\n", + "# Display the first few rows of the data\n", + "print(data.head())\n", + "\n", + "# Check for missing values\n", + "print(\"X的缺失值数量:\", data['X'].isnull().sum())\n", + "print(\"y的缺失值数量:\", data['y'].isnull().sum())\n", + "\n", + "# Visualize the relationship between features and target variable\n", + "plt.scatter(data['X'], data['y'])\n", + "plt.xlabel('X')\n", + "plt.ylabel('y')\n", + "plt.show()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this code snippet, we first import the necessary libraries, such as NumPy and Pandas. Then, we load the dataset using the read_csv() function from Pandas, replacing 'data.csv' with the actual path to your dataset.\n", + "\n", + "Next, we perform exploratory data analysis by printing the first few rows of the dataset using head(), displaying the shape of the dataset using shape, and printing summary statistics using describe().\n", + "\n", + "After that, we check for missing values in the dataset using isnull().sum(). If there are missing values, we can handle them accordingly. In this example, we simply drop rows with missing values using dropna().\n", + "\n", + "Then, we perform any necessary preprocessing steps, such as feature scaling or encoding categorical variables. Finally, we split the dataset into input features (X) and the target variable (y), convert them to NumPy arrays using np.array(), and verify their dimensions using shape." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Development\n", + "Once we have prepared the data, we can proceed with developing the linear regression model. This involves deriving the mathematical formula for linear regression, implementing the formula in code, defining a cost function, and implementing the gradient descent algorithm to train the model.\n", + "\n", + "Let's take a look at the code snippet below to understand how we can develop the linear regression model:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error: 0.8065845639670534\n" + ] + } + ], + "source": [ + "# Deriving the mathematical formula for linear regression\n", + "# Implementing the formula in code\n", + "class LinearRegression:\n", + " def __init__(self):\n", + " self.coefficients = None\n", + "\n", + " def fit(self, X, y):\n", + " # Add a column of ones to X for the bias term\n", + " X = np.c_[np.ones((X.shape[0], 1)), X]\n", + "\n", + " # Compute the coefficients using the normal equation\n", + " self.coefficients = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)\n", + "\n", + " def predict(self, X):\n", + " # Add a column of ones to X for the bias term\n", + " X = np.c_[np.ones((X.shape[0], 1)), X]\n", + "\n", + " # Predict the target variable\n", + " y_pred = X.dot(self.coefficients)\n", + "\n", + " return y_pred\n", + "\n", + "# Defining cost function\n", + "def mean_squared_error(y_true, y_pred):\n", + " return np.mean((y_true - y_pred) ** 2)\n", + "\n", + "# 训练模型\n", + "regressor = LinearRegression()\n", + "regressor.fit(X, y)\n", + "\n", + "# 使用训练好的模型进行预测\n", + "y_pred = regressor.predict(X)\n", + "\n", + "# Evaluating the model\n", + "mse = mean_squared_error(y, y_pred)\n", + "print('Mean Squared Error:', mse)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this code snippet, we first derive the mathematical formula for linear regression. Then, we implement the formula in code by creating a `LinearRegression` class. The `fit()` method is used to train the model using the normal equation, and the `predict()` method is used to make predictions on new data points.\n", + "\n", + "We also define a cost function called `mean_squared_error()` to evaluate the performance of the model. Additionally, we can implement the gradient descent algorithm to train the model iteratively if desired.\n", + "\n", + "Finally, we train the model using the `fit()` method, make predictions using the `predict()` method, and evaluate the model's performance using the mean squared error (MSE)." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Model Evaluation\n", + "After training the linear regression model, it is important to evaluate its performance to assess how well it is able to make predictions. In this section, we will discuss some commonly used evaluation metrics for regression models.\n", + "\n", + "When evaluating a machine learning model, we often use certain metrics to measure its performance. Here are some commonly used metrics and plotting methods:\n", + "\n", + "1. **Mean Absolute Error (MAE):** MAE is the average absolute difference between the predicted values and the actual values. It measures the average magnitude of the model's errors. A lower MAE value indicates better predictive performance of the model.\n", + "\n", + "2. **Root Mean Squared Error (RMSE):** RMSE is the square root of the average of the squared differences between the predicted values and the actual values. Compared to MAE, RMSE is more sensitive to large errors because it penalizes squared errors. Similar to MAE, a lower RMSE value indicates better predictive performance of the model.\n", + "\n", + "3. **R-squared:** R-squared measures the proportion of the variance in the dependent variable that is predictable from the independent variables. It ranges from 0 to 1. A higher R-squared value indicates a better fit of the model to the data.\n", + "\n", + "4. **Mean Squared Error (MSE):** MSE is the average of the squared differences between the predicted values and the actual values. Unlike RMSE, MSE does not take the square root, so its values are typically larger.\n", + "\n", + "Let's take a look at the code snippet below to understand how we can evaluate the linear regression model:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Absolute Error: 0.7010426719637757\n", + "Root Mean Squared Error: 0.8981005311027566\n", + "R-squared: 0.7692735413614223\n", + "Mean Squared Error: 0.8065845639670534\n", + "Shape of X: (100, 1)\n", + "Shape of y: (100, 1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLz0lEQVR4nO3deXwU5f0H8M8Qkg1XIveVhSBFDg+g0mpUFARFOX6xEbkUg8XWu0TqRWsVWxSwVsB6FCyHSsNRCdiqKEoTwAJyWxUVj0QDBIFWE0AIsHl+f4yzZjezx2xmZ56Z+bxfr30tmZndfWY3m/nyPN/n+yhCCAEiIiIih2pgdwOIiIiI6oPBDBERETkagxkiIiJyNAYzRERE5GgMZoiIiMjRGMwQERGRozGYISIiIkdraHcDkq2mpgb79+9Hs2bNoCiK3c0hIiKiOAghcOTIEXTo0AENGkTve3F9MLN//374/X67m0FEREQJKC8vR1ZWVtRjXB/MNGvWDID6ZmRkZNjcGiIiIopHVVUV/H5/8DoejeuDGW1oKSMjg8EMERGRw8STIsIEYCIiInI0BjNERETkaAxmiIiIyNFcnzMTr0AggFOnTtndDEpQWlpazKl7RETkTp4PZoQQOHDgAL799lu7m0L10KBBA3Tp0gVpaWl2N4WIiCzm+WBGC2TatGmDxo0bs7CeA2mFESsqKtCpUyd+hkREHuPpYCYQCAQDmZYtW9rdHKqH1q1bY//+/Th9+jRSU1Ptbg4REVnI00kGWo5M48aNbW4J1Zc2vBQIBGxuCRERWc3TwYyGwxLOx8+QiMi7PD3MRERElCyBALBhA1BRAbRvD/TvD6Sk2N0qd2IwQ0REZLKiImDSJGDv3h+2ZWUBc+YAeXn2tcutOMxEplMUBatWrbK7GUREtigqAkaODA1kAGDfPnV7UZE97XIzW4OZ9evXY8SIEejQoYPuBbCoqAhDhgxBq1atoCgKdu3aZUs7YwkEgJISYMkS9d7KHNSNGzciJSUFV111laHHZWdnY/bs2clpFBGRRwUCao+MEHX3adsKCqy9TniBrcHMsWPH0Lt3bzz99NMR91988cWYMWOGxS2LX1ERkJ0NDBwIjBun3mdnWxd5L1iwAHfddRfeeecdfPXVV9a8KBER6dqwoW6PTG1CAOXl6nFkHluDmauvvhrTpk1DXoQBxPHjx+Ohhx7C4MGDLW5ZfOzuSjx27BiWL1+O2267DcOHD8eiRYtC9v/jH/9Av379kJ6ejlatWgXf5wEDBuDLL7/E3XffDUVRgjOBpk6dij59+oQ8x+zZs5GdnR38eevWrbjiiivQqlUrZGZm4rLLLsOOHTuSeZpERI5RUWHucRQf1+XMVFdXo6qqKuSWDDJ0JS5btgzdu3dH9+7dccMNN2DhwoUQ37/4a6+9hry8PAwbNgw7d+7E2rVr0a9fPwDq8F1WVhZ+//vfo6KiAhUGvlVHjhxBfn4+NmzYgM2bN6Nbt24YOnQojhw5kpRzJCJykvbtzT2O4uO62UzTp0/HI488kvTXMdKVOGBActowf/583HDDDQCAq666CkePHsXatWsxePBgPProoxgzZkzIe9G7d28AQIsWLZCSkoJmzZqhXbt2hl7z8ssvD/l57ty5aN68OdatW4fhw4fX84yIiJytf3911tK+ffr/2VUUdX///ta3zc1c1zMzZcoUVFZWBm/l5eVJeR27uxI/+eQTbNmyBWPGjAEANGzYEKNHj8aCBQsAALt27cKgQYNMf92DBw/i1ltvxVlnnYXMzExkZmbi6NGjzNchIoJaR2bOHPXf4bU8tZ9nz2a9GbO5rmfG5/PB5/Ml/XXs7kqcP38+Tp8+jY4dOwa3CSGQmpqKb775Bo0aNTL8nA0aNAgOU2m0JR80EyZMwKFDhzB79mx07twZPp8POTk5OHnyZGInQkTkMnl5wMsv69eZmT2bdWaSwXXBjFXs7Eo8ffo0XnzxRfzpT3/ClVdeGbLv2muvxd/+9jecd955WLt2LW666Sbd50hLS6uzjlHr1q1x4MABCCGCScHh0+E3bNiAZ599FkOHDgUAlJeX4/DhwyadGRGRO+TlAbm5rABsFVuDmaNHj+Kzzz4L/lxaWopdu3ahRYsW6NSpE/73v//hq6++wv79+wGoQysA0K5dO8O5HmbTuhJHjlQDl9oBTbK7El999VV88803mDhxIjIzM0P2jRw5EvPnz8esWbMwaNAgdO3aFWPGjMHp06exevVq3HfffQDUOjPr16/HmDFj4PP50KpVKwwYMACHDh3C448/jpEjR+KNN97A6tWrkZGREXz+H/3oR3jppZfQr18/VFVV4d57702oF4iIyO1SUpKXM0lhhI2Ki4sFgDq3/Px8IYQQCxcu1N3/8MMPx/0alZWVAoCorKyss+/48eNi9+7d4vjx4wmfw4oVQmRlCaGGM+rN71e3J8vw4cPF0KFDdfdt375dABDbt28XK1asEH369BFpaWmiVatWIi8vL3jcpk2bxHnnnSd8Pp+o/Wvw3HPPCb/fL5o0aSJuvPFG8eijj4rOnTsH9+/YsUP069dP+Hw+0a1bN/H3v/9ddO7cWcyaNSt4DACxcuVKs087KjM+SyIikke063c4RQi9QRL3qKqqQmZmJiorK0N6GADgxIkTKC0tRZcuXZCenp7wa3AxMfuZ9VkSEZEcol2/wzFnxgTsSiQiIrIPgxkiIiIyTKZRCQYzREREZEhRkf7U8zlz7Jl67rqieURERJQ8dq9LqIfBDBEREcVFhnUJ9TCYISIiorgYWZfQSgxmiIiIKC52r0sYCYMZIiIiiovd6xJGwmCGopo6dSr69OkT/HnChAm45pprLG9HWVkZFEWps1YUERFZR1uXMHxFcI2iAH5/ctYljIbBjENNmDABiqJAURSkpqbizDPPxD333INjx44l9XXnzJmDRYsWxXUsAxAiInfR1iUE6gY0yV6XMBoGMw521VVXoaKiAl988QWmTZuGZ599Fvfcc0+d406dOmXaa2ZmZuKMM84w7fmIiMhZ8vKAl18GOnYM3Z6VpW5nnRkyxOfzoV27dvD7/Rg3bhyuv/56rFq1Kjg0tGDBApx55pnw+XwQQqCyshK//OUv0aZNG2RkZODyyy/He++9F/KcM2bMQNu2bdGsWTNMnDgRJ06cCNkfPsxUU1ODmTNn4kc/+hF8Ph86deqERx99FADQpUsXAEDfvn2hKAoG1FrzYeHChejZsyfS09PRo0cPPPvssyGvs2XLFvTt2xfp6eno168fdu7caeI7R0RE9ZGXB5SVAcXFQGGhel9aak8gA7ACcF1CAN99Z/3rNm4ceRAyTo0aNQr2wnz22WdYvnw5VqxYgZTv+/uGDRuGFi1a4PXXX0dmZibmzp2LQYMGYc+ePWjRogWWL1+Ohx9+GM888wz69++Pl156CU899RTOPPPMiK85ZcoUPP/885g1axYuueQSVFRU4OOPPwagBiQ//elP8fbbb+Pss89GWloaAOD555/Hww8/jKeffhp9+/bFzp078Ytf/AJNmjRBfn4+jh07huHDh+Pyyy/H4sWLUVpaikmTJtXrvSEiInNJtS5hspfwtlu0JcSPHz8udu/eLY4fP/7DxqNHhVBDGmtvR48aOq/8/HyRm5sb/Pndd98VLVu2FKNGjRIPP/ywSE1NFQcPHgzuX7t2rcjIyBAnTpwIeZ6uXbuKuXPnCiGEyMnJEbfeemvI/gsuuED07t1b93WrqqqEz+cTzz//vG4bS0tLBQCxc+fOkO1+v18UFhaGbPvDH/4gcnJyhBBCzJ07V7Ro0UIcO3YsuP+5557TfS6N7mdJRESOFe36HY7DTA726quvomnTpkhPT0dOTg4uvfRS/PnPfwYAdO7cGa1btw4eu337dhw9ehQtW7ZE06ZNg7fS0lJ8/vnnAICPPvoIOTk5Ia8R/nNtH330EaqrqzFo0KC423zo0CGUl5dj4sSJIe2YNm1aSDt69+6Nxo0bx9UOIiLyNg4zhWvcGDh61J7XNWjgwIF47rnnkJqaig4dOiA1NTW4r0mTJiHH1tTUoH379igpKanzPIkm9DZq1MjwY2pqagCoQ00XXHBByD5tOEzo1ckmIiKKgMFMOEUBwgIBWTVp0gQ/+tGP4jr2xz/+MQ4cOICGDRsiOztb95iePXti8+bNuPHGG4PbNm/eHPE5u3XrhkaNGmHt2rW4+eab6+zXcmQCtRbpaNu2LTp27IgvvvgC119/ve7z9urVCy+99BKOHz8eDJiitYOIiLyNw0weMXjwYOTk5OCaa67Bm2++ibKyMmzcuBEPPvggtm3bBgCYNGkSFixYgAULFmDPnj14+OGH8eGHH0Z8zvT0dNx///2477778OKLL+Lzzz/H5s2bMX/+fABAmzZt0KhRI7zxxhv4+uuvUVlZCUAtxDd9+nTMmTMHe/bswfvvv4+FCxfiySefBACMGzcODRo0wMSJE7F79268/vrreOKJJ5L8DhERkVMxmPEIRVHw+uuv49JLL8XPf/5znHXWWRgzZgzKysrQtm1bAMDo0aPx0EMP4f7778f555+PL7/8ErfddlvU5/3d736HX//613jooYfQs2dPjB49GgcPHgQANGzYEE899RTmzp2LDh06IDc3FwBw8803469//SsWLVqEc889F5dddhkWLVoUnMrdtGlT/POf/8Tu3bvRt29f/Pa3v8XMmTOT+O4QEZGTKcLlCQpVVVXIzMxEZWUlMjIyQvadOHECpaWl6NKlC9LT021qIZmBnyUROVkgoK40XVGhrmvUv7/1VXRlE+36HY45M0RERDYqKgImTQL27v1hW1aWumyAXUXonIbDTERERDYpKgJGjgwNZABg3z51e1GRPe1yGgYzRERENggE1B4ZvWQPbVtBgXpc7ceUlABLlqj3tfd5GYMZIiKqN15kjduwoW6PTG1CAOXl6nGA2kuTnQ0MHAiMG6feZ2ez9wZgMAOARdrcgJ8hkX14kU1MRUX8x9k1HOWUINXTwYxWMfc7OxaWJFOdPHkSwA9VhInIGsz5SFz79vEd16aN8eEoMzgpSPX0bKaUlBScccYZwboojRs3hlLPlavJejU1NTh06BAaN26Mhg09/StNZKlYOR+Kol5kc3M5zVhP//7qrKV9+/TfQ0VR9wPxD0eZtYq1FqSGt0sLUl9+Wa6ZVp7/y9+uXTsACAY05EwNGjRAp06dGIwSWchIzodZF1k3SUlRp1+PHKkGLrUDB+1P2ezZQLyXp3iHrWJxYpDq+WBGURS0b98ebdq0walTp+xuDiUoLS0NDRp4etSUyHJGcj5IX16e2suhV2dm9mx1v876wLriHbaKxYlBqueDGU1KSgrzLYiIDIj34mnWRdat8vLUXo5IFYDjHY7q39+c9jgxSGUwQ0RECbH6IutmKSmRezniHY4y6//jTgxS2S9PREQJ0S6ywA8XVU0yLrJepg1HdewYuj0ry/xkXC1IjZSCqCiA3y9XkGprMLN+/XqMGDECHTp0gKIoWLVqVch+IQSmTp2KDh06oFGjRhgwYAA+/PBDexpLRER1WHmR9bq8PKCsDCguBgoL1fvSUvPfYycGqbYGM8eOHUPv3r3x9NNP6+5//PHH8eSTT+Lpp5/G1q1b0a5dO1xxxRU4cuSIxS0lIqJIrLrI0g/DUWPHqvfJCiicFqQqQpLSqYqiYOXKlbjmmmsAqL0yHTp0QEFBAe6//34AQHV1Ndq2bYuZM2filltuiet5jSwhTkRERD8IBCInJiebkeu3tAnApaWlOHDgAK688srgNp/Ph8suuwwbN26MGMxUV1ejuro6+HNVVVXS20pERORG0RKTZSJtAvCBAwcAAG3btg3Z3rZt2+A+PdOnT0dmZmbw5vf7k9pOIiIispe0wYwmvKKrECJqldcpU6agsrIyeCsvL092E4mIiMhG0g4zacsMHDhwAO1rTWY/ePBgnd6a2nw+H3w+X9LbR0RERHKQtmemS5cuaNeuHd56663gtpMnT2LdunW46KKLbGwZERERycTWnpmjR4/is88+C/5cWlqKXbt2oUWLFujUqRMKCgrw2GOPoVu3bujWrRsee+wxNG7cGOPGjbOx1URE5AV2zuQhY2wNZrZt24aBAwcGf548eTIAID8/H4sWLcJ9992H48eP4/bbb8c333yDCy64AGvWrEGzZs3sajIREXlAUZH+4o9z5shXY4UkqjOTLKwzQ0RERhQVqesghV8dtbknMhaNi8WJvUxGrt/S5swQERFZLRBQe2T0/puvbSsoUI9ziqIiIDsbGDgQGDdOvc/OVre7BYMZIiKi723YEDq0FE4IoLxcPc4JtF6m8HPat0/d7paAhsEMERHR9yoqzD3OTm7sZYqEwQwREdH3apU1M+U4O7mtlykaBjNERETf699fnbUUqdC8ogB+v3qc7OLtPVq71vm9MwxmiIiIvpeSok6/BuoGNNrPs2fLNxMoEABKSoAlS9T7QCD+3qNp0+qREPzaa8Af/wgcOZLAg83DYIaIiKiWvDx1+nXHjqHbs7LknJYdabbS4cPRe5lqM5wQvGGD+sTDhwP33QcsWFCPM6g/1pkhIiLS4YTaLLFq4txzD/DEE+q/Y13tFUUNfkpLo5znjh3A+efX3X74MNCypaG2x8I6M0REDqI3ROAmTj2/lBRgwABg7Fj1XrZAJp7ZSkuXAsuW1e1l0hM1IXjPHjXaCQ9kZs9WH2hyIGMUgxkiIhu5vaCZ28/PTvHOVmrdGigrAx58ML7nDUkcXr5cDWK6dw896OGH1ReYNMlos5OCwQwRkU3cXtDM7ednNyM1cVJSgEGD4ju+fXsAK1eqQczo0aE777wTqKkBpk410tSkY84MEZENAgG1hyLS/6zjyl+QmNvPTwYlJWpPVyzFxeowmfaZ7NunPzSlKMCw1lvwz4MX6D/R6dOWfljMmSEikpzbC5q5/fxkYLQmTrRp59koQ41Q9AOZ//1P/cAkjjoZzBAR2cBNZfP1uP38ZJBITZzwaeeZ+BYCCkrRpe4L7N6tBjHNm5vedrMxmCEisoGbyubrcfv5ySKRmjh5ecDsmdUQUPAtdAKVtWvVIKZnz+Q0OgmYM0NEZIN48hecnFPi9vOTTdw1cYQAGuj3Y/wcC7BIuUmawoDMmSEikpxTy+bHy+3nJ5u4auIoim4g8yLGQ4HAQtwEwJkraTOYISKyidPK5hvl9vNzDEXRzRL+BGdBgUA+Xgxuc2pidkO7G0BE5GV5eUBurvxl8xPl9vOTWpRFmRREzzBxWmI2gxkiIptpQwRu5fbzk06UIKakWMRVm8ZpidkMZoiIiNwg2vLY32dh9w+ow3yxErO12jROwZwZIiIiJ4uQEwNAjVhqRS1uTcxmMENEROREmZlxBzG1uTExm8NMRETkaXHXaJHFiBHAq6/q76upiT7c9D23JWYzmCEiIs8qKgImTQpdRyorSx2Kka6H4te/Bp58Un/fiROAz2fo6dyUmM1hJiIi8qSiImDkyLoLYu7bp24vKrKnXXUUFqq9LXqBzIED6nCSwUDGbRjMEBGR5wQCao+MXlqJts32Srjbt6tBzPXX1923caPa0LZtrW+XhBjMEBGR52zYULdHpjZbK+F+/bUaxPTrV3ff/Plq43JyrG+XxJgzQ0REnhNvhVtLK+GePBl5uOjWW4HnnrOwMc7CYIaIiDwn3gq3llXCjTQDqXt34OOPLWqEczGYISIiz+nfX5JKuHFU7aXYGMwQEZEnhNeTmTULGDVKjSdqxw2WVMJlEGMq6ROAjxw5goKCAnTu3BmNGjXCRRddhK1bt9rdLCIicpCiIiA7Gxg4EBg3Tr2/+27gnnssroRrYOkBip/0PTM333wzPvjgA7z00kvo0KEDFi9ejMGDB2P37t3oGP4bSEREFEarJxMeJ+zbBzzxBLBsGdC6dZIr4bInJqkUIeR9F48fP45mzZrhlVdewbBhw4Lb+/Tpg+HDh2PatGkxn6OqqgqZmZmorKxERkZGMptLRESSCQTUHplI07C13JjS0iQNKTGISZiR67fUw0ynT59GIBBAenp6yPZGjRrhnXfe0X1MdXU1qqqqQm5ERORNttWT4XCSpaQOZpo1a4acnBz84Q9/wP79+xEIBLB48WK8++67qIgw+X/69OnIzMwM3vx+v8WtJiIiWVheT4ZBjC2kDmYA4KWXXoIQAh07doTP58NTTz2FcePGISVCf+CUKVNQWVkZvJWXl1vcYiIikoVl9WR8vshBTCBgKIgJBICSEmDJEvXe1iUVHEL6YKZr165Yt24djh49ivLycmzZsgWnTp1Cly5ddI/3+XzIyMgIuRERkTdp9WSipa7Uq57M6NHqk588WXfff/+rBjEN4r/U6s26ys62b9FLpwRW0gczmiZNmqB9+/b45ptv8OabbyI3N9fuJhERkeRSUoA5c9R/Rwpojh8HXnnF4BP/5S/qEy5fXnffjh1qENOihaGnlG0Vb9kCq2ikns0EAG+++SaEEOjevTs+++wz3HvvvfD5fHjnnXeQmpoa8/GczUREREVFwC9/qXaWhNOCnLhqy7z7LnDhhfr7Fi4EJkxIqH22z7oKE2k6u6H3qp5cM5sJACorK3HHHXegR48euPHGG3HJJZdgzZo1cQUyREREAJCbC4RNjA3SLtgFBVGGUQ4dUq/keoFMfr76JAkGMoBcq3gHAsCkSfppPnG9VzaQvmjeqFGjMGrUKLubQUREDrZhgzpcE0ntYGHAgFo7Tp8GIv3nuWVL4PBhU9on0yreRgKrkPfKRtIHM0RE5GzhayIlpcJuDAkFCxYWvJNpFW+ZAqt4ST/MREREziVLEqmhYMGGWjGxZl0pCuD3W7CKN+QKrOLFYIaIiJJCptk58QQLAgoGDDQ3iIl3anO0WVeWrOJdi0yBVbwYzBARkelkSyKNFiwIKKgR5vfEGO2VystTZwlZuoq3DpkCq3gxmCEiItPJNDtHEx4sCCgQSM5wUqK9Unl5QFkZUFwMFBaq96Wl1gUytdshQ2AVL+nrzNQX68wQEVlvyRK1NyKWwkJg7NjktydEkhN7ZasZUx92Jm8buX5zNhMREZlOyiRSi2YnOXFqcyQpKfK3EWAwQ0QUJMMUYrfQkkj37dOPE7TeCUuSSC2cYg04c2qz0zFnhogI8kwhdgspkkijTbE+cSIpgQwgaa+UyzGYISLPk2kKsZvYlkQ6ZEjkIObzz9UgxudL0os7c2qz0zEBmIg8zU3JmlaLd1hOq7VSUqL+PGCAejP9/fzjH4H77tPft3IlcM01Jr9gZFqADIR2AFm5UKPTuWqhSSKiZJJxCrETGBmWe+UVdQ3GadPU2+DBJg/hbdqkRgl6gcxdd6kfYj0CmXgL39XmtKnNTscEYCLyNCZrGqf1OoT362vDcrUv1kaONex//1MXe9TTujVw8GCCT/yDoiK1+F/tgDcrS80HitXuvDx1tW4mlScfh5mIyNNKStRehViKi50xRTXZjAzLAUkawhMCaBBlYMGky1qkQIxDRdbgMBMRUZyYrGmMkWG5pAzhKUrkQMbERSBlW46BomMwQ0SeJsUUYgcxMixn6hCexStZM5fKWRjMEJHnMVkzfkZqqJhSb8XiIEbDXCpnYQIwERGYrBkvo5V9E64CbHHV3nAsfOcs7JkhIvqetg7N2LFJqoPiAkaG5RIawovSE6NAwJ8lIk7pTmQKdSTMpXIWBjNERGSIkWG5uI+NEcQoUHtjIlVlNns5CuZSOQunZhMRUUKMLMwZ8dgow0laAFNne9iU7mROodarM+P3q4EMc6mSy8j1m8EMERFZL0oQU/KvGgy8PErOzPeKi9WgKNnLUXA1dXsYuX4zAZiISGKuu5BGS+z93/+A5s1RsSS+p6qoMDaFOtGih1ouFcmLOTNERJIyOw/EVpdeGjmQ+fe/1aijeXMAxmYScQo1AQxmiIikpOWBhPc6REqAldasWWoQo1ddbto0NYi56KKQzUZmEnEKNQHMmSEiko6R9Y+kHXLasQM4/3z9feecA7z/ftSHa8EcEJrYG57Uq71XsWrZSP1ekS6uzURE5GCOLqV/9KgaQUQKZISIGcgA8U/p5hRqApgATEQkHcfmgZhctTdaVebwxOhly4DJk0ODwKwsTqH2CgYzRESScVweSBKXHtCbSaRX+yUrS03PadXKRTO/KG7MmSEikoxj8kBsWD8pmQXySC7MmSEicjDp80BsWsk6EFB7ZPSeXttWUFC/NZnImRjMEBFJyMj6R5axKYjRODoxmpJK6mDm9OnTePDBB9GlSxc0atQIZ555Jn7/+9+jpqbG7qYREZkufNXn3FygrEwt219YqN6XltoQyNgcxGgcmxhNSSd1AvDMmTPxl7/8BS+88ALOPvtsbNu2DTfddBMyMzMxadIku5tHRGSaSEmtc+bYmANiQ05MNI5LjCbLSB3MbNq0Cbm5uRg2bBgAIDs7G0uWLMG2bdtsbhkRkXkiJbVq1X4tH1aSLIjRHD78w7RsPVpidP/+1raL7Cf1MNMll1yCtWvXYs+ePQCA9957D++88w6GDh0a8THV1dWoqqoKuRERyUqqpNZow0mnTtkayBQVAaNGxX4fWCDPm6QOZu6//36MHTsWPXr0QGpqKvr27YuCggKMHTs24mOmT5+OzMzM4M3v91vYYiIiY6RIao0SxFzQ7ksUrRBAQ/s68qMFfJqUFLVwHqdlmyM8f0v2GWJSBzPLli3D4sWLUVhYiB07duCFF17AE088gRdeeCHiY6ZMmYLKysrgrby83MIWE5EbWPmH3Nak1hEjIgYx12E5FAhs/bqT7Qtbxgr4APUzat3amva4nRNXa5c6Z+bee+/FAw88gDFjxgAAzj33XHz55ZeYPn068vPzdR/j8/ng8/msbCYRuYjVibi2JLW++CIQ4W/oEozBOCwJ/iyEGu8UFKizq+wYwuEsJutIl78VJ6l7Zr777js0aBDaxJSUFE7NJqKk0P6Qh/cCaH/Ik/E/0/791WApUqqKogB+v0lJrXv2qE8YIZBRIEICGY3d9Vs4i8kaUuVvGSR1MDNixAg8+uijeO2111BWVoaVK1fiySefxM9+9jO7m0ZELmPXH3JLqv2ePKk+WffuuruXFAooiJ3ca1fPh6UBn4dJkb+VIKmDmT//+c8YOXIkbr/9dvTs2RP33HMPbrnlFvzhD3+wu2lE5DJ2/iFParVfRQEiDb1/X/BO9p4P6Zd3cAknD+dJnTPTrFkzzJ49G7Nnz7a7KUTkcnb/Ic/LU3NSNmwwadVnA7VitJ6PWAtbhvd8BAImtjcGLeD71a/Udmo6drS5sKCLyB7URiN1MENEZBUZ/pCnpAADBtTzSRIoeKf1fIwcqT689mGRej7sqlgc7fSofhINamUg9TATEZFVHJ+XUc/1k4wMddmRKG3Ha3qNk4fzFCFsLOlogaqqKmRmZqKyshIZGRl2N4eIJKZdMAH93gkpp6WavPRArKGjQECtORIpv0j733tpqXkXPTte08v0et38fjWQsfL338j1m8EMEVEtsvwhj8mm9ZNKStQiarEUF5swZGbja3qdlflQkRi5fjNnhoioFtMTcc1m8yKQdiRK252c7UWm5G9ZiMEMEVEYKf+QS7KStR2J0jIkZ5PcmABMRCSzaIm9x45ZvpK1HYnSjk/OpqRjMENEJKO0tMhX71271CCmcWNLmwTYM+PFybNsyBoMZoiIZHLnneoV+tSpuvvmzFGDmN69rW9XLUmtWCzRa5JzcDYTkc1kmDVAEnj1VWDECP19F14IbNpkbXviYMfvLr8v3sHZTEQOYVcVVZLI/v11uxtqk/j/m3YkSkuZnE224zATkU1Y0dTjamrU4aRIgUwcVXuJSMVghsgGgYDaI6N3rdK2FRSox5ELKUrksREGMUSGMZghssGGDZFLswPqtay8XD2OXKSe6ycRkT7mzBDZgBVNPUaSgnduwSRgCseeGSIbsKKpR0TpifFnCRStYCBjVFGRuujkwIHAuHHqfXY2c8y8jsEMkQ1Y0dTlogQxCgQUCCZ6J4BJ8xQJgxkiG7CiqUvFEcRomOhtDJPmKRoGM2SrQAAoKQGWLFHvvfSHiBVNXcRAEFMbE73jx6R5ioYJwGQbLxWMi5SwmJcH5OYymdGxoiX21tRgyVIFGBf7aZjoHRuT5ikaBjNkC23sO7zLWBv7dlPPRKygjRVNf+CYWSrRgphDh4BWrQAw0dtMfC8pGq7NRJYLBNTZB5G6jBVFvdiXlkp6ITMgUtCmXQvdFLTVlyN66s45B/jwQ/19b70FDB4cskn7Xd+3Tz/Xw02/68nG99J7jFy/mTNDlvPK2DcTFuMn/SyVmTPVq6VeIHPXXeoHGhbIAEz0NhPfS4qGwQxZzitj314J2upL6qBv2zb1SvnAA3X3nXGG2sCnnor6FEz0Ng/fS4qEOTNkOa+MfXslaKsvI0GfZblFVVVAZmb0RhnARG/z8L0kPQxmyHJawbhYY99OLxjnlaCtvqQL+pK09AATvc3D95LCcZiJLOeVsW9W+Y2PNEEfF4EkciwGM2QLL4x9eyVoqy/bgz4GMUSOZziYmTBhAtavX5+MtpDH5OUBZWVAcTFQWKjel5a6I5DReCFoqy+rgr7watNeC2K8XG2b3M9wnZlrr70Wr732Gvx+P2666Sbk5+ejY/hfaol4vc6MY4qQuRw/h9j06sz4/WogU9+gr/ZzCyQnJ0ZmjqjhQxTGyPU7oaJ5//3vf7F48WIsWrQIH3zwAQYPHoyJEyciNzcXqampCTc8GbwczPAPGDlNMoI+rYZNjfBeEAOwcCM5V9KDmdp27tyJBQsW4K9//SuaNm2KG264Abfffju6detWn6c1jVeDGf4BI1KDo5SGkYOYBopwdNXYWMGfl6ptk/tYVgG4oqICa9aswZo1a5CSkoKhQ4fiww8/RK9evTBr1qz6PHVQdnY2FEWpc7vjjjtMeX43kroIGZFVFCViIKOtZO3kwoVFRWqgMnAgMG6cep+dHVotmYUbySsMBzOnTp3CihUrMHz4cHTu3Bl///vfcffdd6OiogIvvPAC1qxZg5deegm///3vTWng1q1bUVFREby99dZbAIDrrrvOlOd3I/4BIzvZnmgaJbE3FSehoG6U77TChfEu/yBdDR+iJDFcNK99+/aoqanB2LFjsWXLFvTp06fOMUOGDMEZZ5xhQvOA1q1bh/w8Y8YMdO3aFZdddpkpz+9G/ANGdrE1TytKsbvu+Bh70D3ificVLozV86ooas9rbq5ENXyIksxwMDNr1ixcd911SE9Pj3hM8+bNUVpaWq+G6Tl58iQWL16MyZMnQ4nwh6u6uhrV1dXBn6uqqkxvh+z4B4ysEJ6vcegQMHp03Yus1luQtDytnj2Bjz/W3VXzzHPoPP1W7NsH6HTIOLLatJGeV69U2yYyPMw0fvz4qIFMMq1atQrffvstJkyYEPGY6dOnIzMzM3jz+/3WNVASthchI9fTy9cYO9biPK3HH1d/mfUCmX79ACHQ4PZbXVe40EjPKws3klc4qgLw/PnzcfXVV6NDhw4Rj5kyZQoqKyuDt/LycgtbKAf+AaNkipSvES1QMTVP64MP1F/k+++P/GJbtwZ/dFvhQqM9r247fyI99Z6abZUvv/wSZ555JoqKipCbmxv347w6NRtIbhEy8qZYU31jKSxUe3ASUl0NROsVjvGnzC2FC7XPINbQUfh0a7ecP3mHkeu3Y1bNXrhwIdq0aYNhw4bZ3RTHyMtTkwD5B4zMEitfI5aE87RMWMk6JUX9/de+D1pOidO+D1rP68iR6ttS+/Sj9bxypWlyM0cEMzU1NVi4cCHy8/PRsKEjmiwN/gEjMyU6Ay7hRFMTghiNbBWx69NTog0d6Z0Pe17JixwRGbz99tv46quv8POf/9zuphB5WiI9KwnlaZkYxACRK2InfaZVlPbUN7BizyvRDxyTM5MoL+fMkPyclscQK18DUNtfOxnYUJ6WyUEMIF9Jfy41QhQfS9dmkh2DGZKVbMMe8dIuxoB+vsby5UCrVgYDtCQEMZqSEnXqeCzFxckfkpUtsCKSmWVrMxFRYuItRy+jWFN9R45Ug4KxY9X7qBflKEsPQAhTVrOWqSI2lxohSg5H5MwQuYmRcvSy/u+83vkaSeyJCSdTRWyZAisiN2EwQ2QxI/87l3kmWkIz5SwMYjQylfSXKbAichMOMxFZzJP/O482nHTkSNICGUCuithcaoQoORjMEFnMU/87jxbEbNyoBjFNmya9GWaW9A8E1KTiJUvUeyPrTckUWBG5CYMZIot54n/nubmRT3DKFDWIycmxtEl5eUBZmTprqbBQvS8tNRbI6C2wmZ1tLGGbayURmY9Ts4lsEGt6s2MvasuXA6NH6+9r2lQdUnIos+vDOK3GEJHVWGemFgYzJCtXLQS6b5/atRCJw//MsD4MkfVcudAkkdu4ohx9TU30Bjs8iNG4ZQYakVsxmCGykaMXArVhmrVdPDkDjchBGMwQkTEeCmI0npqBRuRADGaIHMzSJFIPBjEamQrvEVFdnJpN5FBmTBOOiwXrJ8mO9WGI5MZghsiBLFmokkFMCNaHIZIXp2YTOUzSpwl7eDgpHqwPQ2QNTs0mMshJF6ikTRNmEBMXR89AI3IpBjPkeXrF67Ky1BwJGYcO4p3+u2+funZQzAAtWhBTUxN9PxGRBBjMkKdFKlGv5Z7ImAsR7/TfggLg8OEffq4ToEULUg4cANq2TbSJRESWYs4MeZZTS9Rr7Y40TTgSLXapEVGCmFWr1LLELuCkoUMiqsvI9ZuzmcizjOSeyCSeacJ6nha3Rw5kRo9WT9glgYxl09aJSAoMZsiznFyiPtI04Vat6h47AMUQUHA7ntN/MiGApUvNb6RNLJm2TkRSYc4MeZbTS9TrLVS5bx9www3q/kx8i2/RPPITmDjCLMuQTiCgJnPrnZoQas9VQYH6vnHIicg9GMyQZ7mhRH34NOGSEvVeIPJ4kwKB4mJgQMQjjJFpNhhXtybyJg4zkWe5sUT9gIFKxEBGgUADRcDvNy9Ak21Ix8lDh0SUOAYz5GmuKVEfZekBNbwRpgdosYZ0AHVIJxCo/2vpvXZJCbBkiXqvvYbThw6JKDEcZiLP08s9ccw03ijTl/xZos7Qz+zZ5gVodg3pRBvWys11/tAhERnHYIYIDixRH8fSA2VJTsq1Y0gnniKHc+ao/1aU0OOcOnRIRLExmCHbyDIDxlEMrJ+U7ADN6iGdeGcqlZaqQY1e742ZPVNEJA8GM2QLmWbAOIKEi0BaPRvMyLCW7EOHDOSJzMVghiznxPWQbCNhEKPRZoNZNaRjdFhL1qFDBvJE5uNsJrKUnTNgHCXK7CScPGl7IKOxcjaYG2YqyTaVncgtpA9m9u3bhxtuuAEtW7ZE48aN0adPH2zfvt3uZlGCnLoekmWiBTEffqi+Qamp1rYphrw8oKwMKC4GCgvV+9JS83sZtGGtSG+PosDUGjpmYyBPlDxSDzN98803uPjiizFw4ECsXr0abdq0weeff44zzjjD7qZRgljULAK/P3KUN3u2ehWMwc48DCuGdKwe1jIbqxMTJY/UwczMmTPh9/uxcOHC4Lbs7Gz7GkT15oahAlM9/jhw//36+846C/jkk7iexit5GNqwlhNnKjGQJ0oeRQhJBt919OrVC0OGDMHevXuxbt06dOzYEbfffjt+8YtfRHxMdXU1qqurgz9XVVXB7/ejsrISGRkZVjSboggEgOzs2DNgSkvl/B+2ab0f//kP0Lt35P0GvpaREqq13go3JlQ7cTZQSQkwcGDs44qL2TNDBKjX78zMzLiu31IHM+np6QCAyZMn47rrrsOWLVtQUFCAuXPn4sYbb9R9zNSpU/HII4/U2c5gRh7axRfQHyqQ9eJrtPdD94J7uhr4/vdal8GvoxYcRhq+kD049BKnB/JEVnNNMJOWloZ+/fph48aNwW2/+tWvsHXrVmzatEn3MeyZcQa9wMDvl3eowGjvh975RVvJOtHZSfzfvrM4NZAnsoORYEbq2Uzt27dHr169Qrb17NkTX331VcTH+Hw+ZGRkhNxIPlbNgDGD0Vko4dNvv1/mUf/JhajXNGvmYTiLaxY2JZKM1AnAF198MT4JS4Dcs2cPOnfubFOLrOPEnACjZC1qFs7ILJT+/X8IfKL1xAROC1M+TyZUO4/s1YmJnEjqYObuu+/GRRddhMceewyjRo3Cli1bMG/ePMybN8/upiWVV2amJMrqQM9I78eGDUD53shBjAK1F6bYpOm3Vi8pIBMnB/xOCeSJHENI7p///Kc455xzhM/nEz169BDz5s0z9PjKykoBQFRWViapheZasUIIRdHGHn64KYp6W7HC7hbaa8UKIbKyQt+brKzkvi/FxXU/D71btJ3hmwoLzWuf9jsT/nvj5t8ZO34PiMhaRq7fUicAm8FIApHdODMlOrumIMeahRJtOEnriQlndkKu0xKq68OLU9GJvMg1s5nM4KRghjNTIrM70NObhZJIEJPMdjp52CVeif4eeOG9IXIb18xm8hrOTInM7jWdas9CiTY7Sfl+r+6+JJfc1/Iwxo5V7914sU7k96CoSA2ABg4Exo1T77OzuagjkZswmJEIZ6ZEJkOgl3etEjG5tymORAxiNJx+W39Gfw+4SjWRN0g9m8lrvDwzpTa9IQFbA71IyzQDuBCb8C4ujLj/wQeBXr04tGEWI78HseoDKYpaHyg3l58LkdOxZ0Yi2qrAQN3rpxNWBTZDpCGBw4fVQC5SXKEoasKrqYHexIkRX7B0wiNQIKIGMgAwaJC7h32spgX88fwe2D00SUTWYTAjGS9XCI02JDBqlBoUABYEeq++qj7pggV193XsCAiBTn99yPrgigwF/DIMTUYSCKgJ/0uWqPda9WgiSgyDGQk5qdS/WeJZMmDpUmDZsiQGegcOqFfEESP09wsRjLTYi2afeAN+WXPQmJBMZD5OzSYpGJmWrg0hmDbNtqYm+hNE+Yo4tb6LG6YqxzoHGVepZo0covgZuX4zAZgA2H9xMzIkYGop+CjJvfEsAOnEdXbcslxGrN8Drfds5Ej1Y9ZbpdrK3jMmJBMlD4eZSIpub8uHBBQlciBjcCVrJ9V38dpUZZly0JiQTJQ8DGY8TpaLm5FZKvViYhDjNPHkJRUUuC8ZVZYcNJkTkomcjsGMB2kzKf72N+CWW+S4uCU9odbDQYzGyz0DMvSeyZqQTOQGDGY8pvaQ0g03qPVbIrH64paUIQEGMUHsGbCXZb2PRB7EBGAPiTSTIhYrL26mJdTWM7HXjdgzYC/ZEpKJ3IQ9Mx4RLV8iFqsvbvUaEmBPTETsGbCfTAnJRG7CnhmPiJUvocdRa0FF64mpqYm+3yPYMyAHJ07nJ5IdgxkL2VnLxehQkWMubtGClEOHgFatrGuLA2g9A3p1ZmQv9OcmptZKIiIGM1axu1CZ0aEi6S9uvXoBH32kv++tt4DBg61tj4PY3TNgd4FGInIfLmdgARlKmMdT2r1VK2DWLHU8P5ELjCUXqRkzgClT9PcVFKgnYCJeeM1ld1BPRM5h5PrNYCbJtCAiUr6KlevDaEEVoJ8vUZ+gKukXqW3bgJ/8RH9fo0bAd9+Z8CKheOE1lwxBPRE5h5HrN2czJZlMhcqSNZMiqVWEjxxRr3aRAhkhkhbIyFAZ2S28Wn2YiKzBYCbJZCtUZnZp96RepBQFiBSNJ3GaNS+85pMpqCci92ECcJLJWKjMzJkURi5Scb+mzQXvknJOHidbUE9E7sJgJsm0QmXREm8dU8tFR7wXn7Vr6ybRhifXDhgoR9VeXnjNJ2NQT0TuwWAmydxeqCzei8+0aT/8OytLre67ZInaAyIgRxCj4YXXfG4P6onIXsyZsYCbS5jHKpGvZ+9e4I9/BMr3KpEDGRuXHmDZf/MlfVV0IvI0BjMWMTvxVhbRLlKRCEQOYhooAp38wtbkWrMuvIEAUFKi9kCVlDBh2M1BPRHZi3VmKG7RCsjp1WQJF204SUHor2Fxsf3JtXrn5PfHVxmZNWoiYyFCIooHi+bVwmDGHPFcnGtfpHbv/iFPxkgQoyksVPNq7JbIhZfF4YiI6o/BTC1WBzNm/69Thv/FJnJxLimJPjupIU4hECX/XIaemUTIVPGZiMjJWAHYJkVF6oVs4EBg3Dj1Pjs78WqxZj9fIhIqIKcoEQOZTvgSCkTEQMbpybUsDkdEZD0GMyYxu/y9LOX0DV2c8/MjZgFfg5VQIFCOThGfyw2zWlijhojIelIHM1OnToWiKCG3du3a2d2sOswufy9TOf14Lrp5WKH2xLz4Yp19ZYMmwp8l8AquCW7z+4F771WHW2pzw6wW1qghIrKe9EXzzj77bLz99tvBn1Mk/C+72eXvZSqnH+2im41SlOLMyAcIgWwAZRHyfqZPtz8fyGwsDkdEZD3pg5mGDRtK2RtTm9lDCzINVehdnBviFE4hLfKDwq7ikdaCMnONKFm4veIzEZGMpB5mAoBPP/0UHTp0QJcuXTBmzBh88cUXUY+vrq5GVVVVyC3ZzB5akGmoIryAnIASOZCxsWqvTKwqDseifEREKqmnZq9evRrfffcdzjrrLHz99deYNm0aPv74Y3z44Ydo2bKl7mOmTp2KRx55pM72ZE7N1qbjxhpaiHc6rtnPZwqbV7J2otrT6tu0UbcdPGjOkBqL8hGR27m2zsyxY8fQtWtX3HfffZg8ebLuMdXV1aiurg7+XFVVBb/fn/Q6M9rsI0B/aMHo/8jNfr6ERQliAqdFUoMpGWrsmMHswINF+YjIC1xbZ6ZJkyY499xz8emnn0Y8xufzISMjI+RmBbOHFmxfx0ZRIgcy3w8nJTOwkKHGjhnMnmIv00w3IiJZOKpnprq6Gl27dsUvf/lLPPTQQ3E9hhWADZJgOMktPQ/JqAZcUqIGdrE4tYIyEZHGyPVb6tlM99xzD0aMGIFOnTrh4MGDmDZtGqqqqpCfn2930yIye4aOZTN+JAhigNg9D4qi9jzk5so/5GR0in08gatMM92IiGQh9TDT3r17MXbsWHTv3h15eXlIS0vD5s2b0blzZ7ub5h5xDCdZyU3LARgJPOIdVpNpphsRkSyk7plZunSp3U1wL0l6YsK5qech3oDi00+BqVPrvu1aXk3tYTUW5SMiqkvqnhlKgmg9MceP1yuQMaPuiZt6HrTAI9LbrQUe8+bFn9AbXvcn/PkAFuUjIu9hMONACQUNo0dHvqqWlgJCIJCannAwYtbso3gCAKesqh1P4PGLX6i9LJHoDavZPtONiEgyDGZsZjQwKSoCOncODRo6d44SNCxerF45ly+vu++VV9SrZXZ2vYIRM6cfu63nIVbg0a1bfM8TPqyWlweUlamzlgoL1fvSUgYyRORRwuUqKysFAFFZWWl3U+pYsUKIrCwty1a9ZWWp22s7fVqI4mIhCgpCjw2/hTzu/fcjH3jPPXXaoSh1D1MU9RbenvC2hZ9D+HP4/epx9X1v/P7obZGZ9hkWFqr32vtRXBz9M9VuxcX2tZ2IyA5Grt+OqjOTCKvrzMQr3loqetVjI2nZEvj686NIOaOZ/gFduwKffRayqb61UJJZ98QtFYCjkXLpCiIiCbimzoxbxVtLpaYGGDUq3pxcgcP/bQCcEWm3/pMYrYUSLpmzj9y4qnY4rrJNRFR/zJmxQbwBxO23xxfICCgQkT7KGLVi6huMuGn2kV2Y0EtEVD/smUlQfYZA4g0gDh2Kvl+g/rVi6huMsO6JOfLy1KrGbh9WIyJKBvbMJKC+05Dr20uh9sToBzJr3zZWtbe+U6HdNvvITtqw2tix6j3fMyKi+DCYMciMacjxBBCtW9fdHi2IUSDQqqUwnGNiRjDCYRIiIrITgxkDYiXuAqHVWiOJJ4B45pkfAp5YQYwC9cXnzUvsf/NmBCOse0JERHbh1GwDzJ6GrDft2u9Xe0Ly8hB1/SQtgAHUoGPOnPoHDl6YCk1ERM7AqdlJYvY05IhJnxf0A67drvsYBQJZWcAjv1Crx5oZdHhhKjQREbkPgxkDjM78iaenIySAuO02YOBfdJ+z5F81qDigoJg9JkRERCEYzBhgZBqy3hBSxOGgRYuAm27Sf9ETJwCfDwNMOgciIiK3YQKwAfHO/HnllThnPH3wgfpAvUDm4EE1YvL5zDwFIiIi12EwY1CsmT+5ubFnPD12V4UaxJx7bt2D3n9fPVBvbjYRERHVwWGmBESr1lpSEnmpAh9O4IRoBOzX2bl1K9CvXzKbTURE5EoMZhIUaeaP3kwmBTWoQYSM3VdeAf7v/0xtGxERkZdwmMlk4TOeBBTdQObTO+eow0kMZBwvEFB75JYsUe9jFU0kIiJzMZgxmTbjqQyddav2FmA2OvkFzpz9KxtaR2ar7zpdRERUfwxmTJay+AWU71XQGV+FbJ+NSWigCDylTOLCiy5hxjpdRERUfwxmzLJqlTpDacKEkM1T8BgUCNyN2Vx40UXMWqeLiIjqjwnA9VVcDFx+ed3tr76KwFXDMGQDcB7XOnKdDRsiz1oD1ICmvFw9jktEEBElF4OZRJ04ATRqVHf73/6mJk8ASAEvZG5l9jpdRESUOA4zJWrZstCfn35a/e/494EMuZvRdbqIiCh52DOTqP/7P+D++4EmTYDf/c7u1pDFjKzTRUREycVgJlHNmwMzZtjdCrKJtk7XyJFq4FI7oKm9ThdzpIiIko/DTEQJirVOF2etERFZgz0zRPUQbZ0uIiKyBoMZonqKtE4XERFZg8NMRERE5GjsmfG4QIBDJERE5GyO6pmZPn06FEVBQUGB3U1xBS6SSEREbuCYYGbr1q2YN28ezjvvPLub4gpcJJGIiNzCEcHM0aNHcf311+P5559H8+bNox5bXV2NqqqqkBuF4iKJRETkJo4IZu644w4MGzYMgwcPjnns9OnTkZmZGbz5/X4LWugsRhZJJCIikp30CcBLly7Fjh07sHXr1riOnzJlCiZPnhz8uaqqigFNGCcsksjEZCIiipfUwUx5eTkmTZqENWvWID09Pa7H+Hw++Hy+JLfM2WRfJLGoSB0Gq917lJWlLh/AqrpERBROEUIvc0IOq1atws9+9jOk1PoveSAQgKIoaNCgAaqrq0P26amqqkJmZiYqKyuRkZGR7CY7QiCgzlqKtUhiaan1vSFaYnJ4u7T1jrhMABGRNxi5fkudMzNo0CC8//772LVrV/DWr18/XH/99di1a1fMQIb0aYskAj8ECRo7F0lkYjIRESVC6mCmWbNmOOecc0JuTZo0QcuWLXHOOefY3TxHk3GRRCYmExFRIqTOmaHkkm2RRCckJhMRkXwcF8yUlJTY3QRXkWmRRNkTk4mISE5SDzORt/Tvrw5zhefxaBQF8PvV44iIiDQMZkgasiYmExGR3BjMkFRkTEwmIiK5OS5nhtxPtsRkIiKSG4MZkpJMiclERCQ3DjMRERGRozGYISIiIkdjMENERESOxmCGiIiIHI3BDBERETkaZzO5TCDAKc1EROQtDGZcpKgImDQpdOXprCy1qi6LzRERkVtxmMklioqAkSNDAxkA2LdP3V5UZE+7iIiIko3BjAsEAmqPjBB192nbCgrU44iIiNyGwYwLbNhQt0emNiGA8nL1OCIiIrdhzozNzEjYragw9zgiIiInYTBjI7MSdtu3N/c4IiIiJ+Ewk03MTNjt318NghRFf7+iAH6/ehwREZHbMJixgdkJuykpam8OUDeg0X6ePZv1ZoiIyJ0YzNggGQm7eXnAyy8DHTuGbs/KUrezzgwREbkVc2ZskKyE3bw8IDc3uRWAWWGYiIhkw2DGBslM2E1JAQYMMP64eLDCMBERyYjDTDZwYsIuKwwTEZGsGMzYwGkJu6wwTEREMmMwYxMnJeyywjAREcmMOTM2siJh1wysMExERDJjMGOzZCbsmoUVhomISGYcZqKYnJiwTERE3sFghmJyWsIyERF5C4MZiouTEpaJiMhbmDNDcXNKwjIREXkLgxkyxAkJy0RE5C1SDzM999xzOO+885CRkYGMjAzk5ORg9erVdjeLiIiIJCJ1MJOVlYUZM2Zg27Zt2LZtGy6//HLk5ubiww8/tLtpREREJAlFCL0i9fJq0aIF/vjHP2LixIm6+6urq1FdXR38uaqqCn6/H5WVlcjIyLCqmURERFQPVVVVyMzMjOv6LXXPTG2BQABLly7FsWPHkJOTE/G46dOnIzMzM3jz+/0WtpKIiIisJn3PzPvvv4+cnBycOHECTZs2RWFhIYYOHRrxePbMEBEROZ+RnhnpZzN1794du3btwrfffosVK1YgPz8f69atQ69evXSP9/l88Pl8FreSiIiI7CJ9z0y4wYMHo2vXrpg7d25cxxuJ7IiIiEgOrsyZ0QghQoaRiIiIyNukHmb6zW9+g6uvvhp+vx9HjhzB0qVLUVJSgjfeeMPuphEREZEkpA5mvv76a4wfPx4VFRXIzMzEeeedhzfeeANXXHFF3M+hjaJVVVUlq5lERERkMu26HU82jONyZozau3cvp2cTERE5VHl5ObKysqIe4/pgpqamBvv370ezZs2gKEq9n0+b6l1eXu7ahGIvnCPgjfP0wjkC3jhPL5wj4I3z9MI5AvU/TyEEjhw5gg4dOqBBg+gpvlIPM5mhQYMGMSO6RGjrRbmZF84R8MZ5euEcAW+cpxfOEfDGeXrhHIH6nWdmZmZcxzluNhMRERFRbQxmiIiIyNEYzBjk8/nw8MMPu7rKsBfOEfDGeXrhHAFvnKcXzhHwxnl64RwBa8/T9QnARERE5G7smSEiIiJHYzBDREREjsZghoiIiByNwQwRERE5mueDmWeffRZdunRBeno6zj//fGzYsCHq8evWrcP555+P9PR0nHnmmfjLX/5S55gVK1agV69e8Pl86NWrF1auXJms5sfNyHkWFRXhiiuuQOvWrZGRkYGcnBy8+eabIccsWrQIiqLUuZ04cSLZpxKRkXMsKSnRbf/HH38ccpzTP8sJEybonufZZ58dPEa2z3L9+vUYMWIEOnToAEVRsGrVqpiPcdr30ug5OvU7afQ8nfi9NHqOTvxOTp8+HT/5yU/QrFkztGnTBtdccw0++eSTmI+z8nvp6WBm2bJlKCgowG9/+1vs3LkT/fv3x9VXX42vvvpK9/jS0lIMHToU/fv3x86dO/Gb3/wGv/rVr7BixYrgMZs2bcLo0aMxfvx4vPfeexg/fjxGjRqFd99916rTqsPoea5fvx5XXHEFXn/9dWzfvh0DBw7EiBEjsHPnzpDjMjIyUFFREXJLT0+34pTqMHqOmk8++SSk/d26dQvuc8NnOWfOnJDzKy8vR4sWLXDdddeFHCfTZ3ns2DH07t0bTz/9dFzHO/F7afQcnfidBIyfp8ZJ30uj5+jE7+S6detwxx13YPPmzXjrrbdw+vRpXHnllTh27FjEx1j+vRQe9tOf/lTceuutIdt69OghHnjgAd3j77vvPtGjR4+Qbbfccou48MILgz+PGjVKXHXVVSHHDBkyRIwZM8akVhtn9Dz19OrVSzzyyCPBnxcuXCgyMzPNamK9GT3H4uJiAUB88803EZ/TjZ/lypUrhaIooqysLLhNts+yNgBi5cqVUY9x6vdSE8856pH9OxkunvN06vdSk8hn6bTvpBBCHDx4UAAQ69ati3iM1d9Lz/bMnDx5Etu3b8eVV14Zsv3KK6/Exo0bdR+zadOmOscPGTIE27Ztw6lTp6IeE+k5ky2R8wxXU1ODI0eOoEWLFiHbjx49is6dOyMrKwvDhw+v879Eq9TnHPv27Yv27dtj0KBBKC4uDtnnxs9y/vz5GDx4MDp37hyyXZbPMhFO/F7Wl+zfyfpy0veyvpz4naysrASAOr9/tVn9vfRsMHP48GEEAgG0bds2ZHvbtm1x4MAB3cccOHBA9/jTp0/j8OHDUY+J9JzJlsh5hvvTn/6EY8eOYdSoUcFtPXr0wKJFi/CPf/wDS5YsQXp6Oi6++GJ8+umnprY/HomcY/v27TFv3jysWLECRUVF6N69OwYNGoT169cHj3HbZ1lRUYHVq1fj5ptvDtku02eZCCd+L+tL9u9kopz4vawPJ34nhRCYPHkyLrnkEpxzzjkRj7P6e+n6VbNjURQl5GchRJ1tsY4P3270Oa2QaJuWLFmCqVOn4pVXXkGbNm2C2y+88EJceOGFwZ8vvvhi/PjHP8af//xnPPXUU+Y13AAj59i9e3d07949+HNOTg7Ky8vxxBNP4NJLL03oOa2SaJsWLVqEM844A9dcc03Idhk/S6Oc+r1MhJO+k0Y5+XuZCCd+J++880785z//wTvvvBPzWCu/l57tmWnVqhVSUlLqRIAHDx6sEylq2rVrp3t8w4YN0bJly6jHRHrOZEvkPDXLli3DxIkTsXz5cgwePDjqsQ0aNMBPfvITW/7nUJ9zrO3CCy8Mab+bPkshBBYsWIDx48cjLS0t6rF2fpaJcOL3MlFO+U6aSfbvZaKc+J2866678I9//APFxcXIysqKeqzV30vPBjNpaWk4//zz8dZbb4Vsf+utt3DRRRfpPiYnJ6fO8WvWrEG/fv2Qmpoa9ZhIz5lsiZwnoP7vb8KECSgsLMSwYcNivo4QArt27UL79u3r3WajEj3HcDt37gxpv1s+S0CdjfDZZ59h4sSJMV/Hzs8yEU78XibCSd9JM8n+vUyUk76TQgjceeedKCoqwr/+9S906dIl5mMs/14aThl2kaVLl4rU1FQxf/58sXv3blFQUCCaNGkSzCp/4IEHxPjx44PHf/HFF6Jx48bi7rvvFrt37xbz588Xqamp4uWXXw4e8+9//1ukpKSIGTNmiI8++kjMmDFDNGzYUGzevNny89MYPc/CwkLRsGFD8cwzz4iKiorg7dtvvw0eM3XqVPHGG2+Izz//XOzcuVPcdNNNomHDhuLdd9+1/PyEMH6Os2bNEitXrhR79uwRH3zwgXjggQcEALFixYrgMW74LDU33HCDuOCCC3SfU7bP8siRI2Lnzp1i586dAoB48sknxc6dO8WXX34phHDH99LoOTrxOymE8fN04vfS6DlqnPSdvO2220RmZqYoKSkJ+f377rvvgsfY/b30dDAjhBDPPPOM6Ny5s0hLSxM//vGPQ6aa5efni8suuyzk+JKSEtG3b1+RlpYmsrOzxXPPPVfnOf/+97+L7t27i9TUVNGjR4+QL6JdjJznZZddJgDUueXn5wePKSgoEJ06dRJpaWmidevW4sorrxQbN2608IzqMnKOM2fOFF27dhXp6emiefPm4pJLLhGvvfZaned0+mcphBDffvutaNSokZg3b57u88n2WWrTcyP9/rnhe2n0HJ36nTR6nk78Xiby++q076Te+QEQCxcuDB5j9/dS+b6hRERERI7k2ZwZIiIicgcGM0RERORoDGaIiIjI0RjMEBERkaMxmCEiIiJHYzBDREREjsZghoiIiByNwQwRERE5GoMZIiIicjQGM0TkKIFAABdddBGuvfbakO2VlZXw+/148MEHbWoZEdmFyxkQkeN8+umn6NOnD+bNm4frr78eAHDjjTfivffew9atW5GWlmZzC4nISgxmiMiRnnrqKUydOhUffPABtm7diuuuuw5btmxBnz597G4aEVmMwQwROZIQApdffjlSUlLw/vvv46677uIQE5FHMZghIsf6+OOP0bNnT5x77rnYsWMHGjZsaHeTiMgGTAAmIsdasGABGjdujNLSUuzdu9fu5hCRTdgzQ0SOtGnTJlx66aVYvXo1Hn/8cQQCAbz99ttQFMXuphGRxdgzQ0SOc/z4ceTn5+OWW27B4MGD8de//hVbt27F3Llz7W4aEdmAwQwROc4DDzyAmpoazJw5EwDQqVMn/OlPf8K9996LsrIyextHRJbjMBMROcq6deswaNAglJSU4JJLLgnZN2TIEJw+fZrDTUQew2CGiIiIHI3DTERERORoDGaIiIjI0RjMEBERkaMxmCEiIiJHYzBDREREjsZghoiIiByNwQwRERE5GoMZIiIicjQGM0RERORoDGaIiIjI0RjMEBERkaP9P4POGFC1qP+AAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Evaluating the model\n", + "# Mean Absolute Error (MAE)\n", + "mae = mean_absolute_error(y, y_pred)\n", + "print('Mean Absolute Error:', mae)\n", + "\n", + "# Root Mean Squared Error (RMSE)\n", + "rmse = np.sqrt(mean_squared_error(y, y_pred))\n", + "print('Root Mean Squared Error:', rmse)\n", + "\n", + "# R-squared\n", + "r2 = r2_score(y, y_pred)\n", + "print('R-squared:', r2)\n", + "\n", + "mse = mean_squared_error(y, y_pred)\n", + "print('Mean Squared Error:', mse)\n", + "\n", + "# Print shapes of X and y\n", + "print('Shape of X:', X.shape)\n", + "print('Shape of y:', y.shape)\n", + "\n", + "# Plot the data\n", + "plt.scatter(X[:, 0], y, color='blue', label='Actual')\n", + "plt.plot(X[:, 0], y_pred, color='red', label='Predicted')\n", + "plt.xlabel('X')\n", + "plt.ylabel('y')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scatter plot shows the relationship between the features (X) and the actual values (blue dots), along with the predicted values (red line). This visualization helps us understand how well the model captures the underlying patterns in the data." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "In this assignment, we implemented a simple linear regression model and trained and predicted using the from-scratch method. Through this implementation process, we gained a deeper understanding of the linear regression model and learned how to use gradient descent algorithm to minimize the loss function.\n", + "\n", + "We evaluated the performance of the model and used several common evaluation metrics to measure the accuracy of the model's predictions. Based on our results, the linear regression model performed well. The values of mean absolute error and root mean squared error were relatively small, indicating that the errors between the model's predictions and actual results were small. And the value of R-squared was close to 1, indicating that the model was able to explain the variability in the data well.\n", + "\n", + "Although our model performed well on this task, we also need to be aware of its limitations. Linear regression models assume a linear relationship between input features and target variables. If the data has a nonlinear relationship, the model may not fit the data well. In addition, it may also be affected by problems such as outliers and multicollinearity.\n", + "\n", + "To further improve the performance of the model, we can try the following directions for future work:\n", + "- Consider using other types of regression models, such as polynomial regression or ridge regression, to explore more complex feature relationships.\n", + "- Do more feature engineering, such as adding interaction features or introducing nonlinear transformations, to capture more complex patterns in the data.\n", + "- Use regularization techniques to address problems such as overfitting and multicollinearity.\n", + "- Collect more data or use data augmentation techniques to increase the size of the dataset and improve the generalization ability of the model.\n", + "\n", + "In conclusion, implementing a linear regression model from scratch is a great way to gain a deeper understanding of how machine learning algorithms work. We hope that this assignment has helped you to better understand the concepts and techniques involved in building and training machine learning models." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Acknowledgments\n", + "\n", + "Thanks to the ChatGPT platform for providing the inspiration and guidance throughout this assignment." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "open-machine-learning-jupyter-book", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb b/_sources/assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb new file mode 100644 index 0000000000..35553a25da --- /dev/null +++ b/_sources/assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb @@ -0,0 +1,261 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gradient descent" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Session Objective\n", + "\n", + "In previous sessions, we've delved into the application of Linear Regression and Logistic Regression models. You may find the code relatively straightforward and intuitive at this point. However, you might be pondering questions like:\n", + "\n", + "- What exactly occurs when we invoke the `.fit()` function?\n", + "- Why does the execution of the `.fit()` function sometimes take a significant amount of time?\n", + "\n", + "This session is designed to provide insight into the functionality of the `.fit()` method, which is responsible for training machine learning models and fine-tuning model parameters. The underlying technique at play here is known as \"Gradient Descent.\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's Explore and Gain Intuition\n", + "\n", + "To further enhance your understanding and gain a playful insight into Gradient Descent, you can explore the following resources:\n", + "\n", + "\n", + "- [Gradient Descent Visualization](https://github.com/lilipads/gradient_descent_viz): This GitHub repository offers a visualization of the Gradient Descent algorithm, which can be a valuable resource for understanding the optimization process.\n", + "\n", + "- [Optimization Algorithms Visualization](https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87): Explore this visualization to see how different optimization algorithms, including Gradient Descent, work and how they converge to find optimal solutions.\n", + "\n", + "These resources will help you build an intuitive grasp of Gradient Descent and its role in training machine learning models. Enjoy your exploration!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Math (feel free to skip if you find it difficult)\n", + "\n", + "The fundamental concept behind gradient descent is rather straightforward: it involves the gradual adjustment of parameters, such as the slope ($m$) and the intercept ($b$) in our regression equation $y = mx + b, with the aim of minimizing a cost function. This cost function is typically a metric that quantifies the disparity between our model's predicted results and the actual values. In regression scenarios, the widely employed cost function is the `mean squared error` (MSE). When dealing with classification problems, a different set of parameters must be fine-tuned.\n", + "\n", + "The MSE (Mean Squared Error) is mathematically expressed as:\n", + "\n", + "$$\n", + "MSE = \\frac{1}{n}\\sum_{i=1}^{n} (y_i - \\hat{y_i})^2\n", + "$$\n", + "\n", + "Here, $y_i$ represents the actual data points, $\\hat{y_i}$ signifies the predictions made by our model ($mx_i + b$), and $n$ denotes the total number of data points.\n", + "\n", + "Our primary challenge is to determine the optimal adjustments to parameters $m$ and $b\" to minimize the MSE effectively." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Partial Derivatives \n", + "\n", + "In our pursuit of minimizing the Mean Squared Error (MSE), we turn to partial derivatives to understand how each individual parameter influences the MSE. The term \"partial\" signifies that we are taking derivatives with respect to individual parameters, in this case, $m$ and $b, separately.\n", + "\n", + "Consider the following formula, which closely resembles the MSE, but now we've introduced the function $f(m, b)$ into it. The addition of this function doesn't significantly alter the essence of the calculation, but it allows us to input specific values for $m$ and $b$ to compute the result.\n", + "\n", + "$$f(m, b) = \\frac{1}{n}\\sum_{i=1}^{n}(y_i - (mx_i+b))^2$$\n", + "\n", + "For the purposes of calculating partial derivatives, we can temporarily disregard the summation and the terms preceding it, focusing solely on the expression $y - (mx + b)^2$. This expression serves as a better starting point for the subsequent partial derivative calculations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Partial Derivative with Respect to $m$\n", + "\n", + "When we calculate the partial derivative with respect to the parameter $m,\" we isolate the parameter $m\" and treat $b$ as a constant (effectively setting it to 0 for differentiation purposes). To compute this derivative, we utilize the chain rule, which is a fundamental concept in calculus.\n", + "\n", + "The chain rule is expressed as follows:\n", + "\n", + "$$ [f(g(x))]' = f'(g(x)) * g(x)' \\quad - \\textrm{chain rule} $$\n", + "\n", + "The chain rule is applicable when one function is nested inside another. In this context, the square operation, $()^2$, is the outer function, while $y - (mx + b)$ is the inner function. Following the chain rule, we differentiate the outer function, maintain the inner function as it is, and then multiply it by the derivative of the inner function. Let's break down the steps:\n", + "\n", + "$$ (y - (mx + b))^2 $$\n", + "\n", + "1. The derivative of $()^2$ is $2()$, just like $x^2$ becomes $2x$.\n", + "2. We leave the inner function, $y - (mx + b)$, unaltered.\n", + "3. The derivative of $y - (mx + b)$ with respect to **_m_** is $(0 - x)$, which simplifies to $-x$. This is because both **_y_** and **_b_** are treated as constants (their derivatives are zero), and the derivative of **_mx_** is simply **_x_**.\n", + "\n", + "Now, let's combine these components:\n", + "\n", + "$$ 2 \\cdot (y - (mx+b)) \\cdot (-x) $$\n", + "\n", + "For clarity, we can rearrange this expression by moving the factor of $-x$ to the left:\n", + "\n", + "$$ -2x \\cdot (y-(mx+b)) $$\n", + "\n", + "This is the final version of our derivative with respect to $m$:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial m} = \\frac{1}{n}\\sum_{i=1}^{n} -2x_i(y_i - (mx_i+b)) $$\n", + "\n", + "Here, $\\frac{df}{dm}$ signifies the partial derivative of function $f$ (as previously defined) with respect to the parameter $m$. We can now insert this derivative into our summation to complete the calculation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Partial Derivative with Respect to $b$\n", + "\n", + "The process for computing the partial derivative with respect to the parameter $b\" is analogous to our previous derivation with respect to $m. We still apply the same rules and utilize the chain rule:\n", + "\n", + "1. The derivative of $()^2$ is $2()$, which corresponds to how $x^2$ becomes $2x$.\n", + "2. We leave the inner function, $y - (mx + b)$, unaltered.\n", + "3. For the derivative of $y - (mx + b)$ with respect to **_b_**, it becomes $(0 - 1)$ or simply $-1.\" This is because both **_y_** and **_mx_** are treated as constants (their derivatives are zero), and the derivative of **_b_** is 1.\n", + "\n", + "Now, let's consolidate these components:\n", + "\n", + "$$ 2 \\cdot (y - (mx+b)) \\cdot (-1) $$\n", + "\n", + "Simplifying this expression:\n", + "\n", + "$$ -2 \\cdot (y-(mx+b)) $$\n", + "\n", + "This is the final version of our derivative with respect to $b$:\n", + "\n", + "$$ \\frac{\\partial f}{\\partial b} = \\frac{1}{n}\\sum_{i=1}^{n} -2(y_i - (mx_i+b)) $$\n", + "\n", + "Similarly to the previous case, $\\frac{df}{db}$ represents the partial derivative of function $f$ with respect to the parameter $b\". Inserting this derivative into our summation concludes the computation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The Final Function\n", + "\n", + "Before delving into the code, there are a few essential details to address:\n", + "\n", + "1. Gradient descent is an iterative process, and with each iteration (referred to as an \"epoch\"), we incrementally reduce the Mean Squared Error (MSE). At each iteration, we apply our derived functions to update the values of parameters $m$ and $b$.\n", + "\n", + "2. Because gradient descent is iterative, we must determine how many iterations to perform, or devise a mechanism to stop the algorithm when it approaches the minimum of the MSE. In essence, we continue iterations until the algorithm no longer improves the MSE, signifying that it has reached a minimum.\n", + "\n", + "3. An important parameter in gradient descent is the learning rate ($lr$). The learning rate governs the pace at which the algorithm moves toward the minimum of the MSE. A smaller learning rate results in slower but more precise convergence, while a larger learning rate may lead to faster convergence but may overshoot the minimum.\n", + "\n", + "In summary, gradient descent primarily involves the process of taking derivatives and applying them iteratively to minimize a function. These derivatives guide us toward optimizing the parameters $m$ and $b\" in order to minimize the Mean Squared Error." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time to code!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import sklearn\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Linear Regression With Gradient Descent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class LinearRegression:\n", + " def __init__(self, learning_rate=0.0003, n_iters=3000):\n", + " self.lr = learning_rate\n", + " self.n_iters = n_iters\n", + " self.weights = None\n", + " self.bias = None\n", + "\n", + " def fit(self, X, y):\n", + " n_samples, n_features = X.shape\n", + "\n", + " # Initialize parameters\n", + " self.weights = np.zeros(n_features)\n", + " self.bias = 0\n", + "\n", + " # Gradient Descent\n", + " for _ in range(self.n_iters):\n", + " # Approximate y with a linear combination of weights and x, plus bias\n", + " y_predicted = np.dot(X, self.weights) + self.bias\n", + "\n", + " # Compute gradients\n", + " dw = (1 / n_samples) * np.dot(X.T, (y_predicted - y))\n", + " db = (1 / n_samples) * np.sum(y_predicted - y)\n", + " \n", + " # Update parameters\n", + " self.weights -= self.lr * dw\n", + " self.bias -= self.lr * db\n", + "\n", + " def predict(self, X):\n", + " y_predicted = np.dot(X, self.weights) + self.bias\n", + " return y_predicted\n", + "\n", + "# Load data and perform linear regression\n", + "prostate = pd.read_table(\"https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/prostate.data\")\n", + "prostate.drop(prostate.columns[0], axis=1, inplace=True)\n", + "\n", + "X = prostate.drop([\"lpsa\", \"train\"], axis=1)\n", + "y = prostate[\"lpsa\"]\n", + "\n", + "regressor = LinearRegression()\n", + "\n", + "regressor.fit(X, y)\n", + "y_pred = regressor.predict(X)\n", + "\n", + "print(regressor.__dict__)\n", + "print(y - y_pred)\n", + "\n", + "plt.scatter(y, y_pred)\n", + "plt.plot([0, 5], [0, 5])\n", + "plt.show()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb b/_sources/assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb new file mode 100644 index 0000000000..4694de02ab --- /dev/null +++ b/_sources/assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb @@ -0,0 +1,702 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "a23a2854-7e54-4a24-9ae4-0f8904f899ee", + "metadata": {}, + "outputs": [], + "source": [ + "# Install the necessary dependencies\n", + "\n", + "import os\n", + "import sys\n", + "!{sys.executable} -m pip install --quiet pandas scikit-learn numpy matplotlib jupyterlab_myst ipython\n" + ] + }, + { + "cell_type": "markdown", + "id": "3780e038-4395-44e7-9294-a54ae4bc731d", + "metadata": {}, + "source": [ + "---\n", + "license:\n", + " code: MIT\n", + " content: CC-BY-4.0\n", + "github: https://github.com/ocademy-ai/machine-learning\n", + "venue: By Ocademy\n", + "open_access: true\n", + "bibliography:\n", + " - https://raw.githubusercontent.com/ocademy-ai/machine-learning/main/open-machine-learning-jupyter-book/references.bib\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "63961ec0-328a-4289-8667-cc86f09db8f1", + "metadata": {}, + "source": [ + "# Linear Regression Metrics" + ] + }, + { + "cell_type": "markdown", + "id": "c556cae5-c568-444c-be0c-4a9f54a0af5b", + "metadata": {}, + "source": [ + "Linear regression is a fundamental and widely used technique in machine learning and statistics for predicting continuous values based on input variables. It finds its application in various domains, from finance and economics to healthcare and engineering. When using linear regression, it's essential to assess the model's performance accurately. This is where linear regression metrics come into play.\n", + "\n", + "In this tutorial, we will delve into the world of linear regression metrics, exploring the key evaluation measures that allow us to gauge how well a linear regression model fits the data and makes predictions. These metrics provide valuable insights into the model's accuracy, precision, and ability to capture the underlying relationships between variables.\n", + "\n", + "We will cover essential concepts such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (R2) score, and Mean Absolute Error (MAE). Understanding these metrics is crucial for data scientists, machine learning practitioners, and anyone looking to harness the power of linear regression for predictive modeling.\n", + "\n", + "Whether you are building models for price predictions, sales forecasts, or any other regression task, mastering these metrics will empower you to make informed decisions and fine-tune your models for optimal performance. Let's embark on this journey to explore the intricacies of linear regression metrics and enhance our ability to assess and improve regression models." + ] + }, + { + "cell_type": "markdown", + "id": "f39e137f-d413-4d64-97b7-d6500542e8ed", + "metadata": {}, + "source": [ + "## Mean Squared Error (MSE)" + ] + }, + { + "cell_type": "markdown", + "id": "f893cbed-c0e9-46c5-aea3-8871c7bb9a5d", + "metadata": {}, + "source": [ + "In the realm of linear regression metrics, one fundamental measure of model performance is the **Mean Squared Error (MSE)**. MSE serves as a valuable indicator of how well your linear regression model aligns its predictions with the actual data points. This metric quantifies the average of the squared differences between predicted values and observed values." + ] + }, + { + "cell_type": "markdown", + "id": "de348eec-516d-4d86-a02e-ccbe7dba7bf5", + "metadata": {}, + "source": [ + "### The Formula" + ] + }, + { + "cell_type": "markdown", + "id": "545bc42e-7ca4-4c9a-91ca-fceeebaa1b83", + "metadata": {}, + "source": [ + "Mathematically, the MSE is computed using the following formula:" + ] + }, + { + "cell_type": "markdown", + "id": "768aa918-1f0b-4ae5-b4c7-9e77097050e1", + "metadata": {}, + "source": [ + "$$ MSE = \\frac{1}{n} \\sum_{i=1}^{n} (y_i - \\hat{y}_i)^2 $$" + ] + }, + { + "cell_type": "markdown", + "id": "dbd49d92-4228-458e-a865-5d4636bd4ff2", + "metadata": {}, + "source": [ + "Where:\n", + "\n", + "- $n$ is the number of data points.\n", + "- $y_i$ represents the actual observed value for the $i^{th}$ data point.\n", + "- $\\hat{y}_i$ represents the predicted value for the $i^{th}$ data point." + ] + }, + { + "cell_type": "markdown", + "id": "54f58e2a-8d6e-4cfb-8a9a-ab50cdaaf956", + "metadata": {}, + "source": [ + "### Interpretation" + ] + }, + { + "cell_type": "markdown", + "id": "d09eadf6-21c1-488e-98f1-4e0917be18b6", + "metadata": {}, + "source": [ + "A lower MSE value indicates that the model's predictions are closer to the actual values, signifying better model performance. Conversely, a higher MSE suggests that the model's predictions deviate more from the true values, indicating poorer performance." + ] + }, + { + "cell_type": "markdown", + "id": "d2b803a5-b390-407a-886b-ccfcee059233", + "metadata": {}, + "source": [ + "### Python Implementation" + ] + }, + { + "cell_type": "markdown", + "id": "e546d69d-7542-4c65-9635-4d5dced7248e", + "metadata": {}, + "source": [ + "Let's take a look at how to calculate MSE in Python. We'll use a simple example with sample data:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7b027b00-2205-4475-a600-62059c7fc5c2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Squared Error (MSE): 0.5079999999999996\n" + ] + } + ], + "source": [ + "# Import necessary libraries\n", + "import numpy as np\n", + "\n", + "# Sample data for demonstration (replace with your actual data)\n", + "actual_values = np.array([22.1, 19.9, 24.5, 20.1, 18.7])\n", + "predicted_values = np.array([23.5, 20.2, 23.9, 19.8, 18.5])\n", + "\n", + "# Calculate the squared differences between actual and predicted values\n", + "squared_errors = (actual_values - predicted_values) ** 2\n", + "\n", + "# Calculate the mean of squared errors to get MSE\n", + "mse = np.mean(squared_errors)\n", + "\n", + "# Print the MSE\n", + "print(\"Mean Squared Error (MSE):\", mse) " + ] + }, + { + "cell_type": "markdown", + "id": "ae646b7e", + "metadata": {}, + "source": [ + "## Root Mean Squared Error (RMSE)" + ] + }, + { + "cell_type": "markdown", + "id": "7e4a128c", + "metadata": {}, + "source": [ + "The Root Mean Squared Error (RMSE) is another important metric for evaluating the performance of a linear regression model. It is the square root of the Mean Squared Error (MSE) and provides a measure of the average magnitude of error between actual and predicted values.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "cbdd5ced", + "metadata": {}, + "source": [ + "### The Formula" + ] + }, + { + "cell_type": "markdown", + "id": "a6dc6890", + "metadata": {}, + "source": [ + "The formula for RMSE is:\n", + "\n", + "$$ RMSE = \\sqrt{\\frac{1}{n} \\sum_{i=1}^{n} (y_i - \\hat{y}_i)^2} $$\n", + "\n", + "Where:\n", + "- $n$ is the number of data points\n", + "- $y_i $ represents the actual value of the dependent variable\n", + "- $ \\hat{y}_i $ represents the predicted value of the dependent variable" + ] + }, + { + "cell_type": "markdown", + "id": "f8190006", + "metadata": {}, + "source": [ + "### Python Implementation" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d244a67e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Root Mean Squared Error (RMSE): 0.7127411872482181\n" + ] + } + ], + "source": [ + "# Calculate RMSE\n", + "rmse = np.sqrt(mse)\n", + "\n", + "# Print the RMSE\n", + "print(\"Root Mean Squared Error (RMSE):\", rmse)" + ] + }, + { + "cell_type": "markdown", + "id": "1c168a9e", + "metadata": {}, + "source": [ + "## R-squared (R2) Score" + ] + }, + { + "cell_type": "markdown", + "id": "d26273ff", + "metadata": {}, + "source": [ + "The R-squared (R2) score, also known as the coefficient of determination, is a measure that indicates the proportion of the variance in the dependent variable that is predictable from the independent variables. It provides insight into how well the model is performing compared to a simple mean.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "8da8c1fa", + "metadata": {}, + "source": [ + "### The Formula" + ] + }, + { + "cell_type": "markdown", + "id": "fa97caba", + "metadata": {}, + "source": [ + "\n", + "The formula for R2 score is:\n", + "\n", + "$$ R^2 = 1 - \\frac{\\sum_{i=1}^{n} (y_i - \\hat{y}_i)^2}{\\sum_{i=1}^{n} (y_i - \\bar{y})^2} $$\n", + "\n", + "Where:\n", + "- $ n $ is the number of data points\n", + "- $ y_i $ represents the actual value of the dependent variable\n", + "- $ \\hat{y}_i $ represents the predicted value of the dependent variable\n", + "- $ \\bar{y} $ is the mean of the dependent variable" + ] + }, + { + "cell_type": "markdown", + "id": "d999e0bc", + "metadata": {}, + "source": [ + "### Python Implementation" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a284986b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R-squared (R2) Score: 0.8776021588280649\n" + ] + } + ], + "source": [ + "# Calculate the mean of actual values\n", + "mean_actual = np.mean(actual_values)\n", + "\n", + "# Calculate the total sum of squares\n", + "total_sum_squares = np.sum((actual_values - mean_actual) ** 2)\n", + "\n", + "# Calculate the residual sum of squares\n", + "residual_sum_squares = np.sum(squared_errors)\n", + "\n", + "# Calculate R2 score\n", + "r2_score = 1 - (residual_sum_squares / total_sum_squares)\n", + "\n", + "# Print the R2 score\n", + "print(\"R-squared (R2) Score:\", r2_score)" + ] + }, + { + "cell_type": "markdown", + "id": "a32ae853", + "metadata": {}, + "source": [ + "## Residual Analysis" + ] + }, + { + "cell_type": "markdown", + "id": "c6813ba7", + "metadata": {}, + "source": [ + "Residual analysis is a critical step in evaluating the performance of a linear regression model. It involves examining the differences between the observed and predicted values (i.e., the residuals). This helps us understand if there are any patterns or trends that the model might have missed." + ] + }, + { + "cell_type": "markdown", + "id": "4014eb09", + "metadata": {}, + "source": [ + "### Python Implementation" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4081a2ef", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAIjCAYAAADvI7a6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABN+UlEQVR4nO3deXgUVb7/8U+H7ISsJITEsCOBC8gmmcSFKBECXgTFBQRZJoIbIosKzE9Z1Yg66qBoXNhcUEcUBHS4ctkcJYJCIqMXIiCyptlC0oRICEn9/uiitSFLE7M1vF/PUw/UqXOqv0Vp/FicPmUxDMMQAAAAAHnUdgEAAABAXUE4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYANzZ9+nRZLBaX+losFk2fPr1a60lMTFRiYmKdPR8AVIRwDABVYOHChbJYLI7N09NT0dHRGjFihA4ePFjb5dU5zZo1c/rzioiI0HXXXaelS5dWyfkLCgo0ffp0rV+/vkrOB+DyQTgGgCo0c+ZMvfvuu0pLS1OfPn303nvvqUePHjp9+nS1fN4TTzyh3377rVrOXd06deqkd999V++++64effRRHTp0SLfddpvS0tL+9LkLCgo0Y8YMwjGAi+ZZ2wUAwKWkT58+6tatmyTp3nvvVcOGDTV79mwtX75cd955Z5V/nqenpzw93fNHeXR0tIYOHerYHzZsmFq1aqWXXnpJ999/fy1WBuByxpNjAKhG1113nSRp9+7dTu07duzQ7bffrtDQUPn6+qpbt25avny5U5+ioiLNmDFDrVu3lq+vr8LCwnTttddq9erVjj6lzTkuLCzU+PHjFR4ergYNGuiWW27RgQMHLqhtxIgRatas2QXtpZ1zwYIFuvHGGxURESEfHx+1a9dOr7/++kX9WVQkMjJSbdu21Z49e8rtd+TIEaWkpKhRo0by9fXVVVddpUWLFjmO//rrrwoPD5ckzZgxwzF1o7rnWwO4NLjn4wYAcBO//vqrJCkkJMTR9tNPP+maa65RdHS0Jk+erPr16+uf//ynBgwYoE8++US33nqrJHtITU1N1b333qvu3bvLZrPp+++/19atW3XTTTeV+Zn33nuv3nvvPd19991KSEjQ2rVrdfPNN/+p63j99df1X//1X7rlllvk6empFStW6MEHH1RJSYkeeuihP3Xuc4qKirR//36FhYWV2ee3335TYmKidu3apTFjxqh58+b6+OOPNWLECOXm5uqRRx5ReHi4Xn/9dT3wwAO69dZbddttt0mSOnbsWCV1ArjEGQCAP23BggWGJON///d/jaNHjxr79+83lixZYoSHhxs+Pj7G/v37HX179uxpdOjQwTh9+rSjraSkxEhISDBat27taLvqqquMm2++udzPnTZtmvHHH+WZmZmGJOPBBx906nf33Xcbkoxp06Y52oYPH240bdq0wnMahmEUFBRc0K93795GixYtnNp69Ohh9OjRo9yaDcMwmjZtavTq1cs4evSocfToUeOHH34wBg0aZEgyHn744TLP9/LLLxuSjPfee8/RdubMGSM+Pt4ICAgwbDabYRiGcfTo0QuuFwBcwbQKAKhCSUlJCg8PV0xMjG6//XbVr19fy5cv1xVXXCFJysnJ0dq1a3XnnXfq5MmTOnbsmI4dO6bjx4+rd+/e2rlzp2N1i+DgYP3000/auXOny5//xRdfSJLGjh3r1D5u3Lg/dV1+fn6O3+fl5enYsWPq0aOHfvnlF+Xl5VXqnF9++aXCw8MVHh6uq666Sh9//LHuuecezZ49u8wxX3zxhSIjIzV48GBHm5eXl8aOHav8/Hxt2LChUrUAwDlMqwCAKjR37lxdeeWVysvL0/z58/XVV1/Jx8fHcXzXrl0yDENPPvmknnzyyVLPceTIEUVHR2vmzJnq37+/rrzySrVv317Jycm65557yp0esHfvXnl4eKhly5ZO7W3atPlT1/XNN99o2rRpSk9PV0FBgdOxvLw8BQUFXfQ54+Li9NRTT8liscjf319t27ZVcHBwuWP27t2r1q1by8PD+dlO27ZtHccB4M8gHANAFerevbtjtYoBAwbo2muv1d13362srCwFBASopKREkvToo4+qd+/epZ6jVatWkqTrr79eu3fv1meffaYvv/xSb7/9tl566SWlpaXp3nvv/dO1lvXykOLiYqf93bt3q2fPnoqNjdWLL76omJgYeXt764svvtBLL73kuKaL1bBhQyUlJVVqLABUF8IxAFSTevXqKTU1VTfccINeffVVTZ48WS1atJBknwrgSjAMDQ3VyJEjNXLkSOXn5+v666/X9OnTywzHTZs2VUlJiXbv3u30tDgrK+uCviEhIcrNzb2g/fynrytWrFBhYaGWL1+uJk2aONrXrVtXYf1VrWnTptq2bZtKSkqcnh7v2LHDcVwqO/gDQEWYcwwA1SgxMVHdu3fXyy+/rNOnTysiIkKJiYl64403lJ2dfUH/o0ePOn5//Phxp2MBAQFq1aqVCgsLy/y8Pn36SJLmzJnj1P7yyy9f0Ldly5bKy8vTtm3bHG3Z2dkXvKWuXr16kiTDMBxteXl5WrBgQZl1VJe+ffvKarXqo48+crSdPXtWr7zyigICAtSjRw9Jkr+/vySVGv4BoDw8OQaAavbYY4/pjjvu0MKFC3X//fdr7ty5uvbaa9WhQweNGjVKLVq00OHDh5Wenq4DBw7ohx9+kCS1a9dOiYmJ6tq1q0JDQ/X9999ryZIlGjNmTJmf1alTJw0ePFivvfaa8vLylJCQoDVr1mjXrl0X9B00aJAmTZqkW2+9VWPHjlVBQYFef/11XXnlldq6daujX69eveTt7a1+/frpvvvuU35+vt566y1FRESUGvCr0+jRo/XGG29oxIgR2rJli5o1a6YlS5bom2++0csvv6wGDRpIsn+BsF27dvroo4905ZVXKjQ0VO3bt1f79u1rtF4Abqi2l8sAgEvBuaXcvvvuuwuOFRcXGy1btjRatmxpnD171jAMw9i9e7cxbNgwIzIy0vDy8jKio6ON//7v/zaWLFniGPfUU08Z3bt3N4KDgw0/Pz8jNjbWePrpp40zZ844+pS27Npvv/1mjB071ggLCzPq169v9OvXz9i/f3+pS5t9+eWXRvv27Q1vb2+jTZs2xnvvvVfqOZcvX2507NjR8PX1NZo1a2bMnj3bmD9/viHJ2LNnj6PfxSzlVtEydWWd7/Dhw8bIkSONhg0bGt7e3kaHDh2MBQsWXDB248aNRteuXQ1vb2+WdQPgMoth/OHvyQAAAIDLGHOOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMPESkCpQUlKiQ4cOqUGDBryyFAAAoA4yDEMnT55UVFSU0+vnz0c4rgKHDh1STExMbZcBAACACuzfv19XXHFFmccJx1Xg3OtK9+/fr8DAwFquBgAAAOez2WyKiYlx5LayEI6rwLmpFIGBgYRjAACAOqyiKbB8IQ8AAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAACTZ20XAAAAgMvHwYNSRoZUUCD5+0udO0vR0bVd1e8IxwAAAKh2R45I8+ZJGzdKJ05IFotkGFJIiJSQIKWkSBERtV0l4RgAAADV7MgRaepUads2KTJSattW8vCQSkqk48elFSukvXulmTNrPyAz5xgAAADVat48ezCOjZXCw+3BWLL/Gh5ub9+2zd6vthGOAQAAUG0OHrRPpYiMlLy8Su/j5WU/vnGjvX9tIhwDAACg2mRk2OcYh4WV3y8szN4vI6Nm6ioL4RgAAADVpqDA/uU7jwpSp4eHfSsoqJm6yqyjdj8eAAAAlzJ/f/uqFCUl5fcrKbFv/v41U1dZCMcAAACoNp0725drO368/H7Hj9v7delSM3WVhXAMAACAahMdbV/H2GqViopK71NUZD+ekCBFRdVsfedjnWMAAABUq5QU+zrG59Y5DgtzXufYapU6drT3q22EYwAAAFSriAj7Cz7OvSFv+/bfw3FIiNSvH2/IAwAAwGUkIkKaMsW+jnFGhn1VCn9/+xzj2p5K8UeEYwAAANSY6Gj7VlfxhTwAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwOR24Xju3Llq1qyZfH19FRcXp82bN5fZd+HChbJYLE6br6+vUx/DMDR16lQ1btxYfn5+SkpK0s6dO6v7MgAAAFAHuVU4/uijjzRhwgRNmzZNW7du1VVXXaXevXvryJEjZY4JDAxUdna2Y9u7d6/T8eeee05z5sxRWlqaNm3apPr166t37946ffp0dV8OAAAA6hi3CscvvviiRo0apZEjR6pdu3ZKS0uTv7+/5s+fX+YYi8WiyMhIx9aoUSPHMcMw9PLLL+uJJ55Q//791bFjR73zzjs6dOiQli1bVgNXBAAAgLrEbcLxmTNntGXLFiUlJTnaPDw8lJSUpPT09DLH5efnq2nTpoqJiVH//v31008/OY7t2bNHVqvV6ZxBQUGKi4sr95yFhYWy2WxOGwAAANyf24TjY8eOqbi42OnJryQ1atRIVqu11DFt2rTR/Pnz9dlnn+m9995TSUmJEhISdODAAUlyjLuYc0pSamqqgoKCHFtMTMyfuTQAAADUEW4TjisjPj5ew4YNU6dOndSjRw99+umnCg8P1xtvvPGnzjtlyhTl5eU5tv3791dRxQAAAKhNbhOOGzZsqHr16unw4cNO7YcPH1ZkZKRL5/Dy8lLnzp21a9cuSXKMu9hz+vj4KDAw0GkDAACA+3ObcOzt7a2uXbtqzZo1jraSkhKtWbNG8fHxLp2juLhY//nPf9S4cWNJUvPmzRUZGel0TpvNpk2bNrl8TgAAAFw6PGu7gIsxYcIEDR8+XN26dVP37t318ssv69SpUxo5cqQkadiwYYqOjlZqaqokaebMmfrLX/6iVq1aKTc3V88//7z27t2re++9V5J9JYtx48bpqaeeUuvWrdW8eXM9+eSTioqK0oABA2rrMgEAAFBL3Coc33XXXTp69KimTp0qq9WqTp06adWqVY4v1O3bt08eHr8/DD9x4oRGjRolq9WqkJAQde3aVRs3blS7du0cfR5//HGdOnVKo0ePVm5urq699lqtWrXqgpeFAAAA4NJnMQzDqO0i3J3NZlNQUJDy8vKYfwwAAFAHuZrX3GbOMQAAAFDdCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJg8a7sAAFXn4EEpI0MqKJD8/aXOnaXo6NquCgAA90E4Bi4BR45I8+ZJGzdKJ05IFotkGFJIiJSQIKWkSBERtV0lAAB1H+EYcHNHjkhTp0rbtkmRkVLbtpKHh1RSIh0/Lq1YIe3dK82cSUAGAKAizDkG3Ny8efZgHBsrhYfbg7Fk/zU83N6+bZu9HwAAKB/hGHBjBw/ap1JERkpeXqX38fKyH9+40d4fAACUjXAMuLGMDPsc47Cw8vuFhdn7ZWTUTF0AALgrwjHgxgoK7F++86jg32QPD/tWUFAzdQEA4K4Ix4Ab8/e3r0pRUlJ+v5IS++bvXzN1AQDgrgjHgBvr3Nm+XNvx4+X3O37c3q9Ll5qpCwAAd0U4BtxYdLR9HWOrVSoqKr1PUZH9eEKCFBVVs/UBAOBuWOcYcHMpKfZ1jM+tcxwW5rzOsdUqdexo7wcAAMpHOAbcXESE/QUf596Qt3377+E4JETq14835AEA4Cq3m1Yxd+5cNWvWTL6+voqLi9PmzZvL7PvWW2/puuuuU0hIiEJCQpSUlHRB/xEjRshisThtycnJ1X0ZQJWKiJCmTJHS0qTJk6UxY+y/vvGGvZ1gDACAa9zqyfFHH32kCRMmKC0tTXFxcXr55ZfVu3dvZWVlKaKU//qvX79egwcPVkJCgnx9fTV79mz16tVLP/30k6Kjox39kpOTtWDBAse+j49PjVwPUNWio+0bAACoHIthGEZtF+GquLg4XX311Xr11VclSSUlJYqJidHDDz+syZMnVzi+uLhYISEhevXVVzVs2DBJ9ifHubm5WrZsWaXrstlsCgoKUl5engIDAyt9HgAAAFQPV/Oa20yrOHPmjLZs2aKkpCRHm4eHh5KSkpSenu7SOQoKClRUVKTQ0FCn9vXr1ysiIkJt2rTRAw88oOMVrItVWFgom83mtAEAAMD9uU04PnbsmIqLi9WoUSOn9kaNGslqtbp0jkmTJikqKsopYCcnJ+udd97RmjVrNHv2bG3YsEF9+vRRcXFxmedJTU1VUFCQY4uJiancRQEAAKBOcas5x3/Gs88+qw8//FDr16+Xr6+vo33QoEGO33fo0EEdO3ZUy5YttX79evXs2bPUc02ZMkUTJkxw7NtsNgIyAADAJcBtnhw3bNhQ9erV0+HDh53aDx8+rMjIyHLHvvDCC3r22Wf15ZdfqmPHjuX2bdGihRo2bKhdu3aV2cfHx0eBgYFOGwAAANyf24Rjb29vde3aVWvWrHG0lZSUaM2aNYqPjy9z3HPPPadZs2Zp1apV6tatW4Wfc+DAAR0/flyNGzeukroBAADgPtwmHEvShAkT9NZbb2nRokXavn27HnjgAZ06dUojR46UJA0bNkxTpkxx9J89e7aefPJJzZ8/X82aNZPVapXValV+fr4kKT8/X4899pi+/fZb/frrr1qzZo369++vVq1aqXfv3rVyjQAAAKg9bjXn+K677tLRo0c1depUWa1WderUSatWrXJ8SW/fvn3y8Pg977/++us6c+aMbr/9dqfzTJs2TdOnT1e9evW0bds2LVq0SLm5uYqKilKvXr00a9asOrvW8cGDUkaGVFAg+ftLnTuzri0AAEBVcat1juuqmljn+MiR318PfOKEZLFIhmF/PXBCAq8HBgAAKI+rec2tnhxfro4ckaZOlbZtkyIjpbZtJQ8PqaREOn5cWrFC2rtXmjmTgAwAAPBnuNWc48vVvHn2YBwbK4WH24OxZP81PNzevm2bvR8AAAAqj3Bcxx08aJ9KERkpeXmV3sfLy35840Z7fwAAAFQO4biOy8iwzzEOCyu/X1iYvV9GRs3UBQAAcCkiHNdxBQX2L995VHCnPDzsW0FBzdQFAABwKSIc13H+/vZVKUpKyu9XUmLf/P1rpi4AAIBLEeG4juvc2b5c2/Hj5fc7ftzer0uXmqkLAADgUkQ4ruOio+3rGFutUlFR6X2KiuzHExKkqKiarQ8AAOBSwjrHbiAlxb6O8bl1jsPCnNc5tlqljh3t/QAAAFB5hGM3EBFhf8HHuTfkbd/+ezgOCZH69eMNeQAAAFWBcOwmIiKkKVPs6xhnZNhXpfD3t88xZioFAABA1SAcu5noaPsGAACAqscX8gAAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADC5XTieO3eumjVrJl9fX8XFxWnz5s3l9v/4448VGxsrX19fdejQQV988YXTccMwNHXqVDVu3Fh+fn5KSkrSzp07q/MSAAAAUEe5VTj+6KOPNGHCBE2bNk1bt27VVVddpd69e+vIkSOl9t+4caMGDx6slJQUZWRkaMCAARowYIB+/PFHR5/nnntOc+bMUVpamjZt2qT69eurd+/eOn36dE1dFgAAAOoIi2EYRm0X4aq4uDhdffXVevXVVyVJJSUliomJ0cMPP6zJkydf0P+uu+7SqVOntHLlSkfbX/7yF3Xq1ElpaWkyDENRUVGaOHGiHn30UUlSXl6eGjVqpIULF2rQoEEu1WWz2RQUFKS8vDwFBgZWwZUCAACgKrma1zxrsKY/5cyZM9qyZYumTJniaPPw8FBSUpLS09NLHZOenq4JEyY4tfXu3VvLli2TJO3Zs0dWq1VJSUmO40FBQYqLi1N6enqZ4biwsFCFhYWOfZvNZv9NbKzkUcHD+C5dpOXLndtuuUXaurX8cZI0YYJ9O+fkSalt24rHSdJnn0ldu/6+v3KldP/9FY8LCJB27HBue+wx6YMPKh57883SG284t3XrJlmtFY997jnp7rt/38/Kknr2rHicJH33ndS48e/7b74pzZxZ8bgrr5TWrnVuGzJE2rCh4rGjRknTpjm3XXFFxeMk6b33pMTE3/fXr5eGDnVt7IEDzvszZkhvvVXxuB49pPffd2678Ubp558rHjt1qjR69O/72dnS1VdXPE6S1qyR2rT5fX/xYunxxyseFxkpff+9c9t990mff17x2MGDpeefd26LjZXy8ysem5Ym/fd//76/ZYvUv3/F4yRp+3apQYPf91980b5VhJ8R/Iw4Hz8jKh7Hzwh+RpyvtJ8RN9xQ8Ti5UTg+duyYiouL1ahRI6f2Ro0aacf5f+gmq9Vaan+r+Yd67tfy+pQmNTVVM2bMuPBAdnaF16GYmAvbjh6VDh6seOy5EH6OYbg2TpLOnHHe/+0318b+8V/cc06ccG1sTs6FbVara2MLCpz3z551/VqLi5338/NdGxsUdGHbsWOujc3Lu7DN1Xr/8D9ajn1Xx5ZWhytjjx27sO3wYdfGnv8fjOJi1+s9e9Z5v6Cg8teak+Pa2BMnLmw7dMj+H4WK/Pab8/6ZM67Xe/5fytlsro3lZwQ/I87HzwjXxp6PnxEXutx/RriS0+RG4bgumTJlitMTaZvNppiYGPuTiIqeHIeHl94WHV3xB5//VwAWi2vjJMnb23nfz8+1sQEBF7aFhLg2NjT0wrbIyIrHSZK/v/O+p6fr11qvnvN+QIBrY8/7nyRJUsOGro0t7T+artbr43PhvqtjS6vDlbENG17Y1qhR6f8BP9/5/0zUq+d6vZ7n/cjx93dtbGn/3ISGujY2JOTCtqgo154K+fk573t7u36tFovzfmCga2P5GVHxOImfEfyMcMbPCH5GnK+0nxGNG7sUkN1mzvGZM2fk7++vJUuWaMCAAY724cOHKzc3V5999tkFY5o0aaIJEyZo3LhxjrZp06Zp2bJl+uGHH/TLL7+oZcuWysjIUKdOnRx9evTooU6dOukf//iHS7Ux5xgAAKBuczWvuc1qFd7e3uratavWrFnjaCspKdGaNWsUHx9f6pj4+Hin/pK0evVqR//mzZsrMjLSqY/NZtOmTZvKPCcAAAAuXW41rWLChAkaPny4unXrpu7du+vll1/WqVOnNHLkSEnSsGHDFB0drdTUVEnSI488oh49eujvf/+7br75Zn344Yf6/vvv9eabb0qSLBaLxo0bp6eeekqtW7dW8+bN9eSTTyoqKsrp6TQAAAAuD24Vju+66y4dPXpUU6dOldVqVadOnbRq1SrHF+r27dsnjz/M+U1ISNDixYv1xBNP6G9/+5tat26tZcuWqX379o4+jz/+uE6dOqXRo0crNzdX1157rVatWiVfX98avz4AAADULreZc1yXMecYAACgbrvk5hwDAAAA1Y1wDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAyW3CcU5OjoYMGaLAwEAFBwcrJSVF+fn55fZ/+OGH1aZNG/n5+alJkyYaO3as8vLynPpZLJYLtg8//LC6LwcAAAB1kGdtF+CqIUOGKDs7W6tXr1ZRUZFGjhyp0aNHa/HixaX2P3TokA4dOqQXXnhB7dq10969e3X//ffr0KFDWrJkiVPfBQsWKDk52bEfHBxcnZcCAACAOspiGIZR20VUZPv27WrXrp2+++47devWTZK0atUq9e3bVwcOHFBUVJRL5/n44481dOhQnTp1Sp6e9v8vsFgsWrp0qQYMGFDp+mw2m4KCgpSXl6fAwMBKnwcAAADVw9W85hbTKtLT0xUcHOwIxpKUlJQkDw8Pbdq0yeXznPvDOBeMz3nooYfUsGFDde/eXfPnz1dF/79QWFgom83mtAEAAMD9ucW0CqvVqoiICKc2T09PhYaGymq1unSOY8eOadasWRo9erRT+8yZM3XjjTfK399fX375pR588EHl5+dr7NixZZ4rNTVVM2bMuPgLAQAAQJ1Wq0+OJ0+eXOoX4v647dix409/js1m080336x27dpp+vTpTseefPJJXXPNNercubMmTZqkxx9/XM8//3y555syZYry8vIc2/79+/90jQAAAKh9VfbkODc396K/yDZx4kSNGDGi3D4tWrRQZGSkjhw54tR+9uxZ5eTkKDIystzxJ0+eVHJysho0aKClS5fKy8ur3P5xcXGaNWuWCgsL5ePjU2ofHx+fMo8BAADAfVUqHM+ePVvNmjXTXXfdJUm688479cknnygyMlJffPGFrrrqKpfOEx4ervDw8Ar7xcfHKzc3V1u2bFHXrl0lSWvXrlVJSYni4uLKHGez2dS7d2/5+Pho+fLl8vX1rfCzMjMzFRISQvgFAAC4DFVqWkVaWppiYmIkSatXr9bq1av1r3/9S3369NFjjz1WpQVKUtu2bZWcnKxRo0Zp8+bN+uabbzRmzBgNGjTIsVLFwYMHFRsbq82bN0uyB+NevXrp1KlTmjdvnmw2m6xWq6xWq4qLiyVJK1as0Ntvv60ff/xRu3bt0uuvv65nnnlGDz/8cJVfAwAAAOq+Sj05tlqtjnC8cuVK3XnnnerVq5eaNWtW7pPcP+P999/XmDFj1LNnT3l4eGjgwIGaM2eO43hRUZGysrJUUFAgSdq6datjJYtWrVo5nWvPnj1q1qyZvLy8NHfuXI0fP16GYahVq1Z68cUXNWrUqGq5BgDSwYNSRoZUUCD5+0udO0vR0bVdFQAAdpUKxyEhIdq/f79iYmK0atUqPfXUU5IkwzAcT2WrWmhoaJkv/JCkZs2aOS3BlpiYWOGSbMnJyU4v/wBQfY4ckebNkzZulE6ckCwWyTCkkBApIUFKSZHOW5QGAIAaV6lwfNttt+nuu+9W69atdfz4cfXp00eSlJGRccFTWgA4ckSaOlXatk2KjJTatpU8PKSSEun4cWnFCmnvXmnmTAIyAKB2VWrO8UsvvaQxY8aoXbt2Wr16tQICAiRJ2dnZevDBB6u0QADub948ezCOjZXCw+3BWLL/Gh5ub9+2zd4PAIDa5Bavj67reH00ULaDB6X775e8vOxBuCxHj0pFRVJaGnOQAQBVz9W85vK0iuXLl7v84bfccovLfQFc2jIy7HOM27Ytv19YmLR9u70/4RgAUFtcDscDBgxwqZ/FYqm2L+UBcD8FBfYv33lUMInLw8O+mQvOAABQK1wOxyUlJdVZB4BLlL+/fVWKkpLyA3JJiX3z96+52gAAOF+lvpAHAK7q3Nm+XNvx4+X3O37c3q9Ll5qpCwCA0lRqKTdJOnXqlDZs2KB9+/bpzJkzTsfGjh37pwsDcGmIjravY7xihRQcbP9i3vmKiiSrVerXTzJfegkAQK2oVDjOyMhQ3759VVBQoFOnTik0NFTHjh2Tv7+/IiIiCMcAnKSk2NcxPrfOcViY8zrHVqvUsaO9HwAAtalS0yrGjx+vfv366cSJE/Lz89O3336rvXv3qmvXrnrhhRequkYAbi4iwv6Cj3797E+Jt2//fSsqsrfzAhAAQF1QqXWOg4ODtWnTJrVp00bBwcFKT09X27ZttWnTJg0fPlw7duyojlrrLNY5Blx38KB9ubaCAvuX77p0YSoFAKD6Vfk6x3/k5eUlD/Nr5xEREdq3b5/atm2roKAg7d+/v3IVA7gsREezjjEAoO6qVDju3LmzvvvuO7Vu3Vo9evTQ1KlTdezYMb377rtq3759VdcIAAAA1IhKzTl+5pln1LhxY0nS008/rZCQED3wwAM6evSo3nzzzSotEAAAAKgplZpzDGfMOQYAAKjbXM1rvAQEAAAAMFVqznHz5s1lsVjKPP7LL79UuiAAAACgtlQqHI8bN85pv6ioSBkZGVq1apUee+yxqqgLAAAAqHGVCsePPPJIqe1z587V999//6cKAgAAAGpLlc457tOnjz755JOqPCUAAABQY6o0HC9ZskShoaFVeUoAAACgxlT6JSB//EKeYRiyWq06evSoXnvttSorDgAAAKhJlQrHAwYMcNr38PBQeHi4EhMTFRsbWxV1AQAAADWOl4BUAV4CAgAAULe5mtdcfnJss9lc/nACIgAAANyRy+E4ODi43Bd//FFxcXGlCwIAAABqi8vheN26dY7f//rrr5o8ebJGjBih+Ph4SVJ6eroWLVqk1NTUqq8SAAAAqAGVmnPcs2dP3XvvvRo8eLBT++LFi/Xmm29q/fr1VVWfW2DOMQAAQN3mal6r1DrH6enp6tat2wXt3bp10+bNmytzSgAAAKDWVSocx8TE6K233rqg/e2331ZMTMyfLgoAAACoDZVa5/ill17SwIED9a9//UtxcXGSpM2bN2vnzp28PhoAAABuq1JPjvv27auff/5Z/fr1U05OjnJyctSvXz/9/PPP6tu3b1XXCAAAANQIXgJSBfhCHgAAQN1W5S8B2bZtm9q3by8PDw9t27at3L4dO3Z0vVIAAACgjnA5HHfq1ElWq1URERHq1KmTLBaLSnvobLFYeAkIAAAA3JLL4XjPnj0KDw93/B4AAAC41Lgcjps2bVrq7wEAAIBLRaVWq1i0aJE+//xzx/7jjz+u4OBgJSQkaO/evVVWHAAAAFCTKhWOn3nmGfn5+Umyvy3v1Vdf1XPPPaeGDRtq/PjxVVogAAAAUFMq9RKQ/fv3q1WrVpKkZcuW6fbbb9fo0aN1zTXXKDExsSrrAwAAAGpMpZ4cBwQE6Pjx45KkL7/8UjfddJMkydfXV7/99lvVVQcAAADUoEo9Ob7pppt07733qnPnzk5vxfvpp5/UrFmzqqwPAAAAqDGVenI8d+5cxcfH6+jRo/rkk08UFhYmSdqyZYsGDx5cpQWek5OToyFDhigwMFDBwcFKSUlRfn5+uWMSExNlsVictvvvv9+pz759+3TzzTfL399fEREReuyxx3T27NlquQYAAADUbW7z+ug+ffooOztbb7zxhoqKijRy5EhdffXVWrx4cZljEhMTdeWVV2rmzJmONn9/f8crA4uLi9WpUydFRkbq+eefV3Z2toYNG6ZRo0bpmWeecbk2Xh8NAABQt7ma1yr15FiS/v3vf2vo0KFKSEjQwYMHJUnvvvuuvv7668qeskzbt2/XqlWr9PbbbysuLk7XXnutXnnlFX344Yc6dOhQuWP9/f0VGRnp2P74h/Hll1/q//7v//Tee++pU6dO6tOnj2bNmqW5c+fqzJkzVX4dAAAAqNsqFY4/+eQT9e7dW35+ftq6dasKCwslSXl5eRf1xNVV6enpCg4OVrdu3RxtSUlJ8vDw0KZNm8od+/7776thw4Zq3769pkyZooKCAqfzdujQQY0aNXK09e7dWzabTT/99FOZ5ywsLJTNZnPaAAAA4P4qFY6feuoppaWl6a233pKXl5ej/ZprrtHWrVurrLhzrFarIiIinNo8PT0VGhoqq9Va5ri7775b7733ntatW6cpU6bo3Xff1dChQ53O+8dgLMmxX955U1NTFRQU5NhiYmIqc1kAAACoYyq1WkVWVpauv/76C9qDgoKUm5vr8nkmT56s2bNnl9tn+/btF1uew+jRox2/79Chgxo3bqyePXtq9+7datmyZaXPO2XKFE2YMMGxb7PZCMgAAACXgEqF48jISO3ateuCZdu+/vprtWjRwuXzTJw4USNGjCi3T4sWLRQZGakjR444tZ89e1Y5OTmKjIx0+fPi4uIkSbt27VLLli0VGRmpzZs3O/U5fPiwJJV7Xh8fH/n4+Lj8uQAAAHAPlQrHo0aN0iOPPKL58+fLYrHo0KFDSk9P18SJEzV16lSXzxMeHq7w8PAK+8XHxys3N1dbtmxR165dJUlr165VSUmJI/C6IjMzU5LUuHFjx3mffvppHTlyxDFtY/Xq1QoMDFS7du1cPi8AAAAuDZVays0wDD3zzDNKTU11fMHNx8dHjz32mKZMmSI/P78qL7RPnz46fPiw0tLSHEu5devWzbGU28GDB9WzZ0+988476t69u3bv3q3Fixerb9++CgsL07Zt2zR+/HhdccUV2rBhg6Tfl3KLiorSc889J6vVqnvuuUf33nsvS7kBAABcQqp1KTeLxaL/9//+n3JycvTjjz/q22+/1dGjRxUUFKTmzZtXuujyvP/++4qNjVXPnj3Vt29fXXvttXrzzTcdx4uKipSVleUI697e3vrf//1f9erVS7GxsZo4caIGDhyoFStWOMbUq1dPK1euVL169RQfH6+hQ4dq2LBhTusiAwAA4PJxUU+OCwsLNX36dK1evdrxpHjAgAFasGCBnnjiCdWrV08PPfSQJk2aVJ011zk8OQYAAKjbXM1rFzXneOrUqXrjjTeUlJSkjRs36o477tDIkSP17bff6u9//7vuuOMO1atX708XDwAAANSGiwrHH3/8sd555x3dcsst+vHHH9WxY0edPXtWP/zwgywWS3XVCAAAANSIi5pzfODAAcdqEe3bt5ePj4/Gjx9PMAYAAMAl4aLCcXFxsby9vR37np6eCggIqPKiAAAAgNpwUdMqDMPQiBEjHC/AOH36tO6//37Vr1/fqd+nn35adRUCAAAANeSiwvHw4cOd9ocOHVqlxQAAAAC16aLC8YIFC6qrDgAAAKDWVeolIAAAAMCliHAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJjcJhzn5ORoyJAhCgwMVHBwsFJSUpSfn19m/19//VUWi6XU7eOPP3b0K+34hx9+WBOXBAAAgDrGs7YLcNWQIUOUnZ2t1atXq6ioSCNHjtTo0aO1ePHiUvvHxMQoOzvbqe3NN9/U888/rz59+ji1L1iwQMnJyY794ODgKq8fAAAAdZ9bhOPt27dr1apV+u6779StWzdJ0iuvvKK+ffvqhRdeUFRU1AVj6tWrp8jISKe2pUuX6s4771RAQIBTe3Bw8AV9AQAAcPlxi2kV6enpCg4OdgRjSUpKSpKHh4c2bdrk0jm2bNmizMxMpaSkXHDsoYceUsOGDdW9e3fNnz9fhmGUe67CwkLZbDanDQAAAO7PLZ4cW61WRUREOLV5enoqNDRUVqvVpXPMmzdPbdu2VUJCglP7zJkzdeONN8rf319ffvmlHnzwQeXn52vs2LFlnis1NVUzZsy4+AsBAABAnVarT44nT55c5pfmzm07duz405/z22+/afHixaU+NX7yySd1zTXXqHPnzpo0aZIef/xxPf/88+Web8qUKcrLy3Ns+/fv/9M1AgAAoPbV6pPjiRMnasSIEeX2adGihSIjI3XkyBGn9rNnzyonJ8elucJLlixRQUGBhg0bVmHfuLg4zZo1S4WFhfLx8Sm1j4+PT5nHAAAA4L5qNRyHh4crPDy8wn7x8fHKzc3Vli1b1LVrV0nS2rVrVVJSori4uArHz5s3T7fccotLn5WZmamQkBDCLwAAwGXILeYct23bVsnJyRo1apTS0tJUVFSkMWPGaNCgQY6VKg4ePKiePXvqnXfeUffu3R1jd+3apa+++kpffPHFBeddsWKFDh8+rL/85S/y9fXV6tWr9cwzz+jRRx+tsWsDAABA3eEW4ViS3n//fY0ZM0Y9e/aUh4eHBg4cqDlz5jiOFxUVKSsrSwUFBU7j5s+fryuuuEK9evW64JxeXl6aO3euxo8fL8Mw1KpVK7344osaNWpUtV8PAAAA6h6LUdG6ZaiQzWZTUFCQ8vLyFBgYWNvlAAAA4Dyu5jW3WOcYAAAAqAmEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwOQ24fjpp59WQkKC/P39FRwc7NIYwzA0depUNW7cWH5+fkpKStLOnTud+uTk5GjIkCEKDAxUcHCwUlJSlJ+fXw1XAAAAgLrObcLxmTNndMcdd+iBBx5wecxzzz2nOXPmKC0tTZs2bVL9+vXVu3dvnT592tFnyJAh+umnn7R69WqtXLlSX331lUaPHl0dlwAAAIA6zmIYhlHbRVyMhQsXaty4ccrNzS23n2EYioqK0sSJE/Xoo49KkvLy8tSoUSMtXLhQgwYN0vbt29WuXTt999136tatmyRp1apV6tu3rw4cOKCoqCiXarLZbAoKClJeXp4CAwP/1PUBAACg6rma19zmyfHF2rNnj6xWq5KSkhxtQUFBiouLU3p6uiQpPT1dwcHBjmAsSUlJSfLw8NCmTZvKPHdhYaFsNpvTBgAAAPd3yYZjq9UqSWrUqJFTe6NGjRzHrFarIiIinI57enoqNDTU0ac0qampCgoKcmwxMTFVXD0AAABqQ62G48mTJ8tisZS77dixozZLLNWUKVOUl5fn2Pbv31/bJQEAAKAKeNbmh0+cOFEjRowot0+LFi0qde7IyEhJ0uHDh9W4cWNH++HDh9WpUydHnyNHjjiNO3v2rHJychzjS+Pj4yMfH59K1QUAAIC6q1bDcXh4uMLDw6vl3M2bN1dkZKTWrFnjCMM2m02bNm1yrHgRHx+v3NxcbdmyRV27dpUkrV27ViUlJYqLi6uWugAAAFB3uc2c43379ikzM1P79u1TcXGxMjMzlZmZ6bQmcWxsrJYuXSpJslgsGjdunJ566iktX75c//nPfzRs2DBFRUVpwIABkqS2bdsqOTlZo0aN0ubNm/XNN99ozJgxGjRokMsrVQAAAODSUatPji/G1KlTtWjRIsd+586dJUnr1q1TYmKiJCkrK0t5eXmOPo8//rhOnTql0aNHKzc3V9dee61WrVolX19fR5/3339fY8aMUc+ePeXh4aGBAwdqzpw5NXNRAAAAqFPcbp3juoh1jgEAAOq2y36dYwAAAOBiEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADC5TTh++umnlZCQIH9/fwUHB1fYv6ioSJMmTVKHDh1Uv359RUVFadiwYTp06JBTv2bNmslisThtzz77bDVdBQAAAOoytwnHZ86c0R133KEHHnjApf4FBQXaunWrnnzySW3dulWffvqpsrKydMstt1zQd+bMmcrOznZsDz/8cFWXDwAAADfgWdsFuGrGjBmSpIULF7rUPygoSKtXr3Zqe/XVV9W9e3ft27dPTZo0cbQ3aNBAkZGRVVYrAAAA3JPbPDmuCnl5ebJYLBdMy3j22WcVFhamzp076/nnn9fZs2fLPU9hYaFsNpvTBgAAAPfnNk+O/6zTp09r0qRJGjx4sAIDAx3tY8eOVZcuXRQaGqqNGzdqypQpys7O1osvvljmuVJTUx1PsgEAAHDpsBiGYdTWh0+ePFmzZ88ut8/27dsVGxvr2F+4cKHGjRun3Nxclz+nqKhIAwcO1IEDB7R+/XqncHy++fPn67777lN+fr58fHxK7VNYWKjCwkLHvs1mU0xMjPLy8so9NwAAAGqHzWZTUFBQhXmtVp8cT5w4USNGjCi3T4sWLf7UZxQVFenOO+/U3r17tXbt2grDa1xcnM6ePatff/1Vbdq0KbWPj49PmcEZAAAA7qtWw3F4eLjCw8Or7fzngvHOnTu1bt06hYWFVTgmMzNTHh4eioiIqLa6AAAAUDe5zZzjffv2KScnR/v27VNxcbEyMzMlSa1atVJAQIAkKTY2Vqmpqbr11ltVVFSk22+/XVu3btXKlStVXFwsq9UqSQoNDZW3t7fS09O1adMm3XDDDWrQoIHS09M1fvx4DR06VCEhIbV1qQAAAKglbhOOp06dqkWLFjn2O3fuLElat26dEhMTJUlZWVnKy8uTJB08eFDLly+XJHXq1MnpXOfG+Pj46MMPP9T06dNVWFio5s2ba/z48ZowYUL1XxAAAADqnFr9Qt6lwtUJ3gAAAKgdrua1y2qdYwAAAKA8hGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMhGMAAADARDgGAAAATIRjAAAAwEQ4BgAAAEyEYwAAAMBEOAYAAABMnrVdAAAAAKrGwYNSRoZUUCD5+0udO0vR0bVdlXshHAMAALi5I0ekefOkjRulEycki0UyDCkkREpIkFJSpIiI2q7SPRCOAQAA3NiRI9LUqdK2bVJkpNS2reThIZWUSMePSytWSHv3SjNnEpBdwZxjAAAANzZvnj0Yx8ZK4eH2YCzZfw0Pt7dv22bvh4oRjgEAANzUwYP2qRSRkZKXV+l9vLzsxzdutPdH+QjHAAAAbiojwz7HOCys/H5hYfZ+GRk1U5c7IxwDAAC4qYIC+5fvPCpIdB4e9q2goGbqcmeEYwAAADfl729flaKkpPx+JSX2zd+/ZupyZ4RjAAAAN9W5s325tuPHy+93/Li9X5cuNVOXOyMcAwAAuKnoaPs6xlarVFRUep+iIvvxhAQpKqpm63NHrHMMAADgxlJS7OsYn1vnOCzMeZ1jq1Xq2NHeDxUjHAMAALixiAj7Cz7OvSFv+/bfw3FIiNSvH2/IuxiEYwAAADcXESFNmWJfxzgjw74qhb+/fY4xUykuDuEYAADgEhEdbd9QeXwhDwAAADARjgEAAAAT4RgAAAAwEY4BAAAAE+EYAAAAMBGOAQAAABPhGAAAADARjgEAAAAT4RgAAAAwuU04fvrpp5WQkCB/f38FBwe7NGbEiBGyWCxOW3JyslOfnJwcDRkyRIGBgQoODlZKSory8/Or4QoAAABQ17lNOD5z5ozuuOMOPfDAAxc1Ljk5WdnZ2Y7tgw8+cDo+ZMgQ/fTTT1q9erVWrlypr776SqNHj67K0gEAAOAmPGu7AFfNmDFDkrRw4cKLGufj46PIyMhSj23fvl2rVq3Sd999p27dukmSXnnlFfXt21cvvPCCoqKi/lTNAAAAcC9uE44ra/369YqIiFBISIhuvPFGPfXUUwoLC5MkpaenKzg42BGMJSkpKUkeHh7atGmTbr311lLPWVhYqMLCQsd+Xl6eJMlms1XjlQAAAKCyzuU0wzDK7XdJh+Pk5GTddtttat68uXbv3q2//e1v6tOnj9LT01WvXj1ZrVZFREQ4jfH09FRoaKisVmuZ501NTXU8yf6jmJiYKr8GAAAAVJ2TJ08qKCiozOO1Go4nT56s2bNnl9tn+/btio2NrdT5Bw0a5Ph9hw4d1LFjR7Vs2VLr169Xz549K3VOSZoyZYomTJjg2C8pKVFOTo7CwsJksVgqfd7Llc1mU0xMjPbv36/AwMDaLgfn4f7Ufdyjuo37U/dxj+q2qro/hmHo5MmTFU6brdVwPHHiRI0YMaLcPi1atKiyz2vRooUaNmyoXbt2qWfPnoqMjNSRI0ec+pw9e1Y5OTllzlOW7POYfXx8nNpcXUEDZQsMDOSHUh3G/an7uEd1G/en7uMe1W1VcX/Ke2J8Tq2G4/DwcIWHh9fY5x04cEDHjx9X48aNJUnx8fHKzc3Vli1b1LVrV0nS2rVrVVJSori4uBqrCwAAAHWD2yzltm/fPmVmZmrfvn0qLi5WZmamMjMzndYkjo2N1dKlSyVJ+fn5euyxx/Ttt9/q119/1Zo1a9S/f3+1atVKvXv3liS1bdtWycnJGjVqlDZv3qxvvvlGY8aM0aBBg1ipAgAA4DLkNl/Imzp1qhYtWuTY79y5syRp3bp1SkxMlCRlZWU5Vo6oV6+etm3bpkWLFik3N1dRUVHq1auXZs2a5TQl4v3339eYMWPUs2dPeXh4aODAgZozZ07NXRjk4+OjadOmXTBVBXUD96fu4x7Vbdyfuo97VLfV9P2xGBWtZwEAAABcJtxmWgUAAABQ3QjHAAAAgIlwDAAAAJgIxwAAAICJcIwa89VXX6lfv36KioqSxWLRsmXLnI4fPnxYI0aMUFRUlPz9/ZWcnKydO3fWTrGXodTUVF199dVq0KCBIiIiNGDAAGVlZTn1OX36tB566CGFhYUpICBAAwcO1OHDh2up4suLK/fnzTffVGJiogIDA2WxWJSbm1s7xV6GKro/OTk5evjhh9WmTRv5+fmpSZMmGjt2rGOFJVQ/V/4duu+++9SyZUv5+fkpPDxc/fv3144dO2qp4suLK/fnHMMw1KdPn1KzRFUgHKPGnDp1SldddZXmzp17wTHDMDRgwAD98ssv+uyzz5SRkaGmTZsqKSlJp06dqoVqLz8bNmzQQw89pG+//VarV69WUVGRevXq5fTnP378eK1YsUIff/yxNmzYoEOHDum2226rxaovH67cn4KCAiUnJ+tvf/tbLVZ6earo/hw6dEiHDh3SCy+8oB9//FELFy7UqlWrlJKSUsuVXz5c+Xeoa9euWrBggbZv367/+Z//kWEY6tWrl4qLi2ux8suDK/fnnJdfflkWi6X6ijGAWiDJWLp0qWM/KyvLkGT8+OOPjrbi4mIjPDzceOutt2qhQhw5csSQZGzYsMEwDMPIzc01vLy8jI8//tjRZ/v27YYkIz09vbbKvGydf3/+aN26dYYk48SJEzVfGAzDKP/+nPPPf/7T8Pb2NoqKimqwMpzjyj364YcfDEnGrl27arAyGEbZ9ycjI8OIjo42srOzL8gSVYUnx6gTCgsLJUm+vr6ONg8PD/n4+Ojrr7+urbIua+f+ujc0NFSStGXLFhUVFSkpKcnRJzY2Vk2aNFF6enqt1Hg5O//+oG5x5f7k5eUpMDBQnp5u8z6uS0pF9+jUqVNasGCBmjdvrpiYmJosDSr9/hQUFOjuu+/W3LlzFRkZWW2fTThGnXAuZE2ZMkUnTpzQmTNnNHv2bB04cEDZ2dm1Xd5lp6SkROPGjdM111yj9u3bS5KsVqu8vb0VHBzs1LdRo0ayWq21UOXlq7T7g7rDlftz7NgxzZo1S6NHj67h6iCVf49ee+01BQQEKCAgQP/617+0evVqeXt711Kll6ey7s/48eOVkJCg/v37V+vn87+rqBO8vLz06aefKiUlRaGhoapXr56SkpLUp08fGbzEscY99NBD+vHHH3lqX0dxf+q2iu6PzWbTzTffrHbt2mn69Ok1WxwklX+PhgwZoptuuknZ2dl64YUXdOedd+qbb75x+ptNVK/S7s/y5cu1du1aZWRkVPvn8+QYdUbXrl2VmZmp3NxcZWdna9WqVTp+/LhatGhR26VdVsaMGaOVK1dq3bp1uuKKKxztkZGROnPmzAUrIBw+fLha/3oLzsq6P6gbKro/J0+eVHJysho0aKClS5fKy8urFqq8vFV0j4KCgtS6dWtdf/31WrJkiXbs2KGlS5fWQqWXp7Luz9q1a7V7924FBwfL09PTMR1p4MCBSkxMrNIaCMeoc4KCghQeHq6dO3fq+++/r/a/PoGdYRgaM2aMli5dqrVr16p58+ZOx7t27SovLy+tWbPG0ZaVlaV9+/YpPj6+psu97FR0f1C7XLk/NptNvXr1kre3t5YvX86TyBpWmX+HDMOQYRiO78Wg+lR0fyZPnqxt27YpMzPTsUnSSy+9pAULFlRpLUyrQI3Jz8/Xrl27HPt79uxRZmamQkND1aRJE3388ccKDw9XkyZN9J///EePPPKIBgwYoF69etVi1ZePhx56SIsXL9Znn32mBg0aOOYRBwUFyc/PT0FBQUpJSdGECRMUGhqqwMBAPfzww4qPj9df/vKXWq7+0lfR/ZHs88KtVqvj37P//Oc/atCggZo0acIX96pZRffnXDAuKCjQe++9J5vNJpvNJkkKDw9XvXr1arP8y0JF9+iXX37RRx99pF69eik8PFwHDhzQs88+Kz8/P/Xt27eWq7/0VXR/IiMjS/1byiZNmlT9w4IqX/8CKMO55aXO34YPH24YhmH84x//MK644grDy8vLaNKkifHEE08YhYWFtVv0ZaS0eyPJWLBggaPPb7/9Zjz44INGSEiI4e/vb9x6661GdnZ27RV9GXHl/kybNq3CPqgeFd2fsn7+STL27NlTq7VfLiq6RwcPHjT69OljREREGF5eXsYVV1xh3H333caOHTtqt/DLhCs/40obUx1LuVnMkwMAAACXPeYcAwAAACbCMQAAAGAiHAMAAAAmwjEAAABgIhwDAAAAJsIxAAAAYCIcAwAAACbCMQAAAGAiHANAHTdixAgNGDDAsZ+YmKhx48bVeB3r16+XxWJRbm5utX6OxWLRsmXLqvUzAKAshGMAqIQRI0bIYrHIYrHI29tbrVq10syZM3X27Nlq/+xPP/1Us2bNcqlvTQXaM2fOqGHDhnr22WdLPT5r1iw1atRIRUVF1VoHAPxZhGMAqKTk5GRlZ2dr586dmjhxoqZPn67nn3++1L5nzpypss8NDQ1VgwYNqux8VcHb21tDhw7VggULLjhmGIYWLlyoYcOGycvLqxaqAwDXEY4BoJJ8fHwUGRmppk2b6oEHHlBSUpKWL18u6fepEE8//bSioqLUpk0bSdL+/ft15513Kjg4WKGhoerfv79+/fVXxzmLi4s1YcIEBQcHKywsTI8//rgMw3D63POnVRQWFmrSpEmKiYmRj4+PWrVqpXnz5unXX3/VDTfcIEkKCQmRxWLRiBEjJEklJSVKTU1V8+bN5efnp6uuukpLlixx+pwvvvhCV155pfz8/HTDDTc41VmalJQU/fzzz/r666+d2jds2KBffvlFKSkp+u6773TTTTepYcOGCgoKUo8ePbR169Yyz1nak+/MzExZLBaner7++mtdd9118vPzU0xMjMaOHatTp045jr/22mtq3bq1fH191ahRI91+++3lXguAyxfhGACqiJ+fn9MT4jVr1igrK0urV6/WypUrVVRUpN69e6tBgwb697//rW+++UYBAQFKTk52jPv73/+uhQsXav78+fr666+Vk5OjpUuXlvu5w4YN0wcffKA5c+Zo+/bteuONNxQQEKCYmBh98sknkqSsrCxlZ2frH//4hyQpNTVV77zzjtLS0vTTTz9p/PjxGjp0qDZs2CDJHuJvu+029evXT5mZmbr33ns1efLkcuvo0KGDrr76as2fP9+pfcGCBUpISFBsbKxOnjyp4cOH6+uvv9a3336r1q1bq2/fvjp58uTF/WH/we7du5WcnKyBAwdq27Zt+uijj/T1119rzJgxkqTvv/9eY8eO1cyZM5WVlaVVq1bp+uuvr/TnAbjEGQCAizZ8+HCjf//+hmEYRklJibF69WrDx8fHePTRRx3HGzVqZBQWFjrGvPvuu0abNm2MkpISR1thYaHh5+dn/M///I9hGIbRuHFj47nnnnMcLyoqMq644grHZxmGYfTo0cN45JFHDMMwjKysLEOSsXr16lLrXLdunSHJOHHihKPt9OnThr+/v7Fx40anvikpKcbgwYMNwzCMKVOmGO3atXM6PmnSpAvOdb60tDQjICDAOHnypGEYhmGz2Qx/f3/j7bffLrV/cXGx0aBBA2PFihWONknG0qVLy6w/IyPDkGTs2bPHUffo0aOdzvvvf//b8PDwMH777Tfjk08+MQIDAw2bzVZm3QBwDk+OAaCSVq5cqYCAAPn6+qpPnz666667NH36dMfxDh06yNvb27H/ww8/aNeuXWrQoIECAgIUEBCg0NBQnT59Wrt371ZeXp6ys7MVFxfnGOPp6alu3bqVWUNmZqbq1aunHj16uFz3rl27VFBQoJtuuslRR0BAgN555x3t3r1bkrR9+3anOiQpPj6+wnMPHjxYxcXF+uc//ylJ+uijj+Th4aG77rpLknT48GGNGjVKrVu3VlBQkAIDA5Wfn699+/a5XP/5fvjhBy1cuNDpWnr37q2SkhLt2bNHN910k5o2baoWLVronnvu0fvvv6+CgoJKfx6AS5tnbRcAAO7qhhtu0Ouvvy5vb29FRUXJ09P5R2r9+vWd9vPz89W1a1e9//77F5wrPDy8UjX4+fld9Jj8/HxJ0ueff67o6GinYz4+PpWq45zAwEDdfvvtWrBggf76179qwYIFuvPOOxUQECBJGj58uI4fP65//OMfatq0qXx8fBQfH1/mFxY9POzPcIw/zLs+f8WL/Px83XfffRo7duwF45s0aSJvb29t3bpV69ev15dffqmpU6dq+vTp+u677xQcHPynrhfApYdwDACVVL9+fbVq1crl/l26dNFHH32kiIgIBQYGltqncePG2rRpk2NO7NmzZ7VlyxZ16dKl1P4dOnRQSUmJNmzYoKSkpAuOn3tyXVxc7Ghr166dfHx8tG/fvjKfOLdt29bx5cJzvv3224ovUvYv5iUmJmrlypXauHGj0woe33zzjV577TX17dtXkn1u87Fjx8o817n/acjOzlZISIgk+9PyP+rSpYv+7//+r9x74enpqaSkJCUlJWnatGkKDg7W2rVrddttt7l0TQAuH0yrAIAaMmTIEDVs2FD9+/fXv//9b+3Zs0fr16/X2LFjdeDAAUnSI488omeffVbLli3Tjh079OCDD5a7RnGzZs00fPhw/fWvf9WyZcsc5zw3raFp06ayWCxauXKljh49qvz8fDVo0ECPPvqoxo8fr0WLFmn37t3aunWrXnnlFS1atEiSdP/992vnzp167LHHlJWVpcWLF2vhwoUuXef111+vVq1aadiwYYqNjVVCQoLjWOvWrfXuu+9q+/bt2rRpk4YMGVLu0+9WrVopJiZG06dP186dO/X555/r73//u1OfSZMmaePGjRozZowyMzO1c+dOffbZZ44v5K1cuVJz5sxRZmam9u7dq3feeUclJSWOFUQA4I8IxwBQQ/z9/fXVV1+pSZMmuu2229S2bVulpKTo9OnTjifJEydO1D333KPhw4crPj5eDRo00K233lrueV9//XXdfvvtevDBBxUbG6tRo0Y5ljGLjo7WjBkzNHnyZDVq1MgRGGfNmqUnn3xSqampatu2rZKTk/X555+refPmkuzTET755BMtW7ZMV111ldLS0vTMM8+4dJ0Wi0V//etfdeLECf31r391OjZv3jydOHFCXbp00T333KOxY8cqIiKizHN5eXnpgw8+0I4dO9SxY0fNnj1bTz31lFOfjh07asOGDfr555913XXXqXPnzpo6daqioqIkScHBwfr000914403qm3btkpLS9MHH3yg//qv/3LpegBcXiyGcd4CmgAAAMBliifHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACAiXAMAAAAmAjHAAAAgIlwDAAAAJgIxwAAAICJcAwAAACYCMcAAACA6f8DwsinFIJWIO0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "'''\n", + "In this code, we first calculate the residuals by subtracting the predicted values from the actual values. Then, we create a scatter plot of predicted values against residuals. The red dashed line at y=0 is a reference line; ideally, we want the residuals to be evenly distributed around this line.\n", + "'''\n", + "# Calculate residuals\n", + "residuals = actual_values - predicted_values\n", + "\n", + "# Plotting residuals\n", + "plt.figure(figsize=(8, 6))\n", + "plt.scatter(predicted_values, residuals, c='b', s=60, alpha=0.6)\n", + "plt.axhline(y=0, color='r', linestyle='--', linewidth=2)\n", + "plt.title(\"Residual Plot\")\n", + "plt.xlabel(\"Predicted Values\")\n", + "plt.ylabel(\"Residuals\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a647fe11", + "metadata": {}, + "source": [ + "### Interpretation" + ] + }, + { + "cell_type": "markdown", + "id": "d41d33af", + "metadata": {}, + "source": [ + "If the residuals are randomly scattered around the red line, it suggests that the model is capturing the underlying patterns in the data well.\n", + "If there's a clear pattern in the residuals (e.g., a curve or a trend), it indicates that the model might be missing some important features.\n", + "Residual analysis is a crucial step in understanding the limitations of the model and can provide insights into potential areas of improvement." + ] + }, + { + "cell_type": "markdown", + "id": "812056ec", + "metadata": {}, + "source": [ + "## Adjusted R-squared" + ] + }, + { + "cell_type": "markdown", + "id": "bd2af42b", + "metadata": {}, + "source": [ + "The adjusted R-squared is a modified version of the R-squared score that takes into account the number of independent variables in the model. It penalizes the inclusion of unnecessary variables that do not significantly contribute to explaining the variance in the dependent variable." + ] + }, + { + "cell_type": "markdown", + "id": "e810e46e", + "metadata": {}, + "source": [ + "### The Formula" + ] + }, + { + "cell_type": "markdown", + "id": "a90544c6", + "metadata": {}, + "source": [ + "The formula for Adjusted R-squared is:\n", + "$$ \\text{Adjusted } R^2 = 1 - \\frac{{(1 - R^2)(n - 1)}}{{n - k - 1}} $$\n", + "Where:\n", + "\n", + "\n", + "- $n$ is the number of data points\n", + "- $k$ is the number of independent variables" + ] + }, + { + "cell_type": "markdown", + "id": "7a9a9fa5", + "metadata": {}, + "source": [ + "### Python Implementation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "53f70b1d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Adjusted R-squared Score: 0.7552043176561298\n" + ] + } + ], + "source": [ + "# Define the number of independent variables (k)\n", + "'''\n", + "In this code, you'll need to replace num_independent_variables with the actual number of independent variables in your model.\n", + "'''\n", + "num_independent_variables = 2 # Replace with the actual number of independent variables\n", + "\n", + "# Calculate adjusted R2 score\n", + "adjusted_r2_score = 1 - ((1 - r2_score) * (len(actual_values) - 1)) / (len(actual_values) - num_independent_variables - 1)\n", + "\n", + "# Print the adjusted R2 score\n", + "print(\"Adjusted R-squared Score:\", adjusted_r2_score)" + ] + }, + { + "cell_type": "markdown", + "id": "bc0b5d20", + "metadata": {}, + "source": [ + "### Interpretation" + ] + }, + { + "cell_type": "markdown", + "id": "78eb9684", + "metadata": {}, + "source": [ + "The adjusted R-squared score provides a more accurate representation of the model's explanatory power, especially when dealing with multiple independent variables.\n", + "A higher adjusted R-squared indicates that a larger proportion of the variance in the dependent variable is explained by the independent variables." + ] + }, + { + "cell_type": "markdown", + "id": "74fa14ed", + "metadata": {}, + "source": [ + "## Mean Absolute Error (MAE)" + ] + }, + { + "cell_type": "markdown", + "id": "a18ba873", + "metadata": {}, + "source": [ + "The Mean Absolute Error (MAE) is a metric that measures the average absolute differences between actual and predicted values. Unlike MSE, MAE does not square the differences, which makes it less sensitive to outliers." + ] + }, + { + "cell_type": "markdown", + "id": "4f34c46b", + "metadata": {}, + "source": [ + "### The Formula" + ] + }, + { + "cell_type": "markdown", + "id": "97e06de3", + "metadata": {}, + "source": [ + "The formula for Mean Absolute Errord is:\n", + "$$ MAE = \\frac{1}{n} \\sum_{i=1}^{n} |y_i - \\hat{y}_i| $$\n", + "Where:\n", + "- $ n $ is the number of data points\n", + "- $ y_i $ represents the actual value of the dependent variable\n", + "- $ \\hat{y}_i $ represents the predicted value of the dependent variable" + ] + }, + { + "cell_type": "markdown", + "id": "8da3c8ec", + "metadata": {}, + "source": [ + "### Python Implementation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "706e70a0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Absolute Error (MAE): 0.5600000000000002\n" + ] + } + ], + "source": [ + "# Calculate absolute differences between actual and predicted values\n", + "absolute_errors = np.abs(actual_values - predicted_values)\n", + "\n", + "# Calculate the mean of absolute errors to get MAE\n", + "mae = np.mean(absolute_errors)\n", + "\n", + "# Print the MAE\n", + "print(\"Mean Absolute Error (MAE):\", mae)\n" + ] + }, + { + "cell_type": "markdown", + "id": "9a53e170", + "metadata": {}, + "source": [ + "### Interpretation" + ] + }, + { + "cell_type": "markdown", + "id": "b0c33ceb", + "metadata": {}, + "source": [ + "The MAE gives us an average of how far off our predictions are from the actual values. It provides a more intuitive understanding of error compared to MSE." + ] + }, + { + "cell_type": "markdown", + "id": "fff0ccc0", + "metadata": {}, + "source": [ + "## Mean Absolute Percentage Error (MAPE)" + ] + }, + { + "cell_type": "markdown", + "id": "eb7efd34", + "metadata": {}, + "source": [ + "The Mean Absolute Percentage Error (MAPE) is a metric used to evaluate the accuracy of a model's predictions in percentage terms. It measures the average absolute percentage difference between actual and predicted values." + ] + }, + { + "cell_type": "markdown", + "id": "7517e467", + "metadata": {}, + "source": [ + "### The Formula" + ] + }, + { + "cell_type": "markdown", + "id": "3cced860", + "metadata": {}, + "source": [ + "The formula for MAPE is:\n", + "\n", + "$$ MAPE = \\frac{1}{n} \\sum_{i=1}^{n} \\left| \\frac{y_i - \\hat{y}_i}{y_i} \\right| \\times 100 $$\n", + "Where:\n", + "- $ n $ is the number of data points\n", + "- $ y_i $ represents the actual value of the dependent variable\n", + "- $ \\hat{y}_i $ represents the predicted value of the dependent variable" + ] + }, + { + "cell_type": "markdown", + "id": "f8bace78", + "metadata": {}, + "source": [ + "### Interpretation" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "809ea600", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Absolute Percentage Error (MAPE): 2.5706829878497204\n" + ] + } + ], + "source": [ + "# Calculate absolute percentage differences between actual and predicted values\n", + "absolute_percentage_errors = np.abs((actual_values - predicted_values) / actual_values) * 100\n", + "\n", + "# Calculate the mean of absolute percentage errors to get MAPE\n", + "mape = np.mean(absolute_percentage_errors)\n", + "\n", + "# Print the MAPE\n", + "print(\"Mean Absolute Percentage Error (MAPE):\", mape)" + ] + }, + { + "cell_type": "markdown", + "id": "da92a047", + "metadata": {}, + "source": [ + "## Conclusion and Recap" + ] + }, + { + "cell_type": "markdown", + "id": "22109dea", + "metadata": {}, + "source": [ + "In this tutorial, we covered several important metrics used to evaluate the performance of linear regression models. Here's a quick recap:\n", + "\n", + "- Mean Squared Error (MSE): Measures the average squared difference between actual and predicted values.\n", + "\n", + "- Root Mean Squared Error (RMSE): The square root of MSE, providing a measure of the average magnitude of error.\n", + "\n", + "- R-squared (R2) Score: Indicates the proportion of the variance in the dependent variable that is predictable from the independent variables.\n", + "\n", + "- Adjusted R-squared: A modified R2 score that considers the number of independent variables in the model.\n", + "\n", + "- Mean Absolute Error (MAE): Measures the average absolute differences between actual and predicted values.\n", + "\n", + "- Mean Absolute Percentage Error (MAPE): Measures the average absolute percentage difference between actual and predicted values.\n", + "\n", + "Each of these metrics provides unique insights into the performance of a linear regression model. Choosing the right metric depends on the specific characteristics of the data and the objectives of the modeling task.\n", + "\n", + "By understanding and utilizing these metrics, you can make informed decisions about the accuracy and reliability of your linear regression models." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/assignments/ml-fundamentals/linear-regression/loss-function.ipynb b/_sources/assignments/ml-fundamentals/linear-regression/loss-function.ipynb new file mode 100644 index 0000000000..a517f8e3da --- /dev/null +++ b/_sources/assignments/ml-fundamentals/linear-regression/loss-function.ipynb @@ -0,0 +1,553 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Loss Function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Objective of this section\n", + "\n", + "We have already learned math and code for \"Gradient Descent\", as well as other optimization techniques.\n", + "\n", + "In this section, we will learn more about loss functions.\n", + "\n", + "As a learner, you can focus on learning the L1, L2 loss, and Classification Losses in the regression loss function in this section. And learn about other loss functions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Concept of loss function\n", + "\n", + "- A loss function gauges the disparity between the model's predictions and the actual values. Simply put, it indicates how \"off\" our model is. By optimizing this function, our objective is to identify parameters that bring the model's predictions as close as possible to the true values.\n", + "\n", + "- The function we want to minimize or maximize is called the objective function or criterion. When we are minimizing it, we may also call it the cost function, loss function, or error function.\n", + "— Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Difference between a Loss Function and a Cost Function\n", + "\n", + "A loss function evaluates the error for a single training example, and it is occasionally referred to as an error function. In contrast, a cost function represents the **average loss** across the entire training dataset. Optimization strategies are designed to minimize this cost function.\n", + "\n", + "For a simple sample:\n", + "\n", + "The corresponding cost function of L1 Loss is the Mean of these Squared Errors (MSE).\n", + "You can see the difference of [Mathematical Expression](#regression-loss-functions)\n", + "\n", + "However, these terms are frequently used interchangeably in practical settings, they aren't precisely equivalent. From a definitional standpoint, the cost function represents an aggregation or average of the loss functions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Classification of loss functions\n", + "\n", + "### Regression Losses\n", + "\n", + "These are employed when the objective is to predict a continuous outcome.\n", + "\n", + "- Mean Squared Error (MSE): Measures the average squared discrepancies between predictions and actual values, emphasizing larger errors.\n", + "- Mean Absolute Error (MAE): Calculates the average of absolute differences between predicted outcomes and actual observations, offering a linear penalty for each deviation.\n", + "- Huber Loss: A hybrid loss that's quadratic for small differences and linear for large ones, providing resilience against outliers.\n", + "- L1 Loss: Directly reflects the absolute discrepancies between predictions and real values, synonymous with MAE.\n", + "- L2 Loss: Highlights squared differences between predictions and actuals, equivalent to MSE.\n", + "- Smooth L1 Loss: An amalgamation of L1 and L2 losses, it provides a balance in handling both minor and major deviations.\n", + "\n", + "### Classification Losses\n", + "\n", + "Utilized for tasks requiring the prediction of discrete categories.\n", + "\n", + "- Cross Entropy Loss: Quantifies the dissimilarity between the predicted probability distribution and the actual class distribution.\n", + "- Hinge Loss: A staple for Support Vector Machines (SVMs), it strives to categorize data by maximizing the decision boundary between classes.\n", + "- **Binary Cross Entropy Loss(Log Loss):** It is intended for use with binary classification where the target values are in the set {0, 1}. It is a special case of Cross Entropy Loss, specially used for binary classification problems.\n", + "- **Multi-Class Cross-Entropy Loss:** In this case, it is intended for use with multi-class classification where the target values are in the set {0, 1, 3, …, n}, where each class is assigned a unique integer value.It is an extension of Cross Entropy Loss and is used for multi-classification problems.\n", + "\n", + "### Structured Losses\n", + "\n", + "Tailored for intricate tasks involving structured data patterns.\n", + "\n", + "- Sequence Generation Loss: Emblematic examples include the CTC (Connectionist Temporal Classification) designed for undertakings such as speech and text identification.\n", + "- Image Segmentation Loss: Noteworthy instances encompass the Dice loss and the IoU (Intersection over Union) loss.\n", + "\n", + "### Regularization Losses\n", + "\n", + "Rather than directly influencing the model's predictions, these losses are integrated into the objective function to counteract excessive model complexity.\n", + "\n", + "- L1 Regularization (Lasso): Enforces sparsity by compelling certain model coefficients to be exactly zero.\n", + "- L2 Regularization (Ridge): Curbs the unchecked growth of model parameters without nullifying them, ensuring the model remains generalized without undue complexity." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Empirical Risk and Structural Risk\n", + "\n", + "### Definition\n", + "\n", + "Perhaps you've heard of these two concepts before. In the realms of machine learning and statistics, the concepts of empirical risk and structural risk are intricately tied to loss functions. **However, these terms aren't directly categories of loss functions perse.** Let's first clarify these concepts:\n", + "\n", + "1. **Empirical Risk:** Refers to the average loss of a model over a given dataset. Minimizing empirical risk focuses on reducing errors explicitly on the training data.\n", + "2. **Structural Risk:** Introduces a regularization term in addition to empirical risk, aiming to prevent overfitting. Minimizing structural risk strikes a balance between the empirical risk and the complexity of the model.\n", + "\n", + "Given these definitions:\n", + "\n", + "- **Empirical Risk:** Loss functions directly related to dataset performance fall under this category. From the ones been listed, regression losses (e.g., MSE, MAE, Huber Loss, L1 Loss, L2 Loss, Smooth L1 Loss), classification losses (e.g., Cross Entropy Loss, Hinge Loss, Log Loss), and structured losses (e.g., CTC or Image Segmentation Loss) can be seen as manifestations of empirical risk.\n", + "\n", + "- **Structural Risk:** Regularization losses, like L1 and L2 regularization, form part of structural risk. They don't measure the model's performance on the data directly but rather serve to rein in model complexity.\n", + "\n", + "### A Detaphor\n", + "\n", + "Maybe it's still abtract. So, now imagine you're a tailor trying to make a dress for a client.\n", + "\n", + "- **Empirical Risk:** This is like ensuring the dress fits the client perfectly based on a single fitting session. You measure every contour and make the dress to match those exact measurements. The dress is a perfect fit for the client on that particular day.\n", + "\n", + "However, what if the client gains or loses a little weight or wants to move more comfortably? A dress tailored too tightly to the exact measurements might not be very adaptable or comfortable in various situations.\n", + "\n", + "- **Structural Risk:** Now, consider that you decide to allow a bit more flexibility in the dress. You make it slightly adjustable, perhaps with some elastic portions. This way, even if the client's measurements change a bit, the dress will still fit comfortably. You're sacrificing a tiny bit of the \"perfect\" fit for the adaptability and general comfort.\n", + "\n", + "In the context of machine learning:\n", + "\n", + "Relying solely on **Empirical Risk** would be like fitting the dress exactly to the client's measurements, risking overfitting. If the data changes slightly, the model might perform poorly.\n", + "\n", + "Factoring in **Structural Risk** ensures the model isn't overly tailored to the training data and can generalize well to new, unseen data. It's about ensuring a balance between a perfect fit and adaptability.\n", + "\n", + "### Mathematical Explanation\n", + "\n", + "Now you have a general understanding of the meaning of empirical risk and structural risk. Let's delve into a more mathematical perspective:\n", + "\n", + "Given a dataset $\\mathcal{D}$ comprising input-output pairs $(x_1, y_1)$, $(x_2, y_2)$, ... $(x_n, y_n)$ and a model $f$ parameterized by $\\theta$, the empirical risk and structural risk can be formally defined as follows:\n", + "\n", + "**Empirical Risk(Cost Function):**\n", + "$$\n", + "R_{emp}(f) = \\frac{1}{n} \\sum_{i=1}^{n} L(y_i, f(x_i; \\theta))\n", + "$$\n", + "Where:\n", + "\n", + "- **$L$ is the loss function**, measuring the discrepancy between the predicted value $f(x_i; \\theta)$ and the actual output $y_i$.\n", + "\n", + "Empirical risk quantifies how well the model fits the given dataset, representing the average loss of the model on the training data.\n", + "\n", + "**Structural Risk(Objective Function):**\n", + "$$\n", + "R_{struc}(f) = R_{emp}(f) + \\lambda R_{reg}(\\theta)\n", + "$$\n", + "Where:\n", + "- $R_{reg}(\\theta)$ is the regularization term, penalizing the complexity of the model.\n", + "- $\\lambda$ is a regularization coefficient determining the weight of the regularization term relative to the empirical risk.\n", + "\n", + "Structural risk is a combination of the empirical risk and a penalty for model complexity. It strikes a balance between fitting the training data (empirical risk) and ensuring the model isn't overly complex (which can lead to overfitting).\n", + "\n", + "**Differences and Relations:**\n", + "\n", + "1. **Empirical Risk** focuses solely on minimizing the error on the training data without considering model complexity or how it generalizes to unseen data.\n", + "2. **Structural Risk** takes into account both the empirical risk and the complexity of the model. By introducing a regularization term, it ensures that the model doesn't become overly complex and overfit the training data. Thus, it balances performance on training data with generalization to new data.\n", + "\n", + "In essence, while empirical risk aims for performance on the current dataset, structural risk aims for good performance on new data by penalizing overly complex models.\n", + "\n", + "### Cost Function and Objective Function\n", + "\n", + "The empirical risk and cost functions are in many cases the same and represent the average loss on the training data.\n", + "\n", + "Structural risk is often viewed as an objective function, especially when regularization is considered. But the term \"objective function\" is broader and is not limited to structural risk but can also include other optimization objectives." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Common Loss Functions\n", + "\n", + "### Regression Loss Functions\n", + "\n", + "1. **Mean Squared Error, MSE**\n", + "\n", + "$$\n", + "L(y, \\hat{y}) = \\frac{1}{n} \\sum_{i=1}^{n} (y_i - \\hat{y}_i)^2 \n", + "$$\n", + "\n", + "Where $y_i$ is the actual value and $\\hat{y}_i$ is the predicted value." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "\n", + "y_true = tf.constant([1.0, 2.0, 3.0])\n", + "y_pred = tf.constant([1.5, 1.5, 3.5])\n", + "loss = tf.keras.losses.MSE(y_true, y_pred)\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. **Mean Absolute Error, MAE**\n", + "\n", + "$$\n", + "L(y, \\hat{y}) = \\frac{1}{n} \\sum_{i=1}^{n} |y_i - \\hat{y}_i|\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "loss = tf.keras.losses.MAE(y_true, y_pred)\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. **Huber Loss**\n", + "\n", + "$$\n", + "L_{\\delta}(y, \\hat{y}) = \\begin{cases} \n", + " \\frac{1}{2}(y - \\hat{y})^2 & \\text{if } |y - \\hat{y}| \\leq \\delta \\\\\n", + " \\delta |y - \\hat{y}| - \\frac{1}{2}\\delta^2 & \\text{otherwise}\n", + " \\end{cases}\n", + "$$\n", + "\n", + "Positioned between MSE and MAE, this loss function offers robustness against outliers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "loss = tf.keras.losses.Huber()(y_true, y_pred)\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. **L1 Loss**\n", + "\n", + "$$\n", + "L = ( y - f(x) )^2\n", + "$$\n", + "\n", + "Corresponds to MAE.\n", + "\n", + "5. **L2 Loss**\n", + "\n", + "$$\n", + "L = | y - f(x) |\n", + "$$\n", + "\n", + "Corresponds to MSE.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Classification Loss Functions\n", + "\n", + "1. **Cross Entropy Loss**\n", + "\n", + "$$\n", + "L(y, p) = - \\sum_{i=1}^{C} y_i \\log(p_i)\n", + "$$\n", + "\n", + "Where $y_i$ is the actual label (0 or 1) and $p_i$ is the predicted probability for the respective class." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_true = tf.constant([[0, 1], [1, 0], [1, 0]])\n", + "y_pred = tf.constant([[0.05, 0.95], [0.1, 0.9], [0.8, 0.2]])\n", + "loss = tf.keras.losses.CategoricalCrossentropy()(y_true, y_pred)\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. **Hinge Loss**\n", + "\n", + "$$\n", + "L(y, \\hat{y}) = \\max(0, 1 - y \\cdot \\hat{y})\n", + "$$\n", + "\n", + "Primarily used for Support Vector Machines, but it can also be employed for other classification tasks." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_true = tf.constant([-1, 1, 1]) # binary class labels in {-1, 1}\n", + "y_pred = tf.constant([0.5, 0.3, -0.7]) # raw model outputs\n", + "loss = tf.keras.losses.Hinge()(y_true, y_pred)\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "3. **Binary Cross Entropy(Log Loss)**\n", + "\n", + "Mathematically, it is the preferred loss function under the inference framework of maximum likelihood. It is the loss function to be evaluated first and only changed if you have a good reason.\n", + "\n", + "Cross-entropy will calculate a score that summarizes the average difference between the actual and predicted probability distributions for predicting class 1. The score is minimized and a perfect cross-entropy value is 0.\n", + "\n", + "This YouTube video by Andrew Ng explains very well Binary Cross Entropy Loss (make sure that you have access to YouTube for this web page to render correctly):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import HTML\n", + "\n", + "display(HTML(\n", + " \"\"\"\n", + " \n", + " \"\"\"\n", + "))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_true = tf.constant([0, 1, 0])\n", + "y_pred = tf.constant([0.05, 0.95, 0.1])\n", + "loss = tf.keras.losses.BinaryCrossentropy()(y_true, y_pred)\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "4. **Multi-Class Cross-Entropy Loss**\n", + "\n", + "Mathematically, it is the preferred loss function under the inference framework of maximum likelihood. It is the loss function to be evaluated first and only changed if you have a good reason.\n", + "\n", + "Cross-entropy will calculate a score that summarizes the average difference between the actual and predicted probability distributions for all classes in the problem. The score is minimized and a perfect cross-entropy value is 0." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_true = [[1, 0, 0],\n", + " [0, 1, 0],\n", + " [0, 0, 1],\n", + " [1, 0, 0],\n", + " [0, 1, 0]]\n", + "\n", + "# Mock predicted probabilities from a model\n", + "y_pred = [[0.7, 0.2, 0.1],\n", + " [0.2, 0.5, 0.3],\n", + " [0.1, 0.2, 0.7],\n", + " [0.6, 0.3, 0.1],\n", + " [0.1, 0.6, 0.3]]\n", + "\n", + "y_true = tf.constant(y_true, dtype=tf.float32)\n", + "y_pred = tf.constant(y_pred, dtype=tf.float32)\n", + "\n", + "loss = tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred), axis=1))\n", + "\n", + "print(\"Multi-Class Cross-Entropy Loss:\", loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Structured Loss Functions\n", + "\n", + "1. **CTC Loss (Connectionist Temporal Classification)**\n", + "\n", + "Used for sequence-to-sequence problems, like speech recognition." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "y_true = np.array([[1, 2]]) # (batch, timesteps)\n", + "y_pred = np.array([[[0.1, 0.6, 0.3], [0.3, 0.1, 0.6]]]) # (batch, timesteps, num_classes)\n", + "logit_length = [2]\n", + "label_length = [2]\n", + "loss = tf.keras.backend.ctc_batch_cost(y_true, y_pred, logit_length, label_length)\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. **Dice Loss, IoU Loss**\n", + "\n", + "Used for image segmentation tasks." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def dice_loss(y_true, y_pred):\n", + " numerator = 2 * tf.reduce_sum(y_true * y_pred, axis=-1)\n", + " denominator = tf.reduce_sum(y_true + y_pred, axis=-1)\n", + " return 1 - (numerator + 1) / (denominator + 1)\n", + "\n", + "y_true = tf.constant([[1, 0, 1], [0, 1, 0]])\n", + "y_pred = tf.constant([[0.8, 0.2, 0.6], [0.3, 0.7, 0.1]])\n", + "loss = dice_loss(y_true, y_pred)\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def iou_loss(y_true, y_pred):\n", + " intersection = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3])\n", + " union = tf.reduce_sum(y_true, axis=[1, 2, 3]) + tf.reduce_sum(y_pred, axis=[1, 2, 3]) - intersection\n", + " return 1. - (intersection + 1) / (union + 1)\n", + "\n", + "# For simplicity, using 2D tensors. Typically, these are images (3D tensors).\n", + "y_true = tf.constant([[1, 0, 1], [0, 1, 0]])\n", + "y_pred = tf.constant([[0.8, 0.2, 0.6], [0.3, 0.7, 0.1]])\n", + "loss = iou_loss(y_true[tf.newaxis, ...], y_pred[tf.newaxis, ...]) # Add batch dimension\n", + "\n", + "print(loss.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Regularization\n", + "\n", + "1. **L1 Regularization (Lasso)**\n", + "\n", + "Produces sparse model parameters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.regularizers import l1\n", + "\n", + "model = tf.keras.models.Sequential([\n", + " tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=l1(0.01), input_shape=(10,))\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "2. **L2 Regularization (Ridge)**\n", + "\n", + "Prevents model parameters from becoming too large but doesn't force them to become exactly zero." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.regularizers import l2\n", + "\n", + "model = tf.keras.models.Sequential([\n", + " tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=l2(0.01), input_shape=(10,))\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion\n", + "\n", + "Loss functions hold a pivotal role in machine learning. By minimizing the loss, we enhance the accuracy of our model's predictions. A deep understanding of various loss functions aids in selecting the most appropriate optimization technique for specific challenges." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "open-machine-learning-jupyter-book", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/assignments/ml-fundamentals/parameter-play.ipynb b/_sources/assignments/ml-fundamentals/parameter-play.ipynb index 7dcc8831ff..2093040996 100644 --- a/_sources/assignments/ml-fundamentals/parameter-play.ipynb +++ b/_sources/assignments/ml-fundamentals/parameter-play.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "ce4ea64b", + "id": "c5f3a3a3", "metadata": {}, "source": [ "# Parameter play\n", diff --git a/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb b/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb index c90e708f25..f252d6f4e6 100644 --- a/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb +++ b/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "b80ab429", + "id": "f76233d0", "metadata": {}, "source": [ "# Regression with Scikit-learn\n", diff --git a/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb b/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb index 4c68136207..9133ed89df 100644 --- a/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb +++ b/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "196ef3c3", + "id": "8a49419f", "metadata": {}, "source": [ "# Retrying some regression\n", diff --git a/_sources/data-science/data-science-in-the-wild.ipynb b/_sources/data-science/data-science-in-the-wild.ipynb index 6da38965d4..0ae49d7650 100644 --- a/_sources/data-science/data-science-in-the-wild.ipynb +++ b/_sources/data-science/data-science-in-the-wild.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2c0479ce", + "id": "c6629ea5", "metadata": {}, "source": [ "# Data Science in the real world\n", diff --git a/_sources/data-science/data-science-lifecycle/analyzing.ipynb b/_sources/data-science/data-science-lifecycle/analyzing.ipynb index a4a4d08ae7..bf93021992 100644 --- a/_sources/data-science/data-science-lifecycle/analyzing.ipynb +++ b/_sources/data-science/data-science-lifecycle/analyzing.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2a2858cc", + "id": "0282a4b2", "metadata": {}, "source": [ "# Analyzing\n", diff --git a/_sources/data-science/data-science-lifecycle/communication.ipynb b/_sources/data-science/data-science-lifecycle/communication.ipynb index 4fe9b6179d..5096630609 100644 --- a/_sources/data-science/data-science-lifecycle/communication.ipynb +++ b/_sources/data-science/data-science-lifecycle/communication.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c95087e0", + "id": "9634469f", "metadata": {}, "source": [ "# Communication\n", diff --git a/_sources/data-science/data-science-lifecycle/data-science-lifecycle.ipynb b/_sources/data-science/data-science-lifecycle/data-science-lifecycle.ipynb index 6c87f13e93..eaad85eefb 100644 --- a/_sources/data-science/data-science-lifecycle/data-science-lifecycle.ipynb +++ b/_sources/data-science/data-science-lifecycle/data-science-lifecycle.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "f0cd3863", + "id": "bf82b6ba", "metadata": {}, "source": [ "# Data Science lifecycle\n", diff --git a/_sources/data-science/data-science-lifecycle/introduction.ipynb b/_sources/data-science/data-science-lifecycle/introduction.ipynb index 5aeacb5e42..527cd00697 100644 --- a/_sources/data-science/data-science-lifecycle/introduction.ipynb +++ b/_sources/data-science/data-science-lifecycle/introduction.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c58308ea", + "id": "bda42245", "metadata": {}, "source": [ "# Introduction to the Data Science lifecycle\n", diff --git a/_sources/data-science/introduction/data-science-ethics.ipynb b/_sources/data-science/introduction/data-science-ethics.ipynb index a5006aa3f9..f727f84317 100644 --- a/_sources/data-science/introduction/data-science-ethics.ipynb +++ b/_sources/data-science/introduction/data-science-ethics.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "ee7613bf", + "id": "93794650", "metadata": {}, "source": [ "# Data Science ethics\n", diff --git a/_sources/data-science/introduction/defining-data-science.ipynb b/_sources/data-science/introduction/defining-data-science.ipynb index 88afd1c7f8..a3408145a6 100644 --- a/_sources/data-science/introduction/defining-data-science.ipynb +++ b/_sources/data-science/introduction/defining-data-science.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "0dabdef4", + "id": "b1952973", "metadata": {}, "source": [ "# Defining data science\n", diff --git a/_sources/data-science/introduction/defining-data.ipynb b/_sources/data-science/introduction/defining-data.ipynb index 8dab89aeab..8f1819974c 100644 --- a/_sources/data-science/introduction/defining-data.ipynb +++ b/_sources/data-science/introduction/defining-data.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "7c68d72b", + "id": "5a88fc60", "metadata": {}, "source": [ "# Defining data\n", diff --git a/_sources/data-science/introduction/introduction-to-statistics-and-probability.ipynb b/_sources/data-science/introduction/introduction-to-statistics-and-probability.ipynb index 884e926ef9..66fc6a79ca 100644 --- a/_sources/data-science/introduction/introduction-to-statistics-and-probability.ipynb +++ b/_sources/data-science/introduction/introduction-to-statistics-and-probability.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "e40a7849", + "id": "0eb2c041", "metadata": {}, "source": [ "# Introduction to statistics and probability\n", diff --git a/_sources/data-science/introduction/introduction.ipynb b/_sources/data-science/introduction/introduction.ipynb index dc647cdf9a..4b19d473d5 100644 --- a/_sources/data-science/introduction/introduction.ipynb +++ b/_sources/data-science/introduction/introduction.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "ba9c2831", + "id": "8906cda5", "metadata": {}, "source": [ "# Introduction\n", diff --git a/_sources/data-science/working-with-data/data-preparation.ipynb b/_sources/data-science/working-with-data/data-preparation.ipynb index 93c92f4aea..3874fa5905 100644 --- a/_sources/data-science/working-with-data/data-preparation.ipynb +++ b/_sources/data-science/working-with-data/data-preparation.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "28242885", + "id": "e3ac9573", "metadata": {}, "source": [ "# Data preparation\n", @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "675d2c33", + "id": "0af79d7c", "metadata": {}, "outputs": [], "source": [ @@ -49,7 +49,7 @@ }, { "cell_type": "markdown", - "id": "524bb486", + "id": "c028e402", "metadata": {}, "source": [ "| |sepal length (cm)|sepal width (cm)|petal length (cm)|petal width (cm)|\n", @@ -66,7 +66,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "022715d3", + "id": "7d4e7bbe", "metadata": {}, "outputs": [ { @@ -93,7 +93,7 @@ }, { "cell_type": "markdown", - "id": "0b8d7530", + "id": "d51ba632", "metadata": {}, "source": [ "From this, we know that the *Iris* dataset has 150 entries in four columns with no null entries. All of the data is stored as 64-bit floating-point numbers.\n", @@ -104,7 +104,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "155892d7", + "id": "8c3c6ede", "metadata": {}, "outputs": [ { @@ -194,7 +194,7 @@ }, { "cell_type": "markdown", - "id": "c7cf1cb8", + "id": "efdd0455", "metadata": {}, "source": [ "**`DataFrame.tail()`**: Conversely, to check the last few rows of the `DataFrame`, we use the `tail()` method:" @@ -203,7 +203,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "e760784a", + "id": "358ec288", "metadata": {}, "outputs": [ { @@ -293,7 +293,7 @@ }, { "cell_type": "markdown", - "id": "00d0ce94", + "id": "bbeb2ee4", "metadata": {}, "source": [ "```{note}\n", @@ -320,7 +320,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "a948ec73", + "id": "741b94a3", "metadata": {}, "outputs": [ { @@ -347,7 +347,7 @@ }, { "cell_type": "markdown", - "id": "08d3c7b6", + "id": "957b43ed", "metadata": {}, "source": [ "Look closely at the output. Does any of it surprise you? While `0` is an arithmetic null, it's nevertheless a perfectly good integer and pandas treats it as such. `''` is a little more subtle. While we used it in Section 1 to represent an empty string value, it is nevertheless a string object and not a representation of null as far as pandas is concerned.\n", @@ -364,7 +364,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "e962ab10", + "id": "0418b25e", "metadata": {}, "outputs": [ { @@ -387,7 +387,7 @@ }, { "cell_type": "markdown", - "id": "dfd25987", + "id": "5cb73e79", "metadata": {}, "source": [ "Note that this should look like your output from `example3[example3.notnull()]`. The difference here is that, rather than just indexing on the masked values, `dropna` has removed those missing values from the `Series` `example1`.\n", @@ -398,7 +398,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "aaa95494", + "id": "91a00ad1", "metadata": {}, "outputs": [ { @@ -471,7 +471,7 @@ }, { "cell_type": "markdown", - "id": "481a9bbd", + "id": "e7872f35", "metadata": {}, "source": [ "| | 0 | 1 | 2 |\n", @@ -488,7 +488,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "cf008a5e", + "id": "71f22fe7", "metadata": {}, "outputs": [ { @@ -544,7 +544,7 @@ }, { "cell_type": "markdown", - "id": "87c9c388", + "id": "ca2e920f", "metadata": {}, "source": [ "If necessary, you can drop NA values from columns. Use `axis=1` to do so:" @@ -553,7 +553,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "034940ec", + "id": "54b5bdf0", "metadata": {}, "outputs": [ { @@ -615,7 +615,7 @@ }, { "cell_type": "markdown", - "id": "6d47f0a1", + "id": "7355e4df", "metadata": {}, "source": [ "Notice that this can drop a lot of data that you might want to keep, particularly in smaller datasets. What if you just want to drop rows or columns that contain several or even just all null values? You specify those setting in `dropna` with the `how` and `thresh` parameters.\n", @@ -626,7 +626,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "0c5c1d86", + "id": "6fbc2d70", "metadata": {}, "outputs": [ { @@ -701,7 +701,7 @@ }, { "cell_type": "markdown", - "id": "f6268258", + "id": "8c247c67", "metadata": {}, "source": [ "| |0 |1 |2 |3 |\n", @@ -716,7 +716,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "5e751cf5", + "id": "d96df112", "metadata": {}, "outputs": [ { @@ -774,7 +774,7 @@ }, { "cell_type": "markdown", - "id": "069faf0f", + "id": "89054d37", "metadata": {}, "source": [ "Here, the first and last rows have been dropped, because they contain only two non-null values.\n", @@ -785,7 +785,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "6907e5ae", + "id": "615cbcd0", "metadata": {}, "outputs": [ { @@ -811,7 +811,7 @@ }, { "cell_type": "markdown", - "id": "2779b2b9", + "id": "5a7a5b1e", "metadata": {}, "source": [ "You can fill all of the null entries with a single value, such as `0`:" @@ -820,7 +820,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "f1e88425", + "id": "cf3139fd", "metadata": {}, "outputs": [ { @@ -845,7 +845,7 @@ }, { "cell_type": "markdown", - "id": "88bbcf2d", + "id": "e9dcfed1", "metadata": {}, "source": [ "You can **forward-fill** null values, which is to use the last valid value to fill a null:" @@ -854,7 +854,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "190fb867", + "id": "238346d3", "metadata": {}, "outputs": [ { @@ -879,7 +879,7 @@ }, { "cell_type": "markdown", - "id": "7a62f264", + "id": "b24d032e", "metadata": {}, "source": [ "You can also **back-fill** to propagate the next valid value backward to fill a null:" @@ -888,7 +888,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "fe8e56c5", + "id": "9258cd7f", "metadata": {}, "outputs": [ { @@ -913,7 +913,7 @@ }, { "cell_type": "markdown", - "id": "71d43ab7", + "id": "1334d6cf", "metadata": {}, "source": [ "As you might guess, this works the same with `DataFrame`s, but you can also specify an `axis` along which to fill null values. taking the previously used `example2` again:" @@ -922,7 +922,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "ba254854", + "id": "ef932b46", "metadata": {}, "outputs": [ { @@ -996,7 +996,7 @@ }, { "cell_type": "markdown", - "id": "6defe512", + "id": "986ff7c5", "metadata": {}, "source": [ "Notice that when a previous value is not available for forward-filling, the null value remains.\n", @@ -1019,7 +1019,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "05f453ec", + "id": "3de7cef4", "metadata": {}, "outputs": [ { @@ -1099,7 +1099,7 @@ }, { "cell_type": "markdown", - "id": "aec67642", + "id": "b9660e26", "metadata": {}, "source": [ "| |letters|numbers|\n", @@ -1114,7 +1114,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "e0e6a9b5", + "id": "f7add412", "metadata": {}, "outputs": [ { @@ -1139,7 +1139,7 @@ }, { "cell_type": "markdown", - "id": "45945d21", + "id": "e10a3729", "metadata": {}, "source": [ "**Dropping duplicates: `drop_duplicates`:** simply returns a copy of the data for which all of the `duplicated` values are `False`:" @@ -1148,7 +1148,7 @@ { "cell_type": "code", "execution_count": 19, - "id": "6c403955", + "id": "580b66a3", "metadata": {}, "outputs": [ { @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "d6ad4c65", + "id": "f38d8f73", "metadata": {}, "source": [ "Both `duplicated` and `drop_duplicates` default to consider all columns but you can specify that they examine only a subset of columns in your `DataFrame`:" @@ -1223,7 +1223,7 @@ { "cell_type": "code", "execution_count": 20, - "id": "8923ad43", + "id": "7d2f10dc", "metadata": {}, "outputs": [ { @@ -1283,7 +1283,7 @@ }, { "cell_type": "markdown", - "id": "366b9b71", + "id": "6a5fc994", "metadata": {}, "source": [ "```{note}\n", diff --git a/_sources/data-science/working-with-data/numpy.ipynb b/_sources/data-science/working-with-data/numpy.ipynb index 5799978227..53e4e360af 100644 --- a/_sources/data-science/working-with-data/numpy.ipynb +++ b/_sources/data-science/working-with-data/numpy.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "3d3b079c", + "id": "f744707e", "metadata": {}, "source": [ "# NumPy\n", @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "75a50196", + "id": "9624ad94", "metadata": {}, "outputs": [ { @@ -40,7 +40,7 @@ }, { "cell_type": "markdown", - "id": "446f6711", + "id": "aba40fa1", "metadata": {}, "source": [ "### Create a basic array\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "dd1dd2fc", + "id": "5e127b6a", "metadata": {}, "outputs": [ { @@ -75,7 +75,7 @@ }, { "cell_type": "markdown", - "id": "da548e73", + "id": "3889831b", "metadata": {}, "source": [ "Besides creating an array from a sequence of elements, you can easily create an array filled with `0`’s:" @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "315a31cf", + "id": "cce62836", "metadata": {}, "outputs": [ { @@ -104,7 +104,7 @@ }, { "cell_type": "markdown", - "id": "4976029a", + "id": "2dd35045", "metadata": {}, "source": [ "Or an array filled with 1’s:" @@ -113,7 +113,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "518b09c4", + "id": "df8b0089", "metadata": {}, "outputs": [ { @@ -133,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "5f63aafa", + "id": "feb5ef2f", "metadata": {}, "source": [ "Or even an empty array! The function `empty` creates an array whose initial content is random and depends on the state of the memory. The reason to use `empty` over `zeros` (or something similar) is speed - just make sure to fill every element afterwards!" @@ -142,7 +142,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "90292437", + "id": "08f3d08f", "metadata": {}, "outputs": [ { @@ -162,7 +162,7 @@ }, { "cell_type": "markdown", - "id": "41f9748d", + "id": "b56ba5b8", "metadata": {}, "source": [ "You can create an array with a range of elements:" @@ -171,7 +171,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "916fc7b7", + "id": "13d40fbf", "metadata": {}, "outputs": [ { @@ -191,7 +191,7 @@ }, { "cell_type": "markdown", - "id": "adb99ebb", + "id": "7d3ed58e", "metadata": {}, "source": [ "And even an array that contains a range of evenly spaced intervals. To do this, you will specify the **first number**, **last number**, and the **step size**." @@ -200,7 +200,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "2b0472b3", + "id": "d9cc6a09", "metadata": {}, "outputs": [ { @@ -220,7 +220,7 @@ }, { "cell_type": "markdown", - "id": "0ac0f28f", + "id": "7ce9fb6b", "metadata": {}, "source": [ "You can also use `np.linspace()` to create an array with values that are spaced linearly in a specified interval:" @@ -229,7 +229,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "663baa64", + "id": "5f812219", "metadata": {}, "outputs": [ { @@ -249,7 +249,7 @@ }, { "cell_type": "markdown", - "id": "afb34172", + "id": "d5df427d", "metadata": {}, "source": [ "While the default data type is floating point (`np.float64`), you can explicitly specify which data type you want using the `dtype` keyword." @@ -258,7 +258,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "d8752432", + "id": "8c9e398e", "metadata": {}, "outputs": [ { @@ -278,7 +278,7 @@ }, { "cell_type": "markdown", - "id": "6de24821", + "id": "61b58d67", "metadata": {}, "source": [ "### Adding, removing, and sorting elements\n", @@ -291,7 +291,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "1cce6666", + "id": "24eabd9c", "metadata": {}, "outputs": [], "source": [ @@ -300,7 +300,7 @@ }, { "cell_type": "markdown", - "id": "52a1757b", + "id": "b12c81b0", "metadata": {}, "source": [ "You can quickly sort the numbers in ascending order with:" @@ -309,7 +309,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "e97b6380", + "id": "e594b5ff", "metadata": {}, "outputs": [ { @@ -329,7 +329,7 @@ }, { "cell_type": "markdown", - "id": "49bb3a38", + "id": "ac90870e", "metadata": {}, "source": [ "In addition to sort, which returns a sorted copy of an array, you can use:\n", @@ -345,7 +345,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "b70f5fc9", + "id": "d14ecc7c", "metadata": {}, "outputs": [], "source": [ @@ -355,7 +355,7 @@ }, { "cell_type": "markdown", - "id": "f0a48854", + "id": "6c4e120b", "metadata": {}, "source": [ "You can concatenate them with `np.concatenate()`." @@ -364,7 +364,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "0637e1c0", + "id": "e1c0fbcd", "metadata": {}, "outputs": [ { @@ -384,7 +384,7 @@ }, { "cell_type": "markdown", - "id": "3ba22757", + "id": "9ffa34a4", "metadata": {}, "source": [ "Or, if you start with these arrays:" @@ -393,7 +393,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "259ef4e7", + "id": "04a3d94b", "metadata": {}, "outputs": [], "source": [ @@ -403,7 +403,7 @@ }, { "cell_type": "markdown", - "id": "f9e45a89", + "id": "71dca13e", "metadata": {}, "source": [ "You can concatenate them with:" @@ -412,7 +412,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "8f8fad0f", + "id": "1a3d8cd2", "metadata": {}, "outputs": [ { @@ -434,7 +434,7 @@ }, { "cell_type": "markdown", - "id": "c7b0a603", + "id": "985e3f8a", "metadata": {}, "source": [ "In order to remove elements from an array, it’s simple to use indexing to select the elements that you want to keep.\n", @@ -450,7 +450,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "bda632e3", + "id": "7d88b21b", "metadata": {}, "outputs": [ { @@ -475,7 +475,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "5df40b1e", + "id": "f4adfd86", "metadata": {}, "outputs": [ { @@ -495,7 +495,7 @@ }, { "cell_type": "markdown", - "id": "0a944db5", + "id": "4c4018a0", "metadata": {}, "source": [ "- ndarray.shape\n", @@ -505,7 +505,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "e3bc05d5", + "id": "e0373f36", "metadata": {}, "outputs": [ { @@ -525,7 +525,7 @@ }, { "cell_type": "markdown", - "id": "2fa1b8d3", + "id": "11780694", "metadata": {}, "source": [ "- ndarray.size\n", @@ -535,7 +535,7 @@ { "cell_type": "code", "execution_count": 19, - "id": "d023fd02", + "id": "fbddbbda", "metadata": {}, "outputs": [ { @@ -555,7 +555,7 @@ }, { "cell_type": "markdown", - "id": "3fbc6785", + "id": "c9bd93d2", "metadata": {}, "source": [ "- ndarray.dtype\n", @@ -565,7 +565,7 @@ { "cell_type": "code", "execution_count": 20, - "id": "4d844b56", + "id": "40951789", "metadata": {}, "outputs": [ { @@ -586,7 +586,7 @@ { "cell_type": "code", "execution_count": 21, - "id": "11cdd0e5", + "id": "3bfb0203", "metadata": {}, "outputs": [ { @@ -606,7 +606,7 @@ }, { "cell_type": "markdown", - "id": "3cc1f9c3", + "id": "dac963fc", "metadata": {}, "source": [ "- ndarray.itemsize\n", @@ -616,7 +616,7 @@ { "cell_type": "code", "execution_count": 22, - "id": "1edfc6bf", + "id": "289e9acf", "metadata": {}, "outputs": [ { @@ -636,7 +636,7 @@ }, { "cell_type": "markdown", - "id": "946cade7", + "id": "0e9d0c5b", "metadata": {}, "source": [ "- ndarray.data\n", @@ -646,13 +646,13 @@ { "cell_type": "code", "execution_count": 23, - "id": "d8a8f371", + "id": "c559f21b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 23, @@ -666,7 +666,7 @@ }, { "cell_type": "markdown", - "id": "2e2d3e53", + "id": "4e6a4e6b", "metadata": {}, "source": [ "### Reshape an array\n", @@ -679,7 +679,7 @@ { "cell_type": "code", "execution_count": 24, - "id": "eadb5ad7", + "id": "a79f7abd", "metadata": {}, "outputs": [ { @@ -700,7 +700,7 @@ }, { "cell_type": "markdown", - "id": "672b53bd", + "id": "9be34b2e", "metadata": {}, "source": [ "You can use `reshape()` to reshape your array. For example, you can reshape this array to an array with three rows and two columns:" @@ -709,7 +709,7 @@ { "cell_type": "code", "execution_count": 25, - "id": "55b3478a", + "id": "6a491d6d", "metadata": {}, "outputs": [ { @@ -732,7 +732,7 @@ }, { "cell_type": "markdown", - "id": "8da21c4b", + "id": "e4f5e2e2", "metadata": {}, "source": [ "With `np.reshape`, you can specify a few optional parameters:" @@ -741,7 +741,7 @@ { "cell_type": "code", "execution_count": 26, - "id": "6af8ad33", + "id": "94db5d5c", "metadata": {}, "outputs": [ { @@ -761,7 +761,7 @@ }, { "cell_type": "markdown", - "id": "bb09fdc2", + "id": "068d9e4d", "metadata": {}, "source": [ "`a` is the array to be reshaped.\n", @@ -782,7 +782,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "c92522fc", + "id": "89346ac0", "metadata": {}, "outputs": [ { @@ -803,7 +803,7 @@ }, { "cell_type": "markdown", - "id": "cbb37f33", + "id": "2b48f305", "metadata": {}, "source": [ "You can use `np.newaxis` to add a new axis:" @@ -812,7 +812,7 @@ { "cell_type": "code", "execution_count": 28, - "id": "71ae99a1", + "id": "3b47732a", "metadata": {}, "outputs": [ { @@ -833,7 +833,7 @@ }, { "cell_type": "markdown", - "id": "cc7165b2", + "id": "b37f75a2", "metadata": {}, "source": [ "You can explicitly convert a 1D array with either a row vector or a column vector using `np.newaxis`. For example, you can convert a 1D array to a row vector by inserting an axis along the first dimension:" @@ -842,7 +842,7 @@ { "cell_type": "code", "execution_count": 29, - "id": "c1ec6619", + "id": "173bee33", "metadata": {}, "outputs": [ { @@ -863,7 +863,7 @@ }, { "cell_type": "markdown", - "id": "c4c03fe3", + "id": "df40b97b", "metadata": {}, "source": [ "Or, for a column vector, you can insert an axis along the second dimension:" @@ -872,7 +872,7 @@ { "cell_type": "code", "execution_count": 30, - "id": "c7666a0d", + "id": "3a02883f", "metadata": {}, "outputs": [ { @@ -893,7 +893,7 @@ }, { "cell_type": "markdown", - "id": "d9d71b2c", + "id": "80847f41", "metadata": {}, "source": [ "You can also expand an array by inserting a new axis at a specified position with `np.expand_dims`.\n", @@ -904,7 +904,7 @@ { "cell_type": "code", "execution_count": 31, - "id": "61bd7902", + "id": "515e0678", "metadata": {}, "outputs": [ { @@ -925,7 +925,7 @@ }, { "cell_type": "markdown", - "id": "70e6e93b", + "id": "e74768a7", "metadata": {}, "source": [ "You can use np.expand_dims to add an axis at index position 1 with:" @@ -934,7 +934,7 @@ { "cell_type": "code", "execution_count": 32, - "id": "ca2af908", + "id": "7e8062a7", "metadata": {}, "outputs": [ { @@ -955,7 +955,7 @@ }, { "cell_type": "markdown", - "id": "c7cab0b9", + "id": "039a2e88", "metadata": {}, "source": [ "You can add an axis at index position 0 with:" @@ -964,7 +964,7 @@ { "cell_type": "code", "execution_count": 33, - "id": "2081dea0", + "id": "afb9bc9e", "metadata": {}, "outputs": [ { @@ -985,7 +985,7 @@ }, { "cell_type": "markdown", - "id": "20257e2c", + "id": "7f1f0caa", "metadata": {}, "source": [ "### Indexing and slicing\n", @@ -996,7 +996,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "97922ab9", + "id": "7af3484c", "metadata": {}, "outputs": [], "source": [ @@ -1006,7 +1006,7 @@ { "cell_type": "code", "execution_count": 35, - "id": "7b22ad63", + "id": "0e84037d", "metadata": {}, "outputs": [ { @@ -1027,7 +1027,7 @@ { "cell_type": "code", "execution_count": 36, - "id": "b4d918ba", + "id": "c85fbf0b", "metadata": {}, "outputs": [ { @@ -1048,7 +1048,7 @@ { "cell_type": "code", "execution_count": 37, - "id": "7bc6d2d5", + "id": "97281e02", "metadata": {}, "outputs": [ { @@ -1069,7 +1069,7 @@ { "cell_type": "code", "execution_count": 38, - "id": "bcbcf343", + "id": "a00a029b", "metadata": {}, "outputs": [ { @@ -1089,7 +1089,7 @@ }, { "cell_type": "markdown", - "id": "3bed8ae9", + "id": "a621f376", "metadata": {}, "source": [ "You may want to take a section of your array or specific array elements to use in further analysis or additional operations. To do that, you’ll need to subset, slice, and/or index your arrays.\n", @@ -1102,7 +1102,7 @@ { "cell_type": "code", "execution_count": 39, - "id": "8ad7e6a0", + "id": "3e51e327", "metadata": {}, "outputs": [], "source": [ @@ -1111,7 +1111,7 @@ }, { "cell_type": "markdown", - "id": "2a1b3a5a", + "id": "fd94eaf4", "metadata": {}, "source": [ "You can easily print all of the values in the array that are less than 5." @@ -1120,7 +1120,7 @@ { "cell_type": "code", "execution_count": 40, - "id": "8ad5b69b", + "id": "eb33ec58", "metadata": {}, "outputs": [ { @@ -1140,7 +1140,7 @@ }, { "cell_type": "markdown", - "id": "4dba0e31", + "id": "42927a36", "metadata": {}, "source": [ "You can also select, for example, numbers that are equal to or greater than 5, and use that condition to index an array." @@ -1149,7 +1149,7 @@ { "cell_type": "code", "execution_count": 41, - "id": "dedd66d7", + "id": "eacb6f1b", "metadata": {}, "outputs": [ { @@ -1170,7 +1170,7 @@ }, { "cell_type": "markdown", - "id": "d888b011", + "id": "2d860663", "metadata": {}, "source": [ "You can select elements that are divisible by 2:" @@ -1179,7 +1179,7 @@ { "cell_type": "code", "execution_count": 42, - "id": "f03a4764", + "id": "37f9dc37", "metadata": {}, "outputs": [ { @@ -1200,7 +1200,7 @@ }, { "cell_type": "markdown", - "id": "32a59640", + "id": "a2a9e2f4", "metadata": {}, "source": [ "Or you can select elements that satisfy two conditions using the `&` and `|` operators:" @@ -1209,7 +1209,7 @@ { "cell_type": "code", "execution_count": 43, - "id": "84ec30d0", + "id": "422cbdba", "metadata": {}, "outputs": [ { @@ -1230,7 +1230,7 @@ }, { "cell_type": "markdown", - "id": "cc14b681", + "id": "b4595ceb", "metadata": {}, "source": [ "You can also make use of the logical operators `&` and `|` in order to return boolean values that specify whether or not the values in an array fulfill a certain condition. This can be useful with arrays that contain names or other categorical values." @@ -1239,7 +1239,7 @@ { "cell_type": "code", "execution_count": 44, - "id": "78742be0", + "id": "64db996c", "metadata": {}, "outputs": [ { @@ -1262,7 +1262,7 @@ }, { "cell_type": "markdown", - "id": "b02ae0ab", + "id": "edc854b3", "metadata": {}, "source": [ "You can also use `np.nonzero()` to select elements or indices from an array.\n", @@ -1273,7 +1273,7 @@ { "cell_type": "code", "execution_count": 45, - "id": "e9a2d6c6", + "id": "404f869e", "metadata": {}, "outputs": [], "source": [ @@ -1282,7 +1282,7 @@ }, { "cell_type": "markdown", - "id": "d0cac8fa", + "id": "1ee19087", "metadata": {}, "source": [ "You can use `np.nonzero()` to print the indices of elements that are, for example, less than 5:" @@ -1291,7 +1291,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "2d102ecd", + "id": "12cfb6f4", "metadata": {}, "outputs": [ { @@ -1312,7 +1312,7 @@ }, { "cell_type": "markdown", - "id": "2b857b9f", + "id": "760bf15b", "metadata": {}, "source": [ "In this example, a tuple of arrays was returned: one for each dimension. The first array represents the row indices where these values are found, and the second array represents the column indices where the values are found.\n", @@ -1323,7 +1323,7 @@ { "cell_type": "code", "execution_count": 47, - "id": "2622d41e", + "id": "f4f80296", "metadata": {}, "outputs": [ { @@ -1345,7 +1345,7 @@ }, { "cell_type": "markdown", - "id": "bf1f3a9d", + "id": "6680e278", "metadata": {}, "source": [ "You can also use `np.nonzero()` to print the elements in an array that are less than 5 with:" @@ -1354,7 +1354,7 @@ { "cell_type": "code", "execution_count": 48, - "id": "6651bba8", + "id": "65b12f65", "metadata": {}, "outputs": [ { @@ -1374,7 +1374,7 @@ }, { "cell_type": "markdown", - "id": "08fe067e", + "id": "8372e4ac", "metadata": {}, "source": [ "If the element you’re looking for doesn’t exist in the array, then the returned array of indices will be empty. For example:" @@ -1383,7 +1383,7 @@ { "cell_type": "code", "execution_count": 49, - "id": "44913c38", + "id": "19c3d76a", "metadata": {}, "outputs": [ { @@ -1404,7 +1404,7 @@ }, { "cell_type": "markdown", - "id": "18055b06", + "id": "0f62ffad", "metadata": {}, "source": [ "### Create an array from existing data\n", @@ -1417,7 +1417,7 @@ { "cell_type": "code", "execution_count": 50, - "id": "7eac0c7d", + "id": "001023f9", "metadata": {}, "outputs": [], "source": [ @@ -1426,7 +1426,7 @@ }, { "cell_type": "markdown", - "id": "fb0cedf6", + "id": "01d43320", "metadata": {}, "source": [ "You can create a new array from a section of your array any time by specifying where you want to slice your array." @@ -1435,7 +1435,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "0cfddfef", + "id": "fb16cbc9", "metadata": {}, "outputs": [ { @@ -1456,7 +1456,7 @@ }, { "cell_type": "markdown", - "id": "732a4cb0", + "id": "2b48004b", "metadata": {}, "source": [ "Here, you grabbed a section of your array from index position 3 through index position 8.\n", @@ -1467,7 +1467,7 @@ { "cell_type": "code", "execution_count": 52, - "id": "05f78c03", + "id": "e43a9687", "metadata": {}, "outputs": [], "source": [ @@ -1479,7 +1479,7 @@ }, { "cell_type": "markdown", - "id": "8cb3b313", + "id": "dc40054e", "metadata": {}, "source": [ "You can stack them vertically with `vstack`:" @@ -1488,7 +1488,7 @@ { "cell_type": "code", "execution_count": 53, - "id": "2aa52202", + "id": "a7848826", "metadata": {}, "outputs": [ { @@ -1511,7 +1511,7 @@ }, { "cell_type": "markdown", - "id": "61608d45", + "id": "dc243852", "metadata": {}, "source": [ "Or stack them horizontally with hstack:" @@ -1520,7 +1520,7 @@ { "cell_type": "code", "execution_count": 54, - "id": "e327e842", + "id": "a7244eaf", "metadata": {}, "outputs": [ { @@ -1541,7 +1541,7 @@ }, { "cell_type": "markdown", - "id": "d1475514", + "id": "03e9a01f", "metadata": {}, "source": [ "You can split an array into several smaller arrays using `hsplit`. You can specify either the number of equally shaped arrays to return or the columns after which the division should occur.\n", @@ -1552,7 +1552,7 @@ { "cell_type": "code", "execution_count": 55, - "id": "bef328af", + "id": "6f33525f", "metadata": {}, "outputs": [ { @@ -1574,7 +1574,7 @@ }, { "cell_type": "markdown", - "id": "a37cede3", + "id": "ef36427e", "metadata": {}, "source": [ "If you wanted to split this array into three equally shaped arrays, you would run:" @@ -1583,7 +1583,7 @@ { "cell_type": "code", "execution_count": 56, - "id": "078d1198", + "id": "873ff953", "metadata": {}, "outputs": [ { @@ -1608,7 +1608,7 @@ }, { "cell_type": "markdown", - "id": "e698a027", + "id": "8af6b59e", "metadata": {}, "source": [ "If you wanted to split your array after the third and fourth column, you’d run:" @@ -1617,7 +1617,7 @@ { "cell_type": "code", "execution_count": 57, - "id": "28fc9973", + "id": "b94d5683", "metadata": {}, "outputs": [ { @@ -1642,7 +1642,7 @@ }, { "cell_type": "markdown", - "id": "7002ab93", + "id": "dc4706a8", "metadata": {}, "source": [ "You can use the `view` method to create a new array object that looks at the same data as the original array (a shallow copy).\n", @@ -1655,7 +1655,7 @@ { "cell_type": "code", "execution_count": 58, - "id": "0ac782d7", + "id": "8013fb25", "metadata": {}, "outputs": [], "source": [ @@ -1664,7 +1664,7 @@ }, { "cell_type": "markdown", - "id": "4b67f48f", + "id": "617e3bc3", "metadata": {}, "source": [ "Now we create an array `b1` by slicing `a` and modify the first element of `b1`. This will modify the corresponding element in `a` as well!" @@ -1673,7 +1673,7 @@ { "cell_type": "code", "execution_count": 59, - "id": "bc265d53", + "id": "ea916464", "metadata": {}, "outputs": [ { @@ -1695,7 +1695,7 @@ { "cell_type": "code", "execution_count": 60, - "id": "c13e586b", + "id": "3d9a3b90", "metadata": {}, "outputs": [ { @@ -1717,7 +1717,7 @@ { "cell_type": "code", "execution_count": 61, - "id": "fdaad131", + "id": "0c59e737", "metadata": {}, "outputs": [ { @@ -1739,7 +1739,7 @@ }, { "cell_type": "markdown", - "id": "cbc443dd", + "id": "04c5b53a", "metadata": {}, "source": [ "Using the `copy` method will make a complete copy of the array and its data (a deep copy). To use this on your array, you could run:" @@ -1748,7 +1748,7 @@ { "cell_type": "code", "execution_count": 62, - "id": "bbf7cf80", + "id": "868a0984", "metadata": {}, "outputs": [], "source": [ @@ -1757,7 +1757,7 @@ }, { "cell_type": "markdown", - "id": "f7ef8264", + "id": "83ff7af1", "metadata": {}, "source": [ "## Array operations\n", @@ -1770,7 +1770,7 @@ { "cell_type": "code", "execution_count": 63, - "id": "2f387783", + "id": "cccf7ec9", "metadata": {}, "outputs": [], "source": [ @@ -1780,7 +1780,7 @@ }, { "cell_type": "markdown", - "id": "8a19563c", + "id": "8d81c485", "metadata": {}, "source": [ "You can add the arrays together with the plus sign." @@ -1789,7 +1789,7 @@ { "cell_type": "code", "execution_count": 64, - "id": "99a33c6a", + "id": "f9e3e75e", "metadata": {}, "outputs": [ { @@ -1809,7 +1809,7 @@ }, { "cell_type": "markdown", - "id": "99fb1d3a", + "id": "d90b7ed5", "metadata": {}, "source": [ "You can, of course, do more than just addition!" @@ -1818,7 +1818,7 @@ { "cell_type": "code", "execution_count": 65, - "id": "920280f6", + "id": "c8fe9fe1", "metadata": {}, "outputs": [ { @@ -1839,7 +1839,7 @@ }, { "cell_type": "markdown", - "id": "795e68e3", + "id": "2c9b2941", "metadata": {}, "source": [ "Basic operations are simple with NumPy. If you want to find the sum of the elements in an array, you’d use `sum()`. This works for 1D arrays, 2D arrays, and arrays in higher dimensions." @@ -1848,7 +1848,7 @@ { "cell_type": "code", "execution_count": 66, - "id": "f632002a", + "id": "4fec575e", "metadata": {}, "outputs": [ { @@ -1869,7 +1869,7 @@ }, { "cell_type": "markdown", - "id": "f448c17e", + "id": "1628e025", "metadata": {}, "source": [ "To add the rows or the columns in a 2D array, you would specify the axis.\n", @@ -1880,7 +1880,7 @@ { "cell_type": "code", "execution_count": 67, - "id": "bec52338", + "id": "2ad9f245", "metadata": {}, "outputs": [], "source": [ @@ -1889,7 +1889,7 @@ }, { "cell_type": "markdown", - "id": "752a78a3", + "id": "e1caa973", "metadata": {}, "source": [ "You can sum over the axis of rows with:" @@ -1898,7 +1898,7 @@ { "cell_type": "code", "execution_count": 68, - "id": "fd521100", + "id": "3532999e", "metadata": {}, "outputs": [ { @@ -1918,7 +1918,7 @@ }, { "cell_type": "markdown", - "id": "b6f960b3", + "id": "7740c46e", "metadata": {}, "source": [ "You can sum over the axis of columns with:" @@ -1927,7 +1927,7 @@ { "cell_type": "code", "execution_count": 69, - "id": "bbde25d6", + "id": "5eadddd9", "metadata": {}, "outputs": [ { @@ -1947,7 +1947,7 @@ }, { "cell_type": "markdown", - "id": "3a9db172", + "id": "91fad533", "metadata": {}, "source": [ "### Universal functions(ufunc)\n", @@ -2038,7 +2038,7 @@ { "cell_type": "code", "execution_count": 70, - "id": "58b83d9c", + "id": "9264be94", "metadata": {}, "outputs": [ { @@ -2060,7 +2060,7 @@ }, { "cell_type": "markdown", - "id": "a2f1323b", + "id": "9359eba9", "metadata": {}, "source": [ "NumPy’s broadcasting rule relaxes this constraint when the arrays’ shapes meet certain constraints. The simplest broadcasting example occurs when an array and a scalar value are combined in an operation:" @@ -2069,7 +2069,7 @@ { "cell_type": "code", "execution_count": 71, - "id": "9016d2c1", + "id": "0ed61cc4", "metadata": {}, "outputs": [ { @@ -2091,7 +2091,7 @@ }, { "cell_type": "markdown", - "id": "4246b10f", + "id": "32709b16", "metadata": {}, "source": [ "The result is equivalent to the previous example where `b` was an array. NumPy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible.\n", @@ -2133,7 +2133,7 @@ { "cell_type": "code", "execution_count": 72, - "id": "dec95f4c", + "id": "b12b29bf", "metadata": {}, "outputs": [ { @@ -2154,7 +2154,7 @@ { "cell_type": "code", "execution_count": 73, - "id": "6b1fb4ec", + "id": "65d7fccc", "metadata": {}, "outputs": [ { @@ -2175,7 +2175,7 @@ { "cell_type": "code", "execution_count": 74, - "id": "6e213961", + "id": "98253e19", "metadata": {}, "outputs": [ { @@ -2195,7 +2195,7 @@ }, { "cell_type": "markdown", - "id": "0aee0e72", + "id": "db671804", "metadata": {}, "source": [ "Let’s start with this array, called “a”." @@ -2204,7 +2204,7 @@ { "cell_type": "code", "execution_count": 75, - "id": "2af8d5d3", + "id": "03282c60", "metadata": {}, "outputs": [], "source": [ @@ -2215,7 +2215,7 @@ }, { "cell_type": "markdown", - "id": "f46761cb", + "id": "14df085e", "metadata": {}, "source": [ "It’s very common to want to aggregate along a row or column. By default, every NumPy aggregation function will return the aggregate of the entire array. To find the sum or the minimum of the elements in your array, run:" @@ -2224,7 +2224,7 @@ { "cell_type": "code", "execution_count": 76, - "id": "6217e395", + "id": "02410542", "metadata": {}, "outputs": [ { @@ -2244,7 +2244,7 @@ }, { "cell_type": "markdown", - "id": "df1e8313", + "id": "6d9ff72b", "metadata": {}, "source": [ "Or:" @@ -2253,7 +2253,7 @@ { "cell_type": "code", "execution_count": 77, - "id": "6fbe6fcd", + "id": "74a4bff6", "metadata": {}, "outputs": [ { @@ -2273,7 +2273,7 @@ }, { "cell_type": "markdown", - "id": "28fab9c5", + "id": "f3579292", "metadata": {}, "source": [ "You can specify on which axis you want the aggregation function to be computed. For example, you can find the minimum value within each column by specifying `axis=0`." @@ -2282,7 +2282,7 @@ { "cell_type": "code", "execution_count": 78, - "id": "3aab74dc", + "id": "b717f94e", "metadata": {}, "outputs": [ { @@ -2302,7 +2302,7 @@ }, { "cell_type": "markdown", - "id": "fed8e4f2", + "id": "48e89abc", "metadata": {}, "source": [ "The four values listed above correspond to the number of columns in your array. With a four-column array, you will get four values as your result.\n", @@ -2325,7 +2325,7 @@ { "cell_type": "code", "execution_count": 79, - "id": "dee50bf3", + "id": "71d061be", "metadata": {}, "outputs": [], "source": [ @@ -2335,7 +2335,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "09057d6c", + "id": "bead868c", "metadata": {}, "outputs": [ { @@ -2356,7 +2356,7 @@ { "cell_type": "code", "execution_count": 81, - "id": "3f81e5a7", + "id": "2cba2c66", "metadata": {}, "outputs": [ { @@ -2376,7 +2376,7 @@ }, { "cell_type": "markdown", - "id": "de477f1c", + "id": "a130d342", "metadata": {}, "source": [ "It is not necessary to separate each dimension’s index into its own set of square brackets." @@ -2385,7 +2385,7 @@ { "cell_type": "code", "execution_count": 82, - "id": "197e6935", + "id": "cf7fd924", "metadata": {}, "outputs": [], "source": [ @@ -2395,7 +2395,7 @@ { "cell_type": "code", "execution_count": 83, - "id": "8b2163d6", + "id": "8dd6b459", "metadata": {}, "outputs": [ { @@ -2416,7 +2416,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "94d0a1f3", + "id": "385451e4", "metadata": {}, "outputs": [ { @@ -2436,7 +2436,7 @@ }, { "cell_type": "markdown", - "id": "6407db9b", + "id": "017ffd97", "metadata": {}, "source": [ "Note that If one indexes a multidimensional array with fewer indices than dimensions, one gets a subdimensional array. For example:" @@ -2445,7 +2445,7 @@ { "cell_type": "code", "execution_count": 85, - "id": "4fbac862", + "id": "2d0ab08c", "metadata": {}, "outputs": [ { @@ -2465,7 +2465,7 @@ }, { "cell_type": "markdown", - "id": "360bb29c", + "id": "dc5ad96a", "metadata": {}, "source": [ "That is, each index specified selects the array corresponding to the rest of the dimensions selected. In the above example, choosing 0 means that the remaining dimension of length 5 is being left unspecified, and that what is returned is an array of that dimensionality and size. It must be noted that the returned array is a view, i.e., it is not a copy of the original, but points to the same values in memory as does the original array. In this case, the 1-D array at the first position (0) is returned. So using a single index on the returned array, results in a single element being returned. That is:" @@ -2474,7 +2474,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "8dd9b032", + "id": "e9773a98", "metadata": {}, "outputs": [ { @@ -2494,7 +2494,7 @@ }, { "cell_type": "markdown", - "id": "c8b7a9fe", + "id": "af6801d1", "metadata": {}, "source": [ "So note that `x[0, 2] == x[0][2]` though the second case is more inefficient as a new temporary array is created after the first index that is subsequently indexed by 2.\n", @@ -2521,7 +2521,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "d1fec5bb", + "id": "2f149759", "metadata": {}, "outputs": [ { @@ -2542,7 +2542,7 @@ }, { "cell_type": "markdown", - "id": "41f98b26", + "id": "35667987", "metadata": {}, "source": [ "- Negative *i* and *j* are interpreted as *n + i* and *n + j* where *n* is the number of elements in the corresponding dimension. Negative *k* makes stepping go towards smaller indices. From the above example:" @@ -2551,7 +2551,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "91e37282", + "id": "44db88e7", "metadata": {}, "outputs": [ { @@ -2572,7 +2572,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "94d74b92", + "id": "11fad372", "metadata": {}, "outputs": [ { @@ -2592,7 +2592,7 @@ }, { "cell_type": "markdown", - "id": "9dfc010c", + "id": "f0dd1c77", "metadata": {}, "source": [ "- Assume *n* is the number of elements in the dimension being sliced. Then, if *i* is not given it defaults to 0 for *k > 0* and *n - 1* for *k < 0*. If *j* is not given it defaults to *n* for *k > 0* and *-n-1* for *k < 0*. If *k* is not given it defaults to 1. Note that `::` is the same as : and means select all indices along this axis. From the above example:" @@ -2601,7 +2601,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "aa79ad84", + "id": "b3785714", "metadata": {}, "outputs": [ { @@ -2621,7 +2621,7 @@ }, { "cell_type": "markdown", - "id": "c03a6456", + "id": "84b54d71", "metadata": {}, "source": [ "- If the number of objects in the selection tuple is less than N, then `:` is assumed for any subsequent dimensions. For example:" @@ -2630,7 +2630,7 @@ { "cell_type": "code", "execution_count": 91, - "id": "b174b391", + "id": "35b6e687", "metadata": {}, "outputs": [ { @@ -2652,7 +2652,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "5c3e8101", + "id": "65e42df0", "metadata": {}, "outputs": [ { @@ -2674,7 +2674,7 @@ }, { "cell_type": "markdown", - "id": "6a30bbae", + "id": "6020e8bb", "metadata": {}, "source": [ "- An integer, *i*, returns the same values as `i:i+1` **except** the dimensionality of the returned object is reduced by 1. In particular, a selection tuple with the *p*-th element an integer (and all other entries *:*) returns the corresponding sub-array with dimension *N - 1*. If *N = 1* then the returned object is an array scalar.\n", @@ -2699,7 +2699,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "9b3899df", + "id": "b8f5e39a", "metadata": {}, "outputs": [ { @@ -2720,7 +2720,7 @@ }, { "cell_type": "markdown", - "id": "8aa426ed", + "id": "9b13174d", "metadata": {}, "source": [ "This is equivalent to:" @@ -2729,7 +2729,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "7eff63ee", + "id": "e48cbad4", "metadata": {}, "outputs": [ { @@ -2750,7 +2750,7 @@ }, { "cell_type": "markdown", - "id": "2fad0d36", + "id": "efe6e51b", "metadata": {}, "source": [ "Each `newaxis` object in the selection tuple serves to expand the dimensions of the resulting selection by one unit-length dimension. The added dimension is the position of the `newaxis` object in the selection tuple. `newaxis` is an alias for `None`, and `None` can be used in place of this with the same result. From the above example:" @@ -2759,7 +2759,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "4fe0c596", + "id": "8f790053", "metadata": {}, "outputs": [ { @@ -2780,7 +2780,7 @@ { "cell_type": "code", "execution_count": 96, - "id": "97f8e67f", + "id": "aaa97314", "metadata": {}, "outputs": [ { @@ -2800,7 +2800,7 @@ }, { "cell_type": "markdown", - "id": "e8fe7737", + "id": "288877fe", "metadata": {}, "source": [ "This can be handy to combine two arrays in a way that otherwise would require explicit reshaping operations. For example:" @@ -2809,7 +2809,7 @@ { "cell_type": "code", "execution_count": 97, - "id": "ba9eac9d", + "id": "335ee5e0", "metadata": {}, "outputs": [ { @@ -2834,7 +2834,7 @@ }, { "cell_type": "markdown", - "id": "f2b21b46", + "id": "f09efbf8", "metadata": {}, "source": [ "### Advanced indexing\n", @@ -2857,7 +2857,7 @@ { "cell_type": "code", "execution_count": 98, - "id": "3b9c8b17", + "id": "8eada8fb", "metadata": {}, "outputs": [], "source": [ @@ -2867,7 +2867,7 @@ { "cell_type": "code", "execution_count": 99, - "id": "5bd235d6", + "id": "398eded1", "metadata": {}, "outputs": [ { @@ -2888,7 +2888,7 @@ { "cell_type": "code", "execution_count": 100, - "id": "301962e8", + "id": "5e2f761b", "metadata": {}, "outputs": [ { @@ -2909,7 +2909,7 @@ { "cell_type": "code", "execution_count": 101, - "id": "c46c5f35", + "id": "ed86aab1", "metadata": {}, "outputs": [ { @@ -2929,7 +2929,7 @@ }, { "cell_type": "markdown", - "id": "3b3e1cad", + "id": "0f8aefb6", "metadata": {}, "source": [ "If the index values are out of bounds then an `IndexError` is thrown:" @@ -2938,7 +2938,7 @@ { "cell_type": "code", "execution_count": 102, - "id": "7dba672a", + "id": "fe15e74f", "metadata": {}, "outputs": [], "source": [ @@ -2948,7 +2948,7 @@ { "cell_type": "code", "execution_count": 103, - "id": "b2efa922", + "id": "43a5ddce", "metadata": {}, "outputs": [ { @@ -2969,7 +2969,7 @@ }, { "cell_type": "markdown", - "id": "842af2c4", + "id": "b457fb61", "metadata": {}, "source": [ "```py\n", @@ -2999,7 +2999,7 @@ { "cell_type": "code", "execution_count": 104, - "id": "dd9b74ce", + "id": "db069398", "metadata": {}, "outputs": [], "source": [ @@ -3009,7 +3009,7 @@ { "cell_type": "code", "execution_count": 105, - "id": "893243b3", + "id": "8ed17408", "metadata": {}, "outputs": [ { @@ -3034,7 +3034,7 @@ { "cell_type": "code", "execution_count": 106, - "id": "bbf94226", + "id": "4b21f580", "metadata": {}, "outputs": [ { @@ -3054,7 +3054,7 @@ }, { "cell_type": "markdown", - "id": "7937f1bf", + "id": "2e0d1bc3", "metadata": {}, "source": [ "In this case, if the index arrays have a matching shape, and there is an index array for each dimension of the array being indexed, the resultant array has the same shape as the index arrays, and the values correspond to the index set for each position in the index arrays. In this example, the first index value is 0 for both index arrays, and thus the first value of the resultant array is `y[0, 0]`. The next value is `y[2, 1]`, and the last is `y[4, 2]`.\n", @@ -3077,7 +3077,7 @@ { "cell_type": "code", "execution_count": 107, - "id": "712afc9e", + "id": "e981c0e7", "metadata": {}, "outputs": [ { @@ -3097,7 +3097,7 @@ }, { "cell_type": "markdown", - "id": "55f96722", + "id": "42d5cf43", "metadata": {}, "source": [ "Jumping to the next level of complexity, it is possible to only partially index an array with index arrays. It takes a bit of thought to understand what happens in such cases. For example if we just use one index array with y:" @@ -3106,7 +3106,7 @@ { "cell_type": "code", "execution_count": 108, - "id": "167b626e", + "id": "779a552e", "metadata": {}, "outputs": [ { @@ -3128,7 +3128,7 @@ }, { "cell_type": "markdown", - "id": "4000d7c6", + "id": "7acc03a7", "metadata": {}, "source": [ "It results in the construction of a new array where each value of the index array selects one row from the array being indexed and the resultant array has the resulting shape (number of index elements, size of row).\n", @@ -3143,7 +3143,7 @@ { "cell_type": "code", "execution_count": 109, - "id": "7647b02d", + "id": "fe866db9", "metadata": {}, "outputs": [ { @@ -3164,7 +3164,7 @@ }, { "cell_type": "markdown", - "id": "49570383", + "id": "4209949f", "metadata": {}, "source": [ "To achieve a behaviour similar to the basic slicing above, broadcasting can be used. The function `ix_` can help with this broadcasting. This is best understood with an example.\n", @@ -3177,7 +3177,7 @@ { "cell_type": "code", "execution_count": 110, - "id": "207a09db", + "id": "acce8a3c", "metadata": {}, "outputs": [ { @@ -3206,7 +3206,7 @@ }, { "cell_type": "markdown", - "id": "7b8404b6", + "id": "a57a76d8", "metadata": {}, "source": [ "However, since the indexing arrays above just repeat themselves, broadcasting can be used (compare operations such as `rows[:, np.newaxis] + columns`) to simplify this:" @@ -3215,7 +3215,7 @@ { "cell_type": "code", "execution_count": 111, - "id": "be12b323", + "id": "dcfb7922", "metadata": {}, "outputs": [], "source": [ @@ -3226,7 +3226,7 @@ { "cell_type": "code", "execution_count": 112, - "id": "c5acc5f4", + "id": "1ef79fc2", "metadata": {}, "outputs": [ { @@ -3248,7 +3248,7 @@ { "cell_type": "code", "execution_count": 113, - "id": "28ad40c3", + "id": "0e00e25b", "metadata": {}, "outputs": [ { @@ -3269,7 +3269,7 @@ }, { "cell_type": "markdown", - "id": "4d9c85c5", + "id": "4ede1de7", "metadata": {}, "source": [ "This broadcasting can also be achieved using the function `ix_`:" @@ -3278,7 +3278,7 @@ { "cell_type": "code", "execution_count": 114, - "id": "806feded", + "id": "d04223ec", "metadata": {}, "outputs": [ { @@ -3299,7 +3299,7 @@ }, { "cell_type": "markdown", - "id": "517e2f2f", + "id": "7d041345", "metadata": {}, "source": [ "Note that without the `np.ix_` call, only the diagonal elements would be selected:" @@ -3308,7 +3308,7 @@ { "cell_type": "code", "execution_count": 115, - "id": "c5752bab", + "id": "05d8d64e", "metadata": {}, "outputs": [ { @@ -3328,7 +3328,7 @@ }, { "cell_type": "markdown", - "id": "e1b0136b", + "id": "beb8e135", "metadata": {}, "source": [ "This difference is the most important thing to remember about indexing with multiple advanced indices.\n", @@ -3349,7 +3349,7 @@ { "cell_type": "code", "execution_count": 116, - "id": "4faac438", + "id": "44da7138", "metadata": {}, "outputs": [ { @@ -3370,7 +3370,7 @@ }, { "cell_type": "markdown", - "id": "7f02520a", + "id": "cd396682", "metadata": {}, "source": [ "Or wish to add a constant to all negative elements:" @@ -3379,7 +3379,7 @@ { "cell_type": "code", "execution_count": 117, - "id": "200335e2", + "id": "1dc7a4cc", "metadata": {}, "outputs": [ { @@ -3401,7 +3401,7 @@ }, { "cell_type": "markdown", - "id": "e30493ec", + "id": "8f45838c", "metadata": {}, "source": [ "In general if an index includes a Boolean array, the result will be identical to inserting `obj.nonzero()` into the same position and using the integer array indexing mechanism described above. `x[ind_1, boolean_array, ind_2]` is equivalent to `x[(ind_1,) + boolean_array.nonzero() + (ind_2,)]`.\n", @@ -3414,7 +3414,7 @@ { "cell_type": "code", "execution_count": 118, - "id": "aa3d0ba4", + "id": "6f77151a", "metadata": {}, "outputs": [], "source": [ @@ -3425,7 +3425,7 @@ { "cell_type": "code", "execution_count": 119, - "id": "e29f71ec", + "id": "37df0c15", "metadata": {}, "outputs": [ { @@ -3446,7 +3446,7 @@ { "cell_type": "code", "execution_count": 120, - "id": "39a7a377", + "id": "dad25983", "metadata": {}, "outputs": [ { @@ -3467,7 +3467,7 @@ }, { "cell_type": "markdown", - "id": "0ce4d49d", + "id": "79fd7adc", "metadata": {}, "source": [ "Here the 4th and 5th rows are selected from the indexed array and combined to make a 2-D array.\n", @@ -3480,7 +3480,7 @@ { "cell_type": "code", "execution_count": 121, - "id": "ef4dd5e9", + "id": "d191c8ac", "metadata": {}, "outputs": [ { @@ -3503,7 +3503,7 @@ }, { "cell_type": "markdown", - "id": "c9f305f2", + "id": "86a6f10e", "metadata": {}, "source": [ "Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with the `obj.nonzero()` analogy. The function `ix_` also supports boolean arrays and will work without any surprises.\n", @@ -3516,7 +3516,7 @@ { "cell_type": "code", "execution_count": 122, - "id": "1610ccea", + "id": "7daa4905", "metadata": {}, "outputs": [], "source": [ @@ -3530,7 +3530,7 @@ { "cell_type": "code", "execution_count": 123, - "id": "3c45d881", + "id": "36c22ceb", "metadata": {}, "outputs": [ { @@ -3551,7 +3551,7 @@ { "cell_type": "code", "execution_count": 124, - "id": "c91a22c7", + "id": "66fa505e", "metadata": {}, "outputs": [], "source": [ @@ -3561,7 +3561,7 @@ { "cell_type": "code", "execution_count": 125, - "id": "1cfaf4ee", + "id": "f3b1332f", "metadata": {}, "outputs": [ { @@ -3582,7 +3582,7 @@ }, { "cell_type": "markdown", - "id": "8218d94a", + "id": "0fb89ffb", "metadata": {}, "source": [ "Without the n`p.ix_` call, only the diagonal elements would be selected.\n", @@ -3593,7 +3593,7 @@ { "cell_type": "code", "execution_count": 126, - "id": "583278c8", + "id": "e8c77928", "metadata": {}, "outputs": [ { @@ -3615,7 +3615,7 @@ }, { "cell_type": "markdown", - "id": "efd8a7ed", + "id": "68e3526b", "metadata": {}, "source": [ "##### Example 3\n", @@ -3626,7 +3626,7 @@ { "cell_type": "code", "execution_count": 127, - "id": "7fa35a9b", + "id": "09195242", "metadata": {}, "outputs": [ { @@ -3654,7 +3654,7 @@ { "cell_type": "code", "execution_count": 128, - "id": "a4e768bc", + "id": "d25ecd0d", "metadata": {}, "outputs": [ { @@ -3678,7 +3678,7 @@ }, { "cell_type": "markdown", - "id": "77d12b10", + "id": "1e1f581b", "metadata": {}, "source": [ "#### Combining advanced and basic indexing\n", @@ -3691,7 +3691,7 @@ { "cell_type": "code", "execution_count": 129, - "id": "a55222aa", + "id": "49b36eac", "metadata": {}, "outputs": [ { @@ -3714,7 +3714,7 @@ }, { "cell_type": "markdown", - "id": "00bd439d", + "id": "05b01a82", "metadata": {}, "source": [ "In effect, the slice and index array operation are independent. The slice operation extracts columns with index 1 and 2, (i.e. the 2nd and 3rd columns), followed by the index array operation which extracts rows with index 0, 2 and 4 (i.e the first, third and fifth rows). This is equivalent to:" @@ -3723,7 +3723,7 @@ { "cell_type": "code", "execution_count": 130, - "id": "08da3790", + "id": "dc8de3f5", "metadata": {}, "outputs": [ { @@ -3745,7 +3745,7 @@ }, { "cell_type": "markdown", - "id": "90ac6b90", + "id": "11d142be", "metadata": {}, "source": [ "A single advanced index can, for example, replace a slice and the result array will be the same. However, it is a copy and may have a different memory layout. A slice is preferable when it is possible. For example:" @@ -3754,7 +3754,7 @@ { "cell_type": "code", "execution_count": 131, - "id": "7bf8a8f8", + "id": "30c4d8e3", "metadata": {}, "outputs": [], "source": [ @@ -3767,7 +3767,7 @@ { "cell_type": "code", "execution_count": 132, - "id": "78754a17", + "id": "0dc53392", "metadata": {}, "outputs": [ { @@ -3788,7 +3788,7 @@ { "cell_type": "code", "execution_count": 133, - "id": "b86a1685", + "id": "ebc71852", "metadata": {}, "outputs": [ { @@ -3808,7 +3808,7 @@ }, { "cell_type": "markdown", - "id": "21782615", + "id": "ef0a5105", "metadata": {}, "source": [ "The easiest way to understand a combination of multiple advanced indices may be to think in terms of the resulting shape. There are two parts to the indexing operation, the subspace defined by the basic indexing (excluding integers) and the subspace from the advanced indexing part. Two cases of index combination need to be distinguished:\n", @@ -3834,7 +3834,7 @@ { "cell_type": "code", "execution_count": 134, - "id": "d032e258", + "id": "b8ed890a", "metadata": {}, "outputs": [], "source": [ @@ -3845,7 +3845,7 @@ { "cell_type": "code", "execution_count": 135, - "id": "572c55bb", + "id": "3489681a", "metadata": {}, "outputs": [ { @@ -3870,7 +3870,7 @@ { "cell_type": "code", "execution_count": 136, - "id": "be388af9", + "id": "a8c8e911", "metadata": {}, "outputs": [ { @@ -3891,7 +3891,7 @@ }, { "cell_type": "markdown", - "id": "54c76282", + "id": "5e087c4b", "metadata": {}, "source": [ "### Field access\n", @@ -3908,7 +3908,7 @@ { "cell_type": "code", "execution_count": 137, - "id": "0f7e46df", + "id": "1e18afad", "metadata": {}, "outputs": [], "source": [ @@ -3918,7 +3918,7 @@ { "cell_type": "code", "execution_count": 138, - "id": "88787f1f", + "id": "96e3f91b", "metadata": {}, "outputs": [ { @@ -3939,7 +3939,7 @@ { "cell_type": "code", "execution_count": 139, - "id": "cb70cb5a", + "id": "9ccd1832", "metadata": {}, "outputs": [ { @@ -3960,7 +3960,7 @@ { "cell_type": "code", "execution_count": 140, - "id": "0a0a620e", + "id": "0f4fe3b9", "metadata": {}, "outputs": [ { @@ -3981,7 +3981,7 @@ { "cell_type": "code", "execution_count": 141, - "id": "c976c734", + "id": "c14cf120", "metadata": {}, "outputs": [ { @@ -4001,7 +4001,7 @@ }, { "cell_type": "markdown", - "id": "bfbd4d96", + "id": "c2bf4e3c", "metadata": {}, "source": [ "### Flat Iterator indexing\n", @@ -4016,7 +4016,7 @@ { "cell_type": "code", "execution_count": 142, - "id": "0acba911", + "id": "443145e3", "metadata": {}, "outputs": [], "source": [ @@ -4026,7 +4026,7 @@ }, { "cell_type": "markdown", - "id": "516ef2fb", + "id": "1252b01f", "metadata": {}, "source": [ "Or an array of the right size:" @@ -4035,7 +4035,7 @@ { "cell_type": "code", "execution_count": 143, - "id": "dd210b49", + "id": "7129a2b7", "metadata": {}, "outputs": [], "source": [ @@ -4044,7 +4044,7 @@ }, { "cell_type": "markdown", - "id": "110a003d", + "id": "1e29d072", "metadata": {}, "source": [ "Note that assignments may result in changes if assigning higher types to lower types (like floats to ints) or even exceptions (assigning complex to floats or ints):" @@ -4053,7 +4053,7 @@ { "cell_type": "code", "execution_count": 144, - "id": "af5efe02", + "id": "3f819544", "metadata": {}, "outputs": [ { @@ -4074,7 +4074,7 @@ }, { "cell_type": "markdown", - "id": "8c6c9507", + "id": "205c6ffc", "metadata": {}, "source": [ "```py\n", @@ -4093,7 +4093,7 @@ { "cell_type": "code", "execution_count": 145, - "id": "8b23b7cc", + "id": "30c3c0fa", "metadata": {}, "outputs": [ { @@ -4115,7 +4115,7 @@ { "cell_type": "code", "execution_count": 146, - "id": "7b8ccd40", + "id": "0d60158c", "metadata": {}, "outputs": [ { @@ -4136,7 +4136,7 @@ }, { "cell_type": "markdown", - "id": "f31d0119", + "id": "a62a96e3", "metadata": {}, "source": [ "Where people expect that the 1st location will be incremented by 3. In fact, it will only be incremented by 1. The reason is that a new array is extracted from the original (as a temporary) containing the values at 1, 1, 3, 1, then the value 1 is added to the temporary, and then the temporary is assigned back to the original array. Thus the value of the array at `x[1] + 1` is assigned to `x[1]` three times, rather than being incremented 3 times.\n", @@ -4149,7 +4149,7 @@ { "cell_type": "code", "execution_count": 147, - "id": "cd389ce5", + "id": "746e7d9b", "metadata": {}, "outputs": [ { @@ -4171,7 +4171,7 @@ }, { "cell_type": "markdown", - "id": "4a38886d", + "id": "57265d49", "metadata": {}, "source": [ "So one can use code to construct tuples of any number of indices and then use these within an index.\n", @@ -4182,7 +4182,7 @@ { "cell_type": "code", "execution_count": 148, - "id": "fcb72b55", + "id": "6d3bb9ca", "metadata": {}, "outputs": [ { @@ -4203,7 +4203,7 @@ }, { "cell_type": "markdown", - "id": "bed75881", + "id": "d74fcb01", "metadata": {}, "source": [ "Likewise, ellipsis can be specified by code by using the Ellipsis object:" @@ -4212,7 +4212,7 @@ { "cell_type": "code", "execution_count": 149, - "id": "1e1c173d", + "id": "41daa85d", "metadata": {}, "outputs": [ { @@ -4235,7 +4235,7 @@ }, { "cell_type": "markdown", - "id": "2139899d", + "id": "2b37738a", "metadata": {}, "source": [ "For this reason, it is possible to use the output from the `np.nonzero()` function directly as an index since it always returns a tuple of index arrays.\n", @@ -4246,7 +4246,7 @@ { "cell_type": "code", "execution_count": 150, - "id": "62931b25", + "id": "37249d96", "metadata": {}, "outputs": [ { @@ -4316,7 +4316,7 @@ { "cell_type": "code", "execution_count": 151, - "id": "f1c99d17", + "id": "52c5ec3f", "metadata": {}, "outputs": [ { @@ -4336,7 +4336,7 @@ }, { "cell_type": "markdown", - "id": "3061d989", + "id": "5c85a33e", "metadata": {}, "source": [ "## Structured arrays\n", @@ -4349,7 +4349,7 @@ { "cell_type": "code", "execution_count": 152, - "id": "0232fab2", + "id": "2b3ca6b6", "metadata": {}, "outputs": [ { @@ -4372,7 +4372,7 @@ }, { "cell_type": "markdown", - "id": "0cdf9efc", + "id": "24e60573", "metadata": {}, "source": [ "Here `x` is a one-dimensional array of length two whose datatype is a structure with three fields: 1. A string of length 10 or less named `'name'`, 2. a 32-bit integer named `'age'`, and 3. a 32-bit float named `'weight'`.\n", @@ -4383,7 +4383,7 @@ { "cell_type": "code", "execution_count": 153, - "id": "f5e77289", + "id": "03530929", "metadata": {}, "outputs": [ { @@ -4403,7 +4403,7 @@ }, { "cell_type": "markdown", - "id": "560ddf5d", + "id": "5aa003e0", "metadata": {}, "source": [ "You can access and modify individual fields of a structured array by indexing with the field name:" @@ -4412,7 +4412,7 @@ { "cell_type": "code", "execution_count": 154, - "id": "57759c6a", + "id": "4519c096", "metadata": {}, "outputs": [ { @@ -4433,7 +4433,7 @@ { "cell_type": "code", "execution_count": 155, - "id": "58c93e69", + "id": "b184f47a", "metadata": {}, "outputs": [ { @@ -4454,7 +4454,7 @@ { "cell_type": "code", "execution_count": 156, - "id": "e7ab9382", + "id": "5144813b", "metadata": {}, "outputs": [ { @@ -4475,7 +4475,7 @@ }, { "cell_type": "markdown", - "id": "ee7b8e11", + "id": "af28def1", "metadata": {}, "source": [ "Structured datatypes are designed to be able to mimic 'structs' in the C language, and share a similar memory layout. They are meant for interfacing with C code and for low-level manipulation of structured buffers, for example for interpreting binary blobs. For these purposes they support specialized features such as subarrays, nested datatypes, and unions, and allow control over the memory layout of the structure.\n", @@ -4498,7 +4498,7 @@ { "cell_type": "code", "execution_count": 157, - "id": "d0b280da", + "id": "eab3d997", "metadata": {}, "outputs": [ { @@ -4518,7 +4518,7 @@ }, { "cell_type": "markdown", - "id": "d8a1478b", + "id": "044e83b9", "metadata": {}, "source": [ "If `fieldname` is the empty string `''`, the field will be given a default name of the form `f#`, where `#` is the integer index of the field, counting from 0 from the left:" @@ -4527,7 +4527,7 @@ { "cell_type": "code", "execution_count": 158, - "id": "a468e733", + "id": "91f63ef4", "metadata": {}, "outputs": [ { @@ -4547,7 +4547,7 @@ }, { "cell_type": "markdown", - "id": "84ccac50", + "id": "11104dc3", "metadata": {}, "source": [ "The byte offsets of the fields within the structure and the total structure itemsize are determined automatically.\n", @@ -4560,7 +4560,7 @@ { "cell_type": "code", "execution_count": 159, - "id": "6a932828", + "id": "9c639147", "metadata": {}, "outputs": [ { @@ -4581,7 +4581,7 @@ { "cell_type": "code", "execution_count": 160, - "id": "ca0c1281", + "id": "e1a2d85c", "metadata": {}, "outputs": [ { @@ -4601,7 +4601,7 @@ }, { "cell_type": "markdown", - "id": "81eb5706", + "id": "84210698", "metadata": {}, "source": [ "- A dictionary of field parameter arrays\n", @@ -4614,7 +4614,7 @@ { "cell_type": "code", "execution_count": 161, - "id": "f8f66e4c", + "id": "6ff0c915", "metadata": {}, "outputs": [ { @@ -4635,7 +4635,7 @@ { "cell_type": "code", "execution_count": 162, - "id": "3a4dfc09", + "id": "99ccdcd1", "metadata": {}, "outputs": [ { @@ -4658,7 +4658,7 @@ }, { "cell_type": "markdown", - "id": "4a8961dd", + "id": "243a9bc2", "metadata": {}, "source": [ "Offsets may be chosen such that the fields overlap, though this will mean that assigning to one field may clobber any overlapping field’s data. As an exception, fields of `numpy.object_` type cannot overlap with other fields, because of the risk of clobbering the internal object pointer and then dereferencing it.\n", @@ -4673,7 +4673,7 @@ { "cell_type": "code", "execution_count": 163, - "id": "7407dff3", + "id": "e49a62f4", "metadata": {}, "outputs": [ { @@ -4693,7 +4693,7 @@ }, { "cell_type": "markdown", - "id": "6e3e6e3f", + "id": "486da6db", "metadata": {}, "source": [ "#### Manipulating and Displaying Structured Datatypes\n", @@ -4704,7 +4704,7 @@ { "cell_type": "code", "execution_count": 164, - "id": "e918fc6f", + "id": "30432953", "metadata": {}, "outputs": [ { @@ -4725,7 +4725,7 @@ }, { "cell_type": "markdown", - "id": "bb6f50ea", + "id": "fec39dcc", "metadata": {}, "source": [ "The field names may be modified by assigning to the `names` attribute using a sequence of strings of the same length.\n", @@ -4736,7 +4736,7 @@ { "cell_type": "code", "execution_count": 165, - "id": "e6778d17", + "id": "02da466d", "metadata": {}, "outputs": [ { @@ -4756,7 +4756,7 @@ }, { "cell_type": "markdown", - "id": "e92b557f", + "id": "b8bf3dde", "metadata": {}, "source": [ "Both the `names` and `fields` attributes will equal `None` for unstructured arrays. The recommended way to test if a dtype is structured is with `if dt.names is not None` rather than `if dt.names`, to account for dtypes with 0 fields.\n", @@ -4773,7 +4773,7 @@ { "cell_type": "code", "execution_count": 166, - "id": "3700a5ef", + "id": "b57457b6", "metadata": {}, "outputs": [ { @@ -4793,7 +4793,7 @@ }, { "cell_type": "markdown", - "id": "2fdc6c5a", + "id": "cfda92a2", "metadata": {}, "source": [ "When using the first form of dictionary-based specification, the titles may be supplied as an extra `'titles'` key as described above. When using the second (discouraged) dictionary-based specification, the title can be supplied by providing a 3-element tuple `(datatype, offset, title)` instead of the usual 2-element tuple:" @@ -4802,7 +4802,7 @@ { "cell_type": "code", "execution_count": 167, - "id": "5e04dbec", + "id": "ee569a05", "metadata": {}, "outputs": [ { @@ -4822,7 +4822,7 @@ }, { "cell_type": "markdown", - "id": "139767e5", + "id": "3277a2cd", "metadata": {}, "source": [ "The `dtype.fields` dictionary will contain titles as keys, if any titles are used. This means effectively that a field with a title will be represented twice in the fields dictionary. The tuple values for these fields will also have a third element, the field title. Because of this, and because the `names` attribute preserves the field order while the `fields` attribute may not, it is recommended to iterate through the fields of a dtype using the `names` attribute of the dtype, which will not list titles, as in:" @@ -4831,7 +4831,7 @@ { "cell_type": "code", "execution_count": 168, - "id": "6554f173", + "id": "8c57aa70", "metadata": {}, "outputs": [ { @@ -4850,7 +4850,7 @@ }, { "cell_type": "markdown", - "id": "47e34ddc", + "id": "16d148df", "metadata": {}, "source": [ "### Indexing and Assignment to Structured arrays\n", @@ -4867,7 +4867,7 @@ { "cell_type": "code", "execution_count": 169, - "id": "84be85c3", + "id": "c1767431", "metadata": {}, "outputs": [ { @@ -4890,7 +4890,7 @@ }, { "cell_type": "markdown", - "id": "1b891840", + "id": "460cc3a0", "metadata": {}, "source": [ "##### Assignment from Scalars\n", @@ -4901,7 +4901,7 @@ { "cell_type": "code", "execution_count": 170, - "id": "f1469a2a", + "id": "a2f95210", "metadata": {}, "outputs": [], "source": [ @@ -4911,7 +4911,7 @@ { "cell_type": "code", "execution_count": 171, - "id": "31c600e4", + "id": "f6508c1e", "metadata": {}, "outputs": [ { @@ -4934,7 +4934,7 @@ { "cell_type": "code", "execution_count": 172, - "id": "3754d7af", + "id": "2978d044", "metadata": {}, "outputs": [ { @@ -4956,7 +4956,7 @@ }, { "cell_type": "markdown", - "id": "b848423d", + "id": "41b5c458", "metadata": {}, "source": [ "Structured arrays can also be assigned to unstructured arrays, but only if the structured datatype has just a single field:" @@ -4965,7 +4965,7 @@ { "cell_type": "code", "execution_count": 173, - "id": "5d07c811", + "id": "92ea74fe", "metadata": {}, "outputs": [], "source": [ @@ -4976,7 +4976,7 @@ { "cell_type": "code", "execution_count": 174, - "id": "8f1bdd8e", + "id": "84dc517f", "metadata": {}, "outputs": [], "source": [ @@ -4985,7 +4985,7 @@ }, { "cell_type": "markdown", - "id": "2adf774f", + "id": "b7f6be10", "metadata": {}, "source": [ "```py\n", @@ -5006,7 +5006,7 @@ { "cell_type": "code", "execution_count": 175, - "id": "5f070595", + "id": "ca1ecf16", "metadata": {}, "outputs": [], "source": [ @@ -5017,7 +5017,7 @@ { "cell_type": "code", "execution_count": 176, - "id": "cc682d65", + "id": "93ba18f3", "metadata": {}, "outputs": [ { @@ -5039,7 +5039,7 @@ }, { "cell_type": "markdown", - "id": "16788752", + "id": "56c5ef05", "metadata": {}, "source": [ "##### Assignment involving subarrays\n", @@ -5056,7 +5056,7 @@ { "cell_type": "code", "execution_count": 177, - "id": "a227d949", + "id": "ac31c05a", "metadata": {}, "outputs": [ { @@ -5078,7 +5078,7 @@ { "cell_type": "code", "execution_count": 178, - "id": "a1a24d41", + "id": "15c030cc", "metadata": {}, "outputs": [ { @@ -5099,7 +5099,7 @@ }, { "cell_type": "markdown", - "id": "36f44395", + "id": "023cf7ab", "metadata": {}, "source": [ "The resulting array is a view into the original array. It shares the same memory locations and writing to the view will modify the original array." @@ -5108,7 +5108,7 @@ { "cell_type": "code", "execution_count": 179, - "id": "2b90b78e", + "id": "d3e80a81", "metadata": {}, "outputs": [ { @@ -5130,7 +5130,7 @@ }, { "cell_type": "markdown", - "id": "d74a7ca7", + "id": "99798e0f", "metadata": {}, "source": [ "This view has the same dtype and itemsize as the indexed field, so it is typically a non-structured array, except in the case of nested structures." @@ -5139,7 +5139,7 @@ { "cell_type": "code", "execution_count": 180, - "id": "fd13fcab", + "id": "d65fd0f1", "metadata": {}, "outputs": [ { @@ -5159,7 +5159,7 @@ }, { "cell_type": "markdown", - "id": "bcc5f7aa", + "id": "42d65dd3", "metadata": {}, "source": [ "If the accessed field is a subarray, the dimensions of the subarray are appended to the shape of the result:" @@ -5168,7 +5168,7 @@ { "cell_type": "code", "execution_count": 181, - "id": "74050994", + "id": "9dd23b6c", "metadata": {}, "outputs": [], "source": [ @@ -5178,7 +5178,7 @@ { "cell_type": "code", "execution_count": 182, - "id": "ba1ba980", + "id": "8a81710f", "metadata": {}, "outputs": [ { @@ -5199,7 +5199,7 @@ { "cell_type": "code", "execution_count": 183, - "id": "9808cfcc", + "id": "e6496ce2", "metadata": {}, "outputs": [ { @@ -5219,7 +5219,7 @@ }, { "cell_type": "markdown", - "id": "b64b8a92", + "id": "a7ab274c", "metadata": {}, "source": [ "##### Accessing multiple fields\n", @@ -5232,7 +5232,7 @@ { "cell_type": "code", "execution_count": 184, - "id": "b116a766", + "id": "5e621197", "metadata": {}, "outputs": [ { @@ -5254,7 +5254,7 @@ }, { "cell_type": "markdown", - "id": "8f32fa8e", + "id": "e27d32c5", "metadata": {}, "source": [ "Assignment to the view modifies the original array. The view’s fields will be in the order they were indexed. Note that unlike for single-field indexing, the dtype of the view has the same itemsize as the original array, and has fields at the same offsets as in the original array, and unindexed fields are merely missing.\n", @@ -5265,7 +5265,7 @@ { "cell_type": "code", "execution_count": 185, - "id": "632a69e8", + "id": "e76a464f", "metadata": {}, "outputs": [ { @@ -5287,7 +5287,7 @@ }, { "cell_type": "markdown", - "id": "f4387a9e", + "id": "184d118b", "metadata": {}, "source": [ "This obeys the structured array assignment rules described above. For example, this means that one can swap the values of two fields using appropriate multi-field indexes:" @@ -5296,7 +5296,7 @@ { "cell_type": "code", "execution_count": 186, - "id": "f43183cf", + "id": "a5bccc2c", "metadata": {}, "outputs": [], "source": [ @@ -5305,7 +5305,7 @@ }, { "cell_type": "markdown", - "id": "c21afe24", + "id": "277fa2b0", "metadata": {}, "source": [ "##### Indexing with an integer to get a structured scalar\n", @@ -5316,7 +5316,7 @@ { "cell_type": "code", "execution_count": 187, - "id": "059673be", + "id": "9e6936c7", "metadata": {}, "outputs": [ { @@ -5339,7 +5339,7 @@ { "cell_type": "code", "execution_count": 188, - "id": "0d5dba29", + "id": "f8daf6c4", "metadata": {}, "outputs": [ { @@ -5359,7 +5359,7 @@ }, { "cell_type": "markdown", - "id": "4d65837e", + "id": "6c38f8b5", "metadata": {}, "source": [ "Unlike other numpy scalars, structured scalars are mutable and act like views into the original array, such that modifying the scalar will modify the original array. Structured scalars also support access and assignment by field name:" @@ -5368,7 +5368,7 @@ { "cell_type": "code", "execution_count": 189, - "id": "97f4dd71", + "id": "15b0d410", "metadata": {}, "outputs": [ { @@ -5391,7 +5391,7 @@ }, { "cell_type": "markdown", - "id": "a82f7489", + "id": "d1f2f5d3", "metadata": {}, "source": [ "Similarly to tuples, structured scalars can also be indexed with an integer:" @@ -5400,7 +5400,7 @@ { "cell_type": "code", "execution_count": 190, - "id": "252e34f8", + "id": "9515443a", "metadata": {}, "outputs": [ { @@ -5422,7 +5422,7 @@ { "cell_type": "code", "execution_count": 191, - "id": "d4043709", + "id": "da73b1a0", "metadata": {}, "outputs": [], "source": [ @@ -5431,7 +5431,7 @@ }, { "cell_type": "markdown", - "id": "f8dc3c45", + "id": "bf2778bd", "metadata": {}, "source": [ "Thus, tuples might be thought of as the native Python equivalent to numpy’s structured types, much like native python integers are the equivalent to numpy’s integer types. Structured scalars may be converted to a tuple by calling `numpy.ndarray.item`:" @@ -5440,7 +5440,7 @@ { "cell_type": "code", "execution_count": 192, - "id": "e0f53157", + "id": "93decfca", "metadata": {}, "outputs": [ { @@ -5460,7 +5460,7 @@ }, { "cell_type": "markdown", - "id": "fbf69b5f", + "id": "bd29549a", "metadata": {}, "source": [ "#### Viewing structured arrays containing objects\n", @@ -5475,7 +5475,7 @@ { "cell_type": "code", "execution_count": 193, - "id": "033ad24d", + "id": "b60ef16c", "metadata": {}, "outputs": [ { @@ -5497,7 +5497,7 @@ }, { "cell_type": "markdown", - "id": "c0a0fcb6", + "id": "5cc1ac49", "metadata": {}, "source": [ "NumPy will promote individual field datatypes to perform the comparison. So the following is also valid (note the `'f4'` dtype for the `'a'` field):" @@ -5506,7 +5506,7 @@ { "cell_type": "code", "execution_count": 194, - "id": "09b0f004", + "id": "20a74e31", "metadata": {}, "outputs": [ { @@ -5527,7 +5527,7 @@ }, { "cell_type": "markdown", - "id": "962f76a6", + "id": "bad6c9a9", "metadata": {}, "source": [ "To compare two structured arrays, it must be possible to promote them to a common dtype as returned by `numpy.result_type` and `np.promote_types`. This enforces that the number of fields, the field names, and the field titles must match precisely. When promotion is not possible, for example due to mismatching field names, NumPy will raise an error. Promotion between two structured dtypes results in a canonical dtype that ensures native byte-order for all fields:" @@ -5536,7 +5536,7 @@ { "cell_type": "code", "execution_count": 195, - "id": "2b9ce1e7", + "id": "9825eff0", "metadata": {}, "outputs": [ { @@ -5557,7 +5557,7 @@ { "cell_type": "code", "execution_count": 196, - "id": "0a996728", + "id": "8f4711e5", "metadata": {}, "outputs": [ { @@ -5577,7 +5577,7 @@ }, { "cell_type": "markdown", - "id": "6a82300d", + "id": "a07238af", "metadata": {}, "source": [ "The resulting dtype from promotion is also guaranteed to be packed, meaning that all fields are ordered contiguously and any unnecessary padding is removed:" @@ -5586,7 +5586,7 @@ { "cell_type": "code", "execution_count": 197, - "id": "212216fc", + "id": "f9db92eb", "metadata": {}, "outputs": [ { @@ -5608,7 +5608,7 @@ { "cell_type": "code", "execution_count": 198, - "id": "d5edceee", + "id": "eb031a8b", "metadata": {}, "outputs": [ { @@ -5628,7 +5628,7 @@ }, { "cell_type": "markdown", - "id": "d080193c", + "id": "01cd9c17", "metadata": {}, "source": [ "Note that the result prints without `offsets` or `itemsize` indicating no additional padding. If a structured dtype is created with `align=True` ensuring that `dtype.isalignedstruct` is true, this property is preserved:" @@ -5637,7 +5637,7 @@ { "cell_type": "code", "execution_count": 199, - "id": "8c484fe8", + "id": "b3a3dcd9", "metadata": {}, "outputs": [ { @@ -5659,7 +5659,7 @@ { "cell_type": "code", "execution_count": 200, - "id": "50368206", + "id": "6f9a47c5", "metadata": {}, "outputs": [ { @@ -5680,7 +5680,7 @@ { "cell_type": "code", "execution_count": 201, - "id": "f92c7f18", + "id": "da72c119", "metadata": {}, "outputs": [ { @@ -5700,7 +5700,7 @@ }, { "cell_type": "markdown", - "id": "214985c2", + "id": "45bd2473", "metadata": {}, "source": [ "When promoting multiple dtypes, the result is aligned if any of the inputs is:" @@ -5709,7 +5709,7 @@ { "cell_type": "code", "execution_count": 202, - "id": "71ef2425", + "id": "ec9df23d", "metadata": {}, "outputs": [ { @@ -5729,7 +5729,7 @@ }, { "cell_type": "markdown", - "id": "5d99af6b", + "id": "38bf71ae", "metadata": {}, "source": [ "The `<` and `>` operators always return `False` when comparing void structured arrays, and arithmetic and bitwise operations are not supported.\n", diff --git a/_sources/data-science/working-with-data/pandas.ipynb b/_sources/data-science/working-with-data/pandas.ipynb index 0d7c9130a0..8a8106d454 100644 --- a/_sources/data-science/working-with-data/pandas.ipynb +++ b/_sources/data-science/working-with-data/pandas.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2e8e886f", + "id": "e6545d05", "metadata": {}, "source": [ "# Pandas\n", @@ -17,7 +17,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "8572fa24", + "id": "25f96f14", "metadata": {}, "outputs": [], "source": [ @@ -27,7 +27,7 @@ }, { "cell_type": "markdown", - "id": "81714d8d", + "id": "8b24efc0", "metadata": {}, "source": [ "### Series\n", @@ -57,7 +57,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "585963a6", + "id": "fafc0791", "metadata": {}, "outputs": [], "source": [ @@ -67,17 +67,17 @@ { "cell_type": "code", "execution_count": 3, - "id": "52c4ee8b", + "id": "560c5c88", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 0.236503\n", - "b 0.121615\n", - "c -1.659530\n", - "d -1.207950\n", - "e -0.493469\n", + "a -0.742503\n", + "b -0.342277\n", + "c 2.575226\n", + "d -1.022013\n", + "e -0.549587\n", "dtype: float64" ] }, @@ -93,7 +93,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "65bbe19a", + "id": "cd3d68c8", "metadata": {}, "outputs": [ { @@ -114,17 +114,17 @@ { "cell_type": "code", "execution_count": 5, - "id": "28ed2ee6", + "id": "49d15198", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0 0.797558\n", - "1 0.365665\n", - "2 0.587483\n", - "3 1.122768\n", - "4 0.697798\n", + "0 0.456269\n", + "1 -0.744398\n", + "2 1.151727\n", + "3 1.031141\n", + "4 0.833176\n", "dtype: float64" ] }, @@ -139,7 +139,7 @@ }, { "cell_type": "markdown", - "id": "f6a40fdc", + "id": "66bd6806", "metadata": {}, "source": [ "```{note}\n", @@ -153,7 +153,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "94cde349", + "id": "32934b45", "metadata": {}, "outputs": [], "source": [ @@ -163,7 +163,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "67e9c620", + "id": "eee7cfc8", "metadata": {}, "outputs": [ { @@ -186,7 +186,7 @@ }, { "cell_type": "markdown", - "id": "fb6a3c79", + "id": "f21e10f5", "metadata": {}, "source": [ "If an index is passed, the values in data corresponding to the labels in the index will be pulled out." @@ -195,7 +195,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "577e77ab", + "id": "437497c1", "metadata": {}, "outputs": [], "source": [ @@ -205,7 +205,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "12ba60db", + "id": "b6a25f03", "metadata": {}, "outputs": [ { @@ -229,7 +229,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "dccfe514", + "id": "ed79c02e", "metadata": {}, "outputs": [ { @@ -253,7 +253,7 @@ }, { "cell_type": "markdown", - "id": "5767e89e", + "id": "f159b903", "metadata": {}, "source": [ "```{note}\n", @@ -268,7 +268,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "0434cc65", + "id": "01c73a09", "metadata": {}, "outputs": [ { @@ -293,7 +293,7 @@ }, { "cell_type": "markdown", - "id": "f2517861", + "id": "1ebbfeed", "metadata": {}, "source": [ "#### Series is ndarray-like\n", @@ -304,13 +304,13 @@ { "cell_type": "code", "execution_count": 12, - "id": "26df9619", + "id": "747dbeac", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.23650273138482722" + "-0.7425028341431366" ] }, "execution_count": 12, @@ -325,15 +325,15 @@ { "cell_type": "code", "execution_count": 13, - "id": "bf0773e2", + "id": "5f4043d6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 0.236503\n", - "b 0.121615\n", - "c -1.659530\n", + "a -0.742503\n", + "b -0.342277\n", + "c 2.575226\n", "dtype: float64" ] }, @@ -349,14 +349,14 @@ { "cell_type": "code", "execution_count": 14, - "id": "e5e115b8", + "id": "ea8c664c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 0.236503\n", - "b 0.121615\n", + "b -0.342277\n", + "c 2.575226\n", "dtype: float64" ] }, @@ -372,15 +372,15 @@ { "cell_type": "code", "execution_count": 15, - "id": "6b3905fa", + "id": "6169bfcc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "e -0.493469\n", - "d -1.207950\n", - "b 0.121615\n", + "e -0.549587\n", + "d -1.022013\n", + "b -0.342277\n", "dtype: float64" ] }, @@ -396,17 +396,17 @@ { "cell_type": "code", "execution_count": 16, - "id": "bb15da57", + "id": "02cafeb2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 1.266811\n", - "b 1.129319\n", - "c 0.190228\n", - "d 0.298809\n", - "e 0.610505\n", + "a 0.475921\n", + "b 0.710151\n", + "c 13.134280\n", + "d 0.359870\n", + "e 0.577188\n", "dtype: float64" ] }, @@ -421,7 +421,7 @@ }, { "cell_type": "markdown", - "id": "3c385e37", + "id": "9d8632b9", "metadata": {}, "source": [ "Like a NumPy array, a Pandas Series has a single `dtype`." @@ -430,7 +430,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "cb27e477", + "id": "2bfe8ef9", "metadata": {}, "outputs": [ { @@ -450,7 +450,7 @@ }, { "cell_type": "markdown", - "id": "a050a1b4", + "id": "d62c251e", "metadata": {}, "source": [ "If you need the actual array backing a `Series`, use `Series.array`." @@ -459,15 +459,15 @@ { "cell_type": "code", "execution_count": 18, - "id": "12f12c52", + "id": "54805983", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", - "[ 0.23650273138482722, 0.12161474924694336, -1.6595296662783818,\n", - " -1.2079500315166212, -0.49346939455302746]\n", + "[ -0.7425028341431366, -0.34227718263016094, 2.5752256412522594,\n", + " -1.0220127417608955, -0.5495868399385304]\n", "Length: 5, dtype: float64" ] }, @@ -482,7 +482,7 @@ }, { "cell_type": "markdown", - "id": "1dc2f3fd", + "id": "5b4fe37d", "metadata": {}, "source": [ "While `Series` is ndarray-like, if you need an actual ndarray, then use `Series.to_numpy()`." @@ -491,13 +491,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "1438d8d2", + "id": "45f42682", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([ 0.23650273, 0.12161475, -1.65952967, -1.20795003, -0.49346939])" + "array([-0.74250283, -0.34227718, 2.57522564, -1.02201274, -0.54958684])" ] }, "execution_count": 19, @@ -511,7 +511,7 @@ }, { "cell_type": "markdown", - "id": "cac0fc5f", + "id": "82f41443", "metadata": {}, "source": [ "Even if the `Series` is backed by an `ExtensionArray`, `Series.to_numpy()` will return a NumPy ndarray.\n", @@ -524,13 +524,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "51efb407", + "id": "aba48168", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.23650273138482722" + "-0.7425028341431366" ] }, "execution_count": 20, @@ -545,7 +545,7 @@ { "cell_type": "code", "execution_count": 21, - "id": "f40ac377", + "id": "c0f5ecac", "metadata": {}, "outputs": [], "source": [ @@ -555,16 +555,16 @@ { "cell_type": "code", "execution_count": 22, - "id": "ddcc3047", + "id": "2dc38aee", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 0.236503\n", - "b 0.121615\n", - "c -1.659530\n", - "d -1.207950\n", + "a -0.742503\n", + "b -0.342277\n", + "c 2.575226\n", + "d -1.022013\n", "e 12.000000\n", "dtype: float64" ] @@ -581,7 +581,7 @@ { "cell_type": "code", "execution_count": 23, - "id": "c8213df8", + "id": "e0a08b6e", "metadata": {}, "outputs": [ { @@ -602,7 +602,7 @@ { "cell_type": "code", "execution_count": 24, - "id": "c566988f", + "id": "8a722b93", "metadata": {}, "outputs": [ { @@ -622,7 +622,7 @@ }, { "cell_type": "markdown", - "id": "f7b8e9c4", + "id": "07dc3e98", "metadata": {}, "source": [ "If a label is not contained in the index, an exception is raised:" @@ -631,7 +631,7 @@ { "cell_type": "code", "execution_count": 25, - "id": "4d4d88c2", + "id": "fef8ac2e", "metadata": { "tags": [ "raises-exception" @@ -667,7 +667,7 @@ }, { "cell_type": "markdown", - "id": "bb5924a8", + "id": "523f884b", "metadata": {}, "source": [ "Using the `Series.get()` method, a missing label will return None or specified default:" @@ -676,7 +676,7 @@ { "cell_type": "code", "execution_count": 26, - "id": "1f1c351f", + "id": "8099f799", "metadata": {}, "outputs": [], "source": [ @@ -686,7 +686,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "722c4f30", + "id": "2a46b41a", "metadata": {}, "outputs": [ { @@ -706,7 +706,7 @@ }, { "cell_type": "markdown", - "id": "5ba799f5", + "id": "04ea686f", "metadata": {}, "source": [ "These labels can also be accessed by `attribute`.\n", @@ -719,16 +719,16 @@ { "cell_type": "code", "execution_count": 28, - "id": "6a67d1fe", + "id": "360e0f15", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 0.473005\n", - "b 0.243229\n", - "c -3.319059\n", - "d -2.415900\n", + "a -1.485006\n", + "b -0.684554\n", + "c 5.150451\n", + "d -2.044025\n", "e 24.000000\n", "dtype: float64" ] @@ -745,16 +745,16 @@ { "cell_type": "code", "execution_count": 29, - "id": "25bed3d9", + "id": "7e487d83", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 0.473005\n", - "b 0.243229\n", - "c -3.319059\n", - "d -2.415900\n", + "a -1.485006\n", + "b -0.684554\n", + "c 5.150451\n", + "d -2.044025\n", "e 24.000000\n", "dtype: float64" ] @@ -771,16 +771,16 @@ { "cell_type": "code", "execution_count": 30, - "id": "ed25015d", + "id": "d39cd718", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "a 1.266811\n", - "b 1.129319\n", - "c 0.190228\n", - "d 0.298809\n", + "a 0.475921\n", + "b 0.710151\n", + "c 13.134280\n", + "d 0.359870\n", "e 162754.791419\n", "dtype: float64" ] @@ -796,7 +796,7 @@ }, { "cell_type": "markdown", - "id": "63a29914", + "id": "a77868f9", "metadata": {}, "source": [ "A key difference between `Series` and ndarray is that operations between `Series` automatically align the data based on the label. Thus, you can write computations without giving consideration to whether the `Series` involved have the same labels." @@ -805,16 +805,16 @@ { "cell_type": "code", "execution_count": 31, - "id": "3db67156", + "id": "a89967e2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "a NaN\n", - "b 0.243229\n", - "c -3.319059\n", - "d -2.415900\n", + "b -0.684554\n", + "c 5.150451\n", + "d -2.044025\n", "e NaN\n", "dtype: float64" ] @@ -830,7 +830,7 @@ }, { "cell_type": "markdown", - "id": "be4aacb8", + "id": "04969a41", "metadata": {}, "source": [ "The result of an operation between unaligned `Series` will have the **union** of the indexes involved. If a label is not found in one `Series` or the other, the result will be marked as missing `NaN`. Being able to write code without doing any explicit data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated data alignment features of the Pandas data structures set Pandas apart from the majority of related tools for working with labeled data.\n", @@ -847,7 +847,7 @@ { "cell_type": "code", "execution_count": 32, - "id": "53e621db", + "id": "d96fb6d6", "metadata": {}, "outputs": [], "source": [ @@ -857,17 +857,17 @@ { "cell_type": "code", "execution_count": 33, - "id": "05e9c54c", + "id": "2f4ce942", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0 1.470192\n", - "1 -0.295668\n", - "2 0.324192\n", - "3 -1.262378\n", - "4 -0.039952\n", + "0 0.182830\n", + "1 -0.931166\n", + "2 0.144336\n", + "3 0.318988\n", + "4 0.426142\n", "Name: something, dtype: float64" ] }, @@ -883,7 +883,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "6de18891", + "id": "8f41e676", "metadata": {}, "outputs": [ { @@ -903,7 +903,7 @@ }, { "cell_type": "markdown", - "id": "5f6bad32", + "id": "3386207e", "metadata": {}, "source": [ "The `Series` `name` can be assigned automatically in many cases, in particular, when selecting a single column from a `DataFrame`, the `name` will be assigned the column label.\n", @@ -914,7 +914,7 @@ { "cell_type": "code", "execution_count": 35, - "id": "a79b2d4a", + "id": "866446da", "metadata": {}, "outputs": [], "source": [ @@ -924,7 +924,7 @@ { "cell_type": "code", "execution_count": 36, - "id": "e5040fed", + "id": "c4749ae3", "metadata": {}, "outputs": [ { @@ -944,7 +944,7 @@ }, { "cell_type": "markdown", - "id": "9ed42b72", + "id": "eaa2891c", "metadata": {}, "source": [ "Note that `s` and `s2` refer to different objects.\n", @@ -973,7 +973,7 @@ { "cell_type": "code", "execution_count": 37, - "id": "6401d7a7", + "id": "4ae21572", "metadata": {}, "outputs": [], "source": [ @@ -986,7 +986,7 @@ { "cell_type": "code", "execution_count": 38, - "id": "431ef585", + "id": "e79ed1ad", "metadata": {}, "outputs": [], "source": [ @@ -996,7 +996,7 @@ { "cell_type": "code", "execution_count": 39, - "id": "4b47966b", + "id": "c1055653", "metadata": {}, "outputs": [ { @@ -1069,7 +1069,7 @@ { "cell_type": "code", "execution_count": 40, - "id": "3645a5f5", + "id": "94260c79", "metadata": {}, "outputs": [ { @@ -1136,7 +1136,7 @@ { "cell_type": "code", "execution_count": 41, - "id": "cd11bf4e", + "id": "89ffccf3", "metadata": {}, "outputs": [ { @@ -1202,7 +1202,7 @@ }, { "cell_type": "markdown", - "id": "f0eb876a", + "id": "acc1b20f", "metadata": {}, "source": [ "The row and column labels can be accessed respectively by accessing the **index** and **columns** attributes:\n", @@ -1215,7 +1215,7 @@ { "cell_type": "code", "execution_count": 42, - "id": "57c02eed", + "id": "3761167c", "metadata": {}, "outputs": [ { @@ -1236,7 +1236,7 @@ { "cell_type": "code", "execution_count": 43, - "id": "4653b6d2", + "id": "697fb1e6", "metadata": {}, "outputs": [ { @@ -1256,7 +1256,7 @@ }, { "cell_type": "markdown", - "id": "a83c17ab", + "id": "ee5d3d4c", "metadata": {}, "source": [ "##### From dict of ndarrays / lists\n", @@ -1267,7 +1267,7 @@ { "cell_type": "code", "execution_count": 44, - "id": "5870297f", + "id": "c2880980", "metadata": {}, "outputs": [], "source": [ @@ -1277,7 +1277,7 @@ { "cell_type": "code", "execution_count": 45, - "id": "bc2091f7", + "id": "04fda5ed", "metadata": {}, "outputs": [ { @@ -1350,7 +1350,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "31474cbd", + "id": "4f8f0740", "metadata": {}, "outputs": [ { @@ -1422,7 +1422,7 @@ }, { "cell_type": "markdown", - "id": "fce40e4d", + "id": "e7c17cff", "metadata": {}, "source": [ "##### From structured or record array\n", @@ -1433,7 +1433,7 @@ { "cell_type": "code", "execution_count": 47, - "id": "15848f60", + "id": "95352bea", "metadata": {}, "outputs": [], "source": [ @@ -1443,7 +1443,7 @@ { "cell_type": "code", "execution_count": 48, - "id": "4a739ac5", + "id": "5d122d20", "metadata": {}, "outputs": [], "source": [ @@ -1453,7 +1453,7 @@ { "cell_type": "code", "execution_count": 49, - "id": "13894484", + "id": "86d1496d", "metadata": {}, "outputs": [ { @@ -1517,7 +1517,7 @@ { "cell_type": "code", "execution_count": 50, - "id": "ca7a7210", + "id": "206430fc", "metadata": {}, "outputs": [ { @@ -1581,7 +1581,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "6a7d6763", + "id": "15473159", "metadata": {}, "outputs": [ { @@ -1644,7 +1644,7 @@ }, { "cell_type": "markdown", - "id": "e4045694", + "id": "126d31a8", "metadata": {}, "source": [ "```{note}\n", @@ -1658,7 +1658,7 @@ { "cell_type": "code", "execution_count": 52, - "id": "bf87219f", + "id": "ee4f9f05", "metadata": {}, "outputs": [], "source": [ @@ -1668,7 +1668,7 @@ { "cell_type": "code", "execution_count": 53, - "id": "ce815aa3", + "id": "07d96611", "metadata": {}, "outputs": [ { @@ -1732,7 +1732,7 @@ { "cell_type": "code", "execution_count": 54, - "id": "1920abeb", + "id": "ea4880b3", "metadata": {}, "outputs": [ { @@ -1796,7 +1796,7 @@ { "cell_type": "code", "execution_count": 55, - "id": "3484fe99", + "id": "92b5105a", "metadata": {}, "outputs": [ { @@ -1856,7 +1856,7 @@ }, { "cell_type": "markdown", - "id": "c000ce3e", + "id": "37e7645e", "metadata": {}, "source": [ "##### From a dict of tuples\n", @@ -1867,7 +1867,7 @@ { "cell_type": "code", "execution_count": 56, - "id": "82cca1af", + "id": "322c79fa", "metadata": {}, "outputs": [ { @@ -1962,7 +1962,7 @@ }, { "cell_type": "markdown", - "id": "4f2bb430", + "id": "452e9e2d", "metadata": {}, "source": [ "##### From a Series\n", @@ -1973,7 +1973,7 @@ { "cell_type": "code", "execution_count": 57, - "id": "bee02124", + "id": "582abedf", "metadata": {}, "outputs": [], "source": [ @@ -1983,7 +1983,7 @@ { "cell_type": "code", "execution_count": 58, - "id": "3825a4d4", + "id": "04ed1911", "metadata": {}, "outputs": [ { @@ -2045,7 +2045,7 @@ }, { "cell_type": "markdown", - "id": "72385bcc", + "id": "9e6569f3", "metadata": {}, "source": [ "##### From a list of namedtuples\n", @@ -2056,7 +2056,7 @@ { "cell_type": "code", "execution_count": 59, - "id": "1fa2a578", + "id": "8148406d", "metadata": {}, "outputs": [], "source": [ @@ -2066,7 +2066,7 @@ { "cell_type": "code", "execution_count": 60, - "id": "1d321828", + "id": "3aef5ba5", "metadata": {}, "outputs": [], "source": [ @@ -2076,7 +2076,7 @@ { "cell_type": "code", "execution_count": 61, - "id": "049bffc3", + "id": "574f5f39", "metadata": {}, "outputs": [ { @@ -2143,7 +2143,7 @@ { "cell_type": "code", "execution_count": 62, - "id": "ae8211c1", + "id": "ea538e04", "metadata": {}, "outputs": [], "source": [ @@ -2153,7 +2153,7 @@ { "cell_type": "code", "execution_count": 63, - "id": "9ba60a1b", + "id": "2aa2e79e", "metadata": {}, "outputs": [ { @@ -2223,7 +2223,7 @@ }, { "cell_type": "markdown", - "id": "66a12501", + "id": "8f9aa2a2", "metadata": {}, "source": [ "##### From a list of dataclasses\n", @@ -2236,7 +2236,7 @@ { "cell_type": "code", "execution_count": 64, - "id": "ea1abfee", + "id": "f181f94d", "metadata": {}, "outputs": [], "source": [ @@ -2246,7 +2246,7 @@ { "cell_type": "code", "execution_count": 65, - "id": "7319f7de", + "id": "554459b9", "metadata": {}, "outputs": [], "source": [ @@ -2256,7 +2256,7 @@ { "cell_type": "code", "execution_count": 66, - "id": "51ca1a8e", + "id": "edee86c9", "metadata": {}, "outputs": [ { @@ -2322,7 +2322,7 @@ }, { "cell_type": "markdown", - "id": "528c7146", + "id": "ba0a6909", "metadata": {}, "source": [ "#### Column selection, addition, deletion\n", @@ -2333,7 +2333,7 @@ { "cell_type": "code", "execution_count": 67, - "id": "f4192eac", + "id": "4e184116", "metadata": {}, "outputs": [ { @@ -2406,7 +2406,7 @@ { "cell_type": "code", "execution_count": 68, - "id": "0b8fedb6", + "id": "b4db4799", "metadata": {}, "outputs": [ { @@ -2431,7 +2431,7 @@ { "cell_type": "code", "execution_count": 69, - "id": "3c2973ff", + "id": "cc33b7d8", "metadata": {}, "outputs": [], "source": [ @@ -2441,7 +2441,7 @@ { "cell_type": "code", "execution_count": 70, - "id": "0ec09e7e", + "id": "767a93a1", "metadata": {}, "outputs": [], "source": [ @@ -2451,7 +2451,7 @@ { "cell_type": "code", "execution_count": 71, - "id": "71b920e5", + "id": "f97041a3", "metadata": {}, "outputs": [ { @@ -2533,7 +2533,7 @@ }, { "cell_type": "markdown", - "id": "94349783", + "id": "2bc6e13d", "metadata": {}, "source": [ "Columns can be deleted or popped like with a dict:" @@ -2542,7 +2542,7 @@ { "cell_type": "code", "execution_count": 72, - "id": "bc4c7040", + "id": "bb5ed406", "metadata": {}, "outputs": [], "source": [ @@ -2552,7 +2552,7 @@ { "cell_type": "code", "execution_count": 73, - "id": "ca3b41f5", + "id": "d64c60cd", "metadata": {}, "outputs": [], "source": [ @@ -2562,7 +2562,7 @@ { "cell_type": "code", "execution_count": 74, - "id": "1b75bbd9", + "id": "4bd2952b", "metadata": {}, "outputs": [ { @@ -2634,7 +2634,7 @@ }, { "cell_type": "markdown", - "id": "564cb705", + "id": "565331e7", "metadata": {}, "source": [ "When inserting a scalar value, it will naturally be propagated to fill the column:" @@ -2643,7 +2643,7 @@ { "cell_type": "code", "execution_count": 75, - "id": "4335cffa", + "id": "e315da87", "metadata": {}, "outputs": [], "source": [ @@ -2653,7 +2653,7 @@ { "cell_type": "code", "execution_count": 76, - "id": "7292c8f8", + "id": "42045478", "metadata": {}, "outputs": [ { @@ -2730,7 +2730,7 @@ }, { "cell_type": "markdown", - "id": "5f7aca48", + "id": "ec612f22", "metadata": {}, "source": [ "When inserting a `Series` that does not have the same index as the `DataFrame`, it will be conformed to the DataFrame’s index:" @@ -2739,7 +2739,7 @@ { "cell_type": "code", "execution_count": 77, - "id": "f53479e2", + "id": "fa0e4fa9", "metadata": {}, "outputs": [], "source": [ @@ -2748,7 +2748,7 @@ }, { "cell_type": "markdown", - "id": "278939ad", + "id": "f7550dac", "metadata": {}, "source": [ "
\n", @@ -2764,7 +2764,7 @@ { "cell_type": "code", "execution_count": 78, - "id": "30ff2b10", + "id": "405abded", "metadata": {}, "outputs": [ { @@ -2846,7 +2846,7 @@ }, { "cell_type": "markdown", - "id": "98fc0a6a", + "id": "a0232c81", "metadata": {}, "source": [ "You can insert raw ndarrays but their length must match the length of the DataFrame’s index.\n", @@ -2857,7 +2857,7 @@ { "cell_type": "code", "execution_count": 79, - "id": "354a441f", + "id": "49780cc3", "metadata": {}, "outputs": [], "source": [ @@ -2867,7 +2867,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "152b4e9d", + "id": "f9231c1d", "metadata": {}, "outputs": [ { @@ -2954,7 +2954,7 @@ }, { "cell_type": "markdown", - "id": "83950985", + "id": "a1efc65b", "metadata": {}, "source": [ "#### Assigning new columns in method chains\n", @@ -2965,7 +2965,7 @@ { "cell_type": "code", "execution_count": 81, - "id": "32767de5", + "id": "7f1b0dad", "metadata": {}, "outputs": [], "source": [ @@ -2975,7 +2975,7 @@ { "cell_type": "code", "execution_count": 82, - "id": "70fef73a", + "id": "9aa6cfda", "metadata": {}, "outputs": [ { @@ -3072,7 +3072,7 @@ { "cell_type": "code", "execution_count": 83, - "id": "5fd09cc8", + "id": "89a45800", "metadata": {}, "outputs": [ { @@ -3174,7 +3174,7 @@ }, { "cell_type": "markdown", - "id": "6c2ddf3d", + "id": "dfe2eed4", "metadata": {}, "source": [ "In the example above, we inserted a precomputed value. We can also pass in a function of one argument to be evaluated on the DataFrame being assigned to." @@ -3183,7 +3183,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "7cf7af6a", + "id": "aa246290", "metadata": {}, "outputs": [ { @@ -3285,7 +3285,7 @@ }, { "cell_type": "markdown", - "id": "0b770ffb", + "id": "24c74f56", "metadata": {}, "source": [ "`assign()` **always** returns a copy of the data, leaving the original DataFrame untouched.\n", @@ -3296,7 +3296,7 @@ { "cell_type": "code", "execution_count": 85, - "id": "87e414ef", + "id": "3f445420", "metadata": {}, "outputs": [ { @@ -3337,7 +3337,7 @@ }, { "cell_type": "markdown", - "id": "c345c2bc", + "id": "9f04072f", "metadata": {}, "source": [ "Since a function is passed in, the function is computed on the DataFrame being assigned to. Importantly, this is the DataFrame that’s been filtered to those rows with sepal length greater than 5. The filtering happens first, and then the ratio calculations. This is an example where we didn’t have a reference to the filtered DataFrame available.\n", @@ -3350,7 +3350,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "f59ac464", + "id": "bda7c5b8", "metadata": {}, "outputs": [], "source": [ @@ -3360,7 +3360,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "82407b08", + "id": "c1b52bea", "metadata": {}, "outputs": [ { @@ -3434,7 +3434,7 @@ }, { "cell_type": "markdown", - "id": "e1f089fc", + "id": "46bea5d0", "metadata": {}, "source": [ "In the second expression, `x['C']` will refer to the newly created column, that’s equal to `dfa['A'] + dfa['B']`.\n", @@ -3470,7 +3470,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "51194b0e", + "id": "8a0bc94a", "metadata": {}, "outputs": [ { @@ -3495,7 +3495,7 @@ }, { "cell_type": "markdown", - "id": "19d9e268", + "id": "99503689", "metadata": {}, "source": [ "#### Data alignment and arithmetic\n", @@ -3506,7 +3506,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "1c615e3c", + "id": "09140acc", "metadata": {}, "outputs": [], "source": [ @@ -3516,7 +3516,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "f4d74e64", + "id": "c33d7251", "metadata": {}, "outputs": [], "source": [ @@ -3526,7 +3526,7 @@ { "cell_type": "code", "execution_count": 91, - "id": "c04e8814", + "id": "23779fd8", "metadata": {}, "outputs": [ { @@ -3559,51 +3559,51 @@ " \n", " \n", " 0\n", - " 1.938289\n", - " -1.140174\n", - " 0.636149\n", + " -1.034449\n", + " 0.718916\n", + " 0.140419\n", " NaN\n", " \n", " \n", " 1\n", - " -0.333547\n", - " -1.978089\n", - " -2.212816\n", + " 1.765848\n", + " 0.010122\n", + " 0.636368\n", " NaN\n", " \n", " \n", " 2\n", - " 0.550698\n", - " -0.838375\n", - " 1.471565\n", + " -0.855305\n", + " 0.230352\n", + " 0.573435\n", " NaN\n", " \n", " \n", " 3\n", - " -0.327891\n", - " 0.164710\n", - " -0.034419\n", + " -0.509938\n", + " 1.352540\n", + " -0.631656\n", " NaN\n", " \n", " \n", " 4\n", - " -1.186627\n", - " 1.248285\n", - " -1.026850\n", + " -1.162460\n", + " 1.902037\n", + " -0.058588\n", " NaN\n", " \n", " \n", " 5\n", - " -0.222568\n", - " 0.453327\n", - " -0.254878\n", + " -0.052771\n", + " -1.345608\n", + " 3.168266\n", " NaN\n", " \n", " \n", " 6\n", - " 0.633955\n", - " -0.228996\n", - " -0.479126\n", + " -1.440110\n", + " -0.183173\n", + " 0.280195\n", " NaN\n", " \n", " \n", @@ -3633,13 +3633,13 @@ ], "text/plain": [ " A B C D\n", - "0 1.938289 -1.140174 0.636149 NaN\n", - "1 -0.333547 -1.978089 -2.212816 NaN\n", - "2 0.550698 -0.838375 1.471565 NaN\n", - "3 -0.327891 0.164710 -0.034419 NaN\n", - "4 -1.186627 1.248285 -1.026850 NaN\n", - "5 -0.222568 0.453327 -0.254878 NaN\n", - "6 0.633955 -0.228996 -0.479126 NaN\n", + "0 -1.034449 0.718916 0.140419 NaN\n", + "1 1.765848 0.010122 0.636368 NaN\n", + "2 -0.855305 0.230352 0.573435 NaN\n", + "3 -0.509938 1.352540 -0.631656 NaN\n", + "4 -1.162460 1.902037 -0.058588 NaN\n", + "5 -0.052771 -1.345608 3.168266 NaN\n", + "6 -1.440110 -0.183173 0.280195 NaN\n", "7 NaN NaN NaN NaN\n", "8 NaN NaN NaN NaN\n", "9 NaN NaN NaN NaN" @@ -3656,7 +3656,7 @@ }, { "cell_type": "markdown", - "id": "734f1044", + "id": "cc116b6a", "metadata": {}, "source": [ "When doing an operation between `DataFrame` and `Series`, the default behavior is to align the `Series` **index** on the `DataFrame` **columns**, thus broadcasting row-wise. For example:" @@ -3665,7 +3665,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "f58e9327", + "id": "fab7d849", "metadata": {}, "outputs": [ { @@ -3705,66 +3705,66 @@ " \n", " \n", " 1\n", - " -1.101803\n", - " -0.220413\n", - " -2.593279\n", - " 1.620655\n", + " 0.537551\n", + " -1.578889\n", + " -1.614495\n", + " 1.598048\n", " \n", " \n", " 2\n", - " 0.068538\n", - " 1.015590\n", - " 0.226181\n", - " 0.923644\n", + " 1.573832\n", + " -0.441195\n", + " -1.954656\n", + " 1.888938\n", " \n", " \n", " 3\n", - " -2.347642\n", - " 1.316404\n", - " -2.190830\n", - " -0.109201\n", + " 0.325417\n", + " 0.719227\n", + " -3.141645\n", + " -0.030097\n", " \n", " \n", " 4\n", - " -1.972145\n", - " 2.061189\n", - " -1.520099\n", - " 2.831710\n", + " 0.351423\n", + " 0.296638\n", + " -1.667557\n", + " 2.071918\n", " \n", " \n", " 5\n", - " -2.133826\n", - " 1.770103\n", - " -1.540134\n", - " -0.262551\n", + " 0.706899\n", + " -1.667650\n", + " -1.156199\n", + " 0.343590\n", " \n", " \n", " 6\n", - " -1.192581\n", - " -0.102234\n", - " -0.723358\n", - " 1.496272\n", + " 0.394004\n", + " -1.852758\n", + " -2.264064\n", + " -0.252468\n", " \n", " \n", " 7\n", - " -2.517685\n", - " 0.788104\n", - " -0.547242\n", - " 0.663964\n", + " 1.875723\n", + " -0.890963\n", + " -3.212639\n", + " 0.738720\n", " \n", " \n", " 8\n", - " -0.933610\n", - " 1.628095\n", - " -2.522593\n", - " 2.912042\n", + " 1.322616\n", + " -0.894232\n", + " -0.643626\n", + " 1.804562\n", " \n", " \n", " 9\n", - " 0.778824\n", - " 1.221680\n", - " 0.491084\n", - " 1.951644\n", + " 0.666647\n", + " 0.375275\n", + " -1.202656\n", + " 0.855678\n", " \n", " \n", "\n", @@ -3773,15 +3773,15 @@ "text/plain": [ " A B C D\n", "0 0.000000 0.000000 0.000000 0.000000\n", - "1 -1.101803 -0.220413 -2.593279 1.620655\n", - "2 0.068538 1.015590 0.226181 0.923644\n", - "3 -2.347642 1.316404 -2.190830 -0.109201\n", - "4 -1.972145 2.061189 -1.520099 2.831710\n", - "5 -2.133826 1.770103 -1.540134 -0.262551\n", - "6 -1.192581 -0.102234 -0.723358 1.496272\n", - "7 -2.517685 0.788104 -0.547242 0.663964\n", - "8 -0.933610 1.628095 -2.522593 2.912042\n", - "9 0.778824 1.221680 0.491084 1.951644" + "1 0.537551 -1.578889 -1.614495 1.598048\n", + "2 1.573832 -0.441195 -1.954656 1.888938\n", + "3 0.325417 0.719227 -3.141645 -0.030097\n", + "4 0.351423 0.296638 -1.667557 2.071918\n", + "5 0.706899 -1.667650 -1.156199 0.343590\n", + "6 0.394004 -1.852758 -2.264064 -0.252468\n", + "7 1.875723 -0.890963 -3.212639 0.738720\n", + "8 1.322616 -0.894232 -0.643626 1.804562\n", + "9 0.666647 0.375275 -1.202656 0.855678" ] }, "execution_count": 92, @@ -3795,7 +3795,7 @@ }, { "cell_type": "markdown", - "id": "6e3ca9f7", + "id": "44e2514e", "metadata": {}, "source": [ "Arithmetic operations with scalars operate element-wise:" @@ -3804,7 +3804,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "2750cef8", + "id": "4162de20", "metadata": {}, "outputs": [ { @@ -3837,90 +3837,90 @@ " \n", " \n", " 0\n", - " 8.690103\n", - " -4.964126\n", - " 8.953588\n", - " -2.910925\n", + " -2.447541\n", + " 7.522482\n", + " 10.973291\n", + " -2.429113\n", " \n", " \n", " 1\n", - " 3.181089\n", - " -6.066191\n", - " -4.012809\n", - " 5.192351\n", + " 0.240213\n", + " -0.371962\n", + " 2.900815\n", + " 5.561129\n", " \n", " \n", " 2\n", - " 9.032792\n", - " 0.113825\n", - " 10.084493\n", - " 1.707296\n", + " 5.421622\n", + " 5.316509\n", + " 1.200010\n", + " 7.015574\n", " \n", " \n", " 3\n", - " -3.048106\n", - " 1.617895\n", - " -2.000559\n", - " -3.456930\n", + " -0.820455\n", + " 11.118616\n", + " -4.734936\n", + " -2.579596\n", " \n", " \n", " 4\n", - " -1.170624\n", - " 5.341817\n", - " 1.353092\n", - " 11.247627\n", + " -0.690424\n", + " 9.005674\n", + " 2.635504\n", + " 7.930478\n", " \n", " \n", " 5\n", - " -1.979029\n", - " 3.886391\n", - " 1.252916\n", - " -4.223682\n", + " 1.086953\n", + " -0.815768\n", + " 5.192298\n", + " -0.711166\n", " \n", " \n", " 6\n", - " 2.727199\n", - " -5.475294\n", - " 5.336799\n", - " 4.570434\n", + " -0.477520\n", + " -1.741306\n", + " -0.347029\n", + " -3.691456\n", " \n", " \n", " 7\n", - " -3.898321\n", - " -1.023605\n", - " 6.217379\n", - " 0.408894\n", + " 6.931074\n", + " 3.067669\n", + " -5.089906\n", + " 1.264485\n", " \n", " \n", " 8\n", - " 4.022055\n", - " 3.176348\n", - " -3.659379\n", - " 11.649288\n", + " 4.165539\n", + " 3.051320\n", + " 7.755160\n", + " 6.593695\n", " \n", " \n", " 9\n", - " 12.584223\n", - " 1.144275\n", - " 11.409009\n", - " 6.847297\n", + " 0.885692\n", + " 9.398856\n", + " 4.960012\n", + " 1.849276\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " A B C D\n", - "0 8.690103 -4.964126 8.953588 -2.910925\n", - "1 3.181089 -6.066191 -4.012809 5.192351\n", - "2 9.032792 0.113825 10.084493 1.707296\n", - "3 -3.048106 1.617895 -2.000559 -3.456930\n", - "4 -1.170624 5.341817 1.353092 11.247627\n", - "5 -1.979029 3.886391 1.252916 -4.223682\n", - "6 2.727199 -5.475294 5.336799 4.570434\n", - "7 -3.898321 -1.023605 6.217379 0.408894\n", - "8 4.022055 3.176348 -3.659379 11.649288\n", - "9 12.584223 1.144275 11.409009 6.847297" + " A B C D\n", + "0 -2.447541 7.522482 10.973291 -2.429113\n", + "1 0.240213 -0.371962 2.900815 5.561129\n", + "2 5.421622 5.316509 1.200010 7.015574\n", + "3 -0.820455 11.118616 -4.734936 -2.579596\n", + "4 -0.690424 9.005674 2.635504 7.930478\n", + "5 1.086953 -0.815768 5.192298 -0.711166\n", + "6 -0.477520 -1.741306 -0.347029 -3.691456\n", + "7 6.931074 3.067669 -5.089906 1.264485\n", + "8 4.165539 3.051320 7.755160 6.593695\n", + "9 0.885692 9.398856 4.960012 1.849276" ] }, "execution_count": 93, @@ -3935,7 +3935,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "e241bef9", + "id": "a8608325", "metadata": {}, "outputs": [ { @@ -3968,90 +3968,90 @@ " \n", " \n", " 0\n", - " 0.747373\n", - " -0.717965\n", - " 0.719053\n", - " -1.018138\n", + " -1.124217\n", + " 0.905390\n", + " 0.557209\n", + " -1.128894\n", " \n", " \n", " 1\n", - " 4.233381\n", - " -0.619871\n", - " -0.831558\n", - " 1.566244\n", + " -2.841254\n", + " -2.107959\n", + " 5.550530\n", + " 1.404049\n", " \n", " \n", " 2\n", - " 0.710955\n", - " -2.650868\n", - " 0.618468\n", - " -17.082084\n", + " 1.461295\n", + " 1.507609\n", + " -6.250077\n", + " 0.996895\n", " \n", " \n", " 3\n", - " -0.990470\n", - " -13.085397\n", - " -1.249825\n", - " -0.916266\n", + " -1.772764\n", + " 0.548329\n", + " -0.742398\n", + " -1.091799\n", " \n", " \n", " 4\n", - " -1.576977\n", - " 1.496192\n", - " -7.729076\n", - " 0.540679\n", + " -1.858443\n", + " 0.713707\n", + " 7.867773\n", + " 0.843102\n", " \n", " \n", " 5\n", - " -1.256588\n", - " 2.650564\n", - " -6.692684\n", - " -0.803383\n", + " -5.476172\n", + " -1.775714\n", + " 1.566270\n", + " -1.844225\n", " \n", " \n", " 6\n", - " 6.875699\n", - " -0.668870\n", - " 1.498442\n", - " 1.945197\n", + " -2.018147\n", + " -1.336432\n", + " -2.130353\n", + " -0.878510\n", " \n", " \n", " 7\n", - " -0.847699\n", - " -1.653655\n", - " 1.185571\n", - " -3.142468\n", + " 1.013978\n", + " 4.683100\n", + " -0.705228\n", + " -6.797955\n", " \n", " \n", " 8\n", - " 2.472732\n", - " 4.250443\n", - " -0.883489\n", - " 0.518173\n", + " 2.308894\n", + " 4.755925\n", + " 0.868786\n", + " 1.088448\n", " \n", " \n", " 9\n", - " 0.472401\n", - " -5.843001\n", - " 0.531406\n", - " 1.031503\n", + " -4.487090\n", + " 0.675780\n", + " 1.689182\n", + " -33.173253\n", " \n", " \n", "\n", "" ], "text/plain": [ - " A B C D\n", - "0 0.747373 -0.717965 0.719053 -1.018138\n", - "1 4.233381 -0.619871 -0.831558 1.566244\n", - "2 0.710955 -2.650868 0.618468 -17.082084\n", - "3 -0.990470 -13.085397 -1.249825 -0.916266\n", - "4 -1.576977 1.496192 -7.729076 0.540679\n", - "5 -1.256588 2.650564 -6.692684 -0.803383\n", - "6 6.875699 -0.668870 1.498442 1.945197\n", - "7 -0.847699 -1.653655 1.185571 -3.142468\n", - "8 2.472732 4.250443 -0.883489 0.518173\n", - "9 0.472401 -5.843001 0.531406 1.031503" + " A B C D\n", + "0 -1.124217 0.905390 0.557209 -1.128894\n", + "1 -2.841254 -2.107959 5.550530 1.404049\n", + "2 1.461295 1.507609 -6.250077 0.996895\n", + "3 -1.772764 0.548329 -0.742398 -1.091799\n", + "4 -1.858443 0.713707 7.867773 0.843102\n", + "5 -5.476172 -1.775714 1.566270 -1.844225\n", + "6 -2.018147 -1.336432 -2.130353 -0.878510\n", + "7 1.013978 4.683100 -0.705228 -6.797955\n", + "8 2.308894 4.755925 0.868786 1.088448\n", + "9 -4.487090 0.675780 1.689182 -33.173253" ] }, "execution_count": 94, @@ -4066,7 +4066,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "3483d063", + "id": "301ec4ac", "metadata": {}, "outputs": [ { @@ -4099,90 +4099,90 @@ " \n", " \n", " 0\n", - " 3.205170\n", - " 3.763452\n", - " 3.740725\n", - " 0.930621\n", + " 0.626037\n", + " 1.488186\n", + " 10.373539\n", + " 6.157256e-01\n", " \n", " \n", " 1\n", - " 0.003114\n", - " 6.773202\n", - " 2.091364\n", - " 0.166174\n", + " 0.015345\n", + " 0.050647\n", + " 0.001054\n", + " 2.573183e-01\n", " \n", " \n", " 2\n", - " 3.914091\n", - " 0.020251\n", - " 6.834883\n", - " 0.000012\n", + " 0.219305\n", + " 0.193573\n", + " 0.000655\n", + " 1.012518e+00\n", " \n", " \n", " 3\n", - " 1.039044\n", - " 0.000034\n", - " 0.409829\n", - " 1.418775\n", + " 0.101250\n", + " 11.062052\n", + " 3.291954\n", + " 7.037668e-01\n", " \n", " \n", " 4\n", - " 0.161696\n", - " 0.199549\n", - " 0.000280\n", - " 11.701491\n", + " 0.083831\n", + " 3.854071\n", + " 0.000261\n", + " 1.979150e+00\n", " \n", " \n", " 5\n", - " 0.401078\n", - " 0.020260\n", - " 0.000498\n", - " 2.400543\n", + " 0.001112\n", + " 0.100579\n", + " 0.166163\n", + " 8.644588e-02\n", " \n", " \n", " 6\n", - " 0.000447\n", - " 4.996122\n", - " 0.198354\n", - " 0.069847\n", + " 0.060282\n", + " 0.313482\n", + " 0.048550\n", + " 1.678856e+00\n", " \n", " \n", " 7\n", - " 1.936572\n", - " 0.133727\n", - " 0.506163\n", - " 0.010255\n", + " 0.945989\n", + " 0.002079\n", + " 4.042796\n", + " 4.682598e-04\n", " \n", " \n", " 8\n", - " 0.026748\n", - " 0.003064\n", - " 1.641327\n", - " 13.870784\n", + " 0.035187\n", + " 0.001955\n", + " 1.755293\n", + " 7.124734e-01\n", " \n", " \n", " 9\n", - " 20.079636\n", - " 0.000858\n", - " 12.539944\n", - " 0.883321\n", + " 0.002467\n", + " 4.794885\n", + " 0.122827\n", + " 8.257484e-07\n", " \n", " \n", "\n", "" ], "text/plain": [ - " A B C D\n", - "0 3.205170 3.763452 3.740725 0.930621\n", - "1 0.003114 6.773202 2.091364 0.166174\n", - "2 3.914091 0.020251 6.834883 0.000012\n", - "3 1.039044 0.000034 0.409829 1.418775\n", - "4 0.161696 0.199549 0.000280 11.701491\n", - "5 0.401078 0.020260 0.000498 2.400543\n", - "6 0.000447 4.996122 0.198354 0.069847\n", - "7 1.936572 0.133727 0.506163 0.010255\n", - "8 0.026748 0.003064 1.641327 13.870784\n", - "9 20.079636 0.000858 12.539944 0.883321" + " A B C D\n", + "0 0.626037 1.488186 10.373539 6.157256e-01\n", + "1 0.015345 0.050647 0.001054 2.573183e-01\n", + "2 0.219305 0.193573 0.000655 1.012518e+00\n", + "3 0.101250 11.062052 3.291954 7.037668e-01\n", + "4 0.083831 3.854071 0.000261 1.979150e+00\n", + "5 0.001112 0.100579 0.166163 8.644588e-02\n", + "6 0.060282 0.313482 0.048550 1.678856e+00\n", + "7 0.945989 0.002079 4.042796 4.682598e-04\n", + "8 0.035187 0.001955 1.755293 7.124734e-01\n", + "9 0.002467 4.794885 0.122827 8.257484e-07" ] }, "execution_count": 95, @@ -4196,7 +4196,7 @@ }, { "cell_type": "markdown", - "id": "ef7631f9", + "id": "8e24ac3b", "metadata": {}, "source": [ "Boolean operators operate element-wise as well:" @@ -4205,7 +4205,7 @@ { "cell_type": "code", "execution_count": 96, - "id": "fda09da3", + "id": "22cf9221", "metadata": {}, "outputs": [], "source": [ @@ -4215,7 +4215,7 @@ { "cell_type": "code", "execution_count": 97, - "id": "9c31d5e5", + "id": "886dbecd", "metadata": {}, "outputs": [], "source": [ @@ -4225,7 +4225,7 @@ { "cell_type": "code", "execution_count": 98, - "id": "af9474cf", + "id": "579d4104", "metadata": {}, "outputs": [ { @@ -4292,7 +4292,7 @@ { "cell_type": "code", "execution_count": 99, - "id": "631b07e4", + "id": "46fa81e5", "metadata": {}, "outputs": [ { @@ -4359,7 +4359,7 @@ { "cell_type": "code", "execution_count": 100, - "id": "50136508", + "id": "43b30b03", "metadata": {}, "outputs": [ { @@ -4426,7 +4426,7 @@ { "cell_type": "code", "execution_count": 101, - "id": "7bec91a6", + "id": "8fcc0a99", "metadata": {}, "outputs": [ { @@ -4492,7 +4492,7 @@ }, { "cell_type": "markdown", - "id": "67963cd4", + "id": "6e9dc9db", "metadata": {}, "source": [ "#### Transposing\n", @@ -4503,7 +4503,7 @@ { "cell_type": "code", "execution_count": 102, - "id": "a46dfd2b", + "id": "25840381", "metadata": {}, "outputs": [ { @@ -4537,35 +4537,35 @@ " \n", " \n", " A\n", - " 1.338021\n", - " 0.236218\n", - " 1.406558\n", - " -1.009621\n", - " -0.634125\n", + " -0.889508\n", + " -0.351957\n", + " 0.684324\n", + " -0.564091\n", + " -0.538085\n", " \n", " \n", " B\n", - " -1.392825\n", - " -1.613238\n", - " -0.377235\n", - " -0.076421\n", - " 0.668363\n", + " 1.104496\n", + " -0.474392\n", + " 0.663302\n", + " 1.823723\n", + " 1.401135\n", " \n", " \n", " C\n", - " 1.390718\n", - " -1.202562\n", - " 1.616899\n", - " -0.800112\n", - " -0.129382\n", + " 1.794658\n", + " 0.180163\n", + " -0.159998\n", + " -1.346987\n", + " 0.127101\n", " \n", " \n", " D\n", - " -0.982185\n", - " 0.638470\n", - " -0.058541\n", - " -1.091386\n", - " 1.849525\n", + " -0.885823\n", + " 0.712226\n", + " 1.003115\n", + " -0.915919\n", + " 1.186096\n", " \n", " \n", "\n", @@ -4573,10 +4573,10 @@ ], "text/plain": [ " 0 1 2 3 4\n", - "A 1.338021 0.236218 1.406558 -1.009621 -0.634125\n", - "B -1.392825 -1.613238 -0.377235 -0.076421 0.668363\n", - "C 1.390718 -1.202562 1.616899 -0.800112 -0.129382\n", - "D -0.982185 0.638470 -0.058541 -1.091386 1.849525" + "A -0.889508 -0.351957 0.684324 -0.564091 -0.538085\n", + "B 1.104496 -0.474392 0.663302 1.823723 1.401135\n", + "C 1.794658 0.180163 -0.159998 -1.346987 0.127101\n", + "D -0.885823 0.712226 1.003115 -0.915919 1.186096" ] }, "execution_count": 102, @@ -4590,7 +4590,7 @@ }, { "cell_type": "markdown", - "id": "fee49079", + "id": "da179310", "metadata": {}, "source": [ "## Data indexing and selection\n", @@ -4652,7 +4652,7 @@ { "cell_type": "code", "execution_count": 103, - "id": "78df7f60", + "id": "b935bcf2", "metadata": {}, "outputs": [ { @@ -4685,59 +4685,59 @@ " \n", " \n", " 2000-01-01\n", - " -0.126083\n", - " 1.124162\n", - " 0.746454\n", - " -0.436304\n", + " 0.560977\n", + " 0.210545\n", + " 0.158079\n", + " 0.492279\n", " \n", " \n", " 2000-01-02\n", - " -2.271031\n", - " 0.382363\n", - " -0.238042\n", - " -0.541674\n", + " 1.280369\n", + " -0.817745\n", + " -1.522940\n", + " -1.275264\n", " \n", " \n", " 2000-01-03\n", - " -0.156005\n", - " -0.677000\n", - " 1.040590\n", - " 0.375113\n", + " 0.156302\n", + " -0.313090\n", + " -1.386411\n", + " -0.757229\n", " \n", " \n", " 2000-01-04\n", - " 0.499199\n", - " 0.940028\n", - " -0.578809\n", - " 0.801034\n", + " 0.528869\n", + " -0.542066\n", + " 1.345872\n", + " -0.706867\n", " \n", " \n", " 2000-01-05\n", - " -1.479590\n", - " 1.212574\n", - " -0.860701\n", - " 0.420002\n", + " -2.466330\n", + " 0.731123\n", + " -2.066561\n", + " -1.477377\n", " \n", " \n", " 2000-01-06\n", - " -1.101812\n", - " 1.470503\n", - " -0.480429\n", - " 0.183815\n", + " -0.300497\n", + " 0.207552\n", + " -0.639468\n", + " -0.950777\n", " \n", " \n", " 2000-01-07\n", - " -0.728127\n", - " -0.849831\n", - " 0.378479\n", - " -0.286694\n", + " -2.626322\n", + " -1.072332\n", + " -1.523701\n", + " -1.489816\n", " \n", " \n", " 2000-01-08\n", - " -0.588470\n", - " -0.233232\n", - " -0.068424\n", - " -0.869610\n", + " -0.960255\n", + " -0.402632\n", + " -0.397366\n", + " 0.085742\n", " \n", " \n", "\n", @@ -4745,14 +4745,14 @@ ], "text/plain": [ " A B C D\n", - "2000-01-01 -0.126083 1.124162 0.746454 -0.436304\n", - "2000-01-02 -2.271031 0.382363 -0.238042 -0.541674\n", - "2000-01-03 -0.156005 -0.677000 1.040590 0.375113\n", - "2000-01-04 0.499199 0.940028 -0.578809 0.801034\n", - "2000-01-05 -1.479590 1.212574 -0.860701 0.420002\n", - "2000-01-06 -1.101812 1.470503 -0.480429 0.183815\n", - "2000-01-07 -0.728127 -0.849831 0.378479 -0.286694\n", - "2000-01-08 -0.588470 -0.233232 -0.068424 -0.869610" + "2000-01-01 0.560977 0.210545 0.158079 0.492279\n", + "2000-01-02 1.280369 -0.817745 -1.522940 -1.275264\n", + "2000-01-03 0.156302 -0.313090 -1.386411 -0.757229\n", + "2000-01-04 0.528869 -0.542066 1.345872 -0.706867\n", + "2000-01-05 -2.466330 0.731123 -2.066561 -1.477377\n", + "2000-01-06 -0.300497 0.207552 -0.639468 -0.950777\n", + "2000-01-07 -2.626322 -1.072332 -1.523701 -1.489816\n", + "2000-01-08 -0.960255 -0.402632 -0.397366 0.085742" ] }, "execution_count": 103, @@ -4769,7 +4769,7 @@ }, { "cell_type": "markdown", - "id": "8f9ae5b6", + "id": "4e293d7c", "metadata": {}, "source": [ "```{note}\n", @@ -4782,13 +4782,13 @@ { "cell_type": "code", "execution_count": 104, - "id": "9d5b639e", + "id": "22330c85", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-1.1018121440848014" + "-0.3004967298995864" ] }, "execution_count": 104, @@ -4804,7 +4804,7 @@ }, { "cell_type": "markdown", - "id": "b31cf1fd", + "id": "5915f28e", "metadata": {}, "source": [ "You can pass a list of columns to `[]` to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner:" @@ -4813,7 +4813,7 @@ { "cell_type": "code", "execution_count": 105, - "id": "b51f8349", + "id": "a6f2d214", "metadata": {}, "outputs": [ { @@ -4846,59 +4846,59 @@ " \n", " \n", " 2000-01-01\n", - " -0.126083\n", - " 1.124162\n", - " 0.746454\n", - " -0.436304\n", + " 0.560977\n", + " 0.210545\n", + " 0.158079\n", + " 0.492279\n", " \n", " \n", " 2000-01-02\n", - " -2.271031\n", - " 0.382363\n", - " -0.238042\n", - " -0.541674\n", + " 1.280369\n", + " -0.817745\n", + " -1.522940\n", + " -1.275264\n", " \n", " \n", " 2000-01-03\n", - " -0.156005\n", - " -0.677000\n", - " 1.040590\n", - " 0.375113\n", + " 0.156302\n", + " -0.313090\n", + " -1.386411\n", + " -0.757229\n", " \n", " \n", " 2000-01-04\n", - " 0.499199\n", - " 0.940028\n", - " -0.578809\n", - " 0.801034\n", + " 0.528869\n", + " -0.542066\n", + " 1.345872\n", + " -0.706867\n", " \n", " \n", " 2000-01-05\n", - " -1.479590\n", - " 1.212574\n", - " -0.860701\n", - " 0.420002\n", + " -2.466330\n", + " 0.731123\n", + " -2.066561\n", + " -1.477377\n", " \n", " \n", " 2000-01-06\n", - " -1.101812\n", - " 1.470503\n", - " -0.480429\n", - " 0.183815\n", + " -0.300497\n", + " 0.207552\n", + " -0.639468\n", + " -0.950777\n", " \n", " \n", " 2000-01-07\n", - " -0.728127\n", - " -0.849831\n", - " 0.378479\n", - " -0.286694\n", + " -2.626322\n", + " -1.072332\n", + " -1.523701\n", + " -1.489816\n", " \n", " \n", " 2000-01-08\n", - " -0.588470\n", - " -0.233232\n", - " -0.068424\n", - " -0.869610\n", + " -0.960255\n", + " -0.402632\n", + " -0.397366\n", + " 0.085742\n", " \n", " \n", "\n", @@ -4906,14 +4906,14 @@ ], "text/plain": [ " A B C D\n", - "2000-01-01 -0.126083 1.124162 0.746454 -0.436304\n", - "2000-01-02 -2.271031 0.382363 -0.238042 -0.541674\n", - "2000-01-03 -0.156005 -0.677000 1.040590 0.375113\n", - "2000-01-04 0.499199 0.940028 -0.578809 0.801034\n", - "2000-01-05 -1.479590 1.212574 -0.860701 0.420002\n", - "2000-01-06 -1.101812 1.470503 -0.480429 0.183815\n", - "2000-01-07 -0.728127 -0.849831 0.378479 -0.286694\n", - "2000-01-08 -0.588470 -0.233232 -0.068424 -0.869610" + "2000-01-01 0.560977 0.210545 0.158079 0.492279\n", + "2000-01-02 1.280369 -0.817745 -1.522940 -1.275264\n", + "2000-01-03 0.156302 -0.313090 -1.386411 -0.757229\n", + "2000-01-04 0.528869 -0.542066 1.345872 -0.706867\n", + "2000-01-05 -2.466330 0.731123 -2.066561 -1.477377\n", + "2000-01-06 -0.300497 0.207552 -0.639468 -0.950777\n", + "2000-01-07 -2.626322 -1.072332 -1.523701 -1.489816\n", + "2000-01-08 -0.960255 -0.402632 -0.397366 0.085742" ] }, "execution_count": 105, @@ -4928,7 +4928,7 @@ { "cell_type": "code", "execution_count": 106, - "id": "930f40df", + "id": "13c8e5eb", "metadata": {}, "outputs": [ { @@ -4961,59 +4961,59 @@ " \n", " \n", " 2000-01-01\n", - " 1.124162\n", - " -0.126083\n", - " 0.746454\n", - " -0.436304\n", + " 0.210545\n", + " 0.560977\n", + " 0.158079\n", + " 0.492279\n", " \n", " \n", " 2000-01-02\n", - " 0.382363\n", - " -2.271031\n", - " -0.238042\n", - " -0.541674\n", + " -0.817745\n", + " 1.280369\n", + " -1.522940\n", + " -1.275264\n", " \n", " \n", " 2000-01-03\n", - " -0.677000\n", - " -0.156005\n", - " 1.040590\n", - " 0.375113\n", + " -0.313090\n", + " 0.156302\n", + " -1.386411\n", + " -0.757229\n", " \n", " \n", " 2000-01-04\n", - " 0.940028\n", - " 0.499199\n", - " -0.578809\n", - " 0.801034\n", + " -0.542066\n", + " 0.528869\n", + " 1.345872\n", + " -0.706867\n", " \n", " \n", " 2000-01-05\n", - " 1.212574\n", - " -1.479590\n", - " -0.860701\n", - " 0.420002\n", + " 0.731123\n", + " -2.466330\n", + " -2.066561\n", + " -1.477377\n", " \n", " \n", " 2000-01-06\n", - " 1.470503\n", - " -1.101812\n", - " -0.480429\n", - " 0.183815\n", + " 0.207552\n", + " -0.300497\n", + " -0.639468\n", + " -0.950777\n", " \n", " \n", " 2000-01-07\n", - " -0.849831\n", - " -0.728127\n", - " 0.378479\n", - " -0.286694\n", + " -1.072332\n", + " -2.626322\n", + " -1.523701\n", + " -1.489816\n", " \n", " \n", " 2000-01-08\n", - " -0.233232\n", - " -0.588470\n", - " -0.068424\n", - " -0.869610\n", + " -0.402632\n", + " -0.960255\n", + " -0.397366\n", + " 0.085742\n", " \n", " \n", "\n", @@ -5021,14 +5021,14 @@ ], "text/plain": [ " A B C D\n", - "2000-01-01 1.124162 -0.126083 0.746454 -0.436304\n", - "2000-01-02 0.382363 -2.271031 -0.238042 -0.541674\n", - "2000-01-03 -0.677000 -0.156005 1.040590 0.375113\n", - "2000-01-04 0.940028 0.499199 -0.578809 0.801034\n", - "2000-01-05 1.212574 -1.479590 -0.860701 0.420002\n", - "2000-01-06 1.470503 -1.101812 -0.480429 0.183815\n", - "2000-01-07 -0.849831 -0.728127 0.378479 -0.286694\n", - "2000-01-08 -0.233232 -0.588470 -0.068424 -0.869610" + "2000-01-01 0.210545 0.560977 0.158079 0.492279\n", + "2000-01-02 -0.817745 1.280369 -1.522940 -1.275264\n", + "2000-01-03 -0.313090 0.156302 -1.386411 -0.757229\n", + "2000-01-04 -0.542066 0.528869 1.345872 -0.706867\n", + "2000-01-05 0.731123 -2.466330 -2.066561 -1.477377\n", + "2000-01-06 0.207552 -0.300497 -0.639468 -0.950777\n", + "2000-01-07 -1.072332 -2.626322 -1.523701 -1.489816\n", + "2000-01-08 -0.402632 -0.960255 -0.397366 0.085742" ] }, "execution_count": 106, @@ -5043,7 +5043,7 @@ }, { "cell_type": "markdown", - "id": "fb24660b", + "id": "8bf21d81", "metadata": {}, "source": [ "You may find this useful for applying a transform (in-place) to a subset of the columns.\n", @@ -5058,7 +5058,7 @@ { "cell_type": "code", "execution_count": 107, - "id": "607fa9c0", + "id": "a9e5a725", "metadata": {}, "outputs": [ { @@ -5089,43 +5089,43 @@ " \n", " \n", " 2000-01-01\n", - " 1.124162\n", - " -0.126083\n", + " 0.210545\n", + " 0.560977\n", " \n", " \n", " 2000-01-02\n", - " 0.382363\n", - " -2.271031\n", + " -0.817745\n", + " 1.280369\n", " \n", " \n", " 2000-01-03\n", - " -0.677000\n", - " -0.156005\n", + " -0.313090\n", + " 0.156302\n", " \n", " \n", " 2000-01-04\n", - " 0.940028\n", - " 0.499199\n", + " -0.542066\n", + " 0.528869\n", " \n", " \n", " 2000-01-05\n", - " 1.212574\n", - " -1.479590\n", + " 0.731123\n", + " -2.466330\n", " \n", " \n", " 2000-01-06\n", - " 1.470503\n", - " -1.101812\n", + " 0.207552\n", + " -0.300497\n", " \n", " \n", " 2000-01-07\n", - " -0.849831\n", - " -0.728127\n", + " -1.072332\n", + " -2.626322\n", " \n", " \n", " 2000-01-08\n", - " -0.233232\n", - " -0.588470\n", + " -0.402632\n", + " -0.960255\n", " \n", " \n", "\n", @@ -5133,14 +5133,14 @@ ], "text/plain": [ " A B\n", - "2000-01-01 1.124162 -0.126083\n", - "2000-01-02 0.382363 -2.271031\n", - "2000-01-03 -0.677000 -0.156005\n", - "2000-01-04 0.940028 0.499199\n", - "2000-01-05 1.212574 -1.479590\n", - "2000-01-06 1.470503 -1.101812\n", - "2000-01-07 -0.849831 -0.728127\n", - "2000-01-08 -0.233232 -0.588470" + "2000-01-01 0.210545 0.560977\n", + "2000-01-02 -0.817745 1.280369\n", + "2000-01-03 -0.313090 0.156302\n", + "2000-01-04 -0.542066 0.528869\n", + "2000-01-05 0.731123 -2.466330\n", + "2000-01-06 0.207552 -0.300497\n", + "2000-01-07 -1.072332 -2.626322\n", + "2000-01-08 -0.402632 -0.960255" ] }, "execution_count": 107, @@ -5155,7 +5155,7 @@ { "cell_type": "code", "execution_count": 108, - "id": "793d219d", + "id": "deaf7423", "metadata": {}, "outputs": [ { @@ -5186,43 +5186,43 @@ " \n", " \n", " 2000-01-01\n", - " 1.124162\n", - " -0.126083\n", + " 0.210545\n", + " 0.560977\n", " \n", " \n", " 2000-01-02\n", - " 0.382363\n", - " -2.271031\n", + " -0.817745\n", + " 1.280369\n", " \n", " \n", " 2000-01-03\n", - " -0.677000\n", - " -0.156005\n", + " -0.313090\n", + " 0.156302\n", " \n", " \n", " 2000-01-04\n", - " 0.940028\n", - " 0.499199\n", + " -0.542066\n", + " 0.528869\n", " \n", " \n", " 2000-01-05\n", - " 1.212574\n", - " -1.479590\n", + " 0.731123\n", + " -2.466330\n", " \n", " \n", " 2000-01-06\n", - " 1.470503\n", - " -1.101812\n", + " 0.207552\n", + " -0.300497\n", " \n", " \n", " 2000-01-07\n", - " -0.849831\n", - " -0.728127\n", + " -1.072332\n", + " -2.626322\n", " \n", " \n", " 2000-01-08\n", - " -0.233232\n", - " -0.588470\n", + " -0.402632\n", + " -0.960255\n", " \n", " \n", "\n", @@ -5230,14 +5230,14 @@ ], "text/plain": [ " A B\n", - "2000-01-01 1.124162 -0.126083\n", - "2000-01-02 0.382363 -2.271031\n", - "2000-01-03 -0.677000 -0.156005\n", - "2000-01-04 0.940028 0.499199\n", - "2000-01-05 1.212574 -1.479590\n", - "2000-01-06 1.470503 -1.101812\n", - "2000-01-07 -0.849831 -0.728127\n", - "2000-01-08 -0.233232 -0.588470" + "2000-01-01 0.210545 0.560977\n", + "2000-01-02 -0.817745 1.280369\n", + "2000-01-03 -0.313090 0.156302\n", + "2000-01-04 -0.542066 0.528869\n", + "2000-01-05 0.731123 -2.466330\n", + "2000-01-06 0.207552 -0.300497\n", + "2000-01-07 -1.072332 -2.626322\n", + "2000-01-08 -0.402632 -0.960255" ] }, "execution_count": 108, @@ -5252,7 +5252,7 @@ }, { "cell_type": "markdown", - "id": "ef79aec4", + "id": "396ffe1a", "metadata": {}, "source": [ "```{warning}\n", @@ -5263,7 +5263,7 @@ { "cell_type": "code", "execution_count": 109, - "id": "03f29f2b", + "id": "b313fc4d", "metadata": {}, "outputs": [ { @@ -5294,43 +5294,43 @@ " \n", " \n", " 2000-01-01\n", - " -0.126083\n", - " 1.124162\n", + " 0.560977\n", + " 0.210545\n", " \n", " \n", " 2000-01-02\n", - " -2.271031\n", - " 0.382363\n", + " 1.280369\n", + " -0.817745\n", " \n", " \n", " 2000-01-03\n", - " -0.156005\n", - " -0.677000\n", + " 0.156302\n", + " -0.313090\n", " \n", " \n", " 2000-01-04\n", - " 0.499199\n", - " 0.940028\n", + " 0.528869\n", + " -0.542066\n", " \n", " \n", " 2000-01-05\n", - " -1.479590\n", - " 1.212574\n", + " -2.466330\n", + " 0.731123\n", " \n", " \n", " 2000-01-06\n", - " -1.101812\n", - " 1.470503\n", + " -0.300497\n", + " 0.207552\n", " \n", " \n", " 2000-01-07\n", - " -0.728127\n", - " -0.849831\n", + " -2.626322\n", + " -1.072332\n", " \n", " \n", " 2000-01-08\n", - " -0.588470\n", - " -0.233232\n", + " -0.960255\n", + " -0.402632\n", " \n", " \n", "\n", @@ -5338,14 +5338,14 @@ ], "text/plain": [ " A B\n", - "2000-01-01 -0.126083 1.124162\n", - "2000-01-02 -2.271031 0.382363\n", - "2000-01-03 -0.156005 -0.677000\n", - "2000-01-04 0.499199 0.940028\n", - "2000-01-05 -1.479590 1.212574\n", - "2000-01-06 -1.101812 1.470503\n", - "2000-01-07 -0.728127 -0.849831\n", - "2000-01-08 -0.588470 -0.233232" + "2000-01-01 0.560977 0.210545\n", + "2000-01-02 1.280369 -0.817745\n", + "2000-01-03 0.156302 -0.313090\n", + "2000-01-04 0.528869 -0.542066\n", + "2000-01-05 -2.466330 0.731123\n", + "2000-01-06 -0.300497 0.207552\n", + "2000-01-07 -2.626322 -1.072332\n", + "2000-01-08 -0.960255 -0.402632" ] }, "execution_count": 109, @@ -5360,7 +5360,7 @@ }, { "cell_type": "markdown", - "id": "8cb4f34b", + "id": "e8fc4213", "metadata": {}, "source": [ "### Attribute access\n", @@ -5371,7 +5371,7 @@ { "cell_type": "code", "execution_count": 110, - "id": "e24d8c77", + "id": "a98d540f", "metadata": {}, "outputs": [], "source": [ @@ -5382,7 +5382,7 @@ { "cell_type": "code", "execution_count": 111, - "id": "477b5be0", + "id": "61c5de8c", "metadata": {}, "outputs": [ { @@ -5403,20 +5403,20 @@ { "cell_type": "code", "execution_count": 112, - "id": "28acd4cf", + "id": "82a8a49d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2000-01-01 -0.126083\n", - "2000-01-02 -2.271031\n", - "2000-01-03 -0.156005\n", - "2000-01-04 0.499199\n", - "2000-01-05 -1.479590\n", - "2000-01-06 -1.101812\n", - "2000-01-07 -0.728127\n", - "2000-01-08 -0.588470\n", + "2000-01-01 0.560977\n", + "2000-01-02 1.280369\n", + "2000-01-03 0.156302\n", + "2000-01-04 0.528869\n", + "2000-01-05 -2.466330\n", + "2000-01-06 -0.300497\n", + "2000-01-07 -2.626322\n", + "2000-01-08 -0.960255\n", "Freq: D, Name: A, dtype: float64" ] }, @@ -5432,7 +5432,7 @@ { "cell_type": "code", "execution_count": 113, - "id": "b5af76e7", + "id": "c877f27a", "metadata": {}, "outputs": [ { @@ -5457,7 +5457,7 @@ { "cell_type": "code", "execution_count": 114, - "id": "ca3b4196", + "id": "a858572a", "metadata": {}, "outputs": [ { @@ -5491,58 +5491,58 @@ " \n", " 2000-01-01\n", " 0\n", - " 1.124162\n", - " 0.746454\n", - " -0.436304\n", + " 0.210545\n", + " 0.158079\n", + " 0.492279\n", " \n", " \n", " 2000-01-02\n", " 1\n", - " 0.382363\n", - " -0.238042\n", - " -0.541674\n", + " -0.817745\n", + " -1.522940\n", + " -1.275264\n", " \n", " \n", " 2000-01-03\n", " 2\n", - " -0.677000\n", - " 1.040590\n", - " 0.375113\n", + " -0.313090\n", + " -1.386411\n", + " -0.757229\n", " \n", " \n", " 2000-01-04\n", " 3\n", - " 0.940028\n", - " -0.578809\n", - " 0.801034\n", + " -0.542066\n", + " 1.345872\n", + " -0.706867\n", " \n", " \n", " 2000-01-05\n", " 4\n", - " 1.212574\n", - " -0.860701\n", - " 0.420002\n", + " 0.731123\n", + " -2.066561\n", + " -1.477377\n", " \n", " \n", " 2000-01-06\n", " 5\n", - " 1.470503\n", - " -0.480429\n", - " 0.183815\n", + " 0.207552\n", + " -0.639468\n", + " -0.950777\n", " \n", " \n", " 2000-01-07\n", " 6\n", - " -0.849831\n", - " 0.378479\n", - " -0.286694\n", + " -1.072332\n", + " -1.523701\n", + " -1.489816\n", " \n", " \n", " 2000-01-08\n", " 7\n", - " -0.233232\n", - " -0.068424\n", - " -0.869610\n", + " -0.402632\n", + " -0.397366\n", + " 0.085742\n", " \n", " \n", "\n", @@ -5550,14 +5550,14 @@ ], "text/plain": [ " A B C D\n", - "2000-01-01 0 1.124162 0.746454 -0.436304\n", - "2000-01-02 1 0.382363 -0.238042 -0.541674\n", - "2000-01-03 2 -0.677000 1.040590 0.375113\n", - "2000-01-04 3 0.940028 -0.578809 0.801034\n", - "2000-01-05 4 1.212574 -0.860701 0.420002\n", - "2000-01-06 5 1.470503 -0.480429 0.183815\n", - "2000-01-07 6 -0.849831 0.378479 -0.286694\n", - "2000-01-08 7 -0.233232 -0.068424 -0.869610" + "2000-01-01 0 0.210545 0.158079 0.492279\n", + "2000-01-02 1 -0.817745 -1.522940 -1.275264\n", + "2000-01-03 2 -0.313090 -1.386411 -0.757229\n", + "2000-01-04 3 -0.542066 1.345872 -0.706867\n", + "2000-01-05 4 0.731123 -2.066561 -1.477377\n", + "2000-01-06 5 0.207552 -0.639468 -0.950777\n", + "2000-01-07 6 -1.072332 -1.523701 -1.489816\n", + "2000-01-08 7 -0.402632 -0.397366 0.085742" ] }, "execution_count": 114, @@ -5573,7 +5573,7 @@ { "cell_type": "code", "execution_count": 115, - "id": "0a1d5c46", + "id": "5bac073a", "metadata": {}, "outputs": [ { @@ -5607,58 +5607,58 @@ " \n", " 2000-01-01\n", " 0\n", - " 1.124162\n", - " 0.746454\n", - " -0.436304\n", + " 0.210545\n", + " 0.158079\n", + " 0.492279\n", " \n", " \n", " 2000-01-02\n", " 1\n", - " 0.382363\n", - " -0.238042\n", - " -0.541674\n", + " -0.817745\n", + " -1.522940\n", + " -1.275264\n", " \n", " \n", " 2000-01-03\n", " 2\n", - " -0.677000\n", - " 1.040590\n", - " 0.375113\n", + " -0.313090\n", + " -1.386411\n", + " -0.757229\n", " \n", " \n", " 2000-01-04\n", " 3\n", - " 0.940028\n", - " -0.578809\n", - " 0.801034\n", + " -0.542066\n", + " 1.345872\n", + " -0.706867\n", " \n", " \n", " 2000-01-05\n", " 4\n", - " 1.212574\n", - " -0.860701\n", - " 0.420002\n", + " 0.731123\n", + " -2.066561\n", + " -1.477377\n", " \n", " \n", " 2000-01-06\n", " 5\n", - " 1.470503\n", - " -0.480429\n", - " 0.183815\n", + " 0.207552\n", + " -0.639468\n", + " -0.950777\n", " \n", " \n", " 2000-01-07\n", " 6\n", - " -0.849831\n", - " 0.378479\n", - " -0.286694\n", + " -1.072332\n", + " -1.523701\n", + " -1.489816\n", " \n", " \n", " 2000-01-08\n", " 7\n", - " -0.233232\n", - " -0.068424\n", - " -0.869610\n", + " -0.402632\n", + " -0.397366\n", + " 0.085742\n", " \n", " \n", "\n", @@ -5666,14 +5666,14 @@ ], "text/plain": [ " A B C D\n", - "2000-01-01 0 1.124162 0.746454 -0.436304\n", - "2000-01-02 1 0.382363 -0.238042 -0.541674\n", - "2000-01-03 2 -0.677000 1.040590 0.375113\n", - "2000-01-04 3 0.940028 -0.578809 0.801034\n", - "2000-01-05 4 1.212574 -0.860701 0.420002\n", - "2000-01-06 5 1.470503 -0.480429 0.183815\n", - "2000-01-07 6 -0.849831 0.378479 -0.286694\n", - "2000-01-08 7 -0.233232 -0.068424 -0.869610" + "2000-01-01 0 0.210545 0.158079 0.492279\n", + "2000-01-02 1 -0.817745 -1.522940 -1.275264\n", + "2000-01-03 2 -0.313090 -1.386411 -0.757229\n", + "2000-01-04 3 -0.542066 1.345872 -0.706867\n", + "2000-01-05 4 0.731123 -2.066561 -1.477377\n", + "2000-01-06 5 0.207552 -0.639468 -0.950777\n", + "2000-01-07 6 -1.072332 -1.523701 -1.489816\n", + "2000-01-08 7 -0.402632 -0.397366 0.085742" ] }, "execution_count": 115, @@ -5688,7 +5688,7 @@ }, { "cell_type": "markdown", - "id": "1efef744", + "id": "3994e6e9", "metadata": {}, "source": [ "```{warning}\n", @@ -5709,7 +5709,7 @@ { "cell_type": "code", "execution_count": 116, - "id": "e7fe3115", + "id": "b426f182", "metadata": {}, "outputs": [ { @@ -5777,7 +5777,7 @@ }, { "cell_type": "markdown", - "id": "13b4bb2c", + "id": "07c77821", "metadata": {}, "source": [ "You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it creates a new attribute rather than a new column. In 0.21.0 and later, this will raise a `UserWarning`:" @@ -5786,14 +5786,14 @@ { "cell_type": "code", "execution_count": 117, - "id": "5a9826f8", + "id": "d0dd98e4", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6417/269534380.py:2: UserWarning: Pandas doesn't allow columns to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access\n", + "/tmp/ipykernel_6653/269534380.py:2: UserWarning: Pandas doesn't allow columns to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access\n", " df.two = [4, 5, 6]\n" ] } @@ -5806,7 +5806,7 @@ { "cell_type": "code", "execution_count": 118, - "id": "8f8ce533", + "id": "be7d10fd", "metadata": {}, "outputs": [ { @@ -5868,7 +5868,7 @@ }, { "cell_type": "markdown", - "id": "cdac160f", + "id": "24e53e81", "metadata": {}, "source": [ "### Slicing ranges\n", @@ -5881,20 +5881,20 @@ { "cell_type": "code", "execution_count": 119, - "id": "7a2889ca", + "id": "5a0c0c96", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2000-01-01 -0.126083\n", - "2000-01-02 -2.271031\n", - "2000-01-03 -0.156005\n", - "2000-01-04 0.499199\n", - "2000-01-05 -1.479590\n", - "2000-01-06 -1.101812\n", - "2000-01-07 -0.728127\n", - "2000-01-08 -0.588470\n", + "2000-01-01 0.560977\n", + "2000-01-02 1.280369\n", + "2000-01-03 0.156302\n", + "2000-01-04 0.528869\n", + "2000-01-05 -2.466330\n", + "2000-01-06 -0.300497\n", + "2000-01-07 -2.626322\n", + "2000-01-08 -0.960255\n", "Freq: D, Name: A, dtype: float64" ] }, @@ -5910,17 +5910,17 @@ { "cell_type": "code", "execution_count": 120, - "id": "b7ac5731", + "id": "54b3429f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2000-01-01 -0.126083\n", - "2000-01-02 -2.271031\n", - "2000-01-03 -0.156005\n", - "2000-01-04 0.499199\n", - "2000-01-05 -1.479590\n", + "2000-01-01 0.560977\n", + "2000-01-02 1.280369\n", + "2000-01-03 0.156302\n", + "2000-01-04 0.528869\n", + "2000-01-05 -2.466330\n", "Freq: D, Name: A, dtype: float64" ] }, @@ -5936,16 +5936,16 @@ { "cell_type": "code", "execution_count": 121, - "id": "129fd511", + "id": "d5a7989b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2000-01-01 -0.126083\n", - "2000-01-03 -0.156005\n", - "2000-01-05 -1.479590\n", - "2000-01-07 -0.728127\n", + "2000-01-01 0.560977\n", + "2000-01-03 0.156302\n", + "2000-01-05 -2.466330\n", + "2000-01-07 -2.626322\n", "Freq: 2D, Name: A, dtype: float64" ] }, @@ -5961,20 +5961,20 @@ { "cell_type": "code", "execution_count": 122, - "id": "9940f2ed", + "id": "eb35c2a9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "2000-01-08 -0.588470\n", - "2000-01-07 -0.728127\n", - "2000-01-06 -1.101812\n", - "2000-01-05 -1.479590\n", - "2000-01-04 0.499199\n", - "2000-01-03 -0.156005\n", - "2000-01-02 -2.271031\n", - "2000-01-01 -0.126083\n", + "2000-01-08 -0.960255\n", + "2000-01-07 -2.626322\n", + "2000-01-06 -0.300497\n", + "2000-01-05 -2.466330\n", + "2000-01-04 0.528869\n", + "2000-01-03 0.156302\n", + "2000-01-02 1.280369\n", + "2000-01-01 0.560977\n", "Freq: -1D, Name: A, dtype: float64" ] }, @@ -5989,7 +5989,7 @@ }, { "cell_type": "markdown", - "id": "1de71f62", + "id": "d1b310e0", "metadata": {}, "source": [ "Note that setting works as well:" @@ -5998,7 +5998,7 @@ { "cell_type": "code", "execution_count": 123, - "id": "c80021a7", + "id": "2276582f", "metadata": {}, "outputs": [ { @@ -6009,9 +6009,9 @@ "2000-01-03 0.000000\n", "2000-01-04 0.000000\n", "2000-01-05 0.000000\n", - "2000-01-06 -1.101812\n", - "2000-01-07 -0.728127\n", - "2000-01-08 -0.588470\n", + "2000-01-06 -0.300497\n", + "2000-01-07 -2.626322\n", + "2000-01-08 -0.960255\n", "Freq: D, Name: A, dtype: float64" ] }, @@ -6028,7 +6028,7 @@ }, { "cell_type": "markdown", - "id": "fe2494fe", + "id": "6197cb61", "metadata": {}, "source": [ "With DataFrame, slicing inside of `[]` slices the rows. This is provided largely as a convenience since it is such a common operation." @@ -6037,7 +6037,7 @@ { "cell_type": "code", "execution_count": 124, - "id": "d44629c7", + "id": "5dfabbd2", "metadata": {}, "outputs": [ { @@ -6100,7 +6100,7 @@ { "cell_type": "code", "execution_count": 125, - "id": "90e702f1", + "id": "0b091ad1", "metadata": {}, "outputs": [ { @@ -6162,7 +6162,7 @@ }, { "cell_type": "markdown", - "id": "8e5774c8", + "id": "f372a642", "metadata": {}, "source": [ "### Selection by label\n", @@ -6179,7 +6179,7 @@ { "cell_type": "code", "execution_count": 126, - "id": "a0da8bfa", + "id": "e9fef381", "metadata": {}, "outputs": [], "source": [ @@ -6191,7 +6191,7 @@ { "cell_type": "code", "execution_count": 127, - "id": "0e6bf317", + "id": "c7c0a82c", "metadata": { "tags": [ "raises-exception" @@ -6225,7 +6225,7 @@ }, { "cell_type": "markdown", - "id": "9b1ff283", + "id": "7e510c3a", "metadata": {}, "source": [ "```{warning}\n", @@ -6393,7 +6393,7 @@ { "cell_type": "code", "execution_count": 128, - "id": "6e70aad4", + "id": "e4dfb504", "metadata": {}, "outputs": [ { @@ -6416,7 +6416,7 @@ }, { "cell_type": "markdown", - "id": "7242ab20", + "id": "7ac29ebb", "metadata": {}, "source": [ "```\n", @@ -6685,7 +6685,7 @@ { "cell_type": "code", "execution_count": 129, - "id": "ac199218", + "id": "5ae4f102", "metadata": {}, "outputs": [ { @@ -6707,7 +6707,7 @@ { "cell_type": "code", "execution_count": 130, - "id": "438be86b", + "id": "7bd7a10d", "metadata": {}, "outputs": [ { @@ -6728,7 +6728,7 @@ { "cell_type": "code", "execution_count": 131, - "id": "e795cfa0", + "id": "ad3080d1", "metadata": {}, "outputs": [ { @@ -6749,7 +6749,7 @@ { "cell_type": "code", "execution_count": 132, - "id": "f569f73e", + "id": "e867bb76", "metadata": {}, "outputs": [ { @@ -6776,7 +6776,7 @@ }, { "cell_type": "markdown", - "id": "745e906f", + "id": "af6e7b98", "metadata": {}, "source": [ "```\n", @@ -6796,7 +6796,7 @@ { "cell_type": "code", "execution_count": 133, - "id": "e3e4b01e", + "id": "8a35458d", "metadata": {}, "outputs": [ { @@ -6816,7 +6816,7 @@ }, { "cell_type": "markdown", - "id": "d3f6b4af", + "id": "b8e6a3c1", "metadata": {}, "source": [ "Note that using slices that go out of bounds can result in an empty axis (e.g. an empty DataFrame being returned)." @@ -6825,7 +6825,7 @@ { "cell_type": "code", "execution_count": 134, - "id": "93df50f2", + "id": "25e335a7", "metadata": {}, "outputs": [], "source": [ @@ -6834,7 +6834,7 @@ }, { "cell_type": "markdown", - "id": "1a58db3c", + "id": "e7495804", "metadata": {}, "source": [ "```\n", @@ -6882,7 +6882,7 @@ { "cell_type": "code", "execution_count": 135, - "id": "e68c8cd0", + "id": "53fc3ae2", "metadata": { "tags": [ "raises-exception" @@ -6919,7 +6919,7 @@ { "cell_type": "code", "execution_count": 136, - "id": "a4013b9d", + "id": "5e7fcb6a", "metadata": { "tags": [ "raises-exception" @@ -6949,7 +6949,7 @@ }, { "cell_type": "markdown", - "id": "a3747a10", + "id": "892741d4", "metadata": {}, "source": [ "### Selection by callable\n", @@ -7097,7 +7097,7 @@ { "cell_type": "code", "execution_count": 137, - "id": "a5ad3a1e", + "id": "b7d161ac", "metadata": {}, "outputs": [ { @@ -7123,7 +7123,7 @@ }, { "cell_type": "markdown", - "id": "19d047e2", + "id": "536e63da", "metadata": {}, "source": [ "Clear the existing index and reset it in the result by setting the `ignore_index` option to `True`." @@ -7132,7 +7132,7 @@ { "cell_type": "code", "execution_count": 138, - "id": "1b7d1db0", + "id": "719d8cb5", "metadata": {}, "outputs": [ { @@ -7156,7 +7156,7 @@ }, { "cell_type": "markdown", - "id": "45e91234", + "id": "84bf44f8", "metadata": {}, "source": [ "Add a hierarchical index at the outermost level of the data with the `keys` option." @@ -7165,7 +7165,7 @@ { "cell_type": "code", "execution_count": 139, - "id": "481f1585", + "id": "5cb97b32", "metadata": {}, "outputs": [ { @@ -7189,7 +7189,7 @@ }, { "cell_type": "markdown", - "id": "6fe6211e", + "id": "5ca9c583", "metadata": {}, "source": [ "Label the index keys you create with the `names` option." @@ -7198,7 +7198,7 @@ { "cell_type": "code", "execution_count": 140, - "id": "2793fd2e", + "id": "30495b2a", "metadata": {}, "outputs": [ { @@ -7224,7 +7224,7 @@ }, { "cell_type": "markdown", - "id": "8b90cc4c", + "id": "14f306df", "metadata": {}, "source": [ "Combine two `DataFrame` objects with identical columns." @@ -7233,7 +7233,7 @@ { "cell_type": "code", "execution_count": 141, - "id": "d2cbd845", + "id": "ad1562dc", "metadata": {}, "outputs": [ { @@ -7296,7 +7296,7 @@ { "cell_type": "code", "execution_count": 142, - "id": "795d07c0", + "id": "32c10016", "metadata": {}, "outputs": [ { @@ -7359,7 +7359,7 @@ { "cell_type": "code", "execution_count": 143, - "id": "b26e4094", + "id": "9f2bcc6b", "metadata": {}, "outputs": [ { @@ -7431,7 +7431,7 @@ }, { "cell_type": "markdown", - "id": "04e4c529", + "id": "1388bff8", "metadata": {}, "source": [ "Combine `DataFrame` objects with overlapping columns and return everything. Columns outside the intersection will be filled with `NaN` values." @@ -7440,7 +7440,7 @@ { "cell_type": "code", "execution_count": 144, - "id": "f39addfd", + "id": "1af4bd95", "metadata": {}, "outputs": [ { @@ -7506,7 +7506,7 @@ { "cell_type": "code", "execution_count": 145, - "id": "33ce3db5", + "id": "f35f5d58", "metadata": {}, "outputs": [ { @@ -7583,7 +7583,7 @@ }, { "cell_type": "markdown", - "id": "15670b3e", + "id": "c6d49897", "metadata": {}, "source": [ "Combine DataFrame objects with overlapping columns and return only those that are shared by passing inner to the join keyword argument." @@ -7592,7 +7592,7 @@ { "cell_type": "code", "execution_count": 146, - "id": "ba054031", + "id": "7c70e2ea", "metadata": {}, "outputs": [ { @@ -7664,7 +7664,7 @@ }, { "cell_type": "markdown", - "id": "b0a69e80", + "id": "c2bef60d", "metadata": {}, "source": [ "Combine `DataFrame` objects horizontally along the x-axis by passing in `axis=1`." @@ -7673,7 +7673,7 @@ { "cell_type": "code", "execution_count": 147, - "id": "7ee9fe4e", + "id": "f0415db2", "metadata": {}, "outputs": [ { @@ -7741,7 +7741,7 @@ }, { "cell_type": "markdown", - "id": "b41dd40f", + "id": "e6542c8a", "metadata": {}, "source": [ "Prevent the result from including duplicate index values with the `verify_integrity` option." @@ -7750,7 +7750,7 @@ { "cell_type": "code", "execution_count": 148, - "id": "f1f74bfb", + "id": "09bd4fc6", "metadata": {}, "outputs": [ { @@ -7804,7 +7804,7 @@ { "cell_type": "code", "execution_count": 149, - "id": "f1f0690c", + "id": "6de38271", "metadata": {}, "outputs": [ { @@ -7858,7 +7858,7 @@ { "cell_type": "code", "execution_count": 150, - "id": "0b7451b8", + "id": "ef259211", "metadata": { "tags": [ "raises-exception" @@ -7891,7 +7891,7 @@ }, { "cell_type": "markdown", - "id": "e855fe06", + "id": "f4fec58f", "metadata": {}, "source": [ " \n", @@ -7901,7 +7901,7 @@ { "cell_type": "code", "execution_count": 151, - "id": "172d9fcf", + "id": "ae1083e5", "metadata": {}, "outputs": [ { @@ -7957,7 +7957,7 @@ { "cell_type": "code", "execution_count": 152, - "id": "dd22b000", + "id": "c0b7743e", "metadata": {}, "outputs": [ { @@ -7981,7 +7981,7 @@ { "cell_type": "code", "execution_count": 153, - "id": "e2d91f6d", + "id": "860d7a02", "metadata": {}, "outputs": [ { @@ -8041,7 +8041,7 @@ }, { "cell_type": "markdown", - "id": "66927017", + "id": "d6000108", "metadata": {}, "source": [ "```{note}\n", @@ -8090,7 +8090,7 @@ { "cell_type": "code", "execution_count": 154, - "id": "0f9444a0", + "id": "e237ef6a", "metadata": { "tags": [ "raises-exception" @@ -8104,7 +8104,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m/tmp/ipykernel_6417/726409595.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mleft_on\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'lkey'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mright_on\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'rkey'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msuffixes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/tmp/ipykernel_6653/726409595.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mleft_on\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'lkey'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mright_on\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'rkey'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msuffixes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/usr/share/miniconda/envs/open-machine-learning-jupyter-book/lib/python3.9/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)\u001b[0m\n\u001b[1;32m 10086\u001b[0m \u001b[0mvalidate\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m|\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10087\u001b[0m ) -> DataFrame:\n\u001b[1;32m 10088\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmerge\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10089\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m> 10090\u001b[0;31m return merge(\n\u001b[0m\u001b[1;32m 10091\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10092\u001b[0m \u001b[0mright\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10093\u001b[0m \u001b[0mhow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhow\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/share/miniconda/envs/open-machine-learning-jupyter-book/lib/python3.9/site-packages/pandas/core/reshape/merge.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 107\u001b[0m \u001b[0mindicator\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0mvalidate\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m|\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 109\u001b[0m ) -> DataFrame:\n\u001b[0;32m--> 110\u001b[0;31m op = _MergeOperation(\n\u001b[0m\u001b[1;32m 111\u001b[0m \u001b[0mleft\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0mright\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0mhow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhow\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/share/miniconda/envs/open-machine-learning-jupyter-book/lib/python3.9/site-packages/pandas/core/reshape/merge.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, left, right, how, on, left_on, right_on, axis, left_index, right_index, sort, suffixes, indicator, validate)\u001b[0m\n\u001b[1;32m 699\u001b[0m (\n\u001b[1;32m 700\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mleft_join_keys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 701\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mright_join_keys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 702\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin_names\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 703\u001b[0;31m ) = self._get_merge_keys()\n\u001b[0m\u001b[1;32m 704\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 705\u001b[0m \u001b[0;31m# validate the merge keys dtypes. We may need to coerce\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 706\u001b[0m \u001b[0;31m# to avoid incompatible dtypes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", @@ -8120,7 +8120,7 @@ }, { "cell_type": "markdown", - "id": "f40414e4", + "id": "0f46efe6", "metadata": {}, "source": [ "Using `how` parameter decide the type of merge to be performed.\n", @@ -8186,7 +8186,7 @@ { "cell_type": "code", "execution_count": 155, - "id": "79ddeb21", + "id": "52237d77", "metadata": {}, "outputs": [], "source": [ @@ -8197,7 +8197,7 @@ { "cell_type": "code", "execution_count": 156, - "id": "bf4e3846", + "id": "38af83f6", "metadata": {}, "outputs": [], "source": [ @@ -8207,7 +8207,7 @@ }, { "cell_type": "markdown", - "id": "d84be913", + "id": "23b3b619", "metadata": {}, "source": [ "Join DataFrames using their indexes.\n", @@ -8246,7 +8246,7 @@ { "cell_type": "code", "execution_count": 157, - "id": "cf1692a0", + "id": "8232481e", "metadata": {}, "outputs": [ { @@ -8337,7 +8337,7 @@ }, { "cell_type": "markdown", - "id": "5ddd256b", + "id": "70ccf148", "metadata": {}, "source": [ "Using non-unique key values shows how they are matched." @@ -8346,7 +8346,7 @@ { "cell_type": "code", "execution_count": 158, - "id": "ae06ab33", + "id": "f3000f44", "metadata": {}, "outputs": [ { @@ -8433,7 +8433,7 @@ { "cell_type": "code", "execution_count": 159, - "id": "13037a4b", + "id": "2cd10ae6", "metadata": {}, "outputs": [ { @@ -8524,7 +8524,7 @@ }, { "cell_type": "markdown", - "id": "6407c540", + "id": "346abc67", "metadata": {}, "source": [ "## Aggregation and grouping\n", @@ -8653,7 +8653,7 @@ { "cell_type": "code", "execution_count": 160, - "id": "ca639d17", + "id": "46cac163", "metadata": {}, "outputs": [ { @@ -8739,7 +8739,7 @@ { "cell_type": "code", "execution_count": 161, - "id": "c7231e0d", + "id": "d3f22d0d", "metadata": {}, "outputs": [ { @@ -8811,7 +8811,7 @@ }, { "cell_type": "markdown", - "id": "d2b5823a", + "id": "c82dc361", "metadata": {}, "source": [ "## Pivot table\n", @@ -8824,7 +8824,7 @@ { "cell_type": "code", "execution_count": 162, - "id": "345b87ad", + "id": "1bf04bb7", "metadata": {}, "outputs": [ { @@ -8965,7 +8965,7 @@ }, { "cell_type": "markdown", - "id": "27799aff", + "id": "bf5d776c", "metadata": {}, "source": [ "This first example aggregates values by taking the sum." @@ -8974,7 +8974,7 @@ { "cell_type": "code", "execution_count": 163, - "id": "f6f182dc", + "id": "66f45689", "metadata": {}, "outputs": [ { @@ -9058,7 +9058,7 @@ }, { "cell_type": "markdown", - "id": "24de566f", + "id": "412da531", "metadata": {}, "source": [ "We can also fill in missing values using the `fill_value` parameter." @@ -9067,7 +9067,7 @@ { "cell_type": "code", "execution_count": 164, - "id": "91cc6a08", + "id": "53982906", "metadata": {}, "outputs": [ { @@ -9151,7 +9151,7 @@ }, { "cell_type": "markdown", - "id": "910bfdd8", + "id": "21fbd3d9", "metadata": {}, "source": [ "The next example aggregates by taking the mean across multiple columns." @@ -9160,7 +9160,7 @@ { "cell_type": "code", "execution_count": 165, - "id": "fcda2ea5", + "id": "eab3b2c4", "metadata": {}, "outputs": [ { @@ -9245,7 +9245,7 @@ }, { "cell_type": "markdown", - "id": "25f2ad03", + "id": "f2cb171e", "metadata": {}, "source": [ "We can also calculate multiple types of aggregations for any given value column." @@ -9254,7 +9254,7 @@ { "cell_type": "code", "execution_count": 166, - "id": "b56e7414", + "id": "067c7909", "metadata": {}, "outputs": [ { @@ -9362,7 +9362,7 @@ }, { "cell_type": "markdown", - "id": "a4f117ad", + "id": "b59b9e37", "metadata": {}, "source": [ "## High-performance Pandas: eval() and query()\n", @@ -9379,7 +9379,7 @@ { "cell_type": "code", "execution_count": 167, - "id": "1fe3514a", + "id": "e8035353", "metadata": {}, "outputs": [ { @@ -9459,7 +9459,7 @@ { "cell_type": "code", "execution_count": 168, - "id": "bb5d8e62", + "id": "3210ba1b", "metadata": {}, "outputs": [ { @@ -9484,7 +9484,7 @@ }, { "cell_type": "markdown", - "id": "b2edc99c", + "id": "41f98456", "metadata": {}, "source": [ "The assignment is allowed though by default the original `DataFrame` is not modified." @@ -9493,7 +9493,7 @@ { "cell_type": "code", "execution_count": 169, - "id": "27b1862f", + "id": "ffd06292", "metadata": {}, "outputs": [ { @@ -9578,7 +9578,7 @@ { "cell_type": "code", "execution_count": 170, - "id": "3e2a037b", + "id": "b3d2f56a", "metadata": {}, "outputs": [ { @@ -9656,7 +9656,7 @@ }, { "cell_type": "markdown", - "id": "2aa4b4fc", + "id": "0d03c6d5", "metadata": {}, "source": [ "Use `inplace=True` to modify the original DataFrame." @@ -9665,7 +9665,7 @@ { "cell_type": "code", "execution_count": 171, - "id": "85e5dd59", + "id": "0d292862", "metadata": {}, "outputs": [ { @@ -9750,7 +9750,7 @@ }, { "cell_type": "markdown", - "id": "47f6a7fa", + "id": "45e4f177", "metadata": {}, "source": [ "Multiple columns can be assigned using multi-line expressions:" @@ -9759,7 +9759,7 @@ { "cell_type": "code", "execution_count": 172, - "id": "decda5c6", + "id": "5c54d9d5", "metadata": {}, "outputs": [ { @@ -9854,7 +9854,7 @@ }, { "cell_type": "markdown", - "id": "c174795d", + "id": "8a6707a5", "metadata": {}, "source": [ "### query()\n", @@ -9867,7 +9867,7 @@ { "cell_type": "code", "execution_count": 173, - "id": "2eaa5e78", + "id": "913adf98", "metadata": {}, "outputs": [ { @@ -9957,7 +9957,7 @@ { "cell_type": "code", "execution_count": 174, - "id": "f9e0692a", + "id": "1f32860f", "metadata": {}, "outputs": [ { @@ -10013,7 +10013,7 @@ }, { "cell_type": "markdown", - "id": "a93ea0cd", + "id": "293305a6", "metadata": {}, "source": [ "The previous expression is equivalent to" @@ -10022,7 +10022,7 @@ { "cell_type": "code", "execution_count": 175, - "id": "6f82f9bc", + "id": "7037c1f7", "metadata": {}, "outputs": [ { @@ -10078,7 +10078,7 @@ }, { "cell_type": "markdown", - "id": "a1dbf92e", + "id": "93f41453", "metadata": {}, "source": [ "For columns with spaces in their name, you can use backtick quoting." @@ -10087,7 +10087,7 @@ { "cell_type": "code", "execution_count": 176, - "id": "fdb0bbcc", + "id": "cfac842b", "metadata": {}, "outputs": [ { @@ -10143,7 +10143,7 @@ }, { "cell_type": "markdown", - "id": "c74a60e5", + "id": "d8f4335e", "metadata": {}, "source": [ "The previous expression is equivalent to" @@ -10152,7 +10152,7 @@ { "cell_type": "code", "execution_count": 177, - "id": "e6b8e790", + "id": "6b5fe2dd", "metadata": {}, "outputs": [ { @@ -10208,7 +10208,7 @@ }, { "cell_type": "markdown", - "id": "20cea170", + "id": "b4dece86", "metadata": {}, "source": [ "
\n", diff --git a/_sources/data-science/working-with-data/relational-databases.ipynb b/_sources/data-science/working-with-data/relational-databases.ipynb index 258f7f8eca..c0d37ca71c 100644 --- a/_sources/data-science/working-with-data/relational-databases.ipynb +++ b/_sources/data-science/working-with-data/relational-databases.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "fad929e1", + "id": "1945f40b", "metadata": {}, "source": [ "# Relational databases\n", diff --git a/_sources/data-science/working-with-data/working-with-data.ipynb b/_sources/data-science/working-with-data/working-with-data.ipynb index 9f45a29902..ae014c1328 100644 --- a/_sources/data-science/working-with-data/working-with-data.ipynb +++ b/_sources/data-science/working-with-data/working-with-data.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2d6774e8", + "id": "c15b2dc9", "metadata": {}, "source": [ "# Working with data\n", diff --git a/_sources/deep-learning/autoencoder.ipynb b/_sources/deep-learning/autoencoder.ipynb index f923d0c1d5..4a291705f3 100644 --- a/_sources/deep-learning/autoencoder.ipynb +++ b/_sources/deep-learning/autoencoder.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "af753d3f", + "id": "9d157625", "metadata": {}, "source": [ "# Autoencoder\n", @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "49c9af75", + "id": "228211b1", "metadata": {}, "outputs": [], "source": [ @@ -118,7 +118,7 @@ }, { "cell_type": "markdown", - "id": "578d8b57", + "id": "cf0a9116", "metadata": {}, "source": [ "MNIST Dataset parameters." @@ -127,7 +127,7 @@ { "cell_type": "code", "execution_count": null, - "id": "47d73c12", + "id": "5c2c15aa", "metadata": {}, "outputs": [], "source": [ @@ -136,7 +136,7 @@ }, { "cell_type": "markdown", - "id": "e813f40b", + "id": "5f518c57", "metadata": {}, "source": [ "Training parameters." @@ -145,7 +145,7 @@ { "cell_type": "code", "execution_count": null, - "id": "60ec481f", + "id": "f62780cd", "metadata": {}, "outputs": [], "source": [ @@ -157,7 +157,7 @@ }, { "cell_type": "markdown", - "id": "b4fbee93", + "id": "38a7f6cc", "metadata": {}, "source": [ "Network Parameters" @@ -166,7 +166,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8010d26c", + "id": "66d087e6", "metadata": {}, "outputs": [], "source": [ @@ -176,7 +176,7 @@ }, { "cell_type": "markdown", - "id": "6c9ae2b2", + "id": "a6971304", "metadata": {}, "source": [ "Prepare MNIST data." @@ -185,7 +185,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f2bbecc1", + "id": "604453ac", "metadata": {}, "outputs": [], "source": [ @@ -201,7 +201,7 @@ }, { "cell_type": "markdown", - "id": "bc7cb3b5", + "id": "a646913f", "metadata": {}, "source": [ "Store layers weight & bias.\n", @@ -211,7 +211,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f9a92be9", + "id": "f0730e6e", "metadata": {}, "outputs": [], "source": [ @@ -233,7 +233,7 @@ }, { "cell_type": "markdown", - "id": "83f9f632", + "id": "96e1bc03", "metadata": {}, "source": [ "Building the encoder." @@ -242,7 +242,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9427ca23", + "id": "b584fe82", "metadata": {}, "outputs": [], "source": [ @@ -258,7 +258,7 @@ }, { "cell_type": "markdown", - "id": "207af9e8", + "id": "098b2685", "metadata": {}, "source": [ "Building the decoder." @@ -267,7 +267,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7a5cc66c", + "id": "fc2fa0ae", "metadata": {}, "outputs": [], "source": [ @@ -283,7 +283,7 @@ }, { "cell_type": "markdown", - "id": "711b0703", + "id": "a477bbcd", "metadata": {}, "source": [ "Mean square loss between original images and reconstructed ones." @@ -292,7 +292,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0f9668fa", + "id": "b6dcf84e", "metadata": {}, "outputs": [], "source": [ @@ -302,7 +302,7 @@ }, { "cell_type": "markdown", - "id": "f5c129c3", + "id": "b42d8ee4", "metadata": {}, "source": [ "Adam optimizer." @@ -311,7 +311,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2dd75d45", + "id": "0378f043", "metadata": {}, "outputs": [], "source": [ @@ -320,7 +320,7 @@ }, { "cell_type": "markdown", - "id": "7f4579c1", + "id": "78e12a28", "metadata": {}, "source": [ "Optimization process." @@ -329,7 +329,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d2b44b4f", + "id": "c0b09961", "metadata": {}, "outputs": [], "source": [ @@ -353,7 +353,7 @@ }, { "cell_type": "markdown", - "id": "586be178", + "id": "2f429f19", "metadata": {}, "source": [ "Run training for the given number of steps." @@ -362,7 +362,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a6a2f506", + "id": "c2f3c8a9", "metadata": {}, "outputs": [], "source": [ @@ -377,7 +377,7 @@ }, { "cell_type": "markdown", - "id": "4123fb3a", + "id": "cdc254ae", "metadata": {}, "source": [ "Testing and Visualization." @@ -386,7 +386,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9de956e0", + "id": "dd6b62fa", "metadata": {}, "outputs": [], "source": [ @@ -395,7 +395,7 @@ }, { "cell_type": "markdown", - "id": "a6f8c70f", + "id": "2b624639", "metadata": {}, "source": [ "Encode and decode images from test set and visualize their reconstruction." @@ -404,7 +404,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c715bcd2", + "id": "d4b2b9ca", "metadata": {}, "outputs": [], "source": [ @@ -438,7 +438,7 @@ }, { "cell_type": "markdown", - "id": "65456154", + "id": "74a7edf0", "metadata": {}, "source": [ "
-

37.98.5.1. Define a convolutional autoencoder#

+

37.103.5.1. Define a convolutional autoencoder#

In this example, you will train a convolutional autoencoder using Conv2D layers in the encoder, and Conv2DTranspose layers in the decoder.

@@ -2131,15 +2151,15 @@

37.98.5.1. Define a convolutional autoen

-

37.98.6. Third example: Anomaly detection#

+

37.103.6. Third example: Anomaly detection#

-

37.98.7. Overview#

+

37.103.7. Overview#

In this example, you will train an autoencoder to detect anomalies on the ECG5000 dataset. This dataset contains 5,000 Electrocardiograms, each with 140 data points. You will use a simplified version of the dataset, where each example has been labeled either 0 (corresponding to an abnormal rhythm), or 1 (corresponding to a normal rhythm). You are interested in identifying the abnormal rhythms.

Note: This is a labeled dataset, so you could phrase this as a supervised learning problem. The goal of this example is to illustrate anomaly detection concepts you can apply to larger datasets, where you do not have labels available (for example, if you had many thousands of normal rhythms, and only a small number of abnormal rhythms).

How will you detect anomalies using an autoencoder? Recall that an autoencoder is trained to minimize reconstruction error. You will train an autoencoder on the normal rhythms only, then use it to reconstruct all the data. Our hypothesis is that the abnormal rhythms will have higher reconstruction error. You will then classify a rhythm as an anomaly if the reconstruction error surpasses a fixed threshold.

-

37.98.7.1. Load ECG data#

+

37.103.7.1. Load ECG data#

The dataset you will use is based on one from timeseriesclassification.com.

@@ -2437,7 +2457,7 @@

37.98.7.1. Load ECG data -

37.98.7.2. Build the model#

+

37.103.7.2. Build the model#

class AnomalyDetector(Model):
@@ -2529,7 +2549,7 @@ 

37.98.7.2. Build the model -

37.98.7.3. Detect anomalies#

+

37.103.7.3. Detect anomalies#

Detect anomalies by calculating whether the reconstruction loss is greater than a fixed threshold. In this tutorial, you will calculate the mean average error for normal examples from the training set, then classify future examples as anomalous if the reconstruction error is higher than one standard deviation from the training set.

Plot the reconstruction error on normal ECGs from the training set

@@ -2620,11 +2640,11 @@

37.98.7.3. Detect anomalies -

37.98.8. Next steps#

+

37.103.8. Next steps#

To learn more about anomaly detection with autoencoders, check out this excellent interactive example built with TensorFlow.js by Victor Dibia. For a real-world use case, you can learn how Airbus Detects Anomalies in ISS Telemetry Data using TensorFlow. To learn more about the basics, consider reading this blog post by François Chollet. For more details, check out chapter 14 from Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

-

37.98.9. Acknowledgments#

+

37.103.9. Acknowledgments#

Thanks to TensorFlow Core for creating the open-source course autoencoder. It inspires the majority of the content in this chapter.

@@ -2666,13 +2686,13 @@

37.98.9. Acknowledgments

previous

-

37.96. Google Stock Price Prediction RNN

+

37.101. Google Stock Price Prediction RNN

next

-

37.99. Base/Denoising Autoencoder & Dimension Reduction

+

37.104. Base/Denoising Autoencoder & Dimension Reduction

diff --git a/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html b/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html index 165fe4f93d..26bfec3a6d 100644 --- a/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html +++ b/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html @@ -6,7 +6,7 @@ - 37.99. Base/Denoising Autoencoder & Dimension Reduction — Ocademy Open Machine Learning Book + 37.104. Base/Denoising Autoencoder & Dimension Reduction — Ocademy Open Machine Learning Book @@ -100,8 +100,8 @@ - - + + @@ -836,279 +836,299 @@

Ocademy Open Machine Learning Book

37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1491,110 +1511,110 @@

    Ocademy Open Machine Learning Book

    @@ -1618,110 +1638,110 @@

    Contents

    @@ -1735,9 +1755,9 @@

    Contents

    -

    37.99. Base/Denoising Autoencoder & Dimension Reduction#

    +

    37.104. Base/Denoising Autoencoder & Dimension Reduction#

    -

    37.99.1. Introduction#

    +

    37.104.1. Introduction#

    Autoencoder is a neural network that simply copies input to output. In some ways, it looks like a simple neural network, but it makes a difficult neural network by constraining the network in various ways. For example, the number of neurons in the hidden layer is smaller than that of the input layer to compress the data (reduce the dimension), or add noise to the input data and then restore the original input. There are various autoencoders, such as learning These constraints prevent the autoencoder from simply copying the input directly to the output, and control it to learn how to represent the data efficiently.

    In this notebook, we will cover two autoencoders:

    @@ -1764,7 +1784,7 @@

    37.99.1. Introduction -

    37.99.2. Loading and Scaling Datasets#

    +

    37.104.2. Loading and Scaling Datasets#

    Train a basic autoencoder using the Fashon MNIST dataset. Each image in this dataset is 28x28 pixels. Inputs are scaled for training.

    @@ -1782,7 +1802,7 @@

    37.99.2. Loading and Scaling Datasets

    -

    37.99.3. Load model#

    +

    37.104.3. Load model#

    import os
    @@ -1838,7 +1858,7 @@ 

    37.99.3. Load model

    -

    37.99.3.1. Checking dataset by 2D plot#

    +

    37.104.3.1. Checking dataset by 2D plot#

    Autoencoding can be thought of as a kind of dimensionality reduction process. Therefore, after compressing the fashion MNIST dataset through UMAP in two dimensions, let’s check how it is mapped for each label.

    @@ -1886,7 +1906,7 @@

    37.99.3.1. Checking dataset by 2D plotRef: https://umap-learn.readthedocs.io/en

    -

    37.99.3.2. Checking dataset by 3D plot#

    +

    37.104.3.2. Checking dataset by 3D plot#

    import plotly
    @@ -1912,9 +1932,9 @@ 

    37.99.3.2. Checking dataset by 3D plot

    -

    37.99.4. Base Autoencoder#

    +

    37.104.4. Base Autoencoder#

    -

    37.99.4.1. Modeling#

    +

    37.104.4.1. Modeling#

    An autoencoder always consists of two parts: an encoder and a decoder.

    • Encoder (Recognition network): it transforms an input into an internal representation.

    • @@ -1958,7 +1978,7 @@

      37.99.4.1. Modeling

    -

    37.99.4.2. Training#

    +

    37.104.4.2. Training#

    Train the model using x_train as input and target. The encoder learns to compress the dataset into a latent space in 784 dimensions, and the decoder learns to reconstruct the original image.

    @@ -1989,7 +2009,7 @@

    37.99.4.2. Training

    -

    37.99.4.3. Plotting the latent space after Dimension Reduction#

    +

    37.104.4.3. Plotting the latent space after Dimension Reduction#

    y_test = pd.DataFrame(y_test,columns=['class'])
    @@ -2009,7 +2029,7 @@ 

    37.99.4.3. Plotting the latent space aft

    The \(28*28\) dimension input is compressed into the \(7*7\) latent space by the encoder. The latent space is compressed into 2D using Dimension Reduction. Although it is an approximate expression, it can be seen that each class is well clustered in the compressed latent space.

    -

    37.99.4.4. Checking results#

    +

    37.104.4.4. Checking results#

    n = 4
    @@ -2039,7 +2059,7 @@ 

    37.99.4.4. Checking results -

    37.99.5. Denoising Autoencoder#

    +

    37.104.5. Denoising Autoencoder#

    Another way to constrain the autoencoder to learn meaningful features is to add noise to the input and train it to reconstruct the original noise-free input. Noise can be generated by adding Gaussian noise to the input as shown in the figure below, or by randomly turning off the input unit (node) like a dropout.

    @@ -2062,7 +2082,7 @@

    37.99.5. Denoising Autoencoder -

    37.99.5.1. Adding random noise to the image.#

    +

    37.104.5.1. Adding random noise to the image.#

    noise_factor = 0.2
    @@ -2077,7 +2097,7 @@ 

    37.99.5.1. Adding random noise to the im

    -

    37.99.5.2. Plotting a noisy image.#

    +

    37.104.5.2. Plotting a noisy image.#

    n = 4
    @@ -2094,9 +2114,9 @@ 

    37.99.5.2. Plotting a noisy image.

    -

    37.99.5.3. Checking Noisy Dataset using Demension Reduction#

    +

    37.104.5.3. Checking Noisy Dataset using Demension Reduction#

    -

    37.99.5.3.1. 1) Noisy Dataset#

    +

    37.104.5.3.1. 1) Noisy Dataset#

    x_train_noisy_flat = x_train.reshape(x_train_noisy.shape[0], -1)
    @@ -2122,7 +2142,7 @@ 

    37.99.5.3.1. 1) Noisy Dataset -

    37.99.5.3.2. 2) Orignal Dataset#

    +

    37.104.5.3.2. 2) Orignal Dataset#

    x_train_flat = x_train.reshape(x_train.shape[0], -1)
    @@ -2145,7 +2165,7 @@ 

    37.99.5.3.2. 2) Orignal Dataset

    -

    37.99.5.4. Modeling#

    +

    37.104.5.4. Modeling#

    class Denoise(Model):
    @@ -2180,7 +2200,7 @@ 

    37.99.5.4. Modeling

    -

    37.99.5.5. Training#

    +

    37.104.5.5. Training#

    autoencoder.fit(x_train_noisy, x_train,
    @@ -2209,7 +2229,7 @@ 

    37.99.5.5. Training

    -

    37.99.5.6. Checking results#

    +

    37.104.5.6. Checking results#

    Plots both the noisy and denoised images generated by the autoencoder.

    @@ -2248,7 +2268,7 @@

    37.99.5.6. Checking results -

    37.99.6. Acknowledgments#

    +

    37.104.6. Acknowledgments#

    Thanks to TOH SEOK KIM for creating the Kaggle open-source project Base/Denoising Autoencoder + Dimension Reduction. It inspires the majority of the content in this chapter.

    @@ -2290,13 +2310,13 @@

    37.99.6. Acknowledgments

    previous

    -

    37.98. Intro to Autoencoders

    +

    37.103. Intro to Autoencoders

    next

    -

    37.100. Fun with Variational Autoencoders

    +

    37.105. Fun with Variational Autoencoders

    diff --git a/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html b/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html index 896dae3985..2d53a79b71 100644 --- a/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html +++ b/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html @@ -6,7 +6,7 @@ - 37.100. Fun with Variational Autoencoders — Ocademy Open Machine Learning Book + 37.105. Fun with Variational Autoencoders — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,62 +1509,62 @@

    Ocademy Open Machine Learning Book

    @@ -1568,62 +1588,62 @@

    Contents

    @@ -1637,10 +1657,10 @@

    Contents

    -

    37.100. Fun with Variational Autoencoders#

    +

    37.105. Fun with Variational Autoencoders#

    This is a starter kernel to use Labelled Faces in the Wild (LFW) Dataset in order to maintain knowledge about main Autoencoder principles. PyTorch will be used for modelling.

    -

    37.100.1. Fork it and give it an upvote.#

    +

    37.105.1. Fork it and give it an upvote.#

    architecture

    Useful links:

      @@ -1653,7 +1673,7 @@

      37.100.1. Fork it and give it an upvote.

    -

    37.100.2. A bit of theory#

    +

    37.105.2. A bit of theory#

    “Autoencoding” is a data compression algorithm where the compression and decompression functions are 1) data-specific, 2) lossy, and 3) learned automatically from examples rather than engineered by a human. Additionally, in almost all contexts where the term “autoencoder” is used, the compression and decompression functions are implemented with neural networks.

    1. Autoencoders are data-specific, which means that they will only be able to compress data similar to what they have been trained on. This is different from, say, the MPEG-2 Audio Layer III (MP3) compression algorithm, which only holds assumptions about “sound” in general, but not about specific types of sounds. An autoencoder trained on pictures of faces would do a rather poor job of compressing pictures of trees, because the features it would learn would be face-specific.

    2. @@ -1695,7 +1715,7 @@

      37.100.2. A bit of theory -

      37.100.3. Load datasets#

      +

      37.105.3. Load datasets#

      datasets_url = "https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/autoencoder/variational-autoencoder-and-faces-generation/lfw-deepfunneled.zip"
      @@ -1771,7 +1791,7 @@ 

      37.100.3. Load datasets -

      37.100.4. Explore the data#

      +

      37.105.4. Explore the data#

      Image data is collected from DATASET_PATH and a dataset is created in which the person information for each image is extracted and used for subsequent data analysis or processing. Finally, the filter() function is used to limit the size of the dataset by retaining only information about people who appear less than 25 times.

      @@ -1816,7 +1836,7 @@

      37.100.4. Explore the data -

      37.100.5. Prepare the dataset#

      +

      37.105.5. Prepare the dataset#

      • Reads the attribute data from the txt file at the specified path and stores it in a DataFrame object called df_attrs. The txt file is tab delimited, skipping the first line.

      • @@ -1899,7 +1919,7 @@

        37.100.5. Prepare the dataset -

        37.100.6. Building simple autoencoder#

        +

        37.105.6. Building simple autoencoder#

        dim_z=100
        @@ -2005,7 +2025,7 @@ 

        37.100.6. Building simple autoencoder

    -

    37.100.7. Train autoencoder#

    +

    37.105.7. Train autoencoder#

    • get_batch: It uses the Generator method to generate batches of a specified size by iterating over them. The amount of data generated is batch_size each time, until the entire data set is traversed.

    • @@ -2171,7 +2191,7 @@

      37.100.7. Train autoencoder -

      37.100.8. Sampling#

      +

      37.105.8. Sampling#

      Let’s generate some samples from random vectors

      @@ -2190,7 +2210,7 @@

      37.100.8. Sampling

    -

    37.100.9. Adding smile and glasses#

    +

    37.105.9. Adding smile and glasses#

    Let’s find some attributes like smiles or glasses on the photo and try to add it to the photos which don’t have it. We will use the second dataset for it. It contains a bunch of such attributes.

    -

    37.100.10. Variational autoencoder#

    +

    37.105.10. Variational autoencoder#

    So far we have trained our encoder to reconstruct the very same image that we’ve transfered to latent space. That means that when we’re trying to generate new image from the point decoder never met we’re getting the best image it can produce, but the quelity is not good enough.

    In other words the encoded vectors may not be continuous in the latent space.

    @@ -2496,12 +2516,12 @@

    37.100.10. Variational autoencoder

    -

    37.100.11. Conclusion#

    +

    37.105.11. Conclusion#

    Variational autoencoders are cool. Although models in this particular notebook are simple they let us design complex generative models of data, and fit them to large datasets. They can generate images of fictional celebrity faces and high-resolution digital artwork. These models also yield state-of-the-art machine learning results in image generation and reinforcement learning. Variational autoencoders (VAEs) were defined in 2013 by Kingma et al. and Rezende et al.

    -

    37.100.12. Acknowledgments#

    +

    37.105.12. Acknowledgments#

    Thanks to SERGEI AVERKIEV for creating the Kaggle open-source project Variational Autoencoder and Faces Generation. It inspires the majority of the content in this chapter.

    @@ -2543,13 +2563,13 @@

    37.100.12. Acknowledgments

    previous

    -

    37.99. Base/Denoising Autoencoder & Dimension Reduction

    +

    37.104. Base/Denoising Autoencoder & Dimension Reduction

    next

    -

    37.101. Time Series Forecasting Assignment

    +

    37.106. Time Series Forecasting Assignment

    diff --git a/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html b/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html index 709f083b6f..24e3a9131e 100644 --- a/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html +++ b/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html @@ -6,7 +6,7 @@ - 37.87. How to choose cnn architecture mnist — Ocademy Open Machine Learning Book + 37.92. How to choose cnn architecture mnist — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,207 +1509,207 @@

    Ocademy Open Machine Learning Book

    @@ -1713,207 +1733,207 @@

    Contents

    @@ -1927,19 +1947,19 @@

    Contents

    -

    37.87. How to choose cnn architecture mnist#

    +

    37.92. How to choose cnn architecture mnist#

    -

    37.87.1. What is the best CNN architecture for MNIST?#

    +

    37.92.1. What is the best CNN architecture for MNIST?#

    There are so many choices for CNN architecture. How do we choose the best one? First we must define what best means. The best may be the simplest, or it may be the most efficient at producing accuracy while minimizing computational complexity. In this kernel, we will run experiments to find the most accurate and efficient CNN architecture for classifying MNIST handwritten digits.

    The best known MNIST classifier found on the internet achieves 99.8% accuracy!! That’s amazing. The best Kaggle kernel MNIST classifier achieves 99.75% [posted here][https://www.kaggle.com/cdeotte/25-million-images-0-99757-mnist]. This kernel demostrates the experiments used to determine that kernel’s CNN architecture.

    -

    37.87.2. Basic CNN structure#

    +

    37.92.2. Basic CNN structure#

    A typical CNN design begins with feature extraction and finishes with classification. Feature extraction is performed by alternating convolution layers with subsambling layers. Classification is performed with dense layers followed by a final softmax layer. For image classification, this architecture performs better than an entirely fully connected feed forward neural network. extract

    -

    37.87.3. Load libraries#

    +

    37.92.3. Load libraries#

    import pandas as pd
    @@ -1966,7 +1986,7 @@ 

    37.87.3. Load libraries -

    37.87.4. Load the data#

    +

    37.92.4. Load the data#

    train = pd.read_csv("https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/cnn/mnist_train.csv")
    @@ -1977,7 +1997,7 @@ 

    37.87.4. Load the data -

    37.87.5. Prepare data for neural network#

    +

    37.92.5. Prepare data for neural network#

    Y_train = train["label"]
    @@ -1998,7 +2018,7 @@ 

    37.87.5. Prepare data for neural network

    -

    37.87.6. Global variables#

    +

    37.92.6. Global variables#

    annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95**x, verbose=0)
    @@ -2009,7 +2029,7 @@ 

    37.87.6. Global variables -

    37.87.7. 1. How many convolution-subsambling pairs?#

    +

    37.92.7. 1. How many convolution-subsambling pairs?#

    First question, how many pairs of convolution-subsampling should we use? For example, our network could have 1, 2, or 3:

    • 784 - [24C5-P2] - 256 - 10

    • @@ -2019,10 +2039,10 @@

      37.87.7. 1. How many convolution-subsamb

      It’s typical to increase the number of feature maps for each subsequent pair as shown here.

    -

    37.87.8. Experiment 1#

    +

    37.92.8. Experiment 1#

    Let’s see whether one, two, or three pairs is best. We are not doing four pairs since the image will be reduced too small before then. The input image is 28x28. After one pair, it’s 14x14. After two, it’s 7x7. After three it’s 4x4 (or 3x3 if we don’t use padding=‘same’). It doesn’t make sense to do a fourth convolution.

    -

    37.87.8.1. Build convolutional neural networks#

    +

    37.92.8.1. Build convolutional neural networks#

    nets = 3
    @@ -2058,7 +2078,7 @@ 

    37.87.8.1. Build convolutional neural ne

    -

    37.87.8.2. Create validation set and train networks#

    +

    37.92.8.2. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2089,7 +2109,7 @@ 

    37.87.8.2. Create validation set and tra

    -

    37.87.8.3. Plot accuracies#

    +

    37.92.8.3. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2108,12 +2128,12 @@ 

    37.87.8.3. Plot accuracies -

    37.87.8.4. Summary#

    +

    37.92.8.4. Summary#

    From the above experiment, it seems that 3 pairs of convolution-subsambling is slightly better than 2 pairs. However for efficiency, the improvement doesn’t warrant the additional computional cost, so let’s use 2.

    -

    37.87.9. 2. How many feature maps?#

    +

    37.92.9. 2. How many feature maps?#

    In the previous experiement, we decided that two pairs is sufficient. How many feature maps should we include? For example, we could do

    • 784 - [8C5-P2] - [16C5-P2] - 256 - 10

    • @@ -2125,9 +2145,9 @@

      37.87.9. 2. How many feature maps?

    -

    37.87.10. Experiment 2#

    +

    37.92.10. Experiment 2#

    -

    37.87.10.1. Build convolutional neural networks#

    +

    37.92.10.1. Build convolutional neural networks#

    nets = 6
    @@ -2152,7 +2172,7 @@ 

    37.87.10.1. Build convolutional neural n

    -

    37.87.10.2. Create validation set and train networks#

    +

    37.92.10.2. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2183,7 +2203,7 @@ 

    37.87.10.2. Create validation set and tr

    -

    37.87.10.3. Plot accuracies#

    +

    37.92.10.3. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2202,12 +2222,12 @@ 

    37.87.10.3. Plot accuracies -

    37.87.10.4. Summary#

    +

    37.92.10.4. Summary#

    From the above experiement, it appears that 32 maps in the first convolutional layer and 64 maps in the second convolutional layer is the best. Architectures with more maps only perform slightly better and are not worth the additonal computation cost.

    -

    37.87.11. 3. How large a dense layer?#

    +

    37.92.11. 3. How large a dense layer?#

    In our previous experiment, we decided on 32 and 64 maps in our convolutional layers. How many dense units should we use? For example we could use

    • 784 - [32C5-P2] - [64C5-P2] - 0 - 10

    • @@ -2221,10 +2241,10 @@

      37.87.11. 3. How large a dense layer?

    -

    37.87.12. Experiment 3#

    +

    37.92.12. Experiment 3#

    -

    37.87.13. Build convolutional neural networks#

    +

    37.92.13. Build convolutional neural networks#

    nets = 8
    @@ -2249,7 +2269,7 @@ 

    37.87.13. Build convolutional neural net

    -

    37.87.14. Create validation set and train networks#

    +

    37.92.14. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2281,7 +2301,7 @@ 

    37.87.14. Create validation set and trai

    -

    37.87.15. Plot accuracies#

    +

    37.92.15. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2299,22 +2319,22 @@ 

    37.87.15. Plot accuracies -

    37.87.15.1. Summary#

    +

    37.92.15.1. Summary#

    From this experiment, it appears that 128 units is the best. Dense layers with more units only perform slightly better and are not worth the additional computational cost. (We also tested using two consecutive dense layers instead of one, but that showed no benefit over a single dense layer.)

    -

    37.87.16. 4. How much dropout?#

    +

    37.92.16. 4. How much dropout?#

    Dropout will prevent our network from overfitting thus helping our network generalize better. How much dropout should we add after each layer?

    • 0%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%

    -

    37.87.17. Experiment 4#

    +

    37.92.17. Experiment 4#

    -

    37.87.18. Build convolutional neural networks#

    +

    37.92.18. Build convolutional neural networks#

    nets = 8
    @@ -2341,7 +2361,7 @@ 

    37.87.18. Build convolutional neural net

    -

    37.87.19. Create validation set and train networks#

    +

    37.92.19. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2373,7 +2393,7 @@ 

    37.87.19. Create validation set and trai

    -

    37.87.20. Plot accuracies#

    +

    37.92.20. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2392,11 +2412,11 @@ 

    37.87.20. Plot accuracies -

    37.87.21. Summary#

    +

    37.92.21. Summary#

    From this experiment, it appears that 40% dropout is the best.

    -

    37.87.22. 5. Advanced features#

    +

    37.92.22. 5. Advanced features#

    Instead of using one convolution layer of size 5x5, you can mimic 5x5 by using two consecutive 3x3 layers and it will be more nonlinear. Instead of using a max pooling layer, you can subsample by using a convolution layer with strides=2 and it will be learnable. Lastly, does batch normalization help? And does data augmentation help? Let’s test all four of these

    • replace ‘32C5’ with ‘32C3-32C3’

    • @@ -2406,7 +2426,7 @@

      37.87.22. 5. Advanced features -

      37.87.23. Build convolutional neural networks#

      +

      37.92.23. Build convolutional neural networks#

      nets = 5
      @@ -2525,7 +2545,7 @@ 

      37.87.23. Build convolutional neural net

    -

    37.87.24. Create validation set and train networks#

    +

    37.92.24. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.2)
    @@ -2557,7 +2577,7 @@ 

    37.87.24. Create validation set and trai

    -

    37.87.25. Create more training images via data augmentation and train network#

    +

    37.92.25. Create more training images via data augmentation and train network#

    datagen = ImageDataGenerator(
    @@ -2587,7 +2607,7 @@ 

    37.87.25. Create more training images vi

    -

    37.87.26. Plot accuracies#

    +

    37.92.26. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2605,12 +2625,12 @@ 

    37.87.26. Plot accuracies -

    37.87.26.1. Summary#

    +

    37.92.26.1. Summary#

    From this experiment, we see that each of the four advanced features improve accuracy. The first model uses no advanced features. The second uses only the double convolution layer trick. The third uses only the learnable subsambling layer trick. The third model uses both of those techniques plus batch normalization. The last model employs all three of those techniques plus data augmentation and achieves the best accuracy of 99.5%! (Or more if we train longer.) (Experiments determing the best data augmentation hyper-parameters are posted at the end of the kernel here.)

    -

    37.87.27. Conclusion#

    +

    37.92.27. Conclusion#

    Training convolutional neural networks is a random process. This makes experiments difficult because each time you run the same experiment, you get different results. Therefore, you must run your experiments dozens of times and take an average. This kernel was run dozens of times and it seems that the best CNN architecture for classifying MNIST handwritten digits is 784 - [32C5-P2] - [64C5-P2] - 128 - 10 with 40% dropout. Afterward, more experiments show that replacing ‘32C5’ with ‘32C3-32C3’ improves accuracy. And replacing ‘P2’ with ‘32C5S2’ improves accuracy. And adding batch normalizaiton and data augmentation improve the CNN. The best CNN found from the experiments here becomes

    @@ -2660,13 +2680,13 @@

    37.88. Acknowledgments

    previous

    -

    37.86. Parameter play

    +

    37.91. Parameter play

    next

    -

    37.89. Sign Language Digits Classification with CNN

    +

    37.94. Sign Language Digits Classification with CNN

    diff --git a/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html b/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html index dd933e4e79..9c14c1b60c 100644 --- a/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html +++ b/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html @@ -6,7 +6,7 @@ - 37.91. Object Recognition in Images using CNN — Ocademy Open Machine Learning Book + 37.96. Object Recognition in Images using CNN — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,63 +1509,63 @@

    Ocademy Open Machine Learning Book

    @@ -1569,63 +1589,63 @@

    Contents

    @@ -1639,18 +1659,18 @@

    Contents

    -

    37.91. Object Recognition in Images using CNN#

    +

    37.96. Object Recognition in Images using CNN#

    -

    37.91.1. About Dataset#

    +

    37.96.1. About Dataset#

    CIFAR-10 is an established computer-vision dataset used for object recognition. It is a subset of the 80 million tiny images dataset and consists of 60,000 32x32 color images containing one of 10 object classes, with 6000 images per class. It was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

    cifar10

    -

    37.91.2. Table of Contents#

    +

    37.96.2. Table of Contents#

    -

    37.91.2.1. Import Libaries#

    +

    37.96.2.1. Import Libaries#

    import os
    @@ -1673,7 +1693,7 @@ 

    37.91.2.1. Import Libaries -

    37.91.2.2. Exploring the Data#

    +

    37.96.2.2. Exploring the Data#

    Extract from tar archive file

    The dataset is extracted to the directory tmp/object-recognition-in-images-using-cnn/cifar10. It contains 2 folders train and test, containing the training set (50000 images) and test set (10000 images) respectively. Each of them contains 10 folders, one for each class of images. Let’s verify this using os.listdir.

    @@ -1844,7 +1864,7 @@

    37.91.2.2. Exploring the Data -

    37.91.3. Training and Validation Datasets#

    +

    37.96.3. Training and Validation Datasets#

    While building real world machine learning models, it is quite common to split the dataset into 3 parts:

    1. Training set - used to train the model i.e. compute the loss and adjust the weights of the model using gradient descent.

    2. @@ -1904,7 +1924,7 @@

      37.91.3. Training and Validation Dataset

    -

    37.91.3.1. training data single batch images#

    +

    37.96.3.1. training data single batch images#

    show_images_batch(train_dl)
    @@ -1922,9 +1942,9 @@ 

    37.91.3.1. training data single batch im

    -

    37.91.4. Convolutional Neural Network#

    +

    37.96.4. Convolutional Neural Network#

    -

    37.91.4.1. Defining the Model (Convolutional Neural Network)#

    +

    37.96.4.1. Defining the Model (Convolutional Neural Network)#

    The 2D convolution is a fairly simple operation at heart: you start with a kernel, which is simply a small matrix of weights. This kernel “slides” over the 2D input data, performing an elementwise multiplication with the part of the input it is currently on, and then summing up the results into a single output pixel.

    Let us implement a convolution operation on a 1 channel image with a 3x3 kernel.

    @@ -2133,7 +2153,7 @@

    37.91.4.1. Defining the Model (Convoluti

    -

    37.91.5. Training the Model#

    +

    37.96.5. Training the Model#

    In this mode, the result of every computation will have requires_grad=False, even when the inputs have requires_grad=True.

    @@ -2249,7 +2269,7 @@

    37.91.5. Training the Model -

    37.91.6. Testing with individual images#

    +

    37.96.6. Testing with individual images#

    test_dataset = ImageFolder(data_dir+'/test', transform=ToTensor())
    @@ -2354,7 +2374,7 @@ 

    37.91.6. Testing with individual images<

    -

    37.91.7. Acknowledgments#

    +

    37.96.7. Acknowledgments#

    Thanks to datajameson for creating the Kaggle notebook Cifar-10 Object Recognition(CNN) Explained. It inspires the majority of the content in this chapter.

    @@ -2396,13 +2416,13 @@

    37.91.7. Acknowledgments

    previous

    -

    37.89. Sign Language Digits Classification with CNN

    +

    37.94. Sign Language Digits Classification with CNN

    next

    -

    37.92. Intro to TensorFlow for Deep Learning

    +

    37.97. Intro to TensorFlow for Deep Learning

    diff --git a/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html b/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html index a451f77e6a..2f73a5e11b 100644 --- a/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html +++ b/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html @@ -6,7 +6,7 @@ - 37.89. Sign Language Digits Classification with CNN — Ocademy Open Machine Learning Book + 37.94. Sign Language Digits Classification with CNN — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,69 +1509,69 @@

    Ocademy Open Machine Learning Book

    @@ -1575,69 +1595,69 @@

    Contents

    @@ -1651,9 +1671,9 @@

    Contents

    -

    37.89. Sign Language Digits Classification with CNN#

    +

    37.94. Sign Language Digits Classification with CNN#

    -

    37.89.1. Load libraries#

    +

    37.94.1. Load libraries#

    import numpy as np
    @@ -1672,7 +1692,7 @@ 

    37.89.1. Load libraries -

    37.89.2. Load data from numpy file#

    +

    37.94.2. Load data from numpy file#

    X = np.load(
    @@ -1737,7 +1757,7 @@ 

    37.89.2. Load data from numpy file

    -

    37.89.3. Preparing Data#

    +

    37.94.3. Preparing Data#

    We will re-organize data to match labels and images correctly.

    -

    37.89.6. Data Augmentation With Keras API#

    +

    37.94.6. Data Augmentation With Keras API#

    Data augmentation is a technique which generates new training samples without changing labels of images. To generate new samples, some features of images are changed like brightness, rotation or zoom level. To apply it, ImageDataGenerator class is used in KERAS API. This class refers parameters and changes images. After complete the changing process, it returns new samples. This is important! ImageDataGenerator returns only new images. It means that out training dataset consists of different from original dataset. It provides more generalizaton for model anf of course it is desirable.

    So, in implementation of CNN part, we will use data augmentation and we will change rotation and zoom level of images. we chose these parameters with a simple logic. Think of test data that we might encounter in real life. we don’t always hold our hand at 90 degrees. So it is quite possible that we have a rotational change when using sign language. Likewise, the zoom level of the photo to be taken may also change. So we thought we could train my model better by creating a more general data set with these two parameters. Let’s take a closer look at these parameters.

      @@ -1850,7 +1870,7 @@

      37.89.6. Data Augmentation With Keras AP

    -

    37.89.7. Changin zoom level#

    +

    37.94.7. Changin zoom level#

    datagen = ImageDataGenerator(zoom_range=0.5)
    @@ -1862,7 +1882,7 @@ 

    37.89.7. Changin zoom level -

    37.89.8. Changing rotaion#

    +

    37.94.8. Changing rotaion#

    datagen = ImageDataGenerator(rotation_range=45)
    @@ -1874,7 +1894,7 @@ 

    37.89.8. Changing rotaion -

    37.89.9. Changing rotaion, zoom#

    +

    37.94.9. Changing rotaion, zoom#

    datagen = ImageDataGenerator(zoom_range=0.5, rotation_range=45)
    @@ -1886,7 +1906,7 @@ 

    37.89.9. Changing rotaion, zoom

    -

    37.89.10. Model Implementation#

    +

    37.94.10. Model Implementation#

    model = Sequential()
    @@ -1936,7 +1956,7 @@ 

    37.89.10. Model Implementation -

    37.89.11. Conclusion#

    +

    37.94.11. Conclusion#

    plt.figure(figsize=(10, 5))
    @@ -1969,7 +1989,7 @@ 

    37.89.11. Conclusion -

    37.90. Acknowledgments#

    +

    37.95. Acknowledgments#

    Thanks to Görkem Günay for creating sign-language-digits-classification-with-cnn. It inspires the majority of the content in this chapter.

    @@ -2010,13 +2030,13 @@

    37.90. Acknowledgments

    previous

    -

    37.87. How to choose cnn architecture mnist

    +

    37.92. How to choose cnn architecture mnist

    next

    -

    37.91. Object Recognition in Images using CNN

    +

    37.96. Object Recognition in Images using CNN

    diff --git a/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html b/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html index d6fa648da3..751fedcac8 100644 --- a/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html +++ b/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html @@ -6,7 +6,7 @@ - 37.109. DQN On Foreign Exchange Market — Ocademy Open Machine Learning Book + 37.114. DQN On Foreign Exchange Market — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,27 +1509,27 @@

    Ocademy Open Machine Learning Book

    @@ -1533,27 +1553,27 @@

    Contents

    @@ -1567,9 +1587,9 @@

    Contents

    -

    37.109. DQN On Foreign Exchange Market#

    +

    37.114. DQN On Foreign Exchange Market#

    -

    37.109.1. Load dataset#

    +

    37.114.1. Load dataset#

    # This Python 3 environment comes with many helpful analytics libraries installed
    @@ -1805,7 +1825,7 @@ 

    37.109.1. Load dataset -

    37.109.2. Define envireonment#

    +

    37.114.2. Define envireonment#

    class Environment:
    @@ -1898,7 +1918,7 @@ 

    37.109.2. Define envireonment -

    37.109.3. Agent class#

    +

    37.114.3. Agent class#

    # Deep Q-learning Agent
    @@ -1962,7 +1982,7 @@ 

    37.109.3. Agent class -

    37.109.4. Train the DQN#

    +

    37.114.4. Train the DQN#

    if __name__ == "__main__":
    @@ -2415,7 +2435,7 @@ 

    37.109.4. Train the DQN -

    37.109.5. Acknowledgement#

    +

    37.114.5. Acknowledgement#

    Thanks to emrebulbul23 for creating DQN on foreign exchange market. It inspired the majority of the content in this article.

    @@ -2457,13 +2477,13 @@

    37.109.5. Acknowledgement

    previous

    -

    37.104. NN Classify 15 Fruits Assignment

    +

    37.109. NN Classify 15 Fruits Assignment

    next

    -

    37.110. Art by gan

    +

    37.115. Art by gan

    diff --git a/assignments/deep-learning/gan/art-by-gan.html b/assignments/deep-learning/gan/art-by-gan.html index 75ded116c2..4d97ee9ffc 100644 --- a/assignments/deep-learning/gan/art-by-gan.html +++ b/assignments/deep-learning/gan/art-by-gan.html @@ -6,7 +6,7 @@ - 37.110. Art by gan — Ocademy Open Machine Learning Book + 37.115. Art by gan — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,79 +1509,79 @@

    Ocademy Open Machine Learning Book

    @@ -1585,79 +1605,79 @@

    Contents

    @@ -1671,7 +1691,7 @@

    Contents

    -

    37.110. Art by gan#

    +

    37.115. Art by gan#

    In this Notebook, we will build a Generative Adversarial Network (GAN) to illustrate the workings of a Generative Adversarial Network and to generate images. Generative modelling is an unsupervised learning task in machine learning that involves automatically discovering and learning the regularities or patterns in input data. As GANs work by identifying the patterns in the data, we will be using oil painted portraits. However, glancing over the dataset gives me an idea that it is going to be a long shot. The orientation and poses in the dataset vary vastly. Keeping that in mind we are still willing to give it a try. Only because portraits are our jam. We basically love oil painted portraits.

    @@ -1713,11 +1733,11 @@

    37.110. Art by gan

    -

    37.110.1. Data loading & Prepreprocessing#

    +

    37.115.1. Data loading & Prepreprocessing#

    For this project, We are using .jpg files of images of portraits. The dataset includes various artists. We are loading data as TensorFlow.Dataset, with a batch size of 64. We have reduced the image size to (64,64), presuming, it will be computationally less taxing on the GPU.

    -

    37.110.2. Loading the data#

    +

    37.115.2. Loading the data#

    import os
    @@ -1774,7 +1794,7 @@ 

    37.110.2. Loading the data -

    37.110.3. Preprocessing the data#

    +

    37.115.3. Preprocessing the data#

    Normalization: For the data normalization, we will convert the data in the range between 0 to 1. This helps in fast convergence and makes it easy for the computer to do calculations faster. Each of the three RGB channels in the image can take pixel values ranging from 0 to 256. Dividing it by 255 converts it to a range between 0 to 1.

    -

    37.110.4. Building GAN#

    +

    37.115.4. Building GAN#

    GANs employs deep learning methods. It is a dexterous way of posing the problem as a supervised learning problem. It is composed of two models namely Generator and a Discriminator.

    Two models are trained simultaneously by an adversarial process. A generator (“the artist”) learns to create images that look like the dataset while a discriminator (“the art critic”) learns to tell real images apart from fakes.

    During training, the generator progressively becomes better at creating images that look real, while the discriminator becomes better at telling them apart. The process reaches equilibrium when the discriminator can no longer distinguish real images from fakes.

    @@ -1800,7 +1820,7 @@

    37.110.4. Building GAN -

    37.110.5. The generator#

    +

    37.115.5. The generator#

    The Generator is a neural network that generates the images. It takes in a random noise as seed and outputs sample data. As the GAN’s training progresses the Generator output becomes more and more like the training set, as the Generator tries to improve the output so that the discrimination passes the output as a real image.

    Following steps are involved in the models building

      @@ -1809,7 +1829,7 @@

      37.110.5. The generator -

      37.110.6. Building a generator#

      +

      37.115.6. Building a generator#

      latent_dim = 100
      @@ -1859,12 +1879,12 @@ 

      37.110.6. Building a generator -

      37.110.7. The discriminator#

      +

      37.115.7. The discriminator#

      In GANs the Generator works along with the Discriminator.

      The Discriminator network decided whether the data is fake aka created by the Generator or real i.e. from the original input data. To do so it applies a binary classification method using a sigmoid function to get an output in the range of 0 to 1.

    -

    37.110.8. Building a discriminator#

    +

    37.115.8. Building a discriminator#

    discriminator = Sequential()
    @@ -1913,7 +1933,7 @@ 

    37.110.8. Building a discriminatorLet us proceed and build the GAN architecture to train.

    -

    37.110.9. GAN compilation#

    +

    37.115.9. GAN compilation#

    GAN training has two sections:

    Section 1: The Discriminator is trained while the Generator is idle. The discriminator is trained real images and random noise (from an untrained generator). This trains it to tell between fake and real. This accommodates the discriminator to predict as fakes.

    @@ -1990,7 +2010,7 @@

    37.110.9. GAN compilation -

    37.110.10. Training the model#

    +

    37.115.10. Training the model#

    Calling the above created GAN function trains the generator and discriminator simultaneously. To implement the GAN we must define:

      @@ -2023,7 +2043,7 @@

      37.110.10. Training the model -

      37.110.11. Ploting the Learning Curves#

      +

      37.115.11. Ploting the Learning Curves#

      import pandas as pd
      @@ -2040,7 +2060,7 @@ 

      37.110.11. Ploting the Learning Curves

    -

    37.110.12. AI makes artwork#

    +

    37.115.12. AI makes artwork#

    # Number of images to be generate
    @@ -2080,12 +2100,12 @@ 

    37.110.12. AI makes artwork -

    37.110.13. Conculsion#

    +

    37.115.13. Conculsion#

    In the evaluation of the model: We can see that the GAN picked up the patterns in the portraits. It worked quite well. For further improvement, as GANs are notorious for being data-hungry, I would consider increasing the dataset. There are many inconsistencies in the data which is rather complicated for the GAN to learn. Cleaning the data with some consistencies in the portrait styles would certainly help. Training it longer i.e. for more epochs would also help. Lastly, one can always strive to make a more robust architecture for the Neural Networks.

    -

    37.111. Acknowledgments#

    +

    37.116. Acknowledgments#

    Thanks to Karnika Kapoor for creating art-by-gan. It inspires the majority of the content in this chapter.

    @@ -2126,13 +2146,13 @@

    37.111. Acknowledgments

    previous

    -

    37.109. DQN On Foreign Exchange Market

    +

    37.114. DQN On Foreign Exchange Market

    next

    -

    37.112. Generative Adversarial Networks (GANs)

    +

    37.117. Generative Adversarial Networks (GANs)

    diff --git a/assignments/deep-learning/gan/gan-introduction.html b/assignments/deep-learning/gan/gan-introduction.html index f641e22ac9..bb5975232b 100644 --- a/assignments/deep-learning/gan/gan-introduction.html +++ b/assignments/deep-learning/gan/gan-introduction.html @@ -6,7 +6,7 @@ - 37.112. Generative Adversarial Networks (GANs) — Ocademy Open Machine Learning Book + 37.117. Generative Adversarial Networks (GANs) — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,91 +1509,91 @@

    Ocademy Open Machine Learning Book

    @@ -1597,91 +1617,91 @@

    Contents

    @@ -1695,9 +1715,9 @@

    Contents

    -

    37.112. Generative Adversarial Networks (GANs)#

    +

    37.117. Generative Adversarial Networks (GANs)#

    -

    37.112.1. Loading data#

    +

    37.117.1. Loading data#

    import os
    @@ -1732,7 +1752,7 @@ 

    37.112.1. Loading data -

    37.112.2. Importing the libraries#

    +

    37.117.2. Importing the libraries#

    from __future__ import print_function
    @@ -1761,7 +1781,7 @@ 

    37.112.2. Importing the libraries

    -

    37.112.3. Some dogs#

    +

    37.117.3. Some dogs#

    The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world.

    @@ -1784,7 +1804,7 @@

    37.112.3. Some dogs

    -

    37.112.4. Image Preprocessing#

    +

    37.117.4. Image Preprocessing#

    batch_size = 32
    @@ -1819,7 +1839,7 @@ 

    37.112.4. Image Preprocessing -

    37.112.5. Weights#

    +

    37.117.5. Weights#

    def weights_init(m):
    @@ -1835,7 +1855,7 @@ 

    37.112.5. Weights

    -

    37.112.6. Generator#

    +

    37.117.6. Generator#

    class G(nn.Module):
    @@ -1873,7 +1893,7 @@ 

    37.112.6. Generator

    -

    37.112.7. Discriminator#

    +

    37.117.7. Discriminator#

    class D(nn.Module):
    @@ -1906,7 +1926,7 @@ 

    37.112.7. Discriminator -

    37.112.8. Another setup#

    +

    37.117.8. Another setup#

    class Generator(nn.Module):
    @@ -1972,7 +1992,7 @@ 

    37.112.8. Another setup -

    37.112.9. Training#

    +

    37.117.9. Training#

    EPOCH = 0
    @@ -2030,9 +2050,9 @@ 

    37.112.9. Training

    -

    37.112.10. Best public training#

    +

    37.117.10. Best public training#

    -

    37.112.10.1. Parameters#

    +

    37.117.10.1. Parameters#

    batch_size = 32
    @@ -2053,7 +2073,7 @@ 

    37.112.10.1. Parameters -

    37.112.10.2. Initialize models and optimizers#

    +

    37.117.10.2. Initialize models and optimizers#

    netG = Generator(nz).to(device)
    @@ -2091,7 +2111,7 @@ 

    37.112.10.2. Initialize models and optim

    -

    37.112.11. Show generated images#

    +

    37.117.11. Show generated images#

    def show_generated_img(n_images=5):
    @@ -2116,7 +2136,7 @@ 

    37.112.11. Show generated images

    -

    37.112.12. Training Loop#

    +

    37.117.12. Training Loop#

    for epoch in range(epochs):
    @@ -2188,7 +2208,7 @@ 

    37.112.12. Training Loop -

    37.112.13. Generation example#

    +

    37.117.13. Generation example#

    show_generated_img(7)
    @@ -2227,7 +2247,7 @@ 

    37.112.13. Generation example -

    37.112.13.1. Save models#

    +

    37.117.13.1. Save models#

    torch.save(netG.state_dict(), 'generator.pth')
    @@ -2239,7 +2259,7 @@ 

    37.112.13.1. Save models -

    37.112.14. Acknowledgement#

    +

    37.117.14. Acknowledgement#

    Thanks to jesucristo for creating GAN Introduction. It inspired the majority of the content in this article.

    @@ -2281,13 +2301,13 @@

    37.112.14. Acknowledgement

    previous

    -

    37.110. Art by gan

    +

    37.115. Art by gan

    next

    -

    37.113. Basic classification: Classify images of clothing

    +

    37.118. Basic classification: Classify images of clothing

    diff --git a/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html b/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html index 3f3a89f125..bba565a4d9 100644 --- a/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html +++ b/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html @@ -6,7 +6,7 @@ - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment — Ocademy Open Machine Learning Book + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,34 +1509,34 @@

    Ocademy Open Machine Learning Book

    @@ -1540,34 +1560,34 @@

    Contents

    @@ -1581,9 +1601,9 @@

    Contents

    -

    37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment#

    +

    37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment#

    -

    37.94.1. Load libraries#

    +

    37.99.1. Load libraries#

    import pandas as pd
    @@ -1614,7 +1634,7 @@ 

    37.94.1. Load libraries -

    37.94.2. Data Pre-processing#

    +

    37.99.2. Data Pre-processing#

    notclean = pd.read_csv(
    @@ -3313,7 +3333,7 @@ 

    37.94.2. Data Pre-processing -

    37.94.3. Exploratory Analysis#

    +

    37.99.3. Exploratory Analysis#

    # --------------Analysis----------------------------#
    @@ -4653,7 +4673,7 @@ 

    37.94.3. Exploratory Analysis -

    37.94.4. LSTM Model#

    +

    37.99.4. LSTM Model#

    from math import sqrt
    @@ -5474,7 +5494,7 @@ 

    37.94.4. LSTM Model

    -

    37.95. Acknowledgements#

    +

    37.100. Acknowledgements#

    Thanks to Paul Simpson for creating Bitcoin Lstm Model with Tweet Volume and Sentiment. It inspires the majority of the content in this chapter.

    @@ -5515,13 +5535,13 @@

    37.95. Acknowledgements

    previous

    -

    37.92. Intro to TensorFlow for Deep Learning

    +

    37.97. Intro to TensorFlow for Deep Learning

    next

    -

    37.96. Google Stock Price Prediction RNN

    +

    37.101. Google Stock Price Prediction RNN

    diff --git a/assignments/deep-learning/nn-classify-15-fruits-assignment.html b/assignments/deep-learning/nn-classify-15-fruits-assignment.html index 256dc5af93..ab11d8538f 100644 --- a/assignments/deep-learning/nn-classify-15-fruits-assignment.html +++ b/assignments/deep-learning/nn-classify-15-fruits-assignment.html @@ -6,7 +6,7 @@ - 37.104. NN Classify 15 Fruits Assignment — Ocademy Open Machine Learning Book + 37.109. NN Classify 15 Fruits Assignment — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,46 +1509,46 @@

    Ocademy Open Machine Learning Book

    @@ -1552,46 +1572,46 @@

    Contents

    @@ -1605,11 +1625,11 @@

    Contents

    -

    37.104. NN Classify 15 Fruits Assignment#

    +

    37.109. NN Classify 15 Fruits Assignment#

    Fruit Example

    -

    37.105. Data collection#

    +

    37.110. Data collection#

    The database used in this study is comprising of 44406 fruit images, which we collected in a period of 6 months. The images where made with in our lab’s environment under different scenarios which we mention below. We captured all the images on a clear background with @@ -1648,7 +1668,7 @@

    37.105. Data collection -

    37.106. Load and visualize the dataset#

    +

    37.111. Load and visualize the dataset#

    The database used in this study is comprising of 70549 fruit images, which were collected in a period of 6 months. The images where made with in a lab’s environment under different scenarios which we mention below. All the images were captured on a clear background with resolution of 320×258 pixels.

    Type of fruits in the dataset:

      @@ -1824,7 +1844,7 @@

      37.106. Load and visualize the dataset

    -

    37.107. Train the neural network from scratch with Keras and w/o generator#

    +

    37.112. Train the neural network from scratch with Keras and w/o generator#

    # The pictures will be resized to have the same size for the neural network
    @@ -1841,7 +1861,7 @@ 

    37.107. Train the neural network from sc

    -

    37.107.1. Create and train the NN Model#

    +

    37.112.1. Create and train the NN Model#

    def cut_df(df, number_of_parts, part):
    @@ -2020,7 +2040,7 @@ 

    37.107.1. Create and train the NN Model<

    -

    37.107.2. Predictions#

    +

    37.112.2. Predictions#

    import warnings
    @@ -2071,7 +2091,7 @@ 

    37.107.2. Predictions

    -

    37.107.3. Visualize the result with pictures of fruits#

    +

    37.112.3. Visualize the result with pictures of fruits#

    fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
    @@ -2090,7 +2110,7 @@ 

    37.107.3. Visualize the result with pict

    -

    37.108. Acknowledgments#

    +

    37.113. Acknowledgments#

    Thanks to DATALIRA for creating the open-source course Classify 15 Fruits with TensorFlow . It inspires the majority of the content in this chapter.

    @@ -2131,13 +2151,13 @@

    37.108. Acknowledgments

    previous

    -

    37.103. Neural Networks for Classification with TensorFlow

    +

    37.108. Neural Networks for Classification with TensorFlow

    next

    -

    37.109. DQN On Foreign Exchange Market

    +

    37.114. DQN On Foreign Exchange Market

    diff --git a/assignments/deep-learning/nn-for-classification-assignment.html b/assignments/deep-learning/nn-for-classification-assignment.html index e7475da780..5d6094267e 100644 --- a/assignments/deep-learning/nn-for-classification-assignment.html +++ b/assignments/deep-learning/nn-for-classification-assignment.html @@ -6,7 +6,7 @@ - 37.103. Neural Networks for Classification with TensorFlow — Ocademy Open Machine Learning Book + 37.108. Neural Networks for Classification with TensorFlow — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,101 +1509,101 @@

    Ocademy Open Machine Learning Book

    @@ -1607,101 +1627,101 @@

    Contents

    @@ -1715,14 +1735,14 @@

    Contents

    -

    37.103. Neural Networks for Classification with TensorFlow#

    +

    37.108. Neural Networks for Classification with TensorFlow#

    -

    37.103.1. Getting Started: Binary Classifier#

    +

    37.108.1. Getting Started: Binary Classifier#

    We will first practice building neural networks for binary classifier. In binary classification, we have two classes.

    We will use a classical cancer dataset to predict if a given patient has a malignant or benign based on their medical information. We will get it from sklearn datasets. You can read more about the dataset.

    The dataset contains two labels: malignant, benign.

    -

    37.103.1.1. Getting the data#

    +

    37.108.1.1. Getting the data#

    We will get the data from sklearn datasets.

    @@ -1801,7 +1821,7 @@

    37.103.1.1. Getting the data -

    37.103.2. Taking a look in the data#

    +

    37.108.2. Taking a look in the data#

    # Looking from the head 
    @@ -1831,7 +1851,7 @@ 

    37.103.2. Taking a look in the data

    -

    37.103.3. Preparing the Data#

    +

    37.108.3. Preparing the Data#

    The data from sklearn is reasonably cleaned. Let’s split the data into train and test sets, and we will follow with scaling the values to be between 0 and 1.

    @@ -1874,7 +1894,7 @@

    37.103.3. Preparing the Data -

    37.103.4. Creating, Compiling and Training a Model#

    +

    37.108.4. Creating, Compiling and Training a Model#

    In TensorFlow, creating a model is only putting together an empty graphs. We are going to use Sequential API to stack the layers, from the input to output.

    In model compilaton, it’s where we specify the optimizer and loss function. Loss function is there for calculating the difference between the predictions and the actual output, and optimizer is there for reducing the loss.

    Also, if we are interested in tracking other metrics during training, we can specify them in metric.

    @@ -1927,7 +1947,7 @@

    37.103.4. Creating, Compiling and Traini

    ‼️ If you retrain again, it will continue where it left. So, for example, if you train for 30 epochs, and you rerun the cell, it will train for same more epochs again.

    -

    37.103.5. Visualizing the Results#

    +

    37.108.5. Visualizing the Results#

    Visualizing the model results after training is always a good way to learn what you can do to improve the performance.

    Let’s get a Pandas dataframe containing training loss and accuracy, and validation loss and accuracy.

    @@ -1945,7 +1965,7 @@

    37.103.5. Visualizing the ResultsLet’s evaluate the model on the test set.

    -

    37.103.6. Evaluating the Model#

    +

    37.108.6. Evaluating the Model#

    Quite often, you will want to test your model on the data that it never saw. This data is normally called test set and in more applied practice, you will only feed the test to the model after you have done your best to improve it.

    Let’s now evaluate the model on the test set. One thing to note here is that the test set must be preprocessed the same way we preprocessed the training set. The training set was rescaled and that was applied to the test set.

    If this is not obeyed, you would not know why you’re having poor results. Just look up on the next next cell how poor the accuracy will be if I evaluate the model on unscaled data when I trained it on scaled data.

    @@ -2063,13 +2083,13 @@

    37.103.6. Evaluating the Model -

    37.103.7. Going Beyond Binary Classifier to Multiclass Classifier: 10 Fashions Classifier#

    +

    37.108.7. Going Beyond Binary Classifier to Multiclass Classifier: 10 Fashions Classifier#

    So far, we have built a neural network for regression(in previous labs) and binary classification. And we have only been working with structured datasets(datasets in tabular format).

    Can the same neural networks we used be able to recognize images? In this next practice, we will turn the page to image classification. We will build a neural network for recognizing 10 different fashions and along the way, we will learn other things such as stopping the training upon a given condition is met, and using TensorBoard to visualize model.

    That is going to be cool! Let’s get started!

    -

    37.103.8. Getting the Fashion data#

    +

    37.108.8. Getting the Fashion data#

    Let’s get the dataset from Keras.

    @@ -2084,7 +2104,7 @@

    37.103.8. Getting the Fashion data

    -

    37.103.9. Looking in the Fashion Data#

    +

    37.108.9. Looking in the Fashion Data#

    As always, it is a best practice to peep into the images to see how they like.

    Let’s display the pixels values of a given image, image, and its corresponding label.

    -

    37.103.10. Preparing the Data#

    +

    37.108.10. Preparing the Data#

    In many cases, real world images datasets are not that clean like fashion mnist.

    You may have to correct images that were incorrectly labeled, or you have labels in texts that need to be converted to numbers(most machine learning models accept numeric input), or scale the pixels values.

    The latter is what we are going to do. It is inarguable that scaling the images pixels to value between 0 and 1 increase the performance of the neural network, and hence the results. Let’s do it!!

    @@ -2174,7 +2194,7 @@

    37.103.10. Preparing the Data -

    37.103.11. Creating, Compiling, and Training a Model#

    +

    37.108.11. Creating, Compiling, and Training a Model#

    There are few points to note before creating a model:

    • When working with images, the shape of the input images has to be correctly provided. This is a common error done by many people, including me (before I learned it).

    • @@ -2224,7 +2244,7 @@

      37.103.11. Creating, Compiling, and Trai

      But also, training mnist for 20 epochs is not slow that we would need to activate GPU. We will take an advantage of GPU in later labs.

    -

    37.103.12. Visualizing the Model Results#

    +

    37.108.12. Visualizing the Model Results#

    Let’s visualize the model results to see how training went.

    @@ -2243,7 +2263,7 @@

    37.103.12. Visualizing the Model Results

    Let’s see how the model performs on unseed data: test set.

    -

    37.103.13. Model Evaluation#

    +

    37.108.13. Model Evaluation#

    # if you need a model trained, you can use this cell
    @@ -2274,11 +2294,11 @@ 

    37.103.13. Model Evaluation -

    37.103.14. Controlling Training with Callbacks#

    +

    37.108.14. Controlling Training with Callbacks#

    We can use Callbacks functions to control the training.

    Take an example: we can stop training when the model is lo longer showing significant improvements on validation set. Or we can terminate training when a certain condition is met.

    -

    37.103.14.1. Implementing Callbacks#

    +

    37.108.14.1. Implementing Callbacks#

    There are various functionalities available in Keras Callbacks.

    Let’s start with how to use ModelCheckpoint to save the model when the performance on the validation set is best so far. By saving the best model on the validation set, we avoid things like overfitting which is a common issue in machine learning model training, neural network specifically. We also train for less time.

    I will rebuild a same model again.

    @@ -2454,7 +2474,7 @@

    37.103.14.1. Implementing Callbacks

    -

    37.103.14.2. Custom Callback#

    +

    37.108.14.2. Custom Callback#

    Keras offers various functions for implementing custom callbacks that are very handy when you want to control the model training with a little bit of customization.

    You can do certain actions on almost every step of the training. Let’s stop the training when the accuracy is 95%.

    @@ -2519,7 +2539,7 @@

    37.103.14.2. Custom Callback -

    37.103.15. Using TensorBoard for Model Visualization#

    +

    37.108.15. Using TensorBoard for Model Visualization#

    Tensorboard is incredible tool used by many people (and not just only TensorFlow developers) to experiment with machine learning.

    With TensorBoard, you can:

      @@ -2610,7 +2630,7 @@

      37.103.15. Using TensorBoard for Model V

      As you can see, TensorBoard is very useful. The fact that you can use it to visualize the performance metrics, model graphs, and datasets as well.

    -

    37.103.16. Acknowledgments#

    +

    37.108.16. Acknowledgments#

    Thanks to Jean de Dieu Nyandwi for creating the open-source course machine learning complete . It inspires the majority of the content in this chapter.

    @@ -2652,13 +2672,13 @@

    37.103.16. Acknowledgments

    previous

    -

    37.101. Time Series Forecasting Assignment

    +

    37.106. Time Series Forecasting Assignment

    next

    -

    37.104. NN Classify 15 Fruits Assignment

    +

    37.109. NN Classify 15 Fruits Assignment

    diff --git a/assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.html b/assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.html index 7746097924..44301b66a5 100644 --- a/assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.html +++ b/assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.html @@ -6,7 +6,7 @@ - 37.113. Basic classification: Classify images of clothing — Ocademy Open Machine Learning Book + 37.118. Basic classification: Classify images of clothing — Ocademy Open Machine Learning Book @@ -99,7 +99,7 @@ - + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,86 +1509,86 @@

    Ocademy Open Machine Learning Book

    @@ -1592,86 +1612,86 @@

    Contents

    @@ -1685,9 +1705,9 @@

    Contents

    -

    37.113. Basic classification: Classify images of clothing#

    +

    37.118. Basic classification: Classify images of clothing#

    -

    37.113.1. Load model#

    +

    37.118.1. Load model#

    The following code has nothing to do with machine learning and can be skipped.

    @@ -1732,7 +1752,7 @@

    37.113.1. Load model -

    37.113.2. Overview: Deep learning, machine learning, and AI#

    +

    37.118.2. Overview: Deep learning, machine learning, and AI#

    ai-vs-machine-learning-vs-deep-learning

    Consider the following definitions to understand deep learning vs. machine learning vs. AI:

      @@ -1750,7 +1770,7 @@

      37.113.2. Overview: Deep learning, machi

      By using machine learning and deep learning techniques, you can build computer systems and applications that do tasks that are commonly associated with human intelligence. These tasks include image recognition, speech recognition, and language translation.

    -

    37.113.3. Overview of this guide#

    +

    37.118.3. Overview of this guide#

    This guide provide a simple sample of deep learning. It will help you understand the model framework for deep learning.

    This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It’s okay if you don’t understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go.

    This guide uses tf.keras, a high-level API to build and train models in TensorFlow.

    @@ -1770,7 +1790,7 @@

    37.113.3. Overview of this guide

    -

    37.113.4. Import the Fashion MNIST dataset#

    +

    37.118.4. Import the Fashion MNIST dataset#

    This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels), as seen here:

    @@ -1856,7 +1876,7 @@

    37.113.4. Import the Fashion MNIST datas
    -

    37.113.5. Explore the data#

    +

    37.118.5. Explore the data#

    Let’s explore the format of the dataset before training the model. The following shows there are 60,000 images in the training set, with each image represented as 28 x 28 pixels:

    @@ -1899,7 +1919,7 @@

    37.113.5. Explore the data -

    37.113.6. Preprocess the data#

    +

    37.118.6. Preprocess the data#

    The data must be preprocessed before training the network. If you inspect the first image in the training set, you will see that the pixel values fall in the range of 0 to 255:

    @@ -1940,10 +1960,10 @@

    37.113.6. Preprocess the data -

    37.113.7. Build the model#

    +

    37.118.7. Build the model#

    Building the neural network requires configuring the layers of the model, then compiling the model.

    -

    37.113.7.1. Set up the layers#

    +

    37.118.7.1. Set up the layers#

    The basic building block of a neural network is the layer. Layers extract representations from the data fed into them. Hopefully, these representations are meaningful for the problem at hand.

    Most of deep learning consists of chaining together simple layers. Most layers, such as tf.keras.layers.Dense, have parameters that are learned during training.

    -

    37.113.7.2. Compile the model#

    +

    37.118.7.2. Compile the model#

    Before the model is ready for training, it needs a few more settings. These are added during the model’s compile step:

    @@ -1489,19 +1509,19 @@

    Ocademy Open Machine Learning Book

    @@ -1525,19 +1545,19 @@

    Contents

    @@ -1551,9 +1571,9 @@

    Contents

    -

    37.96. Google Stock Price Prediction RNN#

    +

    37.101. Google Stock Price Prediction RNN#

    -

    37.96.1. Load libraries#

    +

    37.101.1. Load libraries#

    import numpy as np  # linear algebra
    @@ -1832,7 +1852,7 @@ 

    37.96.1. Load libraries -

    37.97. Acknowledgements#

    +

    37.102. Acknowledgements#

    Thanks to Priya for creating Google stock price prediction - RNN. It inspires the majority of the content in this chapter.

    @@ -1873,13 +1893,13 @@

    37.97. Acknowledgements

    previous

    -

    37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment

    +

    37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment

    next

    -

    37.98. Intro to Autoencoders

    +

    37.103. Intro to Autoencoders

    diff --git a/assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.html b/assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.html index 0ac862b568..ae3adb2a9d 100644 --- a/assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.html +++ b/assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.html @@ -6,7 +6,7 @@ - 37.92. Intro to TensorFlow for Deep Learning — Ocademy Open Machine Learning Book + 37.97. Intro to TensorFlow for Deep Learning — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,74 +1509,74 @@

    Ocademy Open Machine Learning Book

    -

    37.92.4.3. 3.3 Creating a Tensor with tf.Variable()#

    +

    37.97.4.3. 3.3 Creating a Tensor with tf.Variable()#

    A tensor created with tf.constant() is immutable, it can not be changed. Such kind of tensor can not be used as weights in neural networks because they need to be changed/updated in backpropogation for example.

    With tf.Variable(), we can create tensors that can be mutable and thus can be used in things like updating the weights of neural networks like said above.

    Creating variable tensor is as simple as the former.

    @@ -1972,7 +1992,7 @@

    37.92.4.3. 3.3 Creating a Tensor with tf

    -

    37.92.4.4. 3.4 Creating a Tensor from Existing Functions#

    +

    37.97.4.4. 3.4 Creating a Tensor from Existing Functions#

    There some types of uniform tensors that you would not want to create from scratch, when in fact, they are already built.

    Take an example of 1’s tensor, 0’s, and random tensors. Let’s create them.

    @@ -2086,7 +2106,7 @@

    37.92.4.4. 3.4 Creating a Tensor from Ex

    You can learn more about Random number generation at TensorFlow docs.

    -

    37.92.4.5. 3.5 Selecting Data in Tensor#

    +

    37.97.4.5. 3.5 Selecting Data in Tensor#

    We can also select values in any tensor, both single dimensional tensor and multi dimensional tensor.

    @@ -2135,7 +2155,7 @@

    37.92.4.5. 3.5 Selecting Data in Tensor<

    -

    37.92.4.6. 3.6 Performing Operations on Tensors#

    +

    37.97.4.6. 3.6 Performing Operations on Tensors#

    All numeric operations can be performed on tensor. Let’s see few of them.

    @@ -2186,7 +2206,7 @@

    37.92.4.6. 3.6 Performing Operations on

    You can learn more at official docs, tf.math() specifically. Almost all maths operations can be done on tensors.

    -

    37.92.4.7. 3.7 Manipulating the Shape of Tensor#

    +

    37.97.4.7. 3.7 Manipulating the Shape of Tensor#

    There are times you would want to reshape a tensor. Here is how to go about it.

    @@ -2253,7 +2273,7 @@

    37.92.4.7. 3.7 Manipulating the Shape of

    -

    37.93. Acknowledgments#

    +

    37.98. Acknowledgments#

    Thanks to Jean de Dieu Nyandwi for creating 2_intro_to_tensorflow_for_deeplearning. It inspires the majority of the content in this chapter.

    @@ -2294,13 +2314,13 @@

    37.93. Acknowledgments

    previous

    -

    37.91. Object Recognition in Images using CNN

    +

    37.96. Object Recognition in Images using CNN

    next

    -

    37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment

    +

    37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment

    diff --git a/assignments/deep-learning/time-series-forecasting-assignment.html b/assignments/deep-learning/time-series-forecasting-assignment.html index 7069f6f7e7..d89548c590 100644 --- a/assignments/deep-learning/time-series-forecasting-assignment.html +++ b/assignments/deep-learning/time-series-forecasting-assignment.html @@ -6,7 +6,7 @@ - 37.101. Time Series Forecasting Assignment — Ocademy Open Machine Learning Book + 37.106. Time Series Forecasting Assignment — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,86 +1509,86 @@

    Ocademy Open Machine Learning Book

    @@ -1489,59 +1509,59 @@

    Ocademy Open Machine Learning Book

    @@ -1565,59 +1585,59 @@

    Contents

    @@ -1631,12 +1651,12 @@

    Contents

    -

    37.71. Random forests for classification#

    +

    37.76. Random forests for classification#

    Random Forests are powerful machine learning algorithms used for supervised classification and regression. Random forests works by averaging the predictions of the multiple and randomized decision trees. Decision trees tends to overfit and so by combining multiple decision trees, the effect of overfitting can be minimized.

    Random Forests are type of ensemble models. More about ensembles models in the next assignment.

    Different to other learning algorithms, random forests provide a way to find the importance of each feature and this is implemented in Sklearn.

    -

    37.71.1. Imports#

    +

    37.76.1. Imports#

    %matplotlib inline
    @@ -1651,7 +1671,7 @@ 

    37.71.1. Imports

    -

    37.71.2. Loading the data#

    +

    37.76.2. Loading the data#

    In this assignment, we will use Random forests to build a classifier that identify the increase or decrease of the electricity using “the data that was collected from the Australian New South Wales Electricity Market. In this market, prices are not fixed and are affected by demand and supply of the market. They are set every five minutes. Electricity transfers to/from the neighboring state of Victoria were done to alleviate fluctuations.”

    “The dataset contains 45,312 instances dated from 7 May 1996 to 5 December 1998. Each example of the dataset refers to a period of 30 minutes, i.e. there are 48 instances for each time period of one day. Each example on the dataset has 5 fields, the day of week, the time stamp, the New South Wales electricity demand, the Victoria electricity demand, the scheduled electricity transfer between states and the class label. The class label identifies the change of the price (UP or DOWN) in New South Wales relative to a moving average of the last 24 hours (and removes the impact of longer term price trends). Source: Open ML electricity.

    Here are the information about the features:

    @@ -1705,7 +1725,7 @@

    37.71.2. Loading the data -

    37.71.2.1. Task 1: Exploratory data analysis#

    +

    37.76.2.1. Task 1: Exploratory data analysis#

    Before doing exploratory analysis, as always, let’s split the data into training and test sets.

    @@ -1801,7 +1821,7 @@

    37.71.2.1. Task 1: Exploratory data anal

    In the above correlation matrix, you can see that class feature is not there and this is because it still has categorical values.

    -

    37.71.2.2. Task 2: More data exploration#

    +

    37.76.2.2. Task 2: More data exploration#

    Before preprocessing the data, let’s take a look into specific features.

    Let’s see how many Ups/Downs are in the class feature.

    @@ -1887,7 +1907,7 @@

    37.71.2.2. Task 2: More data exploration

    -

    37.71.2.3. Task 3: Data preprocessing#

    +

    37.76.2.3. Task 3: Data preprocessing#

    It is here that we prepare the data to be in the proper format for the machine learning model.

    Let’s encode the categorical feature class. But before that, let’s take training input data and labels.

    -

    37.71.2.4. Task 4: Training random forests classifier#

    +

    37.76.2.4. Task 4: Training random forests classifier#

    from sklearn.ensemble import RandomForestClassifier
    @@ -1947,7 +1967,7 @@ 

    37.71.2.4. Task 4: Training random fores

    -

    37.71.2.5. Task5: Evaluating random forests classifier#

    +

    37.76.2.5. Task5: Evaluating random forests classifier#

    Let’s build 3 functions to display accuracy, confusion matrix, and classification report.

    • Accuracy provide a percentage score of the model’s ability to make correct predictions.

    • @@ -2038,7 +2058,7 @@

      37.71.2.5. Task5: Evaluating random fore

      The model clearly overfitted the data. Let’s see how we can regularize it.

    -

    37.71.2.6. Task 6: Improving random forests#

    +

    37.76.2.6. Task 6: Improving random forests#

    # Random forest model parameters
    @@ -2140,7 +2160,7 @@ 

    37.71.2.6. Task 6: Improving random fore

    One way to improve the model can be to search more hyperparameters or adding more good data is always the best cure.

    -

    37.71.2.7. Task 7: Evaluating the model on the test set#

    +

    37.76.2.7. Task 7: Evaluating the model on the test set#

    Let us evaluate the model on the test set. But we need first run the label_encoder on the class feature as we did in the training labels. Note that we only transform (not fit_transform).

    @@ -2176,7 +2196,7 @@

    37.71.2.7. Task 7: Evaluating the model

    As you can see the model is no longer overfitting. On the training set, the accuracy was 79%, which is a figure very similar to the test set. And the model never saw the test data. To improve the model in the case like this, if is often best to add more data if possible.

    -

    37.71.2.8. Task 8: Feature importance#

    +

    37.76.2.8. Task 8: Feature importance#

    Different to other machine learning models, random forests can show how each feature contributed to the model generalization. Let’s find it.

    The results are values between 0 and 1. The closer to 1, the good the feature was to the model.

    @@ -2196,7 +2216,7 @@

    37.71.2.8. Task 8: Feature importance

    -

    37.71.3. Acknowledgments#

    +

    37.76.3. Acknowledgments#

    Thanks to Nyandwi for creating the open-source course Machine Learning complete. It inspires the majority of the content in this chapter.

    @@ -2238,13 +2258,13 @@

    37.71.3. Acknowledgments

    previous

    -

    37.70. Random forests intro and regression

    +

    37.75. Random forests intro and regression

    next

    -

    37.72. Beyond random forests: more ensemble models

    +

    37.77. Beyond random forests: more ensemble models

    diff --git a/assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.html b/assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.html index 82fa17b3e1..a494e136e3 100644 --- a/assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.html +++ b/assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.html @@ -6,7 +6,7 @@ - 37.70. Random forests intro and regression — Ocademy Open Machine Learning Book + 37.75. Random forests intro and regression — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,81 +1509,81 @@

    Ocademy Open Machine Learning Book

    @@ -1587,81 +1607,81 @@

    Contents

    @@ -1675,12 +1695,12 @@

    Contents

    -

    37.70. Random forests intro and regression#

    +

    37.75. Random forests intro and regression#

    Random Forests are powerful machine learning algorithms used for supervised classification and regression. Random forests works by averaging the predictions of the multiple and randomized decision trees. Decision trees tends to overfit and so by combining multiple decision trees, the effect of overfitting can be minimized.

    Random Forests are type of ensemble models. More about ensembles models in the next notebook.

    Different to other learning algorithms, random forests provide a way to find the importance of each feature and this is implemented in Sklearn.

    -

    37.70.1. Imports#

    +

    37.75.1. Imports#

    %matplotlib inline
    @@ -1700,7 +1720,7 @@ 

    37.70.1. Imports

    -

    37.70.2. Loading the data#

    +

    37.75.2. Loading the data#

    In this regression task with random forests, we will use the Machine CPU (Central Processing Unit) dataset which is available at OpenML.

    If you are reading this, it’s very likely that you know CPU or you have once(or many times) thought about it when you were buying your computer. In this notebook, we will predict the relative performance of the CPU given the following data:

      @@ -1753,9 +1773,9 @@

      37.70.2. Loading the data -

      37.70.3. Tasks and roles#

      +

      37.75.3. Tasks and roles#

      -

      37.70.3.1. Task 1: Exploratory analysis#

      +

      37.75.3.1. Task 1: Exploratory analysis#

      Before doing exploratory analysis, let’s get the training and test data.

      @@ -1772,7 +1792,7 @@

      37.70.3.1. Task 1: Exploratory analysis<

      -

      37.70.3.1.1. Part 1: The histogram#

      +

      37.75.3.1.1. Part 1: The histogram#

      def df_hist(df):
      @@ -1845,7 +1865,7 @@ 
      Check result by executing below... 📝
      -

      37.70.3.1.2. Part 2: The pairplot#

      +

      37.75.3.1.2. Part 2: The pairplot#

      def df_pairplot(df):
      @@ -1918,7 +1938,7 @@ 
      Check result by executing below... 📝
      -

      37.70.3.1.3. Part 3: Check the train data#

      +

      37.75.3.1.3. Part 3: Check the train data#

      def df_desc(df):
      @@ -1958,7 +1978,7 @@ 

      37.70.3.1.3. Part 3: Check the train dat

      Great! We don’t have any missing values.

      -

      37.70.3.1.4. Part 4: Look the correlation#

      +

      37.75.3.1.4. Part 4: Look the correlation#

      def df_corr(df):
      @@ -1999,7 +2019,7 @@ 

      37.70.3.1.4. Part 4: Look the correlatio

      -

      37.70.3.2. Task 2: Data preprocessing#

      +

      37.75.3.2. Task 2: Data preprocessing#

      It is here that we prepare the data to be in the proper format for the machine learning model. Let’s set up a pipeline to scale features but before that, let’s take training input data and labels.

      @@ -2023,7 +2043,7 @@

      37.70.3.2. Task 2: Data preprocessing

      -

      37.70.3.3. Task 3: Training random forests regressor#

      +

      37.75.3.3. Task 3: Training random forests regressor#

      from sklearn.ensemble import RandomForestRegressor
      @@ -2039,7 +2059,7 @@ 

      37.70.3.3. Task 3: Training random fores

      -

      37.70.3.4. Task 4: Evaluating random forests regressor#

      +

      37.75.3.4. Task 4: Evaluating random forests regressor#

      Let’s first check the root mean squarred errr on the training. It is not advised to evaluate the model on the test data since we haven’t improved it yet. we will make a function to make it easier and to avoid repetitions.

      @@ -2070,7 +2090,7 @@

      37.70.3.4. Task 4: Evaluating random for

      -

      37.70.3.5. Task 5: Improving random forests#

      +

      37.75.3.5. Task 5: Improving random forests#

      forest_reg.get_params()
      @@ -2135,7 +2155,7 @@ 

      37.70.3.5. Task 5: Improving random fore

      Surprisingly, by searching model hyperparameters, the model did not improve. Can you guess why? We can observe many things while running Grid Search and reading about the random forests. If you can’t get good results, set the bootstrap to False. It is true by default, and that means that you are training on samples of the training set instead of the whole training set. Try going back to the orginal model and change it to True and note how the prediction changes. Also learn more about the other hyperparameters.

      -

      37.70.3.6. Task 6: Feature importance#

      +

      37.75.3.6. Task 6: Feature importance#

      Different to other machine learning models, random forests can show how each feature contributed to the model generalization. Let’s find it. The results are values between 0 and 1. The closer to 1, the good the feature was to the model.

      -

      37.70.3.7. Task 7: Evaluating the Model on the Test Set#

      +

      37.75.3.7. Task 7: Evaluating the Model on the Test Set#

      Let us evaluate the model on the test set. But we need first run the pipeline on the test data. Note that we only transform (not fit_transform).

      @@ -2184,7 +2204,7 @@

      37.70.3.7. Task 7: Evaluating the Model

    -

    37.70.4. Acknowledgments#

    +

    37.75.4. Acknowledgments#

    Thanks to Nyandwi for creating the open-source course Machine Learning complete. It inspires the majority of the content in this chapter.

    @@ -2226,13 +2246,13 @@

    37.70.4. Acknowledgments

    previous

    -

    37.69. Regularized Linear Models

    +

    37.74. Regularized Linear Models

    next

    -

    37.71. Random forests for classification

    +

    37.76. Random forests for classification

    diff --git a/assignments/ml-advanced/gradient-boosting/boosting-with-tuning.html b/assignments/ml-advanced/gradient-boosting/boosting-with-tuning.html index 9988b59770..772dfd94c8 100644 --- a/assignments/ml-advanced/gradient-boosting/boosting-with-tuning.html +++ b/assignments/ml-advanced/gradient-boosting/boosting-with-tuning.html @@ -6,7 +6,7 @@ - 37.76. Boosting with tuning — Ocademy Open Machine Learning Book + 37.81. Boosting with tuning — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,59 +1509,59 @@

    Ocademy Open Machine Learning Book

    -

    37.62.1. Contents#

    +

    37.67.1. Contents#

    -

    37.62.2. 1 - Imports#

    +

    37.67.2. 1 - Imports#

    import numpy as np
    @@ -1699,7 +1719,7 @@ 

    37.62.2. 1 - Imports -

    37.62.3. 2 - Loading the data#

    +

    37.67.3. 2 - Loading the data#

    We will get Iris data from Sklearn datasets. Setting as_frame parameter to True will return data as a Pandas Dataframe.

    @@ -1838,7 +1858,7 @@

    37.62.3. 2 - Loading the data -

    37.62.4. 3 - Exploratory Analysis#

    +

    37.67.4. 3 - Exploratory Analysis#

    Before exploring some insight in data, let’s split it into test and train set.

    @@ -1916,7 +1936,7 @@

    37.62.4. 3 - Exploratory Analysis

    -

    37.62.5. 4 - Data Preprocessing#

    +

    37.67.5. 4 - Data Preprocessing#

    The features already have small values but let’s scale them to be between 0 and 1. SVM work well with scaled values. I will set up a pipeline to handle that.

    @@ -1952,7 +1972,7 @@

    37.62.5. 4 - Data Preprocessing

    -

    37.62.6. 5 - Training Support Vector Classifier#

    +

    37.67.6. 5 - Training Support Vector Classifier#

    We are going to train two classifiers: Linear SVC and SVC that we can use different kernels. SVM supports linear, polynomial, sigmoid and rbf kernels.

    @@ -1980,7 +2000,7 @@

    37.62.6. 5 - Training Support Vector Cla

    -

    37.62.7. 6 - Evaluating Support Vector Classifier#

    +

    37.67.7. 6 - Evaluating Support Vector Classifier#

    Let’s first check the accuracy on the training. For this step since we are trying to find model to improve further, we won’t touch test set yet.

    @@ -2056,7 +2076,7 @@

    37.62.7. 6 - Evaluating Support Vector C

    -

    37.62.8. 7 - Improving Support Vector Classifier#

    +

    37.67.8. 7 - Improving Support Vector Classifier#

    from sklearn.model_selection import GridSearchCV
    @@ -3535,7 +3555,7 @@ 

    37.62.8. 7 - Improving Support Vector Cl

    This is the end of the lab which was all about using Support Vector Machines for classification task. As you can see, SVM is a robust algorithm given how it supports different kernels. These kernels are what make it suitable for both linear and non linear problems. In real world, many datasets are not linear. So when you can’t get good results with linear models, try things like SVM with polynomial kernel.

    -

    37.62.9. Acknowledgments#

    +

    37.67.9. Acknowledgments#

    Thanks to Jake VanderPlas for creating the open-source course Python Data Science Handbook . It inspires the majority of the content in this chapter.

    @@ -3577,13 +3597,13 @@

    37.62.9. Acknowledgments

    previous

    -

    37.61. Support Vector Machines (SVM) - Intro and SVM for Regression

    +

    37.66. Support Vector Machines (SVM) - Intro and SVM for Regression

    next

    -

    37.63. Decision Trees - Intro and Regression

    +

    37.68. Decision Trees - Intro and Regression

    diff --git a/assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.html b/assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.html index 9fc153d4bc..2cca809f93 100644 --- a/assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.html +++ b/assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.html @@ -6,7 +6,7 @@ - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression — Ocademy Open Machine Learning Book + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,47 +1509,47 @@

    Ocademy Open Machine Learning Book

    @@ -1553,47 +1573,47 @@

    Contents

    @@ -1608,7 +1628,7 @@

    Contents

    -

    37.61. Support Vector Machines (SVM) - Intro and SVM for Regression#

    +

    37.66. Support Vector Machines (SVM) - Intro and SVM for Regression#

    Support Vector Machines are the type of supervised learning algorithms used for regression, classification and detecting outliers. SVMs are remarkably one of the powerful models in classical machine learning suited for handling complex and high dimensional datasets.

    With SVM supporting different kernels (linear, polynomial, Radial Basis Function(rbf), and sigmoid), SVM can tackle different kinds of datasets, both linear and non linear.

    While the maths behind the SVMs are beyond the scope of this notebook, here is the idea behind SVMs:

    @@ -1616,7 +1636,7 @@

    37.61. Support Vector Machines (SVM) - I

    SVM

    SMVs are widely used for classification. But to motivate that, let’s start with regression. For the purpose of examining how powerful this algorithm is, we will use the same dataset that we used in linear regression notebook, and hopefully the difference in performance will be notable.

    -

    37.61.1. Contents#

    +

    37.66.1. Contents#

    -

    37.61.2. 1 - Imports#

    +

    37.66.2. 1 - Imports#

    import numpy as np
    @@ -1646,7 +1666,7 @@ 

    37.61.2. 1 - Imports -

    37.61.3. 2 - Loading the data#

    +

    37.66.3. 2 - Loading the data#

    cal_data = pd.read_csv("../../assets/data/housing.csv")
    @@ -1769,7 +1789,7 @@ 

    37.61.3. 2 - Loading the data -

    37.61.4. 3 - Exploratory Analysis#

    +

    37.66.4. 3 - Exploratory Analysis#

    This is going to be a quick glance through the dataset. The full exploratory data analysis was done in the linear regression notebook[ADD LINK]. Before anything, let’s split the data into training and test set.

    @@ -2020,7 +2040,7 @@

    37.61.4. 3 - Exploratory Analysis

    -

    37.61.5. 4 - Data Preprocessing#

    +

    37.66.5. 4 - Data Preprocessing#

    To do:

    • Handle missing values

    • @@ -2112,7 +2132,7 @@

      37.61.5. 4 - Data Preprocessing

    -

    37.61.6. 5 - Training Support Vector Regressor#

    +

    37.66.6. 5 - Training Support Vector Regressor#

    In regression, instead of separating the classes with decision boundary like in classification, SVR fits the training data points on the boundary margin but keep them off.

    We can implement it quite easily with Scikit-Learn.

    @@ -2146,7 +2166,7 @@

    37.61.6. 5 - Training Support Vector Reg

    -

    37.61.7. 6 - Evaluating Support Vector Regressor#

    +

    37.66.7. 6 - Evaluating Support Vector Regressor#

    Let us evaluate the two models we created on the training set before evaluating on the test set. This is a good practice. Since finding a good model can take many iterations of improvements, it’s not advised to touch the test set until the model is good enough. Otherwise it would fail to make predictions on the new data.

    As always, we evaluate regression models with mean squarred error, but the commonly used one is root mean squarred error.

    @@ -2186,7 +2206,7 @@

    37.61.7. 6 - Evaluating Support Vector R

    -

    37.61.8. 7 - Improving Support Vector Regressor#

    +

    37.66.8. 7 - Improving Support Vector Regressor#

    Let use Randomized Search to improve the SVR model. Few notes about the parameters:

    • Gamma(y): This is a regularization hyperparameter. When gamma is small, the model can underfit. It is too high, model can overfit.

    • @@ -2319,7 +2339,7 @@

      37.61.8. 7 - Improving Support Vector Re

      This is the end of the notebook. It was a practical introduction to using Support Vector Machines for regression. In the next lab, we will take a further step, where we will do classification with SVM.

    -

    37.61.9. Acknowledgments#

    +

    37.66.9. Acknowledgments#

    Thanks to Jake VanderPlas for creating the open-source course Python Data Science Handbook . It inspires the majority of the content in this chapter.

    @@ -2361,13 +2381,13 @@

    37.61.9. Acknowledgments

    previous

    -

    37.60. Kernel method assignment 1

    +

    37.65. Kernel method assignment 1

    next

    -

    37.62. Support Vector Machines (SVM) - Classification

    +

    37.67. Support Vector Machines (SVM) - Classification

    diff --git a/assignments/ml-advanced/model-selection/dropout-and-batch-normalization.html b/assignments/ml-advanced/model-selection/dropout-and-batch-normalization.html index 9e0bb120b6..4c11081a7d 100644 --- a/assignments/ml-advanced/model-selection/dropout-and-batch-normalization.html +++ b/assignments/ml-advanced/model-selection/dropout-and-batch-normalization.html @@ -6,7 +6,7 @@ - 37.67. Dropout and Batch Normalization — Ocademy Open Machine Learning Book + 37.72. Dropout and Batch Normalization — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,41 +1509,41 @@

    Ocademy Open Machine Learning Book

    @@ -1547,41 +1567,41 @@

    Contents

    @@ -1595,14 +1615,14 @@

    Contents

    -

    37.67. Dropout and Batch Normalization#

    +

    37.72. Dropout and Batch Normalization#

    -

    37.67.1. Introduction#

    +

    37.72.1. Introduction#

    There’s more to the world of deep learning than just dense layers. There are dozens of kinds of layers you might add to a model. (Try browsing through the Keras docs for a sample!) Some are like dense layers and define connections between neurons, and others can do preprocessing or transformations of other sorts.

    In this lesson, we’ll learn about a two kinds of special layers, not containing any neurons themselves, but that add some functionality that can sometimes benefit a model in various ways. Both are commonly used in modern architectures.

    -

    37.67.2. Dropout#

    +

    37.72.2. Dropout#

    The first of these is the “dropout layer”, which can help correct overfitting.

    In the last lesson we talked about how overfitting is caused by the network learning spurious patterns in the training data. To recognize these spurious patterns a network will often rely on very a specific combinations of weight, a kind of “conspiracy” of weights. Being so specific, they tend to be fragile: remove one and the conspiracy falls apart.

    This is the idea behind dropout. To break up these conspiracies, we randomly drop out some fraction of a layer’s input units every step of training, making it much harder for the network to learn those spurious patterns in the training data. Instead, it has to search for broad, general patterns, whose weight patterns tend to be more robust.

    @@ -1610,7 +1630,7 @@

    37.67.2. DropoutHere, 50% dropout has been added between the two hidden layers.

    You could also think about dropout as creating a kind of ensemble of networks. The predictions will no longer be made by one big network, but instead by a committee of smaller networks. Individuals in the committee tend to make different kinds of mistakes, but be right at the same time, making the committee as a whole better than any individual. (If you’re familiar with random forests as an ensemble of decision trees, it’s the same idea.)

    -

    37.67.2.1. Adding Dropout#

    +

    37.72.2.1. Adding Dropout#

    In Keras, the dropout rate argument rate defines what percentage of the input units to shut off. Put the Dropout layer just before the layer you want the dropout applied to:

    keras.Sequential([
         # ...
    @@ -1623,13 +1643,13 @@ 

    37.67.2.1. Adding Dropout -

    37.67.3. Batch Normalization#

    +

    37.72.3. Batch Normalization#

    The next special layer we’ll look at performs “batch normalization” (or “batchnorm”), which can help correct training that is slow or unstable.

    With neural networks, it’s generally a good idea to put all of your data on a common scale, perhaps with something like scikit-learn’s StandardScaler or MinMaxScaler. The reason is that SGD will shift the network weights in proportion to how large an activation the data produces. Features that tend to produce activations of very different sizes can make for unstable training behavior.

    Now, if it’s good to normalize the data before it goes into the network, maybe also normalizing inside the network would be better! In fact, we have a special kind of layer that can do this, the batch normalization layer. A batch normalization layer looks at each batch as it comes in, first normalizing the batch with its own mean and standard deviation, and then also putting the data on a new scale with two trainable rescaling parameters. Batchnorm, in effect, performs a kind of coordinated rescaling of its inputs.

    Most often, batchnorm is added as an aid to the optimization process (though it can sometimes also help prediction performance). Models with batchnorm tend to need fewer epochs to complete training. Moreover, batchnorm can also fix various problems that can cause the training to get “stuck”. Consider adding batch normalization to your models, especially if you’re having trouble during training.

    -

    37.67.3.1. Adding Batch Normalization#

    +

    37.72.3.1. Adding Batch Normalization#

    It seems that batch normalization can be used at almost any point in a network. You can put it after a layer…

    layers.Dense(16, activation='relu'),
     layers.BatchNormalization(),
    @@ -1645,7 +1665,7 @@ 

    37.67.3.1. Adding Batch Normalization

    -

    37.67.4. Example - Using Dropout and Batch Normalization#

    +

    37.72.4. Example - Using Dropout and Batch Normalization#

    Let’s continue developing the Red Wine model. Now we’ll increase the capacity even more, but add dropout to control overfitting and batch normalization to speed up optimization. This time, we’ll also leave off standardizing the data, to demonstrate how batch normalization can stabalize the training.

    @@ -1732,7 +1752,7 @@

    37.67.4. Example - Using Dropout and Bat

    You’ll typically get better performance if you standardize your data before using it for training. That we were able to use the raw data at all, however, shows how effective batch normalization can be on more difficult datasets.

    -

    37.67.5. Acknowledgments#

    +

    37.72.5. Acknowledgments#

    Thanks to Ryan Holbrook for creating the open-source course Learning Curve To Identify Overfit & Underfit. It inspires the majority of the content in this chapter.

    @@ -1774,13 +1794,13 @@

    37.67.5. Acknowledgments

    previous

    -

    37.66. Learning Curve To Identify Overfit & Underfit

    +

    37.71. Learning Curve To Identify Overfit & Underfit

    next

    -

    37.68. Lasso and Ridge Regression

    +

    37.73. Lasso and Ridge Regression

    diff --git a/assignments/ml-advanced/model-selection/lasso-and-ridge-regression.html b/assignments/ml-advanced/model-selection/lasso-and-ridge-regression.html index b2a89a1393..7596fc9fa4 100644 --- a/assignments/ml-advanced/model-selection/lasso-and-ridge-regression.html +++ b/assignments/ml-advanced/model-selection/lasso-and-ridge-regression.html @@ -6,7 +6,7 @@ - 37.68. Lasso and Ridge Regression — Ocademy Open Machine Learning Book + 37.73. Lasso and Ridge Regression — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,47 +1509,47 @@

    Ocademy Open Machine Learning Book

    @@ -1553,47 +1573,47 @@

    Contents

    @@ -1607,7 +1627,7 @@

    Contents

    -

    37.68. Lasso and Ridge Regression#

    +

    37.73. Lasso and Ridge Regression#

    import numpy as np
    @@ -1621,7 +1641,7 @@ 

    37.68. Lasso and Ridge Regression

    -

    37.68.1. Common Regression class#

    +

    37.73.1. Common Regression class#

    The most of things common in Lasson and Ridge Regression.
    The only different between two regression is, what regularization it is using.

      @@ -1726,7 +1746,7 @@

      37.68.1. Common Regression class

    -

    37.68.2. Regularization classes#

    +

    37.73.2. Regularization classes#

    # Create the regularization class we want.
    @@ -1762,7 +1782,7 @@ 

    37.68.2. Regularization classes

    -

    37.68.3. Data creation#

    +

    37.73.3. Data creation#

    # Define the traning data.
    @@ -1941,7 +1961,7 @@ 

    37.68.3. Data creation -

    37.68.4. Lasson Regression from scratch#

    +

    37.73.4. Lasson Regression from scratch#

    class LassoRegression(Regression):
    @@ -2022,7 +2042,7 @@ 

    37.68.4. Lasson Regression from scratch<

    -

    37.68.5. Lasso Regression using skicit-learn#

    +

    37.73.5. Lasso Regression using skicit-learn#

    from sklearn.linear_model import Lasso
    @@ -2065,11 +2085,11 @@ 

    37.68.5. Lasso Regression using skicit-l

    -

    37.68.6. Conclusion#

    +

    37.73.6. Conclusion#

    Our model (from scratch) also works great as compared to skiti-learn model. Both the models are giving 0.99…% r2_socre which is good.

    -

    37.68.7. Ridge Regression from scratch#

    +

    37.73.7. Ridge Regression from scratch#

    class RidgeRegression(Regression):
    @@ -2151,7 +2171,7 @@ 

    37.68.7. Ridge Regression from scratch

    -

    37.68.8. Ridge Regression using scikit-learn#

    +

    37.73.8. Ridge Regression using scikit-learn#

    from sklearn.linear_model import Ridge
    @@ -2194,7 +2214,7 @@ 

    37.68.8. Ridge Regression using scikit-l

    -

    37.68.9. Acknowledgments#

    +

    37.73.9. Acknowledgments#

    Thanks to Pavithra Devi M for creating the Notebook Lasso and Ridge Regression from scratch, lisensed under the Apache 2.0. It inspires the majority of the content in this chapter.

    @@ -2236,13 +2256,13 @@

    37.68.9. Acknowledgments

    previous

    -

    37.67. Dropout and Batch Normalization

    +

    37.72. Dropout and Batch Normalization

    next

    -

    37.69. Regularized Linear Models

    +

    37.74. Regularized Linear Models

    diff --git a/assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.html b/assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.html index d8f8ea0000..e0751756fd 100644 --- a/assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.html +++ b/assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.html @@ -6,7 +6,7 @@ - 37.66. Learning Curve To Identify Overfit & Underfit — Ocademy Open Machine Learning Book + 37.71. Learning Curve To Identify Overfit & Underfit — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,105 +1509,105 @@

    Ocademy Open Machine Learning Book

    @@ -1611,105 +1631,105 @@

    Contents

    @@ -1723,9 +1743,9 @@

    Contents

    -

    37.66. Learning Curve To Identify Overfit & Underfit#

    +

    37.71. Learning Curve To Identify Overfit & Underfit#

    -

    37.66.1. Imports#

    +

    37.71.1. Imports#

    import numpy as np
    @@ -1745,24 +1765,24 @@ 

    37.66.1. Imports

    -

    37.66.2. Overfitting and Underfitting Refresher#

    +

    37.71.2. Overfitting and Underfitting Refresher#

    -

    37.66.2.1. Overfitting (aka Variance):#

    +

    37.71.2.1. Overfitting (aka Variance):#

    A model is said to be overfit if the model is overtrained on the data such that it even learns the noise from the data. In the figure below, the third image shows overfitting where the model has learnt each and every example so perfectly that it misclassifies an unseen/new example. For a model that’s overfit we have a perfect/close to perfect training set score while a poor test/validation score.

    -

    37.66.2.2. Reasons for overfitting#

    +

    37.71.2.2. Reasons for overfitting#

    1. Using a complex model for a simple problem which picks up the noise from the data. Example: Using a neural network on Iris dataset

    2. Small datasets, as the training set may not be a right representation of the universe

    -

    37.66.2.3. Underfitting (aka Bias):#

    +

    37.71.2.3. Underfitting (aka Bias):#

    A model is said to be underfit if the model is unable to learn the patterns in the data properly. In the figure below, the first image shows overfitting where the model hasn’t fully learnt each and every example. In such cases we see a low score on both the training set and test/validation set

    -

    37.66.2.4. Reasons for underfitting#

    +

    37.71.2.4. Reasons for underfitting#

    1. Using a simple model for a complex problem which doesn’t pick up all the patterns from the data. Example: Using a logistic regression for image classification

    2. The underlying data has no inherent pattern. Example, trying to predict a student’s marks with his father’s weight.

    3. @@ -1770,7 +1790,7 @@

      37.66.2.4. Reasons for underfitting

    -

    37.66.3. Modeling (Iris data) using Logistic Regression#

    +

    37.71.3. Modeling (Iris data) using Logistic Regression#

    In this section we’ll fit a LogisticRegressor to the Iris dataset and identify underfitting, overfitting and good fit.

    @@ -2383,7 +2403,7 @@

    37.66.3. Modeling (Iris data) using Logi

    -

    37.66.4. Identifying and handling Multicollinearity using VIF#

    +

    37.71.4. Identifying and handling Multicollinearity using VIF#

    The correlation matrix below shows high multicollinearity among input features. VIF > 5 or 10 implies multicollinearity.

    @@ -2499,11 +2519,11 @@

    37.66.4. Identifying and handling Multic

    -

    37.66.5. Introduction to Learning Curve#

    +

    37.71.5. Introduction to Learning Curve#

    Learning curve is a plot that plots the training and validation loss for a sample of training examples by incrementally increasing them. Learning curves helps us in identifying if adding additional training examples could improve the validation score or not. If a model is overfit then adding additional training examples might improve the model performance on unseen data. Similarly, if a model is underfit then adding training examples doesn’t help

    -

    37.66.6. Learning Curve of a Good Fit Model#

    +

    37.71.6. Learning Curve of a Good Fit Model#

    Below we’ll use the function created above to get a good fit model. We’ll set the inverse regularization variable/parameter ‘c’ to 1 (i.e. we are not performing any regularization)

    @@ -2541,11 +2561,11 @@

    37.66.6. Learning Curve of a Good Fit Mo

    The cross validation accuracy and training accuracy calculated above are close to each other

    -

    37.66.6.1. Interpreting the training loss#

    +

    37.71.6.1. Interpreting the training loss#

    Learning curve of a good fit model has a moderately high training loss at the beginning which gradually lowers upon adding training examples and flattens gradually indicating addition of more training examples doesn’t improve the model performance on training data

    -

    37.66.6.2. Interpreting the validation loss#

    +

    37.71.6.2. Interpreting the validation loss#

    Learning curve of a good fit model has a high validation loss at the beginning which gradually lowers upon adding training examples and flattens gradually indicating addition of more training examples doesn’t improve the model performance on unseen data

    We can also see that upon adding a reasonable number of training examples, both the training and validation loss are close to each other

    Typical Features

    @@ -2556,7 +2576,7 @@

    37.66.6.2. Interpreting the validation l

    -

    37.66.7. Learning Curve of an Overfit Model#

    +

    37.71.7. Learning Curve of an Overfit Model#

    Below we’ll use the function created above to get an overfit model. We’ll set the inverse regularization variable/parameter ‘c’ to 10000 (high value of ‘c’ causes overfitting)

    @@ -2594,11 +2614,11 @@

    37.66.7. Learning Curve of an Overfit Mo

    The standard deviation in cross validation accuracy is high compared to underfit and good fit model. Training accuracy is higher than cross validation accuracy, typical to an overfit model, but not too high to detect overfitting. But Overfitting can be detected from the learning curve.

    -

    37.66.7.1. Interpreting the training loss#

    +

    37.71.7.1. Interpreting the training loss#

    Learning curve of an overfit model has a very low training loss at the beginning which gradually increases very slightly upon adding training examples and doesn’t flatten.

    -

    37.66.7.2. Interpreting the validation loss#

    +

    37.71.7.2. Interpreting the validation loss#

    Learning curve of an overfit model has a high validation loss at the beginning which gradually lowers upon adding training examples and doesn’t flatten, indicating addition of more training examples can improve the model performance on unseen data

    We can also see that the training and validation losses are far away from each other, which may come close to each other upon adding additional training data

    Typical Features

    @@ -2610,7 +2630,7 @@

    37.66.7.2. Interpreting the validation l

    -

    37.66.8. Learning Curve of an Underfit Model#

    +

    37.71.8. Learning Curve of an Underfit Model#

    Below we’ll use the function created above to get an underfit model. We’ll set the inverse regularization variable/parameter ‘c’ to 1/10000 (low value of ‘c’ causes underfitting)

    @@ -2648,11 +2668,11 @@

    37.66.8. Learning Curve of an Underfit M

    The standard deviation in cross validation accuracy is low compared to overfit and good fit model. Underfitting can be detected from the learning curve.

    -

    37.66.8.1. Interpreting the training loss#

    +

    37.71.8.1. Interpreting the training loss#

    Learning curve of an underfit model has a low training loss at the beginning which gradually increases upon adding training examples and suddenly falls to the minimum at the end.

    -

    37.66.8.2. Interpreting the validation loss#

    +

    37.71.8.2. Interpreting the validation loss#

    Learning curve of an underfit model has a high validation loss at the beginning which gradually lowers upon adding training examples and suddenly falls to the minimum at the end, indicating addition of more training examples can’t improve the model performance on unseen data

    We can also see that the training and validation losses are very close to each other at the end. Adding additional training examples doesn’t improve the performance on unseen data.

    Typical Features

    @@ -2685,7 +2705,7 @@

    37.66.8.2. Interpreting the validation l

    -

    37.66.9. Acknowledgments#

    +

    37.71.9. Acknowledgments#

    Thanks to KSV MURALIDHAR for creating the open-source course Learning Curve To Identify Overfit & Underfit. It inspires the majority of the content in this chapter.

    @@ -2727,13 +2747,13 @@

    37.66.9. Acknowledgments

    previous

    -

    37.65. Model selection assignment 1

    +

    37.70. Model selection assignment 1

    next

    -

    37.67. Dropout and Batch Normalization

    +

    37.72. Dropout and Batch Normalization

    diff --git a/assignments/ml-advanced/model-selection/model-selection-assignment-1.html b/assignments/ml-advanced/model-selection/model-selection-assignment-1.html index 09b1eb875d..a09f450d61 100644 --- a/assignments/ml-advanced/model-selection/model-selection-assignment-1.html +++ b/assignments/ml-advanced/model-selection/model-selection-assignment-1.html @@ -6,7 +6,7 @@ - 37.65. Model selection assignment 1 — Ocademy Open Machine Learning Book + 37.70. Model selection assignment 1 — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,47 +1509,47 @@

    Ocademy Open Machine Learning Book

    @@ -1553,47 +1573,47 @@

    Contents

    @@ -1607,7 +1627,7 @@

    Contents

    -

    37.65. Model selection assignment 1#

    +

    37.70. Model selection assignment 1#

    import numpy as np
    @@ -1621,7 +1641,7 @@ 

    37.65. Model selection assignment 1

    -

    37.65.1. Common Regression class#

    +

    37.70.1. Common Regression class#

    The most of things common in Lasson and Ridge Regression.
    The only different between two regression is, what regularization it is using.

      @@ -1726,7 +1746,7 @@

      37.65.1. Common Regression class

    -

    37.65.2. Regularization classes#

    +

    37.70.2. Regularization classes#

    # Create the regularization class we want.
    @@ -1762,7 +1782,7 @@ 

    37.65.2. Regularization classes

    -

    37.65.3. Data creation#

    +

    37.70.3. Data creation#

    # Define the traning data.
    @@ -1941,7 +1961,7 @@ 

    37.65.3. Data creation -

    37.65.4. Lasson Regression from scratch#

    +

    37.70.4. Lasson Regression from scratch#

    class LassoRegression(Regression):
    @@ -2022,7 +2042,7 @@ 

    37.65.4. Lasson Regression from scratch<

    -

    37.65.5. Lasso Regression using skicit-learn#

    +

    37.70.5. Lasso Regression using skicit-learn#

    from sklearn.linear_model import Lasso
    @@ -2065,11 +2085,11 @@ 

    37.65.5. Lasso Regression using skicit-l

    -

    37.65.6. Conclusion#

    +

    37.70.6. Conclusion#

    Our model (from scratch) also works great as compared to skiti-learn model. Both the models are giving 0.99…% r2_socre which is good.

    -

    37.65.7. Ridge Regression from scratch#

    +

    37.70.7. Ridge Regression from scratch#

    class RidgeRegression(Regression):
    @@ -2151,7 +2171,7 @@ 

    37.65.7. Ridge Regression from scratch

    -

    37.65.8. Ridge Regression using scikit-learn#

    +

    37.70.8. Ridge Regression using scikit-learn#

    from sklearn.linear_model import Ridge
    @@ -2194,7 +2214,7 @@ 

    37.65.8. Ridge Regression using scikit-l

    -

    37.65.9. Acknowledgments#

    +

    37.70.9. Acknowledgments#

    Thanks to Pavithra Devi M for creating the Notebook Lasso and Ridge Regression from scratch, lisensed under the Apache 2.0. It inspires the majority of the content in this chapter.

    @@ -2236,13 +2256,13 @@

    37.65.9. Acknowledgments

    previous

    -

    37.64. Decision Trees - Classification

    +

    37.69. Decision Trees - Classification

    next

    -

    37.66. Learning Curve To Identify Overfit & Underfit

    +

    37.71. Learning Curve To Identify Overfit & Underfit

    diff --git a/assignments/ml-advanced/model-selection/regularized-linear-models.html b/assignments/ml-advanced/model-selection/regularized-linear-models.html index eb0df66e2b..0d5cba484a 100644 --- a/assignments/ml-advanced/model-selection/regularized-linear-models.html +++ b/assignments/ml-advanced/model-selection/regularized-linear-models.html @@ -6,7 +6,7 @@ - 37.69. Regularized Linear Models — Ocademy Open Machine Learning Book + 37.74. Regularized Linear Models — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,27 +1509,27 @@

    Ocademy Open Machine Learning Book

    @@ -1533,27 +1553,27 @@

    Contents

    @@ -1567,9 +1587,9 @@

    Contents

    -

    37.69. Regularized Linear Models#

    +

    37.74. Regularized Linear Models#

    -

    37.69.1. Imports#

    +

    37.74.1. Imports#

    import pandas as pd
    @@ -1823,7 +1843,7 @@ 

    37.69.1. Imports

    -

    37.69.2. Data preprocessing:#

    +

    37.74.2. Data preprocessing:#

    We’re not going to do anything fancy here:

    • First I’ll transform the skewed numeric features by taking log(feature + 1) - this will make the features more normal

    • @@ -1896,7 +1916,7 @@

      37.69.2. Data preprocessing: -

      37.69.3. Models#

      +

      37.74.3. Models#

      Now we are going to use regularized linear regression models from the scikit learn module. I’m going to try both l_1(Lasso) and l_2(Ridge) regularization. I’ll also define a function that returns the cross-validation rmse error so we can evaluate our models and pick the best tuning par

      @@ -2045,7 +2065,7 @@

      37.69.3. ModelsThe residual plot looks pretty good.To wrap it up let’s predict on the test set and submit on the leaderboard:

    -

    37.69.4. Adding an xgboost model:#

    +

    37.74.4. Adding an xgboost model:#

    Let’s add an xgboost model to our linear model to see if we can improve our score:

    @@ -2149,7 +2169,7 @@

    37.69.4. Adding an xgboost model:

    -

    37.69.5. Acknowledgments#

    +

    37.74.5. Acknowledgments#

    Thanks to Alexandru Papiu for creating the open-source project Regularized Linear Models. It inspires the majority of the content in this chapter.

    @@ -2191,13 +2211,13 @@

    37.69.5. Acknowledgments

    previous

    -

    37.68. Lasso and Ridge Regression

    +

    37.73. Lasso and Ridge Regression

    next

    -

    37.70. Random forests intro and regression

    +

    37.75. Random forests intro and regression

    diff --git a/assignments/ml-fundamentals/build-classification-model.html b/assignments/ml-fundamentals/build-classification-model.html index 8cef7cdf4e..4a207d43f2 100644 --- a/assignments/ml-fundamentals/build-classification-model.html +++ b/assignments/ml-fundamentals/build-classification-model.html @@ -6,7 +6,7 @@ - 37.85. Build Classification Model — Ocademy Open Machine Learning Book + 37.90. Build Classification Model — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,7 +1509,7 @@

    Ocademy Open Machine Learning Book

    @@ -1513,7 +1533,7 @@

    Contents

    @@ -1527,7 +1547,7 @@

    Contents

    -

    37.85. Build Classification Model#

    +

    37.90. Build Classification Model#

    import pandas as pd
    @@ -1554,7 +1574,7 @@ 

    37.85. Build Classification Model

    -

    37.85.1. Acknowledgments#

    +

    37.90.1. Acknowledgments#

    Thanks to Microsoft for creating the open-source course ML-For-Beginners. It inspires the majority of the content in this chapter.

    @@ -1596,13 +1616,13 @@

    37.85.1. Acknowledgments

    previous

    -

    37.84. Build classification models

    +

    37.89. Build classification models

    next

    -

    37.86. Parameter play

    +

    37.91. Parameter play

    diff --git a/assignments/ml-fundamentals/build-classification-models.html b/assignments/ml-fundamentals/build-classification-models.html index e60e66bd13..31d415e1af 100644 --- a/assignments/ml-fundamentals/build-classification-models.html +++ b/assignments/ml-fundamentals/build-classification-models.html @@ -6,7 +6,7 @@ - 37.84. Build classification models — Ocademy Open Machine Learning Book + 37.89. Build classification models — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1489,85 +1509,85 @@

    Ocademy Open Machine Learning Book

    @@ -1591,85 +1611,85 @@

    Contents

    @@ -1683,19 +1703,19 @@

    Contents

    -

    37.84. Build classification models#

    +

    37.89. Build classification models#

    In this lab, we will learn about classification where the task is to predict the class or category. Both regression and classification are the main two types of supervised learning.

    -

    37.84.1. 1. Problem Formulation#

    +

    37.89.1. 1. Problem Formulation#

    Let’s say you have an idea of a revolutionary mobile phone and you want to establish a start up, but you know little about the price of the mobile phones. You are interested in learning that!

    Fortunately, there is this mobile dataset on Kaggle that you can use to learn about the price ranges of mobiles based on their features such as wifi & bluetooth supports etc…

    So, to make it simple, you have a dataset containing the features of mobiles and the problem is to predict the price range, not the exact price.

    -

    37.84.2. 2. Finding the Data#

    +

    37.89.2. 2. Finding the Data#

    The data that we are going to use is found on Kaggle.

    Here are the details of the features. It is 21 features. The target feature is price range and it has four price ranges: 0(low cost), 1(medium cost), 2(high cost) and 3(very high cost).

    -

    37.84.4. 4. Data Preprocessing#

    +

    37.89.4. 4. Data Preprocessing#

    In this part, we will prepare the data to be in proper format for ML models. We will do things like feature scaling. We would also had to encode categorical features but they are already encoded. Before we proceed with feature scaling, let’s take training labels from training data.

    @@ -2098,7 +2118,7 @@

    37.84.4. 4. Data Preprocessing -

    37.84.4.1. Feature Scaling#

    +

    37.89.4.1. Feature Scaling#

    This is the only data processing type that we have to take care of here. Let’s make a function that can take handle that.

    We will normalize the data with sklearn MinMaxScaler where the numerical values will be scaled to values between 0 and 1.

    @@ -2133,7 +2153,7 @@

    37.84.4.1. Feature Scaling -

    37.84.5. 5. Creating and Training a Logistic Regression Model#

    +

    37.89.5. 5. Creating and Training a Logistic Regression Model#

    We will start by importing LogisticRegression models available in Sklearn linear models and then proceed with model training.

    @@ -2156,7 +2176,7 @@

    37.84.5. 5. Creating and Training a Logi

    Using log_model.score(), we can get an accuracy of the model confidence on the training data and labels. 94.7% is not that bad.

    Let’s train another linear classifier called SGD (Stockastic Gradient Descent) classifier on the same dataset.

    -

    37.84.5.1. Trying other models#

    +

    37.89.5.1. Trying other models#

    from sklearn.linear_model import SGDClassifier
    @@ -2197,7 +2217,7 @@ 

    37.84.5.1. Trying other models -

    37.84.6. 6. Model Evaluation#

    +

    37.89.6. 6. Model Evaluation#

    Evaluating classification models is not as simple as for regression models. When you have skewed dataset or imbalances, you can get a high accuracy and you can think the model did well when in fact it didn’t.

    In this part, we are going to learn how to evaluate classification models. But first, let’s evaluate the model with cross validation.

    Here is an idea behind cross validation: We want to divide the training set into different training and validation subsets so that we can iteratively train and validate the models on those subsets.

    @@ -2304,7 +2324,7 @@

    37.84.6. 6. Model Evaluation -

    37.84.6.1. Classification Performance Metrics#

    +

    37.89.6.1. Classification Performance Metrics#

    Here are commom classification metrics:

    • Accuracy

    • @@ -2377,7 +2397,7 @@

      37.84.6.1. Classification Performance Me

    -

    37.84.7. Acknowledgments#

    +

    37.89.7. Acknowledgments#

    Thanks to Microsoft for creating the open-source course ML-For-Beginners. It inspires the majority of the content in this chapter.

    @@ -2419,13 +2439,13 @@

    37.84.7. Acknowledgments

    previous

    -

    37.83. Study the solvers

    +

    37.88. Study the solvers

    next

    -

    37.85. Build Classification Model

    +

    37.90. Build Classification Model

    diff --git a/assignments/ml-fundamentals/create-a-regression-model.html b/assignments/ml-fundamentals/create-a-regression-model.html index c61313b648..1e94820cb9 100644 --- a/assignments/ml-fundamentals/create-a-regression-model.html +++ b/assignments/ml-fundamentals/create-a-regression-model.html @@ -6,7 +6,7 @@ - 37.54. Create a regression model — Ocademy Open Machine Learning Book + 37.58. Create a regression model — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1506,17 +1526,17 @@

    Ocademy Open Machine Learning Book

    @@ -1540,17 +1560,17 @@

    Contents

    @@ -1564,13 +1584,13 @@

    Contents

    -

    37.54. Create a regression model#

    +

    37.58. Create a regression model#

    -

    37.54.1. Instructions#

    +

    37.58.1. Instructions#

    In this section you were shown how to build a model using both Linear and Polynomial Regression. Using this knowledge, find a dataset or use one of Scikit-learn’s built-in sets to build a fresh model. Explain in your notebook why you chose the technique you did, and demonstrate your model’s accuracy. If it is not accurate, explain why.

    -

    37.54.2. Rubric#

    +

    37.58.2. Rubric#

    @@ -1589,7 +1609,7 @@

    37.54.2. Rubric
    -

    37.54.3. Acknowledgments#

    +

    37.58.3. Acknowledgments#

    Thanks to Microsoft for creating the open-source course ML-For-Beginners. It inspires the majority of the content in this chapter.

    @@ -1631,13 +1651,13 @@

    37.54.3. Acknowledgments

    previous

    -

    37.53. Try a different model

    +

    37.57. Try a different model

    next

    -

    37.55. Linear and polynomial regression

    +

    37.59. Linear and polynomial regression

    diff --git a/assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.html b/assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.html index 1bdd97526a..d939d6ca68 100644 --- a/assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.html +++ b/assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.html @@ -6,7 +6,7 @@ - 37.58. Delicious asian and indian cuisines — Ocademy Open Machine Learning Book + 37.62. Delicious asian and indian cuisines — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1490,7 +1510,7 @@

    Delicious asian and indian cuisines

    -

    37.58. Delicious asian and indian cuisines#

    +

    37.62. Delicious asian and indian cuisines#

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + +
    +

    Linear Regression Implementation from Scratch

    + +
    + +
    +
    +
    + +
    + +
    +

    37.64. Linear Regression Implementation from Scratch#

    +
    +

    37.64.1. Introduction#

    +

    Linear regression is a widely used method in data analysis to describe the relationship between independent variables and a dependent variable using a linear equation. It aims to minimize the error between predicted and actual values by finding the best-fit line or surface. Linear regression can be used for predicting trends, exploring relationships, and identifying patterns in the data.

    +

    In Python, we can use libraries like NumPy and Pandas for data handling and analysis. We will also use the Matplotlib library for visualizing data and model performance. Here’s a simple Python code snippet to demonstrate how a linear regression model works:

    +
    +
    +
    import numpy as np
    +import pandas as pd
    +import matplotlib.pyplot as plt
    +
    +# Generate some random data
    +np.random.seed(42)
    +X = 2 * np.random.rand(100, 1)
    +y = 4 + 3 * X + np.random.randn(100, 1)
    +
    +# Create a DataFrame from the data
    +data = pd.DataFrame(np.concatenate([X, y], axis=1), columns=['X', 'y'])
    +
    +# Save the data to a CSV file
    +data.to_csv('data.csv', index=False)
    +
    +# Plot the data
    +plt.scatter(X, y)
    +plt.xlabel('X')
    +plt.ylabel('y')
    +plt.show()
    +
    +
    +
    +
    +../../_images/linear-regression-implementation-from-scratch_4_0.png +
    +
    +
    +
    +

    37.64.2. Data Preparation#

    +

    Before we can start developing the linear regression model, it is important to prepare the data appropriately. This involves importing the necessary libraries, loading the dataset, performing exploratory data analysis, and cleaning and preprocessing the data.

    +

    Let’s take a look at the code snippet below to understand how we can perform these steps:

    +
    +
    +
    # Import the necessary libraries
    +import numpy as np
    +import pandas as pd
    +import matplotlib.pyplot as plt
    +
    +# Load the dataset
    +data = pd.read_csv('data.csv')
    +
    +# Perform exploratory data analysis
    +# Display the first few rows of the data
    +print(data.head())
    +
    +# Check for missing values
    +print("X的缺失值数量:", data['X'].isnull().sum())
    +print("y的缺失值数量:", data['y'].isnull().sum())
    +
    +# Visualize the relationship between features and target variable
    +plt.scatter(data['X'], data['y'])
    +plt.xlabel('X')
    +plt.ylabel('y')
    +plt.show()
    +
    +
    +
    +
    +
              X         y
    +0  0.749080  6.334288
    +1  1.901429  9.405278
    +2  1.463988  8.483724
    +3  1.197317  5.604382
    +4  0.312037  4.716440
    +X的缺失值数量: 0
    +y的缺失值数量: 0
    +
    +
    +../../_images/linear-regression-implementation-from-scratch_6_1.png +
    +
    +

    In this code snippet, we first import the necessary libraries, such as NumPy and Pandas. Then, we load the dataset using the read_csv() function from Pandas, replacing ‘data.csv’ with the actual path to your dataset.

    +

    Next, we perform exploratory data analysis by printing the first few rows of the dataset using head(), displaying the shape of the dataset using shape, and printing summary statistics using describe().

    +

    After that, we check for missing values in the dataset using isnull().sum(). If there are missing values, we can handle them accordingly. In this example, we simply drop rows with missing values using dropna().

    +

    Then, we perform any necessary preprocessing steps, such as feature scaling or encoding categorical variables. Finally, we split the dataset into input features (X) and the target variable (y), convert them to NumPy arrays using np.array(), and verify their dimensions using shape.

    +
    +
    +

    37.64.3. Model Development#

    +

    Once we have prepared the data, we can proceed with developing the linear regression model. This involves deriving the mathematical formula for linear regression, implementing the formula in code, defining a cost function, and implementing the gradient descent algorithm to train the model.

    +

    Let’s take a look at the code snippet below to understand how we can develop the linear regression model:

    +
    +
    +
    # Deriving the mathematical formula for linear regression
    +# Implementing the formula in code
    +class LinearRegression:
    +    def __init__(self):
    +        self.coefficients = None
    +
    +    def fit(self, X, y):
    +        # Add a column of ones to X for the bias term
    +        X = np.c_[np.ones((X.shape[0], 1)), X]
    +
    +        # Compute the coefficients using the normal equation
    +        self.coefficients = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
    +
    +    def predict(self, X):
    +        # Add a column of ones to X for the bias term
    +        X = np.c_[np.ones((X.shape[0], 1)), X]
    +
    +        # Predict the target variable
    +        y_pred = X.dot(self.coefficients)
    +
    +        return y_pred
    +
    +# Defining cost function
    +def mean_squared_error(y_true, y_pred):
    +    return np.mean((y_true - y_pred) ** 2)
    +
    +# 训练模型
    +regressor = LinearRegression()
    +regressor.fit(X, y)
    +
    +# 使用训练好的模型进行预测
    +y_pred = regressor.predict(X)
    +
    +# Evaluating the model
    +mse = mean_squared_error(y, y_pred)
    +print('Mean Squared Error:', mse)
    +
    +
    +
    +
    +
    Mean Squared Error: 0.8065845639670534
    +
    +
    +
    +
    +

    In this code snippet, we first derive the mathematical formula for linear regression. Then, we implement the formula in code by creating a LinearRegression class. The fit() method is used to train the model using the normal equation, and the predict() method is used to make predictions on new data points.

    +

    We also define a cost function called mean_squared_error() to evaluate the performance of the model. Additionally, we can implement the gradient descent algorithm to train the model iteratively if desired.

    +

    Finally, we train the model using the fit() method, make predictions using the predict() method, and evaluate the model’s performance using the mean squared error (MSE).

    +
    +
    +

    37.64.4. Model Evaluation#

    +

    After training the linear regression model, it is important to evaluate its performance to assess how well it is able to make predictions. In this section, we will discuss some commonly used evaluation metrics for regression models.

    +

    When evaluating a machine learning model, we often use certain metrics to measure its performance. Here are some commonly used metrics and plotting methods:

    +
      +
    1. Mean Absolute Error (MAE): MAE is the average absolute difference between the predicted values and the actual values. It measures the average magnitude of the model’s errors. A lower MAE value indicates better predictive performance of the model.

    2. +
    3. Root Mean Squared Error (RMSE): RMSE is the square root of the average of the squared differences between the predicted values and the actual values. Compared to MAE, RMSE is more sensitive to large errors because it penalizes squared errors. Similar to MAE, a lower RMSE value indicates better predictive performance of the model.

    4. +
    5. R-squared: R-squared measures the proportion of the variance in the dependent variable that is predictable from the independent variables. It ranges from 0 to 1. A higher R-squared value indicates a better fit of the model to the data.

    6. +
    7. Mean Squared Error (MSE): MSE is the average of the squared differences between the predicted values and the actual values. Unlike RMSE, MSE does not take the square root, so its values are typically larger.

    8. +
    +

    Let’s take a look at the code snippet below to understand how we can evaluate the linear regression model:

    +
    +
    +
    from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
    +import matplotlib.pyplot as plt
    +
    +# Evaluating the model
    +# Mean Absolute Error (MAE)
    +mae = mean_absolute_error(y, y_pred)
    +print('Mean Absolute Error:', mae)
    +
    +# Root Mean Squared Error (RMSE)
    +rmse = np.sqrt(mean_squared_error(y, y_pred))
    +print('Root Mean Squared Error:', rmse)
    +
    +# R-squared
    +r2 = r2_score(y, y_pred)
    +print('R-squared:', r2)
    +
    +mse = mean_squared_error(y, y_pred)
    +print('Mean Squared Error:', mse)
    +
    +# Print shapes of X and y
    +print('Shape of X:', X.shape)
    +print('Shape of y:', y.shape)
    +
    +# Plot the data
    +plt.scatter(X[:, 0], y, color='blue', label='Actual')
    +plt.plot(X[:, 0], y_pred, color='red', label='Predicted')
    +plt.xlabel('X')
    +plt.ylabel('y')
    +plt.legend()
    +plt.show()
    +
    +
    +
    +
    +
    Mean Absolute Error: 0.7010426719637757
    +Root Mean Squared Error: 0.8981005311027566
    +R-squared: 0.7692735413614223
    +Mean Squared Error: 0.8065845639670534
    +Shape of X: (100, 1)
    +Shape of y: (100, 1)
    +
    +
    +../../_images/linear-regression-implementation-from-scratch_12_1.png +
    +
    +

    The scatter plot shows the relationship between the features (X) and the actual values (blue dots), along with the predicted values (red line). This visualization helps us understand how well the model captures the underlying patterns in the data.

    +
    +
    +

    37.64.5. Conclusion#

    +

    In this assignment, we implemented a simple linear regression model and trained and predicted using the from-scratch method. Through this implementation process, we gained a deeper understanding of the linear regression model and learned how to use gradient descent algorithm to minimize the loss function.

    +

    We evaluated the performance of the model and used several common evaluation metrics to measure the accuracy of the model’s predictions. Based on our results, the linear regression model performed well. The values of mean absolute error and root mean squared error were relatively small, indicating that the errors between the model’s predictions and actual results were small. And the value of R-squared was close to 1, indicating that the model was able to explain the variability in the data well.

    +

    Although our model performed well on this task, we also need to be aware of its limitations. Linear regression models assume a linear relationship between input features and target variables. If the data has a nonlinear relationship, the model may not fit the data well. In addition, it may also be affected by problems such as outliers and multicollinearity.

    +

    To further improve the performance of the model, we can try the following directions for future work:

    +
      +
    • Consider using other types of regression models, such as polynomial regression or ridge regression, to explore more complex feature relationships.

    • +
    • Do more feature engineering, such as adding interaction features or introducing nonlinear transformations, to capture more complex patterns in the data.

    • +
    • Use regularization techniques to address problems such as overfitting and multicollinearity.

    • +
    • Collect more data or use data augmentation techniques to increase the size of the dataset and improve the generalization ability of the model.

    • +
    +

    In conclusion, implementing a linear regression model from scratch is a great way to gain a deeper understanding of how machine learning algorithms work. We hope that this assignment has helped you to better understand the concepts and techniques involved in building and training machine learning models.

    +
    +
    +

    37.64.6. Acknowledgments#

    +

    Thanks to the ChatGPT platform for providing the inspiration and guidance throughout this assignment.

    +
    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/ml-fundamentals/linear-regression/gradient-descent.html b/assignments/ml-fundamentals/linear-regression/gradient-descent.html new file mode 100644 index 0000000000..5c20d9fd50 --- /dev/null +++ b/assignments/ml-fundamentals/linear-regression/gradient-descent.html @@ -0,0 +1,1906 @@ + + + + + + + + + 37.49. Gradient descent — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + + +
    + +
    + +
    +

    37.49. Gradient descent#

    +
    +

    37.49.1. Session Objective#

    +

    In previous sessions, we’ve delved into the application of Linear Regression and Logistic Regression models. You may find the code relatively straightforward and intuitive at this point. However, you might be pondering questions like:

    +
      +
    • What exactly occurs when we invoke the .fit() function?

    • +
    • Why does the execution of the .fit() function sometimes take a significant amount of time?

    • +
    +

    This session is designed to provide insight into the functionality of the .fit() method, which is responsible for training machine learning models and fine-tuning model parameters. The underlying technique at play here is known as “Gradient Descent.”

    +
    +
    +

    37.49.2. Let’s Explore and Gain Intuition#

    +

    To further enhance your understanding and gain a playful insight into Gradient Descent, you can explore the following resources:

    +
      +
    • Gradient Descent Visualization: This GitHub repository offers a visualization of the Gradient Descent algorithm, which can be a valuable resource for understanding the optimization process.

    • +
    • Optimization Algorithms Visualization: Explore this visualization to see how different optimization algorithms, including Gradient Descent, work and how they converge to find optimal solutions.

    • +
    +

    These resources will help you build an intuitive grasp of Gradient Descent and its role in training machine learning models. Enjoy your exploration!

    +
    +

    37.49.2.1. Math (feel free to skip if you find it difficult)#

    +

    The fundamental concept behind gradient descent is rather straightforward: it involves the gradual adjustment of parameters, such as the slope (\(m\)) and the intercept (\(b\)) in our regression equation $y = mx + b, with the aim of minimizing a cost function. This cost function is typically a metric that quantifies the disparity between our model’s predicted results and the actual values. In regression scenarios, the widely employed cost function is the mean squared error (MSE). When dealing with classification problems, a different set of parameters must be fine-tuned.

    +

    The MSE (Mean Squared Error) is mathematically expressed as:

    +
    +\[ +MSE = \frac{1}{n}\sum_{i=1}^{n} (y_i - \hat{y_i})^2 +\]
    +

    Here, \(y_i\) represents the actual data points, \(\hat{y_i}\) signifies the predictions made by our model (\(mx_i + b\)), and \(n\) denotes the total number of data points.

    +

    Our primary challenge is to determine the optimal adjustments to parameters \(m\) and $b” to minimize the MSE effectively.

    +
    +
    +

    37.49.2.2. Partial Derivatives#

    +

    In our pursuit of minimizing the Mean Squared Error (MSE), we turn to partial derivatives to understand how each individual parameter influences the MSE. The term “partial” signifies that we are taking derivatives with respect to individual parameters, in this case, \(m\) and $b, separately.

    +

    Consider the following formula, which closely resembles the MSE, but now we’ve introduced the function \(f(m, b)\) into it. The addition of this function doesn’t significantly alter the essence of the calculation, but it allows us to input specific values for \(m\) and \(b\) to compute the result.

    +
    +\[f(m, b) = \frac{1}{n}\sum_{i=1}^{n}(y_i - (mx_i+b))^2\]
    +

    For the purposes of calculating partial derivatives, we can temporarily disregard the summation and the terms preceding it, focusing solely on the expression \(y - (mx + b)^2\). This expression serves as a better starting point for the subsequent partial derivative calculations.

    +
    +
    +

    37.49.2.3. Partial Derivative with Respect to \(m\)#

    +

    When we calculate the partial derivative with respect to the parameter \(m," we isolate the parameter \)m” and treat \(b\) as a constant (effectively setting it to 0 for differentiation purposes). To compute this derivative, we utilize the chain rule, which is a fundamental concept in calculus.

    +

    The chain rule is expressed as follows:

    +
    +\[ [f(g(x))]' = f'(g(x)) * g(x)' \quad - \textrm{chain rule} \]
    +

    The chain rule is applicable when one function is nested inside another. In this context, the square operation, \(()^2\), is the outer function, while \(y - (mx + b)\) is the inner function. Following the chain rule, we differentiate the outer function, maintain the inner function as it is, and then multiply it by the derivative of the inner function. Let’s break down the steps:

    +
    +\[ (y - (mx + b))^2 \]
    +
      +
    1. The derivative of \(()^2\) is \(2()\), just like \(x^2\) becomes \(2x\).

    2. +
    3. We leave the inner function, \(y - (mx + b)\), unaltered.

    4. +
    5. The derivative of \(y - (mx + b)\) with respect to m is \((0 - x)\), which simplifies to \(-x\). This is because both y and b are treated as constants (their derivatives are zero), and the derivative of mx is simply x.

    6. +
    +

    Now, let’s combine these components:

    +
    +\[ 2 \cdot (y - (mx+b)) \cdot (-x) \]
    +

    For clarity, we can rearrange this expression by moving the factor of \(-x\) to the left:

    +
    +\[ -2x \cdot (y-(mx+b)) \]
    +

    This is the final version of our derivative with respect to \(m\):

    +
    +\[ \frac{\partial f}{\partial m} = \frac{1}{n}\sum_{i=1}^{n} -2x_i(y_i - (mx_i+b)) \]
    +

    Here, \(\frac{df}{dm}\) signifies the partial derivative of function \(f\) (as previously defined) with respect to the parameter \(m\). We can now insert this derivative into our summation to complete the calculation.

    +
    +
    +

    37.49.2.4. Partial Derivative with Respect to \(b\)#

    +

    The process for computing the partial derivative with respect to the parameter \(b" is analogous to our previous derivation with respect to \)m. We still apply the same rules and utilize the chain rule:

    +
      +
    1. The derivative of \(()^2\) is \(2()\), which corresponds to how \(x^2\) becomes \(2x\).

    2. +
    3. We leave the inner function, \(y - (mx + b)\), unaltered.

    4. +
    5. For the derivative of \(y - (mx + b)\) with respect to b, it becomes \((0 - 1)\) or simply $-1.” This is because both y and mx are treated as constants (their derivatives are zero), and the derivative of b is 1.

    6. +
    +

    Now, let’s consolidate these components:

    +
    +\[ 2 \cdot (y - (mx+b)) \cdot (-1) \]
    +

    Simplifying this expression:

    +
    +\[ -2 \cdot (y-(mx+b)) \]
    +

    This is the final version of our derivative with respect to \(b\):

    +
    +\[ \frac{\partial f}{\partial b} = \frac{1}{n}\sum_{i=1}^{n} -2(y_i - (mx_i+b)) \]
    +

    Similarly to the previous case, \(\frac{df}{db}\) represents the partial derivative of function \(f\) with respect to the parameter $b”. Inserting this derivative into our summation concludes the computation.

    +
    +
    +

    37.49.2.5. The Final Function#

    +

    Before delving into the code, there are a few essential details to address:

    +
      +
    1. Gradient descent is an iterative process, and with each iteration (referred to as an “epoch”), we incrementally reduce the Mean Squared Error (MSE). At each iteration, we apply our derived functions to update the values of parameters \(m\) and \(b\).

    2. +
    3. Because gradient descent is iterative, we must determine how many iterations to perform, or devise a mechanism to stop the algorithm when it approaches the minimum of the MSE. In essence, we continue iterations until the algorithm no longer improves the MSE, signifying that it has reached a minimum.

    4. +
    5. An important parameter in gradient descent is the learning rate (\(lr\)). The learning rate governs the pace at which the algorithm moves toward the minimum of the MSE. A smaller learning rate results in slower but more precise convergence, while a larger learning rate may lead to faster convergence but may overshoot the minimum.

    6. +
    +

    In summary, gradient descent primarily involves the process of taking derivatives and applying them iteratively to minimize a function. These derivatives guide us toward optimizing the parameters \(m\) and $b” in order to minimize the Mean Squared Error.

    +
    +
    +
    +

    37.49.3. Time to code!#

    +
    +
    +
    %matplotlib inline
    +
    +import numpy as np
    +import pandas as pd
    +import sklearn
    +import matplotlib.pyplot as plt
    +from sklearn.model_selection import train_test_split
    +
    +
    +
    +
    +
    +
    +
    +

    37.50. Linear Regression With Gradient Descent#

    +
    +
    +
    class LinearRegression:
    +    def __init__(self, learning_rate=0.0003, n_iters=3000):
    +        self.lr = learning_rate
    +        self.n_iters = n_iters
    +        self.weights = None
    +        self.bias = None
    +
    +    def fit(self, X, y):
    +        n_samples, n_features = X.shape
    +
    +        # Initialize parameters
    +        self.weights = np.zeros(n_features)
    +        self.bias = 0
    +
    +        # Gradient Descent
    +        for _ in range(self.n_iters):
    +            # Approximate y with a linear combination of weights and x, plus bias
    +            y_predicted = np.dot(X, self.weights) + self.bias
    +
    +            # Compute gradients
    +            dw = (1 / n_samples) * np.dot(X.T, (y_predicted - y))
    +            db = (1 / n_samples) * np.sum(y_predicted - y)
    +            
    +            # Update parameters
    +            self.weights -= self.lr * dw
    +            self.bias -= self.lr * db
    +
    +    def predict(self, X):
    +        y_predicted = np.dot(X, self.weights) + self.bias
    +        return y_predicted
    +
    +# Load data and perform linear regression
    +prostate = pd.read_table("https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/prostate.data")
    +prostate.drop(prostate.columns[0], axis=1, inplace=True)
    +
    +X = prostate.drop(["lpsa", "train"], axis=1)
    +y = prostate["lpsa"]
    +
    +regressor = LinearRegression()
    +
    +regressor.fit(X, y)
    +y_pred = regressor.predict(X)
    +
    +print(regressor.__dict__)
    +print(y - y_pred)
    +
    +plt.scatter(y, y_pred)
    +plt.plot([0, 5], [0, 5])
    +plt.show()
    +
    +
    +
    +
    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/ml-fundamentals/linear-regression/linear-regression-metrics.html b/assignments/ml-fundamentals/linear-regression/linear-regression-metrics.html new file mode 100644 index 0000000000..bc8786585a --- /dev/null +++ b/assignments/ml-fundamentals/linear-regression/linear-regression-metrics.html @@ -0,0 +1,2230 @@ + + + + + + + + + 37.47. Linear Regression Metrics — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + + +
    + +
    + +
    +
    +
    # Install the necessary dependencies
    +
    +import os
    +import sys
    +!{sys.executable} -m pip install --quiet pandas scikit-learn numpy matplotlib jupyterlab_myst ipython
    +
    +
    +
    +
    +
    +

    license: +code: MIT +content: CC-BY-4.0 +github: https://github.com/ocademy-ai/machine-learning +venue: By Ocademy +open_access: true +bibliography:

    + +
    +
    +

    37.47. Linear Regression Metrics#

    +

    Linear regression is a fundamental and widely used technique in machine learning and statistics for predicting continuous values based on input variables. It finds its application in various domains, from finance and economics to healthcare and engineering. When using linear regression, it’s essential to assess the model’s performance accurately. This is where linear regression metrics come into play.

    +

    In this tutorial, we will delve into the world of linear regression metrics, exploring the key evaluation measures that allow us to gauge how well a linear regression model fits the data and makes predictions. These metrics provide valuable insights into the model’s accuracy, precision, and ability to capture the underlying relationships between variables.

    +

    We will cover essential concepts such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (R2) score, and Mean Absolute Error (MAE). Understanding these metrics is crucial for data scientists, machine learning practitioners, and anyone looking to harness the power of linear regression for predictive modeling.

    +

    Whether you are building models for price predictions, sales forecasts, or any other regression task, mastering these metrics will empower you to make informed decisions and fine-tune your models for optimal performance. Let’s embark on this journey to explore the intricacies of linear regression metrics and enhance our ability to assess and improve regression models.

    +
    +

    37.47.1. Mean Squared Error (MSE)#

    +

    In the realm of linear regression metrics, one fundamental measure of model performance is the Mean Squared Error (MSE). MSE serves as a valuable indicator of how well your linear regression model aligns its predictions with the actual data points. This metric quantifies the average of the squared differences between predicted values and observed values.

    +
    +

    37.47.1.1. The Formula#

    +

    Mathematically, the MSE is computed using the following formula:

    +
    +\[ MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]
    +

    Where:

    +
      +
    • \(n\) is the number of data points.

    • +
    • \(y_i\) represents the actual observed value for the \(i^{th}\) data point.

    • +
    • \(\hat{y}_i\) represents the predicted value for the \(i^{th}\) data point.

    • +
    +
    +
    +

    37.47.1.2. Interpretation#

    +

    A lower MSE value indicates that the model’s predictions are closer to the actual values, signifying better model performance. Conversely, a higher MSE suggests that the model’s predictions deviate more from the true values, indicating poorer performance.

    +
    +
    +

    37.47.1.3. Python Implementation#

    +

    Let’s take a look at how to calculate MSE in Python. We’ll use a simple example with sample data:

    +
    +
    +
    # Import necessary libraries
    +import numpy as np
    +
    +# Sample data for demonstration (replace with your actual data)
    +actual_values = np.array([22.1, 19.9, 24.5, 20.1, 18.7])
    +predicted_values = np.array([23.5, 20.2, 23.9, 19.8, 18.5])
    +
    +# Calculate the squared differences between actual and predicted values
    +squared_errors = (actual_values - predicted_values) ** 2
    +
    +# Calculate the mean of squared errors to get MSE
    +mse = np.mean(squared_errors)
    +
    +# Print the MSE
    +print("Mean Squared Error (MSE):", mse) 
    +
    +
    +
    +
    +
    Mean Squared Error (MSE): 0.5079999999999996
    +
    +
    +
    +
    +
    +
    +
    +

    37.47.2. Root Mean Squared Error (RMSE)#

    +

    The Root Mean Squared Error (RMSE) is another important metric for evaluating the performance of a linear regression model. It is the square root of the Mean Squared Error (MSE) and provides a measure of the average magnitude of error between actual and predicted values.

    +
    +

    37.47.2.1. The Formula#

    +

    The formula for RMSE is:

    +
    +\[ RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \]
    +

    Where:

    +
      +
    • \(n\) is the number of data points

    • +
    • \(y_i \) represents the actual value of the dependent variable

    • +
    • \( \hat{y}_i \) represents the predicted value of the dependent variable

    • +
    +
    +
    +

    37.47.2.2. Python Implementation#

    +
    +
    +
    # Calculate RMSE
    +rmse = np.sqrt(mse)
    +
    +# Print the RMSE
    +print("Root Mean Squared Error (RMSE):", rmse)
    +
    +
    +
    +
    +
    Root Mean Squared Error (RMSE): 0.7127411872482181
    +
    +
    +
    +
    +
    +
    +
    +

    37.47.3. R-squared (R2) Score#

    +

    The R-squared (R2) score, also known as the coefficient of determination, is a measure that indicates the proportion of the variance in the dependent variable that is predictable from the independent variables. It provides insight into how well the model is performing compared to a simple mean.

    +
    +

    37.47.3.1. The Formula#

    +

    The formula for R2 score is:

    +
    +\[ R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} \]
    +

    Where:

    +
      +
    • \( n \) is the number of data points

    • +
    • \( y_i \) represents the actual value of the dependent variable

    • +
    • \( \hat{y}_i \) represents the predicted value of the dependent variable

    • +
    • \( \bar{y} \) is the mean of the dependent variable

    • +
    +
    +
    +

    37.47.3.2. Python Implementation#

    +
    +
    +
    # Calculate the mean of actual values
    +mean_actual = np.mean(actual_values)
    +
    +# Calculate the total sum of squares
    +total_sum_squares = np.sum((actual_values - mean_actual) ** 2)
    +
    +# Calculate the residual sum of squares
    +residual_sum_squares = np.sum(squared_errors)
    +
    +# Calculate R2 score
    +r2_score = 1 - (residual_sum_squares / total_sum_squares)
    +
    +# Print the R2 score
    +print("R-squared (R2) Score:", r2_score)
    +
    +
    +
    +
    +
    R-squared (R2) Score: 0.8776021588280649
    +
    +
    +
    +
    +
    +
    +
    +

    37.47.4. Residual Analysis#

    +

    Residual analysis is a critical step in evaluating the performance of a linear regression model. It involves examining the differences between the observed and predicted values (i.e., the residuals). This helps us understand if there are any patterns or trends that the model might have missed.

    +
    +

    37.47.4.1. Python Implementation#

    +
    +
    +
    import matplotlib.pyplot as plt
    +'''
    +In this code, we first calculate the residuals by subtracting the predicted values from the actual values. Then, we create a scatter plot of predicted values against residuals. The red dashed line at y=0 is a reference line; ideally, we want the residuals to be evenly distributed around this line.
    +'''
    +# Calculate residuals
    +residuals = actual_values - predicted_values
    +
    +# Plotting residuals
    +plt.figure(figsize=(8, 6))
    +plt.scatter(predicted_values, residuals, c='b', s=60, alpha=0.6)
    +plt.axhline(y=0, color='r', linestyle='--', linewidth=2)
    +plt.title("Residual Plot")
    +plt.xlabel("Predicted Values")
    +plt.ylabel("Residuals")
    +plt.show()
    +
    +
    +
    +
    +../../../_images/linear-regression-metrics_30_0.png +
    +
    +
    +
    +

    37.47.4.2. Interpretation#

    +

    If the residuals are randomly scattered around the red line, it suggests that the model is capturing the underlying patterns in the data well. +If there’s a clear pattern in the residuals (e.g., a curve or a trend), it indicates that the model might be missing some important features. +Residual analysis is a crucial step in understanding the limitations of the model and can provide insights into potential areas of improvement.

    +
    +
    +
    +

    37.47.5. Adjusted R-squared#

    +

    The adjusted R-squared is a modified version of the R-squared score that takes into account the number of independent variables in the model. It penalizes the inclusion of unnecessary variables that do not significantly contribute to explaining the variance in the dependent variable.

    +
    +

    37.47.5.1. The Formula#

    +

    The formula for Adjusted R-squared is: +$\( \text{Adjusted } R^2 = 1 - \frac{{(1 - R^2)(n - 1)}}{{n - k - 1}} \)$ +Where:

    +
      +
    • \(n\) is the number of data points

    • +
    • \(k\) is the number of independent variables

    • +
    +
    +
    +

    37.47.5.2. Python Implementation#

    +
    +
    +
    # Define the number of independent variables (k)
    +'''
    +In this code, you'll need to replace num_independent_variables with the actual number of independent variables in your model.
    +'''
    +num_independent_variables = 2  # Replace with the actual number of independent variables
    +
    +# Calculate adjusted R2 score
    +adjusted_r2_score = 1 - ((1 - r2_score) * (len(actual_values) - 1)) / (len(actual_values) - num_independent_variables - 1)
    +
    +# Print the adjusted R2 score
    +print("Adjusted R-squared Score:", adjusted_r2_score)
    +
    +
    +
    +
    +
    Adjusted R-squared Score: 0.7552043176561298
    +
    +
    +
    +
    +
    +
    +

    37.47.5.3. Interpretation#

    +

    The adjusted R-squared score provides a more accurate representation of the model’s explanatory power, especially when dealing with multiple independent variables. +A higher adjusted R-squared indicates that a larger proportion of the variance in the dependent variable is explained by the independent variables.

    +
    +
    +
    +

    37.47.6. Mean Absolute Error (MAE)#

    +

    The Mean Absolute Error (MAE) is a metric that measures the average absolute differences between actual and predicted values. Unlike MSE, MAE does not square the differences, which makes it less sensitive to outliers.

    +
    +

    37.47.6.1. The Formula#

    +

    The formula for Mean Absolute Errord is: +$\( MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| \)$ +Where:

    +
      +
    • \( n \) is the number of data points

    • +
    • \( y_i \) represents the actual value of the dependent variable

    • +
    • \( \hat{y}_i \) represents the predicted value of the dependent variable

    • +
    +
    +
    +

    37.47.6.2. Python Implementation#

    +
    +
    +
    # Calculate absolute differences between actual and predicted values
    +absolute_errors = np.abs(actual_values - predicted_values)
    +
    +# Calculate the mean of absolute errors to get MAE
    +mae = np.mean(absolute_errors)
    +
    +# Print the MAE
    +print("Mean Absolute Error (MAE):", mae)
    +
    +
    +
    +
    +
    Mean Absolute Error (MAE): 0.5600000000000002
    +
    +
    +
    +
    +
    +
    +

    37.47.6.3. Interpretation#

    +

    The MAE gives us an average of how far off our predictions are from the actual values. It provides a more intuitive understanding of error compared to MSE.

    +
    +
    +
    +

    37.47.7. Mean Absolute Percentage Error (MAPE)#

    +

    The Mean Absolute Percentage Error (MAPE) is a metric used to evaluate the accuracy of a model’s predictions in percentage terms. It measures the average absolute percentage difference between actual and predicted values.

    +
    +

    37.47.7.1. The Formula#

    +

    The formula for MAPE is:

    +
    +\[ MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times 100 \]
    +

    Where:

    +
      +
    • \( n \) is the number of data points

    • +
    • \( y_i \) represents the actual value of the dependent variable

    • +
    • \( \hat{y}_i \) represents the predicted value of the dependent variable

    • +
    +
    +
    +

    37.47.7.2. Interpretation#

    +
    +
    +
    # Calculate absolute percentage differences between actual and predicted values
    +absolute_percentage_errors = np.abs((actual_values - predicted_values) / actual_values) * 100
    +
    +# Calculate the mean of absolute percentage errors to get MAPE
    +mape = np.mean(absolute_percentage_errors)
    +
    +# Print the MAPE
    +print("Mean Absolute Percentage Error (MAPE):", mape)
    +
    +
    +
    +
    +
    Mean Absolute Percentage Error (MAPE): 2.5706829878497204
    +
    +
    +
    +
    +
    +
    +
    +

    37.47.8. Conclusion and Recap#

    +

    In this tutorial, we covered several important metrics used to evaluate the performance of linear regression models. Here’s a quick recap:

    +
      +
    • Mean Squared Error (MSE): Measures the average squared difference between actual and predicted values.

    • +
    • Root Mean Squared Error (RMSE): The square root of MSE, providing a measure of the average magnitude of error.

    • +
    • R-squared (R2) Score: Indicates the proportion of the variance in the dependent variable that is predictable from the independent variables.

    • +
    • Adjusted R-squared: A modified R2 score that considers the number of independent variables in the model.

    • +
    • Mean Absolute Error (MAE): Measures the average absolute differences between actual and predicted values.

    • +
    • Mean Absolute Percentage Error (MAPE): Measures the average absolute percentage difference between actual and predicted values.

    • +
    +

    Each of these metrics provides unique insights into the performance of a linear regression model. Choosing the right metric depends on the specific characteristics of the data and the objectives of the modeling task.

    +

    By understanding and utilizing these metrics, you can make informed decisions about the accuracy and reliability of your linear regression models.

    +
    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/ml-fundamentals/linear-regression/loss-function.html b/assignments/ml-fundamentals/linear-regression/loss-function.html new file mode 100644 index 0000000000..fd4f27fc91 --- /dev/null +++ b/assignments/ml-fundamentals/linear-regression/loss-function.html @@ -0,0 +1,2227 @@ + + + + + + + + + 37.48. Loss Function — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + + +
    + +
    + +
    +

    37.48. Loss Function#

    +
    +

    37.48.1. Objective of this section#

    +

    We have already learned math and code for “Gradient Descent”, as well as other optimization techniques.

    +

    In this section, we will learn more about loss functions.

    +

    As a learner, you can focus on learning the L1, L2 loss, and Classification Losses in the regression loss function in this section. And learn about other loss functions.

    +
    +
    +

    37.48.2. Concept of loss function#

    +
      +
    • A loss function gauges the disparity between the model’s predictions and the actual values. Simply put, it indicates how “off” our model is. By optimizing this function, our objective is to identify parameters that bring the model’s predictions as close as possible to the true values.

    • +
    • The function we want to minimize or maximize is called the objective function or criterion. When we are minimizing it, we may also call it the cost function, loss function, or error function. +— Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville

    • +
    +
    +
    +

    37.48.3. Difference between a Loss Function and a Cost Function#

    +

    A loss function evaluates the error for a single training example, and it is occasionally referred to as an error function. In contrast, a cost function represents the average loss across the entire training dataset. Optimization strategies are designed to minimize this cost function.

    +

    For a simple sample:

    +

    The corresponding cost function of L1 Loss is the Mean of these Squared Errors (MSE). +You can see the difference of Mathematical Expression

    +

    However, these terms are frequently used interchangeably in practical settings, they aren’t precisely equivalent. From a definitional standpoint, the cost function represents an aggregation or average of the loss functions.

    +
    +
    +

    37.48.4. Classification of loss functions#

    +
    +

    37.48.4.1. Regression Losses#

    +

    These are employed when the objective is to predict a continuous outcome.

    +
      +
    • Mean Squared Error (MSE): Measures the average squared discrepancies between predictions and actual values, emphasizing larger errors.

    • +
    • Mean Absolute Error (MAE): Calculates the average of absolute differences between predicted outcomes and actual observations, offering a linear penalty for each deviation.

    • +
    • Huber Loss: A hybrid loss that’s quadratic for small differences and linear for large ones, providing resilience against outliers.

    • +
    • L1 Loss: Directly reflects the absolute discrepancies between predictions and real values, synonymous with MAE.

    • +
    • L2 Loss: Highlights squared differences between predictions and actuals, equivalent to MSE.

    • +
    • Smooth L1 Loss: An amalgamation of L1 and L2 losses, it provides a balance in handling both minor and major deviations.

    • +
    +
    +
    +

    37.48.4.2. Classification Losses#

    +

    Utilized for tasks requiring the prediction of discrete categories.

    +
      +
    • Cross Entropy Loss: Quantifies the dissimilarity between the predicted probability distribution and the actual class distribution.

    • +
    • Hinge Loss: A staple for Support Vector Machines (SVMs), it strives to categorize data by maximizing the decision boundary between classes.

    • +
    • Binary Cross Entropy Loss(Log Loss): It is intended for use with binary classification where the target values are in the set {0, 1}. It is a special case of Cross Entropy Loss, specially used for binary classification problems.

    • +
    • Multi-Class Cross-Entropy Loss: In this case, it is intended for use with multi-class classification where the target values are in the set {0, 1, 3, …, n}, where each class is assigned a unique integer value.It is an extension of Cross Entropy Loss and is used for multi-classification problems.

    • +
    +
    +
    +

    37.48.4.3. Structured Losses#

    +

    Tailored for intricate tasks involving structured data patterns.

    +
      +
    • Sequence Generation Loss: Emblematic examples include the CTC (Connectionist Temporal Classification) designed for undertakings such as speech and text identification.

    • +
    • Image Segmentation Loss: Noteworthy instances encompass the Dice loss and the IoU (Intersection over Union) loss.

    • +
    +
    +
    +

    37.48.4.4. Regularization Losses#

    +

    Rather than directly influencing the model’s predictions, these losses are integrated into the objective function to counteract excessive model complexity.

    +
      +
    • L1 Regularization (Lasso): Enforces sparsity by compelling certain model coefficients to be exactly zero.

    • +
    • L2 Regularization (Ridge): Curbs the unchecked growth of model parameters without nullifying them, ensuring the model remains generalized without undue complexity.

    • +
    +
    +
    +
    +

    37.48.5. Empirical Risk and Structural Risk#

    +
    +

    37.48.5.1. Definition#

    +

    Perhaps you’ve heard of these two concepts before. In the realms of machine learning and statistics, the concepts of empirical risk and structural risk are intricately tied to loss functions. However, these terms aren’t directly categories of loss functions perse. Let’s first clarify these concepts:

    +
      +
    1. Empirical Risk: Refers to the average loss of a model over a given dataset. Minimizing empirical risk focuses on reducing errors explicitly on the training data.

    2. +
    3. Structural Risk: Introduces a regularization term in addition to empirical risk, aiming to prevent overfitting. Minimizing structural risk strikes a balance between the empirical risk and the complexity of the model.

    4. +
    +

    Given these definitions:

    +
      +
    • Empirical Risk: Loss functions directly related to dataset performance fall under this category. From the ones been listed, regression losses (e.g., MSE, MAE, Huber Loss, L1 Loss, L2 Loss, Smooth L1 Loss), classification losses (e.g., Cross Entropy Loss, Hinge Loss, Log Loss), and structured losses (e.g., CTC or Image Segmentation Loss) can be seen as manifestations of empirical risk.

    • +
    • Structural Risk: Regularization losses, like L1 and L2 regularization, form part of structural risk. They don’t measure the model’s performance on the data directly but rather serve to rein in model complexity.

    • +
    +
    +
    +

    37.48.5.2. A Detaphor#

    +

    Maybe it’s still abtract. So, now imagine you’re a tailor trying to make a dress for a client.

    +
      +
    • Empirical Risk: This is like ensuring the dress fits the client perfectly based on a single fitting session. You measure every contour and make the dress to match those exact measurements. The dress is a perfect fit for the client on that particular day.

    • +
    +

    However, what if the client gains or loses a little weight or wants to move more comfortably? A dress tailored too tightly to the exact measurements might not be very adaptable or comfortable in various situations.

    +
      +
    • Structural Risk: Now, consider that you decide to allow a bit more flexibility in the dress. You make it slightly adjustable, perhaps with some elastic portions. This way, even if the client’s measurements change a bit, the dress will still fit comfortably. You’re sacrificing a tiny bit of the “perfect” fit for the adaptability and general comfort.

    • +
    +

    In the context of machine learning:

    +

    Relying solely on Empirical Risk would be like fitting the dress exactly to the client’s measurements, risking overfitting. If the data changes slightly, the model might perform poorly.

    +

    Factoring in Structural Risk ensures the model isn’t overly tailored to the training data and can generalize well to new, unseen data. It’s about ensuring a balance between a perfect fit and adaptability.

    +
    +
    +

    37.48.5.3. Mathematical Explanation#

    +

    Now you have a general understanding of the meaning of empirical risk and structural risk. Let’s delve into a more mathematical perspective:

    +

    Given a dataset \(\mathcal{D}\) comprising input-output pairs \((x_1, y_1)\), \((x_2, y_2)\), … \((x_n, y_n)\) and a model \(f\) parameterized by \(\theta\), the empirical risk and structural risk can be formally defined as follows:

    +

    Empirical Risk(Cost Function): +$\( +R_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i; \theta)) +\)$ +Where:

    +
      +
    • \(L\) is the loss function, measuring the discrepancy between the predicted value \(f(x_i; \theta)\) and the actual output \(y_i\).

    • +
    +

    Empirical risk quantifies how well the model fits the given dataset, representing the average loss of the model on the training data.

    +

    Structural Risk(Objective Function): +$\( +R_{struc}(f) = R_{emp}(f) + \lambda R_{reg}(\theta) +\)$ +Where:

    +
      +
    • \(R_{reg}(\theta)\) is the regularization term, penalizing the complexity of the model.

    • +
    • \(\lambda\) is a regularization coefficient determining the weight of the regularization term relative to the empirical risk.

    • +
    +

    Structural risk is a combination of the empirical risk and a penalty for model complexity. It strikes a balance between fitting the training data (empirical risk) and ensuring the model isn’t overly complex (which can lead to overfitting).

    +

    Differences and Relations:

    +
      +
    1. Empirical Risk focuses solely on minimizing the error on the training data without considering model complexity or how it generalizes to unseen data.

    2. +
    3. Structural Risk takes into account both the empirical risk and the complexity of the model. By introducing a regularization term, it ensures that the model doesn’t become overly complex and overfit the training data. Thus, it balances performance on training data with generalization to new data.

    4. +
    +

    In essence, while empirical risk aims for performance on the current dataset, structural risk aims for good performance on new data by penalizing overly complex models.

    +
    +
    +

    37.48.5.4. Cost Function and Objective Function#

    +

    The empirical risk and cost functions are in many cases the same and represent the average loss on the training data.

    +

    Structural risk is often viewed as an objective function, especially when regularization is considered. But the term “objective function” is broader and is not limited to structural risk but can also include other optimization objectives.

    +
    +
    +
    +

    37.48.6. Common Loss Functions#

    +
    +

    37.48.6.1. Regression Loss Functions#

    +
      +
    1. Mean Squared Error, MSE

    2. +
    +
    +\[ +L(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 +\]
    +

    Where \(y_i\) is the actual value and \(\hat{y}_i\) is the predicted value.

    +
    +
    +
    import tensorflow as tf
    +
    +y_true = tf.constant([1.0, 2.0, 3.0])
    +y_pred = tf.constant([1.5, 1.5, 3.5])
    +loss = tf.keras.losses.MSE(y_true, y_pred)
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
      +
    1. Mean Absolute Error, MAE

    2. +
    +
    +\[ +L(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| +\]
    +
    +
    +
    loss = tf.keras.losses.MAE(y_true, y_pred)
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
      +
    1. Huber Loss

    2. +
    +
    +\[\begin{split} +L_{\delta}(y, \hat{y}) = \begin{cases} + \frac{1}{2}(y - \hat{y})^2 & \text{if } |y - \hat{y}| \leq \delta \\ + \delta |y - \hat{y}| - \frac{1}{2}\delta^2 & \text{otherwise} + \end{cases} +\end{split}\]
    +

    Positioned between MSE and MAE, this loss function offers robustness against outliers.

    +
    +
    +
    loss = tf.keras.losses.Huber()(y_true, y_pred)
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
      +
    1. L1 Loss

    2. +
    +
    +\[ +L = ( y - f(x) )^2 +\]
    +

    Corresponds to MAE.

    +
      +
    1. L2 Loss

    2. +
    +
    +\[ +L = | y - f(x) | +\]
    +

    Corresponds to MSE.

    +
    +
    +

    37.48.6.2. Classification Loss Functions#

    +
      +
    1. Cross Entropy Loss

    2. +
    +
    +\[ +L(y, p) = - \sum_{i=1}^{C} y_i \log(p_i) +\]
    +

    Where \(y_i\) is the actual label (0 or 1) and \(p_i\) is the predicted probability for the respective class.

    +
    +
    +
    y_true = tf.constant([[0, 1], [1, 0], [1, 0]])
    +y_pred = tf.constant([[0.05, 0.95], [0.1, 0.9], [0.8, 0.2]])
    +loss = tf.keras.losses.CategoricalCrossentropy()(y_true, y_pred)
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
      +
    1. Hinge Loss

    2. +
    +
    +\[ +L(y, \hat{y}) = \max(0, 1 - y \cdot \hat{y}) +\]
    +

    Primarily used for Support Vector Machines, but it can also be employed for other classification tasks.

    +
    +
    +
    y_true = tf.constant([-1, 1, 1])  # binary class labels in {-1, 1}
    +y_pred = tf.constant([0.5, 0.3, -0.7])  # raw model outputs
    +loss = tf.keras.losses.Hinge()(y_true, y_pred)
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
      +
    1. Binary Cross Entropy(Log Loss)

    2. +
    +

    Mathematically, it is the preferred loss function under the inference framework of maximum likelihood. It is the loss function to be evaluated first and only changed if you have a good reason.

    +

    Cross-entropy will calculate a score that summarizes the average difference between the actual and predicted probability distributions for predicting class 1. The score is minimized and a perfect cross-entropy value is 0.

    +

    This YouTube video by Andrew Ng explains very well Binary Cross Entropy Loss (make sure that you have access to YouTube for this web page to render correctly):

    +
    +
    +
    from IPython.display import HTML
    +
    +display(HTML(
    +  """
    +    <iframe src="https://www.youtube.com/embed/SHEPb1JHw5o" allowfullscreen></iframe>
    +  """
    +))
    +
    +
    +
    +
    +
    +
    +
    y_true = tf.constant([0, 1, 0])
    +y_pred = tf.constant([0.05, 0.95, 0.1])
    +loss = tf.keras.losses.BinaryCrossentropy()(y_true, y_pred)
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
      +
    1. Multi-Class Cross-Entropy Loss

    2. +
    +

    Mathematically, it is the preferred loss function under the inference framework of maximum likelihood. It is the loss function to be evaluated first and only changed if you have a good reason.

    +

    Cross-entropy will calculate a score that summarizes the average difference between the actual and predicted probability distributions for all classes in the problem. The score is minimized and a perfect cross-entropy value is 0.

    +
    +
    +
    y_true = [[1, 0, 0],
    +          [0, 1, 0],
    +          [0, 0, 1],
    +          [1, 0, 0],
    +          [0, 1, 0]]
    +
    +# Mock predicted probabilities from a model
    +y_pred = [[0.7, 0.2, 0.1],
    +          [0.2, 0.5, 0.3],
    +          [0.1, 0.2, 0.7],
    +          [0.6, 0.3, 0.1],
    +          [0.1, 0.6, 0.3]]
    +
    +y_true = tf.constant(y_true, dtype=tf.float32)
    +y_pred = tf.constant(y_pred, dtype=tf.float32)
    +
    +loss = tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred), axis=1))
    +
    +print("Multi-Class Cross-Entropy Loss:", loss.numpy())
    +
    +
    +
    +
    +
    +
    +

    37.48.6.3. Structured Loss Functions#

    +
      +
    1. CTC Loss (Connectionist Temporal Classification)

    2. +
    +

    Used for sequence-to-sequence problems, like speech recognition.

    +
    +
    +
    import numpy as np
    +
    +y_true = np.array([[1, 2]])  # (batch, timesteps)
    +y_pred = np.array([[[0.1, 0.6, 0.3], [0.3, 0.1, 0.6]]])  # (batch, timesteps, num_classes)
    +logit_length = [2]
    +label_length = [2]
    +loss = tf.keras.backend.ctc_batch_cost(y_true, y_pred, logit_length, label_length)
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
      +
    1. Dice Loss, IoU Loss

    2. +
    +

    Used for image segmentation tasks.

    +
    +
    +
    def dice_loss(y_true, y_pred):
    +    numerator = 2 * tf.reduce_sum(y_true * y_pred, axis=-1)
    +    denominator = tf.reduce_sum(y_true + y_pred, axis=-1)
    +    return 1 - (numerator + 1) / (denominator + 1)
    +
    +y_true = tf.constant([[1, 0, 1], [0, 1, 0]])
    +y_pred = tf.constant([[0.8, 0.2, 0.6], [0.3, 0.7, 0.1]])
    +loss = dice_loss(y_true, y_pred)
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
    +
    +
    def iou_loss(y_true, y_pred):
    +    intersection = tf.reduce_sum(y_true * y_pred, axis=[1, 2, 3])
    +    union = tf.reduce_sum(y_true, axis=[1, 2, 3]) + tf.reduce_sum(y_pred, axis=[1, 2, 3]) - intersection
    +    return 1. - (intersection + 1) / (union + 1)
    +
    +# For simplicity, using 2D tensors. Typically, these are images (3D tensors).
    +y_true = tf.constant([[1, 0, 1], [0, 1, 0]])
    +y_pred = tf.constant([[0.8, 0.2, 0.6], [0.3, 0.7, 0.1]])
    +loss = iou_loss(y_true[tf.newaxis, ...], y_pred[tf.newaxis, ...])  # Add batch dimension
    +
    +print(loss.numpy())
    +
    +
    +
    +
    +
    +
    +

    37.48.6.4. Regularization#

    +
      +
    1. L1 Regularization (Lasso)

    2. +
    +

    Produces sparse model parameters.

    +
    +
    +
    from keras.regularizers import l1
    +
    +model = tf.keras.models.Sequential([
    +    tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=l1(0.01), input_shape=(10,))
    +])
    +
    +
    +
    +
    +
      +
    1. L2 Regularization (Ridge)

    2. +
    +

    Prevents model parameters from becoming too large but doesn’t force them to become exactly zero.

    +
    +
    +
    from keras.regularizers import l2
    +
    +model = tf.keras.models.Sequential([
    +    tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=l2(0.01), input_shape=(10,))
    +])
    +
    +
    +
    +
    +
    +
    +
    +

    37.48.7. Conclusion#

    +

    Loss functions hold a pivotal role in machine learning. By minimizing the loss, we enhance the accuracy of our model’s predictions. A deep understanding of various loss functions aids in selecting the most appropriate optimization technique for specific challenges.

    +
    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/ml-fundamentals/managing-data.html b/assignments/ml-fundamentals/managing-data.html index 0423759707..ee9916687e 100644 --- a/assignments/ml-fundamentals/managing-data.html +++ b/assignments/ml-fundamentals/managing-data.html @@ -6,7 +6,7 @@ - 37.51. Managing data — Ocademy Open Machine Learning Book + 37.55. Managing data — Ocademy Open Machine Learning Book @@ -98,8 +98,8 @@ - - + + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1490,7 +1510,7 @@

    Managing data

    -

    37.51. Managing data#

    +

    37.55. Managing data#

    @@ -1934,7 +1954,7 @@

    18.4. Beyond linear boundaries: Kernel S

    Next we describe how to select and adjust the radial basis function centres. @@ -2049,7 +2069,7 @@

    18.13. Your turn! 🚀 -{"state": {"ea8e96582b5a439798d5e3ef20411d3f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "be4abaa21523498e80ce8250034f072f": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_ad685545352d4561a7beadd7f2957694", "IPY_MODEL_3e358106f22c4c4d89102ce52be2038e"], "layout": "IPY_MODEL_ea8e96582b5a439798d5e3ef20411d3f"}}, "ce3b260ed15b4c65b71f66b260fdcd75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f58f0759c23249aa9575b2ed3833a00f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "ad685545352d4561a7beadd7f2957694": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["10", "200"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "N", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_ce3b260ed15b4c65b71f66b260fdcd75", "style": "IPY_MODEL_f58f0759c23249aa9575b2ed3833a00f"}}, "4e9334747acd4cbb92bbc33526e87e31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3e358106f22c4c4d89102ce52be2038e": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_4e9334747acd4cbb92bbc33526e87e31", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGnCAYAAACU6AxvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABksklEQVR4nO3de3wkdZ0v/E/1vdNJ555Mrp30parnwsyAwDByUYZhBcVlXa6KjOvdPfLsyvE8K+5BXVbPkXWfc55nl1U4qHhhWRUVV1dxvAAiC6KCMCJMV1Wnc79n0kknne5Od1c9f3RSTGQumUw61Z183q+XL8mvk+4vVH6dT1f96vcVdF3XQURERFTCLGYXQERERHQ6DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5GxZYvve97+HP/uzPcM4552Dfvn143/veh3Q6vVEvT0RERGXMthEvcu+99+KLX/wiPvShD2Hv3r2Ix+P41a9+hXw+vxEvT0RERGVOKHYvoVgshre+9a34whe+gDe84Q3FfCkiIiLapIp+SeiRRx5Be3s7wwoRERGtWdEDy5EjRyCKIr7whS9g//792LVrF26++WYcOXKk2C9NREREm0TRLwldddVVGB8fR1NTE26//Xa43W7cd999UBQFP/3pT1FfX7+m59V1HYIgrHO1REREVIqKvuhW13UsLCzgn/7pnxAOhwEAe/bswYEDB/Cv//qv+Ou//us1Pa8gCEgkUsjntfUsl86Q1WqB1+vmsSgBPBalg8eidPBYlJbqajcslrVd3Cl6YPF6vaipqTHCCgDU1NRgx44diEajZ/Xc+byGXI6/gKWAx6J08FiUDh6L0sFjURrO5ppO0dewBIPBkz6WyWSK/fJERES0CRQ9sFx++eWYmZnB0aNHjbF4PI6XX34ZO3fuLPbLExER0SZQ9EtCBw8exDnnnIO/+qu/wu233w6n04n7778fDocD73jHO4r98kRERLQJFP0Mi8Viwf3334+9e/fik5/8JP7rf/2vqKysxEMPPYTGxsZivzwRERFtAhuyNX9dXR3+8R//cSNeioiIiDYhdmsmIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqKh0XT/r52BgISIionWn6zrGx8fxn//5Szz00NeRzS6e1fPZ1qkuIiIiIszNzUFVZShKBPF43Bjv7e1Fc3Ptmp+XgYWIiIjO2rFjU3j66acwMjJsXAKy2ezo7u6GKIbR3t5xVs/PwEJERERnTNM0ZDJpuN0VAACHw4nh4SEAQGtrGyQpDL8/CIfDsS6vx8BCREREq3bs2BRkOYJoVEF9fSPe8pa3AgCqqqpw4MCVaGlphdfrXffXZWAhIiKiU1pYSEJVFSiKjKmpSWNc03Rks1nY7XYAgCSFi1YDAwsRERGd1K9+9TSOHHnBWJditVrh83VBFMPo7PTBarVuSB0MLERERASgcCvyyMgw6usb4HK5AABerxe6rqO5eRskKYxAIGQ8tpEYWIiIiLa4eDwORYlAUWTMz8/h0kvfiF27zgEAhEIS2traUVOz9luS1wMDCxER0RaUSi0gGlWhKDImJsaNcafTiWw2a3ztcDjW7U6fs8HAQkREtMVks4v413/9OnK5QjCxWCzo6OiEKIbR1dUNm6304kHpVURERETrprBF/hjGxkaxd+95AAC73YH29nYkk0lIUhjBYMjYT6VUMbAQERFtQonELGQ5AlWVMTs7CwDw+4PGHikHD77JuB25HDCwEBERbRKZTAY9PYV1KaOjI8a43W6H3x+ArmsrxsoJAwsR0enoOmwvPA+rqgB2O7L79kNraze7KqLX6O/vw5NPPgEAEAQB7e0dEMUwuru7Ybebv3D2bDCwEG1StpeOwPXAF+F4/OcQslnkgkGk/+J9yFxzLVACK/7LheOxn8Lzd5+ATT5qjOmCgMU3XY35//E5aB2dJlZHW5Wu65icnICiyKitrcXOnYVbkLu7u9HcvA3d3QGEQiIqKytNrnT9CPry1nVlKB5PIpfTTv+NVDQ2mwW1tR4eixJgHIvpeTj+x6fh+d+fg261QcjnAAC6xQJB05DbuQszD38femOjyRWXPue/fxdVH3wPAED4o7dK3WqFXlOL+E+egNbpW/EY50Xp2GzHYm5uDtGoAlmOIB6fBgDU1dXjxhvfDkEQTK7u9OrqPLBaLWv6WZ5hIdpkHF/5Ejz/+3MAYIQVABC0wpu1NXIU1e+4HjM/eQKwrO2NYysQZuKo+r8+VPjnE3yuE/J5YCaOqo/+FWa//f2NLo+2mGhUwSuvvIyRkWFji3ybzYaurm6IYvH695QSBhaizSSXg/sfPgsdwMk+awn5POxHXoD9F48je+DgRlZXVlzfeAhYXDxhWFkm5PNwPPkELLEeaP7ABlZHm52mabAc94GitzeG4eEhAEBraxskKYzu7gCcTqdZJW44BhaizeRnP4NlcuK036ZbrXD924MMLKdgf/JxYBVXzHVBgOOpJ5FmYKF1cOzYFGQ5gmhUwTXXXIu6unoAwM6d56Curh6hkGTclrzVMLAQbSYDA6c8u7JMyOdh7e/bgILKl5BKnfa/Y+EbBQiLmWKXQ5vYwkISqqpAUWRMTU0a49GoigsvLASW1tY2tLa2mVViSWBgIdpMPJ5V/ZHVAeib6O6BYsgHQ9B/82xhrcopCJqGfFf3BlVFm0kyOY9f/OIJDA72G+tSrFYrfL4uiGIYnX+0mHurY2Ah2kyuvBK61XraP7IQBCxe9eaNqalMpd/5Lrgf/Oopv0cHoDU1Y/FyXlqj09N1HfPz86iqqgIAuFxuTEyMQdd1bNvWAlGUEAiE4HK5TK60NDGwEG0mzc1YfNt1cHzvuycNLbogAC4X0je9Y4OLKy+5c1+HzJ9cDcfPf2LcYfXHBADJ//4poAQbxVHpiMfjUJQIFEWGIAi45ZZDEAQBVqsVBw4cRHV1DWpqas0us+RxlhFtMql/+H9gffEFWHtjrwktusUKCEDi/q9C5xvkaSX+zwPwvvcQnI//bOWeNlYroGlIfuozyLz9nSZXSaUolUohGlWhKBFMTIwb4w6HA4nELKqrawAAPh8vJ65W0QPLI488go9//OOvGX//+9+P//bf/luxX55oy9Fr6zDz6M/hufszcH3jIQipBeOx7P7XI/mxO5G7aL+JFZYRjweJb3wH9mefgetrD8AWOQrdbkf2sjci9a73vGbDOCIAeOml3+OZZ56CtnRmzmKxoKOjE6IYhs/XVXY9fErFhp1h+dKXvmRctwOA5ubmjXppoi1Hr6nF/N3/C8k7/w62F18AFheR7/ZD6/abXVr5EQRk91+M7P6Lza6ESpCu6xgfH4Pb7TbOmtTX10PTNDQ2NkIUwwiFRLjdFeYWuglsWGDZuXMn6urqNurliAiAXlmF7CWXmV0G0aaTSMxCUWQoSgSzs7PYtWs3Lr30DQCAlpZW3HTTLfybt864hoWIiGgVMpkMenpUKIqM0dERY9xut6/YlVYQBIaVItiwwHLNNdcgHo+jtbUVN954I973vvfBarWe1XOutYESrZ/lY8BjYT4ei9LBY1E61utY6LqO733v25idnTGer729Y+lW5ADsdnZAX42z6c9Y9G7NTz31FI4cOYI9e/ZAEAQ8/vjj+MY3voG3v/3t+OQnP1nMlyYiIjpjuq5jYmICsizjkksuMc6e/PKXv0QsFsPOnTsRDodXrMuk4it6YDmRf/iHf8DXvvY1/OIXv0BTU9OanyeRSCGfL/924eXMarXA63XzWJQAHovSwWNROs7kWMzPz0NRIpDlCKanpwEA11zzp/D5ugAA+XweFosFwtmcJtjiqqvdKy6fnQlT1rBcffXVeOCBB3D06NGzCiz5vIZcjm8GpYDHonTwWJQOHovScbJjkc0uIhaLQVEiGB4eMrbIt9ls6Orqht3uPO7nBOTzOgp7HNNanM0pEi66JSKiLWtmZgaPP/4z4+uWllZIUhh+fxBOp9PEyuiPmRJYHn30UVitVuzYscOMlycioi1oevoYZDkCANi/tK9OQ0Mjurq60djYBFGU4PVWm1kinULRA8t73/te7Nu3D5IkAQAee+wxPPzwwzh06BAaGxuL/fJERLSFLSwk0dNzFM899yImJiYAFG5DPv/8C2C3OyAIAq6++hqTq6TVKHpg6e7uxne/+12MjY1B0zR0dXXhb//2b3HrrbcW+6WJiGiL6u/vwx/+8BJGRgbhdNqQSi3CarXC5+tCKCTBYjm7bTVo4xU9sNx5553FfgkiItridF2HruvGHSiTkxMYGOiDxSKgpaUF7e3d6OoKwO12m1wprRUX3RIRUdmamYkvbZEv46KLXo9gMAQAEMUwNE3Djh3b0d3djng8yTu2yhwDCxERlZVUKoWenigUJYLx8TFjvKcnagQWr9eLCy+8CDYbdxveLBhYiIioLORyOfz85z/BwEA/8vk8AMBisaCjoxOiKMHn6za5QiomBhYiIipJuq5jdnYGNTW1AAqbuS0sLCCfz6OxsRGiGEYwGEJFhcfkSmkjMLAQEVFJSSRmoSgyVFXG3NwcDh16D1wuFwDg9a+/BA6HA3V19SZXSRuNgYWIiEyXyWQQi0UhyxGMjo4Y4zabHVNTk2hv7wAAbNvWYlaJZDIGFiIiMlV/fy9++tPDyOVyAABBENDW1g5RDMPv98Nud5hcIZUCBhYiItowuq5jamoSmqahuXkbAKCxsQn5fB61tXWQpDBCIQmVlZUmV0qlhoGF1kSIT8P5wx/ANjUBtDRBeOOVwLY2s8siohI1Pz8PVS3slzI9fQxtbe340z99GwCgosKDt7/9nfB6qyEIgsmVUqliYKEzs7gIz9/dCffXHgByWcBqBfJ5VANYfPNbMfe//xl6bZ3ZVRJRCchmFxGLxaAoEQwPD0HXdQCFu33cbjc0TTN2pq2urjGxUioHDCy0evk8vO89BMdPD0PQl3aMXL7mDMBx+Eeo6VEx86OfQa/ymlcnEZWEn/70JxgY6DO+bmlphSSF4fcH4XQ6zSuMyhIDC62a84ffh/Mnj570cSGfh1VR4P78P2PhDvaQItpKpqePQZYj2L17DzyewvqTYDCE2dk4RDEMUZTg9VabXCWVMwYWWjXXl/4PdIsVgpY/6fcIWh7ur34ZCx/9GGC3b2B1RLTRFhaSUFUFqipjcnISAOB2u7F373kAgFBIhChKXJdC64KBhVZH12F/7jenDCvLLNPHYO3vQ36ppwcRbR65XA59fTHIsoyhoQFoWuHysNVqRWenD42NTcb3Lq9PIVoPDCy0OroOaGfQ6XRpbQsRlb/lxbJAIbA88cRjxp4pzc3bIIphBAJBuN1us0qkLYCBhVbHYkE+EIS1JwrhuDevE9FdLuSXdqUkovI1MxOHosiIx+N405uuBgC4XC7s2LELdrsdoigZfX6Iio2BhVYt9d4PoPJv/+aU36NbrUjfdAvATZ+IylIqlUJPTxSKEsH4+JgxHo/HUVtbCCcXX3ypWeXRFsbAQquWvukWuL/ypcJZlvxr17LoViv0qios/F8f2fjiiGjNdF3H+PgYXnzxdxgY6Ed+aX5bLBa0t3dCkrjzLJmPgYVWr7ISM9/9IaoP3QT7C7+DbrMBuRyEpc3jtJZWzD70bWidPrMrJaLT0HUd+XweNlvhz0AymURvbwwA0NDQCFGUEAqJqKjwmFkmkYGBhc6I3tyMmcNPwP7sM3B+51uwTk7A0VCH+auuQerAnwA2/koRlbJEIrG0RX4EwaCICy7YB0EQ4PN14bzzzkcwGEJ9fYPZZRK9Bv+60JkTBGT3X4zs/oths1ngqPUgG08CuTO4i4iINkwmk0EsFoUsRzA6OmKM9/bGcMEF+wAUtsvft2+/WSUSnRYDCxHRJvbkk49DUWTjNmRBENDW1g5RDMPv95tcHdHqMbAQEW0Suq4jHp9GbW2dsbuspunI5XKora2DJIURCnEBLZUnBhYiojI3Pz8PVVWgKBFMTx/DddfdiKamZgDA3r3nYefOXWhsbOIW+VTWGFiIiMpQNruIWCwGVZUxNDRo7EZrs9kwPX3MCCzLe6cQlTsGFiKiMjM9fQyPPPJtZLNZY6ylpRWiKCEQCMHpdJpYHVFxMLAQEZW46eljmJubg8/XBQCoqamFw+FARUUFRDEMUZTg9VabWyRRkTGwEBGVoFRqwViXMjk5CY/Hg3e+8y9gsVhgsVjwtrfdgMrKSq5LoS2DgYWIqERks1n09/dBUSIYHByAttQh3WKxoKmpGZlMGm53BQCgqqrKzFKJNhwDCxFRifjtb5/FkSMvGl83NTVDFMMIBkNwu93mFUZUAhhYiIhMMDMTh6rK6OzsQnPzNgBAICCip6fH2C+Fd/gQvYqBhYhog6TTaUSjKhQlgvHxMQDA/HzSCCxNTU145zvfxXUpRCfAwEJEVES6rqOvrxeKEkF/fx/y+TyAwhb5HR0+486f5TEiOjEGFiKiInvmmf9EIjELAGhoaIQoSgiFRFRUeEyujKh8MLAQnUwyCedPfwzL5AQ0bzUWD74JekOD2VVRCUskElBVGYOD/Xj3u28FUDhrsnv3HszNzUGSwqiv5+8Q0VowsBD9sXweFf/4P+H+P1+AJZmEbrFA0DToNhvS19+E5P/8HPRK3lJKBZlMBrFYFIoiY2RkGABgsQjo7e1FQ0MrAOCcc/aYWSLRpsDAQnQ8XUfVbR+E85FvQ1jqzSIs7YUh5HJwffubsL3yMma+/2PAw9P5W9n09DSef/436OvrRS6XA1A4m9LW1o7t28Po7OzEwkLO5CqJNg8GFqLjOA4/Ctd3Hz7p40I+D9sffo+K+/4FCx/92AZWRmbTdR25XA52u90Yi0ZVAEBtbR0kKYxgUERVVRVsNgucTicDC9E6YmAhOo77S/dBt1ohLN3JcSKCpsH9wBex8NcfBWycQptdMjkPRSlskV9XV4crr7wKAFBXV4eLLno92tra0djYxDt8iIqM77ZEy3Qd9l89fcqwsswyOQFrXy/ywdAGFEYbLZtdRG9v4VbkoaFB6EuXB5PJeeRyOdiWguq5577OzDKJykI2m0VfXwyKIuPmm6+D1epa0/NseGBJJpO4+uqrMT4+ju985zs455xzNroEopNbRVgxLC4Wrw4yzW9/+2scOfICstmsMdbS0gpRlOD3B42wQkQnp+s6RkaGoSgyYrEoFpfeL7PZLFyuMgksX/jCF4yNk4hKiiAg39UNa1+vseD2ZHS7A1pHxwYVRsU0PT2NqqpK2O0OAIDNZkc2m0V1dTVEMQxRlOD1VptcJVF5iMfjUJQIFEXG/PycMe71VkMURbhca++JtaGBpaenB//2b/+Gj33sY/jUpz61kS9NtCrpd78Pnk/991N+j261In3djdCrvBtUFa23VGoB0agKWY5gcnICBw5cCUkKAwDC4TC2bduGbdtauC6FaBVSqZTRcmJiYtwYdzqdCASCCIUktLS0QhAEWCyWNb/OhgaWz3zmM7j55pvR3d29kS9LtGrpWw7B/eX7YRkaPOFaFt1ihe5yIfXXt5tQHZ2NXC5nbJE/ODgAbel2dYvFYuxCCwBudwXc7gqzyiQqC7lcDv39fVCUCAYG+lfMp46OTohiGF1d3et6CXXDAsvhw4ehKAruuecevPzyy+vynFbr2pMarY/lY7BpjkVtDeb+4zCqbnwbrJGjxh1DxuZxdbWY/8Z3IEhSya1Y33THYh1lMhk89NDXkE6njbGWlm3Grchu99pPU58Ij0Xp4LFYP7quY2xsDLIcQU+PumI+bdvWDEnajmAwhIqKkwf+szlpuSHvualUCnfffTduv/12VFZWrtvzer3r+yZDa7epjkWtBPzhJeAnP4Hw4IPA8DCE2lrg+uthueEGeNe4YGyjbKpjsUbxeBwjIyPYuXPn0ogHHR2tmJ2dxfbt27Fz507U1dUVvQ4ei9LBY7F2MzMzeOWVV3D06FHMzMwAKASPxsY6Yz7V19cXvY4NCSz33nsv6uvrcd11163r8yYSKeTz2ro+J50Zq9UCr9e9OY/F/jcU/ne8VB5IJc2p5zQ29bFYhXQ6baxLGRsbhcViQU1No9Fg8JJLDsDtdhvrUuLx4h3HrX4sSgmPxdpkMhljPo2OjhjjdrsdgUAQoiihra3dWJOy2vlUXe1e8zqWogeW4eFhPPDAA/j85z+PubnCiuGFhQXj/5PJJDxr3OI8n9eQy/EXsBTwWJSOrXQs8vk8Bgb6oSgR9Pf3GXcgCoKA1tZ2JJNpOByFT9YOhwv5vA7g1HeArW99W+dYlDoei9PL5/MYHOyHoijo71/ZcqK9vQOhkAS/32/cUadpMNaurNZpbsA8paIHlqGhIWSzWXzgAx94zWOHDh3Cnj178PDDJ98KnYjoZGT5KJ588gnj6/r6BoiihFBIhMezfpefiTYrXdcxOTkBRZERjapIpRaMx+rq6iGKYYRC4rou51irogeW7du34+tf//qKsaNHj+Kzn/0s7rrrLm4cR0SrkkgkoKoyqqtrEFzaYdjvD+J3v3sefn8AoiihoaHR5CqJysPc3BxUVYaiyIjHp43xiooKhEIiRDGM+vqGkrq1v+iBxev1Yt++fSd8bOfOncctiiMiWmlxcRGxWBSyHMHIyDAAoLl5mxFYXC4XbrnlUEm9qRKVqsJ86oGiFObTcssJm82Grq5uiGIYHR2dZ7VXSjGV2p2ZREQYHByALB9Fb29sxXX01tY2iGIYuq4bIYVhhejkNE3D0NAgVFVGLBZDLvdqy4nW1jZIUhjd3QE4nU4Tq1wdUwLLvn37IMuyGS9NRGXgpZeOoL+/DwBQW1u7dB1dQlVVlbmFEZWJY8emIMsRRKMKkslX7+Cpqakx5pPXW167dfMMCxGZJpmch6oqUFUFb3rTm4030J07dy31HpHQ2NjEsyhEq7CwkISqKlAUGVNTk8a4y+VCIBCCJG1HU1P5zicGFiLaUNnsInp7C1vkDw0NGtfRVVXG6153AQDA5+uGz8cWHkSnk81m0dcXg6LIGBwcMOaT1WqFz9cFUQyjs9MHq9VqcqVnj4GFiDZEMjmPX//6WcRiUWSzr15Hb2lphShK8PuDJlZHVD50XcfIyDAURUYsFsXi4qLx2LZtLRBFCYFACK4S35X7TDGwEFHRLC4uwuEobDLlcDiMsLJ8uUcUJVRX15hbJFGZiMfjUJQIFEXG/PycMV5V5YUkSQiFJNTU1JpYYXExsBDRukqlFowtvfP5PG688e0QBAF2uwOXXPIGVFdXY9u2lrK9jk60kVKpFKJRFYoSwcTEuDHudDoRCAQRCkloaWndEvOJgYWIztqpWs3PzSXg9VYDAMLh7WaWSVQWlueTqsro7+9bMZ86OjohimH4fF2w2+0mV7qxGFiI6KwcPfoyfvWrp5HJZIyxxsYmSFIYwWAIbvfJW80TUYGu6xgfH4OiRNDTE0U6nTYea2xsNLbI38rziYGFiM7I7OwMbDab0aunosKDTCaDyspKY3+Huro6k6skKg+JxCwURYaiRDA7O2uMV1ZWIhQqrPOqq6s3scLSwcBCRKeVTqfR06NCUWSMjY3i3HNfh4suej0AoKOjE3/6p29Da2vblriOTnS2MpmMMZ9GR0eMcbvdvtQXK4zW1raS3SLfLAwsRHRC+XweAwP9UBQZ/f29yOfzAApb4S8svNrR1WKxoK2t3awyicpCPp/H0NAAZLkwn45vOdHe3gFRDKO7uxt2u8PkSksXAwsRvYau6/j2t7+BeDxujNXXN0AUJYRConE5iIhOTtd1TE5OGLs5p1KvBv26unpjXUplJefTajCwEBHm5ubQ1xfDrl27IQjCUqPBdmQyGeM6ekNDo9llEpWF+fl5qKoMWY4gHp82xt3uCoRCojGfeAn1zDCwEG1RJ2o139DQiJaWVgDAvn37cckll/E6OtEqZLOLiMViUJQIhoeHjC3ybTYburq6IYphdHR0cj6dBQYWoi1kudW8okTQ29u7otX8H69DKYd280Rm0jQNw8NDUJQIYrHYivnU0tIKSQrD7w9yLq0TBhaiLWRsbBQ/+tEPjK9ra2sRCkll2WqeyCzT08cgyxGoqoxkMmmM19TULF1CDXM+FQEDC9EmlUzOQ1UVAMDevecBKHzqa2xsQnPzNohiuKxbzRNtpIWFJFRVgaLImJqaNMZdLhcCgRAkKYympmbOpyJiYCHaRLLZLBRFxtGjR41W8y6XG+ecswdWqxWCIOC6627kmyrRKmSzWfT390KWZQwNDRhb5FutVvh8XQiFJHR2+mCz8U/pRuB/ZaJNYGxsFLL8CkZGBpBIJKFphQV/y63mlxcAAmBYIToFXdcxMjIMVVXQ06NicXHReGz5zGQgEITb7Taxyq2JgYWoTOm6boSP3t4YIpGjcLsd8HqrEQwWbp2srq4xt0iiMhGPx6GqMhRFxtxcwhivqvJCFAu39tfU1JpYITGwEJWRVGoB0agKWY7gwgsvQmenDwAgSWHk81lceOF5cLurkc/rp3kmIkqlUohGVaiqjPHxMWPc4XAgEAghFBLZcqKEMLAQlbjlVvOKEsHAQL9xHV1RIkZgqaurxxvfeAC1tR7E40kADCxEJ5LL5ZZaThTm03LLCYvFgvb2TkiSBJ+vG3a73eRK6Y8xsBCVqFwuh6ef/iV6eqLIZDLGeGNjEyQpjGAwZGJ1ROVD13WMjo7i6NGj6OlRkU6njccaGxshioX5VFHhMbFKOh0GFqISkk6n4XK5ABTuRBgbG0Mmkzmu1XwYdXV1JldJVB4SiVn09KgYHIxhdHTCWIzu8XgQCkmQpDDq6upNrpJWi4GFyGTpdBqxWBSKIuPYsSkcOvQe2O12CIKAiy56PaxWK1vNE61SJpNBLBaFLEcwOjoCi0WA2+2AzWZHd7cfohjmfCpTDCxEJsjn8xgc7DdazS9fRxcEAePjY2hv7wAA+HxdJlZJVB7y+TyGhgaM+ZTL5QAU5lN7ewcuuOBcNDa2QhD4J6+c8egRbbCBgX489tjPkE6njLG6unpIUqHVvMfDVvNEp6PrOqamJqEoMlRVQSq1YDxWW1u3NJ8k1NR4jcXouZxmYsV0thhYiIpsbm4O2WzWWHtSU1ODdDqFiorlVvNh1Nc38NZJolWYn59f2iI/gunpY8a42708nyQ0NDRyPm1CDCxERbC4uIhYrAeKEsHIyDB8vi5cffU1AACvtxpve9v1aGpq5nV0olXIZhcRi8WgKBEMDw8ZOzfbbDZ0dXVDFCW0t3fCarWaXCkVEwML0TrRNA1DQ4NQlAh6e3tXtJrP5/PQNM0IKNu2tZhVJlFZ0DQNw8NDUFUZPT09K+ZTS0srJCkMvz8Ip9NpYpW0kRhYiNbJ4cM/Qn9/n/F1bW0tQiEJoZDEVvNEqzQ9fQyyHIGqykgmk8Z4TU3N0q39ErzeahMrJLMwsBCtQTJZuI4eDu8w9k3p6PBhfHwcwWAIohhGU1MTr6MTrcLCQhKqqkBVZUxOThrjLpcLgUAIkhRGU1Mz59MWx8BCtErZbBZ9fTEoiozBwQHoug6Hw4EdO3YBAMLh7dixYyevoxOtQjabRX9/L2RZxtDQgNFywmq1orPTB1EMo7PTB5uNf6aogL8JtHXk8xASs9CdLqCiYlU/stxqXlFkxGLRFa3mt21rQcVxz8PeI0SnVtgifwSKIqOnR10xn5qbt0EUwwgEgnC73SZWSaWKgYU2PcvIMNz33wvXg1+FZaltfPa885F6/4eQedv1wCnu1EmlFvAf//Hvxl0JXm+10Wq+urpmI8onKnszM3EoigxFkTG3NAcBoKrKa8ynmppaEyukcsDAQpua7aUjqP7zt0KYn4OwtJssANhe/B28f/k+pH96GHNf+CJgtRqt5mdnZ3DJJZcBACoqPAgGQ7Db7RDFMLZta+F1dKJVSKVS6OmJQlEiGB8fM8YdDgcCgRBEUUJLSyvnE60aAwttXskkqm9622vCCgAIy9fL//27GGluxpH9F2NgoB+apkEQBOzZcy6qqqoAAAcPvmnDSycqR/l8HgMD/VCUCPr7+4yWExaLBe3tnZAkCT5fNy+f0powsNCm5Xrk2xCmpnCiz2+TFgtetNuh2O1IffdhLDQ1A1ar0Wre4XBseL1E5UjXdUxMjEOWI+jpUZFOp43HludTMBhCRYXHxCppM2BgoU3L+Z1vAYIALK0/0QEjvIxbLPj9UiipWljATqsV/pvewVbzRKuUSMwu9fGRMTMzY4x7PB5jv5T6+gbzCqRNh4GFNi3L1CTSug7VbscrNhuCuRzOzxZ2ywzlchjOZhHOZtGRz2O+rh4ZhhWiU8pkMojFopDlCEZHR4xxm80Ov98PUQyjra2dLSeoKIoeWJ588kl88YtfRDQaxfz8PJqbm3Hw4EHcdtttxhoBovWUz+cxONiPp1xuDFRVYXn1SlYQjMDiBPCm405d60uNCYloJU3TMDg4AEWJoK+vF7lcDgAgCALa2tohimH4/X7Y7byMSsVV9MAyMzOD3bt349Zbb0VNTQ1UVcU999wDVVXxwAMPFPvlaYv51a+eRiRyFOl0CrZgCI6+GBryeezM5RDOZk/4M5q3GouXvnFjCyUqYbquY2pqcumSj4JUasF4rLa2DpIURjAo8kMnbaiiB5Zrr712xdf79u2Dw+HAJz7xCYyPj6O5ubnYJdAmtrCQXLGYL5FIIJ1OoaKiAqEbb8a+XzyOpuQCLFr+hD+vCwJS7/8QsLS9PtFWNj9faDmhKBFMTx8zxt3uCoRCIkIhEY2NbDlB5jBlDUtNTQ2AwtbMRGdqcXERsVgPVFXG8PAQbrrpFtTWFjadOvfc8xAOb0dHRycsFgts3/gOcMO10BcWVtzarFssgKZh8eprsPDRj5n1r0Jkumx2EbFYDKoqY2ho0Ngk0WazwefrhiRJaG/vZMsJMt2GBZZ8Po9cLodoNIrPf/7zOHDgANrb2zfq5anMLbeaV5QIYrHYilbzo6PDRmBpalp5xi533vmIP/403P/n83D/24MQFgqntvPhHUh94C+RvukdAN+IaYvRNG2p5UQEsVjPig+PLS2tEEUJgUAITqfTxCqJVhL05ThdZJdddhnGx8cBAJdeein++Z//eUUflrVIJFLI57X1KI/WyGq1wOt1F/VYTE1N4Yc//P5rWs1L0valVvPe1T3R4iKEY8cAlxN6TW3hludNZCOOBa1OqR6LY8eOQVEiUBQZ8/Pzxnh1dQ1EUYIkhVFdXW1iheuvVI/FVlVd7V7zXWQbFlgikcjS1udR3HvvvWhvb8dXvvIVnmak10gmk5idnUVraysAIJfL4b777oMgCJAkCTt27EBLC7fIJ1qNhYUFHD16FK+88gomJiaMcafTacyn1lZukU+lb8MCy/EikQiuvfZa/NM//ROuuuqqNT8PE7P51uvTSzabRV9fL2Q5gsHBAVRVeXHLLbcab6JTU5Oora1jwD0FfpIsHWYfi+X5pCiy0XICKGyR7/N1QZLC8Pm6YLNt/q24zD4WtNLZnGEx5bdVkiTY7XYMDAyc1fPk8xpyOf4CloK1HAtd15euo8uIxaIrWs07HE7Mzy8YbeZrauqh6+DxXgXOi9KxkcdC13WMjo5AUWT09Kgr5lNTU7OxRf7ynAK21nzivCgNZ3OKxJTAcuTIEWSzWS663eKeeeY/8fvfv2h8XVXlhSRJCIXYap5otWZm4lBVGbIsY24uYYxXVlZBksIIhSRjUTpROSt6YLntttuwa9cuSJIEl8uFSCSCL3/5y5AkCQcPHiz2y1OJKKxfUtHW1mb06+nq6kYk8gpbzROdoXQ6jWhUhaJEMD4+Zow7HA74/UGIooTW1jbOJ9pUih5Ydu/ejUcffRT3338/dF1HW1sbbrjhBrz3ve9lR9xNLpfLrWg1r2kadu/ei4svvhQA0NrahkOH3sNW80SrkM/nV8yn/NK+QoIgoKOjE6IooavLz/lEm1bRA8sHPvABfOADHyj2y1CJ0HUd4+NjUJQIenqir2k1X1//aoNBQRD45kp0CrquY2JiHIoiIxpVkU6njMcaGhohihKCwRA8nkoTqyTaGJt/iThtKF3X8ZOfPIqFpQ3allvNS1LYuBRERKeWSCSgqjIUJYKZmRlj3OPxIBgUIUlh1Nc3mFcgkQkYWGjNMpkMZLkHx46N4ZJLDgAo3Da5Y8dOzM3NQRTDaG1tY6t5olXIZDKIxaJQFBkjI8PGuM1mh9/vhyiG0dbWzvlEWxYDC52RfD6PoaEByLKM/v5eaFoebrcD3d0iWloKd31dcMFFJldJVB40TcPg4AAUJYK+vl7kcjkAhculra1tEMUw/P4A1/sRgYGFVimRmMVLL/3+Na3mGxsbcP75565Ym0JEJ6frOqamJqGqMlRVMS6fAkBtbR0kKYxgUERVVZWJVRKVHgYWOild143bIlOptLFnynKreVGUsG1bM+rqKhGPJ7kpE9EpzM/PQ1UVKEoE09PHjHGXy23Mp8bGJt6KTHQSDCy0wnKreUWJwOv14g1vKKxNaWpqwu7de9He3oH29g5ji3y+uRKdXDa7CFXtgaJEMDQ0iOVOKDabDT5fNyRJQnt7J1tOEK0CAwtB0zQMDw8ttZqPIZcrtJp3Op245JI3wGq1QhAEY/8UIjq5wrqUITz7bB9+//uXkcm8ukV+S0srRFFCIBCC0+k0sUqi8sPAssUdOfICjhx5Aclk0hirqamBKIYRCon85Ee0StPTx6AoMlRVxsJCEm63A9lsFtXV1RDFMERRgtdbbXaZRGWLgWWLWVhIwul0GUFkcTGDZDIJl8uFQCAESQqjqamZl3qIViGVWjDWpUxOThrjbrcLu3efg7a2bjQ0cF0K0XpgYNkCstks+vt7IcsyhoYGcOWVV8HvDwAAwuGdqK9vRGenb0u0mic6W7lcDn19vVCUCAYHB6BphcXmFosFPl8XQiEJgYAfjY3VXIxOtI74F2qT0nUdIyPDUFXlNa3mJybGjcBSVVXF2yeJTkPXdYyOjkBVZfT0RJHJZIzHmpqaIYphBIMhuN1uAIDNxs3diNYbA8smlE6n8Z3vfGtFq/mqKi8kSUIoJKGmhq3miVZjdnYGihKBoihIJGaN8crKKoiiBFEMo7aW84loIzCwbAKpVAqTkxPo7PQBAFwuF1wuFzKZNAKBEERRQktLK6+jE61COp1GT48KRZExNjZqjNvtdmM+tba2cT4RrUImk0FPj4q+vl686U1vPqvnYmApU7lczmg1PzDQD0EQcOjQe4xbJQ8e/BN4PJXshky0Cvl83phP/f19yOfzAAr7DHV0dEIUJXR1+TmfiFYhn89jcLAfiqKgv//VlhODg/1obDxnzc/LwFJGdF3H+PgYFEVGT4+KdDptPNbY2Ihkct4ILLzsQ3Rquq5jYmICihJBNKoinU4Zj9XXN0AUJYRCIjyeShOrJCofiUQCv//9i4hG1RUtXOrq6iGKhTtQzwYDSxl5+eU/4KmnfmF87fF4EApJkKQw6urYy4doNRKJBKLRwq3I8XjcGK+oqEAoJEEUJTQ0NJpYIVH50DTN6CCey2Xx0ktHABRauIiiCFEMo76+YV0uoTKwlKjlVvOVlVXo6OgEAHR3d+PXv34G3d2FVvOtrW1sNU+0CouLi4jFopDlCEZGho1xm82O7u5uiGIY7e0dnE9Eq1CYT4WWEx6PB1dc8ScACmdS9u49D62tbejo6Fz3+cTAUkLy+TyGhgYgy7Jx3a+jo9MILB5PJd71rvdyvxSiVdA0DUNDg1CUCHp7Y8Z1dEEQ0NraBlGU4PcH4XA4TK6UqPSdrIWLzWbHZZdljfVd+/dfXLQa+JevBExOTixt6a2suO5XW1uH9vaOFV2TGVaITm1qahKKEoGqKlhYOH4+1S61nJC49xDRGfj971/Eiy/+7iQtXKQNW4zOv34l4Jln/tM4Te12Vxit5hsaGnnrJNEqJJPzS1vkyzh2bMoYd7ncCIVEhEISmpq4RT7RaiwsJGG3O4wgks/njRYuwWDh75MZLVwYWDZQNruIWCwGVZVxxRVXwu2uAABs374TFRUVEEW2midarWx2Eb29hS3yh4YGoes6AMBqtcLn64YkSejo8HE+Ea1CNptFX18MiiJjcHAAV1xxJUIhCQAgioUNRzs7zZ1PDCxFpmkaRkaGl6779SCbLVz3U1UFu3fvBYClHTMlE6skKg/LLSdkOYJYLGrMJwBoaWlFKCQiEAjB5XKZWCVReVieT4oiIxaLrmjhMjk5YQQWj6cS3d3m397PwFIkqdQCXnzxBaiqvOK633Kr+a4uv4nVEZWX6enppXUpMubn541xr7faCPzV1TXmFUhUZrLZRXzrW99Y0cKlMJ/Ekm3hwsCyjo6/Hx0Q8NJLR5DP5+FyuRAIhCBJYVOu+xGVo1RqAdGoClmOYHJywhh3Op0IBIIQxTC2bWvhfCJahVQqhYmJMfh83QAAu92ByspKLC5mymY+MbCcpWw2i/7+XsiyjGx2EX/2Z9cBANxuNy64YB+qq2vQ2enj3T1Eq5DL5dDXV1iXMjg4AE3TAAAWiwWdnT6IYhg+XxfnE9Eq5HI59Pf3GS1cAODQofcYXcUPHDgIt7uibFpOcNavwXKr+eUt8o+/7jc3N2fcMnnuua8zq0SisqHrOsbGRqEoEfT0RJHJZIzHmpqaIYoSgsGQsUidiE7u1RYuhfl0ohYuy4HF6602q8w1YWA5Q6oq49e/fnbFdb+qKu9S3xHu70C0WrOzM1CUCBRFQSIxa4xXVlYt3dofRl1dnYkVEpUfWT6KJ554zPi6srLSaDlR7i1cGFhOI5VKQRAE464DQRAwN5eAw+GA3x9kq3miM5BOp9HTo0JRZIyNjRrjdrsdfn8QkhTmfCJapUwmg54eFRUVFcaNHD5fN5xOJ7q6ujddCxcGlhPI5XJGq/mBgX6cf/6FOO+88wEUfhmuvPJN8Pm6y+a6H5GZ8vn80nwqtJzI5/MACuG/o6MToiihq8vP+US0Cidq4dLS0moEFrfbjXe9672bcv8hBpYlhVbz45DlCHp61BXX/SYnJ41/ttvtCAZFM0okKhuF+TQBRYkgGlWRTqeMx+rrG5YuoYrweMzf24GoHExOTkCWC/Pp+BYudXX18Pm6V7Rw2YxhBWBgAVB4c/3ud7+1Iph4PB7jul99fYOJ1RGVj7m5OaiqDEWJIB6PG+MVFRXGfGpoaDSxQqLy9JvfPGvc6eN2Vxj7pWylFi5bMrBkMhkMDg4gGAwBKJyarqurRzw+A7/fD1EMo62tfdNc9yMqpkKr+ShkOWL0xAIKXVy7uwvX0dvbOzifiFZhuYWLokTwxjdeYdzIEQ7vgMPhgCiG0dHRuSXn05YJLJqmYXBwAIoSQV9f4bpfTU2N8Wlv3779uPTSN8BuZ6t5otPRNA1DQ4NQlAh6e3uNVvMA0NbWDlGU4PcH4XBwPhGdjqZpGB4eWmrhEjPmUzSqGNtjBAJBBAJBM8s03aYOLLquL7Wal6GqyorrfrW1dSvWqfBaOtHpFeZTBKqqYGHh+PlUa7Sa5639RKuTSqXw4ou/e00Ll5qaGohiGIFAyMTqSs+mDiwjI8P4wQ++Z3ztdlcgGAxBFCU0NrLVPNFqJJPzUFUFiiLj2LEpY9zlciMUKlxHb2rifCJajXw+byyKtVqt+MMfXkIul2ULl1XYNIFl+bqfrusIh7cDALZta0FlZRWam7dBkiS0t3du2tXTROspm11Eb28vVLXQal7XdQCFN1ifrxuSJKGjw9xW80Tl4vgWLqnUAq6//iYAgMPhwL59F6GqyovOTs6n0ynrwHL8dfRYrAfZbBaVlZWQpDAEQYDVasU73nErfwmIVmG51bwsRxCLRZHNvrouZdu2FoiihEAgZGyiSEQntzyfFEVGLBZd0cJlZiZudEPevXuvSRWWn7INLKlUCg8++FUkEnPGWHV1NUQxjFwuZ2xCxbBCdGrT09NLtyLLmJ9/dT4VWs0XbkWurq4xr0CiMhONKnj22V+9poWLJBVauCyHFTozZRtYMpkM5ufn4XQ6l9alhNHcvI3X/YhWIZVaQDSqQpYjmJycMMadTmfZtJonKhWpVGFjxOWmgjabzWjhEggU1k22tLRyPp2lsg0sdrsdV131ZrS1dbLVPNEq/HGreU3TAAAWiwWdnT6EQhK6uro5n4hW4Y9buOzdex4uvPAiAEBHhw9XXnkVfL4utpxYR0V/Z/rxj3+MH/zgB3j55ZeRSCTg8/lw66234rrrrjurtOnxeBAIBJHLaetYLdHmcnyr+WhURSaTMR5rbGyCJIURDIbgdleYWCVReTh+PvX0RFdsjTE9fcz4Z6vVamxMSuun6IHlq1/9Ktra2nDHHXegtrYWzzzzDD7xiU9gbGwMt912W7FfnmhLmp2dWdp/SMbs7KwxXllZaeyXUldXZ2KFROVF13U88si3MTExboxVVlYaLSfq6upNrG5rKHpguffee1e8Me7fvx8zMzP4yle+gv/yX/7LltxemKgY0uk0fv/7Hvz2ty9gePjVLfLtdjv8/iAkqdBqntfRiU4vk8mgv78PoZAIQRAgCAIaGhoQj0/D7w9AFAvziX/DNk7RA8uJPsVt374dDz/8MBYWFlBZyR1midYqn89jcLAfsixjcLAPDocVqdQiBEFAR0cnRLGwLoUtJ4hOL5/PY2hoALIso7+/0MLF6/Vi27YWAMAFF+zD619/CeeTSUxZXff888+jubn5rMOK1cpka7blY8BjsXF0XTdazRdaThTuULBYBDQ0NKOrq9BzhO0mzMN5UTpOdyyWW7jIcgSKsrKFS0NDPTQtD5ut8LNeL9tOnK2zOcG74YHlueeew6OPPoqPfexjZ/1cXq97HSqi9cBjUXyJRAJHjx7FK6+8gunpaWO8oaEW4XAYO3bsQFNTk4kV0h/jvCgdJzsWw8PD+I//eMT4ur6+ZsV84iXU0rGhgWVsbAy333479u3bh0OHDp318yUSKeTzvEvITFarBV6vm8eiSBYXFxGLRSHLEQwPDxtb5NtstqXr6JLRan75EySPhfk4L0rH8ccinU6jp6cHuVwOu3adAwBwu6vhdFagoaERkhRGR8erLVxmZhZO9dS0BtXV7jWv+9mwwJJIJPD+978fNTU1uOeee9ZloVI+r/G25hLBY7F+jm850dvba7SaB4DW1jZIUhh+fxAOh2Pp+2HsqQLwWJQSHgvzaZqGvr4+/OY3v0M02oNcLgu3uwKhUNgIJjfc8A7jb5Kug8esiJY+c63JhgSWdDqND37wg5ibm8O3vvUttp8nOoFjx6YgyxFEo8oJW82HQhK8Xq+JFRKVj+npacjyUfT0KNC0LFKpRWiajpqaGoRCEjTt1a7JvNOnPBQ9sORyOXzkIx9BLBbDQw89hObm5mK/JFHZWFhIQlUVKIqMqalJY9zlchstJ3gdnejMRSIv48iRF2GxCKit9SIQkBAMSmhqauZ8KlNFDyx33XUXnnjiCdxxxx2Yn5/Hiy++aDy2Y8cO47Q20VaRzWbR1xeDosgYHBww1qVYrVb4fF0QxTBbzROtUjabRX9/L2RZxp49e9He3gEAEMUwEokEtm/fjr17d2JuLsNLPWWu6IHl6aefBgDcfffdr3nsscceQ3t7e7FLIDLdqVrNNzdvgySFEQiE4HK5TKySqDzouo7R0REoioyeHtWYT263ywgsDQ2NuOqqt8Bmsyz1x8qc4hmpHBQ9sDz++OPFfgmikhWPx6EoESiKjPn5OWPc662GKIpsNU90BnK5HH73u+egKDLm5hLGeFWVF6JY2CKfNi+2ZSVaZ6lUCtGoCkWJrOg74nQ6EQgEIYphbNvWwuvoRKuQy+WMDuJWqxWxWBRzcwk4HA4EAiGIooSWllbOpy2AgYVoHeRyOfT39xmt5pdvM7ZYLEtb5IfR1dVtvPES0cnlcjkMDPRDUSIYGxvDLbccgt1uhyAIOP/8fQB0+HzdsNvtZpdKG4jvnkRrdHyr+WhURSbz6jXyxsYmSFIYwWAIbneFiVUSlQdd1zExMQ5ZjqCnR0U6nTYeGxkZhs/XBQAIBkMmVUhmY2AhOkOzszNQFBmqKmN2dtYYf7XVfPiETT+J6MSGh4fwy18+gZmZGWPM4/EszScJ9fUN5hVHJYOBhWgV0uk0YrEoFEXG6OiIMW632+H3ByGKElvNE61SJpNBJpMxNkL0eDyYmZmBzWaH3++HKIbR1tbO+UQrMLAQnUQ+n8fgYD9kWcbAQB9yuRwAQBAEtLd3QBTD6O7uZqt5olXI5/MYGhqAosjo6+tFZ6cPb3rTmwEANTW1uPrqt6CtrZ3ziU6KgYXoOLquY3JyYumSj4J0OmU8VldXv7RFvojKykoTqyQqD7quY2pq0phPqdSrzQQTiQQ0TTPOonR1+c0qk8oEAwsRgLm5OaiqDEWJIB6PG+MVFRUIhUSIYhj19Q28dZJoFXRdhyAI+PnPf4JoVDXGC00HRYRCIhob2XKCzgwDC21Zi4uLiMV6oCgRjIwMG1vk22w2dHV1QxQLreZ5HZ3o9LLZRcRiMXR1dRstV7Zta0FfXy98vm5IkoT29k62nKA1Y2ChLUXTNAwNDUJVZcRiMeRyWeOx1tY2SFIY3d0BOJ1OE6skKg+api21nIigp6cHuVwWl19+BcLhHQAASdoOUQxzPtG6YGChLeHYsSnIcgTRqIJkMmmM19TULK1LkYw7Fojo1Kanj0GWI1BVecV8qq6uhsXy6hkUNrel9cTAQpvWwkISqqpAUWRMTU0a4y6XC4FACJK0HU1NvI5OdCYWFpJ4+OFvGJdQC/Op0HKiuXkb5xMVDQMLbSrZbBZ9fTEoiozBwQHjTdVqtcLn64IohtHZ6eN1dKJVyGaz6O/vRTw+jQsuuAgAUFHhQUeHD1arxZhPbDlBG4G/ZVT2dF1fuo4uIxaLGq3mgcKiP1GUEAiE4HK5TKySqDzouo7R0REoioyeHhWLi4sQBAHbt+8ybud/85uv4ZkU2nAMLFS24vE4VFWGLEcwPz9njFdVeSFJEkIhCTU1tSZWSFQ+EolZyPJRyLKMubmEMV5ZWQVJCsNieTWgMKyQGRhYqKykUilEoyoUJYKJiXFjnK3mic7O8PAQnnvutwAK8+n4lhOcT1QKGFio5B3far6/vw+apgEALBYLOjo6IYph+HxdbDVPtAr5fN6YT21tHdi16xwAgN8fRF9fL4LBELq6/JxPVHIYWKgk6bqO8fGxpf0doitazTc2Nhpb5LvdFSZWSVQedF3HxMQ4ZDmCnh7VmE9zc3NGYHE6nbj66mvMLJPolBhYqKQkErNQlMIW+bOzs8Z4ZWWl0Wq+rq7exAqJyssLL/wOkcjLmJmZMcY8Ho8xn4jKBQMLmS6TyaCnR4WiyBgdHTHG7XY7/P4ARDGM1tY2bpFPtArZ7OKKjscTE2OYmZmBzWaH3++HKIbR1tbO+URlh4GFTLHcal6WZfT39yKXywEo3H3Q1tYOUQzD7/ez1TzRKmiahsHBAShKBH19fbjxxptRXV0DANi9ey98vm74/QHuPEtljYGFNoyu65icnICqKq9pNV9XV2+sS1ne64GITk7XdUxNTUJRZESjChYWXp1PfX292LPnXABAS0srWlpazSqTaN0wsFDRzc3NIRpVIMsRxOPTxvhyq3lRlNDQ0MhbJ4lWKR6P46c//TGmp48ZYy6X25hPjY1NJlZHVBwMLFQUy63mFSWC4eEhY4t8m82Grq5uiGIY7e0d3CKfaBWy2UXMzc0ZC84rKysxPz8Hm80Gn68boigubZfP+USbFwMLrRtN0zA8PARFiSAWiyGXyxqPtbS0QpLC8PuDbDVPtAqapi21nIggFutBZWUlbrrpFgiCALvdjquvvgb19Q2cT7RlMLDQWZucnMRvfvMCIpGjK1rN19TULK1LkeD1ek2skKh8TE8fg6LIUFUZ8/PzxrimaUilFlBR4QEAtLa2mVUikSkYWGhNFhaSUFUF0aiCZHIWqdQiNE1fajUfgiSF0dTUzHUpRGfgN795Fs8//1vja6fTiWAwBFEMo7l5G+cTbWkMLLRqy63mZVnG0NAANE2DxSLA43HB7w8gEBDZap5olXK5HPr6etHQ0GA06WxpaYXFYoHP14VQSILP18X5RLSEM4FOSdf1pevoMmKxKBYXF43Hmpu3Yfv27bjggr1IpzXkcpqJlRKVPl3XMTo6AlWV0dMTRSaTwZ49e/H6118KAGhra8ehQ+9mywmiE2BgoROKx+NQVRmKsrLVfFWVF6JY2NK7pqYWNpsFbrcb6XTyFM9GtLXNzs5AUSJQFAWJxPEtJ6qMNSlAoaEnwwrRiTGwkCGVSiEaVaGqMsbHx4xxh8OBQCAEUZTQ0tLK6+hEZ0DTNHzve981Nkq02+3GfGptbeN8IlolBpYtLpfLGa3mBwb6kc/nARQ+6bW3d0KSJPh83Ww1T7QK+XweAwP9GBrqx9ve9lYAhbkkihLi8WmIooSuLj/nE9EaMLBsQSdrNQ8AjY2NEMUwgsHQilPVRHRihfk0AUWJIBpVkU6nYLEIOP/8vaiqKmz0tn//xTyTQnSWGFi2kERi1tjf4USt5iUpbOykSbSVWCw9cLu/Dqv1KAA7stn9SKdvga7XnvRnFhaSOHr0FShKZMV8qqioQDi8HV6vF0sbPJdxWMnAZnsBgpCCpnUgnw+aXRBtYQwsm1wmk0EsFoUsRzA6OmKM22x2BAIBiGIYra1tbDVPW1QOlZV/A7f7S9B1K4A8AAEOxw/h8dyFubn/F5nMO0/4k4lEAr/5zbMACvPJ7/cjFJLQ3t4Bh8OGmhoP4vFyXYyeQkXFP8Lt/hIslhljNJu9EMnkx5HNXmFeabRlMbBsQvl8HkNDA1AUGX19vcjlcgAKn/La2tohimH4/X7Y7Ww1T1tbZeXfwOX6MgBAEPJLo4XTIrqegdf7XzAz40Q0egFUVYbbXYGLLy7cgtzcvA2SFEZrazv8/gAcjs0yn1KoqflT2Gy/hSCs3KrAZnsO1dV/jrm5e5HJvMOk+mirYmDZJI5vNa+qinFHAgDU1tZBkgpb5FdWVppYJVHpsFqjcLu/dMLHdB2YnLTg5ZftOHr0TkxNfRiAAKfTiX379sNms0EQBBw4cOXGFr0BPJ7PnjCsAIAgaNB1oKrqw8hmL4am+UyokLYqBpYyNz8/D1WVIcsRxOPTxrjbXYFQSEQoJKKxsamMr6ETFYfL9TXouvW4MysFf/iDDc8/78DU1HLn43lUVg6hu/sahELSJu+InILL9eUThpVlglAIdG73V5BM/t3GlUZbHgNLGcpmFxGLxaAoEQwPD0FfWtlns9nQ1dUNUZTQ3t65yd9Yic6O1foKgDwWFwGbDVhexhWPWzA1ZYXFoiMQyGHHDg2NjS1YXLzM1Ho3gt3+a1gsc6f9PkHIw+H4AQMLbSgGljKhaRqGh4eWWs3HkMtljcdaWlohSWH4/UG2midaBV3XMTioQ1VdUFUb3vzmFILBwpmWXbuyqK7WEQpl4XYDum5BMrk19k0RhIXTf5PxveW6oJjKVdEDS39/P7785S/jyJEjUFUVfr8fP/zhD4v9spvG9PQxyHIEqiojmXz1DaKmpgahUGGLfK+32sQKicrH9PQ0FCUCVVWQyVTAbrdDEIC+PpsRWGprddTWvvqBQBA0ZLP7zSp5Q2la26q+T9ct0LSOIldDtFLRA4uqqnjyySexZ88eaJpmXL6gk1tYSEJVFaiqjMnJSWPc5XIhEAhBksJoamrmuhSiVcpkMviP//h3TE5OGGNO5/nYs+cx7NiRQmvridds6LoVudwu5HKv26hSTZXL7UYuF4bVKkMQTvVerSGV+ouNKosIwAYElgMHDuDgwYMAgDvuuAN/+MMfiv2SZSmbzaK/vxeyLGNoaACaVngDtVqt6Oz0QRTD6Oz0sdU80SrkcjkcOzaF5uZtAACn0wld12GxWIz55PN1obKyBlVVf4UTfY4q7MviwPz8PRtbvKkEJJN/i+rqQyf9Dl23QtPakMn8+QbWRbQBgYUbkp2crusYGRmGqiro6VGxuLhoPNbcvA2iGEYgEITb7TaxSqLyoOs6xsZGoSgR9PREkc9reNe73mPsj/LGNx5AZWXlim7I6fRfQNfd8HjuhNU6vhRSdAiChnx+O+bmvoBcbq85/0ImWVz8M8zP3w2P5+MALMZdVLouANChaa2YmfkPAOwqTRurrD+uW63lGYZmZuKQ5QgURUYikTDGa2qqIYqFLfJrak6+JXgpWT4G5XosNpOteixmZ2cgyxHIsoxEYtYYr6qqQjKZQEVFEwCgpWXbCX8+n387EokbYLf/FBZLYWv+XO71yOdfB0DAWk5qlvuxyGZvQyJxAE7nF+Fw/AhACprWiUzmvVhcvAkWiwfl8lm03I/FZnM2KxnKOrB4veVz5iGVSkGWZbzyyisYHR01xqurKyFJErZv34729vayXZdSTsdis9tKx+IPf/gDfvKTnxhfe70eiKKIHTt2oKOj4wzn0w3rXl95H4sLlv5XYLEUbv/2lGlP1PI+FgSUeWBJJFLI50++wZHZcrkc+vv7IMsRDAz0I58vnFq1WCzo6OiEJIXR1dVttJqfmVn9LYWlwmq1wOt1l/yx2Ao2+7HI5/Po7++Dy+VCa2vhbhavtwGZTA7t7R2QpDC6u/0lMZ82+7EoJzwWpaW62r3mpSJlHVjyeQ25XGn9AhZazY9DliPo6VGRTqeNxxobGyGKYQSDIVRUvPoxpdT+HdaiFI/FVrWZjkVhPk1AUSKIRlWk0yl0dvrwlre0AADcbg9uvfU9cLlcxs+U0r/7ZjoW5Y7HojSczY3CZR1YSkkikYCqyq9pNe/xeIz9UurrG8wrkKiMJBIJRKMKFCWCeDxujFdUVKCurh66rhuXe44PK0S0eTGwnIVMJoNYLApZjmB0dMQYX241L4phtLW1804pojP0+OM/M+aUzWZHd3c3RDGM9vYOzieiLarogSWVSuHJJ58EAAwPD2N+fh6HDx8GAFx44YWoq6srdgnrStM0DA4OQFEi6OvrRS6XAwAIgoC2tnaIYhh+vx92+2ZpNU9UPJqmYWhoEKoq4/Wvv9S4hV+SwrBYLEvzKWDcmkxEW5egF3nr2aGhIVxxxRUnfOzrX/869u3bt+bnjseTG3JNUtd1TE1NQlFkqKqCVOrVxXy1tXWQpDBCIQmVlZVFr6XU2GwW1NZ6NuxY0MmV07EozKfCFvkLC4X5dMklb8A55+wGgBWXfMpROR2LzY7HorTU1XnWfIt50c+wtLe3Q5blYr9MUczPz0NVC9fRp6ePGeNudwVCIRGiKKGhobGs31iJNkomk8HRoy9DUWQcOzZljLtcbgSDIbS2thpjnFNE9Me4huWPZLOLiMViUFUZQ0ODRu8jm80Gn68bkiShvb0TVqvV5EqJSt/xZ0o0LY9f//pX0DQNVqvVmE8dHT7OJyI6LQYWFK6jj4wMQ1EiiMV6kM2+2qm1paUVoighEAjB6XSaWCVReVhuOSHLEaRSKbzlLW8FUDgzuXfveaisrEQgENpUd/cIwjSczu/Aah2ArjuRz/8JgBNfCieitdnSgWV6+tjSuhQZ8/Pzxnh1dTVEMQxRlOD1VptYIVH5mJ6eXrq1X8b8/JwxnkjMGvNo3779ZpVXJHl4PJ+B230PgCwKb6k6BOEfAeyCxfIAgLCpFRJtFlsusKRSC8a6lMnJSWPc5XIhEAhCFMNobt7Ga+hEq9TXF8Nzz/0Wk5MTxpjT6TTmU1WV18Tqiquy8r/B5XoAgrB870L2uEePoqrqIGZmnkA+HzKjPKJNZUsElmw2i/7+PihKBIODA9C0wkpxi8UCn68LohhGZ6cPtrV0OSPaYnK5HHRdM27dz2azmJycgMViQWenD6GQhK6ubpPmUx52+y9gtQ5C191YXLwcut5UlFey2Z6H2/3lU9YiCEl4PP8dicTDRamBaCvZtH+hdV3H6OgIFEVGT4+KxcVF47GmpmZji/zlfR+I6OR0XcfY2CgUJYKenijOPfd1OPfc1wEAurr8uOSSy5bmU4VpNbpcX0NFxf+A1TpmjOm6FZnM2zA//4/Q9fp1fr0vQ9dtEITcSb9HEPJwOH4Ci2UImta+rq9PtNVsusAyMxOHqsqQZRlzcwljvLKyytgvpba21sQKicrH7OwMFKWwLiWRmDXGh4YGjcBit9txzjl7zCoRAFBR8Tl4PJ95TZ8SQcjD6fwebLYXMDPz83UNLXb7r04ZVl6tQYfN9gIWF7dqYCmENofj5wDS0LQupNPvYICjM7YpAks6nUY0qkJVZYyNjRrjDocDfn8QoiihtbWN61KIVknXdfzoRz/A4OCAMWa32+H3ByFJYaNbcimwWl+Gx/MZAMCJprgg5GG19sHj+TTm5/+/dXzlM9lzs6j7c5Ysm+3X8HrfBat1BLq+/OdGR0XF/0A6/W7Mz/8jALuZJVIZKdvAous6YrEeHD16FP39fcjn8wAKG051dPggiiK6ul5tNU9EJ5fP5zE2Noq2tsKnXkEQ4HK5luZTJ0SxsC6lFFtOuN1fWtWlGZfr35BM3gVdX587/3K5c2G1DqzqLEsut2tdXrOc2GxHUFPzViwvRP7j/04u11cgCHOYm/sSAH6YpNMr28CSSCTw4x//CJpW+OTS0NAIUZQQDIbg8Wy9LfKJzpSu65icnDBaTqTTKdx00ztQV1e4bHLhhRdh//6LS34+ORw/X+WlmTRstueRzR5Yl9dNp98Hl+u7p/weXbcim70UmuZfl9csJx7PnQCyEIT8CR8XBB0u17eRSn0AudzaW7TQ1lG2gUXXdXg8Hvj9IUhSGPX1DWaXRFQW5ubmlvZLiSAejxvjFRUVmJtLGIGlfPYgyqz6OwVh9d97Otns65FOvw1O5/chCCfqUWMBYEcy+el1e81yYbH0wOF48rTfp+s2uN1fwtwcAwudXtkGFo/Hg0OH3g2NvayIVm10dATf//4jK1pOdHf7EQpJ6OjohMWytqZkZsrnRVgskyf9JL/ye4Pr+MoC5ua+CF2vgsv1IAoBpTBeOOPTjLm5B5HLmbsg2Qw220ur+j5ByMFme77I1dBmUbaBxW63w2JZNPZUIaKVNE3D0NAgstksAoHCH+qmpma4XG7U1tZCksLw+4NwOEpvXcqZSKffA4fjl6f8Hl23IJe7sAgbuDkwP/8vWFj4v+FyPQSrtR+67kY+fyUqK69HPp8BsBXfo85kTQrXr9DqlG1gIaITm5qawiuvvAJVlbGwsICqKi/8/gAEQYDVasU73nFr2YeU42Uyb0U2uwc22x9OeJZF1wUAApLJTxStBk3zYWHhb42vbTYLCm+v63cJqpzkcnuh68JxOwCfWGGNDy8H0eowsBBtAsnkPGKxKAYHYxgcHDEWo7tcbvh8XcjlssYdPpsprBTYMTv776iuvh52+/PQdSsEIb+0J4sAwIFE4gFks5eaXOfWoWk+LC4ehMPx+Ckv1QlCHun0+zawMipnDCxEm8Bzz/0GkcgrcLsdsFqt6OrqgiRJ6OjwwWq1ml1e0el6PWZmHoPd/jhcrgdhtfZC1yuwuPhmpNO3rPsut3R6yeT/hN1+OYDUSc98pdN/gVzuvI0vjsoSAwtRGdF1HSMjw1AUGTt27EJzczMAQBTDmJmJ44ILzkVTUztsts12FmU1LMhmDyKbPWh2IQQgn5cwM/MTeL1/AZtNXdo4TgCQB2BFKnUbkslPmlwllRMGFqIyEI/HoSgRKIqM+fk5AIDVajUCS0tLK6677gbU1noQjyeRy23FhZ5UavL5cxCPPwe7/Wk4HI8BSEHTfEinb+RZLzpjDCxEJSqXy+Ho0VegKBFMTIwb406nE4FAYYt8otInIJu9BNnsJWYXQmWOgYWohOi6bvS8slqtePHF5zE/Pw+LxbK0RX4YXV3dsNk4dYloa+G7HpHJdF3H+PgYFCWCkZFh3HjjO2CxWCAIAs4993xoWh6hkAi3u8LsUomITMPAQmSSRGIWshyBqsqYnZ01xoeGBtHZ6QMA7Np1jlnlERGVFAYWog02NjaKZ599BqOjI8aY3W6H3x+AKIbR2tpmYnVERKWJgYWoyPL5PBYXF+F2uwEU+veMjo5AEAS0t3dAFMPo7u42NnYjIqLXYmAhKgJd1zE5OQFFkaGqCnw+Hw4cuBIAUF/fgDe84XJ0dnahsrLS5EqJiMoDAwvROpqbm4OqylAUGfH4tDE+NjYKTdOMxbQ7duwysUoiovLDwEK0Tn7xi8cRibwCvdDEBjabDV1d3RDFMDo6OmGxWEyukIiofDGwEK2BpmkYHh7Ctm0tsNvtAICqqirouo7W1jZIUhjd3QE4nU6TKyUi2hwYWIjOwLFjU5DlCKJRBclkEldeeRWCwRAAYMeOXQiFJHi9XpOrJCLafBhYiE5jYSEJVVWgKDKmpiaNcZfLjcXFjPG12+027gQiIqL1xcBCdArJ5Dz+9V+/Bk0rNBO0Wq3w+bogimF0dvpgtVpNrpCIaGtgYCFaous6RkaGMT09jXPO2Q0A8Hgq0djYBEEQIIoSAoEQXC6XyZUSEW09DCy05cXjcShKBIoiY35+DlarFaGQaASTt771z4yFtUREZA4GFtqSUqkUolEVihLBxMS4Me5wOBAIhJDL5YwxhhUiIvMxsNCWpKoynn76KQCAxWJBR0cnRDEMn6+LAYWIqAQxsNCmpus6xsfHoCgRtLa2IRgUAQDBYAiqqiAUEhEMhlBR4TG5UiIiOhUGFtqUEolZKIoMRYlgdnYWQGGtynJgqajw4LrrbjSzRCIiOgMMLLSpRCKvIBI5itHREWPMbrfD7w9AFMMmVkZERGeDgYXKmq7rEATB+FpVFYyOjkAQBLS3d0AUw+ju7obd7jCxSiIiOlsMLFR2dF3H5OQEVFVBNKrg+utvgsdTCQDYvXsP2ts7EQqJqKysNLlSIiJaLxsSWHp6evCZz3wGL7zwAjweD6699lp85CMfgcPBT720enNzc4hGFchyBPH4tDHe0xPF7t17AQA+Xzd8vm6TKiQiomIpemCZnZ3Fu971LnR1deGee+7B+Pg47r77bqTTaXzyk58s9svTJjAzE8dTTz2J4eEh6LoOALDZbOjq6oYohtHe3mFyhUREVGxFDyzf/OY3kUwm8S//8i+oqakBAOTzedx111344Ac/iObm5mKXQGVG0zQsLCwYl3Tc7gqMjY1C13W0tLRCksLw+4NwOp0mV0pERBul6IHll7/8Jfbv32+EFQC4+uqr8alPfQpPP/00/vzP/7zYJVCZmJ4+BlmOQFVlVFR4cP31NwEAnE4nDhy4Eo2NjfB6q02ukoiIzFD0wBKLxXDdddetGPN6vWhsbEQsFjur57ZaLWf183T2lo/BWo/FwkISilJYlzI1NWmM67qGxcU0KioqAACSJJ59sZvc2R4LWj88FqWDx6K0HHdT5xkremBJJBLwer2vGa+urjY29Forr9d9Vj9P62ctx+LZZ5/Fr371K2iaBgDweFzw+/3YsWMHuru7YbPxJra14LwoHTwWpYPHovyV9V+ERCKFfF4zu4wtzWq1wOt1n/ZY6LqOkZFhVFfXGGtTbDY3ksk0mpu3QZLCCAZDcLsLbypzcxkAmY34V9g0VnssqPh4LEoHj0Vpqa52w2JZ29muogcWr9eLubm514zPzs6iuvrs1iPk8xpyOf4CloKTHYt4PA5VlaEoMubmEjj//AtxwQX7AABtbZ246aZbUFNTa3w/j+fZ47woHTwWpYPHojQs3ei5JkUPLH6//zVrVebm5jA5OQm/31/slycTpFIp9PREoSgRjI+PGeOFfXde/W212WwrwgoREdHJFD2wXHbZZbjvvvtWrGU5fPgwLBYLLr744mK/PG0wTdPwzW8+hHQ6BQCwWCzo6OiEKIbh83XBbrebXCEREZWjogeWm2++GQ8++CA+/OEP44Mf/CDGx8fxuc99DjfffDP3YClzuq5jdHQUr7wyju3b9wAoBJTubj+mpiYgioV1KRUVHpMrJSKiclf0wFJdXY2vfe1r+PSnP40Pf/jD8Hg8uP7663H77bcX+6WpSBKJWSiKDEWJYG4uAbfbgYaGFtTVNQIALrnkMt7hQ0RE62pD/qoEAgF89atf3YiXoiLJZDKIxaKQ5QhGR0eMcYfDgR07dsBme/VSD8MKERGtN/5loVWZmBjHL37xOABAEAS0tbVDFMMQxSCammoRjye5Ap+IiIqGgYVW0HUdU1OTUBQZbrcb5513PgCgra0d7e0daG/vRCgkHreXCnePJCKi4mNgIQDA/Pw8VFWGLEcQj08DACoqKrB373mwWCywWCx461v/zNwiiYhoy2Jg2eJisR68/PJLGB4egr60o4/NZoPP1w1JkkyujoiIqICBZYvRNA2CIEBY6kA1MjKMoaFBAEBLSyskKQy/Pwin02lmmURERCswsGwR09PHIMsRqKqMK674E7S1tQMAtm/fAZfLBVGU4PWeXasEIiKiYmFg2cQWFpKIRlUoSgSTk5PGeE+PagSW+voG1Nc3mFUiERHRqjCwbELpdBqPPfYzDA0NQNMKtxpbrVZ0dvogimF0dvpMrpCIiOjMMLBsArquI5GYRXV1DQDA6XRidjYOTdPQ3LwNoZCEYDAEt9ttbqFERERrxMBSxmZm4ktb5MtYXMzg0KH3wGazQRAEvOENB1BR4UFtLbshExFR+WNgKTOpVAo9PVEoSgTj42PGuMPhwPT0MTQ1FRpKLq9RISIi2gwYWMqIosj4xS8eQz6fB1DojNze3glJkuDzdcNut5/mGYiIiMoTA0uJ0nUdExPjsFqtaGgodEFubGxCPp9HY2MjRDGMYDCEigqPyZUSEREVHwNLiUkkElBVGYoSwczMDAKBEP7kT64CANTW1uLtb38namq4LoWIiLYWBpYSkMlkEItFIcsRjI6OGOM2mx0OhwO6rhs70zKsEBHRVsTAUgJ+9KMfGAtoBUFAW1s7RDEMv98Pu91hcnVERETmY2DZQLquY2pqEqoq44IL9hlhxO8PYHFxEZIURigkobKy0uRKiYiISgsDywaYn5+HqipQlAimp48BAOrrGyFJYQDA7t17sWfPucZlHyIiIlqJgaVIstksYrEeKEoEw8ND0HUdAGCz2eDzdaO6+tVGgxaLxawyiYiIygIDS5Gk02k8/vjPjK9bWlohihICgRCcTqeJlREREZUfBpZ1MD19DLIcQSaTwRvfeAAAUFVVhXB4B6qqqiCKErze6tM8CxEREZ0MA8sapVILxrqUyclJAIVLOxdeuM/YzO3yy68ws0QiIqJNg4HlDA0PD+HIkRcwODgATdMAAFarFZ2dPohiGA4HL/cQERGtNwaW09B1HZqmwWq1Aih0SO7v7wMANDU1G1vku91uE6skIiLa3BhYTmJmJg5VlSHLMvbuPQ+7dp0DAAgEQkgmkwiFJNTWctdZIiKijcDAcpx0Oo1oVIWiRIydZwEgFosagcXlcuHCCy8yq0QiIqItiYEFhcs+P//5T9DbG0M+nwdQWEDb3t4JSZLg83WbXCEREdHWtiUDi67riMenUVdXD6DQvyebzSKfz6OhoRGiKCEUEo27fYiIiMhcWyqwJBIJqKoMRYlgZmYGt9xyyNgf5cILL8K+fftRX99gcpVERET0xzZ9YMlkMojFopDlCEZHR4xxm82OqakpI7A0NDSaVSIRERGdxqYOLKOjI/jhD7+PXC4HoHDpp7W1DaIYht8fgMPhMLlCIiIiWo1NE1h0XcfU1CQWFxfR1tYOAGhoaIAgCKitrYMkhREMiqiqqjK5UiIiIjpTZR9Yksl5KEphi/zp6WOora3DTTe9A4IgwG534KabbkFlZSUEQTC7VCIiIlqjsg0si4uL+MEP/h0DAwPQdR0AYLPZUFdXj1wuC7u9cLmHZ1SIiIjKX9kGloWFBQwOFsJKS0srRFFCIBCC08lePkRERJtN2QaWQmfkixAIhIw7fYiIiGhzKtvAUlVVhQsuuBC5nGZ2KURERFRkFrMLWCsuoiUiIto6yjawEBER0dbBwEJEREQlr+iB5emnn8ZHP/pRHDx4EJIk4e///u+L/ZJERES0yRQ9sDz11FOIRCK44IIL4PV6i/1yREREtAkV/S6hv/mbv8Edd9wBAPj1r39d7JcjIiKiTajoZ1gsFi6TISIiorNTtvuwAEB1tRtLu/KTSZbvLuexMB+PRengsSgdPBalxWJZ+5YkZR1YePamdPBYlA4ei9LBY1E6eCzK3xkHlrm5OUxMTJz2+zo6OuBwONZUFBEREdHxzjiwHD58GHfeeedpv+/RRx9FIBBYU1FERERExzvjwHLDDTfghhtuKEYtRERERCfEi3pERERU8oq+6HZ4eBgvvfQSACCVSmFgYACHDx8GAFx11VXFfnkiIiLaBARdL+6NXo888gg+/vGPn/AxWZaL+dJERES0SRQ9sBARERGdLa5hISIiopLHwEJEREQlj4GFiIiISh4DCxEREZU8BhYiIiIqeQwsREREVPLKPrA8/fTT+OhHP4qDBw9CkiT8/d//vdklbQk9PT1497vfjb179+Liiy/G5z73OSwuLppd1pbU39+PT37yk7j22muxY8cOXHPNNWaXtCX9+Mc/xl/+5V/isssuw969e3HttdfiO9/5DrhzhDmefPJJvPOd78RFF12EXbt24YorrsBnP/tZzM3NmV3alpdMJnHZZZdBkiRjY9nVKPpOt8X21FNPIRKJ4IILLsDs7KzZ5WwJs7OzeNe73oWuri7cc889GB8fx9133410Oo1PfvKTZpe35aiqiieffBJ79uyBpmn8A2mSr371q2hra8Mdd9yB2tpaPPPMM/jEJz6BsbEx3HbbbWaXt+XMzMxg9+7duPXWW1FTUwNVVXHPPfdAVVU88MADZpe3pX3hC19APp8/8x/Uy1w+nzf++fLLL9fvuusuE6vZGu677z597969ejweN8a++c1v6tu3b9fHxsbMK2yLOn4OfOxjH9Pf8pa3mFjN1nXs2LHXjN155536eeedt+IYkXm+9a1v6aIo8n3KRNFoVN+7d6/+jW98QxdFUf/973+/6p8t+0tCFkvZ/yuUnV/+8pfYv38/ampqjLGrr74amqbh6aefNq+wLYpzoDTU1dW9Zmz79u2Yn5/HwsKCCRXRH1t+z8pms+YWsoV95jOfwc0334zu7u4z/lm+09EZi8Vi8Pv9K8a8Xi8aGxsRi8VMqoqo9Dz//PNobm5GZWWl2aVsWfl8HplMBi+//DI+//nP48CBA2hvbze7rC3p8OHDUBQFH/7wh9f082W/hoU2XiKRgNfrfc14dXU11xERLXnuuefw6KOP4mMf+5jZpWxpl19+OcbHxwEAl156Kf7X//pfJle0NaVSKdx99924/fbb1xzgSy6wzM3NYWJi4rTf19HRAYfDsQEVERGdmbGxMdx+++3Yt28fDh06ZHY5W9r999+PVCqFaDSKe++9Fx/60Ifwla98BVar1ezStpR7770X9fX1uO6669b8HCUXWA4fPow777zztN/36KOPIhAIbEBF9Me8Xu8Jbw2cnZ1FdXW1CRURlY5EIoH3v//9qKmpwT333MM1RiYLh8MAgHPPPRfnnHMOrr32WvzsZz/DVVddZXJlW8fw8DAeeOABfP7znzf+diyv61pYWEAymYTH4znt85RcYLnhhhtwww03mF0GnYLf73/NWpW5uTlMTk6+Zm0L0VaSTqfxwQ9+EHNzc/jWt76Fqqoqs0ui40iSBLvdjoGBAbNL2VKGhoaQzWbxgQ984DWPHTp0CHv27MHDDz982ucpucBCpe+yyy7Dfffdt2Ity+HDh2GxWHDxxRebXB2ROXK5HD7ykY8gFovhoYceQnNzs9kl0R85cuQIstksF91usO3bt+PrX//6irGjR4/is5/9LO666y6cc845q3qesg8sw8PDxk55qVQKAwMDOHz4MADwlF+R3HzzzXjwwQfx4Q9/GB/84AcxPj6Oz33uc7j55pv5Jm2CVCqFJ598EkBhPszPzxtz4MILLzzh7ba0/u666y488cQTuOOOOzA/P48XX3zReGzHjh1cc7fBbrvtNuzatQuSJMHlciESieDLX/4yJEnCwYMHzS5vS/F6vdi3b98JH9u5cyd27ty5qucRdL28t8V85JFH8PGPf/yEj8myvMHVbB09PT349Kc/jRdeeAEejwfXXnstbr/9dr4pm2BoaAhXXHHFCR/7+te/ftI3ClpfBw4cwPDw8Akfe+yxx/ipfoPdf//9ePTRRzEwMABd19HW1oYrr7wS733ve3mbeQn49a9/jUOHDuE73/nOqs+wlH1gISIios2Py9eJiIio5DGwEBERUcljYCEiIqKSx8BCREREJY+BhYiIiEoeAwsRERGVPAYWIiIiKnkMLERERFTyGFiIiIio5DGwEBERUcljYCEiIqKS9/8DQLeYnUD1XxEAAAAASUVORK5CYII="}}]}}, "1dc4ec1919404e1bbeee21f8e8256686": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "495e8b56250b42159e2f6e19c7df5add": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_206583370f4d45248e29b4e8acda8da1", "IPY_MODEL_5509665865704592a9e4f71fc5d93992", "IPY_MODEL_185b54b8cb7742a9bb776b475e22c3a6"], "layout": "IPY_MODEL_1dc4ec1919404e1bbeee21f8e8256686"}}, "c4d29bcfc5ae47ef8cf67d756b4052e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13d0357ff0294c5d81a8098be64fd2fe": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "206583370f4d45248e29b4e8acda8da1": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["-90", "90"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "elev", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_c4d29bcfc5ae47ef8cf67d756b4052e3", "style": "IPY_MODEL_13d0357ff0294c5d81a8098be64fd2fe"}}, "8ed2d10263d845be990a82966387ba7e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "507bbb0507f4412db739a3d7b6bd14ec": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "5509665865704592a9e4f71fc5d93992": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "azim", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_8ed2d10263d845be990a82966387ba7e", "max": 90, "min": -30, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_507bbb0507f4412db739a3d7b6bd14ec", "value": 30}}, "00f50b9a8cd14de2a3c0a94e2274ce35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "185b54b8cb7742a9bb776b475e22c3a6": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_00f50b9a8cd14de2a3c0a94e2274ce35", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGFCAYAAAC7VyfcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACnC0lEQVR4nOydd5gkVfm273Mqde6ZnV3YXWCXnCQqIogKBpSggiQBSaJiVkRR0U/FrKBgVvQnqCQJCipGVBARMSdUgoRdNrK7EzpXV9U53x/V3Tupe2Z6emZ6Zuu+rr1YejpUz3bXW+c9z/s8QmutiYiIiIiImGXkXB9ARERERMS2SVSAIiIiIiLmhKgARURERETMCVEBioiIiIiYE6ICFBERERExJ0QFKCIiIiJiTogKUERERETEnBAVoIiIiIiIOcGc7B03bcrP5HFERERERMwwS5ak5/oQRhCtgCIiIiIi5oSoAEVEREREzAlRAYqIiIiImBOiAhQRERERMSdEBSgiIiIiYk6IClBERERExJwQFaCIiIiIiDkhKkAREREREXNCVIAiIuY5Uiq0rqJ1MNeHEhExJSbthBAREdFdSBn+UUqhVFC7TSKEmOMji4iYHNEKKCJiniEEGEb4B8ICFBJEq6CIeUVUgCIi5hGGAaYZFiGtw9vi8RhCCLQGrX10/QcREV1O1IKLiJgH1NttwwuP49jE4zZCCKSUDA0VAI1SHlJaUSsuouuJClBERBcjxNbiE65wwDQNEgkHKSWViovv+6TTKcpll2rVAwLAqP2JiOheohZcRESXMrrdJoQgmYyRTidQSpPLlSgUihSLJTzPJ5NJIYRACFAqiFpxEV1PVIAiIroMKcPCU1/1QNhuy2aTmKZBsVimUChjWQaLFy8ikYiTyxWwLJN4PIbWgkiQEDEfiApQRESXMFrdVm+3ZTIJ4nEb1/UYGiqilCaTSRKPO/i+TyqVJAgCSqUK6XQCKWUkSIiYF0QFKCKiC3Acg0TCatluc90qyWS8dpticDDHwMAgWkM6nSSfLwLh30FQFyRERSiiW4lECBERc0hdYGDbJpZl4rpeQ92mtaZYLFOt+sRiNrFYeFuhUMb3A2IxB9AUCkWy2TSlUoV8vkQ2m6JcrkSChIiuJ1oBRUTMAaPbbYYhUUo1bbfFYjauW2VoqIiUgmw2SSzmkM1mqFSqVKsemUxYeCJBQsR8ISpAERGzzHjqNtM0sCyzabstlyvheUGtQDm4bpUtW/oBSKcT5HKFmjw7FgkSIuYNUQGKiJglWqnbhBBUKlUKhTK2bZLJJDFNSaFQplisEIvZpNMJtIZ8vkS1WsUwJPl8iXg8BghKpQqpVCISJETMG6ICFBExw0ykbvM8H4AgUE3bbZYVyq+LxTKxmE0mkyabzeK6VXw/IJNJUiiUgEiQEDF/iApQRMQMMplhUt9XaK1JJmNN2m0euVwRKSWZTLK28snX1G9h+822LWIxm3y+SDwewzQN8vkSiUQM27bQWtTacGrCY46ImC2iAhQRMQNMdpjUtk3icRugabvN9wPS6XBlVC5XGBzMUal4FIvFhhFpuVwhnU5GgoSIeUVUgCIiOshUh0ljMRulNJ7nN223pVJxgiBgcHCIUqncWEm5br3YDG+5RYKEiPlDVIAiIjrEZNpt46nbhAiLVLN2Wy6XJ5fLEwSKcD+njqBQKGIYBrGYQ6EQCRIi5hdRAYqImCZTabeNVrfF43atMOim7bZwoFQwsviEBS4IAsrlCqlU2H6LBAkR84moAEVEtEk77bbR6jbTDM1ISqVK03bb6MIz8hhk7X46EiREzDuiAhQR0QbttttGq9sqFRetNalUYoJ2W3O0JhIkRMxLogIUETEFptNuG0/dFo87ABO221oRCRIi5itRAYqImASdaLeNp27TWqOUmlS7bYIjjAQJEfOOqABFRExAp9pt46nbhobySClrxaJ9IkFCxHwkimOIiGhCPSqhXniASUclxOMOjmPh+wH5fAkpJel0EinDPZpyuVI76QsqFZdEIo7rVlGq/UJQFyQ4jtNov/X19TQECVFkQ0S3Ea2AIiJGMVPttmbqtrqKLZlMTPvYI0FCxHwiKkAREcOYyXZbM3VbWDTKOI6NZU2vKdGOIAEkmUwcISJZdsTsEhWgiAg6r26b7DBpHdet4nleR1ZBUxUkJJMx4vF4JEiImHWiAhSxTTPb7bZWFAolDEM2pNntv6epCRKSyQSViotSKhIkRMwqUQGK2GaZi3ZbK4JANQQJUrYrxw6ZrENCuewipaRa9SOHhIhZJypAEdscc91ua8VsCxLqPnSJRCwSJETMOlEBithm6KZ2WzNmW5AQi9mUSuXIISFiTogKUMQ2Qbe121oxW4KEehR4qVSJHBIi5oSoAEUsaLq53daK2RAkGEb49U+lEpFDQsScEBWgiAXJfGi3tWI2BAmGYVAolKPIhog5IypAEQsO25bE4+a8aLe1YiYFCUEQCg1KpXLkkBAxZ0QFKGLBUG+32bbZaF3Nh3ZbM2ZSkCBl+NWPIhsi5pKoAEXMe0a325RStZXL/Gi3tWKmBAlhBHgximyImFOiAhQxrxlP3WbbFhD+/3xpt7Wik4KEuvBACBFFNkTMOVEcQ8S8ZKKoBIBKxcW2zWlFJXQDwwUJ7UY2SClJpRLYtoXrVrEsM4psiJhzohVQxLxisuq2+nT/fGq3tWI6goREIkZvb6a2siuQyxUoFKLIhoi5JypAEfOGqQyTCiEaLbj51G5rRjuCBNu26O3NEI/HKJcrDAyEQop2IhsiQULETBAVoIiup51hUt8PCALVleq2dpmsICEsrikymRRBoBgYyFEqVUbda2qRDZEgIWImiApQRNcynWFSrTWWZczLdlsrJhIkjNduU2rsMOlUIxsiQULETBCJECK6EsPYuuKpt9sSCQfbtvA8v3aS1CSTcWzbrN3mIqUgk0k05lxyuSKOY5PJxGoKuHxtxQPzqfDUaSZIsG2LZDKOlJJyuTLOimcsdYcEx3EiQULEnBCtgCK6ik55t5XLLkKIedtua8VwQcLk2m3NmUxkQyRIiJgpohVQRFcgxFZpdX3VE26GO0gpcV2PctmtteBCybTrVimXqziORTabRGtNsRhKrROJGEBt1VMYJjCYv4WnTl2QkE4nsW2r8R63ruwmz2hBQn//EI5jj1gR1QUJfX09xOMxSqUyQgRoLREiOoVEtE+0AoqYc2YiKkFKgVKKIAi6Wt3WDrZtkUjE0FqjtW6o29onEiREzA1RAYqYM2Y6KiEUHjiY5sK4Sh/dbsvlCgghZjSyIRIkRMwkUQGKmHVmKyohlC37pFKd8FGbW8ZTt3meP+ORDXVBQhTZEDETRAUoYlaZ7WTSYrHUaC3NR5oNk9aZyciGSJAQMdNEBShiVpirZFLfD6hUqiQS4Ul1vjBZddtMRjZEDgkRM01UgCJmlG5IJi2VygAkk/GZf8MdYLLDpHVmKrIhEiREzDRRAYqYMWa73daMujw7FCR07/DkRO22VnQysiESJETMFlEBiug4c9Vua0U3CxKmO0wKIx0SIkFCxHwhKkARHaMb2m2t6EZBwlTbba2IBAkR842oAEV0hG5pt7WimwQJ02m3NSMSJETMN6ICFDEturHd1oq5FiR0ot3WikiQEDGfiApQRFt0e7utGXMpSOhku60VkSAhYr4QFaCIKTMf2m2tmG1Bwky021oRCRIi5gtRAYqYNPOt3daK2RAkzHS7rRWRICFiPhAVoIgJma/ttlbMtCBhttptzYgECRHzgYVhExwxY5gmWJaB5wVtJ5O6rkel4o5IJi3c+zvUgw9h2Bbqmc9CL1ky4bGIfA7n1ltxbvoucv16dDaLe8IJuK86C7V02ZTfW5gGGiaJ1vc02sJ1MZ54HDwfY/fdSC7bfvxkUq0hCMJf6izgulViMZtkMsHgYG6azxYKEnp7sw1BQjqdpFRyG4KEzZsHGoKESsVFqQDw0dqYc9VhRHci9CTXyJs25Wf6WCK6iHo4XCxmE4vZ5HJFLMsiHrfRWlMuu1SrfuPnWmtKJRffD4jHHRzHwvdDhZSU4Ya4lAL3R3dgfuD/Yf7zn43X0qaJe8KJFD/8UfT22497PMZ//kPmlaciNz219Uatw4O0HfJfu4rqscdN+X2G4WtJBgdz+P7UrtZFPkfsqq8Ru+46ZP+W8LZ4nOC008i/7g34K1aA1lh330XsO9/GuuceCHzU0qW4rzqbyhlnohcvnvIxTwXDkPT0ZCiVypTL7rSeS2tFMpkgFouxefMAvb2ZRh7RkiW9uG6VXK7IkiW9VCpVhobyCKEBAymtqAh1AUuWpOf6EEYQFaCIEYxOJgXIZpONk8fwZNJEIjYmmTQedxoFql6MbNuiWvWoXncdyde+BoRAjGpHacNALV3K4M/uRC9dOvKYNm+m96jnIvr7wwMcfiKrryosi6Ef3oF/8NOn/J6z2TRCwODg5D/jYmCAzCtPxfzvf8IbLCv8r+cDGtXbS+767+Lcegvxq/8vPNTasQvfByFQy5aTu+FGgt33wPzH35GPPw6miX/IIahly6f8PpqRTMaJxRwGBoZQarp7Mpre3h6q1SqlUoW+vh6GhsLfWzabZsuWQUzTJJtNsWXLYG1fT2MYNkJ0rw3StkJUgCK6FsMYWXiGt9uARtx1PB5rtNtKpbDdNjw6u95ui8VslFIUiyW8DRtZtP9+4FURTT5y2jCovvgl5L9z3Yjb45+7ksSnPxke3HhX0bUM7+oxx5K/+ltTft+maZDNpikWy1Qqk1slpN74epw7fgS23dgca3yVtEa4LiqdRuZyaMMI7zccpcL79PWhtl+K+eB/w0KKQNs21Ze8hNIHP4RavsOU389ohIDe3iye5zf2b9pFa43jWGQyafr7h2qrXZtNm8IVkRCCLVsG6evrAWDLlkFCNVy0CuoGuq0ARSKEiEmp2zzPJx532la3xb7zHai6TYsPgAgC7J/9FLlu7YjbY9ddW9d7N3lgqAe3f/4zxJYtU37/UxUkmOvX4fzspwgpwTAa0djDj0ebJnLTprCojC4+UCumErluHea//ok2DHQigY7HQAU4P76DzIknINeumfL7GU0kSIjoVqICtA0zFXWbYUiEEPh+MHV1W6CIf+VLkzsmrbF+85utN2iNXL+uefEZ/maCALl+fVu/i8k6JCQSMbK//x14Htqy25cZaw3uMIGCZW3tfzoO2nEw1q8j+YH/197zj6IbHBKEUJEsO2IEUQHaRpn8MGl4WxAoqlVvWIGa/DCp/eM7EAMDkxJZayEQlWEnZiHQsdjWpVkrhAhXEG0wkUPC8GFSr38ApES3ekMTSK5Ftbr1PY333qREGwbWr3+NXLVqCu+kOXPpkJBOp+jr641seiJGEBWgbYypD5MajXZbOGAY/pnKMGmsvgk/ieMTWhOsXDniturRLx55wOOhFMGKlahddp3aL2QY4zkkjDdM6vb0hgVmMnM9sslXzPe3/r3Z6s6yEF4V6/7fT+FdNGcuHRJSqQTFYgmlfCKHhIg6UQHaRujEMKlpGriu15BVT3aY1Prb3xn/JyPRgOrrwzvyqBG3V85/zVa123jUCkHldRc0P+FPkuEOCc2GSasvfgk6mYRqdeInHK9o+sHIAuT7iGJx5G2wVfE3mdeZJLPtkOB54YpHKUWpVIkcEiJGEBWgbYCptttaebcpFfbxTdOYvHebDguEpvUqSADl887fWiVr+Ic+i9K7Lq79jx8WHK3D//o+KE31JcdQOe/V0/k11Z4+wPN8ksl4U+82nclQOf81oaDCG8fTLQgQSoUrOSlH3EdUq4hiYWxhqlYRhQLCHabCq8u1R60Ip8NsCxIWLcrg+0HtoiUSJESMJCpAC5jptNtaqdtct9poxU3Gu83fb/+tGu8aw0+/9cKkTZPKm9887nOU33kxhS9+mWC33cPCEwSgFLpvMaX3vJf8/109bYeBerutLjuvVr2m3m2ld16Me/IpiCAI96xcF1wXUS4jqlX8/fdn6Ic/pnr0ixF+gCiXw/uUSmOLT32lozWUy2Hh0RpRrRLstBPeEc+Z1vsazWwJEpRSCCEYGspFkQ0R4xLNAS1AxhsmDeWxW2d12h0mLRaLBIEilUpi2xYDA7kJTyTOrbeQetMbRu51jN4/MQwqZ59D8fLPtn5zWmP88x/IjU+h02n8ZzxjfJnzFEkkYsTjsdrcUhkhxMQOCUph/epXxK77DtYf7ocgINhzLypnn4N7wokQj4PnEbvhemLXfBPjwQfDwlkXVgRBKEaoUy9ClhUWbCHJf/7zVF9x8rTf32hm2iGhrprUWkcOCV1Et80BRQVogdFqmLQ+OAq6UVSmMky6tQ0Vrn56e7O4bpVicQIfNc8jc9KJWH/6Y1h4hl/xQ6j46u1l8M5foXbYcaZ+NeNi2xZJUyKDgLI0KA07GbfjkNAU12XRgfuB66JTqfAfSSnE4GDYdhv1NdSpNKUPfojKq8+f/ms3YVyHhCDA+M9/EPk8ersl4YpzUgViq0OC1ppEIk6pFM6PRQ4J3UNUgCJmhPqKZ/h53XHsaXu3lcsVyuVKbZUz8kQUizkkk3EGB/MEzQQCNUQhT+otb8b+6U+2tuKEAN8n2HMvct/+Dmq33WfgNzM+EkjfczfW9dehf38/WgUE222He9orcU85Db14cVsOCc0QAwP0PuuQ0I4nNkwqrnW4/1MuIzwPtEabJkM/+jHBQQdP701OdEzDHRKG8sS+dQ2x//sGxpOrG4O/wc474558CpXXvBadzjR9ruEOCVprfD/AMGTkkNBlRAUooqPMRrut1R5PT08arWn4gU2E8cjDOLfegtywAZ1KUT3ueLxnHzHJq+zOkHAs4u9/H9xwA9r3wXbQUtZWIopg5c7kv/FN1K67kkwmcJzJtRpb4nn0HnQAwq2ECromiFIJLIv+v/w9bOHNMI5jk07GqZ57HtYtN4cFUMrQr264Ki8ep3L2OZTe8c6mBqq2bZJOp9Bas3nzAIsX91KpuA3PuHy+iOf5Nf+4AqVSGSE0QlhIGRnzzwZRAYroGLPVbmuFaZr09KTJ54u4bufkwjOBbYfRC/ILX4CPfATlxCAxaiM+CBCDAwR77snQD+5AOA69vRmqVW96kQ1A8uJ34tx6CzqdbuppJ/J5qie8gsLnPj+t15oKPbd/D+Mtbwk964QIi+B4pwXLJthtV4a+dzt6u+0aNxuGQSoVx7IsXLeKbVsjhlC3bAk94+Jxh82bB0ilQjHLpk0DKBUghEBKJ1oFzQLdVoAiFdw8ZKbUbe0kk/q+T6XikkzGu/YEMmKYtFAkuOoqtJBjiw+E3m6ZLMb//od9168ndEiYCpVzzgPHQeTzY0/wteKDbVM599xpvc6U0Bq+FNokCctqXnwAtMJ4/HFS7313eH8hSCbj9PSkEUIyNBTK8qfikBB+xjRKeZEqbhskKkDziG5NJi0Wy4AgkZj5ltFUGT1MWv7FnciNG1u2wbAsUAr7Jz8GxndIaIdg//0pfOqysAjlcuHwaaWCKBYbxaf48U+2FSnRLvLJJzEefji8oqntQTV/AwFaCOxf/ZLYxg309maIxRxKpTKDgzk8z5+yQ4JtW2gtanNBkUPCtkZUgOYJnRwmnci7baqEgoawoBlGdyiahnu3DR8mFYODk0slFRKxeXPjf4c7JEyH6omvYOjW23BfeTraiSG0RjsO7smnMnTzrbinnDqt558q9aFYDeMP1Q6nLhH3fVL33Yvn+QwMDI2RcU/GIaFcruB5PplMqjZTFjkkbItEO39dzkTqtmKxPEbdViiUx6jb8vkSUkrS6eSE6rZ2qFTc2ooqMWlBwkwgpSSVSjSEFENDoX1OHZ3JgDQmLkJaoXt7G/87PLLBdavTOlEG++1H8dOXU/z4JxGFQrgaqwfazTJqu+3DvZ+au0TYEGuClGEEhZSUt/RTbJItNNohob9/qJY8G66I+vp6GpENfX09xOOxmiAhQGuJENFpaVshWgF1Kd3abmtFoVDGskwcZ/qDoe3QzLttON5hh6P7+sIr/2b4PghJ9SXHjLh5spENk8Y00T09c1Z8AHRfH96Ljg4TaqVsbRhr2w0TVm/7pa3uSbuRDZFDwrZFVIC6kG5ut7VirgQJzdpt45JMUjnzVeEKqDKOzY5SiKEhgpUrqL7o6BE/6qQgoZsov+nN6Nq+13gICN0bLAtcF9XbO+Z3M+YxbUQ2RIKEbY+oAHUR3aRua5fZFCSMF5XQzLttOOU3vonqsccjKmVE/5bQn61cRgwNIgYHUMuWUvjSV8adw+mUIKGb8Pfeh8q5rx5jAltHC4Gu2QoBVN705knNKEWChIiJiOaAuoC5HibtNFNxSGiX0d5tTVc8zfB9nNtvw7nheoyHHkRoUJk07imn4p75KtTyHZo+tJMOCXOKUsSu/ibxq76G2LIZNAi3slWMUO8D1zchhaD82tdR+uClkx4cHu6Q0N8/VNuXtCOHhDmi2+aAogI0x3TDMOlMMFWHhMnSGCaVknK5MqkVT0u0RvT3I7wqalHfpI1NO+aQMIfEL/s08au+GrbXkkmkbYeqvGIRCgWEbaPSabRt4x3xHCpnnY3/jEOm/DpaK7LZDFIK+vuHIoeEOSQqQBHA3Hi3zSaddkgYrW4rFEpjBAazSWjG2hmHhLnAeOABsie/AtCQTjdWGlppNGH4n8zn0ee9mv4PfGhar6W1xjAkvb3ZyCFhjum2AhTtAc0y81Hd1g6dFCRMRt0228x3QYJz800I30PUik89tVTXdXCGgTZNxPduJV6ZXoGNBAkRzYgK0CximoJ43Jx36rZ2ma4gYUrqtjlgvgoSDMMg9uc/hjM90Ei5HY2OxaBQIPG/R5Byep+rSJAQMR5RAZoF6uq2WMyqRT07807d1g7tOiS0q26bCzrlkDAbjPBuCwIUoFqtLmorI+37HUlPjRwSIkYTFaAZZHS7rVIZrlyza5P687/d1opKxSUIgkmvErqx3daK4Q4J3bxX4Tj2CO82d6+9w1moVid21wXbprTDTjiOjWVNTxAw2iFha8stXBHVVZ65XAHLMonHY2gtgKC2EopYaEQFaIZoNkwaj9sEgUIphW1bpNOJBdFua8VkHBK6vd3Wio47JHQQwzDIZlOk08kR3m3uqaeFH1K3iYxca0SlQvWoF1BZsh2e53VkFRQ5JEQMJypAHWYyw6T5fIlqNQz7Mk0Dz/PnfbutFa0ECfOp3daMbhQkjBeVkM8XG9Hb3rOPoPr8FyDK5XAQd/jJ3fcRg4Ponl7Kb30bAIVCCcMI1ZbTPa5IkBBRJ5Jhd4h2h0mDQJFIhBHNWkO5XOmKYdJOE8qWs7hulWIxPNFMe5i0y8hm0wgBg4Nz+11xHLtR7Eul8hi36galEsn3vRfnpz8Fr9qI4UYI1PIdKHzu8yPmfpLJOLGYw8DAUKOQtY+mt7eHarXamAeqz4xls2m2bBnENE2y2RRbtgzWPhsaw7ARojuK/Hyk22TYUQHqAJ0YJtVaI4TA83wsy+yKYdJOU3dIKBbLtbmlDg2Tdglz7ZAwOpm0WCxNqlAYDz2I/cMfYKxfj3ZieM99LtUXvgickasdIaC3N4vn+Y0VSrtEDglzQ1SAFhCdHiZNJmO1IuSRyxVmZpi0UsH++c8wnlwdnmye8xyCffbt7Gs0QUpJT084Ed8Nw6QzwVw4JIQXPDFiMYcgCC9cPM+fkdcKYxWSDA3lp/0akUPC7NNtBSj6V2yD0e22+jDpeO22TCY5xrstm0029g1Gt9uCwCcWiyGlrLXdOoTWxK65mviVn0X294cHrzRIgXfooRQuvwK1666de71RDG+3gYHrVhdc8YFQkOA4odx+NhwSJt1u6xCuWyUWs0kmEwwO5qb5bKEgobc32xAkpNNJSiW3IUjYvHmgIUioVFyUCgAfrY1oFbQAiFZAU2Q2vNt6erJorRgaapFZM0XiV15B4rOXh+mXtr31Tfg+QinU4sUM/eAO1MqVHXtNGN+7rW6pM5991FpRXyUMDubw/ZmRD7fbbuvMa4cr2SkVPKUw//hHjEf/B6aJd8ghqN12R2tFMpkgFouxeXPYftNaMzCQY8mSXly3Si5XZMmSXiqVKkNDeYTQRK249ui2FVBUgCbJbHq3WZZJNpsmny/gutPfmJePPkrv85+HVmpMXx8IJbfVKtWXHEP+m9dM+/WgtXfbeIKEhcZMCRJms93WiqkIEqw77yTx6U9g/O9/YfCd1mjLwnv2ERQ//FHUbrtGgoRZotsKUCTDnoC58G7zPL9myZOYrOt9S2LXXxeGjTVzehYCLQT2L3+JXLd22q830TBpuw4J84mZcEgYPUw6OJibk+IDNGx1JpoNsn9wO+k3vA7joYfAstHJFDqVBiGx7/kN2VNPQv7vf5FDwjZKVIBaMJfJpMViqXa1O/3hRuv++8IC1KqaWRZ4Vcy//rXt15nKMOlUHRLmG510SGg2TDqXhLY65ZYOCWJoiNT73gueD6l0+BmrybxxHHQiidy8mdQH/l/kkLCNEhWgceiGZFKl6qsEB8OY5j+T7086QIw2AuTaHSadjEPCfGa6DgkTDZPONaEZa3OHBOe27yPyeUgkxv/8SYm2bMw/3I/x0EORQ8I2SFSAhtFtUQnlsksQqGmvEoKn7Tdy82o8fB8Mg2DPPaf03NPxbutkZEM3Mh2HhG5qt7WilUOC+cc/hMVBtjjN2DbC97H+9KfIIWEbJJJh1xiubqu324ar28IvgSaZjA27LVS3ZTKJMeq2TCZWa8nlpzVMWiyWyGbTOI7VtiCh8qqzcG69JSwyljX2DlojggDvmYdOOBMkn3gC544fYq1Zg5lMIJ75TMpHv5iSMc7zToJisYxt2yQS8QUpSAhlyw6pVGJSgoS5VLe1QxAoKhWXRCJek9YPO1bPq5WIFtRacsLzGpENjuM02m99fT2NyIZsNk2pVCGfL5HNhvtC4XcrAIzan4j5xDZfgCZSt4UWMSPVbYVCeYy6LZ8vIaUknU52NJl0uCChWh1quYhphv+MQ3CPOx7nx3egq9WtvXgApRDVKtpxKF3yvlYHQuIzl+HcfBOyUgmjmwF9/fXYi5fgffBSvBe/eMrHVhckJJPxxr7QQqN+ERGLOU0dEkar2zox6DlbhEUjnA0a7pCgdtkVXb+qa7bC9cP3GNRm0OqRDZlMmnLZbQgSNm0aIB4PBQlbtgySSMQafw9XQQFSygW5kl7IbLMtuG5rt7Vi2oIEISh8/ou4J5+CQCCqVUS5jKi4iGoVtWgR+W9eg/+sw5o+ReLTnyJ+7XeQUsL22xMsXUqw/faovj7kli2k3nsx1r2/bevwtnVBwnxptzWjmSDBPW2U47ZWUK1C1QXfC1fe5TLBTjvhPee5QBTZsK2xTc4BzcYwaactdOJxh0QizuBgbloOCcYjD+PcfDNy9SpwHLznPBf3ZS+HePPiFlv1OMlXnBjKtdMZlB71+lojN27E3/8Acrd8b/KCh2GYpklPT5p8vojrVqf8+G4nnH3KNGaioN5uS2BZ5rxot01ENptCCDnCISH53ncTu+H6UNziDWsh1/eGHIf8F79M9YQTh/1IYxiS3t7siD2fLVtCz7h43GHz5gFSqfDCcNOmAZQKEEIgpROtglrQbXNA21QLrtvbba0ol10cJ9xLmI5DQrDHnpTe//8mdd/GMOnPfooulwmWLAmvYkcjBCqbxXjoQcy//RX/6c+Y8nENFyRUqwtvU7n++Uqnk7hutRZHPf/aba0oFEr09GSIx52GTLz07vdg/+THyPXrxz5AKbSQiMLIz/PoyIbNmweIx2NkMkkGBnLE4w7pdJJcrlhTnSZrg6uhICFySJg/bBMtuPnUbmtFsVjCsiwcp70N/6kwXN1W/fe/w4LQ6ksdiyGqVeSqJ9p+zWKxDHRm9qkbCeM3AjKZ1Lxtt7ViuCBByvCzEr/qa4hCAdXXh06nIRZDx+Ponh7UsmVgmSQ//lHkE0+MeK66IEFr3Wi/hUU7FCTE4zFM0yCfL5FIhMKgRCJBMukQumZHzAcWfAGay2HSTtNph4TxGG+YVAnZWsI9HNm+EmkhOySEw6TpxvuaDePQuWCEQ0KhEKovDQMSibDoLFmCXrw4LEamGf63UsG59eYxz1UXJEzkkOD7AYsWZWsdCRk5JMwjFmwB6oZh0ulg/v1vpN7+VnoPeBqL9t6D7PHH4NxyM8X+gY45JAyn1TCpf/DTqXmfNH28KBbR8QT+AQdO6zgWmiBh5DCpYGgoT6VSbZxUFxoNQYJpkLz+WuT69YhiEblxI2JwcOQ+EDRW1fbdd415rskIEhYv7sU0Q2fsQqFELlckEiTMHxacCKHdZNJ6VEI87jTMReckmVRrEp/6BPHPXRm+ibosWUpQimCffXF/9CMSu+w8bUFCnYmSScXmzWSPOwZRLKD7+sa24pRCPvUU1RcdTeHLX5328SwUQUKzqITxBAkLCZHP0fueixG/+AUMDW2139HUhCwpdCaz9f65HMHOOzP0y7FFqJkgoVr1cJxwn3ZwMN8QA0WChNZ0mwhhQa2AFkK7LXb1N4lfeUX4BpTaWk0BhMB4+CHsk04i8PxprxIm692mFy+m/J73gmkiN20aJqvViEIBufEp1PIdKL3r3dM6njrz3SGh3m5r5t02HYeErkdrku99D/zyl5BMblX9SAmGBDQin0cUhiWqKkWw8y7jPt1oQUL992XbFkNDebTWjX0hiBwS5hsLogDN93ZbA88jceVnt76p0SffWhvM/Oc/cO+4o21BQjvebe7Jp1D81GUEO++CzOeRG59CbnwKggDvyCPJffMa1C7jn0TaYT4KEsZrtzXzbgt91KZ/EdFtGP/6F9Zv7kYnk+EqJx4PVz71L2btYkoU8uFt1SogqJ56WtPnFCIMZxSCxsVS/cKkmSBBa1Frw0WChG5mXsuwZzKZNJcb3m6bnatw657fIJ56auI5GsPAvPZa3OOPn7JDwvB2Wy5XaOpWPR7VY4+jevSLse7/PXL1ajBN/IMPJthjav5xk2G+OSS0k0w6GYeE+Ybz4x+Fw82ZDFopjL4+qKwdPnTXaC2LYhE8H//pT6f6gheO+3ymGc5KGYaB53nYtk2lUkUIETkkLADmbQFyHAPDEFSrfld5t02HSWXxCAFBgFy1inyxRG9vtuajVm75sPGSSdvCNBtT6zNNpeLWJO+JRkBZtzGdYdLhDgmuW10Q7SK5fv0I6x0Vj2MsXYreuDFsKdeFLFojyhW8Zz2L/FevGuNRWF9NxmIOnufXZqU8stkMmUyS/v6hWvLsVs+4ukNCX18P8XiMUqmMEAFaS4SYt6e6Bc28+1epr3gcJ7TxTyQ0QaAwDNn1w6QTkkhO+q46lWpENiQS9VXC2HbD6GTSoaHJu1V3A4VCmZ6eNI5jd5UgoVPebaGPWnhxsBAECXqUo4bWOpRaJxKowcFw1aMUIlCUXn8B5fe+P+yfDyMWc0gkYgCjhCiCQqFIb2+2EdmQTicpldxGZMPmzQONyIZKxUWpAPDR2ohWQV3IvNkDGj1MWiq5FArlhkom/HAJbNskm+3eYdJWVJ93ZPhlbHUlXLu6rB57HNA6smE6UQndQjcKEjrp3bbQBAneEc8JrxCHya2V0mCaiEV9qB13RPf2orZbgvua140oPqZp0NOTbrhhDAzkRlx0jBYkRJEN8595UYCaqdvCAhIq2fL5ElorLMuqhVVphAiVbN2gbpsMeskS3JNODt/weF+W+m3xOO5pr2zcPNohYSrJpPOBbhEkTKRua5eFJEioHv1i1PLlyMHBxudVo8PvoxQIz0eUy1RfdDRq2XIg/D6nUgl6ejJoDUNDeQqF0rgFox2HhEiQ0L109RzQRN5t5bI7pt1WKrlorUkknMbUeRAofD/AsozGRPWct9uaIAYHyb70OIxH/xfOANWv+uvmjYZB7lvX4h199IjHpdNJLMvE94NGu61QKM27FU8zYjGHZDLO4GB+1gUJo9ttxWKp4/Y5phkWt2KxPO8FCeYf/0DqrW9G9vejEwl0LAZaY5TLUK3i7b0P+au/he7rG9FuKxbLk2qzaq1xHItMJk1//1CttR7OAPX2ZhBCsGXLIH19PQA1QYICjG3eJy6aA5oE0/VuS6XCdk1dfg3gOOHKqFgsdkW7rRm6p4ehH/+Uymtfh06lhifk4T3vSIZ+8KMxxQdAKYUQAtM05m27rRVz5ZAwW1EJE0U2zCf8Q59F/prvUD3ueADk0BAyn0elUog3v5nK9ddjbL9dy3ZbK6LIhoVD162AZjIqIRYLV0UDA7mWx9A1FIuY//oXwqsSrNwZtWLFmLvYtkXSMpCeh+fEsGyrYw4J3cZsOiTMRVTCQnRIkOvWIlc/CaZBsPfeZHZYjmFIpJR4nk+xGM7eTZUosqE9um0F1DUFqN1222h1W6lUQcowo360uk1Kg97ezPRkyF2CFIL0736L9e1voe++G600urcHzjsPdd55DCW664PWKeqKvoGB3IxsKs9Gu60VobQ4yeBgrq0TczdTb7cJIahWvRHpqe2gtSKZTBCLxdi8OWy/aa0ZGMixZEkvrlsllyuyZEkvlUqVoaE8Qmi25VZcVIBGH8Ase7fVBzEHBnLztkWViNnEL/0QfOMbEARo0wxzVTwPgUYsW0bxO9dS3mOvuT7UjhOuErKNVUknaWeYdCbIZtMIAYOD3Tn7NFWGD5PW551iMYeBgaEOrCo1vb09VKtVSqUKfX09jZmxbDbNli2DmKZJNhsOp4ZiHI1h2Agx/1WHU6XbCtCc7gHNhXdbqVRBqfFly91OQ912/XVw1VVoIVHpDDqeCHNW0mlUMoVev57E+a8O7U4WGDMR2TBT6rZ2KRZLGIZBLObM2TF0gmbqthGRDdNkspENnueTyaQQQtQcraLIhm5gTgrQXHu3FYtlbNvCtmc+2K0TjPBuc6sEn/t8OOA3Xoy2lOhEEtasIf3LO2f/YGeBTgkSpuLdNpssBEFCLObQ25vBti3y+SJDQ/lGS7ER2eDYWNb0ZuEjQcL8Zs4KEIQfRMOY/WTSatWjWvVIJrvf6HL0MGnp7t8g16xBx5ofuzYMUArrtu9jGF0pdJw2hUIZywrdMNphttRt7VIqherN+fAZHc5Ew6R1wtknryOroLpDQn3VWCiUiMdjgGg4JARB0HBICOcEQWs/WgXNMXNydvL9rX/C1IGw3VYuu7MWlVAohFY89RmEbqPZMKkcGECoYKtGvQlaSti4cV62GidDuw4J3dZua8Z8c0iYyjBpnUKhhGGEgqHpvnbkkDA/mfPL42o1YHCwTLWq8H0IAk0+XyafD1twMxWVoJSiXK4Qj8eQcs5/DQ0mikpQmWxYXNQE7QOl8Ht62o5smA9MxSGhW9ttrZgvDgmt2m2tCAJFpeKSSMSRcnqtxsghYX7SPWfeGoWCS6XiEwRQqQTk82WGhko1U804SnXOu63bBAmT8W7zDzkEtXQpotzC/ToIEEDl+JfWRByJCRMe5iOTFSR0e7utFd0sSJhsu60VkSBh26brCtBwws1YH6XAdYOav5voqHdbNwgSpuTdZllUzjs//Ls7ziyTUohiEbVkO6onvIJisVSbbZlfewmTpZUgYb6021rRjYKEdtptzYgECds2XV2AhqOUplKpYppmR68G51KQ0E4yKUDlNa/FfcVJ4dxPPgeVClRdRLGILBTQi3rJf+0qdCbTiGwIXSDmzT/3lBgtSJiP7bZWdJMgod12WysiQcK2y7w6IxWLVZRSJBLxjraU5kKQMK2oBNOk+JkrKHz2SvyDDg6HT4MAnUpSPv98hr7/A/xDntm4e6vIhoXAcEHCfG63NaMbBAmdaLe1IhIkbJvMuRPCVInFTNLpMICtk35Zs+WQ0LFk0jpaI/r7EW4FtagPYuMXUcsyyWbT5PMFXHf+RjM0oz7tXm/DzIZ322wzFw4Jo5NJ2/Vumwz114kcEmaOyAlhmlQqPp7nd/xqcKYFCe222yZECHRfH2r5Dk2LD4Dn+QtSkFA/QWazYUJsKEyoLLjiA7MvSJiJdlsrIkHCtse8K0AAhUJoLtrpYjFTgoRuSSZdaIKEervNccJ228DA0JxENswWsyVImOl2WzMiQcK2x7wsQL4/XJDQ3iT8eHRakNBtyaQLRZAwWt02OLhV3TZdh4RuZyYFCZ1Ut7VLJEjYtpi3Z6FuFiTMWLutA8xnQcJk1G3tOiTMF2ZKkDDb7bZWRIKEbYd5W4DC5bqLlLJDV0sh03VI6JZ2WyuKxdK8c0gY3W5rpW6bikPCfKSTDglz1W5rReSQsO0wbwsQdJcgodvaba2YT4KEVu22ZsxEZEO3MV1BQje021oRCRK2DeZ1AYK5FyTMabtNa8y//oXY/32D2Ne+gv3jO6CVRc8wul2QMN1h0k5FNnQr0xEkdFO7rRmRIGHbYHr/sl1AXZAQjzvEYjaVSmfaB8MFCc1WMvXZodC5uzCrKx7jv/8h+aEPYv77AfB8kGGqn1qyHeU3vRn3jDNptbypCxISiXjtZN097YZ6Mmm4Wdx+MmmhUKanJ43j2HPeVpoJSqUyjhPOlU1mJm50MmmxWO7qK3zXrRKL2SSTCQYHc9N8tlCQ0NubbQgS0ukkpZLbECRs3jzQECRUKi5KBYCP1saC3E/sBub9CghmX5Aw1+024+GHSL/2fMy//RXlOKjFfai+PlQ2i9i8ieTHPkLs6m9O+DzdJkhop93WikiQENLt7bZWRIKEhc2CKECzJUjoFnVb/LLLkE89hVq8GOLxrSsdy0L39aGFIP6lLyDXrZ3wubpBkDCT3m3buiCh69ptSiGfeALjoQcRW7ZMePdIkLCwmfctuDqVik8sFgoSKhW3Y1+yUqlSiwtPIaWck3bbcOSj/8P6w/3oZHJrtOwodCaD3LIF+4c/oPKGN7V8vuGChGp1iNm+0OtUu60ZdUFCMhmjWl0L/A8oADZKrSQIdgbm98xQsVgim003PvvQhe22IMD+we04t96C8dijoBTYNt6RR1E5/UyC/fdv+tCw1Ri24uorlHapCxIymTTlstsQJGzaNEA8HgoStmwZJJGINf4eroICpJQLciU9lyyIFVCdmRAk1EUIhmFQrVbnXN1mPvAAolJGJ1q8x1phMv/xj0k951wIEjrdbmtFpdKPUreQSt2EZd2Faf4Dy7oP274Jx/kuQmyckdedLYYLEsLcrC5rt/k+iY9cSvJjH8H873/RsTg6nQGtsX/0Q9JvfiPWb+5u+vBIkLBwWVAFqJMOCaPbbdWqh2l2wYJxKieSYHJfmNl0SJj9qAQP2/45nncfhrEMIfZDqV0Jgr1QaiWG8QS2/UOEGJji+xhCyvUIsRmY+xNTqVRGCNFd7bYazq234Pzoh+h0BrV8OSSTEIuhe3pRO+6EyOdJfvhSxIYNTZ8jckhYmCyoAgSdESSMN0w6F5EN4xHsvgfaccIMoGbUviTB3vtM+nlnQ5AwlWHSdhEih2H8A9O8H9P8C6b5Zwzj33jeSqpVp7bXVf9g2ATB7hjGkxjGvyf1/FKuxbJ+huNch+PciOPcgG1/H8P4D3O1T2CaBtlsCggLfD5f7B7Vn+/j3HoLINCp1NifCxEm/G7ZjPPTn7R8qkiQsPBYcAVoOoKEVuq26TokdIrgaU8j2P8AZD7fdDUk8nl0LIZ74ium9NwzJUiYnXabh2X9Bse5Gsf5Hrb9U2z7B8Ri38A0HwaoxVAIHMdg66pFovUiTPOfQGtBiWE8gm3/ENP8B1rHCYLlKLUIKddi2z/Gsn7LbBah8dRtnud3RXBdHePhh5GrV6F6eprfSUowDKy77mr5XJEgYeGx4AoQTN0hYbLqtpmObJgUQlB618Wh0GDzZvCG7UcphRgaQnge7qvORu2665SeutMOCbPXblNY1q+wrF8BgiDYkyDYiyDYG619hNiMaf4VIZ7E9/+AZf0G2/4thvE3pNyAUgmEKCJE8w1uIYawrLuBKkGwB1r3EIoXEii1AqW2wzT/iGE81OH3Nj7N1G2zHdkwEaJURAQBTNC+1qaJKEw86zOXDgmGIbFtCymJVkEdYkEWIJi8IGGq3m0zFdkwFfxnHEL+C18m2HEn5NAQctPm8M+WLWBZlF//Bkrvurit5+6UIGE22m11pFyFZf0ZpZaj9RJGfqxTaN2DaT6Abd+N1qvRWmGaBoaxDtP8S619poHmFyuG8RhCbEapHcb9udZptDZmvBU3kXfbbEU2TBa1qA9t2Qi39epSVD3U9ssmfL7ZECRksylct4ppGvT19SBEGOi43XZ99PX1kkzGIkFCh+iCXfWZYSKHhHaTSSfjkDAb+EccwdBPf479619h/vWv4HuonVbgHv9S9Pbbt/2803VIMIxQ/mtZ5qwlkxrGfwkn1jNjfqb1EqR8BCgCFkotxvNMHMciCBIEQQXTfBjPS4/7+DpSPo7WcVpds2m9GCnXIcQQWvdO+30NZ3QyaSuBwVQdEmYStcsu+AccWBsdSI3vzuGFaaTVY4+d1HN22iHB9z3i8ThLlixCCEEs5uA4NlprTNOgXA4DDk3TZGBgiGq1ihAickjoAAu2AEEoSHAci0QijutW0ZqGTNW2LapVj6GhqbtVFwolenszJBKxuY1ZcByqxx5H9djjJv0Qkcth3fMb5Pr1YFn4+++Pf/DTR8wUlcsujuOQSiUYGipM7nmFIJGIEYs5BIFq7EfMBlKuQevxo4aVWkS4t2MiRAB4KCXx/QDTNAkChdZxhFAIkau11sYihMtEXxetTYRQQGffdyzmNMQvkxEY1B0SwnZS52bi2kII3LPOwvzn3xGbNqGXLBlZhDwPuWE9wV57U33BCyf9tIX+QXr++XdSa9bgOnH8Zz8bnZpa3LRlmaRSocotCAIMw2BwMEcqlUApzcBAjiVLehFCNP4ej8ca8d1KeUhpRUVoGizoAlQXJKTTcTZv3sTnPvc5li1byvvf//5pDZMOFyRUKtWui1sYF61xbryB2PXXITdvQhN6x2Hb+HvtRfnid49QzdWHGx3Hqm3eN2emh0mngxA+WqcRIlfb43EBG8+r4DgVLKtItbovWjtIuZog6Bn1DBohNtX2kf6OUhvQuheltkPr5KjXKgKx2kpp+kxnmDRcJYQXEYOD+Y4cT7t4zzuS8rveTfzKK5Br1oQqTtNAVCqgNMEee1K47DMwnkpuNEoR+9Y1xP7v67BxI04QYAuB7unBfeXplN7+jtAdpAVSCpLJBI5jU6165HIFgiCgt7cHx7EZGirQ19fTECRks2lKpQr5fIlsNtwXCs8dAWHbdmE6rs8GQk/yE71p09x+iNulUqlw883f4ZprrsHzPE4++RQuuuhdHXnu3t4MQRA6I3Q7sau/GX5pTSu08KlvCpdKyKc2opYto3DF51C77d54TDqdxLLCtsN4n5K5aLeNh2X9HMu6jyDYa8zPpHyypnArA2W0XowQPhAgRBbL2pticSVCPILnvQjff+awRweY5p8xzb8jxJOY5sO1FVJQU8HthlIra/fVGMbD+P5heN7zp/V+RrfbisVSW6uYUJ6dplgsNxwS5hLj4Yewf/Qj7N/cBeUyatlyqi8/geqLX4LONG9/NtCaxEc+TOzb14T/m0ggLQsChS4VIQjwjjyK/FXfAGd8EUY8HiORiKGUplgsNS5CtdY4jkUmk6a/f4h4PGzDbdo0QG9vBiEEW7YM0tfXA1BzSFCAMa9WQUuWTG2VONMs2AKkteaee+7mC1/4LBs3bmD58uVccsklHHzwIR37sNi2RSaTmlNrnskgV68m/epzQamwBTIapTCeeJzq0S+h+MlPbX2cFPT2ZqlU3JqnWsjodluxWJq1dtt4SLmKWOx6lOoZ00KTch2m+UfCXv+BgI+UTyJlGa1j2HYarZfhujlc91SC4MDGY8M5ot+i9WK0TmGaf0XKJ1FqO4SoIEQF398PpZYh5Sogg+uegNbbtf1ehrfbisXytOd5wit9i4GB3LxTbokNG5CbNqETCdQuu2D97l7Srz4XbRiNVY4QAikESmu06yIqFUr/74NUzn/NiOca3m4LLXjKYy6qtFZksxmkFPT3D7F4cS+VSuiW3dfXQz5fxPN8+vp6GBoq1IZ/NUJYSDk/mkndVoDmx2+tDX7+85/wsY99CMuyOPfc1/CGN1zAokU9FArFWY1s6AbsO3+ByA2hVu48/h2kRC3qw/rD/cjVq1ErVgDjCxK6sd2m1E543rOwrHvQuoJSSwjbIvXWaBmlliJECSnXEg6gbg9IPM/Fcf6FaZq47lZloxBPYlk/QYgyWvso1YPv741phkUtvE8Z0/xLTZa9nGr1hW0Xn5nybusmQcJkMf/0R2LXXIN1372hQEFKgl13Q1SrobvHsFad1hotRCgKsG0ol4lddy2Vc88Dw2jSbmvWMo8iG2abBVuA9tprH0455XROPvk0dtppBUrRcEioCxI6QdcIElpgPPhfMMym5qUQGpiK1asxHnu0UYBguCAh3O+Y63bb+Eg87yi0jtdk1f9r/ETrDJ53JIbxKFI+jlJLGW4+GgQa3zcwzRS2/Suq1SqG8RiG8S9M818otQQhBpFSo3VPbcZoJVJuqNnxrENrE6UkpnkP4KDUYrTeHqWWovWilkc+FXVbO3SVIGES2Hf8iOQH3o8oldCJROieEASYD/4XMTiIHmeeSCuNkLUiFIshn1yNXLMGZ++9Gu22yXQpRjskbN48QDweI5NJMjCQIx53SKeT5HJFYjGbdDrJ0FCeSJDQPgu2AO2yy65ceOHWvZ7hgoRkMtGxq8F5KUiYAvUvpePYs65umxoGvv9sfP9ADGMVQpTQ2kapHdHaIpH4KFJuQsrBhnhAiBJQxffj2LaD4/wWw/g7QuTROizW4YpGAgohtmCa/8b3DyYI9sUw/oMQTyDlIEIUMIx1CDEIOATBjii1O0GwO573LCA55oinqm5rl24SJIxGDA1hPP4YaI2WBskPfRAqFdQotZyKxTAGBxGeB7XiVEejQYefVV17TDZuIxOxpu22psdTc0hwHKfhkBAJEmaOBVuAxmOmIxtSqURXChKCvffBuvvu0AK/ySpI5HKQShHsulvjtuHtNt/3kVLi+91YfIaTJAj2rf09QMq1mOZDCKHx/achhFtTxGmU6iNUufXj+wrLSqFUgSDYGSE2IeWjaJ1GqRWElj1LkHIDUq4GwDCeQOsUEGAY/TV13E4IkUeIAkIUMc2/ASU870VAWGzmIiphvMiGuURs2ED8W1dj//Sn4WcPDZUKslAgWL587LyQEGDbUKkgisUxbvBa63A/yPcRiQTV7ZeSG8y1lfQbRTbMHgvWCaEZMxHZAN3hkNCM6tEvDltszQLAlEL291M97HDUihXjerflcoVZj2yYDlI+iW1/D8e5Fcu6G8N4BMNYixABvr8f1erzCYI9a9LpXnw/jVIVDMND6xRKbYdS2UarrY7WGaRchWGsagymCjGAUotqs0iiNtBqIEQ/QbAS03wEw3h0TpNJu8khQa5ZQ/r1r8O57lool1C9PajeXkQ+D66LsX49VMeuBlU2GxYiz0OMWoULIUIrKt/HO+FEclq0HTMfRTbMHttcAepkZMNwhgsSug21YgXuq85CuBXkhvVQX8WEl3rI1asIdliO+5rXNvVum83Ihuki5ZNY1k+Rci1BsEPNF24ZSqUQYgjT/E9t/2ZTbU4ovBgJggKGEa5MwAEchBhAyscQIrxK1zqGlJsRYqAmUDARwiRc3VQQYiNSPooQmzCMhxFiAK3jxGIP09ubxLYVhcK/KBT+hFIPA7MnDCiVQiXjnH5GtSbx0Q9jPPo/1NKl6EWLwpWNbTdMSalWkU89FbojDX9oJgOWFX5uax6IQohw1aEUDA2hFy1CvPWtHTjQKLJhNtimWnB1xnNI6ATdLEiovPp8dDxO7PrrMNauRQsQSqNtG/+AAwne/36yz3g6rdRt7TgkzD4Bpnk/UhYIgtCMVWsHpfowjA0otRQpn8I0H6mdLOon47CY+H4cyxoCniQsDgGG8RjhHFF4AgpbcBZBsBtCxNA6VcsGWoOUQ4TDrgohyjhOCcM4FCkTVKu/oVr9N1I+hW0rQKBUH0GwL77/dGY6mbUbBAnGf/+L9de/oHt6xhqUWlZYWEwT4bph8OLwoVLDQPX1ITdvRlRdhFe3xKnFjyxdSumrV5Heey/i01RoRoKE2WGbLEAzIkgolbBuvw11w3XEV6/GcWJUjzmG8nmvHjHcOWcIgXvGmVRf+lKse+5Brl+Pti30AQcRf+4RxBx7Uuq2qTgkzAVSrsMw1hIEy0fcrtTOSNmPEP0o1YOUA4QZL0nARcp+lNoZ2ICUgxiGIAgW11ZNTyHlEFI+htYKrWNonUTrGIaxHq2DmpVPhfCyvd6aM7HtAkFwF563BN9fhRCLCIIVgEU4DLsW2/4RUq6iWj2B+j7RTDHXggTrj3+AihuufEahensxSrXvotaI8qgCpDWiUiF46Usxzj8ffcutBGuexE9n8F5yDO6xx0Eq1YhscN3qtJSakSBh5lmwg6iToacnjmWZDA7mpnU1KFevJnvKK5CrVoU96nAtHrYTgOInPkXl1ed36rA7wnSGSSdySJhLDOMBbPunBMEew271kHIzUj6BYawi9GoLUCqFlGWUWoxSOxEEK3Cc72MYLoaxA9VqGOUgxFOEq5oYUKpJs2Vt9RRgGE8ARm0PKIEQEimrgEEQLEPr/yFlGdc9jSAI7Y5CafdqDGM9UETKAp53ONXqS2oiipnbS5wzhwTXJXnJe3B+cDs6nUbbDjqbaXxP8H2MRx5BuOEx6d5FqMV94c+0Rg4MIGwbrr2W8qGHNVW3CQG9vVk8z2/s37TLQnNIiAZRx2HNmie58cZr+fe/H+Dxxx9lxYqVXHvtzRM+TmvNddd9m9tuu4XBwUH22GNP3vrWi9hvv/0n9bqFQoWenuT0rgbLZbKnnoR88snwk1/7I2rHh1Ik3/tu1NKlUzINHZdKBftXv8T8y18Qvkeww45UX/pS1A47TulppjtMWiyW6O3NkkjERzgkdCNCbKwF0g3Vrg1iNZXaELAMpRbh+/ui9XKkXI/WaYJAIkQ/pumg1CagCiQIlXDbAWmUitX2h7YABYTQhIan4VS8UlV8v49QiVc/ls2EqrvNNXufAlpn0Hp7wtbew9i2j++vx/NeyEwVoeGChLAFPfNXEdbv7iV++WXhPE+hgCiXQQj0RhO93faovkVgmgQ774zx+OOhT1y5hBgyIQhCdVs6jf+Rj5A/8GCCUvPPXT2yod5qnM7YwGhBQn//EI5jj1gR1QUJfX09xOOxmkNCgNaytj8Y0Yyu+O08/vij/P73v2PffZ+G1mrSszTXXfdtrr76Kt7whrew22578P3v38JFF72Fa665nh0mcVKeKLJhMjg/uB35xBNbi08NDeH/SwkaEpd9muoxx45vRz8JzPvuI/WB9yHXrQvl1AAI4l/7CpUzzqT8jneGPfQWdMq7bbqRDTOJ1j1obQFlhChgmv8CFFpvh9b1lkgVw1iNUtuj1AqkHESpXG12KI3W2+H7j+M4jwMFlDIBB62zaJ1FiBxKJTCM9Ug5CIRJq6aZIwhKKGXVnBZshBhEaxutTaTcghCDmOYDCFFBqWXU48G17kGIKkGwpLaHlavlGxk1Rd5KOvl1nU2HBPP3vyf5vvci8nmCHXbELJXQSoV7Pb6PWL8O0Ki+PojHUdtthyiVCXbdFXNwAJFOo489juIJJ1BZuQtM4vPW6ciGyCFhZuiKFpxSqhFz/fGPX8qDD/5nwhWQ67q8/OUv5qSTTuP1r38zAJ7nccYZJ3HYYUfwrne9d1KvLQQsWhQOCbbTUsq+9DjMP/+pdWGpFYzBX91NsN9+U3sBwPzLn0m/4QJELo9a1Lu10CiFyOcRrkvlrHMo/b8PjPv4mfJuC+XEqssECQrb/j6G8QRCbKmp0Eb630m5EaUWodSKmqnoCgzj8Zr32wOEKx6FlKGbtlKq5mqwmLCoPFVTv2mkzCHl44TyaxutQyFBKOVeitZ9tVXSUK3Ntw+G8SBKhVZAdYQoI0SFINixUTSDYO/afUyCYCWe90KUmtpqtxXhlXxy2i3olihF+uxXYf7n36gddwIhkGvXIjesR9dUb8L30YZBsPseiEoZkcvjnXce1sc+2tK7bSIMQ9LTk+mIZZTWimQyQSwWY/PmsP2m9dbIBtetkssVWbKkl0qlytBQvrYq7q5WXLe14LpCTytbWMQ044EH/kmxWOQFL3hR4zbLsjjyyOdz//2/m/Tz1AUJUsq2Yn7lmieHrUiaUNsXkuvWTvn50Zr45z+HGBpCbbdk5CpHSnQ2i47FcG65CePhsXHQM5lMWiyWsCwLx+mm2SeJ7x8GaKR8pCGxDqki5Ua0jhEEe6LUslqBWoZSO9Sk1Tm0jqFUBq0rhO21Qm3/6BGEWEsotw4wjO0xjOVonUSpFL6/G0rtiVK7NQpQOOxaQYg8UuYxjIdqz1diuM44LEB5TPO/aO0AMZRaThDsTRDsiGE8gW3fjpTrO/abct0qnufPaMS8+Zc/Yz7yCGrxVmcDtXw5askShNaIatgCFK6LseoJRKWCPvVUYh++lCBQDA7majHcU3/tIFANQYKU0ysAdUGC1rrRfrNtqyFIiMdjmKZBPl8ikYhh2xZai9pcUPd0CLqNrihA7bBq1RMArFix84jbV67chY0bN+BOEAE8nErFx/NChwTTnJpyRU+QPdJAiAlzShoEAdavfknqgtfSe9D+2L/4eTgBns8z3jdRp9OISgX79tsbt403TNpp41DP83HdKslkot3O4oyg1I543iFABiGKSLmuJpMOB0aDYBekLGAYjyPlBizrbkzzTyiVxvf3ABykdNHaQGuNlH7NQWFLbQh1C7YdSrKrVYFSccJikqy18HrQOl7zlPtvbTZoC1I+imH8HcN4DCkfqf23SKiaygEVtI6jdW3jvVGgYgTBbjX5+B86+rsqFkuNWZeZwHjssVBaPfyzLwRqpxUEe+4ZWu7EYmAY6D32RN54I+KznyVXqU5gHDo56kWjnYvL0dQdEuLxcJi37pBQqdT3iEIlnOf5ZDIphBCE87FBNBvUhK7YA2qHfD6Hbds4o3I/0uk0Wmvy+TyOM3lJa7uChOqxxxP/6pfDT2eTs7BQCpXN4j3jkEk8YZXUu9+F/ZMfh71urcJWm+si1q9H53KoZcu2Koegsf9kPvjfMe22mfZu61ZBgtbLCIKnoVQfQtRbhBIhnqq5EuSpu2NrfR+QIQhiCBHGNYBHPd1UKUGonKsgZbi/FASPEgThZnP4GgFSbqrd16pJvosolQUkSvUAoW0PhLNCQgwRWvakav509VjxSm0fa/hckESppbVV2KYxbcV2mXFBQr27Mfr7IQQ6lUanwqFn48nVyGOPoXzQ0ynn8h1TV0aChO5m3q6AOk27DgmVc88bKb0ejdZhfslrXwuJia/CEpd/GvuOH4US1UWLwitHIcKCIyWiWERu3DjuY6U9c+22ZnSrQ4JSfbWTuo1SK2sDqOtrUQqVmrNBODgIPobxMLb9H6TcjNZ2rX/v1/6UMYxKzRG7brfSj5SrkXIDSu2C655OEOxek1c/ipRbaicdF63T+P6zCYKd0TpZ2zvaTFjQ8oTFZTvCgiNqAoSxiauhAKJQEz50jpl0SAj22COMSSiNI3QQ4UrdDJ1EKa5Y2Xa7rRVhq9HryCoockjoLN1zxpgi6XSGarWK645sK+XzeYQQpNNT32wrFquNyIbJtpTUypUUPnPF1qs7pbYWoyDc2PUPfjri0ksbzsfNEJs24dz0XTCtRstC2w61dfxWiXehAMPet1AaAVjPPnzG2m2tKJdDJdxM7iVMFa0XEwQ7I+UGQkHBRqTcCJgYxurasGk/4b5QpXbSE0AOKesrJguQGEaozAz9vuorz/CEGgR7o3UCrVNUqyfiui9DqSUoFUepZO1Y4rW9pV58f3+CYJfa8yTxvP0II8M96sao4R7U1kiMYe+q9nyd7XfWHRLaaUFPhH/AgQR7743csnnEBZqUEtM0EUIQrF+P39eHO2w/t9MUCiUMQxKPT6/VONohoVKp4vsBmUyyoSZMp4f7xyUJP1ehQ0JUhEYybwvQylq42urVq0bcvmrVE2y//dIptd/qtCtIcM98FbnrbsA/8KDwhloR0tkeym9+K0O3fp+ykMTjsZaCC/vOX4Q5KMlhV76mGe4z1T+4tdWWyIdtQiklMjcEqRS5lxzb8G6bbbpPkCDw/UMJgmUYxiM1QYJRa79trsmjzVqRKNbabW5NHFCi7mQQnnBMtDYJi4ZdC7yLo7VVS0f1asXNrf19qCbZXl4bTo3X9oAeQ8oCvr8fQbAz4NfEB6FKLvyvSRDsh9a9Y9+RGKg97+KO/7ZmTJAgJeV3XIRa1Idc8ySiUsY0DaQhUZUKavUqtGFSfsvbJhfL3SaRIKE7mbdNyf32O4BkMsldd/2SPfbYEwDf97nnnrs47LAj2n7ediMbvBcdzdCLjsZ4+CHkk0+iY3H8pz+9sZKZTGSD3Lx56+zQMHRPT5gG6fuNn4kgQAYBbNmClpLSm99Kdfulbb/v6TJckFCtdodDgtaL8Lxj0Po+bPs/GMZ6DONJlEqjVJYwvrsEbEJrhzDLRxGumARKedSn2sPnM8KxLu0RDrS6GMZ/CYJlmObvCWO7/42UW/D9FYQrFgOIoXXdrHQdQjgotZyt+zqP1oZhlxKq37Yf590ESPkUnncEo2PHO8VMRTb4Bx1M6bNXkLrys6EibsuWhrxC7bAD5Te+efpD2pMgnH0KZ4Om75AQRTZ0gq4oQJVKhd///l4ANmxYT7FY5K67fgnAQQc9g97eXt7+9jeyYcN6brrpdgAcx+Gss17NNdd8nZ6eXnbbbXduu+0WhoaGOOOMs6Z1PNNxSAj23Itgz73G/VmxWCaTSWHb1rjpjDqZ3Nq+G/4BNS3Udtsh+/uhUgkl3ZUKemCAYPullN/4JtxTT5vScc4E3SVI0LUohTxK7YTv746UeYJgEVrvQH2/JRwira/aDAzDJwgkSg0/AQeExUSjlECISq3tFkeITZjmIGATWvN4tSHVDWi9idCiJ07oDxcjXCVtAeI1l+4VQArPOwXfz2HbdyDlY7UCFSNsyw0h5XqCYJeaxHxmmClBQjweI/GiF6COfB7Fu+5C/+sBUIpgxQq85zw3VMHNApEgofvoit/CwEA/H/jAyMHR+v9/4Qtfo7f3EIIgIAhGrkbOOutcQPPd717H4OAAu+++J1dc8cVJuSC0ohMOCeMxPLJhvAJUPeooEp+9HMrlsYIFy0IvXYooFqFQwD33PCpHPAfvyKPAmRkJ7VTpFocEKddgmn9GylUIERaSUD22obaxP/z3ZQKpmncbBIFFuOqp/5srwuIjG48zDAvfT6LUdjVnbB+lehHCqKnTbGAjoaBgC/AESu1Wuz1e2+fZsfb4dQTBTrWCsxPVqolp3odhrKFe+LRO4fuH4HnPm7HVT51OOiRYlkkqlRg5TPqMZ8Izntmho506kUNCd9EVTgjdyHQdEpohpaS3N0O5XBk3siH1+tdh//JOdCbbsKsXQiCkCEUNAwN4++9P7nu3N003nWvm0iFBylXY9s8QIk8QLCV0u9aY5h+wrF8ADkotBTKE9jkSKdeiVB7YgtaKcP/HJ1wdSaBCuEqKNxanQmyH7yeR8inCArQ9Si2pCRriSLmJUGVXrinhFqHUDkAJKQfwvINrty3D8142SnQQIOVqhKgr5LbvmOx6MkzXIUFKQTKZwHFsqlWPYrHUVXZN27JDQuSEME+YrkNCM5RSlMuVpoKE4sc+QbD33ohcDjE0iPQ9pFeFwUF0fz/BjjtRuOLzXVt8YC4FCVUs67dAiSDYjbD4QJi7sytar6jt26zFMFTt+DS+L1GqWpvZEbVh1VAyrbWkroYLZ4MKhPtGmzGMR4Gh2sBqrHaf0IpfqSU1IUGiNtOTrw2irkaIAobxBKb5OFLma9Lw4atsA6V2IQgOqAkSZq/4wPQECfF4jN7eLKZpkssVOjJM2mkiQUL30L1nsS5gOg4JrSiVKig1vmxZL1lC/vrvErzjHYjttoNKBVUuo1JpKue/ltx3b0LtskvHjmUmmCuHhK1zOTuM+Vnoer0bWu+ClDZSPonvr8L3N6FUCqWW1xRpVcCsFZ9UrWevCQtLhXrkdmgu6tYGV92ac0KKsF0XFiGtF9cMRZcTmqH2ovVSfP9ZeN7LqFaPR+s0lvVLLOtXhCuu7mCqDgmWZTbCGMtll8HBoXHbzN1C5JDQHUQtuAkwTUFPT5IgCDoa4GXbFplMilyuMOKLOjwqodzfT/XhR8IN2x13glSqY68/00gp6O3NUqm4syZIMM37sazfEAR7jvmZYUhisXVI+Q+C4Cl8fxHhqkPWhkM31oZQM4RXpjG0dpDyMQzjSUJH7RihmKDeGjUIi00BrbN43rMRoh8pB2t7NRIIrXak7CcIFgPL8P2D2Gq3A1DCMNbiuifUsoC6g7CNZjEwkGt6ouz2dlsr6q3GTriFaK3IZjNIKejvH2Lx4l4qlXAvqK+vh3y+iOf59PX1MDRUqAkSNPX4jtkiasHNM9p1SJiI4YIEaOLdhgxVdXvvM6+KD8ylQ8LIJZcQgljMIZkM9288L4/Wq5ByLUKoWoutihAK3z8C130VQXAIoYpuVU1E4BLO7OjaHM4SgmBXgmB5zRHJB0oIUUapFSjVgxCDNaudMOZBiCKQxff3GVV8oN6mC524u+fkPZFDwnxot7UickiYe6ICNAnacUiYDIVCCSkl2Wyanp7QE2toKD9nw6SdZrYdEsKhT039JG7boZrLNA1c9z/4/l9QyiYI9sD390OpRaEPmbEereP4/kFIOYgQa2qFoz7HYxGuejzArT2ughADBEEVITyEKGEY/0XKLSi1sjZoqmptOY8g2AXPew5aL29y7IsQYsMw37q5p5lDwnxrt7UickiYW7pCht3t1AUJ6XScZDLRsQAvywp//aZpNFXFzXfqw42OY+G6M3uSCoKVaL0I09yM46xESonn+VSrGzHNB9E6UTMI3RXffybhykVjGH/DNB/FMFbVfNweR4gSW1dTNuG1WrVmMlolDKiTKJXBMBxCg9EchvEwQmxGqSX4/v5o3YdhPEAQ7AqMdTfYSngyGh7R0A2EsmWnMUA9vN0231Y84zFckOC61Wld+NUFCY7jjJgHqgsSstk0pVKFfL5ENhvuC4WFO9wz3GrztO0QrYAmSScFCcPbbdWqh1IK01yY1wKzKUgQIo1lPY9EQqH1ekqlIpWKixAbCVtkJcIsoN0IT/h1x+k0WgsM498Yxn8xjM211U8YBlc3LK2fIEIbH4nWvSi1Y81zbjmwPaGR6SCh3HsRSm2P5x3OyNmj8Y49XxM3dI+fXp26IGE+t9taEQkS5o6oAE2BQqGC1rrtlpIQgmQyPqbdViyWsW0L2+4WH7XOUiyWCGMiOu+2XCcWc+jtzWBZz6RUOpJKxQcexjAewTT/hRBltM7i+weO2YMJnbPjGMb/EGIzYSZPOLAatvXqrgmSeksuVMktIRQrlFFqF4Q4k2r1RILgQIJgdzzv5bjuKXhe3WSzmRjDR4ghgmB/troydAeWZdbaRSFDQ7nOtdtKJeTaNYiBgc48X5vUHRIcx250JdpltEPC1pZbuCIyTaPhkGBZJvF4jNBctu6yvm2xMC+7Z4jpOCQMV7eNHoCbyCEBwHjwv1h3340oFlFLFlN98THopXPn/TYVZtIhwTQNUqkEhmHgulWKxTJa7wuswDBW1fZyKmgtaxHXYz/yWvcRRh1sQevQu20rTsP3LSw+1doqx0drhRD9AFSruxGPr8Awqvi+Q2gquhfhXNHO+P5+WNbfUGqHmtKuTgkpVxMEu9Xu3x2MVrfl80UymRSJxPQdEoyHH8L57nexf/YThOuClPgHP53Kqa/Ee9GLWsfbzxCRQ8LcEMmwp8hUHRIMIzxBWpZZO0GWxu0zN3NIEBs2kHrfezH/cD+i6oEMoxl0Iol70kmU3nPJrHlpTZdOOiTUV5OxmIPn+RSLpaZT+5Z1J6b5z1rrbXwM42/Y9g9rxSpL2DLThMKDAAgQolhrrxk1pVscpRIEwZ74/uE4zg6YpkGptBqtDVz3XLbuI5WxrHtqQoU84axRADgEwa543gsYzwF7LojHYyQSMZTSFIulxkXRdB0SAKx7f0vy3RcjBwfQsTjacRCBD8UimBaVc86lfNE756QIbQsOCd0mw44KUBvEYibpdHg13+xqcHQyabFYmnDWIJGIEY/HGBjIoZRC9PeTOetMjIcfRieTYSxDLRtIFAsI16V6zLEUPveFkQmpXYplmWSzafL5wrQECbGY08hWKpXKE65EpXwCx7mNINgeGK996mOaf0HKJzGM1YROB6GEVutYTckWAwqY5r8BD623R6ne2nBpjNDFegdisWfi+49SLu+N5x095pWE2FhzQyihtYNSOzacseeacb3bRp0dstk0QtDWTJxcv47Maaci+regt186psiI3BC4LsWPfYLqy0+Yzltpm/pFzcDAUAeUqJre3h6q1WpjHmhoKPy9ZbNptmwZxDRNstnQLTss9BrDsGszZp2n2wrQ3H/q5yETCRIcp71k0tEOCbFrrsZ45GFUby86kdj6hZUSnc6gkinsX/wC61e/6uj7mymmK0gwTYOennSjVTkwkJtUGzR0w34ahvEkQgwxUmlWxjAeq7XJnobv7w3EawKC0MGgXrSE8NDaQus0nncwvn8IQbAbSu2AUnEM41E877dYlkSI8dtpWm+P7z8TzzsS3z8MpXZkrr+GUgrS6STZbJogUAwO5pomk07VIWE49g9/iNyyGb3d9uOucHQmC0GAc+MN46cLzwKdFiT4vtdYUVarXkN4FAkSQqIC1CbjCRLGHSad4lK+IUgIfJzv34o2zYYp6RjicVAK59abp/NWZpV2BAlCCFKpRK2FB0NDeQqF0hS+pEbthH8oQhQxjFCcYBgPI+VT+P6euO4pKLUbSu1BEOyBlIO1kLlBoB/YTJhqGsf3n1Gb/SmytZjFUSqOEA+g1HbE4/tM5dcyZ0x1mHR4ZMNU20T2z3+GNsyWPoY6k8F86EHkY49N6bk7RacECbZtsWhRD7Zto5QiFnOwbQspJUuWLMI0DUzTYNGiHjzPb6w+hQj9BLcVQUIkQmiT4YKE1auf4Kqrvsbzn/98Tjnl1GlZezQECZs2IgYGUPHWV2LatrD+8fe2XmsumKogYXi7rVAoTiMaw8Hzno/vH1Brs1UAE6WWNVpgQbA/hrEWz3s2QbArhvFQbc/HROsetFYotSvV6rEYxmNIua5WpMIZHq2TBMEuVKsmqZSN43i4bmeiPDrNZNptzWg3skHkcs0vpuqYFpRKiMLctfynI0gwjNC82LYtXLdKoVBCCOjtzZLLFWrmxnHKZRfbtrAsA8MIC3kqlSCVSqCUolQqUyoFC16QEBWgabBhwxauu+6b3HDDDSilOOCAAzugoAmns3tDz/9J3Hv+fUDLZRfHCYcbmwkSxle3Tb8toXUfvj/aCickCPbG8/KY5n0IUUCpPoRwEMJHqRSQxvcPJBQO7INSKxFigFCkYNYcEgoIsYlKpdRoFXZTO2W0uq2deZ66Q0I92G2yggTd1wcbNrS+k1cNY+izPVM6pk5TKJTo6ckQjzuT7mIkEnHicQel1IiL0LoDfiqVZPPmgcbqqr9/iCVLemsqw0EWL+5ttKmDwK+lp85+ZMNsErXg2kApxU9/egdnnHEy1113Hbvssgtf//o3eOUrz+jY85e3Xwo9PchyayNPUXXxn7ZfR153NmkW2TD9dtt0EDULHYmUmzGMdTXlW/1KtEpYbEK0TtT2f1YMSzBVtfcXOmfP5OzTVOmkd1s7kQ3u8ceDUmGuVRNEPo9/wIGolSvbOq5OMZXIBtu26O3NEo87lEoVBgZG7vlOJrLBMMLIBsex8TyfSsXbJiIbogLUBldf/XU+/vFLqVTKvOlNb+PWW2/lyCOf19nIBiT6la8MJarNvrCVCkiJe9orO/a6s8V4goT6MKltWxQKRYaG8m3LfdtBiDy2/ROEGMTzjqRaPakWm/DSmnWPh2n+gbB9Nz5SDtYsgUTNjNXu6OeiHWbKu22qgoTq8S9DLVuGeGpjWIiGozWivx9sm8pZZ0+8+tc6bNNVZ67FOZEgwTAkmUyKTCaF7/sMDOQol8f/bEQOCeMTFaA22Hff/TjllFdy/fW3cuaZ5+C6aloOCc0onnMeYvfdkQP9YUx3/YOoFaJQQBbyVI88iuqLxsp95wN1QUIymWhL3dZpDOMhDOMJlNqdre4H9eLhEAQHI2U/Uj4+7uOFyAFWY6A03OMKOhpoOBWmom5rh6kKEnRfH4UrrkQtXYbYuAGxeRMin0MMDCA2rAcpKL/9HXgvfFHT55Dr1xG//NP0PuMgevd/Gov23oP0WWdi/eIXHVfOtRIkJBJxenoyGIYcZiDcfLUSOSSMTzQH1CFSKZt43JnmRvlYMoP9WG97K/rPfwbPb3hW6phD9bjjKX7wUkgmJ3qarkQIQSaTwrLMCYdJZ54Ax/kOUvbXpNHj38c0f4MQg/j+81BqMXWXbCk3I2Uez3s2nvdc6td2pmnS05Mmny/OqiCh2TBppxFC0NuboVr1Ji1IkOvX4dz2fezbb0MODqFNA+8FL8Q96WT8pz+j6eOMf/2LzLlnITdvBggVokohlAIhqJxzLsWPfKzjQ6zZbAohJIODuZrDegIpw5iFZiue8dBaYxiS3t7sCFfsLVuGiMcd4nGHzZsHSKWSxGI2mzYNoFTY/pXS6cheULfNAUUFqENM1SFhskgp6e1J4953H8HPfhFa8SxeTPXY41ArVnTmReaA4eo2gCAIOuKQ0D5lYrFvEFrv9DS9lxCbMIxVBMGutZkiRRhqtwTfPwjfP4jRrsapVKiKahXs1immo25rl7YdErQG1wXbnjBiXhTy9Bx1JHLjhnAge/T9XRfh+xQ/+nEq5726jXfRnLpDQhCoWrRHKIppteJpxlw7JHRbAYpUcB1ipiIblFKUKy7xI45gYN/92/rQdxPjqdtM05i1yIbmGISrloleXxMEu1CpvAopn0KIasPRoJnjdTjbZZNIxCkWO/O5GE0n1G3tMjyyYUoOCUJM2kbKvv325sUHwHHA94l9/apwD6mD7vKOE/67GoYck2A8VaLIhpFEe0AdpJORDcMZ7ZAwH2mlbpvNyIbm2ATBbkjZ2pk5DKHbA8ig1O4Ewb4otRut4ha01jMqSOiGZNLpOCRMhHz0UeJf/Qr4fvinyYpOOw7GmjWYf/1LR153tLpNa43jTD8VORIkbCUqQB1mupENzZjPkQ2TUbfNRmTDRATBPmjtIMSWcX8uxCYgUXPVnhozIUjopmTS6TgkNEOuXk363LPpefELMR55GHwfkc8jhgbD1t2YB0jQCtnfP63XbaZuiyIbOk9UgDpM3SHBNE1iselfLdUZHtkwX5iKd1vdISEWczCMuflYKrUSz3seQgwh5WNAgbAlV0DKxxCigOc9D6V2auv5C4UylmVO+yp6ptVt7VIqhTNrnfiMyiefJHPaydh33RW26uotNSEgCBCFIqIySgBQEyOoTLbt122lbgtnn7wOXUSEkQ31VWOhUCIeDw1w65ENQRA0IhuklGgNWvsLahUUFaAZoFisopQikYh3tKVUKJSQUo7YvO9G2h0mLZdDa565azUKfP9ZVKsnotQuNcn1aqQcqFnwnFibB2oP3/epVFySyXjbq4RuaLc1o+6Q0IkWdOITH0OuX49OJsGJoZ1Y/UVqKjcNpRIMe+/CdVHbL8U/5JApv95Ew6R1CoUShiGJx6fXahRCEARBwyGhUqni+wGZTLKxf5xOJ0eo5eoSWKW6y11jOix4EcKqVU9w5ZWX8cAD/ySRSHLMMcfxute9Cctq3co65ZSXsWHD+jG3/+pXv2tsSjajHUGC8fBD2D//OSKfRy1aRPVlL0PtMFIOXLf0iMdjVCrVrhQkTNe7rVgszbEgQRAE+xAEeyHEpobIIEw/nf7VRLuChLlQt7VD24KEYci1a7DvvDNc9dQFB7EYlIrhKqdehLRGuC46EQ8HUoWg/JrXhKq6STLau20iddtwhwTXrU4rsiESJCzwApTL5Xjb297ATjut4OMfv5xNm57iS1+6kkqlwkUXvWfCxx911As5/fSzRtxmT/LDXan4xGKhIKGVX5bYtInUO9+Bdc9vEEqhpUQoReKyT+Ge+AqKH/sEJLauCEqlCo5jk0qFH9huoVPebcMFCdVq5+TsU0ei9fYdf/26ICGZjOO6E/uozaW6rV3qFxH1z/5UMf/2N0TVRSdTW2+UEp3NIoaGthYhgKobDmYLgfuKk6i87vWTfp1m3m0TERaN0Ky0vkJpl7ogIZNJ1y4sQkHCpk0DxOOhIGHLlkESiVjj7+EqKEBKOe994hZ0AfrBD75HqVTkE5+4nEytLxwEAVdc8WnOOed8Fi9e0vLxixYtYr/99m/79QuFCj09yaZXg2JwkMzpp2I+8gjaNNGOA0KEJ27XJXbLzcgNG8h/6zsjruqKxTKZTArbtuZs07nO6GTSTtjnFIslenuztVVCay+8+Uil4jbclusBZeMxfJh0uvLf2WS4IMF1q1O/EPG8Ya22YVg2uqcXUS6FNlS15w0OOojKeefjvuKkCeeJgGkNk8JWh4S6GWu7zvcwVpDQ3z9Um6vauiKqCxL6+nqIx2OUSmWECNBaIsT8PoUv6D2g+++/j0MOObRRfABe8IKjUUrxxz/eP+OvP5EgIfbN/wuLj+OEBab+havNR2jbxv7tPdh3/GjE47pFkDBT3m3dIEiYaVoJErpJ3dYu0xEkBLvuhjatsBCNxjTR6Qy6bzE6FqPyyjMY+uGPcU8+ZcLiMxXvtomYCUHC6173Oj73uStq+6WKXC6/4AUJC/PbXWPVqidYsWLnEbel02n6+hazatUTEz7+F7/4Gc9//uEcffRzede73sajj/5vysfQVJBQrRK74brw783itC0LDcS+8+0xP5pLQUK7yaRTYe4FCTPLeIKEblW3tcN0BAnBAQfg778/wt26yhmD54Fp4Z533qSsd6bq3TYZOi1ICIKA733vVn7/+99zySWXcNZZp7N27XrK5TJ/+9tfGqvlhSRIWNAFKJ/PkUqNtZ5Ip9Pkcq1ze57znOdx0UXv5nOf+woXXfQe1qxZw5ve9BrWrl0zpWOoCxLCIKqtJ1O5bh1yyxb0BGIIDAPzX/8c4x48XJAgJ9F26ASzHZXQLLJhoRC2F0VtL6J71W3t0k5kAxCKCd79nrAzUCyAGraq1hoqFYRXpXrc8fgHHdzyqSarbmuHqUQ2tCJc8fbwvve9D8Mw+NznruDggw9my5YtfPvbV3PHHT/mbW97K9/73i3k8yXuvvvX/Oc/D6C1mPeRDQu6AE2HCy+8mBe/+FgOPPBgjj32pXzpS18H4MYbr5vyc43rkDDZk3b96m6c+8+mQ8JcRCV0h0PCzKG1xnXD/aD53G5rRbsOCd5znkvhS18JhQelEuSGELkhRLEAWuGe+AoKn/ls09VPJ9ttrZgosqEVw1e8hiFZsWJXTjnlNB577DHK5Qp77bUX3/veraxYsRO9vb1cffX/0d+/mcsuu4z3vvfdDA0NznuHhAVdgNLpDMXiWKVYPp8nk8lM6bkWL17MAQccxEMP/betYxntkKCWL0f19Izf5x6OHxDstXfTNt2kHBKqVczf/Q77jh9h3fXrKcUdz0a7rRXd4JAwE9RPPuGUO7Ue//xst7ViOg4J1Zccw+Dvfk/hY5+g+vITqL74JZRfewFDP/kZhc9/EeLjfyZmot3WjFaRDa2or3hDdaPPwECJYtHlvPMuYNGiPr7+9as4++zz0Vpz+eWf4W1vu5BisciXvvRFLrjgAnK5HN/61tUkk0lsW85bh4QFXYBWrtx5zF5PoVBgy5bNrFy586weyxhBguPgvvL0cLKk2ZfD9xFoKmef0/R5WwoSlMK5/jqyJ7yM9BsvIPXud5F665vJvvQ44p//XKgkasLcJpNuZSEKEsZrt5nm9B0SupXpCBJ0OoN79jkUvvxV8t+8htIHPkiw9z7j3ncm222tmIogwbJMenoyJJPxmrqxzNBQudFuTafTvOlNb6NcLvPEE49zzDHH8+9/P0Cp5LLvvvtxxx13sHz5juy7777cdtv3+d//HmbRol62264H05x/34/5d8RT4LDDns2f//xH8vmtV/x33fVLpJQceuhhU3quzZs38c9//p199tm37eMZLUgov+71BCtXIsqVrdJTaNjUi2oV75BnhvLSFowrSNCa+BWfIfGpTyDXrkX19BAsW45avASGcsS+/jVSF79z3ETJuU4mHc1CESQ0U7d1wiGhm+mkQ8J4zFa7rRUTCRJGt9tKpSoDA0Vcd2yBfMlLjuPDH/4kxx//ct70preRSqX49a/v5J3vfC9CCD71qU/y5je/A4APfehScrkS1ao/L1fPCzoPKJfLcfbZp7HTTis455zz2bTpKb74xSt58YuPGTGI+va3v5ENG9Zz0023A3DnnT/jvvvu5fDDj2Dx4iWsW7eGa6/9Frlcjm9+81qWL9+h7WOKxUzS6TiVihsWjrVrSL3pjVh//xsQGv0KrdFS4r3wRRSu+Bw6O7G3VSIRIx6PMTCQQymFef/9pN94Adqy0ON5Y5XLyKEhSu97P+6ZrwI6N0w6E1iWSTabJp8vzGFkQ3uMHiYtFktjBAZhsFu29nufmciGuSabTSMEbTskjMfwYdJCoTQrK55m1OfhBgaGRjgk1Oe5hBBUqz6FgjslgcmaNU9imiZLly7jc5+7nFtvvYlbb/0R11zzDX784x9y0UXv4aSTTp3Uc3VbHtCCLkAATzzxOFdeeTkPPPCPmhXP8VxwwUgrnre85QI2bFjPrbeG8zYPPPAvrrrqSzz++KPk83nS6TRPf/ozee1rXz9G1t0OPT1xLMvcGuClNebf/or905+GVjxLFlN92csJ9txrSs/b2xuGZuVyBZLvuRj7Rz9CLV/e9P5y4waCPfYk/73bSKaTjWHSuU0mbU46ncSyzI4G/s00U0kmjcUcksn4nK84Z4p67lOxWG7LIWE40x0mnQmEgDvv/Dn33nsv73//B0kkQisu0zQIAkWx6I674pkKQRCwbt1adtppBQMDA5xzzis59NBn8YEPfHRSj48KUASmKejpSRIEQUevBm3bIhOzKd12O7HXXxBa1sfjqHQGncmMETKIYhHpVeHuu2HFCkql8qwKDKaKlOEqoVJxu94hoV3vtp6edGPPbSESrgTbT4edqnfbbPPNb36Dq6/+Jhde+A7e+MY3oLWmXPYoldwZuWjK5/PYtoXjTG4eMCpAEQCkUjbxuNOWYWcz5KpV9Fz4NsR//wMDtWC12p6CtiyCnVY0fOWEAKNSgXKZ6k9+QmH75V3TbmtFPO6QSMQZHMx15ZzMZNptrTBNk56eNPl8Edft3ouBdglbjRmqVW/KqcHd1G5rhu97nHzyKyiVSvzgBz8klVo065/TNWue5MYbr+Xf/36Axx9/lBUrVnLttTcDrQuQ1ppvfOMb3HDDDfT397PPPvtwySWXcNBBB83YsUYFaI4QAhYtSgJ0pKUkBgfJnHEaxv8eRfQtgg0bQpWbaVLT+aJNE7XLrshEHCkEavNmdCLJwE9+BqnUxC/SJYTKPMXQUPeYscLU2m2tSKXCK/x2VwndTuh1ltzagp6Abmy3jcayzEa77bbbbue9730Pz3/+i/joRz8168fy29/ezZVXXs6++z6NJ59cjeu6LF26jAce+CfxeJx4PE5/fz+pVIoTTjiBCy+8ENu2+frXv84XvvAF3vWud7HXXntxzTXX8Lvf/Y7e3l4KhQJLly4lk8mwevVqSqUSO+ywA2984xt5+ctf3vaxLmgVXDfTzCGhXZzbb8N49FHUot7QXaEuXNDUljsGwvcxBvpD6w/fR5dKuMcdN6+KD3SfQ0KnvduGOyQsRMZ1SPA87B/fQfr00+g94Gn0HnQAmQteQ/bPfySTTs6Zum0ixlO3Pec5L+DAAw/mrrt+yZ/+9IdZP6Yjjnge3//+j/nYxy5jl112Y/36dfi+z/vf/2E8z2Pjxo0cfvjhvOMd7+Dmm2/mU5/6FK7rctVVV3H++edz3nnncfjhh1MqlVBKseuuu/LJT36Sp556in/84x8cc8wxXHXVVZxxxhlUx1HRToWoAM0h4zoktIlzy82hGaNphj3xdDrMUAn8sNpJSU2CRFAsIdatRy1dRuWMV3Xo3cwe3eKQMFPebfXIhljMnhHZcjcw3CFBFPJkzjqT9Otfh33vbxEDA8j+LVg//SnmSa+ges655PsHu2qvB5oPk4LgHe94N4ZhcN1135r14xpuzbV69SqUUnziE5ezZs1qlFJcfPHF3HPPPTz3uc/l4osv5sYbb+SUU06hUChw0003cdlll7Fu3Tr+9Kc/cfjhh7NmzRp+/etfs+eee3LIIYfw+OOPc/jhh3POOedwyimnAPCtb32Lvfbai9e/fvJxGBAVoDlntENCW/g+ct1a9LDIBgWI5cshHkcoFc4ZKQXVKmLzJoKdd6bwhS+hVq6c/puYA+baIWGmvdsqFZcgCDrkttx9DHdISF14Idbv7g1X7vEEIh4PL55iMbQQWLfcTOKy2W9lNWOiYVKA3Xffg4985FO86lXnzuGRwqZNTxGPx8lkstx//30cfvjhnHzyySil+N3vfscRRxyBUootW7YAcOGFF3LzzTfz+c9/HoAVK1awbt06fvKTn3DmmWeSTqfHtIU3bdrEl7/8Zfr6+qZ8fPM7TGIBUHdIiMcdYjG7PUGClKHCzd+6KSsQaNOEHXdEFYuQL4BbQQhB6ZL3455y6oigu/lG3SEhkYjXTtazc3U8m8mkhUKZnp40jmMvSEFCqVTGeeQh7Dt/jjYMhGXVPJ7ZepKzbXSlQuxb11B+01vQvb1zdrzDBSbhKrXaUt125JHPn90DHIdCoUCi9j1fteoJDj30EDKZDEuWLOGxxx5j06ZNCCHYaaedyOfznHHGGUgp+fCHP8wzn/lM7r33XrTW+L7Pv/71L+6++26EEBxxxBGceOKJXHjhhVx++eW84AUvYN26dVM+vmgF1AU0jWyYLFLiPfsIhOsihMAwDISsBdsJAckkarslEI/jHfx03LPOntfFp85sOiTMRVTCtuCQ4F17LUJrRG31rrQeK7ywbUS5jP2TH8/BUYY0a7d1u0bE971GSy6fzzU8MLPZLENDQ9xzzz0kEgn8YRevxx57LEopXvrSl5JOb1XNfec73+Gwww7jmmuu4dxzz+Xb3/42l1xyCb/85S955zvf2dbxRQWoC+iEIME97XSEbWMUi6DDuAalFFprhBCh3Q8C9/QzJpUaOV+YDUHCXEYlLGRBgm1bWJs3o5XamgQ8HlKCNJAbNszuATK5dtt85rHHHsO2bWzbplqt4roumUyGxYsX861vfYuNGzc27rvLLrvw5z//mS1btnDBBRdw/vnnc8cdd/Ca17yG7bbbrq3XXzhnonnOdAQJsZhD+mXHwWtegyqXUZueQrsuaI1yXejvRxYLVF/84jA5cgExk4KEbkgmnRVBQrmM/dOfkLzkPaTe/EYSl34I697fjmjpdpLh3m06Hm/MqjVd5WkNWqFncT9sKt5t3YxpWg3xRjqdafhiDg0Nkc1myeVyeJ7H0qVLAXj88cdrjzN5/PHHec5zntPY2znrrLM48cQT+dSnwv24YrGI1pojjzyy7eOLClAXMVVBwoioBM+n/8J3Unz//0PtsCOyUEBu2oTM5VC9ixDveQ/VL34JJgrAm4d0WpDQbcmkMylIMP7zHzKvPJXke98dxnXc+1uc791C6q1vIX3+ecj1U+/rt2J0VELhuUeFBaZVsfO8sM38whd19FiaMV/bbeORSqXwvHD/cOXKnXnsscfI5/Ns2rSJXXfdFa01hUKBww47jFQqxU9/+lOAhrz6z3/+M0cccUTj+fbZZx+eeuop1q5dy/e//32AaakTIxFCFzFZQYIQomF86Hn+Vu8wIXDPPhf39DMx//Qn5EA/OpXCe+ahZJZuR9KQVAdaJ8HORzopSBg+TJrLFbomHG4mBAnyySdJvePtyHVrUdttB8NUlFQqmH/9K8mL3kHhG/+HHidZeCo0HSZ9/vMJdt4FY9UT4aza6FacUgilqD73eQR77DmtY5iI4cOkoXdbZd6teAAqlQq///29AMTjcQYHB/jJT+5gu+2249577+G2225Da82XvvQlHMehXC5z1FFHMTQ0xBe/+EUWLVpEuRxaXfX39/O2t72NBx98kPvuu4+enh76+vq46qqryGazBEHA9ttvTy6Xw/d9fN8nl8uRSCQwzYnLS+SE0GVM5JAQizmN2IWpeLdJKentzVAuVyiVumuYr1NMxyFhNtVt7dJRh4RKhcRnLsP57o2hYe14gYfVKnLTJkofvDRUTbbBZLzbjH//m8zppyIHBxFCoOonLs9DAMGKleS+933U0mVtHcNEjFa3zaR322ywfv06Tj11fHeCeDxOtVptiAvy+TzLli1jxx13ZO3atZx66ql88YtfxPM8DMNgyZIlXHTRRaxdu5bPf/7zCCE48cQT+dOf/sSaNWuaHsM3vvENnve85014rFEB6kJGRzZA86gEsXEj5oP/Ba0J9toLtay5+/XoyIaFRjuRDdP1bptNOhHZYP7hfpzbvo91zz0Yq54IJc9LlqAX9aHHCcST69bjP+1p5G/47pRfayrebfLxx0l8/kqcO+4AN7xA0skk7qmnUXr7O9CLF0/59SfDdKMS5gPDEwFGW/HsvPPO/Oc//2GfffZh48aN/PrXv+YlL3kJTzzxBDfccAPXXnstf/nLX8jn82SzWXzfZ3BwkN7eXo466ihe+tKXNvbuPvGJTxCLxbjooovYa6+96OnpmfDYogLUpdQjG37723u5/vrreO1rX8uBBx7UiEqQTzxB4jOXYf/sp4hav1ZbFtWjX0z5XRcT7L7HuM87PLJhITKVyIZOebfNJm1HNmhN7JqriX/tq1Apo20bY9jchrYs1IqV6FRyxMPEwACYFoP33Dtp9eR0vNusoUEyT22gXPUpr1w57dZf09cZ026bflTCfGC0GenQ0BDHH388u+yyC69//evZuHEjn/rUp3jZy17GBz/4wcb9zj33XNatW8edd97Z9LnPPvtsEokEV1111aSPJ9oD6lJWrVrLN77xFW6//XaEELzkJcew8867AWD87xEyp52C3LwZbRjoWM2K3fNwfnwH1u/vI3fDTQRPe9qY5y0Wy2QyKWzbmhcn3KlSLJbo7c2SSMSbRjbMh3ZbMyoVl1jMJplMTCmywfr1r4h/9ctoKdE77hhGdWzYgK77BFaryNWrCfbYfaRQRevQ0HYSEsNORCV42R4qy5cTcyzKAzk6/Q8z1WHShU42m+Xb3/42H/3oR3nzm99MMpnklFNO4R3veMeI+ymlCILOZ1RFK6Auw/d9br/9Vv7v/75GoVBgv/324+KL383uu9c2YLUme/yxmA/8K5Swjr4qVQpRLhPstjuDv7pr3KvWTCaFYUgGFqAgAZpHNsyndlsrphzZoDXpC16L+cc/oHbYoXGb8fDDUC43xAeiWkUtX45asqTxULlmLdXjj6f4qctavkQnoxKmE9nQim2h3TYR3ZYHFMmwu4yPfvQDfO5zn0FKg4svvoTvfve7HHroMxsXoOZf/oz5n3+Hvm/jtUSkDNsrjz2K9bt7x32NQqGElLIhZlhojOeQMJfDpJ1mqg4JcvVqjH/+c2S0uxCovr7w8fVVihCIwcGtdxkaAsfGPeEVTZ/bti16e7PE4w6lUoWBgdy0c3q01hSL5Y6Y9MLCHyadz0QtuC5jn32eRl/fYs455zX09PRQqfik02FPvVAoYf3mN1vbIs0wTbTnYd19N95zxypRlFKUyxXi8RiVSnVBChKKxRLZbJpEIobj2POy3daKYrGMbdu1VmPrVYLI5xG+hxq1v6MXLULl88ihobAVB+HMjesiBwZAaypnn4t/2GFjnnOmk0ldt0os5pBKJdpODZ6LdlurMLhWaK257rpvc9tttzA4OMgee+zJW996Efvtt//MHWwXEBWgLuP0088a8f+Vik8sFjokVCouolIJTxatrnzrk+Vu883fUqmC49ikUokFKUgIgoAgCP31qlVvXq94xqPukJBMxnFdt6UgQafTaNNCeB7acbb+QMrQDX3jRkR/P7guApADA6gddqRy5qtC66ZRn7Xh7bahofyMJZPWLyLqn/2pMFfttscff5Tf//537Lvv09BaTbooX3fdt7n66qt4wxvewm677cH3v38LF130Fq655np22GHHGT7quSMqQPOAQqFCT0+SVCpBZflyhFKhf1YzVZLWCK3D+Y4WTFqQoFQ4Ee9Ww4HFLg+wG65u01o3itFCY7KCBLViBcF++2H+6U/o0f92UqKWLYPFi5GrV1N96ctwTz4V/5BDRg6mMvvJpMMjG1y3OqnZp7keJj3iiOfx3OceBcDHP34pDz74nwkf47ou1113DaeffhavfGWYz3XggQdzxhknceON1/Gud713Jg95TokK0DwgdEjwiMdtOOVk9Cc/HqqY4k2sZ1wXbVm4Jzbv3QNUqx7Vqhda+YxXgDwP53u34nz3RozHHwOt0fEE1eNfSuWss1G77tqBd9c5xlO3hYO7sxvZMJtMyiFBCCqvPIPUP/6O6O9HL1o08udKITc+hdppBaV3vxe9/fYjfjzT7bZWlEplHMcimYy3FCR0i7pNtmH0+8AD/6RYLPKCF2y1GrIsiyOPfD6/+c1dnTy8riMSIcwTikU3jGxYuYLKea8OQ+ZqhqMNtA7bKEGAe8aZqOU7TPi8TQUJrkvqXReR/PCHMB96EG1Z6FgMUS4Ru+5aMue8CvPvf+vwu2yPVt5tsxnZMBdMVpDgHX005de/AREo5Jo1iMHBcG9o82bk2rXoxYspfuKTY4rPaO+2fL44q3uGkxEkzHfvtlWrngBgxYqdR9y+cuUubNy4AbdFK32+E62A5gn1yIZ0Oo78yEeoDAzg3HIzohReFWohEFqDkLgnnEjxg5dO6nmbCRLi//d17J//DJVOj1hp6VgMrRRy02ZSF13I4A9/PKctucl4t9X3EhzHmrRDwnxiUoIEIai89gL8p+2Pc9v3sH5/H/gBpDNUTj8D9xUno3bZpXH32W63taIuSEgm4wwO5huFdq7bbZ0in89h2zbO8P05aKSP5vN5HGdhKlajAjSPaAgSUkkGr7gS97RX4tx4A9Zf/gyAf+BBVM54VahamkI2wRhBQqmEc9NNYaLqeG0+KVF9i5Dr1mH/4udUTzq5U29x0kxlmHR4ZEO1OrFDwnxj0oIEIfCf/Wz8Zz8bSqVQ0JJOjxg8nct2Wyvy+QKnn34ahx12GBdeeFFXtNsipk9UgOYZDUFCOsngMw/Ff+ahHXne4YIEfe9fkJs2oXqyzR9gmqA19p2/mNUCNHqYdLLqtsk4JMxnpuyQkEigR6Xizpa6rR2U0qTTaW666SZe/vKXc8ghhyyYYdJ0OtMIgxu+Csrnw9Xe8FTShUa0BzQNVq16ggsvfBMvetFzePnLX8JXvvJ5PG/iFo/Wmmuv/RYnnXQ8L3jBEbz+9a/mgQf+NanXrAsSTNMkFhtrHtkuwwUJIp8HFbSeNQK0YYTDirPEdIZJ65ENsZiDYSzMj32hUMayTJxxTEVbMRPDpJ3Gskz+3//7AEIIPvKRj9Dfn18ww6QrV+4MwOrVq0bcvmrVE2y//dIF236DqAC1TS6X421vewO+7/Pxj1/OBRe8iR/+8Da++MUrJnxsXfP/yleeyWWXXUlf32IuuugtrF3b3N58OA1BQiLe0RTQuiDBXr4sLD7V1jYvIghQozatZ4JOJZNGgoSRDE8m9X2fgYHcnO71jMdwgclBBx3ISSedzEMPPcRNN03dnbtb2W+/A0gmk9x11y8bt/m+zz333MVhhx3R4pHzn6gFB7huhVe/OtTfX3PN9Y0rjlxuiLPPPo1ly3bgy1/+BsawzJQf/OB7lEpFPvGJy8lkwlZVEARcccWnOeec81m8eMnYF6Izmv/hgoS6Q0InaAgSnvdc/J1WIFc9gV4y/vugWgUpqR57fEdeezzabbe1IhIkhHRzu63OeMOk55//Bu68806+8Y2v8oIXHM2iRX1zfZgjGB4Gt2HDeorFYqOwHHTQM+jt7eXtb38jGzas56abbgfAcRzOOuvVXHPN1+np6WW33XbntttuYWhoiDPOOKvZSy0IohUQ4Dgx3v/+D7N27Rq+/vWvNG7/7Gc/TaFQ4H3v+9CI4gNw//33ccghhzaKD8ALXnA0Sin++Mf7m75WK83//ff/btLHXKn4eJ7fMb+sOqVSBSUl4g1vQAiByI3jSOz7yIEB/L32wjvqqI699nBmyrttuCChk6vHbqEuSIjF7HE/F/Ol3dbMuy2b7eH1r38zxWKR3/72N3N9qGMYGOjnAx94Lx/4wHv529/+wlNPbWz8/+OPPwrUXTpGCkXOOutcXv3q1/Hd717HxRe/naeeeoorrvjignZBgGgF1OBpT9uPM888h+uv/zbPe97z6e/fwq9+9Qve9rZ3smLFyjH3X7XqCY4/fmTqYDqdpq9vcUPXPx6tNf834rqVSfd8hzsktOuXNR7FYpnMa86n8vjjWFd/E/nUU6GFi5SI2uxRsMeeFL7w5THT8tNlNqIStkVBQreq24Yz2WHSl7/8FSxfvgP77XfA3BxoC5YtW8699/655X2+9KWvj7lNCMHZZ7+as89+9UwdWlcSFaBhnH/+Bdx332/52McupVwucdBBT+fUU08f9775fI7UOGFZ6XSaXK55zEEnNf/DHRJiMXvS8dwTUa16VD0f68OXkj/s2Ti33ox1770I38ffc2fcU06l+vITRrorT5OZaLc1oy5I2FYcEgzDmJfttmb/LkIInvnMZ83yEUbMBFEBGoZlWVxyyQd57WvPwbYd3ve+D01qM3cuKRZdHMckkYjX/LI687yFQone3gz2C59P8fDDwzac1pNOxZwKkxkm7TTlcih5TaUSDA0tPDNW3/epVr2G4GKuh0mbsVCGSSPaIypAo/jDH34PQLXqsmbNkyxvYmeTTmcoFseeuPL5PJlMpunzd1rzP+OChOEOCR0uxnOdTLpQBQnD221aa1y3ivvoo8S/9z2MRx4GKfEPOBD3xFeM9YWbJbrFuy1ibolECMP43/8e4Vvf+j+OO+5l7LnnXnzqUx+lUBj/6njlyp3H7PUUCgW2bNnc0PU3exx0VvM/o4IE1XnZcivvttlkIQoSRnu3FfNFnM9cTs8LjiJ+xWewf3A79m3fJ/GRS+l53hE4N1w/68c4373bIjpHVIBq+L7PJz5xKYsXL+HCC9/F+953KQMD/XzhC58d9/6HHfZs/vznP5LPb938v+uuXyKl5NBDxwZ41ZkpzX+hUEFr3fFiEcp6LWzbmvjOk6DbkkmLxRJCCBKJJs7i84Rm6jZx+eVw2WWIIECnUuienvBPOo0oFkl+8P9hf/97s3KMUTJpxGiiAlTj29/+Jo888jCXXPJBEokku+++B+ed91p+8pMfNXT9wznhhJNJJBJccsk7+eMf7+fHP/4hX/7y5znhhJNGzAC9/e1v5JWvPLHx/3XN/3e/ex0333wjf/nLn7j00vdNW/M/Gw4J4yEKecSmTWGSZgs6NUzaaea7Q0KrYVLx1FPEr/oqWkhEKoUYPkogZegD5/skLvv0hEPH02H4itcwJKVSlYGBYrTXExHtAQE89NCDfOc7V3Pyyafx9Kcf0rj9rLPO4957f8OnP/1xrr325hH7M5lMhs9//qtceeXlXHLJO0kkkrzsZSdywQVvGvHczTT/oPnud69jcHCA3XffsyOa/5kWJCQSMUqlCmiNdecviF37Haw/3B/mBCUSuCedTOXsc0fkBM2muq1d5oMgQa5bi3Pb9zH+8Q8IAoJ9n4Z81auIPW2fpuo25/bboFwOVz5aI4QYGeomBDqZRG7cgP2rX1I99riOH/dcJZNGzA+EnkzMILBpU+fmTCJmjljMJJ0O5cWdEiQAJBIx4vEYA/1DxD58KbFvXQ1KgWWhpUR4HiiFzvaQv+ob+IcdNkLdViyWumLF0wzLMslm0+Tzhe4SJGhN7BtfJ/6FzyPKJdA1LYgQEIvhnf8acm9/Bxhj9/6S774Y5+ab0NlQFCOlRGs9JllU5POU3/FOym99W8cOe6y6zY1WPF3AkiXdZWwarYAWGI3IhphDpdLCmr8ZWmP861/IDRvQqRT+058OsVgjsiFz2/eQ13wTTHNEvLN2nDAKfGiQ9JvfAH/4AzLRMyfqtnbo1sgG5/rrSHzmchCge3uRhokQoJVC5/OYX/0KcSkpX3jR2AdbJgwTV9RXQWjQ6PqN4QrW6sypIFK3RUyF+df0jpiQdgUJ9g9uJ/ui59Nz3EvInHc22VNPovfQZxD/7OXguhTzRcyrvobQGj1OTpAQEpHJYPT3o2+4cc7Ube3SdYKEUon4l74AWkFPD9IMC0qgFEqDTqVBGsSu/ma4DzcK/+CngwZqLeD6ykfIYVXJ80JZ9kFPn/bhRuq2iKkSFaAFSDuChNhXv0z6zW/EfPBBtJRo20abJnLLFhJXXEH6/PMI/vRn9COPQGJsYRNChCe2epvn5pvmXa+/2wQJ9p2/QG7ejMhmG/s3KlAw7ISuUylEsYjzwx+Mebx77HHovkWIYrHh56eVJuzgiXDFWi4T7LkX/rPadxaI1G0R7TL337KIGWEqkQ3GP/9J8hMfDwuH44RRDFKCYaAdB21I7N/cTeyG68KracNoOEQIIZBSbj1BKhXuCW3pn4V32Xm6JbLBMCSJjRuQtX8HpRRajbOUkBKEQI6aKwMgmaT48U+CbYemsp6H1gqtFKJaReZy6HSG4ic+2daQcaRui5gu0R7QAmUqDgmxa78dPqCZsahpguti/+LnaCHA9xGOE656CC/ItdJb9xWUQvd1l03+VJhrh4R6VIJ27LDwBJNwoTDHn9OqHnMs+a98jeTHP4Z84vFwv0eDsEzUwU8n/6FL8Q86eMrHOFfqtlWrnuDKKy/jgQf+SSKR5JhjjuN1r3sTltV6Tu2UU17Ghg3rx9z+q1/9bowvY8TsERWgBcxkBQn2L34R7g+0OMnV23H+LrtgrlkDtS+tGq2qqjksuyec2LH3MdvMlSDBti2SyQRSCkqlCt6++5ExjHBGp9lJsjZ/5R9yyPg/B7wXvojBo56Pdf/vMR4OrXjkIYcQf+4RkCvAFIQqc+ndVg+B3GmnFXz845ezadNTfOlLV1KpVLjoovdM+Pijjnohp58+ctbO7rCbe8TUiArQAmcykQ2iUp5cC0aDccop8PnPQ6mESCQYcW5WClEooPv6cF9xUkeOf66YzciGplEJhzwTf+99MB/4F9qyxhrBao3I51A77kj1hS8a/8m3vgjeEc/BO+I5jZtspUZENrSiG9Rt7YZA1lm0aBH77bf/bBxqxCSJ9oAWOJMRJKgdd0JMcCYRWiMMif/q86m87gJ0EKCHhhDlMlQqiEIhLD49veS/9nX04sUz8XZmjdkSJIz2bsvni1tzeoSg+PFPohctQgz0Q7m01ZW8UkH0b0EnUxQ/8am2cpkKhTKWZeI4rR/bLeq2dkMgI7qXqABtA0wkSKicGUaDM05AWX2fB6Xwnv98cpkeiu99H/mv/x/VI48K2zmAzmapvO71DP3gR/jPPHQG383sMZOChMkmkwb77Ufu29fhHfEcRBAg+reEf7wq/jMOIf/Nq0esaqaC7/tUKi7JZHzc2JFuU7etWvXEmCDHyYRA1vnFL37G859/OEcf/Vze9a638eij/5uZA42YNFELbhtgIkGCe+ppxK/6KnLdOnRNAdc4IWkNrguWRfFNbwlvEwLvhS/Ce+GLSKCIoxlSAjUDWUFzTacFCe0kkwb77kv+2usxHn4I498PIJTG32NPgv33n3ZERrFYxrIstmzZzKJFoXCkG9pt49FuCCTAc57zPPbddz+2334p69at5dvfvpo3vek1XH319Qs+9rqbWXhnjIhxaRXZoDMZhm68iWDHHRGeh3DdMHq7XIZqFR2Lkf/SV/CfNdblu4RE9faS6mmegTSf6WRkQ8t22yQI9tyL6itOxj35FIIDDuhIPpPWmjvvvJOXvex4fvKTH3dNu63TXHjhxbz4xcdy4IEHc+yxL23EYt9443VzfGTbNlEB2oZo5ZCgdtsd9/d/gKv+f3t3Ht1knfUB/Ps82dMktFJQ1oKg0lrZxLbQKlKWVinKcAYQkVVGHBCQXQbHBUVWYaAuAx2WUkBxBWd8WcpQVJbK0kFWeR2VIqXI8pZm35/3j5C0aZs0a5+kvZ9zOMekT5JfzsFefve5v3vXAX36wNamDWyJSdDPnI3bh47AnDPE4/uGemRDpAm2Q4Kv6Ta+3HtvJygUCrz/fi4sFlNEpNvqEugQyLrEx8eja9fuuHjxQqiWRwJAKbgmxFmQIJOJIZWKYTQ6WvC7TSYd8QwMQ57261+81Uc2RHLD0UA5CxLkckeTV19/KQeSbmtoLMsgIaE9pk+fjnfeeQcrVryLmTPnReSOJ9AhkCRy0Q6oialekHDsWDHefvtN6HSaoCeTarV6sCwLudz/ia7RwN+ChGDTbQ2herpt+PCR6NSpMz7//FNcuHCe76XVKdAhkHW5efMGTp8+hcTEpFAvk/iBxjE0QRUV17F27WoUFhZCKBRi48bN6NSpc9Dv6xrZUKGOuF+2ABwHOjnO86HOevgysqHmYVLncLhI4mlUwqlTJXjppReQmPgg1q/fXGdlHJ/UajXGjBmBdu3aY+zYibhx4zpyc1dj0KBst4OoM2b8GdeulWPHjp0AgMLCPThy5BB6905HfHwLXL16BQUFm6FWq7FhQwFat27D0zdqeDSOgfDGbDbj44+3Ij9/A0wmE1JSUjBz5qxapa2Bco5sUCjkUKsjZLCbxQLxP7+CNH8zhGdOAwDs7RNgHDsOphEjHB2lfX4rzx0SoiPdxiImRuaxuq1795548skh2L9/HwwGPeTyGH4XXEOgQyBbtWqDmzdvYO3ad6HRaKBUKtGz5yOYNGlykwo+kYh2QE0Ex3GYNGksLl68gObN4zFjxkwMHz4MdrvdY4eEQIjFIqhUCqjV2ga5H8Rcvw7pJx9DeOwYYLXC1qULTM+Mgu3+BwCjEcoXJkFcVOToUyd0/HuLsVoBhoE1MRHqgu3gWrb0+fNYlkFcXDMYjSZXhwRn7za73Q6tVh9RBQZOvvZus9lsqKy87SrJJo1LpO2AKAA1IUuXvoVmzWIxduwExMQooFBIIJOJodXqXAUJoaBSKSAQsKio8H42I1iSgnzEvPkGGKPRcYiWcYyDAMvCOPIZgGEg3b4NnFgM1GxWabOBMRphSU2D+tPP/SpplskkrhY9Mpk0KtNtpGmiAEQiBsMAd93lSLNUVISu6SbLsoiLU8FgMEKvD88vZcnnn0Exc4aj87ZUWhVAOA6wWMDYbHcmfYoAqYfCCIsFjNWKyi93wdrzYZ8/WyBgERurAsMwUZNuMxgsEXGYlPAr0gIQVcE1Yc4OCY5fVqFrN2O322EwGO/sDsLwV8xigXzpEsBmcw8+gOO/xWLAzjmKDgQCz+8jFAIcB3Edw9w8cVa3OQOO2WyOuODjqG5TNbrDpKTxoSKEJs7XkQ3+CmdBgujgQbDlVx3D8zylzu6MnWYsFscuqC53huixt27V+5l1VbcplTEBjWxgr1yBtCAf4p07waorYW95N0wjR8I4ajS4uDjf36gGPkclEBII2gERrx0SghGuDgmCX352BB5vuxvnzsvq5RcwxzkmuTZr5vESgYCFSqWASqWA1WpFRYXada8nkA4J4q//hbj0NMhy10Jw6VcwFRUQXPwR8kWLENcnFcL/lPj8Xk4sy9JkUhKVKAARn0Y2BKJ6h4SQEomqxhI41Xjs2vV425pYrQAYmLOfqPPH9R0m9Xdkg/hfX0E5aSJgNFZ9D6HQ8UfAgrl9G6pRI8Fcu1bvezlRuo1EMwpABED9IxsCFY4OCZaUVMcOx2p1FBJotWAqK11/4KyKY1nHTqmuXZDdDsZigTUxEZY+6W4/8qd3my8dEoQnT0D1h6ehnDDesRa73THJ1GKpCpB3KviYSrVjRHo9Im1UAiGBoABEAERXQYItORmWng+DMRrB6HTuAYbjHM9rteAUCli7dQdjNjuuM5sdAUuvB2M0wta2LTTr8lzpOm/pNm90Oj1EIhEkktqpRtG336DZ00MgOnqk9gvt9qruDIAjCHF2SLcWePwsSreRxoSKEKLMoUPfIi/vQ/z2WylatrwHY8aMx+DBT3l9TXn5VQwfXvuapKRkrF+/2fU4mgoSLH36QHT4kPeLBAJU5hdA+sVnkG7ZAvZqGQDAftddMI16FoYJz7sOoVY/TFpZqfHrMKnHDgkGA5R/et4RIL3lxCyWqommDAP2xo2qHVw1vh4mJSRaUACKIj/8cAoLF85FTs7TmDFjNk6ePI6lS9+CXC5Hv34D6n395MlT0aNHL9djubz2TkerNSI2NgYKhTykHRJ0OgNUKgXEYlHwHRJsNkh37HD8gq55LwioSmep1ZDs3QPji1Ng/NNksL9fA+wc7C1bgr12DbK89ZDs3wfWbAY6d4ZpzFhoH890dUzw7/vpERfXzHVAFQAkX+0CU1FxJxXIAvAQLDiuKuBwnKO6r1rwoeo20lhRAIoi+fn/QFLSg5g79y8AgJ49e6Gs7Ao2bFjnUwBq27YdkpMf8nqNp5ENwQrlyAbhieNgy664uh44foFzALiqbgiAI1B9sgOmMWMBgQD2O32/JFs2QzF/HgCAsdnAAcAvv0CyezcED3WF+uNPwLVo4dea6hrZICo6UHUfqv43cK3dWRRRX+82QqId3QOKEmazGSUlJ2oFmgEDBuHSpV9RXn41ZJ8V6QUJ7I0bjqDjXBzDAALWUZZdPW3FcWCvlbu9Vvw/X0Mxdw5gszm6KFQPYgwD4flzUD0zwnv5tgc1CxIYg8ERWFwLr+d/tzvdG4wTJvJS3VZaegkvvzwFAwZk4KmnsvDBB2tgsdT/jwWO41BQsBnDhg1GZmY6Jk+egLNnz4RvoaTRoAAUJcrKrsBqtdbqXJ2Q0BEAag3qqsu77y7FY4+lICdnIJYtextqdWWd10V6QYLr3I4Pv43tsVUHO8UiIZRLlzgeMEztnQnDAHY7hGdOQ1y4L6C1VS9IsLdr5+q2AMD7buhOoDK9sgCKrEENXt2mVqsxffqLsFqtWLx4BV54YQq++upL5Oauqve1W7fmY+PGdRg58lksX74azZvHY9asl1BWdiWsaybRj1JwUUKjcTT2VNQYH6BUOkYRq9WeG3+KRGIMHfpHpKamQaFQ4vz5s9iyZSN+/PE88vK2QFjHPY9ILkiwpKSCi7sLTMX/ed5VcJwjnTV0aNWohB9Ogbv4o+PnngLBnTSYZEs+zE886f/aqhUkqEc9C2neevfPEwgcwaZG+x5bYhK4V16BdMxzvKTbdu36HHq9Du+8swIqlSPA22w2rFq1DGPHTkR8fN0pSZPJhK1bN+GZZ57DyJGjAQDduvXAqFHD8NFHWzFnzisN8wVIVKIdEI+0Wi1KSy/V+8eXNIg38fHxmDPnFTz66OPo0eNhjB49Dq+/vhg//fS/+OabIi/ri9AOCRIJDJMmuXYstdy5qc/JZGDGT3AdJtWfO+/Trgk2GwS//hrY2lDVIUGS8ogjiLGsY53Vd0ICgWsXZnlpGgRnTkM05jneDpMWFx9Br14pruADAJmZA2G323HsWLHH1509exo6nQ6ZmVWpYZFIhL59+6G4+HBY10yiH+2AeFRUtB/Llr1d73Xbtn3m2unodO67BufOSKVS+fXZvXunQyaT4eLFC+jff2Cd10RyQYJhxkwIf/jBkSqz2dy7YbMsIJGA++RTyNq3dfVuEwv9CHieOmj7oHpBwu2/rwMzfpyjIIFhHGsFXAGImzkT4hUrYLNz0KkNvFW3lZZeqlXOr1Qq0bx5vNf0rvNndaWGf//9I5hMRkgkjXNMOwkeBSAeDRkyFEOGDPXpWrPZDKFQiNLSS0hN7e163vkLICGhQ+gXCMe9IIlECLlcBpPJHLJ/lWu1esTFqSCXSwMb2SASQbMpH9L8zZDmrYfg0p0di1AI+7BhEMyfD2uXROiqjQe3pKYBYglgNnlOwTlTd1lZAX4zB4PBBIlEAsXdLVC5/WOIvjkI6eZNEJ4757gv1O9xCKZOBbp1gz4CRiVoNOpa6V3AEYS8pXc1GjXEYjEkNcacK5VKcBwHjUZDAYh4RAEoSojFYvTs2QsHD/4bI0aMcj1/4EAhOnToiFatWvv1focPfweDwYDExCSv1zkLEpRKGWJi5NBq9QGtv6bqBQlGY4AjDYRCGJ+fBOPE58FevgwZOEjv7QCoVKjU6mHR6Ny/S1wcTCNGQPLR9qqyZ7cLOFcAMj43NvAvd4dOp0dFxS1cuVKGLv0yYemXWfswaYWeDpOSJosCUBQZN24Spk+fjJUrlyIzcwD+85+TKCzcgzffXOJ2Xd++qcjOHowFC14DAOTmrgbLsnjwwWQoFEpcuHAOBQWb0aVLEh599PF6PzeSCxIAQCwRI6Z716pRCV4mser++jqExcUQ/PqLe+rOiWGgXb7SUcEWJIvFipUrV+LAgQMoKNiGbt26RuxhUqVSVSu9CwAajcZrelepVMFsNsNkMrntgjQaDRiGgVIZWQPQSGShIoQo0q1bdyxevBxnzpzC7NnTUFi4B/Pnv+p2AxhwVC9V31F07NgRJ08ex5IlizB79jTs2vUFcnKewpo1H9RZAVeXSCxICKR3GxcXh8qvd8M4ajQgkVTtejgOtvsfgGbzFsfB1RDJyXkKNpsNq1e/eydARmbvtoSEDrXu9Wi1Wty6ddNretf5s8uXS92eLy29hLvvvofSb8Qr2gFFmYyMvsjI6Ov1mkOHTrg9zskZipycoUF9bqQVJATTu42Li4Nu1WroX3sdou+LAYMBto4dYevazbeuBT6SyaTIyhqIrKws7N27Fzt2fI4BA7JD9v6hlJbWB1u2bIJGo3HtWoqK9oNlWaSkpHl8XXJyV8TExKCoaD/uu+9+AIDVasW33xYhLS3d4+sIAQCG43y79XnjRuj6gpHoxDDAXXfFAAAqKvybAuoNy7KIi1PBYDDWW5BQ12TSSFOzd9vPP1/C8OF/QExMDLZv/xwxMQq+l1iLWq3GmDEj0K5de4wdOxE3blxHbu5qDBqUjVmz5ruumzHjz7h2rRw7dux0PVdQsBmbNq3Hiy9OQ6dOnfHll5/i2LHvsWnTNrRp05aHb0M8adEislKilIIjPuOzQ0KgoxIakqdRCXFxLTBu3CTcunUL+fkb+V5mnVQqFdas+RACgRALFszG3//+HoYMGYpp02a5XWez2WCzud8DfO65cZgw4U/4+OOtmDt3Bq5fv45Vq3Ip+JB60Q6I+C02VgaRSIjbt9UhK0gAgLg4FWw2e62ChOrpNq1W71e6raHUNyrBYrFg+vQX8cADiXj55Tk8rpQ0ZZG2A6IARPwmFDKIjY2BzWYL6cgGsVgElUoBtVoLs9kSlek2nc4UcQUGhDhFWgCiFBzxm7MgQSgUQioVh+x9qwoS5FGbbmuqwaek5AQyMnrV2dpp3749yMjohbNnT/OwMhLJKACRgIRrZIPNZgfLMhAKBais1ECj0QV2SDWM+BiVEOl69HgYLVvejcLC3bV+Vli4G23atEVyclceVkYiGQUgEpBQFySIxSLExTWDVCqGxWIFwzAR1yFAJBIiNlbV4KMSogHDMMjKehJHjhyCVlt1D6+iogLHjhVj0KAneFwdiVQUgEjAjEYrLBZHhwShUBDQe9RV3aZWa2G320N+6DVQlG7zTXb2YJjNZhw8uN/13IED+2Cz2ZCV5f9oC9L4UQAiQQmmQ4JcLnONSqiZbgt6ZEOIULrNdwkJHZCYmIR9+/a4ntu3bw8efPAhtG0bfGsj0vhQACJBCaQgwZluk8kk0OuNqKhQ1yqtrt4hgQ+UbgtMdvZgnDpVguvXf0dZ2RWcO3eG0m/EIwpAJGi+FiT4e5hUq9WDZVnI5Q3XT4zSbcHp3z8LLMti//692LdvN4RCIfr3H8T3skiEol5wJGi+jGwIpHdbSEY2+KG+w6SkfrGxsUhL64O9e3fDbDYhNbU3YmNj+V4WiVC0AyIh4akgwZd0mzd6vTHsBQmUbgut7OzB+Pnnn/Dbb5cxaBAVHxDPKACRkHEWJMTEyHDw4AG8995aiMXCoA+ThqsggdJt4ZGe/hiUShUUCgUyMh7jezkkglEKjoSM1crhwoWLWL58KY4ePQq5XI5x48ZDqfQ80MwXgY5s8IbSbeHDMAwEAgHS0x+vNaqbkOooAJGQ0Ov1yM/fgB07tsFqtSIzMxNTprwUdPBx0mr1iItTQS6X1juywZvavdv4nUx66NC3yMv7EL/9VoqWLe/BmDHjMXjwU15fU15+FcOH174mKSkZ69dvDtNKfffddwdx+3YFsrMH870UEuEoAJGgaTQaTJw4GuXlV9G6dRvMmzcfTzyRBaPRVGdBQiCCLUhwdGyQQSIRg+M46PVm6PX8nuf54YdTWLhwLnJynsaMGbNx8uRxLF36FuRyOfr1G1Dv6ydPnooePXq5Hsvl/B7cPXfuLH7++Sds3vwP3H//A+jR42Fe10MiHwUgEjSWZdC6dVs8+eQQPPvsWEgkEldBgtFoCtnIBr3eCIlEDIVCXmtkgzeRmm7Lz/8HkpIexNy5fwEA9OzZC2VlV7BhwzqfAlDbtu2QnPxQuJfps507P8O+fbvRufP9WLjwdb6XQ6IABSAStJgYBdas+cDtOa3WiNjYGCgU8pCObNDpDFCpFBCLRfXeD4q0dFt1ZrMZJSUnMGXKdLfnBwwYhP3796K8/CpatWrN0+oCs3DhG1i48A2+l0GiCFXBkbAI/8gGzx0SoqG6razsCqxWK9q37+D2fEJCRwBAaemlet/j3XeX4rHHUpCTMxDLlr0NtboyDCslJHxoB0TCRqczQSIRQi6XwWQyh+x+i7eChEhNt9Wk0agBAAqF+4AwZ9GGWq32+FqRSIyhQ/+I1NQ0KBRKnD9/Flu2bMSPP55HXt4WCIX0vzWJDvQ3lYSNLx0SAmG326HXG7B9+zYkJSXjgQe6RES6TavV4tatm/Ve17p1m6A+Jz4+HnPmvOJ63KPHw+jYsRPmzXsZ33xThP79Bwb1/oQ0FApAJKyMRiuk0tAXJFRWarB27Vo0b94cO3fuQrNmSt6r24qK9mPZsrfrvW7bts9cOx2dzr2YwrkzUqn8K1/v3TsdMpkMFy9eoABEogYFIBJ24ShIEIvFGD9+AtavX4dNmzZi6tRpvKfbhgwZiiFDhvp0rdlshlAoRGnpJaSm9nY977z3k5DQIfQLJCTCUBECwfHjxXjjjYUYMeJpZGT0wqpVy3x+rVarxZIli/DEE5kYOPAxvPrqPNy86Z6GCnVBgrN325Qpf0br1q2xYcMGnDnzY0Te6/FELBajZ89eOHjw327PHzhQiA4dOvpdAXf48HcwGAxITEwK5TIJCSsKQATFxUfx3//+hO7de9a6KV6f115bgOPHv8ecOQvw+utv4fLlUsyZMx1Wq/v9F19HNnhTs7qN4wSYPn0WLBYL/va3leCibErcuHGTcO7cGaxcuRQlJSewYcM6FBbuwcSJk92u69s3FUuWLHI9zs1djfffX4ODB/+NEyeOoaBgExYt+iu6dEnCo48+3sDfgpDAUQqOYOrUGZg2bSYAoKTkhM+vO3v2NI4dO4pVq95DSkoaAKB9+wSMHj281s3wYAsSPFW3paf3Re/e6Th69DBOnjyOXr1S/HpfPnXr1h2LFy9HXt6H+PrrXbj77nswf/6ryMx0P4Rqs9ncOj907NgRX3zxGb766gsYjUa0aNESOTlP4fnnJ1MFHIkq9LeVgGUD2wgXFx+BQqHEI4+kup5r374D7rvvfhQXH651MzyQgoT6qtsYhsGsWfOxatUyxMbGBfQ9+JSR0RcZGX29XnPokPs/CnJyhiInZ2gYV0VIw6AARAJWWnoJ7dsngKmRU0tI6OjxIKWvBQn+9G5r1ao1VqxYE8xXIYTwgAIQCZhGo67znpFSqfR4kNJZkCCTiSGVimE0mmtdEy2HSQkhwaEA1Aj5cyBSJArtkDdfeOqQEAmHSQkhDYcCUCPkz4HIYM6bKJUqXL/+e63nNRqN14OUNQsS9HpjxI1KIISEHwWgRsifA5HBSEjogBMnjoHjOLf7QKWll9CpU2evr61ekCCRiCndRkgTROeASMDS0vpAo1HjxIljrucuXy7FTz9dRFpaer2v12qN4DgOHAeo1QZUVhoo+BDShNAOiODatXJcuHAOAGA0GlFWVoaiov0A4DYYrW/fVGRnD8aCBa8BAJKTuyIlpTeWLFmEl16aCbFYjLy8D9Cp033o27dfvZ9rtXK4fVsPq5WCDiFNEQUggpKSE3jnnTddj7///gi+//4IAPczKDUPRALAokVLkJu7CsuXL4bNZkNKSipmzpzn84FICj6ENF0M52P/khs3QjfVkhBCSMNr0cK/VlvhRveACCGE8IICECGEEF7QPSDSKB0/Xoyvv/4nzp8/i6tXyzBs2HDMmjXfp9dqtVrk5q7Ct98ehNVqRWpqGl5+eR7i4+PDvGpCmhbaAZFGqSFGTBBCgkM7INIoNcSICUJIcGgHRBqlcI2YIISEDgUgQqoJZMQEISQwFIAIqSaQEROEkMDQPSASFSJ9xAQhxH8UgEhUiPQRE4QQ/1EAIlEhGkZMEEL8Q/eACKkm2BEThBDf0Q6INEp8jZgghPiOAhBplPgcMUEI8Q2NYyCEkCaCxjEQQgghoABECCGEJxSACCGE8IICECGEEF5QACKEEMILCkCEEEJ4QQGIEEIILygAEUII4QUFIEIIIbygAEQIIYQXFIAIIYTwggIQIYQQXlAAIoQQwgsKQIQQQnhBAYgQQggvfJ4HRAghhIQS7YAIIYTwggIQIYQQXlAAIoQQwgsKQIQQQnhBAYgQQggvKAARQgjhBQUgQgghvKAARAghhBcUgAghhPDi/wH3A3yOjV8YcwAAAABJRU5ErkJggg=="}}]}}}, "version_major": 2, "version_minor": 0} +{"state": {"a3ba2562986b4d3c85aa0ba33b45834b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcf88d8cf5594b41a4d74b390176368d": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_5067878ea24243799a31056ff95b1c2c", "IPY_MODEL_091cc6af34bb4e5d97cd8fc57778a15a"], "layout": "IPY_MODEL_a3ba2562986b4d3c85aa0ba33b45834b"}}, "3d69c21927194e308146a282a6830158": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0746abe945b481a895b19ee9643f2da": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "5067878ea24243799a31056ff95b1c2c": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["10", "200"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "N", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_3d69c21927194e308146a282a6830158", "style": "IPY_MODEL_d0746abe945b481a895b19ee9643f2da"}}, "d4cd4ffe4493457da04713fba3a36a2a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "091cc6af34bb4e5d97cd8fc57778a15a": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d4cd4ffe4493457da04713fba3a36a2a", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGnCAYAAACU6AxvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkqUlEQVR4nO3de3wkdZ0v/E/1vdNJ555Mrp30parnwsyAwDByUYZhBcVlXeQiyLje3SPPrhzPs+Ie1GX1HFn3Oed5dlnFg4q3Zb0hrq7ioAIiC4KiMCJMV1Wnc79n0kknne5Od1c9f3RSTGAumUw61Z183q+XL8mvk+4vVH6dT1f96vcVdF3XQURERFTCLGYXQERERHQ6DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5GxZYfvCDH+DP/uzPcM4552Dfvn143/veh3Q6vVEvT0RERGXMthEvcu+99+JLX/oSPvShD2Hv3r2Ix+P49a9/jXw+vxEvT0RERGVOKHYvoVgshre+9a34whe+gDe84Q3FfCkiIiLapIp+Seihhx5Ce3s7wwoRERGtWdEDy5EjRyCKIr7whS9g//792LVrF2666SYcOXKk2C9NREREm0TRLwldddVVGB8fR1NTE26//Xa43W588YtfhKIo+NnPfob6+vo1Pa+u6xAEYZ2rJSIiolJU9EW3uq5jYWEB//RP/4RwOAwA2LNnDw4cOIB//dd/xV//9V+v6XkFQUAikUI+r61nuXSGrFYLvF43j0UJ4LEoHTwWpYPHorRUV7thsazt4k7RA4vX60VNTY0RVgCgpqYGO3bsQDQaPavnzuc15HL8BSwFPBalg8eidPBYlA4ei9JwNtd0ir6GJRgMnvSxTCZT7JcnIiKiTaDogeXyyy/HzMwMjh49aozF43G89NJL2LlzZ7FfnoiIiDaBol8SOnjwIM455xz81V/9FW6//XY4nU7cd999cDgcuPnmm4v98kRERLQJFP0Mi8ViwX333Ye9e/fik5/8JP7rf/2vqKysxAMPPIDGxsZivzwRERFtAhuyNX9dXR3+8R//cSNeioiIiDYhdmsmIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqKh0XT/r52BgISIionWn6zomJsbxn//5KzzwwDeQzS6e1fPZ1qkuIiIiIszNzUFVZSiKjHh82hjv7e1Fc3Ptmp+XgYWIiIjO2rFjU3jqqScxMjJsXAKy2ezo7u6GKIbR3t5xVs/PwEJERERnTNM0ZDJpuN0VAACHw4nh4SEAQGtrGyQpDL8/CIfDsS6vx8BCREREq3bs2BRkOYJoVEF9fSPe8pa3AgCqqqpw4MCVaGlphdfrXffXZWAhIiKiU1pYSEJVFSiKjKmpSWNc03Rks1nY7XYAgCSFi1YDAwsRERGd1K9//RSOHHneWJditVrh83VBFMPo7PTBarVuSB0MLERERASgcCvyyMgw6usb4HK5AABerxe6rqO5eRskKYxAIGQ8tpEYWIiIiLa4eDwORYlAUWTMz8/h0kvfiF27zgEAhEIS2traUVOz9luS1wMDCxER0RaUSi0gGlWhKDImJsaNcafTiWw2a3ztcDjW7U6fs8HAQkREtMVks4v413/9BnK5QjCxWCzo6OiEKIbR1dUNm6304kHpVURERETrRtd1jI+PYWxsFHv3ngcAsNsdaG9vRzKZhCSFEQyGjP1UShUDCxER0SaUSMxCliNQVRmzs7MAAL8/aOyRcvDgm4zbkcsBAwsREdEmkclk0NNTWJcyOjpijNvtdvj9Aei6tmKsnDCwEBGdjq7D9vzvYFUVwG5Hdt9+aG3tZldF9Br9/X144onHAQCCIKC9vQOiGEZ3dzfsdvMXzp4NBhaiTcr24hG47v8SHI/9AkI2i1wwiPRfvA+Za64FSmDFf7lwPPozeP7uE7DJR40xXRCw+KarMf8/Pgeto9PE6mir0nUdk5MTUBQZtbW12LmzcAtyd3c3mpu3obs7gFBIRGVlpcmVrh9BX966rgzF40nkctrpv5GKxmazoLbWw2NRAoxjMT0Px//4NDz/+3PQrTYI+RwAQLdYIGgacjt3Yea7P4Te2GhyxaXP+e/fR9UH3wMAEF71VqlbrdBrahF/5HFonb4Vj3FelI7Ndizm5uYQjSqQ5Qji8WkAQF1dPW644R0QBMHk6k6vrs4Dq9Wypp/lGRaiTcbx1S/D878/BwBGWAEAQSu8WVsjR1F989sx88jjgGVtbxxbgTATR9X/9aHCP5/gc52QzwMzcVR99K8w+70fbnR5tMVEowpefvkljIwMG1vk22w2dHV1QxSL17+nlDCwEG0muRzc//BZ6ABO9llLyOdhP/I87L98DNkDBzeyurLi+tYDwOLiCcPKMiGfh+OJx2GJ9UDzBzawOtrsNE2D5bgPFL29MQwPDwEAWlvbIElhdHcH4HQ6zSpxwzGwEG0mP/85LJMTp/023WqF69++ycByCvYnHgNWccVcFwQ4nnwCaQYWWgfHjk1BliOIRhVcc821qKurBwDs3HkO6urqEQpJxm3JWw0DC9FmMjBwyrMry4R8Htb+vg0oqHwJqdRp/zsWvlGAsJgpdjm0iS0sJKGqChRFxtTUpDEejaq48MJCYGltbUNra5tZJZYEBhaizcTjWdUfWR2AvonuHiiGfDAE/TfPFNaqnIKgach3dW9QVbSZJJPz+OUvH8fgYL+xLsVqtcLn64IohtH5qsXcWx0DC9FmcuWV0K3W0/6RhSBg8ao3b0xNZSr9znfB/c2vnfJ7dABaUzMWL+elNTo9XdcxPz+PqqoqAIDL5cbExBh0Xce2bS0QRQmBQAgul8vkSksTAwvRZtLcjMW3XQfHD75/0tCiCwLgciF9480bXFx5yZ37OmT+5Go4fvGIcYfVqwkAkv/9U0AJNoqj0hGPx6GqMmQ5AkEQcMsthyAIAqxWKw4cOIjq6hrU1NSaXWbJ4ywj2mRS//D/wPrC87D2xl4TWnSLFRCAxH1fg843yNNK/J/74X3vITgf+/nKPW2sVkDTkPzUZ5B5xztNrpJKUSqVQjSqQlEimJgYN8YdDgcSiVlUV9cAAHw+Xk5craIHloceeggf//jHXzP+/ve/H//tv/23Yr880Zaj19Zh5uFfwHP3Z+D61gMQUgvGY9n9r0fyY3cid9F+EyssIx4PEt96EPZnnobr6/fDFjkK3W5H9rI3IvWu97xmwzgiAHjxxT/g6aefhLZ0Zs5isaCjoxOiGIbP11V2PXxKxYadYfnyl79sXLcDgObm5o16aaItR6+pxfzd/wvJO/8OtheeBxYXke/2Q+v2m11a+REEZPdfjOz+i82uhEqQrusYHx+D2+02zprU19dD0zQ0NjZCFMMIhUS43RXmFroJbFhg2blzJ+rq6jbq5YgIgF5Zhewll5ldBtGmk0jMQlFkKEoEs7Oz2LVrNy699A0AgJaWVtx44y38m7fOuIaFiIhoFTKZDHp6VCiKjNHREWPcbrev2JVWEASGlSLYsMByzTXXIB6Po7W1FTfccAPe9773wWq1ntVzrrWBEq2f5WPAY2E+HovSwWNROtbrWOi6jh/84HuYnZ0xnq+9vWPpVuQA7HZ2QF+Ns+nPWPRuzU8++SSOHDmCPXv2QBAEPPbYY/jWt76Fd7zjHfjkJz9ZzJcmIiI6Y7quY2JiArIs45JLLjHOnvzqV79CLBbDzp07EQ6HV6zLpOIremA5kX/4h3/A17/+dfzyl79EU1PTmp8nkUghny//duHlzGq1wOt181iUAB6L0sFjUTrO5FjMz89DUSKQ5Qimp6cBANdc86fw+boAAPl8HhaLBcLZnCbY4qqr3Ssun50JU9awXH311bj//vtx9OjRswos+byGXI5vBqWAx6J08FiUDh6L0nGyY5HNLiIWi0FRIhgeHjK2yLfZbPD5umG3O4/7OQH5vI7CHse0FmdzioSLbomIaMuamZnBY4/93Pi6paUVkhSG3x+E0+k0sTJ6NVMCy8MPPwyr1YodO3aY8fJERLQFTU8fgyxHAAD7l/bVaWhoRFdXNxobmyCKErzeajNLpFMoemB573vfi3379kGSJADAo48+iu9+97s4dOgQGhsbi/3yRES0hS0sJNHTcxTPPfcCJiYmABRuQz7//AtgtzsgCAKuvvoak6uk1Sh6YOnu7sb3v/99jI2NQdM0dHV14W//9m9x6623FvuliYhoi+rv78Mf//giRkYG4XTakEotwmq1wufrQigkwWI5u201aOMVPbDceeedxX4JIiLa4nRdh67rxh0ok5MTGBjog8UioKWlBe3t3ejqCsDtdptcKa0VF90SEVHZmpmJL22RL+Oii16PYDAEABDFMDRNw44d29Hd3Y54PMk7tsocAwsREZWVVCqFnp4oFCWC8fExY7ynJ2oEFq/XiwsvvAg2G3cb3iwYWIiIqCzkcjn84hePYGCgH/l8HgBgsVjQ0dEJUZTg83WbXCEVEwMLERGVJF3XMTs7g5qaWgCFzdwWFhaQz+fR2NgIUQwjGAyhosJjcqW0ERhYiIiopCQSs1AUGaoqY25uDocOvQculwsA8PrXXwKHw4G6unqTq6SNxsBCRESmy2QyiMWikOUIRkdHjHGbzY6pqUm0t3cAALZtazGrRDIZAwsREZmqv78XP/vZYeRyOQCAIAhoa2uHKIbh9/thtztMrpBKAQMLERFtGF3XMTU1CU3T0Ny8DQDQ2NiEfD6P2to6SFIYoZCEyspKkyulUsPAQmsixKfh/PGPYJuaAFqaILzxSmBbm9llEVGJmp+fh6oW9kuZnj6GtrZ2/Omfvg0AUFHhwTve8U54vdUQBMHkSqlUMbDQmVlchOfv7oT76/cDuSxgtQL5PKoBLL75rZj73/8MvbbO7CqJqARks4uIxWJQlAiGh4eg6zqAwt0+brcbmqYZO9NWV9eYWCmVAwYWWr18Ht73HoLjZ4ch6Es7Ri5fcwbgOPwT1PSomPnJz6FXec2rk4hKws9+9ggGBvqMr1taWiFJYfj9QTidTvMKo7LEwEKr5vzxD+F85OGTPi7k87AqCtyf/2cs3MEeUkRbyfT0MchyBLt374HHU1h/EgyGMDsbhyiGIYoSvN5qk6ukcsbAQqvm+vL/gW6xQtDyJ/0eQcvD/bWvYOGjHwPs9g2sjog22sJCEtGoCkWJYHJyEgDgdruxd+95AIBQSIQoSlyXQuuCgYVWR9dhf+43pwwryyzTx2Dt70N+qacHEW0euVwOfX0xyLKMoaEBaFrh8rDVakVnpw+NjU3G9y6vTyFaDwwstDq6Dmhn0Ol0aW0LEW0u+Xwejz/+qLFnSnPzNohiGIFAEG632+TqaDNjYKHVsViQDwRh7YlCWFrpfzK6y4X80q6URFS+ZmbiUBQZ8Xgcb3rT1QAAp9OJHTt2wW63QxQlo88PUbExsNCqpd77AVT+7d+c8nt0qxXpG28BuOkTUVlKpVLo6YlCUSIYHx8zxuPxOGprC+Hk4osvNas82sIYWGjV0jfeAvdXv1w4y5J/7VoW3WqFXlWFhf/rIxtfHBGdlbGxURw58jz6+/uQX5rfFosF7e2dkCTuPEvmY2Ch1ausxMz3f4zqQzfC/vzvodtsQC4HYWnzOK2lFbMPfA9ap8/sSonoNHRdRz6fh81W+DOQTCYRi/UAABoaGiGKEkIhERUVHjPLJDIwsNAZ0ZubMXP4cdifeRrOB78D6+QEHA11mL/qGqQO/Alg468UUSlLJBJLW+RHEAyKuOCCfQAAn68L5513PoLBEOrrG0yukui1+NeFzpwgILv/YmT3XwybzQJHrQfZeBLIncFdRES0YTKZDGKxKGQ5gtHREWO8tzdmBBabzYZ9+/abVSLRaTGwEBFtYk888RgURTZuQxYEAW1t7RDFMPx+v8nVEa0eAwsR0Sah6zri8WnU1tYZu8tqmo5cLofa2jpIUhihEBfQUnliYCEiKnPz8/NQVQWKEsH09DFcd90NaGpqBgDs3Xsedu7chcbGJm6RT2WNgYWIqAxls4uIxWJQVRlDQ4PQlzZ0tNlsmJ4+ZgSW5b1TiModAwsRUZmZnj6Ghx76HrLZrDHW0tIKUZQQCITgdDpNrI6oOBhYiIhK3PT0MczNzcHn6wIA1NTUwuFwoKKiAqIYhihK8HqrzS2SqMgYWIiISlAqtWCsS5mcnITH48E73/kXsFgssFgseNvbrkdlZSXXpdCWwcBCRFQistks+vv7oCgRDA4OQFvqkG6xWNDY2IRMJg23uwIAUFVVZWapRBuOgYWIqET89rfP4MiRF4yvm5qaIYphBIMhuN1u8wojKgEMLEREJpiZiUNVZXR2dqG5eRsAIBAQ0dPTY+yXwjt8iF7BwEJEtEHS6TSiURWKEsH4+BgAYH4+aQSWpqYmvPOd7+K6FKITYGAhIioiXdfR19cLRYmgv78P+XweQGGL/I4On3Hnz/IYEZ0YAwsRUZE9/fR/IpGYBQA0NDRCFCWEQiIqKjwmV0ZUPhhYiE4mmYTzZz+FZXICmrcaiwffBL2hweyqqIQlEgmoqozBwX68+923AiicNdm9ew/m5uYgSWHU1/N3iGgtGFiIXi2fR8U//k+4/88XYEkmoVssEDQNus2G9NtvRPJ/fg56JW8ppYLFxUXEYlHIcgQjI8MAAItFQG9vLxoaWgEA55yzx8wSiTYFBhai4+k6qm77IJwPfQ/CUm8WYWkvDCGXg+t734bt5Zcw88OfAh6ezt/K4vE4nnvuWfT19SKXywEonE1pa2vH9u1hdHZ2YmEhZ3KVRJsHAwvRcRyHH4br+9896eNCPg/bH/+Aii/+CxY++rENrIzMpus6crkc7Ha78XU0qgIAamvrIElhBIMiqqqqYLNZ4HQ6GViI1hEDC9Fx3F/+InSrFcLSnRwnImga3Pd/CQt//VHAxim02SWT81CUwhb5dXV1uPLKqwAAdXV1uOii16OtrR2NjU28w4eoyPhuS7RM12H/9VOnDCvLLJMTsPb1Ih8MbUBhtNGy2UX09hZuRR4aGoS+dHkwmZxHLpeDbSmonnvu68wsk6gsZLNZ9PXFoCgybrrpOlitrjU9z4YHlmQyiauvvhrj4+N48MEHcc4552x0CUQnt4qwYlhcLF4dZJrf/vZZHDnyPLLZrDHW0tIKUZTg9weNsEJEJ6frOkZGhqEoMmKxKBaX3i+z2SxcrjIJLF/4wheMjZOISoogIN/VDWtfr7Hg9mR0uwNaR8cGFUbFND09jaqqStjtDgCAzWZHNptFdXU1RDEMUZTg9VabXCVReYjH41CUCBRFxvz8nDHu9VZDFEW4XGvvibWhgaWnpwf/9m//ho997GP41Kc+tZEvTbQq6Xe/D55P/fdTfo9utSJ93Q3Qq7wbVBWtt1RqAdGoClmOYHJyAgcOXAlJCgMAwuEwtm3bhm3bWrguhWgVUqmU0XJiYmLcGHc6nQgEggiFJLS0tEIQBFgsljW/zoYGls985jO46aab0N3dvZEvS7Rq6VsOwf2V+2AZGjzhWhbdYoXuciH117ebUB2djVwuZ2yRPzg4AG3pdnWLxWLsQgsAbncF3O4Ks8okKgu5XA79/X1QlAgGBvpXzKeOjk6IYhhdXd3regl1wwLL4cOHoSgK7rnnHrz00kvr8pxW69qTGq2P5WOwaY5FbQ3m/uMwqm54G6yRo8YdQ8bmcXW1mP/WgxAkqeRWrG+6Y7GOMpkMHnjg60in08ZYS8s241Zkt3vtp6lPhMeidPBYrB9d1zE2NgZZjqCnR10xn7Zta4YkbUcwGEJFxckD/9mctNyQ99xUKoW7774bt99+OyorK9fteb3e9X2TobXbVMeiVgL++CLwyCMQvvlNYHgYQm0t8Pa3w3L99fCuccHYRtlUx2KN4vE4RkZGsHPnzqURDzo6WjE7O4vt27dj586dqKurK3odPBalg8di7WZmZvDyyy/j6NGjmJmZAVAIHo2NdcZ8qq+vL3odGxJY7r33XtTX1+O6665b1+dNJFLI57V1fU46M1arBV6ve3Mei/1vKPzveKk8kEqaU89pbOpjsQrpdNpYlzI2NgqLxYKamkajweAllxyA2+021qXE48U7jlv9WJQSHou1yWQyxnwaHR0xxu12OwKBIERRQltbu7EmZbXzqbraveZ1LEUPLMPDw7j//vvx+c9/HnNzhRXDCwsLxv8nk0l41rjFeT6vIZfjL2Ap4LEoHVvpWOTzeQwM9ENRIujv7zPuQBQEAa2t7Ugm03A4Cp+sHQ4X8nkdwKnvAFvf+rbOsSh1PBanl8/nMTjYD0VR0N+/suVEe3sHQiEJfr/fuKNO02CsXVmt09yAeUpFDyxDQ0PIZrP4wAc+8JrHDh06hD179uC73z35VuhERCcjy0fxxBOPG1/X1zdAFCWEQiI8nvW7/Ey0Wem6jsnJCSiKjGhURSq1YDxWV1cPUQwjFBLXdTnHWhU9sGzfvh3f+MY3VowdPXoUn/3sZ3HXXXdx4zgiWpVEIgFVlVFdXYPg0g7Dfn8Qv//97+D3ByCKEhoaGk2ukqg8zM3NQVVlKIqMeHzaGK+oqEAoJEIUw6ivbyipW/uLHli8Xi/27dt3wsd27tx53KI4IqKVFhcXEYtFIcsRjIwMAwCam7cZgcXlcuGWWw6V1JsqUakqzKceKEphPi23nLDZbOjq6oYohtHR0XlWe6UUU6ndmUlEhMHBAcjyUfT2xlZcR29tbYMohqHruhFSGFaITk7TNAwNDUJVZcRiMeRyr7ScaG1tgySF0d0dgNPpNLHK1TElsOzbtw+yLJvx0kRUBl588Qj6+/sAALW1tUvX0SVUVVWZWxhRmTh2bAqyHEE0qiCZfOUOnpqaGmM+eb3ltVs3z7AQkWmSyXmoqgJVVfCmN73ZeAPduXPXUu8RCY2NTTyLQrQKCwtJqKoCRZExNTVpjLtcLgQCIUjSdjQ1le98YmAhog2VzS6it7ewRf7Q0KBxHV1VZbzudRcAAHy+bvh8bOFBdDrZbBZ9fTEoiozBwQFjPlmtVvh8XRDFMDo7fbBarSZXevYYWIhoQyST83j22WcQi0WRzb5yHb2lpRWiKMHvD5pYHVH50HUdIyPDUBQZsVgUi4uLxmPbtrVAFCUEAiG4SnxX7jPFwEJERbO4uAiHo7DJlMPhMMLK8uUeUZRQXV1jbpFEZSIej0NRIlAUGfPzc8Z4VZUXkiQhFJJQU1NrYoXFxcBCROsqlVowtvTO5/O44YZ3QBAE2O0OXHLJG1BdXY1t21rK9jo60UZKpVKIRlUoSgQTE+PGuNPpRCAQRCgkoaWldUvMJwYWIjprp2o1PzeXgNdbDQAIh7ebWSZRWVieT6oqo7+/b8V86ujohCiG4fN1wW63m1zpxmJgIaKzcvToS/j1r59CJpMxxhobmyBJYQSDIbjdJ281T0QFuq5jfHwMihJBT08U6XTaeKyxsdHYIn8rzycGFiI6I7OzM7DZbEavnooKDzKZDCorK439Herq6kyukqg8JBKzUBQZihLB7OysMV5ZWYlQqLDOq66u3sQKSwcDCxGdVjqdRk+PCkWRMTY2inPPfR0uuuj1AICOjk786Z++Da2tbVviOjrR2cpkMsZ8Gh0dMcbtdvtSX6wwWlvbSnaLfLMwsBDRCeXzeQwM9ENRZPT39yKfzwMobIW/sPBKR1eLxYK2tnazyiQqC/l8HkNDA5Dlwnw6vuVEe3sHRDGM7u5u2O0OkystXQwsRPQauq7je9/7FuLxuDFWX98AUZQQConG5SAiOjld1zE5OWHs5pxKvRL06+rqjXUplZWcT6vBwEJEmJubQ19fDLt27YYgCEuNBtuRyWSM6+gNDY1ml0lUFubn56GqMmQ5gnh82hh3uysQConGfOIl1DPDwEK0RZ2o1XxDQyNaWloBAPv27ccll1zG6+hEq5DNLiIWi0FRIhgeHjK2yLfZbOjq6oYohtHR0cn5dBYYWIi2kOVW84oSQW9v74pW869eh1IO7eaJzKRpGoaHh6AoEcRisRXzqaWlFZIUht8f5FxaJwwsRFvI2NgofvKTHxlf19bWIhSSyrLVPJFZpqePQZYjUFUZyWTSGK+pqVm6hBrmfCoCBhaiTSqZnIeqKgCAvXvPA1D41NfY2ITm5m0QxXBZt5on2kgLC0moqgJFkTE1NWmMu1wuBAIhSFIYTU3NnE9FxMBCtIlks1koioyjR48areZdLjfOOWcPrFYrBEHAddfdwDdVolXIZrPo7++FLMsYGhowtsi3Wq3w+boQCkno7PTBZuOf0o3A/8pEm8DY2Chk+WWMjAwgkUhC0woL/pZbzS8vAATAsEJ0CrquY2RkGKqqoKdHxeLiovHY8pnJQCAIt9ttYpVbEwMLUZnSdd0IH729MUQiR+F2O+D1ViMYLNw6WV1dY26RRGUiHo9DVWUoioy5uYQxXlXlhSgWbu2vqak1sUJiYCEqI6nUAqJRFbIcwYUXXoTOTh8AQJLCyOezuPDC8+B2VyOf10/zTESUSqUQjapQVRnj42PGuMPhQCAQQigksuVECWFgISpxy63mFSWCgYF+4zq6okSMwFJXV483vvEAams9iMeTABhYiE4kl8sttZwozKfllhMWiwXt7Z2QJAk+XzfsdrvJldKrMbAQlahcLoennvoVenqiyGQyxnhjYxMkKYxgMGRidUTlQ9d1jI6O4ujRo+jpUZFOp43HGhsbIYqF+VRR4TGxSjodBhaiEpJOp+FyuQAU7kQYGxtDJpM5rtV8GHV1dSZXSVQeEolZ9PSoGByMYXR0wliM7vF4EApJkKQw6urqTa6SVouBhchk6XQasVgUiiLj2LEpHDr0HtjtdgiCgIsuej2sVitbzROtUiaTQSwWhSxHMDo6AotFgNvtgM1mR3e3H6IY5nwqUwwsRCbI5/MYHOw3Ws0vX0cXBAHj42Nob+8AAPh8XSZWSVQe8vk8hoYGjPmUy+UAFOZTe3sHLrjgXDQ2tkIQ+CevnPHoEW2wgYF+PProz5FOp4yxurp6SFKh1bzHw1bzRKej6zqmpiahKDJUVUEqtWA8VltbtzSfJNTUeI3F6LmcZmLFdLYYWIiKbG5uDtls1lh7UlNTg3Q6hYqK5VbzYdTXN/DWSaJVmJ+fX9oiP4Lp6WPGuNu9PJ8kNDQ0cj5tQgwsREWwuLiIWKwHihLByMgwfL4uXH31NQAAr7cab3vb29HU1Mzr6ESrkM0uIhaLQVEiGB4eMnZuttls6OrqhihKaG/vhNVqNblSKiYGFqJ1omkahoYGoSgR9Pb2rmg1n8/noWmaEVC2bWsxq0yisqBpGoaHh6CqMnp6elbMp5aWVkhSGH5/EE6n08QqaSMxsBCtk8OHf4L+/j7j69raWoRCEkIhia3miVZpevoYZDkCVZWRTCaN8ZqamqVb+yV4vdUmVkhmYWAhWoNksnAdPRzeYeyb0tHhw/j4OILBEEQxjKamJl5HJ1qFhYUkVFWBqsqYnJw0xl0uFwKBECQpjKamZs6nLY6BhWiVstks+vpiUBQZg4MD0HUdDocDO3bsAgCEw9uxY8dOXkcnWoVsNov+/l7IsoyhoQGj5YTVakVnpw+iGEZnpw82G/9MUQF/E2jryOchJGahO11ARcWqfmS51byiyIjFoitazW/b1oKK456HvUeITq2wRf4IFEVGT4+6Yj41N2+DKIYRCAThdrtNrJJKFQMLbXqWkWG477sXrm9+DZaltvHZ885H6v0fQuZtbwdOcadOKrWA//iPfzfuSvB6q41W89XVNRtRPlHZm5mJQ1FkKIqMuaU5CABVVV5jPtXU1JpYIZUDBhba1GwvHkH1n78VwvwchKXdZAHA9sLv4f3L9yH9s8OY+8KXAKvVaDU/OzuDSy65DABQUeFBMBiC3W6HKIaxbVsLr6MTrUIqlUJPTxSKEsH4+Jgx7nA4EAiEIIoSWlpaOZ9o1RhYaPNKJlF949teE1YAQFi+Xv7v38dIczOO7L8YAwP90DQNgiBgz55zUVVVBQA4ePBNG146UTnK5/MYGOiHokTQ399ntJywWCxob++EJEnw+bp5+ZTWhIGFNi3XQ9+DMDWFE31+m7RY8ILdDsVuR+r738VCUzNgtRqt5h0Ox4bXS1SOdF3HxMQ4ZDmCnh4V6XTaeGx5PgWDIVRUeEyskjYDBhbatJwPfgcQBGBp/YkOGOFl3GLBH5ZCSdXCAnZarfDfeDNbzROtUiIxu9THR8bMzIwx7vF4jP1S6usbzCuQNh0GFtq0LFOTyOg6FLsdL9tsCOZyOD9b2C0zlMthOJtFOJtFRz6P+bp6ZBhWiE4pk8kgFotCliMYHR0xxm02O/x+P0QxjLa2dracoKIoemB54okn8KUvfQnRaBTz8/Nobm7GwYMHcdtttxlrBIjWUz6fx+BgP/7T7UZ/VRWWV69kBcEILE4Abzru1LW+1JiQiFbSNA2DgwNQlAj6+nqRy+UAAIIgoK2tHaIYht/vh93Oy6hUXEUPLDMzM9i9ezduvfVW1NTUQFVV3HPPPVBVFffff3+xX562mF//+ilEIkeRTqdgC4Tg6I2hIZ/HzlwO4Wz2hD+jeauxeOkbN7ZQohKm6zqmpiaXLvkoSKUWjMdqa+sgSWEEgyI/dNKGKnpgufbaa1d8vW/fPjgcDnziE5/A+Pg4mpubi10CbWILC8kVi/kSiQTS6RQqKioQuuEm7PvlY2hKLsCi5U/487ogIPX+DwFL2+sTbWXz84WWE4oSwfT0MWPc7a5AKCQiFBLR2MiWE2QOU9aw1NTUAChszUx0phYXFxGL9UBVZQwPD+HGG29BbW1h06lzzz0P4fB2dHR0wmKxwPatB4Hrr4W+sLDi1mbdYgE0DYtXX4OFj37MrH8VItNls4uIxWJQVRlDQ4PGJok2mw0+XzckSUJ7eydbTpDpNiyw5PN55HI5RKNRfP7zn8eBAwfQ3t6+US9PZW651byiRBCLxVa0mh8dHTYCS1PTyjN2ufPOR/yxp+D+P5+H+9++CWGhcGo7H96B1Af+Eukbbwb4RkxbjKZpSy0nIojFelZ8eGxpaYUoSggEQnA6nSZWSbSSoC/H6SK77LLLMD4+DgC49NJL8c///M8r+rCsRSKRQj6vrUd5tEZWqwVer7uox2Jqago//vEPX9NqXpK2L7Wa967uiRYXIRw7Bric0GtqC7c8byIbcSxodUr1WBw7dgyKEoGiyJifnzfGq6trIIoSJCmM6upqEytcf6V6LLaq6mr3mu8i27DAEolElrY+j+Lee+9Fe3s7vvrVr/I0I71GMpnE7OwsWltbAQC5XA5f/OIXIQgCJEnCjh070NLCLfKJVmNhYQFHjx7Fyy+/jImJCWPc6XQa86m1lVvkU+nbsMByvEgkgmuvvRb/9E//hKuuumrNz8PEbL71+vSSzWbR19cLWY5gcHAAVVVe3HLLrcab6NTUJGpr6xhwT4GfJEuH2cdieT4pimy0nAAKW+T7fF2QpDB8vi7YbJt/Ky6zjwWtdDZnWEz5bZUkCXa7HQMDA2f1PPm8hlyOv4ClYC3HQtf1pevoMmKx6IpW8w6HE/PzC0ab+Zqaeug6eLxXgfOidGzksdB1HaOjI1AUGT096or51NTUbGyRvzyngK01nzgvSsPZnCIxJbAcOXIE2WyWi263uKef/k/84Q8vGF9XVXkhSRJCIbaaJ1qtmZk4VFWGLMuYm0sY45WVVZCkMEIhyViUTlTOih5YbrvtNuzatQuSJMHlciESieArX/kKJEnCwYMHi/3yVCIK65dUtLW1Gf16urq6EYm8zFbzRGconU4jGlWhKBGMj48Z4w6HA35/EKIoobW1jfOJNpWiB5bdu3fj4Ycfxn333Qdd19HW1obrr78e733ve9kRd5PL5XIrWs1rmobdu/fi4osvBQC0trbh0KH3sNU80Srk8/kV8ym/tK+QIAjo6OiEKEro6vJzPtGmVfTA8oEPfAAf+MAHiv0yVCJ0Xcf4+BgUJYKenuhrWs3X17/SYFAQBL65Ep2CruuYmBiHosiIRlWk0ynjsYaGRoiihGAwBI+n0sQqiTbG5l8iThtK13U88sjDWFjaoG251bwkhY1LQUR0aolEAqoqQ1EimJmZMcY9Hg+CQRGSFEZ9fYN5BRKZgIGF1iyTyUCWe3Ds2BguueQAgMJtkzt27MTc3BxEMYzW1ja2midahUwmg1gsCkWRMTIybIzbbHb4/X6IYhhtbe2cT7RlMbDQGcnn8xgaGoAsy+jv74Wm5eF2O9DdLaKlpXDX1wUXXGRylUTlQdM0DA4OQFEi6OvrRS6XA1C4XNra2gZRDMPvD3C9HxEYWGiVEolZvPjiH17Tar6xsQHnn3/uirUpRHRyuq5jamoSqipDVRXj8ikA1NbWQZLCCAZFVFVVmVglUelhYKGT0nXduC0ylUobe6Yst5oXRQnbtjWjrq4S8XiSmzIRncL8/DxUVYGiRDA9fcwYd7ncxnxqbGzirchEJ8HAQisst5pXlAi8Xi/e8IbC2pSmpibs3r0X7e0daG/vMLbI55sr0clls4tQ1R4oSgRDQ4NY7oRis9ng83VDkiS0t3ey5QTRKjCwEDRNw/Dw0FKr+RhyuUKreafTiUsueQOsVisEQTD2TyGikyusSxnCM8/04Q9/eAmZzCtb5Le0tEIUJQQCITidThOrJCo/DCxb3JEjz+PIkeeRTCaNsZqaGohiGKGQyE9+RKs0PX0MiiJDVWUsLCThdjuQzWZRXV0NUQxDFCV4vdVml0lUthhYtpiFhSScTpcRRBYXM0gmk3C5XAgEQpCkMJqamnmph2gVUqkFY13K5OSkMe52u7B79zloa+tGQwPXpRCtBwaWLSCbzaK/vxeyLGNoaABXXnkV/P4AACAc3on6+kZ0dvq2RKt5orOVy+XQ19cLRYlgcHAAmlZYbG6xWODzdSEUkhAI+NHYWM3F6ETriH+hNild1zEyMgxVVV7Tan5iYtwILFVVVbx9kug0dF3H6OgIVFVGT08UmUzGeKypqRmiGEYwGILb7QYA2Gzc3I1ovTGwbELpdBoPPvidFa3mq6q8kCQJoZCEmhq2midajdnZGShKBIqiIJGYNcYrK6sgihJEMYzaWs4noo3AwLIJpFIpTE5OoLPTBwBwuVxwuVzIZNIIBEIQRQktLa28jk60Cul0Gj09KhRFxtjYqDFut9uN+dTa2sb5RLQKmUwGPT0q+vp68aY3vfmsnouBpUzlcjmj1fzAQD8EQcChQ+8xbpU8ePBP4PFUshsy0Srk83ljPvX39yGfzwMo7DPU0dEJUZTQ1eXnfCJahXw+j8HBfiiKgv7+V1pODA72o7HxnDU/LwNLGdF1HePjY1AUGT09KtLptPFYY2Mjksl5I7Dwsg/Rqem6jomJCShKBNGoinQ6ZTxWX98AUZQQConweCpNrJKofCQSCfzhDy8gGlVXtHCpq6uHKBbuQD0bDCxl5KWX/ognn/yl8bXH40EoJEGSwqirYy8fotVIJBKIRgu3IsfjcWO8oqICoZAEUZTQ0NBoYoVE5UPTNKODeC6XxYsvHgFQaOEiiiJEMYz6+oZ1uYTKwFKillvNV1ZWoaOjEwDQ3d2NZ599Gt3dhVbzra1tbDVPtAqLi4uIxaKQ5QhGRoaNcZvNju7ubohiGO3tHZxPRKtQmE+FlhMejwdXXPEnAApnUvbuPQ+trW3o6Ohc9/nEwFJC8vk8hoYGIMuycd2vo6PTCCweTyXe9a73cr8UolXQNA1DQ4NQlAh6e2PGdXRBENDa2gZRlOD3B+FwOEyulKj0nayFi81mx2WXZY31Xfv3X1y0GviXrwRMTk4sbemtrLjuV1tbh/b2jhVdkxlWiE5tamoSihKBqipYWDh+PtUutZyQuPcQ0Rn4wx9ewAsv/P4kLVykDVuMzr9+JeDpp//TOE3tdlcYreYbGhp56yTRKiST80tb5Ms4dmzKGHe53AiFRIRCEpqauEU+0WosLCRhtzuMIJLP540WLsFg4e+TGS1cGFg2UDa7iFgsBlWVccUVV8LtrgAAbN++ExUVFRBFtponWq1sdhG9vYUt8oeGBqHrOgDAarXC5+uGJEno6PBxPhGtQjabRV9fDIoiY3BwAFdccSVCIQkAIIqFDUc7O82dTwwsRaZpGkZGhpeu+/Ugmy1c91NVBbt37wWApR0zJROrJCoPyy0nZDmCWCxqzCcAaGlpRSgkIhAIweVymVglUXlYnk+KIiMWi65o4TI5OWEEFo+nEt3d5t/ez8BSJKnUAl544Xmoqrziut9yq/muLr+J1RGVl+np6aV1KTLm5+eNca+32gj81dU15hVIVGay2UV85zvfWtHCpTCfxJJt4cLAso6Ovx8dEPDii0eQz+fhcrkQCIQgSWFTrvsRlaNUagHRqApZjmBycsIYdzqdCASCEMUwtm1r4XwiWoVUKoWJiTH4fN0AALvdgcrKSiwuZspmPjGwnKVsNov+/l7IsoxsdhF/9mfXAQDcbjcuuGAfqqtr0Nnp4909RKuQy+XQ11dYlzI4OABN0wAAFosFnZ0+iGIYPl8X5xPRKuRyOfT39xktXADg0KH3GF3FDxw4CLe7omxaTnDWr8Fyq/nlLfKPv+43Nzdn3DJ57rmvM6tEorKh6zrGxkahKBH09ESRyWSMx5qamiGKEoLBkLFInYhO7pUWLoX5dKIWLsuBxeutNqvMNWFgOUOqKuPZZ59Zcd2vqsq71HeE+zsQrdbs7AwUJQJFUZBIzBrjlZVVS7f2h1FXV2dihUTlR5aP4vHHHzW+rqysNFpOlHsLFwaW00ilUhAEwbjrQBAEzM0l4HA44PcH2Wqe6Ayk02n09KhQFBljY6PGuN1uh98fhCSFOZ+IVimTyaCnR0VFRYVxI4fP1w2n04muru5N18KFgeUEcrmc0Wp+YKAf559/Ic4773wAhV+GK698E3y+7rK57kdkpnw+vzSfCi0n8vk8gEL47+johChK6Orycz4RrcKJWri0tLQagcXtduNd73rvptx/iIFlSaHV/DhkOYKeHnXFdb/JyUnjn+12O4JB0YwSicpGYT5NQFEiiEZVpNMp47H6+oalS6giPB7z93YgKgeTkxOQ5cJ8Or6FS11dPXy+7hUtXDZjWAEYWAAU3ly///3vrAgmHo/HuO5XX99gYnVE5WNubg6qKkNRIojH48Z4RUWFMZ8aGhpNrJCoPP3mN88Yd/q43RXGfilbqYXLlgwsmUwGg4MDCAZDAAqnpuvq6hGPz8Dv90MUw2hra9801/2IiqnQaj4KWY4YPbGAQhfX7u7CdfT29g7OJ6JVWG7hoigRvPGNVxg3coTDO+BwOCCKYXR0dG7J+bRlAoumaRgcHICiRNDXV7juV1NTY3za27dvPy699A2w29lqnuh0NE3D0NAgFCWC3t5eo9U8ALS1tUMUJfj9QTgcnE9Ep6NpGoaHh5ZauMSM+RSNKsb2GIFAEIFA0MwyTbepA4uu60ut5mVEo69uNV+3Yp0Kr6UTnV5hPkWgqq+eT7VGq3ne2k+0OqlUCi+88PvXtHCpqamBKIYRCIRMrK70bOrAMjIyjB/96AfG1253BYLBEERRQmMjW80TrUYyOQ9VVaAoMo4dmzLGXS43QqHCdfSmJs4notXI5/PGolir1Yo//vFF5HJZtnBZhU0TWJav++m6jnB4OwBg27YWVFZWobl5GyRJQnt756ZdPU20nrLZRfT29kJVC63mdV0HUHiD9fm6IUkSOjrMbTVPVC6Ob+GSSi3g7W+/EQDgcDiwb99FqKryorOT8+l0yjqwHH8dPRbrQTabRWVlJSQpDEEQYLVacfPNt/KXgGgVllvNy3IEsVgU2ewr61K2bWuBKEoIBELGJopEdHLL80lRZMRi0RUtXGZm4kY35N2795pUYfkp28CSSqXwzW9+DYnEnDFWXV0NUQwjl8sZm1AxrBCd2vT09NKtyDLm51+ZT4VW84Vbkaura8wrkKjMRKMKnnnm169p4SJJhRYuy2GFzkzZBpZMJoP5+Xk4nc6ldSlhNDdv43U/olVIpRYQjaqQ5QgmJyeMcafTWTat5olKRSpV2BhxuamgzWYzWrgEAoV1ky0trZxPZ6lsA4vdbsdVV70ZbW2dbDVPtAqvbjWvaRoAwGKxoLPTh1BIQldXN+cT0Sq8uoXL3r3n4cILLwIAdHT4cOWVV8Hn62LLiXVU9Hemn/70p/jRj36El156CYlEAj6fD7feeiuuu+66s0qbHo8HgUAQuZy2jtUSbS7Ht5qPRlVkMhnjscbGJkhSGMFgCG53hYlVEpWH4+dTT090xdYY09PHjH+2Wq3GxqS0fooeWL72ta+hra0Nd9xxB2pra/H000/jE5/4BMbGxnDbbbcV++WJtqTZ2RkoigxVlTE7O2uMV1ZWGvul1NXVmVghUXnRdR0PPfQ9TEyMG2OVlZVGy4m6unoTq9saih5Y7r333hVvjPv378fMzAy++tWv4r/8l/+yJbcXJiqGdDqNP/yhB7/97fMYHn5li3y73Q6/PwhJKrSa53V0otPLZDLo7+9DKCRCEAQIgoCGhgbE49Pw+wMQxcJ84t+wjVP0wHKiT3Hbt2/Hd7/7XSwsLKCykjvMEq1VPp/H4GA/ZFnG4GAfHA4rUqlFCIKAjo5OiGJhXQpbThCdXj6fx9DQAGRZRn9/oYWL1+vFtm0tAIALLtiH17/+Es4nk5iyuu53v/sdmpubzzqsWK1MtmZbPgY8FhtH13Wj1byqKsYdChaLgIaGZnR1FXqOsN2EeTgvSsfpjsVyCxdZjkBRFKRSr7ScaGioh6blYbMVftbrZduJs3U2J3g3PLA899xzePjhh/Gxj33srJ/L63WvQ0W0Hngsii+RSODo0aN4+eWXMT09bYw3NNQiHA5jx44daGpqMrFCejXOi9JxsmMxPDyM//iPh4yv6+trVswnXkItHRsaWMbGxnD77bdj3759OHTo0Fk/XyKRQj7Pu4TMZLVa4PW6eSyKZHFxEbFYFLIcwfDwsLFFvs1mW7qOLhmt5pc/QfJYmI/zonQcfyzS6TR6enqQy+Wwa9c5AAC3uxpOZwUaGhohSWF0dLzSwmVmZuFUT01rUF3tXvO6nw0LLIlEAu9///tRU1ODe+65Z10WKuXzGm9rLhE8Fuvn+JYTvb29Rqt5AGhtbYMkheH3B+FwOJa+H8aeKgCPRSnhsTCfpmno6+vDb37ze0SjPcjlsnC7KxAKhY1gcv31Nxt/k3QdPGZFtPSZa002JLCk02l88IMfxNzcHL7zne+w/TzRCRw7NgVZjiAaVU7Yaj4UkuD1ek2skKh8TE9PQ5aPoqdHgaZlkUotQtN01NTUIBSSoGmvdE3mnT7loeiBJZfL4SMf+QhisRgeeOABNDc3F/slicrGwkISqqpAUWRMTU0a4y6X22g5wevoRGcuEnkJR468AItFQG2tF4GAhGBQQlNTM+dTmSp6YLnrrrvw+OOP44477sD8/DxeeOEF47EdO3YYp7WJtopsNou+vhgURcbg4ICxLsVqtcLn64IohtlqnmiVstks+vt7Icsy9uzZi/b2DgCAKIaRSCSwfft27N27E3NzGV7qKXNFDyxPPfUUAODuu+9+zWOPPvoo2tvbi10CkelO1Wq+uXkbJCmMQCAEl8tlYpVE5UHXdYyOjkBRZPT0qMZ8crtdRmBpaGjEVVe9BTabZak/VuYUz0jloOiB5bHHHiv2SxCVrHg8DkWJQFFkzM/PGeNebzVEUWSreaIzkMvl8PvfPwdFkTE3lzDGq6q8EMXCFvm0ebEtK9E6S6VSiEZVKEpkRd8Rp9OJQCAIUQxj27YWXkcnWoVcLmd0ELdarYjFopibS8DhcCAQCEEUJbS0tHI+bQEMLETrIJfLob+/z2g1v3ybscViWdoiP4yurm7jjZeITi6Xy2FgoB+KEsHY2BhuueUQ7HY7BEHA+efvA6DD5+uG3W43u1TaQHz3JFqj41vNR6MqMplXrpE3NjZBksIIBkNwuytMrJKoPOi6jomJcchyBD09KtLptPHYyMgwfL4uAEAwGDKpQjIbAwvRGZqdnYGiyFBVGbOzs8b4K63mwyds+klEJzY8PIRf/epxzMzMGGMej2dpPkmor28wrzgqGQwsRKuQTqcRi0WhKDJGR0eMcbvdDr8/CFGU2GqeaJUymQwymYyxEaLH48HMzAxsNjv8fj9EMYy2tnbOJ1qBgYXoJPL5PAYH+yHLMgYG+pDL5QAAgiCgvb0DohhGd3c3W80TrUI+n8fQ0AAURUZfXy86O31405veDACoqanF1Ve/BW1t7ZxPdFIMLETH0XUdk5MTS5d8FKTTKeOxurr6pS3yRVRWVppYJVF50HUdU1OTxnxKpV5pJphIJKBpmnEWpavLb1aZVCYYWIgAzM3NQVVlKEoE8XjcGK+oqEAoJEIUw6ivb+Ctk0Rn4Be/eATRqGp8XWg6KCIUEtHYyJYTdGYYWGjLWlxcRCzWA0WJYGRk2Ngi32azoaurG6JYaDXP6+hEp5fNLiIWi6GrqxtOpxMAsG1bC/r6euHzdUOSJLS3d7LlBK0ZAwttKZqmYWhoEKoqIxaLIZfLGo+1trZBksLo7g4Yb7hEdHKapi21nIggFutBNpvF5ZdfgXB4BwBAkrZDFMOcT7QuGFhoSzh2bAqyHEE0qiCZTBrjNTU1S+tSJOOOBSI6tenpY5DlCFRVXjGfqqurIQivnJFkc1taTwwstGktLCShqgoURcbU1KQx7nK5EAiEIEnb0dTE6+hEZ2JhIYnvfvdbxiXUwnwqtJxobt7G+URFw8BCm0o2m0VfXwyKImNwcMB4U7VarfD5uiCKYXR2+ngdnWgVstks+vt7EY9P44ILLgIAVFR40NHhg9VqMeYTW07QRuBvGZU9XdeXrqPLiMWiRqt5oLDoTxQlBAIhuFwuE6skKg+6rmN0dASKIqOnR8Xi4iIEQcD27buM2/nf/OZreCaFNhwDC5WteDwOVZUhyxHMz88Z41VVXkiShFBIQk1NrYkVEpWPRGIWsnwUsixjbi5hjFdWVkGSwrBYXgkoDCtkBgYWKiupVArRqApFiWBiYtwYZ6t5orMzPDyE5577LYDCfDq+5QTnE5UCBhYqece3mu/v74OmaQAAi8WCjo5OiGIYPl8XW80TrUI+nzfmU1tbB3btOgcA4PcH0dfXi2AwhK4uP+cTlRwGFipJuq5jfHwMihJBT090Rav5xsZGY4t8t7vCxCqJyoOu65iYGIcsR9DToxrzaW5uzggsTqcTV199jZllEp0SAwuVlERiFopS2CJ/dnbWGK+srDRazdfV1ZtYIVF5ef753yMSeQkzMzPGmMfjMeYTUblgYCHTZTIZ9PSoUBQZo6MjxrjdboffH4AohtHa2sYt8olWIZtdXNHxeGJiDDMzM7DZ7PD7/RDFMNra2jmfqOwwsJApllvNy7KM/v5e5HI5AIW7D9ra2iGKYfj9fraaJ1oFTdMwODgARYmgr68PN9xwE6qrawAAu3fvhc/XDb8/wJ1nqawxsNCG0XUdk5MTUFXlNa3m6+rqjXUpy3s9ENHJ6bqOqalJKIqMaFTBwsIr86mvrxd79pwLAGhpaUVLS6tZZRKtGwYWKrq5uTlEowpkOYJ4fNoYX241L4oSGhoaeesk0SrF43H87Gc/xfT0MWPM5XIb86mxscnE6oiKg4GFimK51byiRDA8PGRskW+z2dDV1Q1RDKO9vYNb5BOtQja7iLm5OWPBeWVlJebn52Cz2eDzdUMUxaXt8jmfaPNiYKF1o2kahoeHllrNx5DLZY3HWlpaIUlh+P1BtponWgVN05ZaTkQQi/WgsrISN954CwRBgN1ux9VXX4P6+gbOJ9oyGFjorE1OTuI3v3kekcjRFa3ma2pqltalSPB6vSZWSFQ+pqePQVFkqKqM+fl5Y1zTNKRSC6io8AAAWlvbzCqRyBQMLLQmCwtJqKqCaFRBMjmLVGoRmqYvtZoPQZLCaGpq5roUojPwm988g9/97rfG106nE8FgCKIYRnPzNs4n2tIYWGjVllvNy7KMoaEBaJoGi0WAx+OC3x9AICCy1TzRKuVyOfT19aKhocFo0tnS0gqLxQKfrwuhkASfr4vziWgJZwKdkq7rS9fRZcRiUSwuLhqPNTdvw/bt23HBBXuRTmvI5TQTKyUqfbquY3R0BKoqo6cnikwmgz179uL1r78UANDW1o5Dh97NlhNEJ8DAQicUj8ehqjIUZWWr+aoqL0SxsKV3TU0tbDYL3G430unkKZ6NaGubnZ2BokSgKAoSieNbTlQZa1KAQkNPhhWiE2NgIUMqlUI0qkJVZYyPjxnjDocDgUAIoiihpaWV19GJzoCmafjBD75vbJRot9uN+dTa2sb5RLRKDCxbXC6XM1rNDwz0I5/PAyh80mtv74QkSfD5utlqnmgV8vk8Bgb6MTTUj7e97a0ACnNJFCXE49MQRQldXX7OJ6I1YGDZgk7Wah4AGhsbIYphBIOhFaeqiejECvNpAooSQTSqIp1OwWIRcP75e1FVVdjobf/+i3kmhegsMbBsIYnErLG/w4lazUtS2NhJk2grsVh64HZ/A1brUQB2ZLP7kU7fAl2vPenPLCwkcfToy1CUyIr5VFFRgXB4O7xeL5Y2eC7jsJKBzfY8BCEFTetAPh80uyDawhhYNrlMJoNYLApZjmB0dMQYt9nsCAQCEMUwWlvb2GqetqgcKiv/Bm73l6HrVgB5AAIcjh/D47kLc3P/LzKZd57wJxOJBH7zm2cAFOaT3+9HKCShvb0DDocNNTUexOPluhg9hYqKf4Tb/WVYLDPGaDZ7IZLJjyObvcK80mjLYmDZhPL5PIaGBqAoMvr6epHL5QAUPuW1tbVDFMPw+/2w29lqnra2ysq/gcv1FQCAIOSXRgunRXQ9A6/3v2Bmxolo9AKoqgy3uwIXX1y4Bbm5eRskKYzW1nb4/QE4HJtlPqVQU/OnsNl+C0FYuVWBzfYcqqv/HHNz9yKTudmk+mirYmDZJI5vNa+qinFHAgDU1tZBkgpb5FdWVppYJVHpsFqjcLu/fMLHdB2YnLTgpZfsOHr0TkxNfRiAAKfTiX379sNms0EQBBw4cOXGFr0BPJ7PnjCsAIAgaNB1oKrqw8hmL4am+UyokLYqBpYyNz8/D1WVIcsRxOPTxrjbXYFQSEQoJKKxsamMr6ETFYfL9XXouvW4MysFf/yjDb/7nQNTU8udj+dRWTmE7u5rEApJm7wjcgou11dOGFaWCUIh0LndX0Uy+XcbVxpteQwsZSibXUQsFoOiRDA8PAR9aWWfzWZDV1c3RFFCe3vnJn9jJTo7VuvLAPJYXARsNmB5GVc8bsHUlBUWi45AIIcdOzQ0NrZgcfEyU+vdCHb7s7BY5k77fYKQh8PxIwYW2lAMLGVC0zQMDw8tbendg1wuazzW0tIKSQrD7w+y1TzRKui6jsFBHarqgqra8OY3pxAMFs607NqVRXW1jlAoC7cb0HULksmtsW+KICyc/puM7y3XBcVUrooeWPr7+/GVr3wFR44cgaqq8Pv9+PGPf1zsl900pqePQZYjUFUZyeQrbxA1NTUIhQpb5Hu91SZWSFQ+pqenoSgRqKqCTKYCdrsdggD09dmMwFJbq6O29pUPBIKgIZvdb1bJG0rT2lb1fbpugaZ1FLkaopWKHlhUVcUTTzyBPXv2QNM04/IFndzCQhLRqApFiWByctIYd7lcCARCkKQwmpqauS6FaJUymQz+4z/+HZOTE8aY03k+9ux5FDt2pNDaeuI1G7puRS63C7nc6zaqVFPlcruRy4VhtcoQhFO9V2tIpf5io8oiArABgeXAgQM4ePAgAOCOO+7AH//4x2K/ZFnKZrPo7++FLMsYGhqAphXeQK1WKzo7fRDFMDo7fWw1T7QKuVwOx45Nobl5GwDA6XRC13VYLBZjPvl8XaisrEFV1V/hRJ+jCvuyODA/f8/GFm8qAcnk36K6+tBJv0PXrdC0NmQyf76BdRFtQGDhhmQnt9xqXlFk9PSoWFxcNB5rbt4GUQwjEAjC7XabWCVRedB1HWNjo1CUCHp6osjnNbzrXe8x9kd54xsPoLKyckU35HT6L6Drbng8d8JqHV8KKToEQUM+vx1zc19ALrfXnH8hkywu/hnm5++Gx/NxABbjLipdFwDo0LRWzMz8BwB2laaNVdYf163W8gxDMzNxyHIEiiIjkUgY4zU11RDFwhb5NTUn3xK8lCwfg3I9FpvJVj0Ws7MzkOUIZFlGIjFrjFdVVSGZTKCiogkA0NKy7YQ/n8+/A4nE9bDbfwaLpbA1fy73euTzrwMgYC0nNcv9WGSztyGROACn80twOH4CIAVN60Qm814sLt4Ii8WDcvksWu7HYrM5m5UMZR1YvN7yOfOQSqUgyzJefvlljI6OGuPV1ZWQJAnbt29He3t72a5LKadjsdltpWPxxz/+EY888ojxtdfrgSiK2LFjBzo6Os5wPl2/7vWV97G4YOl/BRZL4fZvT5n2RC3vY0FAmQeWRCKFfP7kGxyZLZfLob+/D7IcwcBAP/L5wqlVi8WCjo5OSFIYXV3dRqv5mZnV31JYKqxWC7xed8kfi61gsx+LfD6P/v4+uFwutLYW7mbxehuQyeTQ3t4BSQqju9tfEvNpsx+LcsJjUVqqq91rXipS1oEln9eQy5XWL2Ch1fw4ZDmCnh4V6XTaeKyxsRGiGEYwGEJFxSsfU0rt32EtSvFYbFWb6VgU5tMEFCWCaFRFOp1CZ6cPb3lLCwDA7fbg1lvfA5fLZfxMKf27b6ZjUe54LErD2dwoXNaBpZQkErNLfXzkFa3mPR4PQqHCupS6unrzCiQqI4lEAtGoAkWJIB6PG+MVFRWoq6uHruvG5Z7jwwoRbV4MLGchk8kgFotCliMYHR0xxpdbzYtiGG1t7bxTiugMPfbYz405ZbPZ0d3dDVEMo729g/OJaIsqemBJpVJ44oknAADDw8OYn5/H4cOHAQAXXngh6urqil3CutI0DYODA1CUCPr6epHL5QAAgiCgra0dohiG3++H3b5ZWs0TFY+maRgaGoSqynj96y81buGXpDAsFsvSfAoYtyYT0dYl6EXeenZoaAhXXHHFCR/7xje+gX379q35uePx5IZck9R1HVNTk0uXfBSkUq8s5qutrYMkhREKSaisrCx6LaXGZrOgttazYceCTq6cjkVhPhW2yF9YKMynSy55A845ZzcArLjkU47K6VhsdjwWpaWuzrPmW8yLfoalvb0dsiwX+2WKYn5+HqpauI4+PX3MGHe7KxAKiQiFRDQ2NpX1GyvRRslkMjh69CUoioxjx6aMcZfLjWAwhNbWVmOMc4qIXo1rWF4lm11ELBaDqsoYGho0eh/ZbDb4fN2QJAnt7Z2wWq0mV0pU+o4/U6JpeTz77K+haRqsVqsxnzo6fJxPRHRaDCwoXEcfGRmGokQQi/Ugm32lU2tLSytEUUIgEILT6TSxSqLyoOs6RkaGIcsRpFIpvOUtbwVQODO5d+95qKysRCAQ2lR39wjCNJzOB2G1DkDXncjn/wTAiS+FE9HabOnAMj19zLgVeX5+3hivrq6GKIYhihK83moTKyQqH9PT01BVGYoiY35+zhhPJGaNebRv336zyiuSPDyez8DtvgdAFoW3VB2C8I8AdsFiuR9A2NQKiTaLLRdYUqkFY13K5OSkMe50OhEMhiCKYTQ3b+M1dKJV6uuL4bnnfovJyQljzOl0IhAIQhTDqKrymlhdcVVW/je4XPdDEJbvXcge9+hRVFUdxMzM48jnQ2aUR7SpbInAks1m0d/fB0WJYHBwAJpWWClusVjg83VBFMPo7PTBtpYuZ0RbTC6Xg65rxq372WwWk5MTsFgs6Oz0IRSS0NXVbdJ8ysNu/yWs1kHouhuLi5dD15uK8ko22+/gdn/llLUIQhIez39HIvHdotRAtJVs2r/Quq5jdHQEiiKjp0fF4uKi8VhTU7OxRf7yvg9EdHK6rmNsbBSKEkFPTxTnnvs6nHvu6wAAXV1+XHLJZUvzqcK0Gl2ur6Oi4n/Aah0zxnTdikzmbZif/0fo+vruNO1yfQW6boMg5E76PYKQh8PxCCyWIWha+7q+PtFWs+kCy8xMHKoqQ5ZlzM0ljPHKyipjv5Ta2loTKyQqH7OzM1CUwrqURGLWGB8aGjQCi91uxznn7DGrRABARcXn4PF85jV9SgQhD6fzB7DZnsfMzC/WNbTY7b8+ZVh5pQYdNtvzWFzcqoGlENocjl8ASEPTupBO38wAR2dsUwSWdDqNaFSFqsoYGxs1xh0OB/z+IERRQmtrG9elEK2Sruv4yU9+hMHBAWPMbrfD7w9CksJGt+RSYLW+BI/nMwCAE01xQcjDau2Dx/NpzM//f+v4ymey52ZR9+csWTbbs/B63wWrdQS6vvznRkdFxf9AOv1uzM//IwC7mSVSGSnbwKLrOmKxHhw9ehT9/X3I5/MAChtOdXT4IIoiurpeaTVPRCeXz+cxNjaKtrbCp15BEOByuZbmUydEsbAupRRbTrjdX17VpRmX69+QTN4FXV+fO/9yuXNhtQ6s6ixLLrdrXV6znNhsR1BT81YsL0R+9X8nl+urEIQ5zM19GQA/TNLplW1gSSQS+OlPfwJNK3xyaWhohChKCAZD8Hi23hb5RGdK13VMTk4YLSfS6RRuvPFmo6v4hRdehP37Ly75+eRw/GKVl2bSsNl+h2z2wLq8bjr9Prhc3z/l9+i6FdnspdA0/7q8ZjnxeO4EkIUg5E/4uCDocLm+h1TqA8jl1t6ihbaOsg0suq7D4/HA7w9BksKor28wuySisjA3N7e0X0oE8XjcGK+oqMDcXMIILOWzB1Fm1d8pCKv/3tPJZl+PdPptcDp/CEE4UY8aCwA7kslPr9trlguLpQcOxxOn/T5dt8Ht/jLm5hhY6PTKNrB4PB4cOvRuaOxlRbRqo6Mj+OEPH1rRcqK7249QSEJHRycslrU1JTNTPi/CYpk86Sf5ld8bXMdXFjA39yXoehVcrm+iEFAK44UzPs2Ym/smcjlzFySbwWZ7cVXfJwg52Gy/K3I1tFmUbWCx2+2wWBaNPVWIaCVN0zA0NIhsNotAoPCHuqmpGS6XG7W1tZCkMPz+IByO0luXcibS6ffA4fjVKb9H1y3I5S4swgZuDszP/wsWFv5vuFwPwGrth667kc9ficrKtyOfzwDYiu9RZ7ImhetXaHXKNrAQ0YlNTU3h5ZdfhqrKWFhYQFWVF35/AIIgwGq14uabby37kHK8TOatyGb3wGb74wnPsui6AEBAMvmJotWgaT4sLPyt8bXNZkHh7XX9LkGVk1xuL3RdOG4H4BMrrPHh5SBaHQYWok0gmZxHLBbF4GAMg4MjxmJ0l8sNn68LuVzWuMNnM4WVAjtmZ/8d1dVvh93+O+i6FYKQX9qTRQDgQCJxP7LZS02uc+vQNB8WFw/C4XjslJfqBCGPdPp9G1gZlTMGFqJN4LnnfoNI5GW43Q5YrVZ0dXVBkiR0dPhgtVrNLq/odL0eMzOPwm5/DC7XN2G19kLXK7C4+Gak07es+y63dHrJ5P+E3X45gNRJz3yl03+BXO68jS+OyhIDC1EZ0XUdIyPDUBQZO3bsQnNzMwBAFMOYmYnjggvORVNTO2y2zXYWZTUsyGYPIps9aHYhBCCflzAz8wi83r+AzaYubRwnAMgDsCKVug3J5CdNrpLKCQMLURmIx+NQlAgURcb8/BwAwGq1GoGlpaUV1113PWprPYjHk8jltuJCTyo1+fw5iMefg93+FByORwGkoGk+pNM38KwXnTEGFqISlcvlcPToy1CUCCYmxo1xp9OJQKCwRT5R6ROQzV6CbPYSswuhMsfAQlRCdF03el5ZrVa88MLvMD8/D4vFsrRFfhhdXd2w2Th1iWhr4bsekcl0Xcf4+BgUJYKRkWHccMPNsFgsEAQB5557PjQtj1BIhNtdYXapRESmYWAhMkkiMQtZjkBVZczOzhrjQ0OD6Oz0AQB27TrHrPKIiEoKAwvRBhsbG8UzzzyN0dERY8xut8PvD0AUw2htbTOxOiKi0sTAQlRk+Xwei4uLcLvdAAr9e0ZHRyAIAtrbOyCKYXR3dxsbuxER0WsxsBAVga7rmJycgKLIUFUFPp8PBw5cCQCor2/AG95wOTo7u1BZWWlypURE5YGBhWgdzc3NQVVlKIqMeHzaGB8bG4WmacZi2h07dplYJRFR+WFgIVonv/zlY4hEXoZeaGIDm82Grq5uiGIYHR2dsFgsJldIRFS+GFiI1kDTNAwPD2HbthbY7XYAQFVVFXRdR2trGyQpjO7uAJxOp8mVEhFtDgwsRGfg2LEpyHIE0aiCZDKJK6+8CsFgCACwY8cuhEISvF6vyVUSEW0+DCxEp7GwkISqKlAUGVNTk8a4y+XG4mLG+Nrtdht3AhER0fpiYCE6hWRyHv/6r1+HphWaCVqtVvh8XRDFMDo7fbBarSZXSES0NTCwEC3RdR0jI8OYnp7GOefsBgB4PJVobGyCIAgQRQmBQAgul8vkSomIth4GFtry4vE4FCUCRZExPz8Hq9WKUEg0gslb3/pnxsJaIiIyBwMLbUmpVArRqApFiWBiYtwYdzgcCARCyOVyxhjDChGR+RhYaEtSVRlPPfUkAMBisaCjoxOiGIbP18WAQkRUghhYaFPTdR3j42NQlAhaW9sQDIoAgGAwBFVVEAqJCAZDqKjwmFwpERGdCgMLbUqJxCwURYaiRDA7OwugsFZlObBUVHhw3XU3mFkiERGdAQYW2lQikZcRiRzF6OiIMWa32+H3ByCKYRMrIyKis8HAQmVN13UIgmB8raoKRkdHIAgC2ts7IIphdHd3w253mFglERGdLQYWKju6rmNycgKqqiAaVfD2t98Ij6cSALB79x60t3ciFBJRWVlpcqVERLReNiSw9PT04DOf+Qyef/55eDweXHvttfjIRz4Ch4Ofemn15ubmEI0qkOUI4vFpY7ynJ4rdu/cCAHy+bvh83SZVSERExVL0wDI7O4t3vetd6Orqwj333IPx8XHcfffdSKfT+OQnP1nsl6dNYGYmjieffALDw0PQdR0AYLPZ0NXVDVEMo729w+QKiYio2IoeWL797W8jmUziX/7lX1BTUwMAyOfzuOuuu/DBD34Qzc3NxS6ByoymaVhYWDAu6bjdFRgbG4Wu62hpaYUkheH3B+F0Ok2ulIiINkrRA8uvfvUr7N+/3wgrAHD11VfjU5/6FJ566in8+Z//ebFLoDIxPX0MshyBqsqoqPDg7W+/EQDgdDpx4MCVaGxshNdbbXKVRERkhqIHllgshuuuu27FmNfrRWNjI2Kx2Fk9t9VqOaufp7O3fAzWeiwWFpJQlMK6lKmpSWNc1zUsLqZRUVEBAJAk8eyL3eTO9ljQ+uGxKB08FqXluJs6z1jRA0sikYDX633NeHV1tbGh11p5ve6z+nlaP2s5Fs888wx+/etfQ9M0AIDH44Lf78eOHTvQ3d0Nm403sa0F50Xp4LEoHTwW5a+s/yIkEink85rZZWxpVqsFXq/7tMdC13WMjAyjurrGWJtis7mRTKbR3LwNkhRGMBiC2114U5mbywDIbMS/wqax2mNBxcdjUTp4LEpLdbUbFsvaznYVPbB4vV7Mzc29Znx2dhbV1We3HiGf15DL8RewFJzsWMTjcaiqDEWRMTeXwPnnX4gLLtgHAGhr68SNN96Cmppa4/t5PM8e50Xp4LEoHTwWpWHpRs81KXpg8fv9r1mrMjc3h8nJSfj9/mK/PJkglUqhpycKRYlgfHzMGC/su/PKb6vNZlsRVoiIiE6m6IHlsssuwxe/+MUVa1kOHz4Mi8WCiy++uNgvTxtM0zR8+9sPIJ1OAQAsFgs6OjohimH4fF2w2+0mV0hEROWo6IHlpptuwje/+U18+MMfxgc/+EGMj4/jc5/7HG666SbuwVLmdF3H6OgoXn55HNu37wFQCCjd3X5MTU1AFAvrUioqPCZXSkRE5a7ogaW6uhpf//rX8elPfxof/vCH4fF48Pa3vx233357sV+aiiSRmIWiyFCUCObmEnC7HWhoaEFdXSMA4JJLLuMdPkREtK425K9KIBDA1772tY14KSqSTCaDWCwKWY5gdHTEGHc4HNixYwdstlcu9TCsEBHReuNfFlqViYlx/PKXjwEABEFAW1s7RDEMUQyiqakW8XiSK/CJiKhoGFhoBV3XMTU1CUWR4Xa7cd555wMA2tra0d7egfb2ToRC4nF7qXD3SCIiKj4GFgIAzM/PQ1VlyHIE8fg0AKCiogJ7954Hi8UCi8WCt771z8wtkoiItiwGli2upyeKl1/+I4aHh6Av7ehjs9ng83VDkiSTqyMiIipgYNliNE2DIAgQljpQjY6OYGhoEADQ0tIKUZQQCITgdDrNLJOIiGgFBpYtYnr6GGQ5AlWVccUVf4K2tnYAwPbtO+ByuSCKErzes2uVQEREVCwMLJvYwkIS0agKRYlgcnLSGO/pUY3AUl/fgPr6BrNKJCIiWhUGlk0onU7j0Ud/jqGhAWha4VZjq9WKzk4fRDGMzk6fyRUSERGdGQaWTUDXdSQSs6iurgEAOJ1OzM7GoWkampu3IRSSEAyG4Ha7zS2UiIhojRhYytjMTHxpi3wZi4sZHDr0HthsNgiCgDe84QAqKjyorWU3ZCIiKn8MLGUmlUqhpycKRYlgfHzMGHc4HJiePoampkJDyeU1KkRERJsBA0sZURQZv/zlo8jn8wAKnZHb2zshSRJ8vm7Y7fbTPAMREVF5YmApUbquY2JiHFarFQ0NhS7IjY1NyOfzaGxshCiGEQyGUFHhMblSIiKi4mNgKTGJRAKqKkNRIpiZmUEgEMKf/MlVAIDa2lq84x3vRE0N16UQEdHWwsBSAjKZDGKxKGQ5gtHREWPcZrPD4XBA13VjZ1qGFSIi2ooYWErAT37yI2MBrSAIaGtrhyiG4ff7Ybc7TK6OiIjIfAwsG0jXdUxNTUJVZVxwwT4jjPj9ASwuLkKSwgiFJFRWVppcKRERUWlhYNkA8/PzUFUFihLB9PQxAEB9fSMkKQwA2L17L/bsOde47ENEREQrMbAUSTabRSzWA0WJYHh4CLquAwBsNht8vm5UV7/SaNBisZhVJhERUVlgYCmSdDqNxx77ufF1S0srRFFCIBCC0+k0sTIiIqLyw8CyDqanj0GWI8hkMnjjGw8AAKqqqhAO70BVVRVEUYLXW32aZyEiIqKTYWBZo1RqwViXMjk5CaBwaefCC/cZm7ldfvkVZpZIRES0aTCwnKHh4SEcOfI8BgcHoGkaAMBqtaKz0wdRDMPh4OUeIiKi9cbAchq6rkPTNFitVgCFDsn9/X0AgKamZmOLfLfbbWKVREREmxsDy0nMzMShqjJkWcbevedh165zAACBQAjJZBKhkITaWu46S0REtBEYWI6TTqcRjapQlIix8ywAxGJRI7C4XC5ceOFFZpVIRES0JTGwoHDZ5xe/eAS9vTHk83kAhQW07e2dkCQJPl+3yRUSERFtbVsysOi6jnh8GnV19QAK/Xuy2Szy+TwaGhohihJCIdG424eIiIjMtaUCSyKRgKrKUJQIZmZmcMsth4z9US688CLs27cf9fUNJldJREREr7bpA8vi4iJisShkOYKRkWFj3GazY2pqyggsDQ2NZpVIREREp7GpA8vo6Ah+/OMfIpfLAShc+mltbYMohuH3B+BwOEyukIiIiFZj0wQWXdcxNTWJxcVFtLW1AwAaGhogCAJqa+sgSWEEgyKqqqpMrpSIiIjOVNkHlmRyHopS2CJ/evoYamvrcOONN0MQBNjtDtx44y2orKyEIAhml0pERERrVLaBZXFxET/60b9jYGAAuq4DAGw2G+rq6pHLZWG3Fy738IwKERFR+SvbwLKwsIDBwUJYaWlphShKCARCcDrZy4eIiGizKdvAUuiMfBECgZBxpw8RERFtTmUbWKqqqnDBBRcil9PMLoWIiIiKzGJ2AWvFRbRERERbR9kGFiIiIto6GFiIiIio5BU9sDz11FP46Ec/ioMHD0KSJPz93/99sV+SiIiINpmiB5Ynn3wSkUgEF1xwAbxeb7FfjoiIiDahot8l9Dd/8ze44447AADPPvtssV+OiIiINqGin2GxWLhMhoiIiM5O2e7DAgDV1W4s7cpPJlm+u5zHwnw8FqWDx6J08FiUFotl7VuSlHVg4dmb0sFjUTp4LEoHj0Xp4LEof2ccWObm5jAxMXHa7+vo6IDD4VhTUURERETHO+PAcvjwYdx5552n/b6HH34YgUBgTUURERERHe+MA8v111+P66+/vhi1EBEREZ0QL+oRERFRySv6otvh4WG8+OKLAIBUKoWBgQEcPnwYAHDVVVcV++WJiIhoExB0vbg3ej300EP4+Mc/fsLHZFku5ksTERHRJlH0wEJERER0triGhYiIiEoeAwsRERGVPAYWIiIiKnkMLERERFTyGFiIiIio5DGwEBERUckr+8Dy1FNP4aMf/SgOHjwISZLw93//92aXtCX09PTg3e9+N/bu3YuLL74Yn/vc57C4uGh2WVtSf38/PvnJT+Laa6/Fjh07cM0115hd0pb005/+FH/5l3+Jyy67DHv37sW1116LBx98ENw5whxPPPEE3vnOd+Kiiy7Crl27cMUVV+Czn/0s5ubmzC5ty0smk7jssssgSZKxsexqFH2n22J78sknEYlEcMEFF2B2dtbscraE2dlZvOtd70JXVxfuuecejI+P4+6770Y6ncYnP/lJs8vbclRVxRNPPIE9e/ZA0zT+gTTJ1772NbS1teGOO+5AbW0tnn76aXziE5/A2NgYbrvtNrPL23JmZmawe/du3HrrraipqYGqqrjnnnugqiruv/9+s8vb0r7whS8gn8+f+Q/qZS6fzxv/fPnll+t33XWXidVsDV/84hf1vXv36vF43Bj79re/rW/fvl0fGxszr7At6vg58LGPfUx/y1veYmI1W9exY8deM3bnnXfq55133opjROb5zne+o4uiyPcpE0WjUX3v3r36t771LV0URf0Pf/jDqn+27C8JWSxl/69Qdn71q19h//79qKmpMcauvvpqaJqGp556yrzCtijOgdJQV1f3mrHt27djfn4eCwsLJlREr7b8npXNZs0tZAv7zGc+g5tuugnd3d1n/LN8p6MzFovF4Pf7V4x5vV40NjYiFouZVBVR6fnd736H5uZmVFZWml3KlpXP55HJZPDSSy/h85//PA4cOID29nazy9qSDh8+DEVR8OEPf3hNP1/2a1ho4yUSCXi93teMV1dXcx0R0ZLnnnsODz/8MD72sY+ZXcqWdvnll2N8fBwAcOmll+J//a//ZXJFW1MqlcLdd9+N22+/fc0BvuQCy9zcHCYmJk77fR0dHXA4HBtQERHRmRkbG8Ptt9+Offv24dChQ2aXs6Xdd999SKVSiEajuPfee/GhD30IX/3qV2G1Ws0ubUu59957UV9fj+uuu27Nz1FygeXw4cO48847T/t9Dz/8MAKBwAZURK/m9XpPeGvg7OwsqqurTaiIqHQkEgm8//3vR01NDe655x6uMTJZOBwGAJx77rk455xzcO211+LnP/85rrrqKpMr2zqGh4dx//334/Of/7zxt2N5XdfCwgKSySQ8Hs9pn6fkAsv111+P66+/3uwy6BT8fv9r1qrMzc1hcnLyNWtbiLaSdDqND37wg5ibm8N3vvMdVFVVmV0SHUeSJNjtdgwMDJhdypYyNDSEbDaLD3zgA6957NChQ9izZw+++93vnvZ5Si6wUOm77LLL8MUvfnHFWpbDhw/DYrHg4osvNrk6InPkcjl85CMfQSwWwwMPPIDm5mazS6JXOXLkCLLZLBfdbrDt27fjG9/4xoqxo0eP4rOf/SzuuusunHPOOat6nrIPLMPDw8ZOealUCgMDAzh8+DAA8JRfkdx000345je/iQ9/+MP44Ac/iPHxcXzuc5/DTTfdxDdpE6RSKTzxxBMACvNhfn7emAMXXnjhCW+3pfV311134fHHH8cdd9yB+fl5vPDCC8ZjO3bs4Jq7DXbbbbdh165dkCQJLpcLkUgEX/nKVyBJEg4ePGh2eVuK1+vFvn37TvjYzp07sXPnzlU9j6Dr5b0t5kMPPYSPf/zjJ3xMluUNrmbr6Onpwac//Wk8//zz8Hg8uPbaa3H77bfzTdkEQ0NDuOKKK0742De+8Y2TvlHQ+jpw4ACGh4dP+Nijjz7KT/Ub7L777sPDDz+MgYEB6LqOtrY2XHnllXjve9/L28xLwLPPPotDhw7hwQcfXPUZlrIPLERERLT5cfk6ERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8v5/Uw+Slkht6IgAAAAASUVORK5CYII="}}]}}, "f882b2ae69ab4ed4b55abb3cd6ebb5c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0523c110f4dc4cc8af21d07a3b6f5276": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_942617ece21949b08a7b2d8ded215928", "IPY_MODEL_28855764b1b247b7af599ff82656ba8a", "IPY_MODEL_7f52ceef92cd4534acb554e532bad254"], "layout": "IPY_MODEL_f882b2ae69ab4ed4b55abb3cd6ebb5c3"}}, "54791d40e53149f2992c5910fd52a1e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "39b62f7b5f61446fb7619988812ac772": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "942617ece21949b08a7b2d8ded215928": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["-90", "90"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "elev", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_54791d40e53149f2992c5910fd52a1e3", "style": "IPY_MODEL_39b62f7b5f61446fb7619988812ac772"}}, "466c310ac1a54383b20e5a5e629201d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e98a2ac3f29b4122975158945f4b9c44": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "28855764b1b247b7af599ff82656ba8a": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "azim", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_466c310ac1a54383b20e5a5e629201d2", "max": 90, "min": -30, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_e98a2ac3f29b4122975158945f4b9c44", "value": 30}}, "e3d17c0519b74c079692724c78995ee9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f52ceef92cd4534acb554e532bad254": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_e3d17c0519b74c079692724c78995ee9", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGFCAYAAACyvIemAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACs6ElEQVR4nOydd5gkVdm+73OqqnOYmZ0NsLBLzllFgigiIEEEVAQEDHyK4qeimD5MmEVQMKEiigGUKBhA/QGCkSSKEiSzu7B5d1Lnrq465/dHVffOzM709PR09/QsdV/XXiwz3dXVsz311nnP8z6P0FprAgICAgICZhk52ycQEBAQEBAAQUEKCAgICOgSgoIUEBAQENAVBAUpICAgIKArCApSQEBAQEBXEBSkgICAgICuIChIAQEBAQFdQVCQAgICAgK6ArPRB27YkG3neQQEBAQEtJn585OzfQp1CVZIAQEBAQFdQVCQAgICAgK6gqAgBQQEBAR0BUFBCggICAjoCoKCFBAQEBDQFQQFKSAgICCgKwgKUkBAQEBAVxAUpICAgICAriAoSAEBcxzThFAItHZn+1QCAmZEw04NAQEB3YWUEI+HCIdDCCEYHMzgOBohxGyfWkBAUwQrpICAOYYQEImY9PbGCYdDFApFymWbVCoWrJIC5jTBCikgYA5hWZJ4PIxlmdh2hUKhhG2XEULQ399HLBaiWHSDVVLAnCRYIQUEzAGkhGQyRDodQ0pJNlugUCgTiYTp7+8DBPl8kUQiBrhorWf7lAMCpk1QkAICupjx7blSySaTySOlJJWKEwqZaK1JpRLk80WUUqRSUUDN9qkHBEyboGUXENCljG/PFYteay6ZjGGaBuWyTTabQ0pBX18v4XCIbDZPT0+KQsEOBA4Bc45ghRQQ0GVM3p4LkUrFAchk8pRKNolEHNdVlEplksk45XIlEDgEzFmCFVJAQJcgBITDJvF4GCEEpZJNqWQTClnE41EA8vkSlYpDNBoiFLL85yUZGcnR399LIhEjk8nT398TCBwC5hxBQQoI6AIaac8VizaWZdZWSfl8kUrFpre3h1DIJJ8vkEjEKBZLNYFDsTiM1kZQlALmBEHLLiBgFmm0PVcuV0gkosTjESoVh0wmD2hc16216wqFEq7rBgKHgDlLsEIKCJgFmmnPua7yFXbeyskwJOFwmKGhjN+ui5LJ5OnrSwcCh4A5SbBCCgjoMJYlSaejJJNRHMclk8lTqTgkkzF/BVTxV0CQSsWxLItisUw+XyQSCZNIxHBdl+HhEUzTIBIJk88XiMWiKBUIHALmLkFBCgjoEDNpzwkhSKXiGIYklytSKpXQWlEoFEkkohSL5Vq7rvr4qsDBMAxisVAwLBvQ9QQtu4CANtOK9pyU3vNsu0I0GiYU8lZDAwMjRCIRkslYrV0XCBwC5irBCikgoI20oj2nlBrzGMOQZLNZABKJKNlsnmg0AhAIHALmNMEKKSCgDZimIBoNEQ5bKKXJZgu4rvK/FqoVJ/CKiift9uTe4bBFKhVHKU0uV/Qf462SisUSxWIJpTRa50mlkhSLZWy7QjIZDwQOAXOaYIUUENBCqt5zPT1xwmFrM+85y7LI50vkckXCYYtkMgbgr5wqJJMxIhHPsy6XKxAKmSQS0ZqIoVAoojUIISiXvRZeKhUnk8kFAoeAOU9QkAICWsTo9pzWGsdxW9Key2SyZDJZXFcBo1c2glzOEy2EQhaFQqkhgUM8HggcArqToCAFBMyQidRzSqnaqggaV895j/FWScViieHhDLZdwStEY9tsQghc16VYLJFIePtGWlMTOIRCVk3gEItFEAJKJZt4PIaUOihKAV1HUJACApqkXjSEYRhIKVrSnhtfiMaeg6RQKAK6IYFDdesokQgTCBwCuo2gIAUENMFU6jmAYrEMtKo9NzlaQy7nFSKlVE3g4K3AZE3gEApZhMMhisUykUgE05TBKimgqwgKUkDANGhkuDWb9Vpx4XCoZe25ejQqcKhUKgDk84VA4BDQlQQFKSCgAaZKbh2rngvVntfK9twUZzilwEEpbzUUi0UDB4eAriQoSAEBUzD94VZvvK9QaH17bjIaEzh4MvSqwKHq4ABuUJQCuoKgIAUETEKz3nOFQgnwhllb3Z6rRz2BQ6XiAF47MXBwCOhWAqeGgIBxzNR7Lhbz5pDGes9Z2La3ktq0Imq9W0JV4DDewaG6AorHI4GDQ0DXEqyQAgJG0QrvOa01SqnaY1rdnqvHZAIHr11XDhwcArqaoCAFBNDaaIjqUGw723P1GStwqFQctK766QURFQHdS9CyC3hR045oCMsyUUoxMpJpa3tu8vc0VuBQXa0FERUB3U6wQgp40dKuaAjbtgF8mfXsXNhHCxxM0yCfLwYRFQFdT1CQAl50tLI9N5F6Lpv1ClQsFpvNt4nW4DjevpBtV6Z0cMhm84GDQ8CsErTsAl40tCe5dSL1HBQKJeLxKOVyuVYUOon3nrzzdRyHVCrO8HCWefN6ag4OXouuXFsxbdw4VBM4DAxkESK4PAR0lmCFFPCioF3tucnUc6WS55AQj3d2lWQYklQqQSqVwHEcBgdHyGRy046oCAQOAbNBcAsUsEUjJcTjXkprO5JbvYv2xPtEuVyBnp4U4XCIctlu+3uNxSI1g9WRkWxtGFYpVRM4DAwME4mEA4FDQFcSFKSALZLOtecmv1g7jkupVCYej2LblbatOEa35woFr1CO/VnIUTZGUX8YNjmuXTdMNBomlUowNJTx/x4lkykBRlvOOyBgPEHLLmCLo9PtuXrk897KKhaLtvx9jm/PDQ1lNitGVaYbUREIHAJmg2CFFLDFMJvtucnQWrdF4DBZe24yxjs4BAKHgG4kWCEFzHmmFw3RnuTWerRS4BAKWfT2polGIxQKJYaGMlMWo01MHVERCBwCZpOgIAXMabqpPVePXK6AZZljspKmw3Tac5PRWESF6Yf6BREVAZ0nWIcHzEm6sT1Xj5kIHKbbnqtHIHAI6GaCghQwpxCiWoisWVPPNUs+XyQUsojFouTzhSkfP5V6rlkmi6gYGsrQ399bEzgEERUBnSZo2QXMGartuWjUk3J3a3tuMqoCh0gkhGlOvtJoRXuuHpNFVFQFDkFERcBsERSkgK5nvPdcqVQGaJn3XCejIaYSOMRiEXp6UhiGZGQkSzabr7l1t5ZA4BDQfQQtu4CuZbLh1kgkhBCCUMjq2vZcPSZycGhXe24yxgscAgeHgG4gKEgBXYllSeJxL1vItj0xghBekTFNA601xaK3UqqukorFsl+cIoRCJpWKQy5XIhSqihgUmUzWXxHBbEVDjBY4uK5LLBYlFLIol+1aDEQnCAQOAd1G0LIL6CoajYZwXUUkEurq9lw98vkiQgjS6WQH2nOTEzg4BHQTwQopoCuYrvecYXj3Ut3enpuIanuuSjabn5WICggcHAK6i2CFFDDrNDPcatveLE43qOcaZSL13GxEVGxOIHAI6A6CghQwa8wkuRW8eRjT7P72HEyunpupg0MrCBwcArqFYL0d0HFaFQ2htaZcrhAKmV3fnptMPdepiIqpCAQOAd1AsEIK6Cit9J7TWhOJhOZMe24yKXc7IyqmQyBwCJhtgoIU0BFm0p6bTD0nhLdKmivtuclo1MGh3QQODgGzTVCQAtpKO6MhstksQggikQjdUIhmEg3RyoiKmREIHAJmj6AgBbSNdkdD2LZDsVgmFosg5ex9lFvlPRcIHAJe7ASihoCW08loiGKxSDgcIh73NuKnTblM6He3Er7tNsTgIGrBAuwTT8I+8iiwrCmf3spoiEDgEPBiR+gGP/UbNmTbfS4Bc5x66rloNAyMtvfZpJ4rFEpIKYhGI5MOt+bz+UkFC541UGLaBcF49FFSZ78NuWoVKAWuix8Ni06nyV1yKfZJJ3lvbILXbIf3nBCC3t4U5XKloYiKdqG19m8OkgwOjtT27KoRFcWit5fX15dmeDgLaHp6UgwOZnAcAp+7LmX+/ORsn0JdgoIU0BIm856LxSL+CsimWLSxLLNWnEqlzb3nCgXPey4SCaGUIp8vNOQ9l0olMAzJ0FCmofOVK1eSPv4Y5MYBcCpeQRqPEBT/550UvnxRrSgZhiQej7XVey4SCROPRxkZyc6agwOA1op0OoWUoubgkM0WEMJbtQ4MDJNIxLAsi40bh+jp8WyQBgaySBk0X7qRbi9IwR5SwIxoh3qumeHWfL6AlJJoNNLQeUd++APk4ODYYiTEpj8AWhP9yY+JXPUjoHPREIHAIeDFSrBCCmiK2WrP1SMW88L7hoYy9QtFuUzffnvDyAiiUtn0hsZTbd8tXYp+/AlkJNyRaAgA0zTo6UmRzeZrERWzgdaKeDxGJBJhYGCYvr40tm1TLJb9dl0GwzBqK6bq6m7DhmEgiKjoNoIVUsAWR7vVc80OtxaLRZTSNbeHyZDr1yPyecTolVG9x69di/vHP7Y8ubUeowUOs3lRrwocQNcEDtVVaFXgUCiUaiumagszlYoCnXUuD5j7BAUpoGG6pT03GVp7rbtwOIRlTb6HoS3LK0INtpW0UpRXPN/xaIjAwSHgxUZQkAKmpJ3DrcPDIxQKRb82zHwlYNsVbLviz8VMjF64EHf77RsrSKYJUqITiRmf23SZyw4Otl2hpycBBA4OAY0TFKSAunRre64eUwochKD09rPB2PwiXzuT6v6RlOh4nMorDmvpOTbKXBU4VN3YA4FDwHQIClLAhHR7e64erqumdHAoveUMKq863PsfrTcVoFF/xzS91cGbT0On0y0/z0aZiw4OlmX5e2CBg0NA4wQFKWAMc6k9V48pBQ6hEKVrr0OffvoYmXfth2AYYBhUDjyQ/P9dMPa5joNYuxaxfv3E80stptsEDlpPLnCo+KrF6qo4EDgETIdA9h1Qw7IkyWQUw5CzMtzaaiZzcBg/3Fr605+Jfv5zmP/6p6e8kxK1cCGls95G8Zx3Q9QramJggMjPryF83bXIgY2AwF2yhPJbzqB06mkQa19bbS44OMyf34vWGtdVWJYZODh0Id0u+w4KUsAY7zmtNVLKMW0ix3EpFDy586bitMl7zis8mmKxDEA0Gp7Ue67TjHdwGO09l8sVxhQqMTDg2QhZJu6OO0FoU4tMrlxJ8m1nYSx7DoRAh72CLErez8U58OVkf/gjdKJ9v/Dd7uAQjYYxTYPBwQzxeCRwcOhCgoIU0LVMNtyaSnn7Rlp3fri11RiGpKcnRblsY1lWc95zSpF648mY/34InUptLoaoVBC5HOU3vZn8JV9r7RsYR09PEq1hZGT2fh+11hiGpLc3TTZbdWeI1PaZXFcxPJz1Pe9KFAol+vt7yOUKFItusEqaRbq9IAV7SC9S6qnnDP+CW22zdYt6rlmUUkQi4aajIcwHHsB85BF0LDahMg/LglCI8G2/Ra5Z3aKznphuFDjYtuck4TgOIyO5IKIioGmC9fOLjEajIbwhR8ufQWk8GoJshvBvfov52KMAOLvvgf36E72VRYcZ3Z6rDrU2M9wauuN2UO6YFh7grYwKBYTjt/2UIvTb31I6590zPfVJGS1wcP/zH+Tj/wUhcfbeB7Xjjm173fGMjqhIp5O4rotpepeTIKIioFmCgvQioZ73XFWJls+XxrTnwLsAVtVzk7XnMhmvPRe+4QZiX/4icngY7bdlIlqjLr6IwscvoHzGmR15rxNFQ1QFDlURxnQQmRFQeowaTwwPIwqFscO1WhP7+iWobbbBPu74Fr6jsZT/+jfCF32Z9AMPgK9q05ZF5dBXUPj0Z3B33a1trz0aISRKKUzTJJPJEYtFSSbjtYiKqoNDX1+65uDQ05OiULBxHB207gI2IyhILwImi4ZIJmObqeeqM0bewKMikYiSSMSoVBxyueqFPe6367K1tl74ppuIf+L/wHFQ8XittaVdF5HNEv/Mp0AIym85o23vs140xGgHh0YjKqronl6QvtWQEF4xyuc3ycPB+55SUCoR/9hHvWHa6pxTCzHvvZfk298KhTyEwzVxBbZN6M9/wvzPf8hcez3uXnu1/LVHE41GiMUiKKVxHIdEIlYTOFQdHBKJ2LhQvyHKZW+PcmAgixDB5SdgLIGoYQtmfHvOM8Ec256bSj1XxbOwmUQ9VyjQe9ghiIEBdDI5oVmpyGTQvb0M/fUeaIMNTz31XJWqwGG6ogbzX/8kdeop6FAIpESuXw8Ir0hVUQqEwF28DXJkGGevvcnc8uspjVunhW3Tc9ghGKtXo+NxhD/0W/sV1hqRL+DssQcjf7i9ta/tY1km8XgMw5CUSuWaK8ZogUM0GmbjxmH6+lIopQOBQxcRiBoCOk4rh1urooV4fPLh1tD/+4NXjOLxSS+COh5HDA0R/t1tLX2voZBFb2+aaDRCoVBiaCgzaUuuEQeHiXD2PwDnpS9DFIqIXM5bDY0uRr67g04kwLJQiSTmk09gPvSvmb69MYTuvANjzRp0JOJJz7UeKxsRAh0OYT7xBOYD97f0taUUJJNx0ukkWiuGhzO++ev0HBwCgUNAPYKCtIXRDu+56kWjXC5PqJ4zn3zCW45NpECrYhggJMaTT7bkfRqGJJVKkEolpqWeazSiYgxCkP3mt3H33NObO6q256qx50qjYzFU3zzv8eEwVCrIFcube3OTYN17j1fwzU2tLs24YVPTRKOx7ruvZa8bjUbo7U1jWSbZbI6RkZz/OfBoxMEhiKgIaISgIG0htNN7bmhohHLZ8yWbsMUipXdlbPREZ8hMklsbjajY7HkLFpC57nqcPffyC6/nw6cjEdT8+aiFiza9N629n4dpTfu91cWubPZzrt4s1P5dqom3dnnGL2dZJj09KWKxCKVS2f8cVCZ8rPdzDSIqAmZGsKs4x2lGPee6ym/hiYbUcyDI54v09oaIxaK1nJ4qzj77elckxxlz9z72QQ5CK5y99276vU6knmuGZgUOOpGkfNrpGF9Zhurt9QrQBAVWFAvoaBRnv/2bOr/JUEuXALomrqidlx6lWFMKoRRq6XZNv46Ugng8RjgcolKpMDw8dkU0EeMjKgKBQ0AzBCukOUwnoyE8UYT3PMMY+7GxX3MkavHWm8ugq2iNKBRQCxZgH/3aab/PZttz9ZgyomISyieehE6lENnMxPtlrosoFqkcfjhq221ndI6bvfYb3ugJK0oTv3chBKJYRCeT2Mcd19RrTNWeq8/0IioymarLQxBREeARFKQ5SMeiIQpFQjf/kuQ73kb6hOMwTzkF9eOfkBjf97cs8p/7AoTCiGy2NhsDeCujbHbTYyLTKwAzac/Vo1mBg54/n8InP4UwTeTAAJT91pjWiHweOTiI2nYJhY9fUP9ATaAWbUXp7e/wDGCre1nV81IKUfREBoX3f2DannrTac9NxnQjKgKBQ8B4Atn3HKJee67qvt0q7znjicdJnvMu5AvPe/sWUnjtICEQ22xD/oorKe6x55jzs/54J/HPfga5cuWm1YNS6J5eSmeeSfmUU1FLlzb0Xse05waGcP/wB4xnn0FLibvrbl5g3njnhCZ+nj09aRzHIZvNT+u5oT/8nug3L8NYtgwcF9DoSITKYa+k8IlPtXx1VMNxiF/4acK/+DnCdcdGZpgm+sMfZuh/PzCNLb2x7blcrjCNFdFkaHp7e7Btm3K5Qk+P5wzu5SSZbNw4zLx5aZTS/hBtj7+aLyFE4ODQTrpd9h0UpDnCZMOt7YiGEOvWkT75ROTqVZ6UefS+kOsiczlYsIDhm27G3XbJ2BN1HKw/3Y117z1Y996LXL4M4SoQoMMRKoccQvF9H8Ddc2wxqzJ+uNW+/gYi3/zGWI84IXCXLKX4sY9TOeyVM/q5ThZR0RCui3n//RgvPI+2LJwDXoLabrsZnU+jGI//l/B112E+/B+QEuelL6V82ltIv2S/hiMqqsOtWmvy+cK0V0STUS+iwptH8lbmfX3pIKKiwwQFKWBGtGK4dbrRENFvXEb0m5d5Q64TtbOUQuZyOO9+DyMTtKbkCy+QPPvtGCtWoGNRz5TU398QuRyqbx65y7+L85KXjnne+OFWcfPNxD//WbBt1Lx5nokpQLmMHBhAxxPkv/b1GceLj4+omMs0ElExfrh101xZ65gsokIIz/9wYGCYRCIWRFR0mKAgBTRFJ9tzY1CKnkMPQq5bV9cQVeRyiHSa4fv/gTtO3px859lYf/0Lqr9/89kkrRHrN6CWLGHk1t9BODyxei6XI33SCcgNG1CLFm1+Aloj16zB3XEnMjfdPLm6rwGadXDoViaLqGhPe25iJoqoCBwcZp9uL0iBqKEL6aR6bjyi4G3Ma6v+DI22LMjlSJTGtoaMp57EfOABr9U30aCsEOjeHoyVLxD5658nVc+F/ngnct16r6hNeKIC1deHsXyZNzA6A5oVOHQrE0VUzEw9N30CgUNAM8z9374tiI6p5+rkFGkr5LXXprogKIUGrGRyzIXPfOABhF322nSTEQqB1sT//dCk6jnjmacBXX/lE4mAqzCefrr+uTZAUw4OXcroiIpQaObquWYJHBwCpktQkLqAVnrP5XIFQiGTRGJy77m6hMNUDnz5WOn2ROds2zh77EE5niAej9ZEdaJc3uQWMOF7FRiGgQCcQrGu91wnadbBoVspFkv+TcpY77lOLzwCB4eA6RAUpFlmNttzk1E68yxvuVYsTvKAkhclceZbyReKvtrPW1morbf2HjOuoAkEUkoMKdGuiwbK8+dPeg7ujjt5f3HqFKtyGQyJu9NOjb61uox2cJjLRKPe7JbW2lfQFZtqz4n164l+51ukj34NvS89gPQxRxG54vuIwcHGjzHOwSGTyWGaRs3BIRaLopSqrZjK5UrNwUHriUUZAVsuQUGaJbqhPTcZlaOOpnz6WxB2BTEy4hUX3xpIZDKIchn79SdSPunkzRwc7FcdjlqwAJHZpFiTQiIN6e0rKIXOZNCRCPbxJ0x+DkceiVqwwBs+nQitkQMDuEu3o3LIodN+j5PRrINDNzDRcKvrusTj0y+w1l//Qu/hhxH76kWY//0vYv06zEcfJf7Fz9Pz6ldiPviPaRwtcHAIaIygIHWYrmrP1TnJ/Oe/SOFTn0ZtvRhRKiFGRmr2P8WPfozc1y6tiRY2hfnFIBaj+M5zEBrkyAiGlAgp0ErjOg5ks4hSifLJb0AtWTLpKehEkuIHPgimhVy7duyKy7a9r8XjFD/8kRkp7MYzFwUOk0VDaD2xwGEqjKeeJPmu/4FMFh2JeLEi0Sg6HkdHIsjBQZJvfxvyhRcaOl4gcAholED23UHCYYNoNNSR4daWUalgPvAAcmgQnU57+0vVlNJRWJZJOp0km83jVCokr/wB5uXfQRcKKCFBgHBddCiE/brXk//s5yY8znhCv/k10W9/C7lurfcFL28Bte22FD76MSqHv7q175eZOTh0mkaGWxMJb9B4aCjT0MU9/n8fI/Lza9DR6MR7gVojikWK73kvhU9+ahpnGzg4zDbdLvsOClIHGD3cCt6Kwradtg63zgbJZJxQyJOLK6Uo/Ps/yBtuJHSXJ+HWloW7/fbYxx6Lfcxx6IULGztwsUjo7rswnn0WBDi77U7lla+asXVQPWbk4NABpjPcKoSgtzfVmINDqUTfvnt5+4T1fAeLRXRPD0P/fqThSJHAwWH26faCNPflRF3MRMOtpukNCEajYV+BNPNoiG4oRqGQhem3zhzHZWQki+jpI77yBW8fyI9FMJ9+CvOJx4n89KcUP/Zx7GOOnfrg0Sj2cce3+R2MpdmIinbTTDSE1p7DRzwepVwuT+rgACAHfcPYemGLAIaByGYR+Rw6OfkA9WiCiIqAqZgbTfI5yGTqOSFE7U7PdV2E6Jx6rh2Mj4YoFkuYpoGBJv6ZT2H9+U+oZAq1ZAlqq61Qi7dBbbMtMpsh9sXPY94zs6HWdtJtAoeZDLeWSuWGBA466tk8TakP9zOZdHi6P5tA4BAwOUFBajGNqufy+TKmaRCLRXBdtyPquVYzUTRE1Wsv+ejDWPfeg5rXD/H42CdKiVq0FSKfJ/KTH0998ZslukXg0IpoCGhM4KB7e3H23x9RT24PCFc11TYNBA4B9QgKUouYrnouHg/juopKxcGyTFKpeEvVc2LjRiJXfJ/0a4+id7+96Tn0IGJf/ALG00/N+L2GQha9vWmi0QiFQmmz4dZ8voD5u98hKs7mxWjUD0z19mE+8jDGU0/O+JzaxWw6ONRTzzXDaAeHevsxpbef7X2gy5PEoJfLIAWlt76tqfMIHBwCJiMoSC1gJsOto+NsXFfVWngzac8ZjzxC+oTjiF30FYynn0IUCsh164hc9UPSJ55A+KYbm3qfjSa3VioO7nPPIaaSGkejiHIJuW5dU+fTCWbLwaFd3nPV+PnqIPNE2Ce8ntIZZyJc10sBdhxQCioVRKGAUIriu99D5dVHNH0egYNDwEQEu4QzYHw0RDZb2CwaolqIEonoZuq5VCqOUppcrug7dIcxjBDlcrVYTV89JzZuJHnO/yDXrkWn02MVUFojMhnin/wE7taLcQ45pOHjjo6GaER55pgWIddFGhI12YVUKZDS88/rYjopcGh3NERDAgchyH/pKzi77070yisxViz3KoiUuDvvTPHd5+LsuivRr12MzGRQ8/opn3ACasfGHTMCgUPARASy7yZoZzSElF4B8mSv0ydyxfeJXfQVdDo1sRxXa8TwMJXDX032xz+d8ngTRkM0QPjqnxK/7FLEkiU4WjNRhKnYsAGdTJL55c0NK7Vmi3ZHVEwaDVEqYf7zn8jhIXQ8jnPAS+rGgjTKZBEVm6EUxiOPIEeGUb196Hl9JM77AOaD/0AohfaNeLVhYB/9WvIXf63h8wsiKjpPIPvewpgsuTWZjG023FoVMWwqTpuGW3O5kj/rEvfVdFlsu4JhGPT0pIhEwpRKk/Tw6xC++ZfeomqyTXgh0JEI1r33INesRm219YQPG5/cWu3jN4r92mOJ/OQnmGvWYGy99ebtpnIZUSxSPu20ri9GMFbgUC7b0/pZTMXo4dZsNucJFlyX8PXXEb7xBow1q8F1vX23/vmUX3cCpXecDdHm97VyuQI9PSnC4RDlsj35A6XE3XdfXEAMDpJ+w0nIZc+BFUJHLO/zpDXYZcK/uw25cSOZn1/b0NDzeIHDwMAwkUi4JnDo60vXBA7eiqlUEzgUi8NobQRFaQsj2ENqkE55z7muZzQZi9XfeJ70PNevm9pKxzQ9X7oNGyf89kTquelegPWCBRQ+/n+oUBj5/POIfM67qNo2YsMG5Lp1VF72Mkpn/8+0jjubtFrgMKl6Tmui3/4m0W9+A7l+He7ChbjbbYe7eDEinyP64x8Rv/Azk4sOGqBRgcNoIlf9EGPZcxCJeuq6msW7gHDEu9H5xwOEf/2rhs8jEDgEjCYoSFMwG95znmtDcxc+HYt5ezP1qO7djFPATaWemy6Vo19L9pKv4x5yCEa5jFyzGrnRa9OV3nE2+UsvmxOroyqtEjhMpZ4z77+f8E03olNJzz29Kq02TdSCBbgLFhD6892Ebrt1Ru+nEYFDDdsm8otfoBGTD82aFlprIlf/bFrnEQgcAqoELbs6tLs957H53Wk1MiCZjFMq2ThTzISMxj72eCJX/bA2uDgRoljE3W131PbbAzNvz9XDOeggRg4+iN4N63CWr6DoKtw99phThWg0MxU4TNieG0fott9C2UZvtdXEB4nF0EIQ/vWvsE86uWHrnvFMy8Fh9WrE0BCE6icJY1oYj//XWw1P5fbgEwgcAqoEK6QJ6IZoiHLZplJxSCSmt0oqn3oqRCJe/MNEd4/FIgh/hkTKlrTnpkJpKGy7hNBrj0YfcsicLUZVmnFwaHi4VWusB/+BnspRoacHY8Vyr0U7Axp1cKjd3Ey5IGl2xRI4OAQEBWkM3RYNkcsVMAwvzKxR3J13If/5L4JpIYaHvQJUqXgiguFhhG1TPuXN6DPPbGl7birGRFTMcabj4DDt4VatwVVTr3qq9j4t+DdrxMFBbb01un8eolJHAAHgODh77d3w6qhK4OAQAEFBqtGNya2u6zYlcCi/6RQyP/4plcNfjdAaUSwhKhXc3Xan+JWLML7zHVI9qbrDre0gny9gWda0snm6lUYEDk0Nt0qJu3Q7RL5+7IXI51GpNKq/v5nTH0NDAgfLonT6Gd76x52ktVepeO23s97a1Hk0K3BIp2MEAoctgxd987WVw63eY2ItjYYoFEqEwyHi8Si53BTRAaNwDjmE7CGHINesRmzYiI7Hiey5O7F4rOHh1lZTqTiUyzbxeBTbtrvVwq4hqgKHVCpRy6yqMtPhVvt1r8P6z0Oeim4i+bTjIAoF7NPPmJH0ezT5fJFQyCIWi04aUVE6+38I/e42zKefQpvWJqWd1t4K3HWwDzmU8gmvb/o8qgKHVCrpx7R4AodqREVV4NDXlyYaDaOUJhwOEwrZ2LYOZOBznBftCqn59lyhc8mtbBI4RCLhWrzDdFBbbY3x0peQfukBROOxjrTn6pHPF/xQws57w7Wa0QIHaJ33nH3kUVT23Q9j9WoYv1IqlZAvrMTdbnvsk09u0TvZJHCIREKY5sTtNt3TQ+bn12K/8lWgFaKQh0IBCnmQgvJJJ5O98kczyqkaL3DIZHKYplETOMRiUZRSfvcijpSitteq9eSijIC5wYvSqWEy9Vw3J7em00mEGOXgoDXGI48Quv0PyEEvzdU++rU4++1f24Bup3puJkSjYWKxKMPDmZb4s80mVQeHqkluveTW6SDWryf++c9hPvRPRLmMltJzRjBNb5/ws5+bllVPozTq4GA88Tih229HZDKo/nnYx5+A2nbblpxDPQeHefPSY/btCoXAwWE6dLtTw4uqII1vz1WjEuZCcqvn4JAkny9SfmEliQ9/COv++zzjy6rE2zBxXvIScpd9g8gO29fmOnK5Qtelnvb0pNBaMTKSm+1TmRGWZZJMxv07+3JTK6JJUQrzoX9h/flPiIEBSKWoHHwIlYMPAWsK+XWTmKbnFJLN5us7OLQZrRXxeIxIJMLAwKZo8+rqLZPJ1RR3VYeHeDzKhg3DQODgMBlBQeoCmveeKyMldb3n8vl8U4KFZojHo4RtG/e44zAeedgbgg2Hx/TxZbEIe+wBt91GIRztmGBhuliWSTqdnPULX7OM954zDINKxSGbrS9GmAskEt6qemgoM8vqNU1vbw+u62KaBlJKcrkCpmlgWWZtxaSU9veYenzxUQkhpqfye7HQ7QVpi99Dmpl6LtRVya2FQgl+fg3mY4+ik0mIRMbYt8hoDJFOw+OPU/je97u2GMFYgcNcu5mdSD2Xy3U+oqJdTMvBoVmUwrrrjyTf8TZ6D9iP3gP2I/nOs7H+/Kfa/JxheC3Q6s2fbVcIh0OBg8MWzBa7QprL7blJ0ZreY4/GeOYZ3J5eqkOIo2PRtdIwPIRavJjhu/487XmQTiKloLc3TalUrl0Eu5mp1HOpVALDkG2PqOgE1RbYyEi2roNDU5RKJN/3XkK//90mc1aofYbt152AvuoqIqmk32r21HNVB4dstoAQ1Np1iUQMy7LYuHGInp4khiEZGMgi5dy/OWg1wQqpw8wV9VxT7y2fQzz/PDritRAFAiklwv+lVkqh0ehwGLl+vbfv0MV4NwqegtAwuvej2Kh6rhkHh26lYQeHJoh/6hOEfv87tGGgLctrO4fD3t+lJHTrbwl/6pPkcnmGhzM1YUPg4LDl071XgSbYktpzE6GF98+llfeLJqW3d6SUmviXr0mPs07S7Q4O0xlunY6Dw1ygEQeH6SJXriRyw/VoITzXeX9VJBAIKRGWF2nBVVdRXv58HQeHeODgsAUy939r8K67vb2xWfWe6wixGHq33RBlr9WoATXBL5wolXCXLEH39XX4BJujGx0cGvaeG0erIypmk2YiKqYifMvNntv8KJWg13L2/q41aNOESoXwr27xvz+Rg8OmcYwgomLLYU4XpNHtuWrLpxoFnk7P7fbceEIhi96+HuQ73+kFtZW8orTZhaLiXTTLp58xJ1ZI0F0Ch5kOt7YqoqJbaLXAQa5e7f3i+vuetb1PvPkjTXWEwUCuXVN7XhBR8eJgblyxJmCi9lwu591FmWZ1DkETCplzsj1XxTAkqVSCVCrhec8ddQz2wYcgcjl0NousiiuUQuTziGwO56Uvo/TmU2f71KdFNzg4NOU9NwHjHRzmMo04OEzreDHvZzK636C1Hls0tPb+jLJFatTBobpiKpcrtYiKwMFh7jDnClK9aIhkMoZSulacwGu9SCnQWtVyi+ZEe47xya05Cg/+k8jXLkYUCuhkyvvvwAByZBgxMgJCUD7pJLI//BHE5tbFcDYFDs225+oRCBw2RwiB8brjEFqD6/p1Z4LVi+uC1thHvGb8EYKIii2cOdNTqDfcWu3X5/OlzYZbq4N00Wio1sFSStXu+GzbEzpsWhHNfiHy3pNn0loolCjmC0S/dgnRn/wY7HJtI1gbBmiN2Htv7JPfQOHVr0Fts80sn33zeJJ7zzm9Ew4O44dbh4ebWxFNxGiBQ7lsd4Vl00zI5Qr09KQIh0NNDTJHImFisQgccQTubrshn3gCLeXmIZJaI5TC2XMvnJe+bMy3xgscqg4N1dZdX1+6JnDwQv1KNYFDsTiM1oGDQ7czJ1ZIM1XPxWJhHMclm/WeZ5oGpmn4z+vi9pwfDRG54ntEr7wCtEb39m36M6/fa4E88gihTAbdIi+x2aRTAodWtefqEQgcqlZESRKJGLZdYWg4S+a730f19iEqFbBtT+SgFNg2olJB9feT/e73J0w8DgQOWzZdXZBandwaj8ewLJNisUQ2m8OyLEKhEN1QjMa356rJrWJkhOiVV4I0PHeG0b+kQkA8gTZNxA+vJJ6fW8PLE9FugUM72nOT8WIWOFTbZj09Xjrw8HCGXK6A1hp3l10Z+e1tlN/wRrAsRKXiFadQiPKbTmHk1t+jdtxx0mMHAoctl650auiU95xXsIxZnazfrD03zu4nfP11xD95ATrdA4aEUglhey0THQp59kFKI4eHEF/5CsOnn4njdJeR6nRph4PD+PZcLlfomNP4i83BodaeAwqFIqXS5C0+sXEjxtNPA+DuumvDowpaK9LpFFIGDg7TodudGrruX2ayaIhkMrZZNER1lbSpOG2KhsjlvGgIL0BPkclkN4uGyOWK9PZ6d8tVG6FO0Wg0hFy50lsq2jZyaLAm6wb/XVgWqq8PLQRq+QoSieimiIo5SlXgEItF/Q31mRWOaDRCLBZBa002m2vbimgy8nlv/yUajXS1v2AjlEpehyIej20WUWGaBolEDNM0azcTU93v6v5+nKZSbz2BQ29veozAYePGYaLRMKlUguHhrB/q5wkc+vt7iMVCQURFF9M1BWk2kluVUhSLJaLRCKVS5zaeY7FIrd0wMpKjUqlzgQyHvGI0MuL9/+iNYK2hUkGuX4+ORLCFJGJ4UthSqdz+N9JGWiFwmGlya6vY0gUOQgji8SiRSBjHcRgezrTe/24cgcBhy2TWC1Kz6rlMpuDvMcUmbc81op6rRoR7d1HtVXZN1Z6biMoBLyFWKnnFZ3xirD9AiOMgSiXsAw6AUplYLEq5bM/5fnk+XyCdTk5b2dVO9VyzFIvFWhT9XI+oGC9wqLbncrl83fZcq6kKHLwbF+/n2tOTpFgs1QQOo1dMQ0MZ/+9RMpkS0L3Gwy9WZlXU0C3ec/l80ffEak/o2WTquUaQ/nwRwIS396O/5lYdzLcMZVczAodOqOeaYUsTOFRXRjX13FCmo8WoSiBw2LKYlYLUavXcTIdbvcl6uy0X8cnUc41iPPaoJ+02TXB9eWx1kr0qlzVNdCyG+dhjfoS2N2Bqjl9RzUEadXDopHquWbYEB4dqEUqnkzVT31Kp3JGLu1y5ktCvbiH8y5swHn7Ym1kKHBy2KGblihUOm7VoiE625+rRaoFDM+25iRB+wXG32ho5OIgoFrwiBF6WTCyG6u1D5nO1r5fLNpFI+EUhcJi99pyLN9cyvVX1XBY4jFbPVdtzPT3JCQUOrUQuX078s58hdOcdUFWQSomz9z4UPv0Z7ENfEQgcthBmpSAViw7lch6ltL+HZFGpVHz1nDFj9VwztErg0Kh6rlHcHXcCpUFK1KJFUKn4sm+NDoU912THAa1xR81ueBvPyS1a4NB59ZzCMJ7CMP6NYTyDEBqlFuE4B+A4ewJT2wTNRYFDPfXcTB0cpkIuW0b69ccjBwe9L4T8gWmlMB/+D6nTTyX7w6soH310IHDYAui6OaRIxMKyDIrFMpZlEI9HOprc2tub8ldl0xc4jFbP5XLF+uq5BhG5LOkjj0AMDU86oyEHBlDz5zN8511jDCnj8SjhcJihoZE53y+3LJN0OllreXZePecSCv0ey/oLYKN1L1pLpBwBHFx3H8rlN6F1asojCQE9PWkcx+lqgcN49VwuV5hQPZdIeDdgQ0OZln/OUm88Gevee8E0JrQZolJBJxIMPvQwJOL09vZg2zblcoWeniSDgyPEYhEsy2TjxmHmzUujlGZoKEN/f4+/T11CiBeHwKHb55C6zqmhVKqQzZZwHE257FIs2gwPb5J7K9XeaIhmBA6hkEVvb5po1Gv3DQ1lqFQqyOefJ/alL9J7wL70bbeE3n32Iv6ZT2E8/VTDx9aJJMUPno8wJGJo0DOerOK6iMFBtGlSPP/DY4oRsEUKHKr7F81EQ8wEy7oXy7oTpfpw3d1QaiFaz8d1d8J1t8MwHiIU+g3VWPl6zAWBQyQSprc3RShk+cmtkw/Ctjqioorx1JNY993rd+En+D33Q/5ELkf45psCgcMWQNcVpNEopcnnbZSCctlLf/TmD9rnPTcdgUM99Zx19130vOZwot+7HLluHbgOYnCAyFU/In30UYT88LFGKJ96GvlPfhqSSeTwEHLjBu/P0CCkUxQu/CzlN75ps+dtSQIHr23r3STYtt1h9VwJ07wHreNo3TPB9yMotS2G8ShSrmzoiN0qcNjMe64B9VyrIyqqWH/9q7cvatQ5pu+YHPrb3wKBwxbAnLlKKaUplWyi0bC/L9I+iWkjAod6w63y2WdInvNOLx4iHB5zd6e1RpTLJD74ATJLl+Lsf8DUJyQE5TPOxH7dCYRu/S3mk08A4Oy2O/brTkCnJm8TbRI4xBgennvWNeOHW5VSxGJRDEN2rCAZxjKkXIvrbjfpY7ROIeVKDOMplGrM5LabBA4zHW6t5+DQNHZ57CD4ZGgN5eo+aeDgMJeZMwUJIJ+3CYetUYOf7XmdegKHRtRz0Z/+BFEsblaMAE8ZFw4jbJvIlT8g993vN3xeOp2mfMaZTFeiMBcFDvXUc52MqAAQooSnqpvKgVwiROPee90icJhIPdcMrRY4qKXbbRptmCz9WGswDNzttgMCB4e5Tle37Mbj9YjLSClnHBY2FYVCCaVUraXS8HCrUoRvvMHbSZjsgy0EWghCv/8dItd+sYjrepP1sdj0ogNmi+pwq2lOPNzaqYiKKlqH8X5V6otUhFBoPb1AvtmMqGimPVePMQ4OjrNpPKFJ7COPQvX3b5J6T4Qf5lc+7fTal4KIirnLnCpIAKWSQ6Xi+Psi7VXGVAUOyWSs8eHWQgGRz09+R1dFSoTjIAaHWn/iE55W9wscxg+3Dg9PPNza7oiK8bjudii1ECnXT/oYIXIoFcV1d5rWsWdD4FAvGmJGxx0Zwfne9xGveQ29rziYnkMPIn7+h7D+/reJXUamIhSi8NGPeTd2lcrYY2hdG3con3gS7u57jHlqIHCYm8y5ggSQy5X8u5/2bwhrrQmFQmPUc3WJRtGmOfUvoNbeSimRaN3J1n257hU4SClIJuPTUs816uDQGmI4zoEIkUGIiVa0NlKuQKndUGrJtI/eSYHDdNRz00E+/zzJt55J9CtfQj/xBMLfKw3/4Xck3nsu0Uu+2tSKqXzW2yh84pPeDZ7jeHtFtr0p5vy448ld+o3NnhcIHOYmXTeH1CiJRIhoNNwWQ8fxw62hkEWxWGrYwSHxnnMI33orOmRN2rYT5TKVgw4mc9PNrTz1KUmnkwghukbgUB1u9RwZCtMabo1Gw8RiUYaHMx0QOFQIhX6NZd0DgFLz8PaMRhCigOvuTrl8Glr3NnV0w5D09KRm5OpRj2aiIRrGtkm95TTMxx5FzV8ApolhePe6rqsQmQyUShQu+ATlM85s6iXksmVErrka6757wK7g7r4HpbPO8mLOJ/kd01pjGJLe3jTZbB7DMIhGw2zcOExfXwqldE3gUP397u/vIZcrbLECh26fQ5qzBUkI6OvzHB28wc/WHHei4dbq14aGMg1tPJv330f6TW9Ea+VNlo//YNs2QmuyP7wK+5hjW3PiDWIY3r5BPl+cVYFDq6IhenpSaK06JHBwMYxHsax/IeUKQKNUH45zII6zNzCz1W4sFiUaDTf8OWuERodbZ4J1xx0kPvQBdE8PhML+C4NpGLhKoZVGrF+P2nZbRn79201uCx1Aa2+IOhKJMDAwTF9f2s9ZK9HXl2Z4OINhGLVQv2oA4YYNw8CWJ3Do9oI0J1t20HqBw2TDrbC5wGEqnJcfRP6Tn0IIgSjbXv/bdT3bn1IZoTXF9/4v9muPmfF5T5fZFjg0056rR2cFDgauuy+l0tspFD5KsfgRSqX34TgHM9NiBK0XOLSrPTee0B3/z/NcrBYjAA1Ka6S/l6rTaeTKFzD/+c+Wv349AoHD3GLOFiRojcChUfXcdB0cSu85l8yPf0rl4IO8QXPHQWhw9t+f7OXfo3DBJ6eer2gTsyVwmEo91wydFjh4CCCO1klamanTKoFDq9VzUyHXr0dPIOJR/r+tlBJCIYTjIIc7I+IZTSBwmDt01+52E+RyJXp64v7g5/TaitNJbh3t4LDJzLU+lSOPonLkUcg1qxEDg+h0GrVtY0OT7aQqcEgm45RKNk49WW0LaHdyaz5foLc3TSwWrdnYNPAsDGM5QowAAq37cN3tmXrWqL2MFjgMDU1vn282klsBVDo9qWBBKeUVJNtBGwY62fmW0XiBw/BwlnnzemoCB28GqTwq1G+oJnAYGMgixJy/TM4Z5vxP2nFGOziEGroTbDYaotmICrXV1rDV1g0/vhN0wsGhU9EQU0VUjEX7+0D3IsSG2tfAQKmtqFReiVI7tPwcp0MzDg6tGm5thsoRr/GiISoVz31+FFppEBojk8FZsIDKAS/p2HmNJXBwmAvM6ZZdFc/vTvn7IpM/bibJrTDWwUFONWc0B8jlChiGJBIJT/3gadKO9lw9ikWvEE21z2cYjxIK/QEhSii1E0rt6su1t0PKjYRCv0PK5W07z0YY7eAw1ees0+25ibCPPAq1zbbIjRsnXCm5uRzCcXBPfwvEZse7b7yDQ6FQQmtqrTuvHW/6kvAIQlBzcAA3aN11iLl/VaUxgcNMk1urTFfg0M20Q+DQ6HBrO5ha4FDAsu4FQii1NWP3fyyU2g4h8ljW/cz2hvZUAod2Dbc2RTxO7muX4m61FXLdWsTgIBQLkM8j1q1FZLM4x7+O0Ic+OKsrjUDg0P3M+ZZdlVLJIRJxan5t1d55q5JbR5PPF0mlErW02rlMoVAiHA4Rj0fJ5QpNH2f2kls3MVrgYNubex0axnKk3IjrTt6SU2orpHweKVej1DZtPuPJqQocUqkEpZIXVFllNttzk+HuvTfZn/yMyLW/IPTb3/huJQJ3z70ov/lU7JNOpjcUIqYF+Xzzn7PpIpctI3T3XYhiAXebbSkf/VryoTypVJJisVwTOHj5SL01gUNfX7omcPDmw2wcRwetuzYzZ+eQJsI0BT09cRzH4Te/+S2PPvoIH//4xxFCzji5dTypVBzDMKa98dyNhMMhksm4LwuevsBhJsOtrUZKQW9vujb8ORrTvA/L+iNK7TrFMZ7Ctk/Cdfeo+7hOkEolMAzJ0FCmvcOtraRQQA4MgGWiFiys2WhVZ3xGRtojPx+NXLuGxAfPw7rrj/4XJMJ1UakUhQ+dT+iCC5CGrAkcstkCQlCbR0okYliWxcaNQ/T0JDEMycBAFinn9j18MIfUQRxH8/jjT3LOOefwiU9cwC233MKaNeubbs/VI5crIqWs3anOZcplm0rFmXYbcjbbc5NRFThEIuGaW8BYGrmAd89FPp8vIKUknU52R3uuEWIx1LbbohZtNcbT0ROcuG03Rhbr1pE+5misP93tWRhpjfCDLWUmQ+Jzn8X96EcwDGOMwMHbh/TadZ4kXNQEDoZhEIuFuvdnvoWwxRSkQqHA9773bU455Y3cc889vPrVr+ZnP7uGZJtkpi9mgUOrh1tbzWQCB6Xm43WpJ3eoECKD1nGU6m/vSTaI5avWTNMgny+0bbi1U+RyBSzLbOsgc/yLn0euXVsrQhMR/fa3Kd1zT12Bg6fcjBCNejL6RCLmO7p3yQd9C2Rurz99stksZ599BmvWrGarrRbzsY99nOOOey2lUnlG+yJTUd1/8e6iOpPN0y5GCxy8rKmJf+lGt+ey2dysr4g8KgiRAbQ/rOrNl6TTST+bp4gQQ2gdQutepFw1ibRbIcRqHGcftF7Q4fcwlvHtuVDI8k1x50ae1WSMjqiw7UrLL+5iaIjwL2+qW4wAtGEivvs99EEHk0zGauckpUApVfN8BIjHo7WbgGQySiZTpJUD0QGb2CIKkpSCrbfehmOPfR1nnPFWwuFIzcFhtMChHbxYBA7tHm6dCiHWYRjLECIPhHHdxSi1ANN8CsN4BCEG8VptKRxnLxxnd8pli3j8WeABhFgLOAiRR8o1CLER190NSPnHH0GI1Si1GMc5pHNvbLP3OfFwayhkTShwmItUXU+8QebW3jCaD/0LMZUjPyBch9Bf/wKCWldAa41lWZTLZSKRMMVimXK5TE9Pyt+P1L7AoRwIHNrEFlGQ4vEE3/zmd8d8bSYODtOhGQeHbmUiB4fZV8+VsKy7Mc1H/egHA1CYpkCIHFqH0XoBSvUBAikzhEJ34LrPUC73EQotJxwWlMshpMwg5WqkfAaoYBhPo9TWaN2DUvNxnP1xnIN8x+4cXkc7imcV1H7qqedm4uDQbWitKRRKxONRyuUW3zBO41hSKcqVClIaCEFN4FCpuDiO5+CQzxcCB4cOssX+RJtxcGiWZh0cupHRDg7lsj3L7TmXUOgOTPMfKLXVGBm2YTyMaT6M6+5IpbIb4O0XKRVDqX4s636EGKFcfgXh8Ea0/i9CPI8QZcBEa9C6jNYmWsepVA7BdffEMJ7FMP7oFz+BUotw3V1Ranva1aZpVD3XjINDt1IqlYlEQsTjMUZGWnfD6O68c0OP04aBs+tuvmBBBg4OXcIWW5DAc3AIh61R+yLteZ3RAodSyW65om9KcjlCf7qb0P/7A3LdWnQiiX344dhHH4NetGjahyuVyiQSsZp6rtPtuSpSLscw/oPrLgHita8LUUTKDbjuUqQcwjCe99tvtWeitUbKQZT6N0plMc0hHCc6am/IO4ZSBkr1YFn3Y5qPIeUQWif8vSiFYSzDMJ7DcfbzW3mtK0rT9Z4b7eBQLs/C56zF5HJegfX2+Vpzw6i23x77FYdh3XtP3X0k4boU3/6OzRwcqhEUVYFDX1+65uDged6Vag4OxeIwWm95ERWzydyXh9Wh1REV9ZgtBwe5fDnJc95J/LOfwbz3HuSq1RiPPUbsG98g9fazsP7y58aP5avnksl47WJXVSDNBobxBEIoRhcjACGGEaIAJNE6jmE86w+zrkLKAX+fqIAQZaR8HscxMQwXKdN47TcBxNA6gZRPonUMw3jYL347+G28JFqnUWo7lJqPaT6IYTzWsvfWbDREqyMqZpPRAodWXtQLn/o0SDmhAzl4q6PKgS/HPvq1QODg0E1s0QUJWhNR0SjTjaiYKSKTIXHBxzGfeBx30VaoJUtRCxeiFi/GXbIEMThI7HOfxXj00SmPNd57bng4i9aze+GTci1axyf4TvUiUEGIIQzjaUzzAUzzX5jmfZjmg8AIkAcsYAjXNTGM8Q2BMEJ4e0lClP3iNxEJIIFh/AvDeIhQ6DeEQr/Esu5AyueAxluZM/Wea1VERbdQHV5uZRS985KXkr32Okgk0ID2i502vZ9X5dBXkLn2ejA2XQ+CiIruYIsvSOAJHLy7n/auXkYLHDpB6I7bMZ56CnfxNp7LsutuMreUErV4G+TQEOEbb5j0GJMNt1YFDl4hn60Ln8FEQ6pahwCFlMsRYgNaGyi1AKUWoVQvQuQwjFVIOYJSccDFcUAIjWG4QNH/U/ZXSavxVk0SGK9g0wiRQcrnCYdvIBL5Dobxb6Rcj2H8l3D4N1jW733Z+eS00ntutMBhrlMVOEQioZbdMIbDIRInnwSrVmF/53LsY47FftXhlE9/C8O//39kbroZnUqNec74iIpMJodpGrWIilgsilKqtmIqlys1gYPWc3curNuY+7dYDbClChxCt92KRiMHB5AbNoBtAwKdSqL6+9HpHlQ6Regvf6Y4MICeN6/23EbUc52IqKiHUtthGMs2+7qngnMwjA0oFUfrBFAd6LVQahFSrkKIdXizRRmEGEQpF8OoIARoLf0/2wI2XjEyGPsr4WAYTyPlU77kPAv0AqvRuojr7oZSCX+FpbHt4/BWZGNph/dcIHDYHMOQNcufctkmbzuoU0+HU09v8AhBRMVs86JYIUHjERUzpZMODnLFCuTgIMaKFVD0fdu08r729DPI559HhyNQLiMHB2rPm040RDsjKqbCdXdF6yRCrB//HcBAa4EQJbTuZ+xHuYjWPYCFaT7ir3AGgI0olQGGEWIAKTOY5lMIsRohMr4DeLUgaQzjKQzjGaQsAqa/CtsKrecjxIh/7FKtcEr5wpizbGc0xHQiKuYCM3FwEMIbXu3pSSGEZGQk69uFTW/1GURUzD4dXyGtXPkC1157NY899ijLlj3LkiVLufrqyVtKVbTWXHPNT7nllhsZHh5m55134f3vP5+99tq7odetChySySjxeGzuOzg4DnLVKkSphI5Gx3iGacvyvr9+HaAhFkOHwk0Ntzbq4NAOvMC8w7CsOxGiiFILgYi/4rHROoVXiEr+YKxAiCLeKmlbpFyLEBsRIgd4se0gMAyvu+ntRdmY5lMo1YvWL/G/JhFiBClfQOsEQmz0f04Jf09LoPV8pFyLlCtx3R0RYgPh8NW+A0SUUGgvwuFdcJxhRkYKVCpRWv3rViwWa4PM2Wy+pcfuNM06OFTfvxCCQqFIsTgzJ4uqwCEcDtcEDj09SYrF0qh5pE0rpqGhjP/3KJlMicDBYWZ0/NZq2bJnuffev7PNNtuw3XbbN/y8a675KVdddQWnnvoWLr74MubN6+f889/HqlUrGz7GliRwsO69B6FcrxBNdIfs7/vIdetxt9ue+J67N+0957UeZ0fg4DgHYtuvr7XhDONJDGMFWhtUKq+kXH4DrrsXnuNCAtfdiUrlILSWbNp/svEuFALQuK7yBQxe71/rEEIUCYX+iGH8B3CRcj1QQWvTd4eQvhdedXkt0DqFlMuxrHv9ldQLWJZDPD6IZf0U2/4A5fKXMIyfEA5fi2k+BLTuRujFLHAwDEk6nSCZjFOpOAwNjcy4GFUJBA6zR8c/xYce+koOO+xwAL70pc/yxBP/nfI55XKZa675MaeddiannnoGAPvuuz+nn/4Grr32Gj7ykf9r+PW3FAcH609/Qkci3r6RbUNoglaHlAjbJnTQy1GW1fRw60QODp1D4Lp747q7+/tCBaCIZf3Vl2b34rr9jB45EcJrxXmFKARE8ApJGa8Iuf4+EnhFK4bW3g2KaT6AEEVfdVf224Wu36rrHXNmWhsYxnJgHtBHKLQ1hrGQSuUfKLUGKCBlCcfpQ4ghLOv3SPkslcpr/TmnmfNic3AQwitYkUgY11WMjGRbbqU0XuBQdXCoChy8GaRy4ODQBjq+Qmqm3/3oow+Tz+c54ogja1+zLItXverV3Hff36d1rKrAwTRNIpH2OQ5DeyMq5MBGdDiM2mZbEAJRKnl9KK1BKUS57A0GxmLYu+8x42iIZiMqWoeJUktx3d1x3QNw3T2RcgMTzYEIMYAQA2gd9VdKEbx7LznqWGE/28byB22LaJ1CqSV4Jq2e6s5198Bx9mVTURv9OsNIWUTKRYTDAlhIsfgflHoO153vt/JcX+23GNfdAdN8CtP8a0t/MtWIimh07keh1IuoCIdD9PamiUTCFApFhoczbfT18wQOQURFZ5kTu6ErViwHYMmS7cZ8fenS7Vm3bi3l8vRURluCwEH19HiBY/Pn4+64Eyqd9gqRbSNcFxGPo5csQfXNoxSOtGS4dTYFDuNxnP1QaiGG8Rze/lAV5cu4bX8VEsErWtVibOKtmqSvkPdaeVo7gINSvSi1DZXK0bjuXr6SruoCMbbdZprrMIwEhlHGtmMUChZCvIBSKTy1nfBl5Wv917dw3a0wjGcmEGo0z5YucGhne24yAoHD7DAnPr3ZbIZQKEQ4PPZCmEwm0VqTzU6v9bYlODhUDnulN9hXLqPTadxddkHvtTfsuSfsuRfOHnugALVoIZX9D2jJa44WOMy2xFXrfmz7GFx3Owxjja+IexrDeAYI+yudMFrH8FY2DhOZpBqGgdfGiyFExf+7wnUXotQ8pFyDUgtRameEyCLEOqTMEw4XsawRtBaUy5JyeTdfUFHwZejV87QQooIQjv//CYTI+UWzdWypDg6tUM81S+Dg0HletM3OUskhEpm7ERWVVxyGu/POGE88gd5mW2Q4hLAslFIoV0E2hyyXKZ38Roi1rhjWi6joNFovwrbfgJQrfRGC8otBgXD4V/4Mk4FSMaTMsOn+S1NV07mu498NL0QI1y8cgxjGEK67Hab5DwxjPa7bDywmHH4K03wa1y1TqWhcdwmOsy9az0OI56kKJ4TIIUQJbwBXI8QqDGOjX4w2onUPWvej1GJa4SZeFThsKREVjuMQDodq7bl2r4gmoypwSKWSFIvlmsBhaCjjzyNFa553VYGDF1FhBxEVTTAnClIymcK2bcrl8phVUjabRQjRdCrsnBY4hMMUvvhlUv/3MYxly1DhMG40inYVIjOCkJLy8SdQOuutrXk9n9kVOEyEgVJLUWpp7StCjOC6O6C1wLIGESKENzhbxitEVT87iTc4uxAp02i9FsN4Fq37gD/5vngZwCUcHkTKEtBDubwTjjMfIYr+quxRXHdnhCghRAHDeMpX5mmkHEFrjWGsQql+lJqHN3D7BOFwkUrlUBzn5bSiKG0JAofRw62VioNpGrNaXAOBQ2eZEy27pUu3A+D551eM+fqKFctZuHAR4XBzm7lzWeAQjUZIv+wl6J9dTenc9+L0zQNfyOC85KXkP/t5Cp+50LMUajGzL3CYGG926BmkXItS/WjdR6VyIErNQ6mEP7dUlfsLP0tpHo7Ti2EM4/X+Qyi1NVIO4xWJNJZlY5phlNoe2+6lUtkF1z3AH5C1say/Egr9AcN4GCmfQ4g1NfcIby/BrMnHhSig9QIc5yVoncCy7sYwplaaNspcFThMNNw6MpKdVODQ4bMLBA4dYk6U77322od4PM7dd9/JzjvvAnhL+r/85W4OOujQGR17rkVUbDbcGo2hz34nnPlWxPAwmCa6t5e2qjWoRgckay3P2USILKb5T0zzQaR8HiGG8AqOROs+HGdvTNNF6zxCxPDSYSv+YxSwAaUqSLmISmVbpNyA1hFM08KyVuK6y3AcjeOk0DqFYTznD8WOoNQ2SCn9Yd0SUEHKoi/79oZhlerHU/N5URm2fQSe1Dzmn/tDfnzGzGfj5mJERb3h1nZEVEyXIKKic3S8IJVKJe69928ArF27hnw+z9133wnAfvu9hN7eXs4771zWrl3D9df/CoBwOMyZZ76DH//4B/T09LLjjjtxyy03MjIywumnnzmj85krDg5Tes+FQugFCyY/QIuZTQeH0QiRxbJux7L+DgwhhOm33FyE2ICUz+E4u2HbR2Kaj+C17Rx/GNalGlGhtYNpOpjm036yrAuUcJyKP/ukMYz/opS316R12B/ItVCqF8N4BCkzaL0IGEJKG6VMwPZbfxW0NvCyljbNMym10E+xXTMmgHAmzBUHh8285/KFzQQLzTo4tJrAwaEzdLwgDQ0N8ulPjx1krf7/t771fXp7X4rrurjjwrXOPPNtgOa6665heHiInXbahUsv/TaLF8/8l7jbBQ7RaGSWk1snphsEDl5y7AN4keM9KLVpP1HrPoRYj2G8QLn8MpTalnD49ygVxVuh2AixElAotRWum8KyvKwl1x3xV1gRhLAAiZQ2MIgQeX/VU+14x/Fi0CO47s54xetp37ooh+f4EAIMf9/pWRxnof/8CELYeIWyNcyawCGfJ3T3XZiPPQquwt1mMZWjX4tatNWYh013uLXqehKLRcnnZ09IEwgc2o/QDd5ybNjQvk3/bsA0BT09cVzXbavAASCVimMYxpQbz814z3WacDhEMhn3A+Y6vfmcJxy+DtP8D96qp3/Md70L/QhSrkLrfhxnR7ROI2XO3+sZwDDW+nLuRRhGD1o/iVKFUT55BYTQfkEJ+3tB69F6PpXKEXjzRhopn0QIB9fdzW/D/QevEFn+is1DyvVo3Uulcqjve2cj5UrK5TNatkKqkkolMAzZEYGD9ae7iV38VeTaNX4EigABOpWidPoZlN51DhhG095zkUiYeDzKyEhjQYbtQmtFOp1CSlETOGSzBYSARCLGwMBwbdW3ceMQPT1JDEMyMJD1B7Fnl/nzW+MQ0i5m/yfUJXRTREUj0RDdQmcjKmykfMGf9zHRmlFDsD2jHqf9dt163/4nBwwg5SocZxe/VRf2pdo2UkaAAq5bBHJI6eK6ITx5uIXW3t7QppgLjSfn9oZdhcj7BawClPxBWBel+v3XdvB+1RRah1HK24dSaiukHPDnnBa2/KfVqYgK8557iH/6U1AooBYu2iSkUQoxNEj0yiuQaKyPf6xue64erYqomDlBREU7mRMqu07RDQ4O04mG6Bba7+CgMYz/EA5fQzh8A6HQrwmHbyIcvslf6ZQZnUPkFSPPdNeb90n5fyxM8xkM43m0ThEKaUwzidY9uK5AKQuooJQe9e9v+cd02GTQKvH2qDy3cCGyKLWLr85bgxAZf2WURusUXo6S8qXgcb/45P1zL+A4+zFRjtJM6YiDg1JEv3c5IptFb731WFWnlOh5/RCLEb3+OsTKVTMabp1JREWrCBwc2ktQkEYxmw4OkyW3zgXa7eBgmvcTCv0OKTP+zNEuuO7OaB3DMNb7+0DeCsATKazHW8lU/w0dtA7XioyUFtHoIKCwbQfHieEp4kq+hx0YRskvOGVfkCB9l4bleMWlDAwgxDCuux2uuyOuuwtgIsRGvJVVD667BK3jfqEqo1QPnnnrMIaxnkrlEFy3sQiVZmi3g4P5n39jPPUkqr9/M2WnkALTMpH9/ejhYUo33jT5XpHjYN15B9FLvkrsoi8TvvYXiJGRcQ/ZJHCYzZVG4ODQPoKW3ThmQ+CQTif8QcAWtudyOeTQENqy0AsXtl0G3i6Bg5RrsKx70boXreeN/g5ab4vj7INl/RGtn0epXYEsXmhfVclWQmsLpfowzRKGMQgkqVQ24jgxpKxQXbUIoRDCQusKrmv77TbbN2gFzz3c8SXjBlK+QKVylO91J33n8e0wjCeBEEIMI4QnPXfdPrwVloEQjm999EoqlVfRzvvCdgsc5IoViLKNXjCq4AnPkkkKgVIaVymkBrl88/RfAPPee4l/8gKMF57f9EWliF1yMcX/fR+ls/+n9vkNBA5bNkFBmoBOOTgYhoHWutaea8WKSD73HOFbfknozjsRhTwYBs4uu2KfeBL20a/1/O/aQLscHLx48OykG/6uuzOG8V+/DbfIL0bV91jw95tihEI7YBg5XDeL4+T8Flw/kKXqXwdxXHdXDON5lIpimhG09pN4kXgrLhety0B1dfb/cN31uO4Sv9D0Uakcitb9aF0dTo2hVB+bTF5dDGMNrrs/nWhStNXBYVwrUBrSaw9qjeOMblHpCT975j8eIPmedyFyOXQyCZbfjnNdRC5L7KKvQMWm9J73ekdpIKKiEwQODu0haNlNQLsdHEa356rDfkYLCoX5r3+S/MD/Er7uWigWUfEE2gphPvQQsc9/jtjFX4U2KuHa4eDgzQil6jwiiW2/Gi/BdQVSLsdLiV2PEHmkTBIK7QvsTbHYT6XSh7dfk/VbZzaG8V+EeN6fE1qA6y7Cc/4uIaXhK+w0njhBo/VWuO4euO62gIWUq9F6PrZ9BOXymVQqxyKEl6Gk1La+XZDAWyFFkHI9Si3Cdbdr2c9pKtrl4ODusQc6HkPkc157TkqUq8YWI8cBIXH32HPsk7Um9pUvecWot29TMQIwDHS6B6QkevnlyDWbzGjrRVR0lsDBodUEBWkS2iFwkFKQTMbHJLfmcoWWRFSI4WFiX/gccv0G1JKl6PnzIR5Hp1KoJUvQqRShX99C+Fe3tObNTELrBQ5e7Hh9vFVJqfROKpXD/PmjrTHNA5DytRSL+5LPmzhOP1onUWo+Wi9Ga29vSKmEX5iexjT/6u/35FHKRSnb97BzgChKLfKdxL18JC+4z8JT6e2J9yvlScPD4ZuwrLuQ8nm8vaic70Ye91t1nYvxaJvAYdddEQcdhDk0hHZcHMcZ6w6hNXLDelR/P/ZRR495qvnvhzAf+y86Fp+0pawTCUQhT/iWm8d8PRA4bJkEBWkSWi1wqKeea0VEhXXXH5GrVuEuXjxhpLlOpUBKQjf/sq2rpFYLHJTaCq+tNuF3EWIdpnkvhvE4hrESrV+GaR6LZR2K4xxOLrcVlYrXHtG6D6UWIOULaK0RIo1Si/39JhdPyi39x8ZQanu0Dvmr1wW47mKUWsQmRZynuNM6hJTPY5r3Eg7fgGn+DaW29m2FNmBZdxIK3YYQq3DdXbHtE1Bquxn/bKZLKwUOo73n9P9dgLN4MXrFckQmW43ihVIJuWoVOhSi+MEPoXt6xhzDePxxcCoQrlOYpQSlvceOIhA4bJkEBakOpZJDpeIJHEyzuZZao+q56mZtKNSc/Df0lz+DkGBO3ptWffMwnn9+s1/uVuPNVrXmwucp10K+dHo0DobxKKZ5H4axHKUWEgqZJBLPAhsplZ7Ftp9kU6ieRoisPwe00Ped2+g7KqzDU+Jtg+vui1I7IoTtv2YI17WRcgQpB5Fyta+is6nOKXlChSyh0J1ADtfdFdfdiUrlFdj2CX5kuReBbttHt3wAtlGqAodwOIRlNb+HsVly6/yFZL/xLSqHvgLKJeTKF7w/Q4O4O+5I/nNfwD7+dS18Jx75vLe/F4vNbgZUVeAQjUZQStUEDl67TtYEDqGQVRM4RCIRTFMGq6RxBDtrU9CswGG6w60zjagQIyMw1UXGssCpeGKHNtJKgYNS2+A4+2Oa9wHzfdcD4ReSp/CKwp5EIi8DYpRKNpVKGsN43JeAb8ArHqB10nfZ7kWIjVjWI/6ckINSPUAv3j5P2JeUr8MbZjWRUiOliVICKYfQOo9Scb9d5zmNexZE+477WcT81dZCDONZDGM5rrtH0z+PmTITgUM97zl3p53Jfee7GE89ifnoo+C6uNtsi3PggZPeJLl77OF9JstliEyyt6UUSImz556bfSsQOGx5BD+JKWjGwaFZ77mpHBzqoebPx3zssbqPEaUShMKbtU7aQescHCSVyuGAhWk+jBBPIUQZw3gEISIYxs4Yxn7YdphyuWqtlMR1t0MIiW0fiVe0pG8tpDDN54AQSqWBMJ5TtwSG8eaHPJdub9XkRZErpZBSo1TEtw8aQAgDIcq4btoP9Nu1zvsw/fbfE7NakGD6Dg4Ne88Jgbvrbri77rb59ybA2Xc/nD33wnzoX+hweMJ9JJHLomMx7JNOnvAYgYPDlkXQsmuARgUOMx1urefgMBWV1xyJFoA9ecEUgwM4u+6Ku0u9C2fraJ3AwaJSOZxS6a3Y9utw3d0wjKWEQscDB5HPG5RKY6NDPFugQYSooNROKLVDzZ9Oa+knyJaRchlSDiDlRqQcRIi1foRFzi9YFkK4QAGlyr7AoYjWaaqqO292KYHrTmX/E/VXUrPLdAQOm7XnhjOtm2USgsInP4VOpRBDg2M/u67rxaloTfH9H9jMoHU0gcBhyyEoSA0wlcBhIvVcPt+cEWqzAgf7la/C3WVXjFWroDKuCGqN2LABrBDlN5/W9iHZKq0WOGjdg2W9nHj8AKRcSqmUJJ8vT9IKre75lfEECxX/GEm0XghswDBW+XNLEb+1lgASeMOvOSDhu4Bvg5ebtB7DGEAIb6Xk7R9JHGdHXHd7f7apHhU8R4jZZyqBg2FI0ukEyWScSsVhaGikLTHizgEvIXvFlbg77IDI5xGDA4ihQcTICDqdpvCJT3nGrPWOEQgcthiCgtQgkwkc2uE915TAIRol/4Uv4ey6K3L1KuTKFxADA8j16zFWLEcAxfecS+XII2d0btOlVQIH0zTo6UmSSMSoVASlUhHbrlcAXIQYxjQfJBL5EZHIVYTDN2AYj+O62yNlDiFyvvtDjE3xD94FTWsTT3XnGaNqvTVKLcV1U0jpIGUeiOE4e1OpnITr7uHvV02GRoi8L9KYfSYTOEyU3Nqs91xDuC5y40bU/AXej9510aZF5TWvYeTGmyi9/R0N3UAFAoctgyB+YhpUIyqKxSI//OGPePbZZ7j44otRSrc8GqLRiIrxiOFhQnfcTujW3yLXrkGHwlQOOwz7mONw99mndSc4DWYSUSGEIB739i8cxyGXK+C66wiHf4EXdpee4FkK0/wnUi7DdXf3zUw9JZwQNq67CNP8lx/YZwICKQeoxo17V8YKnot3FK3no9R2KLUIKcuEwy6uO4BSGYrF91CpvBYpnyMUusU/p/5x56ORcgWQolx+8yTnPDuMjqhoNhqiaVyX+Mc/RvjXt4DW6FAYpECUbVAuatslZH/4I9yddm7ocEFExdR0e/xEUJCmycMPP8jFF1/E8uXL2Xrrrfn5z68lFGr9gKOUkt7eFMViadoChxpKeXeXXbBhmk4nEUJMS+AQiYSJxTz1VaFQHCMosaw/YFkP4jg7MH7AVMpnCIX+guPsgeMcNO6oNqb5kB/7EMWy7kMIL/PI860z0Drqt99yaL0Q193HL2rez9E0TSyriG2/gG0fS7l8BiAwzQcxzb8ihI1S/XiptAW/2M3Dtl+LUttP+2fXTgxD0tOTQimFYRhNRUM0S/S73yF66dfRkShEx61sXBcxMoy7446M/PZ39WeVRtHTk0RrZlXgoLXGMCS9vWmyWc+dIRoNs3HjMH19KZTSNYFD9fe7v7/HH5Jvr8Ch2wtSoLJrkLVr1/Kd71zKn/50F4Zh8Pa3v50zzjirLcUIxgocSiV77PR7o7QrcqAJcrkCPT3JmmltPUzTIJGIYZompVLZ348be4GsVA5DiAKG8YS/iunBa4sNYFn/wXW3wXFeMsHRQyi1GNP8NzAP190VKXN480quP39URGtPzKD1In8YdhOum8E0C5jmPlQqg0i5FqW2xnFehlL9vrfecry4iTCO8wocZzd/76p7EIKa4ERKSSaTa2rkoCmKRcJX/8z7jI4vRuBZByVTGM89R+iuP2Ife1xDh/U+ZynC4VDNlqvTjBc4DAwME4mEa627vr50TeDgScJLNYFDsTiM1saLVnUXFKQGWLt2LWed9WaKxQL77XcA//d/n2D//femVCq3Nbq76qDtyURzbXudTjBa4FAu2xP2y8e354aHM3VaL3Fs+zgMYydM8zGEGPC/nsB1F+M4ezNZxpBSSb99Z+G6+/n5RwU80YEAIhjGE8A6lOpByjX+sQTeTFMY296BSGQfLOsxKpX8qGNvj1Lb4zieaavWYbpFyDCa8e25SCRCOBzqWEGy7r0HuWGjZ6g66YMs0JrQ73/XcEEaLXCw7cqs7ctUBQ7e6EPUd/tOUiyWRs0jbZKEDw1l/L9HyWRKbBLlvLgIClIDxGIxXvGKV3LwwYdy1FHHIISoCRw6FVERClmdu3ttE/UiKka353K5fIOJvRFcdx9cdy9/v0cg5RoikRuB+KTP8iTfFl7ekQsYaD328d6xDCqVAxHCRcohvCHZJEotQOsUhuFiWZ7Sbjxad2drZLLhVtdVbYuoGI184QXCv7qF8M03IXJZcB10IuEPxk6wKhACsXHjtF6jWyIqotEIQgii0QihkIVSip6eZO33IJmMk80W6O1NBREVPkFBaoBUKsWFF35xzNc6FVExUweHbmIiB4dG2nNTI0cVgIg/zGoDE8+lSJlD6zhKzUfKdXhpsnGqKyAph9E6jVIlX+K9xDdUHYttryUW6yUSWUK+veYXM2aq4da2RlT4hK+/jthFX0Hkc56folKe1LtQgEgE1T9/8zaz1ui+vmm9zmw7OFiWRSIRRUpJsVgiFLL8Ie0K4XDIn0MSxGLeAL3WmnQ6Ubu5TafjDA5meTGukrpnk2GO0e6IitHkckWklLUVxFxmdERFIhGjp8eLlqg6n8+0xeK5cS/0U2MnwytWlcrLcN2dARcp1yHlWj+Vth/HORitF/rtuonOqYIQ6ymVdiQSmY9hdO+vUqPDre2KqACwbv9/xL74eSiXUP39qEWLPEshIbwiVCohB8athCoVEAL7mGOn/XqzEVEhpfTnERO47qZ5xEwmh5QC267UBEobNgzh+O7oVcm6V7gEhmGQSERelDLw7v0tmgO0I6JiImbi4NCNVCoVDEMSClnkcnlfDt6qu1gLx9kXKYsIMdGdvoMQGZRK+9lHu+E4B+M4L8NxXorjvBzHeSlaR3GcPXDdrf2QwGG84UUHITZgGM/iODuTz++D687Mqb1dTHe4tW0RFUoR/e7lCNtG9/Z6BUhKVNXCSmvva8UilEvVk0FkM7jbbY995FFNvWwnHRy8ecQUpmmSyeTIZLx5xMkcHKr7wqZp1sYZpJQMDY2Qzxd8scmLz8EhaNnNgKqDQzIZJR6PBQKHKRjdnnMcFyllS1Jyx+O6e1GpDGOaD+AJE+YB0hcy5HCc/RFixA/KW+yr9EYLDxRSrvML1L6Y5r8xjGeRciMg0LqHSuVVOM6+QJx8vkA6nZxVZddoGvaem4BisVjb58tmW9OHNP/zb4ynn0Ilk2NGEHRvL9q2EVk/skJrzyQ4XALXRW29mNx3vze58eoUdELgML49N9GIRlXgEA43LnCIRF6cAoegIM2QUskhEgkEDvWYSD3nuore3tSEAoeZY1CpHIbrbuNLsFcBFbTup1I53I89X4Fl3YGUz/uy7upddA7DWOXLuF+C1vOoVF6L4wz5cRQSpXoZLZqoVBzK5eo+31hPvU4z0+HWqoNDKwUOcs0ahF3Z3NRXCNTChYhYDDEygigWEZUK7rx5OAe8hMrhh3s5XjOgXQIHz0YsWlMmVldEk1F1cEilkhSL5ZqDw9BQxjdcjdYk4S9mgUMwGNsCqg4Oruu2VeAAzTs4zBb1hltn4uAwPUp47bYIo7vUhvEkpvkPf59I4cWTR3Hd7XCcQydwXJgcKQW9vemaMKPT1IuGaIbRDg4zxbrjDpLvOxfV1wfGJHf7WiNXrvRizJVCON7+kY5EsY85hvwFn0QvWjTxc6eg1Q4Oo9388/lCwzeH3eDg0O2DsUFBahGJRIhoNDwNyXIDuC5y+TJEqYzaait0X19rHBw6QKPquWYcHFpLBSlf8M1UJVrP81dM078jjUbDxGLR2gqwE4xvz+XzhZasaqoODoVCqaGIirrnODREz1GvgXIJnZ7YNkkMDyPXrwfL8lp7/gySKJWg4qC2346R625suii1wsGhkfZcPbrBwaHbC9IW17JbsWI5l112MY8++jCxWJxjjjmOd73rvf68yOS86U0nsHbtms2+/sc//p1wA7Yl+bxNOGyNGvyc3nnLZ5/B+te/oFLBXboU84knCP/i5xirVoLS6FAI++ijKb3zHIovPWBmDg5tZHrDrdNzcGgPFkrt0JIjFYtlf58gxshI+/f52uk9N1rgUC7P7HOme3spv+4EIr+4Bl2peMVmNJWKV4zAEzpUV1FCoGMx/8ZsOfEvfYHcty9v6hxm4uAw3fbcZAQODlOzRRWkTCbDBz7wHrbddglf+tIlbNiwnu985zJKpRLnn//xKZ9/+OGv4bTTzhzztVCoMYVOswIH+eyzxD93Idbf/46o+L8olYo3fxEOez10KRG2TfhXtxC664/kvvNdwicc33UCh2aGWxtxcJhLdELg0Or23GS0UuBQPO+DmI8+gvnwf9ChkDcMKwSUy8gNntxbp3smbukZBpgmodtvR65Zjdpq62m/frMCh9HtuVZYKzUjcHgxOThsUQXp17/+JYVCni9/+RJSKa814Loul176Vd761rPp759f9/l9fX3stdfeTb/+dAUO8tlnSL/5FOTGDSgrhE6mEPkcwt9PEaUSOh6HSAQdCkE8jhgaIvGhD5Lfbz9S2y3pCoHDTIdb6zk4zDXaKXCYiXquGVopcNC9vWR/eBXR711O6Ne/Qg6PgFZecUolESMKXWf+SUciyGwW88EHsU94fVPnMB2Bw0zbc/UIBA6TM/eHWkZx33338NKXHlgrRgBHHHEUSikeeOC+jpxDLlfyA7qmnktJfOoTiI0bUPFETdoqSqVNw4JaIwcHPddu8FoY6TRicAD5y1/WHBxmCyFES4Zbqw4OXtbU3L9HyucL/iR+6/5t2prcWofRDg4zRff0ULjgk4zc/keyP7qK7BVXkrn5V7h77oWe6t9dCO9KPj58cjqv7zs4RCKhMZlmo5louLXVe7VCCMplG9uukErF/Xkkg0gk7CfKRlFK1VZM5XKFctkmlYqh9ezFanSCLaogrVixnCVLthvztWQyybx5/axYsXzK599++x949asP5qijDuMjH/kAzz77zLTPoVEHB+PJJzAfeMDPgPH+GUTFHhsZIUTNXmXTE71fJOuO22fVwSESCdPbm2rZcOtoB4e5TjUfKxIJz9jBoVPJrfVotYODTqWoHPoKKoe/GnfnXXB32NH/Rp0bmUoFbVqoJZtbOE2Heg4Okw23tgdBLucJG0Ihi0KhRCIRpVgs1xJlvVA/4bfmvcfGYqE539auxxZVkLLZDInE5iqSZDJJJlNfxfWKV7yS88//GN/4xnc5//yPs3LlSt773v9h1aqV0z6PRhwczAce8Fpzo/eoqh+06pOq/y2Nu0OTEpnJzIqDw+jkVtuuMDSUaZmqMJcrYBiyFokwl/EuLM07OHQ8ubUObXNw8Cmfcop3o2VP8jnSGlEs4u68M84BE0WKTI/xDg6WZdHbmyIWi1AslhgaGml7G3wyB4eqwMFLjDb9FVMEIagJHLZkB4ctqiDNhA9+8KMcffSx7Lvv/hx77Ov4znd+AMC1114z7WNVBQ6eOmfiC5KoVNDjw/Oqv+xTfdiUwvXlr4VCCfXYY6S/fgnpIw6n5+UvI33C8UR+eCVifT0/t+nRqvZcPUYLHLaEPnk+X8CyrGlb18xWe64exWIRpWYeRT8RzgEvwX7NkYhyGcrlsZ9/pRC5HIRCFD78kZZkfI0WOLS7PVePqsDBa/F7Aodo1LsZq7brCoVSbcWUzxdRSpFKRfHm5rY8tqiClEymyOc3V51ls1lS05z47u/vZ5999uPJJx9v6lxKJacWUTFRv9rd3k8OdTbdiWnL8gwnq7+Q1f+O7q9XvMwe+8STAAjdcjPihBMwrvwBxsBGhG0jn3uO2NcuIX3aKRgPP9zU+Y+m1e25engXhPZc+DrNaIFDI/W1G9pzk1EVOITDISyrxft8QpC79BvYR78W4TiIbBaRyXjuDbkcRGPkv/JVKke/tmUvWfWZsyyrA+25yakKHKLRCEqpmsDBa9fJmsAhFLJqAodIJIJpyi1ylTT3d5BHsXTpdpvtFeVyOQYGNrJ06XYdP596ERWVw16JWrwY+cJKdNJ3PcabuxCZzFghQyLh/d1xEJkM7q67YR95FOb99xH/wufQto1atAghJcovFNp1katXk/jQB8hcdyN6fn2F4US0JhpiekwUUTGXyecL9PamfWXXxA4OnVbPNUtbIyoSCXJXXIn5r38SvuEGjGefQUcjVA45lPIbT0EvWNCSlxmtnqtUKliWNauzfOMFDlUHh6rAwZtBKo+ShA/VBA4DA1mE2KIu4VvWCumggw7hwQcfIJvddPG/++47kVJy4IEHTetYGzdu4OGH/83uu+/R9PnUFTiYJoWPfhws08uH8X8pdCTiDQOCd/tkWYhyGTE45BWjnXcme8WVEA4TufpniEIRPa8f5RcKKf1bccNAzV+AsXo14d/+Zlrn3Yn2XD1eTAKHbmzP1aOdERUIgfOSl5L/6sVkbrqZ7NW/oHTu/7akGE2knstk8h2PqJgYT+Dwrne9i0sv/RqFQolSKc+GDQMvOoHDFlVeTzzxjdx00/VccMGHeetbz2bDhvVcfvk3OfHEN4yZQTrvvHNZu3YN11//KwDuuOMP3HPP3zj44EPp75/P6tUrufrqnyClsdmg7HSp5+Bgn3Qy+Xye+Bc/j8zn0b7CTvgT6mrJEijbCNvG3WVXyqe8GfvEE715pXXrsO65x5tTEgI0aKUQUoJ2vQgfw0BLSejXv6J09v80dL7NJbe2ntl3cGgdEzk4dGq4tdW00sGhU9Qbbp2Jg0OrqAocHMfhl7+8icMPP5zLLrsUKSVXXfVTNm5cx+rVazjooIO3eAeHLc7LbvnyZVx22SU8+uh/fOug4znnnLHWQe973zmsXbuGm276LQCPPvoIV1zxHZYte5ZsNksymeSAA17GO9/57s1k5M0QiZgkk1FKpfKEg59i/XoiN92A+eCDnnXQLrtSPuUU3N12n/SYxuP/JXXqKeh4AkZZGxmmgdYa5ffDxcgwOhZj+O/157Bmoz03FZ5dS5ihoZFZP5eZYlkm6XSSbDZfmzlppfdcJxECenrSOI7TsoiKdtDocGsiESMUshgayszK58yyTOLxGM888zQnn3wy2223HQceeCDXXXcdH/rQ+fzznw/y97//nR/96Cf09CS54YYbOOusd7B06WIqlQqZTAkhGnNw6HYvuy2uIHUrPT1RLMuc0tutUeTzz5M+8XVo04L4pigEIQWGlLhKoZVGDAygttqKkdvvnPA4473ncrlCxyOfJ0MIQW9vCtuuzHkHB/CMZKsCl1Z7z3WaUMgilUp05X7XeO+5fL5QV7BQ/ZyVy5WWRlRMfZ6CeDxGOOy13orFChdd9GWuv/5a3vve/+W6666lVCrxuc99jo9+9KO87GUv4/jjX8dnP3shp512Ou9//wf45Ccv4OCDD+W4405qaJXU7QVpi9pD6mam4+DQCGrbbXF23x2ZG6sq1EqjtPbmRbRGVCrYrz1mwmN0Uj3XDFuKg0NVPVdVp5XL5TldjKC1Dg6tpJnh1kYcHNpznmm/aDoMDRXI58u8/e3n0Nvbx49/fBVnnPE2CoUCd975R4488ij+8Y9/EImE2X777bnxxhtYs2YVjz/+OJdd9nVWr36hI+fdboKC1CEadXBoGCEon34G2pBe4uYolFKe7dDARnQqSfmkk8d8v53Dra1mLgscJhpurRprztTBoRtoq8Bhmsx0uLWeg0MrsSyTnh4vmNLb0yoyMlKsFc1kMsl73/sBisUihUKBvffeh//3//7AoYceTjgc5pJLvsb7338eruty0UUX8bGPfYxSqcSVV34X05z7n6m5/w7mEI04OEwH+3UnUD7zLCiXEOvWQT4PpRIik0GvXo2IxShc+DnUjp41y2yr55plLjo4TKaem6mDQzfRbgeHRmil99x4B4dWIqXwz9ML3SsUbIaG8pTLm7c7jznmeD73ua9wwgkncf75H8cwDP7730d529v+h4GBjTzwwIMcfvhrePDBB8lkCrz0pS/jzjvv5J57/t7y8+40wR5Sh5lK4DBttCZ0262Ef/FzzMf/C64Cy8J+5SsJnfse3Je+jEwmVze5dS4wVwQOjajnRgscZkvZ1SpmU+DQbHJrPdohcKiepxAC23bI5crTGsJ9/vkV9PXNIxQK8c53nkVPTy+f/ORnOeOMNxGLxfnqVy/jPe95B1tttTU/+9n1dSNzun0PKShIs0CrBQ6A16JbvQqRz6P65qH7+2sbz67rYhhG16jnmqHbBQ7TTW5NJuNYlukX2A6eaBvotMChndEQrRQ4VNVzpmn4n4nyhCui6VAulwBBOBzml7+8gSuv/B6/+MVNXHvtNVx77dW8970f4C1veeukzw8KUsBmmKagpyeO67qbOTi0itHqOa01IyOeYEGuWknot7/F+ttfEeUy7jbbYp9wApVXHDbW6LULCYdDJJNxX3zRPcquZpJbpRT09qZrNwlznVQqgWHI1js4jGK66rlmiUTCxOPR2u/M9M9zc/VcoVBuy42H1tr/3OU577xzeeUrj+Css94+6eODghQwIYlEiGg03Jbh09HtuWKxRCwWpVgs4Vx7HbGvXoQYGfHclQ3D88YzJM4BLyF3ydfR/f0tPZdWk04nEUIwPNy+C1+jzHS4NRoNE4tFGR7OzIqPWisxDOmHyJUoFltvUNqO9lw9enqSaA0jI9O77s20PdcKVq58gWuvvZrHHnuU5557hlAoDGhisTgnn3wSH/zgByds62mtufLKK/nFL37B4OAgCd+yrFAosM0223DGGWdw+umnt/Xcg4I0SwgBfX3e/FCr2jaTDbfGYhGi9/wddc45YNuo/vljXZNLJeTARpwDX072Bz+EUUPE3YZheArBfL44aw4O023P1aOnJ4XWqubgMJeJxaJEo2GGhjItc3BoZ3uuHp4SNdXwPl872nPN8te//onLLruEnXfelfvu+zuWZfGlL13Chg3r+fa3LyWZTDIyMkI8HufEE0+sFagf/OAHfOtb3+IjH/kIt9xyC8899xxCCL7whS/wxBNPcNVVV7HffvuxYsUKCoUCixcv5txzz+X1r28uwXciApXdLNFIREWjTKWeK+SL6MsvRxaLqPkLNrfwj0RQ8/ox//VPrC5X6sx2REWrveeajajoRloZUdGJ5NZ6jI6oqPc5m456rlMceugrufnm29hrr70BWLhwES9/+cG88pWvRgjB2rVr+cIXvsCHPvQhrrvuOo466ij23XdfLr30UvbYYw+OPvponnjiCT796U/T39/PQw89xDve8Q5CoRDLli3jC1/4AldccQWnn346tm3zk5/8hF133ZV3v/vdMz73uTttuAVQKjlEIk7Nr62ZfnUj3nPGU0/CQw8henuRUtaMWMcdCDHoErr1t1Redfi0z6OTFAql2r5NpwQO7fKeGx1RYdv2rAscRDaDdecdhP7wB+SGDehUCvs1R2Ife9yU7dxqREUqlaBUKjddqOt5z3WSfL5IKGT5Tu2bf866oT03EVUJ/n333cO8ef21///1r3+J67oIIahUKhx11FF85StfYe3atbz73e/miiuu4Mknn+TNb34zABdffDFLlizhz3/+M/m8F3ux2267cdRRRwFw8MEHs2HDBo455hgikQj/+Mc/2H///Ukmk7zsZS/j/PPPZ/HixdM696AgzTL1IirqMR3vObluHbpcRvX1IaVAuRM/TpsWxsrpJ+R2mk5GVHQiGqKRiIpOYDz1JPGPfgRj+TIv9sSyEBUH81//IvKzn5L/4pdwXl7fNX8mERWz1Z6bjKqDgxCafD5HPJ7wz3N8e640qyuiyVixYjl9fX2168J9993DIYccwiOPPMJzzz3Hhg0bagVqzZo1gNcS37BhA7vssgv5fJ6nn34a27a59dZbkVJyxhlnjHmNSy65hL322ouHHnqIBQsWcOGFFzI0NMT3vvc9TjnlFG699Vb6+voaPuegZTfLTNfBoZnhVh0Og5QouwJCbIqoGI/roqNzIxivEw4OnYqGmCqiohOIjRuJf+TDGMueQy1ciNp6MXr+AtTWW6O22gq5fj2JCz6O8czT9Q9UqVC+807kb39L/IH7oTR1UZnt9lw9SqUyn/jEJzjttFPJZEa6rj1Xj2w2g2lu2g9esWI5O+ywA+l0mpGREf7yl79wyCGHMH/+fFavXo1hGCjlBReeccYZ7Lzzzth+rLxSipNOOomrr76aPffck0MPPZQPf/jD3HHHHVx44YXss88+LF26lIMPPpjjjjuOK6+8ksHBQX71q19N65yDgtQFNOrg0Kz3nLPnXuh5/ZDxNpullGz2MkqBVlQOe+WM3ksnaZeDw2wkt862g0P41t9iLF+O2mprMMeJWgwDtdVWiI0bCd94w8QHUIrIT35Mz1FHED/jDHjb24ic+RZ6jnw1ke9/FyZZxTbjPddp9tprbwYHB7jqqh9u5j032y3W6ZDNZsYkZz/33HO1AlUqlVBKccghh9Df389PfvITli9fzmmnnVZ7/E033UQsFuNHP/oRb33rW7ntttvYa6+92GGHHTbbZ1u0aBF9fX2sX79+WucYFKQuYCqBw4y95xIJyiedjLDLqGLRG6IdfSeuNXLDenRPL+Vjj2vBO+oMrRY4TOQ9l83mO5ZTNJsCh9Bvfg2m6Y0CTISU6GiM0P/7A4wz9EVrYp//HLEvfgG5chU6HkP19kIyibF+PbFLLiH+0Y+Au+nmaabec53CskzOOussdtttN2666SbuvfeBMd5z3UwymcJxNv+ZjoyMkE6nyWQ2FahQyJuZWrJkCaZpsmzZMr71rW+x55571p63ePFiHn/8cQ466CBisRjJZJJ///vflCZYBS9btoyBgQF29G3LGiUoSF1CqeRQqTi+s7V3UWil91zx7P/BOehg5MAAet16pG0jXReRyyFXr4JIlMKnPo1etKil76vdeK2dmSu7uiG5dbTAoaMCwkrFuyGJ1DdJ1dEIolhCDg2N+bp11x+JXPtzdDiE7u0FKwRCog0T0deHjkUJ3/pbQr/+VVe350YzWj0XDof4+Mc/gdaaiy76Cq7bPY749Vi6dDtyo24ekskUAwMDbNiwgR122KH29ZGRERb5v/eO42DbNkIIdtllF5577jkM/yZln332Yf369axatYpvfetbnH322di2zYoVK8a8rtaaL37xiyxYsIDjjz9+WuccFKQuohpRUS4XueSSr3L++edhmkZroiESCbLf/Dalc9+L29eLHhxEDmxE2DaVV7yC7De/jX3Msa17Mx1iphEVs9Geq0c+X0AIQSzWwb080/SKyBQXWuG4aCk3K1zha38Bjgux+Jiva63RGmQ8Dsoldt219PYku7o9BxNHQ+y88x4ce+zreOKJ/3Lrrb+e7VNsiIMOOoSBgY21mbClS7fj/vvvR0rJoYceSiq1qUAddJAnVnnqqaeoVCporXnssce4/fbbicW8rs2aNWuYN28eV1xxBbvuuiu77rorAIODgziOg+M4ZDIZvvnNb3Lfffdx8cUX157bKMFgbBfhui5/+MOvufzy75DJZNh///351rcub72TcqGA9fjjpMImpXn95LeanjSzG5mug0Mrh1tbzWw4OMQ++xnCN9+MWryYyZZncvUqKi87kNwPfrjpMZUKvfvvi3BdtD/ZPwbhy5ALBVCK4v0PUIh3p33NVMOtg4MDnHXWmznwwIO58MIvzuKZ1qdUKnHvvX+jWCxy8cVfRgh4y1veyj/+cT///e+jnHLKKbzwwgs89NBD7LDDDjz++OMsXryYwcFByuUySini8Thaa1zXJRQKUalUKJVKnHfeedx777088MADdc/hS1/6Em9605umfe5BQeoSHn30YS699Ks89dSTpFIpPvjBD3LUUa9FyvYFhsViEaLRSEsn62eL6Tg4NOM912k67eBgPvQvEue+GzToefM2+77IZBDFAvkvfWXsSjqfp+/Al6IBxt8NC5BCIIRAF4voSoXhO+9Cbd1dN0DT8Z4bHh4mHA4T7WI16po1qznllIndE0KhEPvssw/ZbJYVK1ZQKpWYP38+oVCIRYsW8fzzz7NhwwYA0um0f5M3TE9PD8PDw5x55pnstNNOPProo9xyyy0cf/zxvOlNb+LLX/4ypVKJ559/nne+8518+MMfburcgzmkLuDpp5/k3HP/B601r3vdiZx33nksWbK4dREVk1AdME0kYmQyc9u6ZrTAoVy2J9xna9dwazvI5wu1/YtORFQ4+x9A6T3vJXr5txGrVqF70uhQGJwKcngYEJTf/Gbso1879omxGKq/H7l6FXpUQRJS1IQmSmlEuQypNKpv82I3m0x3uLWnp6dzJ9ckW221NX/724MTfi+TWc8XvvAFVqxYQSwWQwjB0qVLOffcc7n++uv55z//WStQd911FzfeeCOf+tSniMfjXHjhhXz3u9/l+uuvZ8GCBZx33nmcc845tX/nFStWcOqppzZdjCBYIXUFmcwIP/3pVbz61UfW7D7aElExAdXogNmciG8Vk0VUdHN7rh4dj6jQGuuOO4j84hovW6tSAcPE3X57yqeeRvnkN2xuOwVEL/820Uu/jk73gGnW5ty01milQSnk8DDi/e9j5KMf74qffTd5z3WS8W7fzz77LF/4whd46KGHiMViFItF9txzT84991zWrVvHRRddRCQSwbIs7rrrLgDe9ra3sXr1au64447aMU444QQikQg//OEPx2wx9PX1sWTJkobPLyhIXUonIiqqpFJxDMNoa3RApxgfUTEX2nOTMWsRFVpjPPsMYmgIHU/g7rrr5HJwQGzYQPqUN2CsXIlIp9GmhdIKNOA4iMwIasEC1G2/w9hxh1n9nHUyGqIbmSp+YnSBqpqvfuhDHxrjDn7WWWexatWqWoG6+eabueCCCyY83sknn8xFF13U8PkFBamLSSTCRKOhtkRUjEZKSW9vqivsWlpBOp30LJKUmhPtuXrMhYiKaDRC7PnlcOaZ6Gef9QbrpPSGrYVAbbUV2e98Dw7Yv60RFQ2dZxd6z3WSIA8poGnaEVExGVuKwMEbbvXugJXS5HL5rmgRzYRujajYzHtuYIjQ7f+P0G23esasvb3Yxx1P+ZhjwVfgtSOiYurzfHG25yYiKEgBMyISMUkmo20XOAD09qZwXTVnBQ6j23OO42AY1f2XubcyGo1lmaTTyYazedrNTJJbhYCenjSO45DN5tt8ni/u9txEdHtBClR2XU4rIioaJZ8vkkolCIUs7LKN8czTiJERdE8P7o47TTqfMttMpJ7T2iuwnYyoaBfdFFEx02iIVkVUNHqeL+b23FwkKEhzgGYjKqaLbVewy2Xiv7+NyPe+h/HEk97Ao2Hg7r47pbe9Hfv413VNYZoqGqJTERWdYLYjKloZDTGTiIqpmCvREAETE7Ts5ggdEThoTeyyS4n+6EpwXdx43LOVcRxkLoc2TErnvpfi+94/60WpUfXcdB0cupnZEDjMpD1XD8OQLRU4BO25xuj2ll1QkKbJihXLueyyi3n00YeJxeIcc8xxvOtd78WyrLrP01pzzTU/5ZZbbmR4eJidd96F97///Nrc0VQ0JHBwHEJ33E7451dj/ve/ICWVlx9E6cy34hx00JRFxLr7LhLvey/CshDptH/h2fRCIpMBpchdcSWVQ1/R0Hm3mukOt07HwWEu0EmBw+j2XD5faPmcWqsEDkF7rnG6vSAF5qrTIJPJ8IEPvAfHcfjSly7hnHPey29+cwvf/valUz73mmt+ylVXXcGpp76Fiy++jHnz+jn//PexalVjCa1TRVSIXJbkWW8hec47Cf35z4iNGxHr1hH+za9Jn/om4v/3sSnNM8PXXYuoOChfETU+yE+nUgjbJnz9dQ2dcytpNhqi1REVs00nIio6FQ1RLBZRqnmndssy6enx9gm9Pa3inImGCJiYYA9pGvz617+kUMjz5S9fQiqVBrwL3qWXfpW3vvVs+vvnT/i8crnMNdf8mNNOO5NTT/UigPfdd39OP/0NXHvtNXzkI//X0OvXEzjEP3geob/9DW1ZXpvNR2sNlQqRn1+DWrCA4oc/OuGxRS6Ldf/96Kjn5KyUwpASLcQYlZqORLD++lcvCXSKuIJWMdPh1qpFUiBwqM/49ly73bibFTiMb88VCnbQnttCCArSNLjvvnt46UsPrBUjgCOOOIqvfe0rPPDAfRx33AkTPu/RRx8mn89zxBFH1r5mWRavetWr+fOf757WOUwkcDAee4zwHbejDWNMMQK8pUUohHZdolf+gNI570YnU5sfuFAEpdB+FpPWGqU1Usqx+S+GAUohyuUp83NmSjPecyKbwbr7bszHHwfHwd12GypHHEk+tMOsChzEhg2E7r4LY9kytBC4O+1E5dVHePlB06QdAoeZqueaZboCh9loz61c+QLXXns1jz32KMuWPcuSJUu5+upJknNHMdM2/YuRoCBNgxUrlnP88WNddJPJJPPm9bNixfK6zwNYsmS7MV9funR71q27lnK5RDjc2MXdcTSlUoVoNEQkEqJUsgnf/EtvKr5egQiHEbkcod//nvKbT93s2zqdRsdiiFy2ZpKplMYwBFLKTT1+20b39k4cNdAiplLPTYZ1911Ev/kN5Lq1CKXQQoCGyDVXU37jKVTO/5BfyDsocNCa8PXXEfnJVYjBIQTac9QWAv2jH1I8593Yrz9xWiIRpTSFQpFYzJtPm8kFuWn1XLlM6LZbifzi5xhPPQmmSeXgQyi95UycQw6Z1vvJ5wv09KSIRiOTChxmUz23bNmz3Hvv39ljjz3RWjW831Vt07/nPe9jxx135uabb+T889/Hj3/8cxYv3qbNZz03CQrSNMhmMyQSm28KJpNJMpnJL3LZbIZQKEQ4HN7seVprstlswwUJvL2kcNisOVvLtWtA6foXASnR0kCuXTvx98Nh7BNPJPLjq9BK+SaaGu26iHweWSiCVlAuUzrjzLreZjNhovacWL8e84XnwTBwd9xxwhWeec89xL78JUSxiNpm200rRaUQgwNEfvoTbCmJ/t/Hai3PThC+6Uai3/k2GAZqyZJNPzfXRa5bR+zSr0MohD3N6PhisUw4HCaRiDUlcJhJe04MDpJ8x9uwHvqXJ3kxDK/w/vY3hG67lfKZZ5H//BcnNGKdCNdVFItlYrEI5bI95oLfDe25Qw99JYcddjgAX/rSZ3niif9O+ZxWtelfbASiBqBcLvGWt7yRt7zljZTLm+7QMpkRTjzxtbznPWd3VWzxeIGDjsVATnFHqjVCK3SdHJfSqaej5s1DbhzwLuS5HGLZMli9GjE8hBgaQpRKRK6/jvDVP6OVV4WJklvLjz5G7MJPkz7ljSTf826S57yT1JveQPSblyEGBjY9WSkiP/ohIptFbbPN2LallOj++eh4DOvG6yk982zHBA4ikyHy05+AlKhFi8YWccNAbb01OBUiV/3I25ObJs0KHLxE1FRzya1akzz33V4xikQ8S6BoFGIxdDwOUhL52U+Jfu/yaZ1TsVhk5cpV/PKXN1CpVEad59jk1ny+83tFzQRk1mvT33ff31t5elsUQUECwuEIn/zk51i1aiU/+MF3a1//+te/Si6X4xOfuBDDMEgmU+Tzm9+NZrNZUqkJ9mV8kskUtm1TLo+9K89mswghSCanL8UslRwqFU/g4B51lKfOrlc0KxWQEvuIIyZ9iNphB3KXfQs1vx+5Zg1y9WrveVojACwL1d+PKBSIf+HzhK/52bTPezyTqefEw4+Q/N/3Ev7Vr0ArVH8/qm8eIpsj8uMfkzjv/Qg/SMx8+D+YTz+FWrhg0lWi7puHGMng3nob0LyyazpYf/4TYsMG1PyJxS4AasEC5MoXsO69Z9rHHy1waKS+tkI9Z/7jAaz770OHQhPvV0YiIASRH/zAS4ltEK3h9ttv52tf+xo33HDdnFfP1W/Trx1z4xuwiaAg+ey551685S1v5cYbr+M//3mIu+++kz/+8Xbe/e73sWTJUsDLpB+/V5TL5RgY2MjSpdtNeuzq955/fsWYr69YsZyFCxdNq1039rVLaK2JnHwS7jbbIGx74lWLUgjXxT7slagdd6p7TOeggxi58WZ0Mum1XAwDwmFv833rrb074Z4e0IrYZZciRkaaOnfw2nO9vWkikTCFQpHh4Yy3V2TbxD93IXLdOtSSJejePgiFvPOYPx+19daYjz5C9Bue3F6uXAm2DbH45C/m3+XKF54nny8SiYQxx19QW4xctRLQm1+4RxMKg9bee2iCfL6AEIJYbPICK6UkmYyTTidwXcXwcKZpp4Xwr27x2sN15u50JIIcGiR0913TOvbRR7+WBQsWcNVVP2Lt2jUUCjZDQ/k56bTQSJs+YHOCgjSKs88+h+2334EvfvGzfP3rX2W//Q7glFNOq33/oIMO4cEHHxjzYbr77juRUnLggQdNety99tqHeDzO3XffWfua4zj85S93c9BBhzZ9vlWBgxmNYv/4x96cUKkE5bK3WnJdKJUQ5TLukqXkv/b1ho5rPv5fby9m4ULUNtugFi1CJZNgGLVWl04mESMjhH77m2mf90TtudFSbuvvf8NY9hxq4cKJ9yEsC53uIfTXv3gXctPEUwpMocBDo01PsVepOCQSm89ztRQhgalbqWga3m8ZT1XgEImEMYwJwvNm0p6bALlmjbeXWG9JZhiAQK5b1/Bxo9EI22yzNR//+McplUp8/vNfnJX2XMDsEhSkUViWxQUXfIY1a1ZRKBT4xCcuHLPXcOKJbyQWi3HBBR/mgQfu47bbfsPll3+TE098w5gZpPPOO5dTTz2p9v/hcJgzz3wH1113DTfccC3//Oc/+OxnP8HIyAinn37mjM45ny+jlCJy6CGM/Po3lF9/Ihgmwra9FVMsRunt72DkV79BLdqqoWMaTz3pXSRDY/cmtNabfh7+foj55BMNn2ujw63mPx/0ium4u8sx55JKIXI5zH8+iLPrbuhEov5qzamgpcTdfXcAcrkChiGJRCZ/jZni7r47GBLqtWcKBQiFaufVDMWip7QbXWDbNdyqG2kvaw1aeXtKUzB+uPWww45g//1fwp//fDf33Tf9Nma30I42/YuBQGU3jvvvvxcA2y6zcuULbL314tr3UqkU3/zm97jssku44IIPE4vFOeGEkzjnnPeOOYbrupuJIM48822A5rrrrmF4eIiddtqFSy/99ozln1WBQzIZJbrffuQu/x5i/XqM554DKXB3333iuaOmXssrSFJILxEUGpb3Tme4VZTKox2LJkZ6qw9RLqO23x7nZQcS+uOduP5KbtyJI9esRS3aisqrXw2MdXAol+22RFRUDjoYd+l23mpvydLNf1ZKIdevx9lnH5z99p/Ra+XzBdLpJJFIGMsy2zbcah/xGq9t57qTKy39GbXKq1416XHqqec+9KGP8Y53vIXvfOcyDjrokJadeycZ3abfeeddal+faZt+SycoSKN45pmn+clPfshxx53AM888xUUXfYGf/ex6EqNmbrbbbnu++c3v1jkKfOc7P9jsa0IIzjrrHZx11jtaft6bOTgsWICzYEHTx3P32NPrNNn25qskpZFSIBzvIufsuVfdYzUz3Krmz/deX9eRstu2l0bqCwaK5/4vctlzmM8tQ82bh06nvefm88j169HJJMUPnIceJdtvu4NDKETx/A8T/9QnMZYvR82fX1s1iFwOsXEDesFCih88v+mWXZVKxcFxnFFCgPYMt9rHHoe71VYYa9Z472X8v4/jIByH8gmvn3RFPtVw6w477Mj//u95PPbYI2NX5XOI0W36akFqRZt+SycwV/VxHIdzznkb2WyWn/70WlavXs273vVWjjrqGD7xiQtn+/SmxDQFPT1xXNedeUSF65I+5miMZ59B9/VtdtGRAMPDqHSa4T/9ZcxFvsr44dZ8vtC4Ncyzz5B661lgmeh0z8SPWbMGtXAhIzf+sjYQLJ9/nsj3v4v1wP2IXA7wXCqcXXahdPY7vYHNcYTDIZLJOMPD2bY5OJgP/YvI97/nuUdU23fRKM7e+1A8939x99hjRscfPdwKUCqV2xpRYT70L5JvPRM5MuK5g1QFDuUyAnB234PMdTd44pcx5zk3k1tLpRL33vs3AG6++UZWrVrJ+9//IQD22+8l9Pb2ct5557J27Rquv/5XteddffVP+PGPf8B73vN+dtxxJ2655UYeeOD+WR2M7XZz1WCF5PPTn/6Ip59+im9+83vEYnF22mln3v72d3Llld/j1a9+DQcfPDvu1o0ykYND0xgGhQs/S+I970YMDqGTiU0rJcdBZ7MIy8L5zIUTFqOZes+pHXfCPuoowr/+Ndowa/HXgCdBHxwErSidedYYdwq1ZAmFL1+EXL4c84nHwXVRixfj7LPvpCuQctkmEgm31cHB2f8Act//AcYjj2D4Kk13p51wd9t9RjEeEw23hkJWSxwc6uHsfwCZm39F9PLLCf3uVkTZBgGqbx6l006jeO7/okeNQXTDcOtMGBoa/P/t3WlgU2X6NvDrJCdJkyahQFlGlIKAI4UBWVukWHYQijAKIw6bowgIWBZZBkFFFFlEGFncEGUTHEXW4QUBKSBgKZtgAQH907IjS9sszdIk5/1waEiafWtO2vv3rSHL0wrePc+5n+vGm286H2Qt/Xrx4k9RtWrrct2mr8joCgnA+fO/YcSIYfj73/tj/PgH4aNWqxWjRv0Lt2/fxpo13wr+RqRfIyoCIDmwH4qZb0N85fKD7TObDbZatWGdMQPSIYOdRgcEsz3nkV6P+PfehXTvHsBcAk4mA8PZ+Oii+HgYhwyD8ZURIW918euOvREV3kZDlOeICubePYgv54MTs7A2auQSX0WjIYRF6FdIVJAqmLg4FioV/xtyWO6LWCyQ7N8HNjcXsNlgbdQI5q7dgDi+ndhqtUGr1QW9PeeVzQb2aA6k//sfxBcvACwLS8tWMPfqxV9dhBF/pSG7X8iF+6u7P9lzEgmLKlVU0Gr1MBmMYHNy+J+fWAxLixawNg5ti9C/dcbm9lxFRwWJlLuEBDkkEhaFhRqnERXhJpVKoFYrYbPZgtqeY27dApv7Kz+dtkEDn4d2A6LTQbp7F6RZe8HcuwdbjRoo6d4D5k6d3YbQMgyDqlXVMJtLBDmiItDJrSpVPCR7f4R1xgyIf/+dD9/l+AOtllatoZ/5TtiLOr9OmtwqZFSQSLkLa4ODB47bcxzHoaCgyO/tOdG1q5D/ZxGkP+wEUxovI5WipG0KDOMnhNwCLc7NhXLSRIiuXObbx8ViwGoBRCJYGzWC7sP/wPbooy6vK48Gh2AEM7lVtuP/QTlxPGAwwKZQODceGI3gqlWHZu26kBsq3K2TtueEiwoSiQqlUga5XAqdTh9ag0MZZbvnDAYDlMp4v0cXiK5cgXrIIL5YyOL4sFeG4RMlDMXgVGpol30CS/vgWmNFV65A9eJQiG9c51vCWYeIG7MZzN07sNV/FJrVa8FVr+7y+ipVVGAYpnxHVHgQ9GgInQ5V09MgKigAqlS5Hwbh8M/cZgOj0cDSshU0328KqbGCXydtz8UKoRckSmqooEoTHPhk6/C8p7vsOZOpBAaDEXJ5nF+pyIqZb0F05TK4hPszlcRivjFBoeADUHVaKKdOBgzBtS3L/vsNX4xq1XYuRgA/qLBGTYgv/R9kW7e4fX15JDj4Emr2nOx/2/htytIzT2YTmKIiPq1dowGsVnByOdjTpyE+fSqEdTL316mCWCyK6ew5IgxUkCqosiMqQuEre6642AibzeYzG0588QKkPx8GJ1e4P+XPMODUVSC6eQPS3bsCX6jRCNm2LeCkMs/ddywLTsxC9v13brPvHBMcyv1Aps2G+FO/oOrG7yBZuwa6nw5BU6QNeNuLPX6M36q02YBbt8DcuQNGrwdTXAxGp4Po9m0wej1gKYHk+PGgliqU0RCkYqFzSBWYS4JDgA0OgUxu1esNUKuVkEolHu9xsEeO8AkLVat5/lCWBTgOkuyf+UmqARAV3AOj04GT+4hlkcdB9Oef/AwiN/OhIp7g4Ebczz8jfu5s4MIFfuQHAIVEAmmz5tBPfxPWZs38fi9RQQFQYoboTjE/lp5h+P+YDGMvwozRyBdtU2Bt7tGc3EoqPrpCquBKR1QEmmztcTSEB2ZzCcxms9c5Q8z9uB+fe4gc+MIVIE4iBRgRGF8jpq02cCKRSyyS/X04rvxGVIhEUP98EMpRrwBnzsAmk8FWtRq4qtXAsRKwx45C/dIwiE/94vO92KM5UL/wPKQ7d/A/a3c/B8efv9UKpqDQz3XS9hyJPCpIFZx9RAXLIi7O92RRX9tz3uh0BohEIigU7q9QbHXq8MWmxEuXGMcBIgY2h1Bbf3HVq8PSuDGg834glDEYUJLazusY9vIYUSGXx6FqnASSqVNh0+thq1qNn49UWjTkcv6+WkEB4t+c4XW8hmTvj1APHgTJoYP88DxHHOexOEl+9X0PibbnSHmhLbtKQK83QSZjHZKtXZ8TyPacJzabzd7gYDSa7QkOpczpHWGrXQuiW7f4oXvuFBcDUhlMfQPbriv9JkwD/gH2l5OAXg+4GX/AaDTgpBKYn+vv8+10umIkJKjsW57h4tg9Z163HpLr18Gpq7i/cmQYcEoV2PPnwR7NgaVtiutTtBooJ4wDjAY+yslTy7rNxm/T3f8LwMlkEP92zss6y397Lj8/D4sWzUdu7mkoFPHo2bMXXnllNCReBgICQP/+fXDz5g2Xx3/88ZDLkDwiXFSQKgHHERXx8QqX+yKhZs85Kr3/olQqoNGUuVKJi4Nh1GjEv/sOXxhUqgf/E+Y4wGAAYzLC1P8fQR+SNffOgCQ7G9Ktm4HiYj71m2WBkhIwRYUAAOPQYShJ6+DzvcI9osJd9pzsyBFIAB9TZaVAsR7syZNuC5J082aICgvBKRQPfp4O94scMRwHjmH4Dkeb7f4QwbLrjE72nEajQWbmKDzySF3Mnv0Bbt/+E0uXLoLRaMTEiVN9vr5jxy4YONB5vpjUw7YsESYqSJWEuwaHsGbPOfDW4GAaNBiMTgv5kiVgCu4BYOwZeZCwMPXpC/3Md4L/cLEY+lnvwtqwIWTfrIPo5k0wFis4CQtbUhKMg4bA9PxAv8/ehKvBwfFwq+NoCMbb9mWp+1t4jNX91YnkwH6+WIrub0GyrOv353BVBLWa3zrV61DSpq3bdUbjcOuWLd+juFiP99//AGp1FQD8LwULF87D0KEvOQ3BdKdatWpo2vRv5bFUEiFUkCoRnc6IhIR4XL9+FXPmzIFer8e3334X1PacN44NDi4ddwwD46jRMHfrAdmm7yE5cgSwWmBtnAzTc/1hadEy5IOaYFkYX3oZxkGDwZ48yV+NVU3gEyB8bP2UVdrgoFLFw2g0B5zg4Otwq7X+/cSI0u00d0pK+BzB+q7pEgDAGIr58VH2Bxg+Hqm4+MH9qPtFn5NKwYhEfFqDSATTP/95f53R757Lzj6M1q3b2osRAHTu3A0LFsxBTk42evXqU67rIeWPClIlUlioxZIli/DNN+thtVrRt2/fiCUS6HQG+whtd4c6bQ0awDBpCiI3tQeATAZLamrIbxPMiAp323PurjRMfZ6B/KNFYHRa/j6SG4xWC1vt2nwOnxv2abQOAw05RTzfaVdaQB3+zKbVosRoxM0uXaDu2BEqZbwgRkPk5+ehd+9nnB5TqVSoXj0R+ffHdniza9dObNu2GSzLonnzFnj11Uw0CGc+Iok4KkiVAMdx2L17J5Yt+w/u3r2LevXqYcaMGUhObhqx//H4anCINYE0OHjannOHq1EDxldGQP7RR/yVnFL54ErpfsQPWBaGCa+7DYUFANOzz0G2fh1QYua79ABAJAJXJQGMTuvUQs9YLLDJ5VgVH4+1RUXYLhHbu+einT2n1WqgdDNfS6VSQaPx/otAWtpTSE5uilq1auP69WtYtepLjB79Mr78MnrD8EjgqO27Ejh69AhmzXoTer0eI0eOxbp136JDhw4hJzj44m+CQyzwJ8FBIpHYrwoNBiMKCor8CkI1jB4Lw9jXwElYMIUFYO7c5tMVCgvAxSugf/MtmLx0BVpatUZJekf+isjx/JZYDE5dBZxcDk4qhTnjGejmzof++Alg1iz8WVCAxYsXQ6MxoKjIENNBqOPHT0b37k+jefMWePrpDCxd+jkAYP36tVFeGQkEXSFVAo0bN8GYMePRuXNX1KpVGzYbUFISfIJDIPxJcIgERqOBdPNGyHbuAFOkga12bZj+/izM3Xt4PBDri6cGB3+35zwSiWAYNx6mAQMg27QR4osXAYaB5W/NYHqmL7jERB/fLAPdkqVQjhoJyaGDgNnEN0Fw9yNVWQkMU/8N05jXEK/ku+defPFFbNy4EevWrUOXLr3QsGGjoH4m4aRSqaHXu54h02q1UDtMoPVHYmIimjV7AufPe25rJ8JDBakSUKlUeOEF53bY0gYH/r5I5JLcvTY4RAh7+DBUY16F6N5d/n/IDAM291dI9uyGtdFj0K74CrakpIDf112DQyDbc77YHqoDw5jXgnotp1JDu3otJAf28wGzF/iBhiUdnoJp4EBImzVDVYfuOb3egnHjJmHChLFYuHAeli1bXv7ZfWUkJdVzuVek0+lw9+4dJCXVi8qaSPmiglRJlSY4yOVSxMVJwzqioixfDQ7hJP7tHFSvvAxGp4Ut/sH9GA4ALBawFy9APWwwirZuBxfgb93AgwYHlYrfhgx4NEQkicUo6dQZJQ7NDxIJC5WH7rk2bVLRqVNXZGXtwfnz5/D445GfJOtNauqTWL36K2i1WqhU/L2krKw9EIlEaNs2sOaUO3du4/TpX9CjR69ILJVECBWkSsyfBIdwKM8Gh7jPPoVIp4VNqXJtH2dZ2BTxEF+6BNn3G2D810sBv79IJALHcRCLWVgsVhQWagR578VxG9Fb99zkyW+gVas2aNjwsegs1EHfvs9hw4b/Ytq01zF06Eu4fftPLFv2Efr2fdbpDNK4ca/i5s0b+O9/NwMAdu/eicOHD6Jdu/ZITKyB69evYs2alRCJxC4HZYmw0YC+Si4ujoVKJYfRaIp4snXVqmpYrTbXBIcwYQoLUTW1DVBSwo+48PQ8rQbWv/4VRbt+DOj9HbfnrFYLWFaCgoKikBMcwi2WJ7fm5V3CokUfIDf31P3ooN4YMcI5Omjs2BG4efMGNmzYBgDIzf0Vn322FJcu/WG/umrZsg2GDx+JunXrRek7ESahD+ijgkSQkCCHRMKisFAT0QYHqVQCtVoZ8r0WT8TnzqJK76f51G8vB2AZgwGQsLj320W/3tfd4VaGYVC1qhpmc0m5jajwhSa3El+EXpCo7ZsEPaIiUP6MqAgFJ5UBcJ/h5vxEm2sithveJreW54gK/9dJoyFIbKN7SDHi4MEDWL78E1y5ko+aNWtjyJAXXU61l3XjxnUMGOD6nOTkpvj885X2rytKg4OtXj3YHnkYorx8zwWH4wCrDSXpHb2+lz/dc8EkOIRbLG/PEVIWFaQYcOrUL5g+fTIyMvpi3LjXcfz4Ucyd+y4UCgU6derq8/UjR45Bixat7V8rFK5XQhWiwUEshnHIMCjem8WnFkhcixJjNPDPGzTE7Vv4yp4rK1IjKnwRQvYcIeFGBSkGrFr1BZKTm2Dy5DcAAC1btsa1a1exYsVnfhWkhx9+xGcKsq8RFeHkdURFiIxDh0Hy0wFI9mUBZjO4uDg+Bdti4cd2M4Dx1dGwpDiPcQj2cGu4R1T44m/3HCGxiO4hCZzZbMaJE8dcCk/Xrt2Rl3cJN25cD9tnGY0We4IDy3qephoOer0BUqkEUmlg6ds+SaXQfv4FH8WTkADGYIBIqwFjNsFW9xHo33sfxVP+7dQSzk9EVYNlWWg0uoCTFvirKC5i98ZKla6TJreSioqukATu2rWrsFgsLu2rSUn1AfAJyX/5y0Ne3+PDD+fi7bffgFpdBR06pOPVV19zivh3VCESHGQyGCZPhWH0WEhyjvBp2TVqwtKmjdMgvEC35zwJdUSFL7Q9RyoLKkgCp9XyN8vLpiCrVHzKgLcUZIlEin79+iMlJRVKpQpnz+Zi9eov8dtvZ7F8+Wq33WEVpcEBABAf75RaUCrk7Dk3ItHgQNtzpLKhghQFpflcvjz0UJ2QPicxMRGTJv3b/nWLFq1Qv34DTJkyHvv3Z6FLl25uX1chGhw8CGf2XFnhbHCg7jlSGVFBioKsrD2YN+89n8/7+usN9iuhsinIpVdOgaYgt2vXHnK5HOfPn/NYkCpKg4OjcG3PeROOBgfaniOVGRWkKOjTpx/69Onn13PNZjNYlkV+fh5SUtrZHy9NRY5UCrLRaEFcXOyPqIjE9pw3nkZUBLLO8tqey8/Pw6JF85Gbe/p+TE8vvPKKc0yPOxzHYe3aVdi06TsUFhaiUaPH8NprE312chLiC3XZCZxUKkXLlq2xb59z7trevbtRr159nw0NZR069BMMBgMaN/ad7BzrCQ6hds8FI5gEh2h0z2k0GmRmjoLFYsHs2R9gxIjR2Lp1E5YsWejztWvXrsKXX36G55//J+bPX4Tq1RMxceJYXLt2NXILJpUCXSHFgGHDhiMzcyQWLJiLzp274uTJ49i9eyfeeWeO0/PS01PQs2dvTJv2FgBgyZJFEIlEaNKkKZRKFc6dO4M1a1bi8ceT0aFDR5+fG6sNDuWxPeeNvw0O0dye27LlexQX6/H++x/YOy6tVisWLpyHoUNfckrXdmQymbB27VcYOHAwnn9+EACgefMWeOGFZ7F+/Vqne5aEBIoKUgxo3vwJzJ49H8uXf4Lt27egVq3amDp1Bjp3dj6bZLVanRoD6tevj40bN2Dr1o0wGo2oUaMmMjKewcsvj/T7t/dYanAo7+05b7w1OAihey47+zBat27r1P7fuXM3LFgwBzk52ejVq4/b1+XmnoZer3f6uyeRSJCe3gn792dFfN2kYqOCFCPS0tKRlpbu9TkHDx5z+jojox8yMvqF9Lmx0uAQye65YJQ2OBQU3IXFYrM3pwiley4/P88lC1GlUqF69USXqa1lXwfA7bm4W7fWw2QyQiaLC/NqSWVBBYn4JOQGh2hvz3lTXGzEkCFDoFKpsHLlalSpohZM95xWq3E52wbwRcnb2TatVgOpVAqZTObyOo7joNVqqSCRoFFTA/GL0BocvI2GEAqO49C+fRouXLiAbdu20GgIQnyggkT8UtrgwLIs4uJ8zxIKhU5ngEgkgkLh/jftaHTPBUMuj8OkSa8jISEBixcvxsWL+YLJnlOp1C5n2wBAq9V6PdumUqlhNpthMjnfF9NqtWAYBiqVsAfAEWGjgkT8ptebYLPZoFDIHbNJw86xwUEkevBXVCKR2DvxDAYjCgqKon6vyB2JhEVCghrx8XKo1VUwduw46PV6LF36n2gvzS4pqZ7LvaLSBBFvZ9tK/+zy5Xynx/Pz81CrVm3ariMhoYJE/Fba4MB3iUV266642AibzQalUhET23OA58mt3bv3RnJyU/zwww6cOnUy2ssEAKSmPoljx3Kg1T4I0M3K2gORSIS2bVM9vq5p02aIj49HVtYe+2MWiwUHDmQhNbV9RNdMKj4qSCQg0RhRESvbc54Ot4pEIkycOBUymQx//PF7tJcKAOjb9zkoFApMm/Y6cnKysX37Vixb9hH69n3W6QzSuHGv4vnn+9m/lslkGDz4X/jmm7X49tv1OH78KGbOfANFRUV44YXBUfhOSEXCcH4Gbt2+HblRBCS2sCyDhIR4WK3WiI2ocOye4zgO9+4VReRzQuV6uNXksWGhuFgPuVwBJpL7nQHIy7uERYs+QG7uqfvRQb0xYoRzdNDYsSNw8+YNbNiwzf4YHx20Eps2bUBhYQEaNnwMmZkT0bRps2h8GyQANWoI+x4fFSQSFKVSBrlcCp1OH9YEh7KHWw0GI9RqpeBaussebjUYSir1aIgTJ44hM3MUZs/+AOnpnZz+bNeunZg1awY+/fRLKlpRJvSCRFt2JCiRaHBw1z1XUmJx2+AQTTS51VWLFq1Qs2Yt7N69w+XPdu/egTp1HqZiRHwSxr9wEnPC2eDgq3vOscEhmhy75/hECAOKigyCvKdV3hiGQY8evXD48EHodA/ayQsKCpCTk43u3Z+O4upIrKCCRIIWaoNDIN1zpQ0OUqn30QiR4Kl7jg63OuvZszfMZjP27XvQgbd37y5YrVb06NEriisjsYIKEglJsAkOgR5ujdSICl9oe85/SUn10LhxMnbt2ml/bNeunWjS5G94+OFHorgyEiuoIJGQBJrgEMrhVl8JDuFE23PB6dmzN3755QT+/PMWrl27ijNnfqXtOuI3KkgkZP40OITjcKunBIdwou250HTp0gMikQh79vyAXbt2gGVZdOnSPdrLIjGC0r5JyHyNqAjnaIhQRlT4IpTRELEsISEBqalP4ocfdsBsNiElpR0SEhKivSwSI+gKiYRF2QaH0gF7kcieC3eDA23PhVfPnr3xxx8XceXKZXTvTs0MxH9UkEjYlDY4HD16BAMHDsDw4f+KSPZcuBocaHsuMtq3fwoqlRpKpRJpaU9FezkkhtCWHQmb/PwrmDJlEQ4c2A+JRILnnusf9m21UjqdwX71FUyxo+25yGEYBmKxGO3bd3QZ5EeIN1SQSMgsFgtWrVqBr79eBbPZjCeffBIzZsxAQkK1iLVHOzY4GI1m+xahL67Zc9Gd3Hrw4AEsX/4JrlzJR82atTFkyIsuo8XLunHjOgYMcH1OcnJTfP75ygit1H8//bQPhYUF6Nmzd7SXQmIMFSQSsh9/3IWvvlqOmjVrITNzInr06A61WgGj0eTS4BBOgTQ4lM2eKy42Rz177tSpXzB9+mRkZPTFuHGv4/jxo5g7910oFAp06tTV5+tHjhyDFi1a279WKKKbZHHmTC7++OMiVq78Ao899le0aNEqqushsYcKEglZhw4dMXPmbLRv/xTkcjlMJqu9wcFoNMFisUbss/V6A9RqJaRSiceGCaFuz61a9QWSk5tg8uQ3AAAtW7bGtWtXsWLFZ34VpIcffgRNm/4t0sv02+bNG7Br1w40bPgYpk9/O9rLITGImhpIyBQKBbp27QG5/EGTQbAJDoHy1uAg5O45s9mMEyeOuRSerl27Iy/vEm7cuB6llQVv+vSZ2L//CFasWINHH20Y7eWQGEQFiUREoAkOodDpDMjOzsb3338HjuNionvu2rWrsFgsqFu3ntPjSUn1AcBlvLg7H344F0891RYZGd0wb9570GiEOTOKEH/Rlh2JGL3eBJmMhUIhh8lkjmiDw7Zt27Bp0ybUqVMHvXv3Etz2XFlarQYAoFQ6z6dRqdQAAI1G4/G1EokU/fr1R0pKKpRKFc6ezcXq1V/it9/OYvny1WBZ+mdNYhP9zSUR4yvBIZyGDBmG7du348MPFyA9PR0cJy73KyKdToe7d+/4fN5DD9UJ6XMSExMxadK/7V+3aNEK9es3wJQp47F/fxa6dOkW0vsTEi1UkEhEGY0WxMVFrsGhtHsuMbExhg8fjo8//hiLFy/FiBFjwvo5/sjK2oN5897z+byvv95gvxLS6527A0uvnNRqdUCf3a5de8jlcpw/f44KEolZVJBIxOl0RiQkxEOpVKCwUBu29y3bPTdgwCBs2rQZ69evRc+eGahbNylsn+WPPn36oU+ffn4912w2g2VZ5OfnISWlnf3x0ntHSUn1wr9AQgSOmhoIjh7NxsyZ0/GPf/RFWlprLFw4z+/X6nQ6zJkzC08/3Rnduj2FGTOm4M4d522rcDc4eOqek0hkyMyciJKSEqxY8WnInxNJUqkULVu2xr59Pzo9vnfvbtSrVx9/+ctDAb3foUM/wWAwoHHj5HAuk5ByRVdIBNnZP+P33y/iiSdaer2Z7s5bb01DXt7/YdKkaZDJpPj8848xaVImvvjC+eZ6OBoc/DncmpaWjsGDX0T16omBf0A5GzZsODIzR2LBgrno3LkrTp48jt27d+Kdd+Y4PS89PQU9e/bGtGlvAQCWLFkEkUiEJk2aQqlU4dy5M1izZiUefzwZHTp0jMJ3Qkh4UEEiGDNmHF57bQIA4MSJY36/Ljf3NHJyfsbChUvRtm0qAKBu3SQMGjTA5eZ6qA0O/h5uZRgGo0aNDei9o6V58ycwe/Z8LF/+CbZv34JatWpj6tQZ6NzZ+WyS1Wp1ikaqX78+Nm7cgK1bN8JoNKJGjZrIyHgGL788kjrsSEyjv70k6GF32dmHoVSq0KZNiv2xunXroVGjx5Cdfcjl5nowDQ5Cy54Lt7S0dKSlpXt9zsGDzr8kZGT0Q0ZGvwiuipDooHtIJGj5+XmoWzcJTJkxsUlJ9T0e7PQ3wSEWDrcSQsKLrpBI0LRajcvBTgBQqVQe70WVNjjI5VLExUlhNJpdniPU7DlCSGRRQaqAAjmgKZGEZ+pqIDw1OFT07TlCiHdUkCqgQA5ohnLeRaVS488/b7k8rtVqvR7sLNvgUFxsFNxoCEJI+aOCVAEFckAzFElJ9XDsWA44jnO6j5Sfn4cGDbynPTs2OMhkUtqeI4RQUwMJXmrqk9BqNTh2LMf+2OXL+bh48TxSU9v7fH1pgwPHQVCjIQgh0UFXSAQ3b97AuXNnAABGoxHXrl1DVtYeAHCa11P2gGbTps3Qtm07zJkzC2PHToBUKsXy5R+jQYNGSE/v5PNzLRYOhYXFsFioCBFCqCAR8Idh33//HfvXR44cxpEjhwE4n4Epe0ATAGbNmoMlSxZi/vzZsFqtaNs2BRMmTPH7gCYVI0JIKYbj/Lt1fPt2+EIxCSGElL8aNVyPaQgJXSGRCu/o0Wxs374NZ8/m4vr1a3j22QGYOHGqX6/V6XRYsmQhDhzYB4vFgpSUVIwfPwWJicLPyiMk1lBTA6nwHMNj3R3k9eatt6bh6NEjmDRpGt5++11cvpyPSZMyYbHQ+ShCwo2ukEiFVx7hsYSQ0NEVEqnwIhUeSwgJLypIhHgQTHgsISR4VJAI8SCY8FhCSPDoHhKJOUIPjyWEBIcKEok5Qg+PJYQEhwoSiTmxEB5LCAkc3UMixINQw2MJIYGhKyRS4UUrPJYQEhgqSKTCi2Z4LCHEfxSuSgghlYTQw1XpHhIhhBBBoIJECCFEEKggEUIIEQQqSIQQQgSBChIhhBBBoIJECCFEEKggEUIIEQQqSIQQQgSBChIhhBBBoIJECCFEEKggEUIIEQQqSIQQQgSBChIhhBBBoIJECCFEEKggEUIIEQQqSIQQQgSBChIhhBBB8HtiLCGEEBJJdIVECCFEEKggEUIIEQQqSIQQQgSBChIhhBBBoIJECCFEEKggEUIIEQQqSIQQQgSBChIhhBBBoIJECCFEEP4/PNsAiBzNTCkAAAAASUVORK5CYII="}}]}}}, "version_major": 2, "version_minor": 0} diff --git a/ml-advanced/model-selection.html b/ml-advanced/model-selection.html index 759b27e009..e14a35706e 100644 --- a/ml-advanced/model-selection.html +++ b/ml-advanced/model-selection.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2
    +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-advanced/unsupervised-learning.html b/ml-advanced/unsupervised-learning.html index 5c00a95a91..437f833c31 100644 --- a/ml-advanced/unsupervised-learning.html +++ b/ml-advanced/unsupervised-learning.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html b/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html index 5b9e101148..43a22e4879 100644 --- a/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html +++ b/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-fundamentals/classification/applied-ml-build-a-web-app.html b/ml-fundamentals/classification/applied-ml-build-a-web-app.html index c49d184460..7dac5232b1 100644 --- a/ml-fundamentals/classification/applied-ml-build-a-web-app.html +++ b/ml-fundamentals/classification/applied-ml-build-a-web-app.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-fundamentals/classification/getting-started-with-classification.html b/ml-fundamentals/classification/getting-started-with-classification.html index 812d33938b..13c5204178 100644 --- a/ml-fundamentals/classification/getting-started-with-classification.html +++ b/ml-fundamentals/classification/getting-started-with-classification.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-fundamentals/classification/introduction-to-classification.html b/ml-fundamentals/classification/introduction-to-classification.html index 4c25b10c7a..fe460afeb2 100644 --- a/ml-fundamentals/classification/introduction-to-classification.html +++ b/ml-fundamentals/classification/introduction-to-classification.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-fundamentals/classification/more-classifiers.html b/ml-fundamentals/classification/more-classifiers.html index 24139c2dda..98278f6998 100644 --- a/ml-fundamentals/classification/more-classifiers.html +++ b/ml-fundamentals/classification/more-classifiers.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -2147,7 +2167,7 @@

    13.2.4. Exercise - apply logistic regres
    -
    Accuracy is 0.7998331943286072
    +
    Accuracy is 0.8131776480400333
     
    @@ -2170,11 +2190,10 @@

    13.2.4. Exercise - apply logistic regres

    -
    ingredients: Index(['beef', 'carrot', 'mushroom', 'mustard', 'onion', 'sesame_oil',
    -       'sesame_seed', 'soy_sauce', 'starch', 'vegetable', 'vegetable_oil',
    -       'wheat'],
    +
    ingredients: Index(['bell_pepper', 'black_bean', 'chicken', 'honey', 'onion', 'pepper',
    +       'sake', 'sesame_oil', 'soy_sauce', 'vegetable_oil'],
           dtype='object')
    -cuisine: korean
    +cuisine: japanese
     
    @@ -2223,25 +2242,25 @@

    13.2.4. Exercise - apply logistic regres

    - - - - - + - + - - + + - + + + + +

    Criteria

    korean0.688042
    chinese0.2982340.869888
    japanese0.0135040.077357
    indian0.000193korean0.042823
    thai0.0000260.006624
    indian0.003308
    @@ -2262,15 +2281,15 @@

    13.2.4. Exercise - apply logistic regres
                  precision    recall  f1-score   support
     
    -     chinese       0.75      0.67      0.71       254
    -      indian       0.90      0.91      0.90       236
    -    japanese       0.76      0.80      0.78       230
    -      korean       0.83      0.77      0.80       248
    -        thai       0.75      0.85      0.80       231
    +     chinese       0.76      0.68      0.72       236
    +      indian       0.95      0.88      0.91       257
    +    japanese       0.75      0.80      0.77       247
    +      korean       0.84      0.84      0.84       225
    +        thai       0.78      0.87      0.82       234
     
    -    accuracy                           0.80      1199
    -   macro avg       0.80      0.80      0.80      1199
    -weighted avg       0.80      0.80      0.80      1199
    +    accuracy                           0.81      1199
    +   macro avg       0.81      0.81      0.81      1199
    +weighted avg       0.82      0.81      0.81      1199
     
    diff --git a/ml-fundamentals/classification/yet-other-classifiers.html b/ml-fundamentals/classification/yet-other-classifiers.html index c721df8def..1f03187718 100644 --- a/ml-fundamentals/classification/yet-other-classifiers.html +++ b/ml-fundamentals/classification/yet-other-classifiers.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1805,11 +1825,11 @@

    13.3.4.1. Exercise - apply a linear SVC<
    Accuracy (train) for Linear SVC: 78.6% 
                   precision    recall  f1-score   support
     
    -     chinese       0.71      0.68      0.70       238
    -      indian       0.93      0.87      0.90       242
    -    japanese       0.77      0.76      0.76       243
    -      korean       0.80      0.77      0.78       239
    -        thai       0.74      0.85      0.79       237
    +     chinese       0.70      0.75      0.72       254
    +      indian       0.89      0.90      0.89       240
    +    japanese       0.80      0.75      0.77       246
    +      korean       0.80      0.70      0.75       227
    +        thai       0.76      0.83      0.80       232
     
         accuracy                           0.79      1199
        macro avg       0.79      0.79      0.79      1199
    @@ -1840,30 +1860,28 @@ 

    13.3.5.1. Exercise - apply the K-Neighbo
    Accuracy (train) for Linear SVC: 78.6% 
                   precision    recall  f1-score   support
     
    -     chinese       0.71      0.68      0.70       238
    -      indian       0.93      0.87      0.90       242
    -    japanese       0.77      0.76      0.76       243
    -      korean       0.80      0.77      0.78       239
    -        thai       0.74      0.85      0.79       237
    +     chinese       0.70      0.75      0.72       254
    +      indian       0.89      0.90      0.89       240
    +    japanese       0.80      0.75      0.77       246
    +      korean       0.80      0.70      0.75       227
    +        thai       0.76      0.83      0.80       232
     
         accuracy                           0.79      1199
        macro avg       0.79      0.79      0.79      1199
     weighted avg       0.79      0.79      0.79      1199
     
    -Accuracy (train) for KNN classifier: 72.4% 
    -
    -
    -
                  precision    recall  f1-score   support
    +Accuracy (train) for KNN classifier: 74.0% 
    +              precision    recall  f1-score   support
     
    -     chinese       0.65      0.66      0.66       238
    -      indian       0.85      0.75      0.80       242
    -    japanese       0.64      0.85      0.73       243
    -      korean       0.90      0.57      0.70       239
    -        thai       0.69      0.78      0.74       237
    +     chinese       0.70      0.69      0.70       254
    +      indian       0.88      0.84      0.86       240
    +    japanese       0.64      0.82      0.72       246
    +      korean       0.84      0.54      0.66       227
    +        thai       0.71      0.80      0.75       232
     
    -    accuracy                           0.72      1199
    -   macro avg       0.75      0.72      0.72      1199
    -weighted avg       0.75      0.72      0.72      1199
    +    accuracy                           0.74      1199
    +   macro avg       0.76      0.74      0.74      1199
    +weighted avg       0.75      0.74      0.74      1199
     

    @@ -1894,44 +1912,42 @@

    13.3.6.1. Exercise - apply a Support Vec
    Accuracy (train) for Linear SVC: 78.6% 
                   precision    recall  f1-score   support
     
    -     chinese       0.71      0.68      0.70       238
    -      indian       0.93      0.87      0.90       242
    -    japanese       0.77      0.76      0.76       243
    -      korean       0.80      0.77      0.78       239
    -        thai       0.74      0.85      0.79       237
    +     chinese       0.70      0.75      0.72       254
    +      indian       0.89      0.90      0.89       240
    +    japanese       0.80      0.75      0.77       246
    +      korean       0.80      0.70      0.75       227
    +        thai       0.76      0.83      0.80       232
     
         accuracy                           0.79      1199
        macro avg       0.79      0.79      0.79      1199
     weighted avg       0.79      0.79      0.79      1199
     
    -Accuracy (train) for KNN classifier: 72.4% 
    -
    -
    -
                  precision    recall  f1-score   support
    +Accuracy (train) for KNN classifier: 74.0% 
    +              precision    recall  f1-score   support
     
    -     chinese       0.65      0.66      0.66       238
    -      indian       0.85      0.75      0.80       242
    -    japanese       0.64      0.85      0.73       243
    -      korean       0.90      0.57      0.70       239
    -        thai       0.69      0.78      0.74       237
    +     chinese       0.70      0.69      0.70       254
    +      indian       0.88      0.84      0.86       240
    +    japanese       0.64      0.82      0.72       246
    +      korean       0.84      0.54      0.66       227
    +        thai       0.71      0.80      0.75       232
     
    -    accuracy                           0.72      1199
    -   macro avg       0.75      0.72      0.72      1199
    -weighted avg       0.75      0.72      0.72      1199
    +    accuracy                           0.74      1199
    +   macro avg       0.76      0.74      0.74      1199
    +weighted avg       0.75      0.74      0.74      1199
     
    -
    Accuracy (train) for SVC: 82.2% 
    +
    Accuracy (train) for SVC: 81.6% 
                   precision    recall  f1-score   support
     
    -     chinese       0.76      0.71      0.73       238
    -      indian       0.91      0.90      0.91       242
    -    japanese       0.82      0.84      0.83       243
    -      korean       0.85      0.78      0.81       239
    -        thai       0.78      0.89      0.83       237
    +     chinese       0.77      0.74      0.75       254
    +      indian       0.92      0.93      0.92       240
    +    japanese       0.79      0.78      0.78       246
    +      korean       0.84      0.76      0.80       227
    +        thai       0.77      0.89      0.83       232
     
         accuracy                           0.82      1199
        macro avg       0.82      0.82      0.82      1199
    -weighted avg       0.82      0.82      0.82      1199
    +weighted avg       0.82      0.82      0.81      1199
     
    @@ -1959,72 +1975,70 @@

    13.3.7. Ensemble Classifiers
    Accuracy (train) for Linear SVC: 78.6% 
                   precision    recall  f1-score   support
     
    -     chinese       0.71      0.68      0.70       238
    -      indian       0.93      0.87      0.90       242
    -    japanese       0.77      0.76      0.76       243
    -      korean       0.80      0.77      0.78       239
    -        thai       0.74      0.85      0.79       237
    +     chinese       0.70      0.75      0.72       254
    +      indian       0.89      0.90      0.89       240
    +    japanese       0.80      0.75      0.77       246
    +      korean       0.80      0.70      0.75       227
    +        thai       0.76      0.83      0.80       232
     
         accuracy                           0.79      1199
        macro avg       0.79      0.79      0.79      1199
     weighted avg       0.79      0.79      0.79      1199
     
    -Accuracy (train) for KNN classifier: 72.4% 
    -
    -

    -
                  precision    recall  f1-score   support
    +Accuracy (train) for KNN classifier: 74.0% 
    +              precision    recall  f1-score   support
     
    -     chinese       0.65      0.66      0.66       238
    -      indian       0.85      0.75      0.80       242
    -    japanese       0.64      0.85      0.73       243
    -      korean       0.90      0.57      0.70       239
    -        thai       0.69      0.78      0.74       237
    +     chinese       0.70      0.69      0.70       254
    +      indian       0.88      0.84      0.86       240
    +    japanese       0.64      0.82      0.72       246
    +      korean       0.84      0.54      0.66       227
    +        thai       0.71      0.80      0.75       232
     
    -    accuracy                           0.72      1199
    -   macro avg       0.75      0.72      0.72      1199
    -weighted avg       0.75      0.72      0.72      1199
    +    accuracy                           0.74      1199
    +   macro avg       0.76      0.74      0.74      1199
    +weighted avg       0.75      0.74      0.74      1199
     
    -
    Accuracy (train) for SVC: 82.2% 
    +
    Accuracy (train) for SVC: 81.6% 
                   precision    recall  f1-score   support
     
    -     chinese       0.76      0.71      0.73       238
    -      indian       0.91      0.90      0.91       242
    -    japanese       0.82      0.84      0.83       243
    -      korean       0.85      0.78      0.81       239
    -        thai       0.78      0.89      0.83       237
    +     chinese       0.77      0.74      0.75       254
    +      indian       0.92      0.93      0.92       240
    +    japanese       0.79      0.78      0.78       246
    +      korean       0.84      0.76      0.80       227
    +        thai       0.77      0.89      0.83       232
     
         accuracy                           0.82      1199
        macro avg       0.82      0.82      0.82      1199
    -weighted avg       0.82      0.82      0.82      1199
    +weighted avg       0.82      0.82      0.81      1199
     
    -
    Accuracy (train) for RFST: 84.5% 
    +
    Accuracy (train) for RFST: 84.2% 
                   precision    recall  f1-score   support
     
    -     chinese       0.82      0.76      0.79       238
    -      indian       0.91      0.89      0.90       242
    -    japanese       0.83      0.84      0.84       243
    -      korean       0.87      0.81      0.84       239
    -        thai       0.80      0.92      0.86       237
    +     chinese       0.84      0.79      0.81       254
    +      indian       0.90      0.93      0.91       240
    +    japanese       0.85      0.81      0.83       246
    +      korean       0.82      0.80      0.81       227
    +        thai       0.80      0.88      0.84       232
     
         accuracy                           0.84      1199
    -   macro avg       0.85      0.84      0.84      1199
    -weighted avg       0.85      0.84      0.84      1199
    +   macro avg       0.84      0.84      0.84      1199
    +weighted avg       0.84      0.84      0.84      1199
     
    -
    Accuracy (train) for ADA: 69.4% 
    +
    Accuracy (train) for ADA: 69.2% 
                   precision    recall  f1-score   support
     
    -     chinese       0.57      0.42      0.48       238
    -      indian       0.88      0.82      0.85       242
    -    japanese       0.62      0.71      0.66       243
    -      korean       0.70      0.74      0.72       239
    -        thai       0.69      0.78      0.73       237
    +     chinese       0.66      0.44      0.53       254
    +      indian       0.90      0.87      0.89       240
    +    japanese       0.63      0.63      0.63       246
    +      korean       0.60      0.77      0.67       227
    +        thai       0.68      0.78      0.73       232
     
         accuracy                           0.69      1199
    -   macro avg       0.69      0.69      0.69      1199
    -weighted avg       0.69      0.69      0.69      1199
    +   macro avg       0.70      0.70      0.69      1199
    +weighted avg       0.70      0.69      0.69      1199
     
    diff --git a/ml-fundamentals/ml-overview.html b/ml-fundamentals/ml-overview.html index d3c194dbf7..7a303b9cbb 100644 --- a/ml-fundamentals/ml-overview.html +++ b/ml-fundamentals/ml-overview.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2
    +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-fundamentals/regression/linear-and-polynomial-regression.html b/ml-fundamentals/regression/linear-and-polynomial-regression.html index b59d426175..066192e9d4 100644 --- a/ml-fundamentals/regression/linear-and-polynomial-regression.html +++ b/ml-fundamentals/regression/linear-and-polynomial-regression.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -2176,7 +2196,7 @@

    11.3.3. Correlation

    -
    -
    -
    Mean error: 2.51 (9.19%)
    -Model determination:  0.9554938013125742
    +
    Mean error: 2.6 (9.52%)
    +Model determination:  0.9505769161049876
     
    diff --git a/ml-fundamentals/regression/logistic-regression.html b/ml-fundamentals/regression/logistic-regression.html index d273025086..a968d5ead6 100644 --- a/ml-fundamentals/regression/logistic-regression.html +++ b/ml-fundamentals/regression/logistic-regression.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2
    +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -2062,7 +2082,7 @@

    11.4.5.1. Visualization - side-by-side g

    @@ -2123,7 +2141,7 @@

    11.4.5.3. Violin plot -
    <seaborn.axisgrid.FacetGrid at 0x7fe0b056fca0>
    +
    <seaborn.axisgrid.FacetGrid at 0x7f4914ba8340>
     
    ../../_images/logistic-regression_10_1.png diff --git a/ml-fundamentals/regression/managing-data.html b/ml-fundamentals/regression/managing-data.html index b4a8be54d4..9ee32f1d17 100644 --- a/ml-fundamentals/regression/managing-data.html +++ b/ml-fundamentals/regression/managing-data.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2
    +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-fundamentals/regression/regression-models-for-machine-learning.html b/ml-fundamentals/regression/regression-models-for-machine-learning.html index eba8231944..cc47a06bbc 100644 --- a/ml-fundamentals/regression/regression-models-for-machine-learning.html +++ b/ml-fundamentals/regression/regression-models-for-machine-learning.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/ml-fundamentals/regression/tools-of-the-trade.html b/ml-fundamentals/regression/tools-of-the-trade.html index d7373af991..b97753a3a8 100644 --- a/ml-fundamentals/regression/tools-of-the-trade.html +++ b/ml-fundamentals/regression/tools-of-the-trade.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/objects.inv b/objects.inv index f512a97b3fc0633b360febc4692e4f02d4849fa7..4c949b94693cfaefe296f75706f88542ba6cc7af 100644 GIT binary patch delta 9556 zcmV-aC9B%XO882Ub$@;RjvTp>=l}H-Txj66v7)4IY34iv7Di9&!@chAX{%+;8Came z%4AigJ3nfYncb>cEHM8s_OD&waDa__gnOrXf_sFE2$Gr1Z)R0%7w}kJBqQQSCK(Kp z!QhLNWhe@vWU-W=MY4s=K6DZ1@#RC42q9}9V%sv9Bb+myW zESEb-f{H2juzwW=d&tT-WGe|Qks7LzXAdk}vmzG}Vx-!zUw-}%{RiNwivp`K3b2Kq zvM6O4R6Yled8nRYwhYpghkx;ya44Z=5dk*@7jaxFXl-H% z;u2Bh(Px&FMI7y7E9=+mC@y6F8*JzE>udOqarqG4MGg67#S;m=COA!RVEr&!LiMS#9h~tD^ zU0h$>ezYTB4^sF{uNjmoa}n$bEYekylQdGrGAoN+S z_Dd)85RIt0aEFVd5ACQWp$-g`4}A-m&+Y?;tbg6NEVp1Q!!njAASq+W)uQJpV3+R7 z{To3bG&x9(NxNoy)pj+mp6aBMlSc8jo*kL*2}MZ9UP?$Dqh&jkr#Gz<$kw!=hqA}njdWq zMh=Xt9KOT+VWo*V5qHH=Ci{TXrjgQ+41dGm<=k=evVYtFGnh7my^rZr4<912W+gkP zK@fAt5R3zXfDrAUjYfRBt~!KRDCQpC$uoCSA>jWo-HYaWfE zX7iZNgP-(=+mNsNdlPh&R2Glcp$xmuN4}LC)CD@b2@CD?1N#+{4)m%kwEn425r6-d z#Gm{=Jr%s7(y}ObKm$V)n*q7NXf1OU-OE{ny{7t5{Z$WnMc+P zmIKsZI-f;FQzN7^@C-?N=)EiBc+bwWG=*;`!7i-n7B9YD!tyB)p@i-kLo0-!qSO01 z_3!pf!;u?~9635|ajvtO$;L5!pMS-rp1EQD^ag}niWLb1$!@cJ4J*b}$zz5wG3Xn^ zlwk%i{oNVDUz34M4K(Y!AQd$N%rWb=%pns5!MB$(g>SzpQDNaM2_G$0yG%73MGMZM z=gythkOZbR=;=-$|C+|1(Zt@vkel*)G-mNVU|j8)PDQ4w*vB%ZeFR^d!he!*OQL_m zT0Dip0fPbz%*BgumH~7xnWwmXnXRH6+K%;5XRX1KaKH37^pW-QXwH|esTy6&e$4jZ z`(}y!La=a?8O>JFn09+(f19<0(u|=8KY}K+e1>$H9yL~xb)_N}>TmZVF6FvR1OF~p zleBsrWiZUqQe!tJ{}4U)KXjW=SCLQ~|2C;fT5Y1c9p;om zw+aZ!R*@c*t1R3f+Z8Hq9Jx6y@g4kZ&HhvrEsh#Ov-(xC(`t_g&|&J}{D9vfAOiwH zf;EwbxHr=HaI}wPU^hDv;x5GJEX@)>y;&8$!lhDx`Zq)UtZjfOg?~dTHF!skv7`x0iFvd_=jbI6NUT%nF zY48o;RR1*y)daSP!{=-(en8WQG5t-+kxY-Y2W&i27Wd-d}`U~*eBrum2~>=d=sDH04;rEfB{6T7s<2%gOI3SzpYzEoGc+8Ztw_h99oPJRH2sMiHI>+vi zjR2q@yIi8>QSCWT32zf=!Sv;w)JdUqI)D|3Qoh?4+j-Kv)D0Lm8#iljD0>2r`GM?; zEl&1X8PZ?kC*0@&eW=1a{vh`LAiY^S$j#6}*tk_sG=Hy2_5SknU(b+^U0t%%2rX6UK(Zl!eszX<_0+=@HYcHO1w4@}STl({%G7+I6=@HyDsKda-tD4F zM)@ww3x6d(Kx=?hnapHPsP!#rhi{c);S&>mkGg-qJq=Mx> z4Q$->bART?G?Ymcc%hl#p>e&f3Zc>J%(S}D2tu=Mu%PzDBv2R{#glFD@BE$F7{`q z(Ox*^@ifnshjwjEKU@VobyM(56wu~c&PsS%p#!uU+$Cl{Wj2=pVeSZ&?1AIv4^K1w zZ?7_krm>pb59C~~27dOyu=w*dqksD+3p}+pGsSSd5|Q7*x*L6GV9B`kLfxX#n64<1 z*?+__i3RlIB92xZP0>h(o$wPhoUokk{#0%ls!BwRJ6N!?EU+IJW#~6f`v}b{5ObK#VU#lhAPdPr zTt}Y9v`b(FLJBh}!-5J4c;RP}<$g7E34gSpkC1}iTbME;2vmJk;P;ZB1L-$FTQo)- z0F4U#pl>m8SmHw-6*$#UqAa$kECZM~W_-?Z78=hFSO)4(-AtEZSf=k24{d|He-8rl zA$GJss{OM%M|mPyVf8BCChlZGw+3SJG03HzTV{iu$KR|Mw*BlI8c+U1uVY!My7INQTZs`bv56W#u4*VP3rpzgEW1p@)}WJ$$)o+`oqj5jvYL$?#m;Ey<|l1axx>mCGR8q!C#;FzRW~ zTA4+fJ!8m$i$?9x!c*gy)qpJKf}t+UZcmBJrW{11&E^c6-Jpn|u+7d@28*6^ytG#|5& z`{OnHK1Cl)EQ6Yz${4$51n5Sj&v9#dwde4sAE+jc*?@xu>}t>8_k=L`kAJ(?xWC9Y zr560&C;?c=o`v@?$Z_n0^`egk75nx3vupL65m2!zlIN?a2r}s5_(Pv#=zf9Q+XcsC znnY>~2{=S_c;bcoK;}kmYdUs$`|(P(_}TafJJYk&5RO0l!5)HqCBIkv{=0We3o7?`rm-L8TQ)4rkp5$4A% ze+SE*5#aWu1SjYyXp62I&8SfFXV1Xc0p;jbql4L37C;oVJmp{4A4!vu&wwEtsc8<1 zb(3YA7|pmWxC65}qV=A2CFZ%Wj`m_@#yJ&Zw^)qbU@`dr%E9@=sDCyt=mW0d1L}={ zWdZ-I(&&JUPRs4dl^6DzOk0*^-KVNU`|9LutR}U)4Y!w2$PAo0K&JVa#R8NA^+LzT z@9J_xW7*?4Gsw!6&Wj6B3b-=~GgTbR6uT|xNIaI5t8%j$`3{dO#T=Qm2-tZ=fY!{_ zC43@7Ft^5f@sk3nqraJpz=(YXQupXh6KzKXdfUoqn4ozB3h>wxqp-g)}+b93KVALi(7rSV;+Rh5$Jei7b!USFn)N(7o!%=_GS*iMo`-q1Lq9xy99#rj zo@RL>Vq>WK)Nm$CGjwzzbF~`^v1_-GH-7xMW*&{gjhs16`*Snr%$TpoH|8JG;MJla zD05gu7JnI!LfmUx@5wWE9TmJxL;B;O8u+s}RkAx2=SaXlX6(WcuA@Qzd z>-TJZHiw@%_SRQiYzaTD))r%~FhxJfkn6kVGnPi)%#58^XOsJd$aNh$i;RW?wRRS5 z?bX%Sd-@@Ia&Y}kTbq{pR{UXX)$zz0uCT2MCV!c3G`x9FhsO1Ip4VoB49tR^vYBv9 zbPa11734=jl$E&I9f_3GPLziDXHep?s`PF-4_4M>X?mNrzqT&p0TPwqeWc22PMHa>OW*c7YvztZGUJ~d!?JjvW=SMszsYJApW2(t zTz|x@OO31_`$RZBoi5{6cgnN_qY84GwddjXW7?=hJ;mbIghQhJByTmzyc*T(u27=K zZgFrmI-FX|OOrYiUbnTN+vn)Taxl(8mP3twrL*TE$G95yI^z*&T{hOmPbqZA2#To= zoQPCxrtZd!5?Mz&oz(TB?zz>}ZQm1b(SNKZh6j^(Bs%$_Lo zD38<(Gz~gC_*z&0Y?+zguwt!)X=#6*L!i0zvmlOt#(Jv{?{4@4Yf@=AH`P8MrhknK zEtB0{lydZklNecs42mEFyT%*AFbe}m7hqKZGDoPuC^l!T6j|oKcxcmAi!3{~DAiXq z?QyFhx`XvHEvXNH(c#g7MEm8pPKgP4MNU_LRF=pCY{wyb3rpuR%=NVu$)A?)0MYgR z-1}>F2+fukxdG$FA(K2R9et4nw|{qsi+M}BUgFxFSyXqDi=L(2E{B{Saluqb_(c~1 z@st;=!6c#c2D2$JgvOhJ8BF>fqf>y{0`qW@tB*Pul_np=q_gKC@^Rdo#bgkjTd0Lm zUn{|DO}vn>%D~n9AeNrOMy9!Easyev{QPh1qseUu!@#oTj?47^`8vvBN`IL?>>434 zUdov2kPHb_7zZMpC$U3gZ_s0MLne$@bZ{kqD;>upEwX+6AhosQs6QYQ>xl$nU^4=?n1yBNj{xna3F7hn6*TnI12Tv0b#2 z-3X3{dj32CVZ0WmuUS;Wcz-4A?1x(qObb75&~_&LL&Kr{k!ti6dYd(X#^O#=&?IPS z2em7Eu@b=@NZ5&un2MTe9ST8Gn~F|luCEu`#j=jL!Ig<(^=Pp>v^!><&a8y3pvX`r zc<||q)6>OD=65od`;*^(t4>dNqK3n=v^KS^v^Uk{_|GdzpFU(Vj(?+_l4`Mv%uUv+ zx8Q#KgL=x6D9AIFtwCAgMZBj(r@b}xo%Bcgp2e{R5H!7ohzn&p@Otf zeh+o4WVW4eF4DD*g?|G*1oX{6$&_7Y*-qw*Ra{CAdP}BXwsV4*=kHOBZx79~yJdh2 zD&JUQNWm+LbI|lCg1nGlqbI~2qs&Dh;-I7np3KY`n&FWZe73SjAczv8u9SxZ95lS-DrCF-}?$Nt*C7xH}tA8U56Y)Y}BanD~BdFb= zsMoUy&xvdpDHb`+?-PNli_~V-vG`DilfhjX=RFu&UEqySB8}LU2&0_<&AAA+QWR>7 z_b_nQa5MrJI z$5P-0wD}Xs<$nq3(aTd-9hYhc0F4R~pY4nW0sk((TogIXqAi+otCB8 z@#&OdewR3}sDaTv3^EMUp_f)DR>vJTWhmLG@6o12?*ZjHW&kg@7P{>VwgkOOc45 z=)D9WS{eaMmq=Hyand=eO@}&K_k2ZHs=>LTL#OnmUtpx+9Cz(|EU$@3OTJi#_CgLI z@5UVQ1%ELWoazWR#{{IBA+{4loMR z4E8Wz*RlBgAoLKng7tYxg?S_?(;m;z*~IpSm6PO!pg(yol>X$Nk5lD&ftx@4`)T{* z4Ph_w2G>x_JxSy6rl_5kYNSsBNu366+bbuAhPPmDU&k zb$=#lk92EIkD%~Um4g&h#?c_5f7rOk;McFm>+;&cuP)!L1p04O*R?QbG%D*%(t+5l z6I@bfD8hPWw7+^$o1hDgjGhkM!>deo`#G|)ypdKWH z{i=ZIgg9A@K6*CHz3+82I#$vTI_e7tEfS~UhWWNO1MB!0&43u4phzPuf2{8N0e^=- zRvC*sIvC>mgHuIxmeFF>d;z8@y{aqo*dHp*C)y67D14s)!6$k5|kbP_r~Fr4rx z!(7`>AL(EzI$;q;0)1KRbDNEQ$A9Kh)?0erw!D?A1 z#S)(&UPh|1&$zG`1rIrY)}#w)xOlIMY_}ujI-k*7WWX$k1x$TtTH(tphcMIB&;x+c zDtqucYr5mO)Kr}_rmq-Z)Q{j)?_xM^X~zGwiZMi}{$844P|$=DkHTwTG^!ERUy( z?DX{nBj(iJ{@I0*e-){1F8&}A5u2j)!tO>wl|%Wt3D2flqXPb1bRsPbfAVgm zhxV86kMZ!N8&{&bTvWx~xG_&+8Ypr;Or#0t&5qY zurA!x1#?YZsuhk6l9(AnZtKFSF5K3|II~k-XrzrEB0qYQUbszqZkiOw^2C>=+&&EY zguvZOv(w2=X1iEE#eWh}&L|u=g`Lq)9S5Rk+W0bGl5+b#qdwkruvc@B#?A>kub|Vn ztD(RDZ)vdv^sL$@YF)^sJJ6SD7NSS+_; zf$uXYl?4$!|s zYViKQvH9pw6QBQ1GO%Y?%hMMpzpcM#!K>*^AKzw(gj#GPSV^MK zDi;5O-cGKZA&;lu4`7+HK(;ziHC_F;5!-uwo6+yXaTERBBl(G%fZ96nfEaX7Mz0Xp zN%Z$k(6sb9tA9Ydo};dR=ksmd@pHp6rC>GCTWFT|Om+LTaar37Yxh>GfoC%+mX~cIw#c%2 z@wUQ&UenzR#RoO!BtU4vo`3|7sLP(ax%6ZYMF(~sKz%mZ(4AF!^)MJo7YgwIz^;rdpoIlwu7V9D(*kqc$jnE;e8F!#vR!#~>hQ)on zP`C$pV$TH9>&R_R2I^FQAcZ;lAO+*>DIJ1pfR_u=7Gb|~UvZw%O=bdX?)O(mC-XSbaTx;pObuM_cr{c$$PdIAP7W=6&xlI%g+3Uy?6Bj+OE^0UC}1xFyU zECyoxGLyYHazoZ1q2JzaN4v~z%g-D7(;t^1(9-|sdlKU(gWo})!{~hX+<*KZ#;t*l z{R7iw+4(2q#te3uQol_T|(S`c*&4C-AU5SqZF3R9n;;pM#6si`9EoI=c%6IpPIvh zP*M*55Nr*GUoHh*>_Y^ zdd6g)XF2lk@r&4D44%+&jQ|#9ERBZ*-5#e1Fc<{qO9nZ(awU1jIv{jr(0|=SYvxdo z=4SrUd(Mss+;%o1+%Y?~fvkh)H*Wao84tG%{_%x*J3f3C%KLvj@pY-0c?sc(2GO{M zq~~V@!C&a7CW{ch%RR`wo&$M7F+0|gp8VS(q33tu?;Um|iQ?T?DPXI%=HG^VS1o)A z*^Xvy$Sv>@r(-2*8FA$2caTuCx7OM=wAu zSJ0p5%G0D=lh(e0JBG;%Soy5cvG>?kylL`rt5wygYQ~PxLtD~EYO@`C4;&x&kTD8h zv70_Qb)xf9$-;S8Q>-x{=@Cx7&f}ZJiy2;vgTgI7Vu-~9!YV#eD1XI+!zX@$kcsBF zgE@~n9O~O_PfiT0CS#Zc8!=H$sM+3kAC8}(Z6Mp;CpD(#X2CMHjE>D3Oxa= zAuiVSTTNi-!K4_4*6|I8y*l7{c>1gk#@mNlzI_V{49YOl@|{ZtvQT%>o_Em_y45}U zCZ-#-pk6=~)GkX^gnt{~B4VO&LcAU8-Rtm1mtIlS(c1ueE%)pKF`F&k%keuCGt9{HcHWQ!M||zx+!q|H{Aot3{qccf(cF7qp;1Xc?Zivx0%5 zgH31TiKL@hq8CRf_L#88mF?rsO-3e1nK)E*Xw7?!E4jztB!BX@1?;8*_C^EyGn6ug zmRM++t(R1235AwW2otc-LP>OKYgR(1*&wKteKZ?N+AARI>yIK$a&b?`$^3KIGrd4-B%qd)48^K=3HBC378l! z-BEE%8J67ZC~vB4--%ui&B(#tbZPf|@3uPM>!F)G=700089VK(dGsA<(bM!jr%3)( zjiau#d+*Sk7TLqTAv_(IOAj<1nt|tv24#+KlKWG&HpmZ>j5mrxbm<5W!%)-DMl*1P zGF^J=BxQg@^L-f)kxc@l(0i3wcP;C?BXAId>D_@@Y`Z%J2ar$g8q8ujp|j^R@!L&s z9}GDzfPd;&?AGvd!lL5YaK2xr(PmrthLF}YyrQ`+_OY}fq;)2vOyDke2L&N9H%EeP zmXVvlCWFaMy9TH-Nia+^tWfG9ue5K4x|2n)O|!y3R`tNa(Gw#Ea~v^fHiLari@B}; zTca zH9HMiU@batX!qn`XYUBKc7{$vP8{u{%a=ov-;m_$-pCZvmyeG0r6(*e6^oTnaq-1n!(sqDn5X-njxhkZUW8;5JB}@Y}SCegUE~u&X;}3hS_kDMT|+tW@TeWQ1ehe9jm5 zS)Qd?)UP~eo+BAvmBwuIjs`>2-z)8YYVLcYp+k>^KxTThjdia~uxRv<5Zp57#Qf7O z%t8Z_|0ReD`LDnH{MS#nODwd+LQPAtw1t*f=$D`Ww!jf${g$+&>f=nhU$GzX9=w@B ywKwbU7J4@r&xYLD$oG6_FzV+M;!9^CE42eO3F%*b$?y`jvTph|G%Gtfewz1h>~`tyZ8hc#@?~HqWDgk`fEXk_+kxdrAs){d8 z7J(>4E{lcyB;su(7qQ6iSzZLMBe9eb<0mYTa?2wrvLsB_&ws;MtR>IoI+jTxiZD%{ zZHhR0qWN&mhZCQ(gz3N8DobNlY$VeKy%!)`uEssMZ&3tbOTBNImALY~E z){jJ%v2B`0K!WVIzBn1< zD#{|2iJt~CQ{0K5&Gh#C44FYv>0`GX;~0di5*j*9cnn-4#kHn5pxe`hPOdQ528^J<26=V4kEQcG*Rh8ohxLEqoj9L8|bH z2m%==WxSLbs+w&%U$ZG{R5Cz~YB@~&ObSxmDi7P z`r`Bik-@M#ojXoX`^PCTL*0{%kJ9gTrA*md{V#C2`27uX*{#=ZBYs#f0}EcWxT}7F zkbjTw-rYb~hkt4z-iw!{2@e_Ar#%Dv{POMDdw%l5ZD@n+G@oj=zK*TQ+8@Jkt2*{e z7`Yktg;|RVMRKA3xkLVPy;sbX8mO8N`}N8{N*PqVu$Ln*?B==s-QJ$xFvw_rv=uCJ zU|ePJ9p(=!Ma+q~D~>YRdz?14l!jy&27fQ-j+>YL;|7?)wCV3%mOl0HAriB!Wal&p zd=atR%M0iMI8{f`ztXMhdpTr*virUiNf8$Ckx?wH>B68C(P9~;{{3Mi&G6ugM`Ng& zJf`yCPx@gue!gczA{R&A3det?q{;5w9|9_Um zAKX4Y6}+a>vM9Ge149#=0lC0vEwen_$ytNFrg~rfs)sys%^NLra9;r~LyEcTEl>uw z1JqwSpCu2cMo4GiX_EHPds{})o}H&j0^d%;y0E76UVOQL?UOG83EeY-RtP{vC%ZZI z@Agd1k!y||Ia+OTuCkfV#xcB0qkmG(+^~PT03lamNy0#~-7H_ijxovQF~gV`^o?Q4 z&;yu$cZTqnv_Pf?n)O|fiW&jtnAJ*VkO_j|+e?|iw_lg2uyB@ykCx=yG;cPF5}ZNL zoja`|2~2Cy)2%-KC5=C=iJgZb*X7k{OrsrOT<)1lMW%VNk7PpU2(D`iLw~{ziTV@v z;t3267!_m@S%IjEWz!|Y!zkEc2*B{)(Tb<_Lu&OKC;>#&H2(bRikT}kJ%o4 zUoDVd04v;hMzd8ky4^0!-+C{RE5^`+A3>8DK0~@pjT)oKx>6Af^|zgfO1UZ%-@VJ# zB&}XY84PpO`1oqE6`6=48Gk*Z7Beh|)Yz@gKSYoHqiPfCDiUhr-X=9kt4&n5!<2#$S*-!W1b;e-Mq_B1h_Fbp ziE~dd5DGnV*T%!UOVXH^C zQSfb+1|`vlKhPI^PJftzcpIgAY!e0a3-%6Lqg=8xC5-*P62`95HHRd zTr5*OkhDt7L@>am4GN1fD#k9bns=($2+r*`+Vg!{W*mli6ghsLHkHPK$qbX3N*J9MXq``+uOm(wOf;H~E9q3dc8?t#Cj#Q`ro%hw^a?_^bsl)=XH)b zAsYcee{3^}E05~Tc}jSjNC~DdZ>3HOrP~3lK$!6DzSzu@-lcB9FxhxmdrR39c=R90 zuGrvYpOyjr5DcuZySw<^ zPe1;R0jXoHph0M>LKl(^`SYtY%&Vs!y0E?pwJYF=Jcm7#$ig(A540lf!Byprz)+`M zRLL;grdi>x#0O|KkSdeu%n7v~ggfj-MM}MADdonTK~3Z6p)@FV*v*QRI-1TJ#vpUp z?$f}=Lw`SOeoO)xhrSb<2_6d9o2n2lTCJH@6&gXPHzHaka=en^0+*z*8@ge7jjSr5 zZ{G3Fhc4jb5mcXG@dhIVbXFu_qad<9>=k0zG|SAWZZ~)ij5JPF5};KjnJHPBLQKfP zR=~x)NFH*T%>dXWv;iqo2t0PmA4V5VbQi8y!hgI#s|sjz=oNkrTm#fUO96YOuyE7G z?(7uWORGHI=GpRaU0c%+R{?L`a`;OW(B?|cQaG+c2WSG!N$hllK{Pclg@#jfO|MpK7cx$a^is5?2BD;ruH`>m?mT}{Rx<#Wf zU4K&|Gl^po3+Ts16fQX~MMD`l3T=}axh9?I^kLD--siBl4^=b6g5n{>lSJwqc^Su! zLv)&rf_C%AbB5)Vo(s{&3CpSOPvwT8=CO$I1PgYS1@_~j4BWj7SmHw#7C6;VqAWJ3EPa?aW_-?Z77EXISO)4(-At8XSf=k24;_Qs zzXyT25L?26aG)kx3D|t`wM^v1rt(p^t7^V2wISxmn$-0Z`bqM91M?ZI z4g5`-LK~wYAkGCLUhL5Pg%)0J^>F2;aQ_A-MCfd)B*S}cyCkEM6VUZ7R3`m&orJW? zfl*Iq*16uKnX7gu@NWDR{BM;V)PMWBEGm~vDy#Q==QlSK6~H_WE7f(0$LvA42CdsV zZRhxH=T&14SFQDdf?a6}7#m1o&Qpxlr!h7fsZ#KLg8$*-2W^EB2B_c-@I?z{T5C8} zVw#WM$o>9?eVd>SCYC|XPG$7EW(4S3B+v0^db#KD(+yOUMjybz26nk;@PGG&F!+z# zt8sUcZAvBhomK*{kv$7`FvxN2!|Fv{4d(3U@6K-WUyOi?@*;k|3=2Pn9*%#gdkobt z@OZo6cuf;awL$_8Azhw0;XaVLR@;h>UEO`SR;G@s>wQ2v_L1mlId*60Myd(=#~c{) zlP_UoTjE%#%e&QQii=)4-hWg_knH43_LfSqv#QiMOx!uP#^?bsN4aR2vdrwRf*aGm zq5c8p$25Bj+no{M=B5NE=+JMAt{P3NP_k!FVX*_s(WyoUv#(YFq2IEUe_ekhMMgFQ znrx(|87S6unyw>U#-;u}ESp2x?-^5Kp1JC1Csul#Q!#dj#n>$tgMa_844mJOYU6@F z;0ivVItW-4@V_dJF39M%+}vC_VV}vgwX&@HRCQ@z-JFfpq&BzV#tDU%finllG#|ZL zfO4Q-==%6=U2bSBJ6vb_X_?S{aREvJPbOieiXxd{w*?)E*OGEsuGb^q;c=ztE0Y!h zJFf_EHFJFhpGXtTt$(rF{3Jjs>7M+EYPDHehuT)^Y=EX_*fcF~nj^3dbJb0bo4h;R z#R!?IZ znK{g_F`oHWg_W7bV0|8mzn(X!JX7VFF8`V#0W$>31}L9V%YQ)nA?;I(Ov(dm(&V8B zf=*+UHUm(jJ*v(Mn@#Pl2lFak(TI`T^G6e)s`6g7_*){VMg%(Y;fmy~qJmA9p*pm( zdCx-W5vth7wox%%j3z&SWW3K2sr=_~A?+~ik7e9j8!AXk@@#tauQL&Zkjj^^?=NU{ z>K}T0P>wA|=6`e2BUT1@ zup7XASq)Z)sk$ky@t4(K`N@3f!@Lyk-%&nO`4&%h;(rJ>FSj^LEOyc_pk4HW=W+Us zJ8ylwrpmLARNmMO=IrNpAFqFLXkQuwaZIOj{~^^ ze#ZWwNt|oh`g^uMo5N3Edn*?gQ^HNFwZ&)`rtk+DaOG=0V{7EhOt16mY%;$PnW{r) zlhH7sR>q>Ov%1>7ryrst2ixAXb!e%);tyk+AAgUmVG7%tVB+aUL(hAP8?+-i07i#L2NE4O-dQCk;1wBpPULAU4}X|? zhv*F~mCG>Kb*d$EL~@}Z@8`_VJ+3zk34f6v6<(69VF<=_T&wp~Lui~C=)t7iz^nqy6qtvLEG6=TQ7Q64 zOe%XGA{V=-Sxg4e*@apdl~q1^g@5ou##;;`FpQ^~%<%3rbxq_X|qx0##Gg{&Pb$V$KHSci`%DPk%hXh=rwv z%p#1CLfabhMMhs6whgzk8vyT6!-*##jMu`Hm3k$NSHjM|yK}(gxp9NG)86w9d*DZ^ z(HCf}(*PQYdr2{8prtL;wrp=H{CkkF6>BjSbkf*kfuuGS9ctg)c*;Vp4p_i*9R%pn zLLVq=wmO{|2^&Fyb#(02(|;GIr`}R#_cD_ElV5(FpPukIAC79#IukU~E~?4#PfJOk zK43D6!fh^dZy9Pwz^b?4appt*l*OT+rFpsnWrcoBPl-+$yD696NBZP|K=rk%hvAVc z^u-E*_P@e0tc~rI{BHm|*$&-W*rBsOW!DwzZm3*CF(C!7D9%CCqX;tMe2o{$_lz<wlk<2*;N9VW=-L7d?yBX>4_}s=e=X$xxT3N&a__-kmG)yb@oX z0PBDOIW_``R}K~J21UJ|hIq_wqVTZLYJQghK3$|Hs}5y`GOP@4%Q)}B(CPvgA{R-> zu0;@T1!zvs-$+s98#H6bS;NvG=x7_s9xXlA*s*;+Z8lg>YJVXrBvGw0Dk107IR59q z{_-DrT4uiV{4n$3YkXe{^xv63kzAdS9=$qc)oqiyKUJt8@!3|JqPWN8sc1RUzEh1( z2go|4d>weMsVJLPN>znD^b!YXd6UTOcaQue6>nvtUh_U5lxlx~6eCS)bq1RxhgoL6 zM$L{8&ulaMu zpKJbAoQ2yOK_kkPr*0Xvr#3k(Tk){*qhu1g-b0#2t<}wBV3db23hDL@`jh8E=}+$Y zI8~k#xPSS>zn`{0TnqLRXK)R*+>jUVi|ET6LYP1kK>{) z)i#ru;@_Oof)F-a;j)|!bA*io`cW4k69qeaCPF-~O0y&JSxma--O#E z&^6d}@inqvGYqPtqBd^QMDAg={cr#64Ter?j(e#zD zk{H9PRsD*VtF*rGnKMayq?^_B2nr`vIY=?JI2t5$kGl03{QC8HU0&Ho)#aO&K>Ll# z+XZt*gIdlc9SChX!6mVVBJ5X2`>PYR_E~Ra^mO1JUS+)9&ykJgwX`z6oos51$|v#} z0)G^NvE;ztQzBYTfiZCA2<#&_mH>^Wq?{=*os=0!Iw?8^l1f%a64f`|rZ9f;Lyi?b zG@c1me7ryk;BI+)>)`E`DbI1|3&g(ROs>FH>@P^Z?M1H4z`xZ6yunyNjRqcl3c(Kd z<8@BYhxt_TU(V~G?4lDP!W(@vYM6W9<9||gt)$+=Q})^|606~c`L+%N>+k~2cmkc6 zG9xU%uiT}8!|$sMuM>}Dm`4>9#){1%tk^6`e{=Rl*dG=$7>{2cl((EprygIJ64ZI9 zL5s1|y>9H6VYZlS;vu4)(gwYU3Yo>Q8jmp&-1svi!;E_$Br!pns#LFYtvk%IihsdD zZx_)`==i{}qDu^OZND6&Voj(7F9-$NvY6Kj8|RMAt*pZlE0(a9xCX6EVDFie_DlTAyj{#v+C4b&2IJC zc7Eh^R>R>Mj%`5K=B68oSBLCsHnicqsq6QRu3v3g(6O(jIpL=t|1+;o<<LtV!wTTBb1?P(J!iBXY;feJzL^L5-vGw|^SVjYjj% zpqV;DS5ub5OD|^ndV&GRYKrzdPVdfcYJR{yD`2u?=n~G9(x5oUA>;TI=!+3u<+M+J zq6Kgiz)64#u^e(@|4z$CFLQQY$v?Z)@~^{ulZoGnSVX!gJy5!qP~|{=YQi(AW>En@ zy^f>$@F(v&%D2CKzl;2nu76v8<@#TREx6S$3Tu_@tw(M=1=?VjaUwE3gB0kb1XJw; zS(WPN8FWBwT>I;w2oI?yWGfNFb`z$tM8q;+$~{xZfW}84gY^tptP9t5!CYOJYKLQD%%z%;o4RnS3paJq#_UuV8fl}K$bXOCq?dM+p6e#X zu{`l*DYp-Ux*@QS(#&+SmFYH;Pq9RpF^XnPQ9IO2vA*b;Ha^dnq};yGsIE6H?A6?( zuycaWE9ms?YUuC&Us@~%J)3Xhd{xMWJj(qd4KAM^bQ*JvsYwbiY}AH^Z(>)RyFARqOZ8B0k3L+<#UcT;Alru z*FYh8#dQt1uED$i$L6C;O?*8$PGLQ}T%5i*`DOh*Lu*DnWW`a}ENsoK6#JL%^f9!3 zC~|KT!cG!xR*l(^kvd`(N0AjVfij*-HXTG_G-i_QNnZ*FlpUh>i97jcBGl{ za~kr(_BvKfe({WHgDdUz3d`+Y*W`n&W8BQJbSc;k^cI?BJyUs~nx{M6v39*$H9V71 zvAk*vF+~>DgP|1;w3_ZZ6d%->lK`OwyME2KsH+~|Tz`7;go3MD??*nHZfHF5^6@!? zk?mD=@b!e^Aye`8-ijg~!`xNSuLYKAFgHF+?jpD%su`=7I3dZeWh^Mg>l`*z&to#O zDP_uHbgo*~7M6Sk+m=d4bm%HsoMdq&t8+eZRzV^gR(6NQy2uC4%4VO2bO>t39cWjT zt;LbSQGXvVAnE}IFAeyVUbs@dUe>KRev4ztiE`fy$E-JIkAH8*bvnDp7W`+ z1B`*AZ1y{Tjp;*TdqVPxPOxhy0u$I>#iSl584qJSmsUIC>KL?j`UD7AgVVJzy-IAh zyPab0z})zmo5(_+SyEZG+pPi^M}7TuA}Xvq&IVae*jR67eAFSy4y3Jks^(C2E&?t; z34ipGI0A`bF%aRE>1^-Fb7gmgZb#G|?J~D5KdtGfJ1$M2r2o@965}R=-$S3n7;QW5 zKK>8m)5AxF5()-HSYLz-M18HHVxdf|^YpWg==srtGltxmN&UPzJ~i2a__{in(|^^O zg4;W34%^%u&uwJ>ZJFpC3qg z7xqV4Fv=Rm6Zf01O?k5p#~JgEI8hu!F!x|`I$Yzt(>hmd1Lu5wr+1#KYoep<$#9WJ zAD24z zOO~1k+da#lF_~p)hWvZXJGK}~D6lL%fJGTeZRkNx@D#`fWBGi}SPj>cPPxfbX&cxi@nldlY(P6{^X<9T<3i7yi~_N0KP&d6fcd)zQbLA;gu1ISW$A2xuWDj;eE3{8OwiR!ieC%pfHL9AiBlOUgbdlO@$KHF> z$Gs~JgIDafPfnd^y;tE`uPcfb##KGSHraZDk$5r9%R4A)aBj)x-|37|$Ht~3SA6A%}n}4mv&%~-oH*RBb zgb!lJfHlC)x_Yq(7J4u#hJmr)!(pEva6LSIR|n(meJ$U-2m}ktAXM@#UkO>{_t2jA z;R3qV4oxhRHLjpuKo#v0p#>CLKp{-PLS8P>GOt+)m1bhOQvR)2OMfUEX1zLTu5|=5((32# z&Eddfazc~WQr9L$(m2*QTB&hu|lo5udR5 zx{w32{@HaFVJ`}6UY%st8*as&YBapcAe+IcC2kahkxKf=$w^!d{*L>%OL@z`oOWH> z54?}mGRaoXL4Ul*pLv4}|E2v{m#zSSMeU1Csx7==r%5=PM&n)lT zmVk-z(j66dlwru7uJWeJ_TA|9(2QK{O_#Rs_wK6uy&k&BYd%++vD?0yN8g1OJy70r zi{wt#xavx}?vwhq$Xxaf;pte8I-u#$G|tVfNBD;5$A1sW-Kkm!MybYK?S?n%J`r(y<|If5;^8#qPcLz#n#VfNymk2P^5=`E_fNI zJs?_VM6cOtz91NC_3mmA)k$T3drh_$muqw9<99ve6~@_+(CcZlfb#qdYqoh8Eu zL~yH1kX8CMG%z&y+w>ulnTI+m)O)BnIv{v?lL19A|4=8PVSY6e?ebPoqw1tI4}ZYg z;o;D6!LpDM(~OXPlCNae+yXrEfo>R_qJMZ2RDJk{4|S0)43dQ@fNr>7cLAE?#Zcy- z=kU3Ml+_YV(3=ieuW_Gx@O9rG8n?0&x27$ThhFx%$ZTBp!6pyM=Z^zLNd5oJtb#v? z{62r(3EcElt!^5Dr%akJw)9a!AG1HECH$>hMLlFuEwC#evmEQNhbcrc$XS`|w|{aG zj(+(!^LA;LCTZBOJZIh`X{S?V(gZbq3YvIx?iyG z(4Ak;pvs!{*Pc2J#=9YVHgdh+86ON@`h@t>otGUF^*bZYKC-;Q%L!OL)2-A00wXYQ E{BezfsQ>@~ diff --git a/prerequisites/python-programming-advanced.html b/prerequisites/python-programming-advanced.html index 4b25df2626..8a922dae48 100644 --- a/prerequisites/python-programming-advanced.html +++ b/prerequisites/python-programming-advanced.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/prerequisites/python-programming-basics.html b/prerequisites/python-programming-basics.html index 01b43b345c..bc21abcf53 100644 --- a/prerequisites/python-programming-basics.html +++ b/prerequisites/python-programming-basics.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/prerequisites/python-programming-introduction.html b/prerequisites/python-programming-introduction.html index deb98b00f4..8d396c900b 100644 --- a/prerequisites/python-programming-introduction.html +++ b/prerequisites/python-programming-introduction.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/search.html b/search.html index 0bd64dbdb5..a0292b9a47 100644 --- a/search.html +++ b/search.html @@ -837,279 +837,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/searchindex.js b/searchindex.js index b9562cf482..aec4fe3304 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["assignments/README","assignments/data-science/analyzing-COVID-19-papers","assignments/data-science/analyzing-data","assignments/data-science/analyzing-text-about-data-science","assignments/data-science/apply-your-skills","assignments/data-science/build-your-own-custom-vis","assignments/data-science/classifying-datasets","assignments/data-science/data-preparation","assignments/data-science/data-processing-in-python","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way","assignments/data-science/data-science-project-using-azure-ml-sdk","assignments/data-science/data-science-scenarios","assignments/data-science/displaying-airport-data","assignments/data-science/dive-into-the-beehive","assignments/data-science/estimation-of-COVID-19-pandemic","assignments/data-science/evaluating-data-from-a-form","assignments/data-science/explore-a-planetary-computer-dataset","assignments/data-science/exploring-for-anwser","assignments/data-science/introduction-to-statistics-and-probability","assignments/data-science/lines-scatters-and-bars","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml","assignments/data-science/market-research","assignments/data-science/matplotlib-applied","assignments/data-science/nyc-taxi-data-in-winter-and-summer","assignments/data-science/small-diabetes-study","assignments/data-science/soda-profits","assignments/data-science/tell-a-story","assignments/data-science/try-it-in-excel","assignments/data-science/write-a-data-ethics-case-study","assignments/deep-learning/autoencoder/autoencoder","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market","assignments/deep-learning/gan/art-by-gan","assignments/deep-learning/gan/gan-introduction","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment","assignments/deep-learning/nn-classify-15-fruits-assignment","assignments/deep-learning/nn-for-classification-assignment","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing","assignments/deep-learning/rnn/google-stock-price-prediction-rnn","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning","assignments/deep-learning/time-series-forecasting-assignment","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging","assignments/machine-learning-productionization/data-engineering","assignments/machine-learning-productionization/debugging-in-classification","assignments/machine-learning-productionization/debugging-in-regression","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models","assignments/ml-advanced/ensemble-learning/decision-trees","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance","assignments/ml-advanced/ensemble-learning/random-forests-for-classification","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression","assignments/ml-advanced/gradient-boosting/boosting-with-tuning","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting","assignments/ml-advanced/kernel-method/decision_trees_for_classification","assignments/ml-advanced/kernel-method/decision_trees_for_regression","assignments/ml-advanced/kernel-method/kernel-method-assignment-1","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression","assignments/ml-advanced/model-selection/dropout-and-batch-normalization","assignments/ml-advanced/model-selection/lasso-and-ridge-regression","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit","assignments/ml-advanced/model-selection/model-selection-assignment-1","assignments/ml-advanced/model-selection/regularized-linear-models","assignments/ml-fundamentals/build-classification-model","assignments/ml-fundamentals/build-classification-models","assignments/ml-fundamentals/create-a-regression-model","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines","assignments/ml-fundamentals/explore-classification-methods","assignments/ml-fundamentals/exploring-visualizations","assignments/ml-fundamentals/linear-and-polynomial-regression","assignments/ml-fundamentals/managing-data","assignments/ml-fundamentals/ml-linear-regression-1","assignments/ml-fundamentals/ml-linear-regression-2","assignments/ml-fundamentals/ml-logistic-regression-1","assignments/ml-fundamentals/ml-logistic-regression-2","assignments/ml-fundamentals/ml-neural-network-1","assignments/ml-fundamentals/ml-overview-iris","assignments/ml-fundamentals/ml-overview-mnist-digits","assignments/ml-fundamentals/parameter-play","assignments/ml-fundamentals/pumpkin-varieties-and-color","assignments/ml-fundamentals/regression-tools","assignments/ml-fundamentals/regression-with-scikit-learn","assignments/ml-fundamentals/retrying-some-regression","assignments/ml-fundamentals/study-the-solvers","assignments/ml-fundamentals/try-a-different-model","assignments/prerequisites/python-programming-advanced","assignments/prerequisites/python-programming-basics","assignments/prerequisites/python-programming-introduction","assignments/project-plan-template","assignments/set-up-env/first-assignment","assignments/set-up-env/second-assignment","data-science/data-science-in-the-cloud/data-science-in-the-cloud","data-science/data-science-in-the-cloud/introduction","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way","data-science/data-science-in-the-cloud/the-low-code-no-code-way","data-science/data-science-in-the-wild","data-science/data-science-lifecycle/analyzing","data-science/data-science-lifecycle/communication","data-science/data-science-lifecycle/data-science-lifecycle","data-science/data-science-lifecycle/introduction","data-science/data-visualization/data-visualization","data-science/data-visualization/meaningful-visualizations","data-science/data-visualization/visualization-distributions","data-science/data-visualization/visualization-proportions","data-science/data-visualization/visualization-relationships","data-science/introduction/data-science-ethics","data-science/introduction/defining-data","data-science/introduction/defining-data-science","data-science/introduction/introduction","data-science/introduction/introduction-to-statistics-and-probability","data-science/working-with-data/data-preparation","data-science/working-with-data/non-relational-data","data-science/working-with-data/numpy","data-science/working-with-data/pandas","data-science/working-with-data/relational-databases","data-science/working-with-data/working-with-data","deep-learning/autoencoder","deep-learning/cnn","deep-learning/difussion-model","deep-learning/dl-overview","deep-learning/dqn","deep-learning/gan","deep-learning/image-classification","deep-learning/image-segmentation","deep-learning/lstm","deep-learning/object-detection","deep-learning/rnn","deep-learning/time-series","intro","machine-learning-productionization/data-engineering","machine-learning-productionization/model-deployment","machine-learning-productionization/model-training-and-evaluation","machine-learning-productionization/overview","machine-learning-productionization/problem-framing","ml-advanced/clustering/clustering-models-for-machine-learning","ml-advanced/clustering/introduction-to-clustering","ml-advanced/clustering/k-means-clustering","ml-advanced/ensemble-learning/bagging","ml-advanced/ensemble-learning/feature-importance","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning","ml-advanced/ensemble-learning/random-forest","ml-advanced/gradient-boosting/gradient-boosting","ml-advanced/gradient-boosting/gradient-boosting-example","ml-advanced/gradient-boosting/introduction-to-gradient-boosting","ml-advanced/gradient-boosting/xgboost","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance","ml-advanced/kernel-method","ml-advanced/model-selection","ml-advanced/unsupervised-learning","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model","ml-fundamentals/classification/applied-ml-build-a-web-app","ml-fundamentals/classification/getting-started-with-classification","ml-fundamentals/classification/introduction-to-classification","ml-fundamentals/classification/more-classifiers","ml-fundamentals/classification/yet-other-classifiers","ml-fundamentals/ml-overview","ml-fundamentals/regression/linear-and-polynomial-regression","ml-fundamentals/regression/logistic-regression","ml-fundamentals/regression/managing-data","ml-fundamentals/regression/regression-models-for-machine-learning","ml-fundamentals/regression/tools-of-the-trade","prerequisites/python-programming-advanced","prerequisites/python-programming-basics","prerequisites/python-programming-introduction","slides/data-science/data-science-in-real-world","slides/data-science/data-science-in-the-cloud","slides/data-science/data-science-introduction","slides/data-science/data-science-lifecycle","slides/data-science/data-visualization","slides/data-science/numpy-and-pandas","slides/data-science/relational-vs-non-relational-database","slides/deep-learning/cnn","slides/deep-learning/gan","slides/introduction","slides/ml-advanced/kernel-method","slides/ml-advanced/model-selection","slides/ml-advanced/unsupervised-learning","slides/ml-fundamentals/build-an-ml-web-app","slides/ml-fundamentals/linear-regression","slides/ml-fundamentals/logistic-regression","slides/ml-fundamentals/logistic-regression-condensed","slides/ml-fundamentals/ml-overview","slides/ml-fundamentals/neural-network","slides/python-programming/python-programming-advanced","slides/python-programming/python-programming-basics","slides/python-programming/python-programming-introduction"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["assignments/README.md","assignments/data-science/analyzing-COVID-19-papers.ipynb","assignments/data-science/analyzing-data.ipynb","assignments/data-science/analyzing-text-about-data-science.ipynb","assignments/data-science/apply-your-skills.md","assignments/data-science/build-your-own-custom-vis.md","assignments/data-science/classifying-datasets.md","assignments/data-science/data-preparation.ipynb","assignments/data-science/data-processing-in-python.md","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.ipynb","assignments/data-science/data-science-project-using-azure-ml-sdk.md","assignments/data-science/data-science-scenarios.md","assignments/data-science/displaying-airport-data.ipynb","assignments/data-science/dive-into-the-beehive.md","assignments/data-science/estimation-of-COVID-19-pandemic.ipynb","assignments/data-science/evaluating-data-from-a-form.ipynb","assignments/data-science/explore-a-planetary-computer-dataset.md","assignments/data-science/exploring-for-anwser.ipynb","assignments/data-science/introduction-to-statistics-and-probability.ipynb","assignments/data-science/lines-scatters-and-bars.md","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.md","assignments/data-science/market-research.md","assignments/data-science/matplotlib-applied.ipynb","assignments/data-science/nyc-taxi-data-in-winter-and-summer.ipynb","assignments/data-science/small-diabetes-study.ipynb","assignments/data-science/soda-profits.ipynb","assignments/data-science/tell-a-story.md","assignments/data-science/try-it-in-excel.md","assignments/data-science/write-a-data-ethics-case-study.md","assignments/deep-learning/autoencoder/autoencoder.ipynb","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.ipynb","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.ipynb","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.ipynb","assignments/deep-learning/gan/art-by-gan.ipynb","assignments/deep-learning/gan/gan-introduction.ipynb","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb","assignments/deep-learning/nn-classify-15-fruits-assignment.ipynb","assignments/deep-learning/nn-for-classification-assignment.ipynb","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.ipynb","assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.ipynb","assignments/deep-learning/time-series-forecasting-assignment.ipynb","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging.ipynb","assignments/machine-learning-productionization/data-engineering.ipynb","assignments/machine-learning-productionization/debugging-in-classification.ipynb","assignments/machine-learning-productionization/debugging-in-regression.ipynb","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models.ipynb","assignments/ml-advanced/ensemble-learning/decision-trees.ipynb","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-for-classification.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.ipynb","assignments/ml-advanced/gradient-boosting/boosting-with-tuning.ipynb","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment.ipynb","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_classification.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_regression.ipynb","assignments/ml-advanced/kernel-method/kernel-method-assignment-1.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.ipynb","assignments/ml-advanced/model-selection/dropout-and-batch-normalization.ipynb","assignments/ml-advanced/model-selection/lasso-and-ridge-regression.ipynb","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.ipynb","assignments/ml-advanced/model-selection/model-selection-assignment-1.ipynb","assignments/ml-advanced/model-selection/regularized-linear-models.ipynb","assignments/ml-fundamentals/build-classification-model.ipynb","assignments/ml-fundamentals/build-classification-models.ipynb","assignments/ml-fundamentals/create-a-regression-model.md","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.ipynb","assignments/ml-fundamentals/explore-classification-methods.md","assignments/ml-fundamentals/exploring-visualizations.md","assignments/ml-fundamentals/linear-and-polynomial-regression.ipynb","assignments/ml-fundamentals/managing-data.ipynb","assignments/ml-fundamentals/ml-linear-regression-1.ipynb","assignments/ml-fundamentals/ml-linear-regression-2.ipynb","assignments/ml-fundamentals/ml-logistic-regression-1.ipynb","assignments/ml-fundamentals/ml-logistic-regression-2.ipynb","assignments/ml-fundamentals/ml-neural-network-1.ipynb","assignments/ml-fundamentals/ml-overview-iris.ipynb","assignments/ml-fundamentals/ml-overview-mnist-digits.ipynb","assignments/ml-fundamentals/parameter-play.md","assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb","assignments/ml-fundamentals/regression-tools.ipynb","assignments/ml-fundamentals/regression-with-scikit-learn.md","assignments/ml-fundamentals/retrying-some-regression.md","assignments/ml-fundamentals/study-the-solvers.md","assignments/ml-fundamentals/try-a-different-model.md","assignments/prerequisites/python-programming-advanced.ipynb","assignments/prerequisites/python-programming-basics.ipynb","assignments/prerequisites/python-programming-introduction.ipynb","assignments/project-plan-template.ipynb","assignments/set-up-env/first-assignment.ipynb","assignments/set-up-env/second-assignment.ipynb","data-science/data-science-in-the-cloud/data-science-in-the-cloud.ipynb","data-science/data-science-in-the-cloud/introduction.ipynb","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way.ipynb","data-science/data-science-in-the-cloud/the-low-code-no-code-way.ipynb","data-science/data-science-in-the-wild.md","data-science/data-science-lifecycle/analyzing.md","data-science/data-science-lifecycle/communication.md","data-science/data-science-lifecycle/data-science-lifecycle.md","data-science/data-science-lifecycle/introduction.md","data-science/data-visualization/data-visualization.ipynb","data-science/data-visualization/meaningful-visualizations.ipynb","data-science/data-visualization/visualization-distributions.ipynb","data-science/data-visualization/visualization-proportions.ipynb","data-science/data-visualization/visualization-relationships.ipynb","data-science/introduction/data-science-ethics.md","data-science/introduction/defining-data.md","data-science/introduction/defining-data-science.md","data-science/introduction/introduction.md","data-science/introduction/introduction-to-statistics-and-probability.md","data-science/working-with-data/data-preparation.md","data-science/working-with-data/non-relational-data.md","data-science/working-with-data/numpy.md","data-science/working-with-data/pandas.md","data-science/working-with-data/relational-databases.md","data-science/working-with-data/working-with-data.md","deep-learning/autoencoder.md","deep-learning/cnn.md","deep-learning/difussion-model.md","deep-learning/dl-overview.ipynb","deep-learning/dqn.md","deep-learning/gan.md","deep-learning/image-classification.md","deep-learning/image-segmentation.md","deep-learning/lstm.md","deep-learning/object-detection.md","deep-learning/rnn.md","deep-learning/time-series.md","intro.md","machine-learning-productionization/data-engineering.md","machine-learning-productionization/model-deployment.md","machine-learning-productionization/model-training-and-evaluation.md","machine-learning-productionization/overview.md","machine-learning-productionization/problem-framing.md","ml-advanced/clustering/clustering-models-for-machine-learning.ipynb","ml-advanced/clustering/introduction-to-clustering.ipynb","ml-advanced/clustering/k-means-clustering.ipynb","ml-advanced/ensemble-learning/bagging.md","ml-advanced/ensemble-learning/feature-importance.md","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.md","ml-advanced/ensemble-learning/random-forest.md","ml-advanced/gradient-boosting/gradient-boosting.md","ml-advanced/gradient-boosting/gradient-boosting-example.md","ml-advanced/gradient-boosting/introduction-to-gradient-boosting.md","ml-advanced/gradient-boosting/xgboost.md","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.md","ml-advanced/kernel-method.md","ml-advanced/model-selection.ipynb","ml-advanced/unsupervised-learning.ipynb","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.md","ml-fundamentals/classification/applied-ml-build-a-web-app.ipynb","ml-fundamentals/classification/getting-started-with-classification.ipynb","ml-fundamentals/classification/introduction-to-classification.ipynb","ml-fundamentals/classification/more-classifiers.ipynb","ml-fundamentals/classification/yet-other-classifiers.ipynb","ml-fundamentals/ml-overview.md","ml-fundamentals/regression/linear-and-polynomial-regression.ipynb","ml-fundamentals/regression/logistic-regression.md","ml-fundamentals/regression/managing-data.md","ml-fundamentals/regression/regression-models-for-machine-learning.md","ml-fundamentals/regression/tools-of-the-trade.md","prerequisites/python-programming-advanced.md","prerequisites/python-programming-basics.ipynb","prerequisites/python-programming-introduction.ipynb","slides/data-science/data-science-in-real-world.ipynb","slides/data-science/data-science-in-the-cloud.ipynb","slides/data-science/data-science-introduction.ipynb","slides/data-science/data-science-lifecycle.ipynb","slides/data-science/data-visualization.ipynb","slides/data-science/numpy-and-pandas.ipynb","slides/data-science/relational-vs-non-relational-database.ipynb","slides/deep-learning/cnn.ipynb","slides/deep-learning/gan.ipynb","slides/introduction.md","slides/ml-advanced/kernel-method.ipynb","slides/ml-advanced/model-selection.ipynb","slides/ml-advanced/unsupervised-learning.ipynb","slides/ml-fundamentals/build-an-ml-web-app.ipynb","slides/ml-fundamentals/linear-regression.ipynb","slides/ml-fundamentals/logistic-regression.ipynb","slides/ml-fundamentals/logistic-regression-condensed.ipynb","slides/ml-fundamentals/ml-overview.ipynb","slides/ml-fundamentals/neural-network.ipynb","slides/python-programming/python-programming-advanced.ipynb","slides/python-programming/python-programming-basics.ipynb","slides/python-programming/python-programming-introduction.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,75,76,77,78,79,80,81,89,90,91,95,96,97,98,104,105,106,107,108,113,114,116,117,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,138,139,140,141,142,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,164,165,166,167,170,172,173,176,178,180,181,182,183,184,186,187,188,189],"00":[25,29,38,57,59,60,161,166,173],"000":[7,29,33,41,50,56,63,65,114,126,153,173,186],"0000":[29,61,115,174],"000000":[38,58,61,64,75,113,117,139,142,149],"00000000":[115,174],"000000000":38,"000000001":38,"000000002":38,"000000003":38,"000000004":38,"000001":89,"000004":139,"000012":117,"000026":157,"000034":117,"000035e":59,"0001":[54,56,61,64,75,122,124,135,176,182],"000169":139,"000187":139,"000193":157,"0002":187,"000234":139,"000280":117,"0003":141,"00030352119521741776":14,"0004":141,"000447":117,"000498":117,"0005":[37,66,130],"000537":139,"000559":117,"00058":75,"000581":61,"0006070423904348355":14,"000665":139,"000858":117,"0009105635856522532":14,"000z":115,"001":[14,31,33,34,35,37,45,54,60,64,66,78,90,124,128,129,135,183],"001214084780869671":14,"001238e":59,"0012919896640826":75,"001413":38,"001667":142,"002":187,"00228":130,"00259226":164,"002962":149,"003064":117,"003114":117,"003411e":59,"003750":149,"00398532":75,"005":[56,121,139],"00561v3":127,"006457":149,"007000":139,"007185":[63,65],"007273":38,"007380":149,"008080":149,"008281":149,"008906e":59,"0092":141,"009621":117,"0098":141,"01":[1,14,29,31,35,38,45,48,50,54,56,59,60,64,75,79,109,111,115,117,120,129,141,146,152,170],"010000":61,"010255":117,"010309":113,"010a691e01d7":[115,174],"01130490957":75,"011305":61,"012114":38,"01246024":[61,75],"012809":117,"013246":142,"01324612":142,"013417":149,"013504":157,"013547":149,"01355":129,"014371":149,"014940":38,"01497":129,"015":139,"0152":141,"015590":117,"015625":59,"016186":149,"016305":139,"01632993161855452":64,"016667":38,"017":160,"0170":59,"017500":38,"01764613":164,"017692":38,"018138":117,"0183":35,"0189":38,"019231":38,"0195":38,"0196":[38,141],"0198":38,"01990749":164,"02":[14,35,37,38,56,59,117,122,144],"020251":117,"020260":117,"0204":38,"0205":38,"0207":38,"020724e":38,"0210":38,"0212":38,"0213":38,"02137124":152,"021448":38,"0215":38,"0218":38,"02187239":164,"021919":29,"0220":38,"022055":117,"022331":[63,65],"022377":29,"0226":38,"022738":38,"0229":38,"0230":38,"0231":38,"0233":38,"0234":38,"023605":117,"0238":38,"0246":38,"024613e":59,"0255":[38,141],"025568e":59,"025820":142,"0260":38,"026109":75,"02653783":75,"026748":117,"0268":38,"026850":117,"02689146":[61,75],"0276":38,"02763018":75,"027800":139,"028300":139,"0289":14,"0292":38,"0296":38,"02d":36,"03":[14,29,35,37,38,59,115,117,174],"0302":38,"0311":38,"031503":117,"031506725":29,"03265986323710903":64,"0327":38,"032792":117,"0328":38,"03385":126,"033892e":38,"0339":38,"0342":38,"034419":117,"03482076":164,"035077":142,"0352":38,"0353":38,"035499e":59,"035711":[63,65],"035785":142,"0358":38,"03676084":75,"0372":38,"0375":38,"037540":38,"0376":38,"037692":38,"0377":38,"03807591":164,"0383":38,"0386":38,"0390":38,"039044":117,"039105":142,"039164":38,"0392":38,"039250":139,"0393":38,"0394":38,"03942163":75,"039738":142,"039893":38,"0399":38,"039952":117,"03_intellij":38,"03d":[31,37],"04":[14,29,35,38,48,59,108,113,117,134],"0400":38,"04000000001":38,"0402":38,"0404":38,"040590":117,"0407":38,"04124236":75,"0416":38,"0418":38,"0420":38,"042143e":59,"0423":38,"042321":29,"0424":139,"04251990648936265":152,"0430":38,"04340085":164,"0435":38,"0436":38,"044":139,"0440":38,"0442235":164,"044444":113,"04460606335028361":160,"0447":[38,139],"0448":38,"045000":38,"04555172":75,"045561":38,"045637":38,"0458":38,"04597":127,"0463":38,"0467":38,"04690235":75,"0471":38,"047335188356":148,"04764906":75,"048106":117,"04861":126,"048622":75,"0496":38,"049672":75,"04d":124,"04t22":57,"05":[14,35,36,38,47,59,66,79,117,121,135,141,148,152],"0500":146,"0506":38,"05068012":164,"05093587":116,"051164":59,"05129013":75,"05163977794943221":64,"051695":38,"0517":38,"052646":38,"0528":38,"05283644":75,"053607":38,"053899":142,"053903":38,"054000":64,"0541":38,"054430e":59,"05558296":75,"05587v3":127,"055nnvtoa3qdwa3bvtpoxd6eljn4usoouann3ovpiyhpax3neltd9abdu17":59,"057504":[63,65],"058541":117,"0589":38,"059025":29,"059100":139,"059136e":59,"0595":38,"05_fco":129,"05d":[37,124],"06":[14,35,38,59,117,160],"061189":117,"0612":35,"061476":142,"06156753":[150,178],"06169621":164,"061881":142,"0621118":141,"0625":[150,178],"062868":38,"065508":75,"06576":121,"0660":35,"066191":117,"0668":38,"067482e":59,"068415":59,"068424":117,"068538":117,"06870":129,"0688":59,"0694":38,"069473e":59,"069847":117,"06993":126,"07":[1,29,35,38,50,59,117,135,141,160,173],"070833":38,"071203171893359e":173,"071268":38,"0713":38,"071856":58,"07272727":79,"07383654":75,"074246":38,"07432988":75,"074776":142,"075":180,"0754":38,"075650":139,"07604103":75,"076421":117,"076923":38,"07737338323":61,"077500":38,"077712":142,"07878788":79,"078843":38,"078910":[63,65],"078934e":59,"079167":38,"07959982":75,"079636":117,"07_detr":129,"08":[29,35,38,48,59,89,108,112,113,115,117,134,160,165,170,187],"080870":38,"0819":38,"082084":117,"0822":139,"0829":139,"083333":38,"0839":35,"084493":117,"08484848":79,"085":180,"085397":117,"085537":173,"086798":29,"087":139,"088730":142,"088992":38,"0893":38,"089525":139,"09":[25,29,35,38,59,75],"090000":38,"090298":38,"090321":139,"090548":38,"090717":38,"09090909":79,"091364":117,"091386":117,"091439":38,"091489":38,"091574":59,"0924":35,"092939":139,"094025":38,"094383":38,"0944":35,"094493":38,"095000":38,"095163":38,"095922":38,"096164":38,"0964":139,"096545":38,"096688":38,"09704554168":75,"097061":38,"097124":38,"09736372":75,"097565":38,"097692":38,"097950":139,"098004":38,"098200":29,"098327":38,"098485":38,"0985":38,"098512":38,"099139":38,"099198":38,"099369":38,"099380":38,"099428":38,"099534":38,"099587":38,"099596":38,"099674":38,"0cm":46,"0f":41,"0n":32,"0nb81h2lf3u6tgo":59,"0rvhljoesr6bt4cmi":59,"0s":[29,35,38,54,60,61,75,152,159],"0th":[41,117],"0x132a05eb0":172,"0x1f49b239f08":75,"0x1f4a26c7b08":75,"0x1f4a26efc48":75,"0x1f4a2788808":75,"0x1f4a27bb588":75,"0x1f4ad02ae08":75,"0x1f4ad061988":75,"0x227c78bf790":58,"0x2587be67a00":76,"0x28523a37dc0":139,"0x7e1538110d60":152,"0x7fa35c732d30":108,"0x7fe08c06e640":161,"0x7fe0b056fca0":161,"0x7fe627a5d7f0":160,"0x7fe632736730":160,"0x7ff1b5b1aad0":116,"1":[0,1,6,7,9,14,15,18,22,25,29,31,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,51,55,62,63,64,66,67,76,78,81,89,90,91,92,93,95,96,97,98,104,105,106,107,108,109,111,113,114,117,118,120,121,122,123,124,125,127,128,129,130,131,133,134,135,136,138,139,140,141,142,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,164,165,166,167,180,181,183,186,187],"10":[1,2,7,14,18,22,24,25,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,75,76,77,79,80,81,89,90,98,101,103,106,109,111,115,116,117,122,123,128,130,131,134,135,136,137,139,140,141,142,144,145,149,150,152,156,158,160,164,165,166,170,172,173,178,180,181,182,183,184,186,187,188,189],"100":[7,14,18,31,34,35,36,37,40,41,46,47,48,49,50,52,53,54,56,60,62,63,64,65,66,68,75,76,77,79,80,89,107,116,121,124,125,127,128,135,136,137,139,141,144,148,149,150,152,153,158,160,161,165,166,172,173,176,178,180,181,186,187,188],"1000":[3,14,18,31,33,47,50,54,56,58,60,61,64,78,79,81,99,104,113,120,122,127,135,141,142,144,146,148,152,161,165,168,172,181,183,184,187],"10000":[14,29,33,37,56,64,79,122,124,126,153],"100000":[54,64,122],"1000000":[165,167,173],"1001":136,"1003":136,"100486":38,"1005":136,"1007":[75,136],"10086":117,"10087":117,"100878":29,"10088":117,"10089":117,"1009":136,"10090":117,"10091":117,"10092":117,"10093":117,"100942":38,"100k":158,"100m":135,"100tl":35,"101":[142,152],"1010":139,"10119387961131":[63,65],"1012000":108,"101451":38,"1018":38,"101803":117,"101812":117,"1018121440848014":117,"102":[50,59,139,142],"1020":[106,172],"10220":52,"102234":117,"1024":[32,33,37,62,122,125,126,127,176],"1024n":32,"102657":38,"102724":38,"1028":34,"102b":136,"102k":50,"103":[50,56,59,141,142],"1030":34,"103095":38,"103500":139,"103997":38,"104":[50,59,141,142],"1040":[107,172],"1040000":108,"104412":38,"10444444444444445":152,"10452":38,"1048":38,"105":[136,139,140,152,156,160],"1050":[106,172],"105237":75,"1053":75,"105586":38,"105651e":38,"105748":142,"105937":149,"106":[59,117],"1065":117,"10655":149,"1066":[106,117,172],"106649":38,"1067":117,"1068":117,"10689":137,"1069":[38,117],"107":[50,117,141],"1070":117,"1072":[107,117,172],"107282":38,"1073":117,"108":[117,176,187],"108032":38,"1086":117,"1088":117,"1089":117,"109":117,"1090":117,"109091":113,"109167":38,"109201":117,"10928802805393":58,"1096":173,"1097":57,"1099":33,"10k":121,"10m":[109,170],"11":[14,22,25,29,35,38,47,48,50,57,59,60,62,64,81,89,90,95,96,97,98,99,104,105,106,107,108,116,117,124,131,134,138,139,140,141,142,144,151,152,154,155,156,157,158,160,161,165,166,168,187,188],"110":[14,50,58,59,66,117,141,165],"1100":139,"110000":38,"110426":59,"1105":[61,75],"1106":[61,75],"11088":25,"1109":137,"111":[35,59,76,117,124,139],"111000":139,"11109":89,"1111":[118,174],"111101":38,"11111":89,"1116058338033":64,"111618":38,"111700":38,"111752":38,"112":[64,117,139],"112151":149,"11239":122,"1123949416":174,"112425":38,"11250":66,"112522":29,"113":[38,50,57,106,117,141,172],"1130":139,"113362":38,"113402":113,"1135":38,"1136000":[108,172],"1138":[61,75],"113825":117,"114":[50,61,75,141],"1142000":108,"1144":[107,172],"114639":[63,65],"1147":38,"114700":75,"115":[57,59,139],"1151":35,"115237":61,"115238":75,"11530945":[150,178],"115337":142,"1158":117,"1159":117,"116":[35,64,106,139,172],"1160":[29,117,139],"1160103":38,"11609933":75,"1161":117,"1162":117,"1163":117,"1164":117,"1165":117,"1166":[61,75],"11663747":75,"1168":29,"116819":142,"117":[61,121],"11742":75,"117513":61,"117522":139,"1176":[118,174],"11761":58,"11770":25,"118":[61,75],"119":[61,75,152],"119048":38,"1191":59,"1196":149,"119621":29,"1197":141,"1197000":108,"1198":141,"11983416102879":152,"1199":[157,158],"11th":44,"12":[14,22,25,29,35,37,38,39,41,43,44,49,50,51,52,53,54,59,61,66,68,75,77,89,90,98,106,108,113,116,117,126,134,139,140,141,142,144,146,149,152,153,161,165,166,172,180,183,184,187,188],"120":[14,37,38,60,64,89,150,178,187],"1200":56,"12000":149,"120000":[61,75,166],"1202":126,"121":[47,50,61,64,75,137,141,152],"12108":58,"1211":38,"121237":59,"121358":38,"12161474924694336":117,"12161475":117,"121615":117,"121669":[63,65],"1219000":108,"12195403":75,"122":[47,50,61,75,141,152,181],"1220":33,"122021":38,"122411":38,"1225673588504812":66,"122768":117,"122784":38,"122785e":59,"123":[14,50,89,117,141,149,166],"12326000":[108,172],"1234":[166,188],"123431":29,"12345":[38,166],"123456789":89,"123492":59,"123588":139,"1236":34,"1237":34,"124":[38,58,61,75],"124162":117,"124210":38,"124505":38,"125":[31,58,64,139,166,173,188],"1251":75,"125115":136,"125457e":59,"125479":38,"1259":42,"126":[38,61,75],"126083":117,"126299":38,"1264085":38,"12647":149,"12669":149,"12693":25,"12697628":116,"127":[59,66,117,122,139,152,176],"127304":75,"12733734668670776":66,"1274":[61,75],"127469":38,"127696":38,"128":[31,32,33,34,36,37,39,41,50,58,79,120,121,122,126,127,128,141,166,186],"1280":60,"128188":142,"1288":117,"12882135":173,"1289":117,"128n":32,"128x128":127,"129":[38,46,61,75,139],"1290":117,"1291":117,"12919":38,"1292":117,"129319":117,"129382":117,"129527":38,"12985994":75,"12e4":[166,188],"12px":153,"13":[14,25,38,49,50,52,55,89,90,95,96,97,98,104,105,106,107,108,109,116,117,126,133,134,138,139,141,142,144,146,151,152,154,155,156,157,158,160,165,166,187],"130":[9,14,97,98,106,139,172],"1300":[54,152],"1300131294":[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,106,107,108,139,140,152,156,157,158,160,172],"1301":146,"130634":38,"130748":139,"131":[29,64],"1316":38,"131667":38,"13168":75,"131688":139,"131741":38,"132":[29,58],"1320":29,"1321":117,"1322000":108,"1323":117,"1324":117,"132500":38,"13255":25,"1326":117,"13265":149,"1327":117,"132931":38,"133":[29,139],"13326":75,"133260":61,"1334":44,"133727":117,"1338":149,"133826":117,"13390011":75,"133927":75,"134":[29,46,80,152,180],"134156":38,"135":[29,106,117,137,145,152,172],"135000":38,"135088":38,"135117":38,"136":[29,59,117],"1361000":[108,172],"136302":[63,65],"1369099078838":[63,65],"136m":35,"137":[9,29,50,97,98,141],"137210":38,"137321189738925e":113,"138":[29,117],"1386":[118,174],"1387":75,"139":[29,57,59],"139167":38,"1396":38,"14":[14,25,29,38,50,54,58,59,61,64,89,90,98,116,129,131,134,137,139,142,144,146,152,166,180,187,188,189],"140":[14,29,56,59,126],"140000":66,"140174":117,"1406":125,"140769":38,"1409":126,"141":29,"14100":166,"1411":127,"141297":173,"1413000":38,"1413001":38,"14159":[166,167,188],"141592653589793":187,"1416":140,"142":[166,188],"1422":[61,75],"142468":117,"142543":75,"14260":66,"143":46,"14318":59,"1432":33,"1432780985872142341":115,"144":[46,64,107,160,165,172],"144000":139,"144218":38,"144275":117,"1443":34,"1444":34,"1445":[61,75,118,174],"145":[29,63,64,65,114,142],"146":[64,114,117,142],"1464":117,"1465":117,"1466":117,"1467":[61,75,117],"1468":[75,117],"1469":117,"147":[46,64,114,117,142],"1470":117,"147308":139,"147704":142,"148":[50,64,114,117,141,142],"148495":[63,65],"1485000":[108,172],"148533":139,"14857187":142,"148572":142,"148822":[63,65],"148884":29,"14888888888888888":152,"149":[60,64,114,142],"1490":38,"149000":98,"14999":[61,75],"149995":173,"14m":35,"14x14":32,"15":[3,14,18,25,31,32,33,36,38,40,48,49,50,51,52,53,54,55,57,58,60,61,64,66,75,80,89,98,101,103,108,116,121,127,139,141,142,144,146,149,152,160,166,172,180,187,188],"150":[7,14,39,46,50,60,64,75,79,114,117,124,136,142,144,180],"1500":[31,54,56,58,107,172],"150000":38,"1505":127,"1506":129,"1508":121,"150800":75,"1508000":108,"150px":153,"1510":38,"1511":127,"1512":126,"151462":29,"1516198":75,"151882e":59,"152049":139,"1524":149,"1526":149,"15262765526":61,"1533":149,"1536936":38,"1548000":108,"1555":[57,117],"1556":[117,126],"1557":117,"155833":38,"156005":117,"1561":117,"1563":117,"1564":117,"1565":117,"1567":[106,172],"157":[117,136],"1576":38,"157729":[63,65],"15777777777777777":152,"158":[38,117],"1586":117,"1587":117,"1588":117,"1589":117,"159":117,"1590":117,"159000":[108,172],"1594000":[108,172],"1599":48,"15m":35,"16":[14,25,29,30,31,32,33,36,37,38,43,44,46,48,50,51,54,56,58,59,61,62,75,89,90,98,99,107,116,122,125,126,127,129,131,139,141,142,144,146,149,150,152,160,161,166,172,173,178,180,187,188],"160":[29,113,117,160,161],"1600":54,"16000":[58,108,172],"1600000":108,"1600x1200":149,"1608":126,"161":[50,117,141],"16111":[57,180],"1614":117,"1615":117,"1616":117,"161677":58,"161696":117,"1617":38,"1618":117,"1619":117,"162":[50,141,161],"1620":117,"16200":57,"162016":142,"162308":38,"16259":59,"1627":[61,75],"162754":117,"162829":149,"163":38,"1630":160,"1630251618197":[63,65],"1630537000":115,"1630544034":[115,174],"1636":75,"163636":113,"1639":[29,59],"163mb":121,"164000":139,"1646353":38,"16465":25,"164710":117,"1649":34,"165":[106,117,172],"1650":34,"1654":75,"16578108":75,"166":[50,141,161],"166174":117,"1665":75,"16666667":173,"166667":38,"1669":38,"167":58,"167573":38,"168":[107,172],"1683":[118,174],"16837":75,"168525738":165,"1688000":[108,172],"1690":[118,174],"16928":52,"16933":149,"1694":161,"1695":161,"1696":161,"1697":161,"1698":161,"169811":139,"16m":35,"16x16":127,"17":[14,25,38,50,55,57,58,59,61,75,89,98,99,116,117,136,139,142,144,146,152,160,161,166,168,180,187,188],"1703":129,"170312":173,"1704":126,"170446e":59,"1706":127,"170624":117,"17082872753491":35,"1715":38,"171909":59,"172":58,"1723000":108,"1725":[61,75],"1726":29,"17296777":116,"173":[57,64,180],"173211":[63,65],"173400":75,"1738":160,"1739":160,"174":38,"1740":160,"1741":160,"1742":160,"174330":38,"1747":38,"17482":25,"175":173,"175000":38,"175135":139,"1757":162,"175833":38,"175m":38,"176":[58,113],"1760000":108,"1762":149,"176277":38,"176348":117,"176m":38,"177":[61,75],"177000":139,"1775000":108,"1776":149,"1777":149,"1779":[118,174],"177m":38,"178":66,"1782":105,"1784":141,"178449":59,"178456":38,"1788":149,"17889":25,"178930":59,"17897":59,"17898":59,"178m":38,"1790":[63,65],"179056":38,"179800":[61,75],"179m":38,"17m":35,"18":[14,25,36,38,50,51,54,57,58,59,61,62,75,89,98,113,115,116,126,131,136,139,146,152,160,165,167,174,182,187],"180":[109,113,124,150,178],"1800000":108,"180088":38,"180833":38,"181033e":59,"181089":117,"1811000":108,"181408":29,"181500":66,"181916":38,"181m":38,"182":[29,113],"1820":149,"18215":25,"1827000":108,"182m":38,"183":38,"183150":142,"183580":29,"1836633":38,"183815":117,"18390":[61,75],"183914":29,"183m":38,"184":113,"18421":25,"1846":117,"1847":117,"1848":117,"1848000":108,"1849":117,"184m":38,"185":[42,56,113],"1850":117,"1851":117,"1852":117,"1853":117,"1855":34,"185571":117,"18557502":[61,75],"1856":[107,172],"18576":[61,75],"1858":34,"185946e":59,"185m":38,"186":[50,61,75,141],"1860":75,"186627":117,"18677":75,"18683":148,"186m":38,"1871":75,"1872000":108,"1874":[118,174],"187449":29,"1875693":38,"18772155":75,"187m":38,"188":113,"1880":1,"188054e":59,"1882":38,"1889000":108,"188m":38,"189":113,"18965517":75,"1897":29,"189m":38,"18m":35,"18th":105,"19":[38,50,59,61,89,98,109,116,121,126,133,136,137,139,152,160,167,170,171,173,180],"190":[56,61,75],"190222":38,"190228":117,"1904":129,"19053":25,"1906":141,"190830":117,"190m":38,"19126407":38,"19157667":75,"191m":38,"192":[59,107,121,172],"1920000":108,"192351":117,"192380":38,"192581":117,"19269777":75,"192m":38,"193":173,"1930":[106,139,172],"193100":75,"193137":29,"193203":38,"1933666654":[106,172],"1936":7,"193633":142,"193m":38,"194":[113,187],"194167":38,"1943":130,"1944000":[108,172],"194532e":38,"194763":38,"194m":38,"195":[50,63,65,141],"1950000":108,"195256":38,"1954000":108,"19541375872382852":152,"19552860":173,"1959":[63,65,159,185],"195m":38,"196":[50,141],"1963":59,"1965":[63,65],"19651127":173,"196923":38,"196m":38,"197":[50,113,141],"1970":38,"1972":[109,170],"1974":109,"1978":137,"197m":38,"198":58,"1980":[133,134],"198279":38,"198354":117,"198667":64,"199":[113,161],"19902":25,"1991":[167,189],"1992":[50,59],"1993":[59,109,170],"199305":139,"1994":141,"1995":59,"199549":117,"1996":[49,52,109],"1997":[50,159,185],"1998":[49,52,108,109,129,139,172,175],"199833":59,"1999":[108,145],"1999000":108,"199m":38,"19m":35,"1\u0435":144,"1_bar":122,"1d":[38,43,44,57,117,123],"1e":[14,32,79,89,121,122,126,135],"1e10":[150,178],"1e6":[150,173,178],"1f":[34,45,46,47,48,51,64,107,152,158,172,186],"1h":[61,75],"1min":180,"1pjb":38,"1px":153,"1s":[29,61,75,152,159],"1st":[7,14,18,22,37,54,116,120,121],"1stflrsf":54,"1u":38,"1x":[129,166],"1x1":126,"1x784":121,"1xcxhxw":129,"1xfhxfwx":129,"1xfhxfwxna":129,"1xn":121,"2":[0,6,7,11,14,18,22,29,31,33,34,35,36,37,38,39,40,41,42,45,46,47,48,55,59,63,64,65,66,75,79,80,89,90,91,92,93,97,98,103,105,106,107,108,109,111,113,114,117,118,120,121,122,124,125,126,127,128,129,130,131,133,134,135,136,139,140,141,142,144,145,146,149,150,151,152,153,156,157,158,159,160,161,162,164,165,166,167,179,180,181,183,185,186,187],"20":[7,9,14,18,29,30,31,32,34,37,38,39,40,44,47,48,49,50,52,53,54,55,56,57,58,59,60,61,63,65,66,68,75,77,80,89,97,98,101,105,106,111,113,116,117,124,126,127,128,130,131,133,135,136,137,140,144,152,162,167,172,173,180,181,186,189],"200":[17,31,38,46,48,50,52,53,54,56,60,64,79,98,113,124,125,127,140,150,152,178,180,186],"2000":[14,35,54,58,106,108,117,152],"20000":[14,108,120,121,167],"2001":[108,137],"200126e":38,"2002":[35,108],"2003":[108,131],"2004":[108,173],"2005":[108,125,128,131],"2006":[66,108,122,134,152],"200611":38,"2007":[66,108,109,170],"2008":[50,66,108,133,173],"2009":[48,108,137],"201":[38,58,113],"2010":[108,131,134],"2011":[108,145],"2012":[108,173],"2013":[31,109,112,134,170],"20130101":117,"20130102":117,"20130104":117,"2014":[57,126,137,139,173,176],"2015":[22,99,126,137,139,168],"2016":[50,56,139,145,159],"2016000":108,"2017":[105,117,135,137,139],"2018":[35,38,45,47,48,89,90,103,109,115,118,139,165,166,170,174,187],"2019":[17,109,118,133,135,139,170,174],"2019\u7248\u5b89\u88c5\u6559\u7a0b":38,"201m":38,"2020":[1,14,38,54,57,89,109,111,118,121,133,135,136,137,139,159,170,174],"2020060289":14,"2021":[1,38,99,109,115,129,133,134,137,168,169,170,174],"2022":[14,99,103,105,109,111,112,115,121,128,133,134,135,136,160,161,168,169,170,174,189],"2023":[25,29,38,89,122,126,127,129,169,171,174],"2025":109,"202500":38,"202562":117,"202895":38,"203":113,"2030":[99,137,168],"2033000":[108,172],"203450":38,"203488":38,"2035":[63,65],"203578":142,"203848":38,"204":[34,58,113],"20433":75,"204445":38,"204565":38,"2048":[32,127],"2048n":32,"205":[34,58,113],"2050":[106,172],"205000":38,"205170":117,"205244":142,"206":[58,139],"2060":29,"2061":[61,75],"2062":34,"20635":75,"20636":75,"20637":75,"20638":75,"20639":75,"2064":61,"20640":[61,75],"206881":[61,75],"206937":[63,65],"207":[35,58],"207495":38,"207758":139,"207950":117,"20795003":117,"2079500315166212":117,"207m":38,"208":58,"208342":139,"208500":66,"208516":38,"20876306":152,"208969":38,"209":[58,113],"209435":38,"20944":14,"2099":38,"209m":38,"20gemi":35,"20px":153,"20th":55,"20verileri":35,"21":[14,29,38,59,61,68,75,77,89,90,98,99,116,117,133,136,137,152,160,161,165,167,180,187],"210":113,"210113":38,"2103":137,"210424":38,"211":[50,152],"2112000":[108,172],"211667":38,"211714":38,"211771":38,"212514":38,"212563":38,"212574":117,"212626":38,"2127":[61,75],"212782":38,"212816":117,"212m":38,"213":[38,113],"214":149,"214141":38,"214693":38,"21475352":152,"214756":38,"2148":[107,172],"214824":38,"215":113,"215058":38,"2153":149,"215643":38,"21567622":152,"215682":61,"21578029":75,"216":166,"216148":38,"216719002155":152,"2169":[61,75],"216924":38,"217":136,"2173424":38,"217379":117,"217478":38,"217739":38,"2180":75,"21806371":152,"218161":[63,65],"218217":38,"218509":139,"218612":38,"218966":38,"219":[61,75,113,152],"2190":38,"219367":38,"219453":142,"219544":38,"2198447506":187,"21m":35,"22":[14,38,46,50,54,59,61,75,107,109,116,127,131,136,144,146,152,167,170,172,174,187],"220":[38,58,113,165],"22000":108,"220173":38,"220413":117,"220500":139,"221":113,"22102":75,"221680":117,"221846":38,"2219":75,"22199004":75,"222":33,"222222":113,"222298":139,"222337":[63,65],"222568":117,"223":[38,59,75],"223242233890716":35,"223500":66,"223682":117,"223854":38,"223910":38,"224":121,"22426":25,"2246467991473532e":187,"2254":75,"22615":149,"226181":117,"227031":38,"227546":38,"228077":29,"228120e":38,"2284":[107,172],"228996":117,"229673984":38,"23":[14,38,46,61,75,89,107,116,133,136,139,152,160,165,166,172,174,187],"230":[59,157],"23000":108,"230000":38,"230769":38,"230m":38,"231":[38,113,152,157],"231342":38,"23157000":[108,172],"231640":38,"23170093":75,"231768":38,"232":[58,152],"233":165,"233232":117,"233381":117,"234330":38,"234368":29,"234571":59,"235":[61,75],"235449e":38,"235636":38,"236":157,"236000":38,"2360000":108,"23606797749979":89,"236218":117,"23650273":117,"23650273138482722":117,"236503":117,"237":[38,158],"237185":38,"237692":38,"238":158,"238042":117,"2384":[61,75],"238462":38,"239":158,"239001e":59,"2394000":108,"24":[14,32,38,49,52,58,59,61,75,99,116,117,121,135,136,140,144,152,160,161,168],"24000":108,"2401":[61,75],"2405":149,"241108":75,"241287":38,"2419000":108,"242":158,"242098":139,"242225":59,"243":[50,141,158],"2430a9896ce5":[115,174],"243229":117,"243338e":38,"243422":38,"243534":38,"243875":38,"244":[50,141],"244215":38,"2444":38,"244655":38,"2447":156,"2448":156,"244898":142,"245":136,"245820":38,"24591009185":75,"246046":38,"247627":117,"248":[126,157],"248285":117,"249":[63,65],"249825":117,"24c5":32,"25":[7,14,31,32,35,36,37,38,39,40,41,49,50,52,54,55,58,59,61,64,75,79,80,89,90,98,113,116,117,121,124,130,131,136,139,141,145,148,149,152,160,161,166,167,173,181,183,184,186,187,188,189],"250":[34,58,60,121,130,152,189],"2500":146,"25000":108,"250000":[38,64,66,149],"250443":117,"250448":38,"250522":29,"252":59,"2520000":108,"252916":117,"253000":108,"2537000":108,"254":[50,141,157],"2547":38,"254878":117,"255":[29,30,31,32,36,40,41,47,120,121,126,127,186],"255000":139,"25551336":152,"256":[31,32,33,34,36,37,38,39,58,60,62,116,120,121,122,125,126,127,148,149,176,186],"256217e":59,"256221e":59,"256588":117,"256952":38,"256n":32,"256x256x3":116,"257":187,"2574":[61,75],"257740":29,"258":39,"258445":[63,65],"2586000":108,"259":[38,59,61,75],"25th":54,"26":[38,50,58,59,64,75,108,112,116,117,136,137,141,146,152,160,161,167,170,173,182],"260":38,"2600":[38,61],"260000":[9,97,98],"260c2de0a050":175,"2613":52,"26150":75,"262048":38,"262207":38,"262378":117,"262551":117,"2631":[61,75],"263694e":38,"263863":38,"264":64,"2640":38,"26448193":173,"264700":[61,75],"265":[50,141],"265056":[63,65],"265412":139,"26541833":75,"26590556":116,"265909":149,"266":58,"2661":125,"2664364997":62,"2666666666666666":14,"266811":117,"267":160,"267059e":59,"2674":149,"268016":29,"269":[58,131,186],"269534380":117,"269573":59,"26th":133,"27":[38,46,50,58,61,112,116,135,141,149,152,160,165,166,170,188],"270":[160,161],"27000":[108,172],"27017952":75,"270551":38,"270833":38,"271":38,"271031":117,"271796":38,"2720":139,"2723":75,"27298934":75,"273":145,"273000":75,"27342931":[61,75],"274":[59,160],"274082":[63,65],"2751":38,"276923":38,"277":75,"277078":61,"277273":149,"277392":29,"27745":75,"277600":38,"2778":75,"278":75,"2784":75,"2785":75,"279":[61,75],"28":[29,30,32,38,40,41,47,50,57,59,61,68,75,77,79,81,89,113,116,120,121,125,137,141,146,152,167,176],"280":[38,61,75,160,161],"2809000":108,"281":[38,160],"28109":25,"281427e":38,"2820":149,"28327":25,"2833":146,"28433":25,"285":117,"28566":[61,75],"28571428571428414":152,"285843":29,"28585348":152,"286":[117,140],"286694":117,"287":117,"288":38,"2881":149,"289":156,"28964":25,"28x28":[29,30,32,41,121],"29":[14,25,38,50,58,59,61,75,89,116,141,152,160,161],"2900":58,"29040966":152,"290833":38,"292":[107,172],"292181e":59,"292669":[63,65],"2938":[63,65],"293846":38,"29399768":152,"294":[38,152],"295":[61,75],"29513185":75,"295668":117,"296":29,"297":126,"297727":149,"298234":157,"298750":139,"298809":117,"299":[50,75,98,141],"2998":38,"2\u5347\u7ea7\u8865\u4e01":38,"2_2":120,"2_intro_to_tensorflow_for_deeplearn":43,"2_k":124,"2_p":122,"2_q":122,"2a":127,"2b":127,"2c":127,"2d":[1,33,43,80,106,107,117,122,150,160,162,180],"2d2d2d":153,"2e":[122,125],"2f":[18,50,113,121,131,140,144,146,152],"2fe":141,"2g4adil3rc2ig":59,"2j":[116,166,188],"2m":38,"2nd":[18,22,37,54,64,116,117,120,121],"2ndflrsf":54,"2p_":50,"2s":[61,129,152,180],"2urviv":146,"2uzaipygetzmkni96ng18dyippbmj3hekpjeafd3fcrkemh4azefi2mqvxrfngxztozguhnbefu2la3avusz":59,"2vtlmaj":79,"2x":[57,166],"2xbdtm2l70p":59,"2yf":145,"3":[0,1,6,7,8,9,11,14,16,22,23,29,30,31,33,34,35,36,37,38,40,41,44,46,47,48,51,59,62,63,64,65,66,71,76,79,80,81,89,90,91,93,95,96,97,98,103,104,105,106,107,108,109,110,112,113,114,115,117,118,121,122,123,124,125,126,127,129,131,133,134,135,136,138,139,140,141,142,144,145,146,149,150,151,152,153,154,155,156,157,158,159,160,161,162,164,165,166,167,174,178,180,181,183,184,185,186,187],"30":[7,14,18,29,32,35,38,40,47,49,50,51,52,55,56,59,60,61,62,63,65,66,89,90,98,101,106,107,116,117,121,131,136,139,141,144,145,150,152,165,166,167,172,173,178,181,183,184,187],"300":[18,49,52,53,54,136,144,145,150,152,165,178],"3000":[14,18,54],"30000":[14,108,182],"300000":64,"3000000000":167,"300000012":148,"30082566":152,"300k":137,"300px":153,"301":38,"3014":[61,75],"302":38,"303347":38,"304888":[63,65],"3071":149,"30927452":75,"30957512":75,"30990":25,"30px":153,"31":[1,38,50,57,59,68,75,77,89,98,116,135,136,139,152,180,182],"3100":58,"311377":29,"31168387":75,"312":[49,52],"3127":149,"313765e":38,"314":38,"3148":[107,172],"3149":[61,75],"315":113,"315000":38,"31501":117,"316404":117,"316667":38,"318":[38,117],"31856":25,"318823":29,"319":117,"319059":117,"31t19":115,"32":[29,31,32,33,34,35,36,37,38,39,40,42,43,44,50,55,58,61,63,65,75,79,89,101,116,121,122,126,127,136,141,152,165,166,187],"320":[38,39,117,156],"32000":[58,108],"320833":38,"321":152,"321097":29,"32137599":152,"322":[38,61,75,117,152,186],"32208":38,"3224000":108,"322500":38,"322727":149,"323":152,"323328":59,"324":152,"324192":117,"325":[117,152],"3252":[61,75],"3255522":[166,188],"32561":51,"326":[38,117,152],"326460":[63,65],"326667":38,"32674535":[61,75],"327":117,"327500":38,"327891":117,"328":[38,117],"328086e":38,"328333":38,"328865":149,"3289":59,"328947":113,"329":[38,117],"329167":38,"3293":149,"329816":38,"32995317":152,"32c3":32,"32c5":32,"32c5s2":32,"32n":32,"32x32":[33,121,126,127],"33":[38,50,59,61,75,116,117,136,137,141,150,152,161,164,178],"330":[75,117],"3300000":[108,172],"3306":59,"331":117,"3310":[106,172],"331000":139,"33146":117,"332354":58,"333":[32,166,188],"333333":[38,117],"333547":117,"333701":139,"333884":29,"3339440331":180,"33416821":75,"336000":108,"336342":[63,65],"336799":117,"337692":38,"3377000":108,"3378712":75,"338021":117,"33812285":[150,178],"338224":29,"339":75,"33j5zsqxrbaifkki8kiqevc9w9loi3sltucxl49t":59,"34":[38,50,58,59,61,64,75,90,108,116,140,141,152,165,166,167,188],"340769":38,"34110223":75,"341300":[61,75],"341649":59,"341817":117,"342200":[61,75],"343":166,"34376245":116,"344":38,"3445000":[108,172],"344698":61,"344828":113,"345":[33,75],"347642":117,"3480":139,"349":75,"349388":38,"349751":29,"35":[14,31,35,38,61,68,75,77,90,116,127,144,146,152,161,166,188],"350":117,"3500":[61,166],"35000":[108,166,188],"350000":64,"350816":29,"35119":25,"3516":149,"3519":59,"352100":[61,75],"353092":117,"3537240779558":[63,65],"35410":25,"3544":161,"3554":149,"35554":75,"356":75,"3561":133,"3562":133,"35656222554887711":[166,188],"358":180,"3580":59,"358500":[61,75],"35e3":[166,188],"36":[38,50,63,65,75,97,116,117,152,166,187,188],"360":[34,66],"3600":139,"36000":108,"360769":38,"361":180,"36155096":142,"361551":142,"36159148":152,"362000":139,"362069":113,"3627":149,"362759e":59,"3628800":89,"363270":38,"363636":160,"36398808":75,"365349":38,"365665":117,"366":117,"367":117,"368":[38,107,117,172],"368430":38,"369":117,"37":[38,50,59,61,63,65,75,89,116,127,141,145,152,173,181],"370":117,"370000":38,"371":117,"371667":38,"371682":29,"372":117,"372294e":59,"3725":38,"373":117,"373333":38,"37350000":[108,172],"374":[75,117,152],"374603":113,"375":117,"375113":117,"375147":187,"37570172":[61,75],"375833":38,"376":117,"3760":38,"376041":29,"377":117,"377175":149,"377235":117,"378":117,"378479":117,"379":[61,75,117],"3791":38,"379601e":38,"38":[9,38,50,51,59,64,75,97,98,113,116,141,146,152],"380":[57,75,117,156,157],"38000":108,"380000":38,"3802":117,"3803":117,"380350":38,"3804":117,"3805":117,"3806":117,"3807":117,"3808":117,"3809":117,"381":[57,117,156],"3810":117,"382":157,"3822":38,"382308":38,"382363":117,"3824":38,"3830":38,"3830571":38,"38332521":173,"383564":29,"384":[121,156],"384615":38,"384761":29,"385":[38,57,156],"385733e":38,"386":57,"3862":38,"387":57,"387129":136,"3878":38,"38828582528":61,"3884":117,"3886":[75,117],"3887":117,"3888":[29,117],"3889":117,"389":57,"3890":117,"3891":117,"389167":38,"3892":117,"3895":117,"3896":117,"3897":117,"39":[35,38,59,60,63,65,75,116,152,187],"390":[57,117],"3900":117,"3901":117,"3902":117,"3903":117,"3904":38,"390566":139,"390718":117,"3909":35,"3915":149,"3916":[107,172],"392":57,"3922":149,"392825":117,"393":57,"39320":[61,75],"393580":59,"394229":29,"395833":38,"396":38,"39696":139,"397":38,"3976":38,"39761905":141,"3980":38,"3991":75,"3994":156,"3995":156,"3998":38,"39th":137,"3c11c1d80358":109,"3d":[38,76,116,150,160,162,173,180],"3f":[38,166,180,188],"3g":[68,77],"3int8":116,"3j":189,"3ltlqmqsncb9d0rthglvb3gjj3":59,"3rd":[22,37,54,116],"3s":[38,59,61,152],"3ssnporch":54,"3x3":[32,33,126],"3x4":[166,188],"3yqlb":59,"4":[0,6,7,14,22,29,30,31,33,34,35,36,37,38,39,40,41,44,47,48,59,63,64,65,66,75,76,79,81,89,90,91,98,99,105,106,107,108,109,110,114,115,116,117,118,120,121,122,123,124,125,126,127,129,131,134,135,136,139,140,141,142,144,145,146,148,149,150,152,156,157,158,160,161,164,165,166,167,176,178,180,181,182,183,184,187],"40":[1,7,9,14,32,38,50,59,63,65,79,80,81,97,98,106,107,109,115,116,139,145,152,165,170,172,180,181,182,187],"400":[7,53,56,106,114,126,160],"4000":[14,35,54,58,152],"40000":[14,108],"400000":64,"40000000":167,"4002912":137,"400543":117,"40067661":116,"400833":38,"400mg":[1,8],"401078":117,"4016":38,"402":57,"403":173,"403000":139,"403011":29,"4038v2":127,"40480256345":75,"4050":[106,172],"405309e":38,"4056":38,"40618608":152,"406558":117,"406667":38,"4077193":141,"408":[50,141,149],"4081":38,"40827":149,"408376":61,"408894":117,"409":[34,75,157],"409009":117,"4096":127,"4098":[166,188],"409829":117,"41":[29,38,50,61,75,89,116,141,152],"410":[61,75],"410014":58,"411":[34,38],"41212121":79,"412214e":38,"41242353":[61,75],"4127":[166,188],"4139":[166,188],"41420614":75,"415":[50,141,160,162],"415385":38,"415900":117,"4165":58,"417":[61,75],"41863":25,"418775":117,"419621e":59,"4197":35,"4198":35,"4199":35,"42":[31,33,34,35,38,40,43,44,49,52,53,56,57,58,59,60,61,64,79,101,116,127,140,144,152,158,161,165,166,173,180,187,188],"420":139,"4200":35,"420000":38,"420002":117,"4201":35,"4202":35,"4203":35,"4204":35,"4205":35,"4206":35,"4208":[107,172],"421":38,"421456":29,"4215":38,"421797":29,"4218916":75,"4221":149,"4223":52,"42237836":75,"423967":173,"424866":38,"424965632":38,"425684e":38,"427000":108,"427500":38,"428793":173,"429055":38,"43":[38,50,58,59,64,75,89,116,152,165],"430":[57,68,77],"43000":108,"43116792":[150,178],"431800e":59,"432":29,"433":75,"433594":64,"435":[61,75],"43539442771396":152,"4354":38,"435833":38,"436250":29,"436304":117,"436517":142,"439":149,"44":[29,38,57,59,75,89,107,113,115,116,152,153,165,172,174,187],"440":149,"440000":38,"44085502":[61,75],"441":[68,77],"442":[156,164],"44294":25,"4432":38,"44359863":[150,178],"44406":39,"4452":38,"445368":64,"445375":38,"4455":38,"445716":142,"446873":[63,65],"4475":38,"449":173,"45":[14,31,34,38,41,49,50,52,58,98,106,108,113,116,139,140,141,152,161,169,172,173,186],"450":50,"4500":33,"450000":[38,108,172],"45053314":116,"451667":38,"452600":[61,75],"453172e":59,"453327":117,"454335":38,"454545":160,"455":40,"455649e":59,"455850496":38,"45585107":[61,75],"4559":38,"456":[33,89,166],"456930":117,"458":57,"4586":38,"45998":25,"46":[38,58,59,81,108,116,152,173,180],"460483":142,"461758453195614":173,"46175845319564":173,"461822":[63,65],"4620":38,"463333":38,"463724e":59,"464":47,"464186":139,"4646":38,"464776":[63,65],"4650":38,"465318":59,"46542":25,"46679593":152,"467450":61,"467674":38,"468052":149,"468333":38,"46854":25,"468720":59,"4691":38,"47":[38,48,50,59,75,89,106,113,116,141,152,172,173],"470192":117,"470503":117,"4705882352941178":14,"471565":117,"472401":117,"472732":117,"473":75,"473005":117,"473497":61,"474986":29,"475294":117,"4755":149,"4759332":152,"476333":29,"476572":142,"476631":142,"47663104":142,"4767":149,"477328":[63,65],"477492":29,"479126":117,"47943":149,"479590":117,"47992614761185":[63,65],"48":[32,38,49,52,59,75,80,89,101,116,139,152,158,173,180],"480":[58,173],"48017":25,"480429":117,"4808":38,"4824":121,"482578":142,"4829":38,"484167":38,"485":75,"4854":149,"486111":61,"48624811":75,"487439":58,"487864":139,"488":[68,77],"48868864572551":64,"489000":38,"4897":48,"489919":58,"48c5":32,"49":[38,50,56,75,116,126,142,152,161,166,188],"490":[68,77],"4900":61,"490000":38,"490473":29,"490659":29,"491084":117,"492209":[63,65],"493182":149,"4932":38,"493469":117,"49346939":117,"49346939455302746":117,"49439034":152,"49473684":141,"495":50,"496":[38,61,75],"496192":117,"496272":117,"4966309980255":[63,65],"497500":38,"498442":117,"499":[61,75],"499111":29,"499199":117,"4996":38,"49960699":[106,172],"4999":[56,61,75],"49c57b793eef1b8e55f297e5e019fdbf":57,"4a16":[115,174],"4ac":166,"4c":90,"4d":116,"4f":[31,33,37,51,59,64,149],"4g":[68,77],"4j":[167,189],"4px":153,"4s":[61,152],"4th":[46,116],"4x3":116,"4x4":[32,127],"5":[0,1,3,4,6,7,8,14,22,29,30,31,33,34,35,36,37,38,39,40,41,44,45,46,47,52,55,59,63,64,65,66,71,75,76,78,79,81,89,90,95,96,97,98,103,104,105,106,107,108,109,110,113,114,116,117,118,121,122,125,127,128,129,130,131,133,135,136,138,139,140,141,142,144,145,146,148,149,150,151,152,154,155,156,157,158,160,161,164,165,166,167,173,176,178,180,182,183,184,186,187],"50":[7,14,29,31,32,35,37,38,42,44,45,46,47,48,49,50,52,53,55,58,59,60,61,62,63,64,65,66,75,80,89,99,101,105,108,116,121,124,126,128,130,135,136,139,141,142,144,145,146,149,150,151,152,153,157,158,165,173,176,178,180,181],"500":[1,9,31,47,49,50,52,53,54,66,97,98,121,126,128,144,152],"5000":[33,35,47,54,56,79,121,126,152,166],"50000":[18,33,63,65,126],"500000":[38,58,64,117,139,149],"5000000005092593":76,"500001":[61,75],"5000x1000":35,"500135":38,"500216":173,"501017e":59,"5012":46,"502500":38,"503355363845":[63,65],"5033565506537":[63,65],"503371776776":[63,65],"5035673795078":[63,65],"5050":89,"5060835072245":[63,65],"506163":117,"50635":75,"506579":29,"507":149,"507547":139,"507812":59,"508128e":38,"5095":38,"50_startup":182,"50k":[51,109,121,170],"51":[38,48,59,75,116,152,160],"510636288":38,"511738":139,"511893":38,"512":[29,32,33,36,37,58,121,125,126,127,176],"512n":32,"513":[57,61],"513333":38,"513588e":59,"514":57,"514000":139,"515088":59,"516":57,"5164":38,"517":[57,75],"517460":113,"517685":117,"518173":117,"5185":149,"518601":139,"5187":38,"518743":29,"519196":29,"519229":29,"519278":38,"519536":29,"519645":29,"5197":48,"52":[35,38,48,53,58,61,63,65,75,108,113,116,152],"52000":108,"520099":117,"521":57,"522":57,"522500":38,"522593":117,"523965":[63,65],"524601e":38,"525385":38,"526667":38,"527625":38,"528":57,"529":139,"529231":38,"52959196":113,"53":[38,57,59,106,108,113,116,140,146,152,172],"530":[75,139],"53000":[108,172],"530000":38,"53058695":152,"530m":[109,170],"530wv2bvx2w7ycwfpl":59,"531254":29,"531406":117,"531452":29,"532197":29,"533":152,"5333333333333334":14,"533846":38,"5340":38,"534000":139,"5341":[61,75],"5345":38,"534510":29,"534563":[63,65],"53525":57,"53666312":75,"536879":[63,65],"536923":38,"537":[61,75],"538356":29,"538491832234":[63,65],"539527":136,"539534":38,"539944":117,"53gib":29,"54":[29,38,57,59,75,90,152,173,187],"5400":[57,61],"540134":117,"540679":117,"5410":149,"541112":38,"541674":117,"542":98,"5429":38,"543182":149,"54321":166,"5446":38,"545833":38,"545850":38,"546021":[63,65],"54627315":116,"5466747351275563":140,"547":48,"547242":117,"54741244":75,"54808703":152,"5482":38,"54901961":75,"55":[14,38,50,59,64,89,108,113,149,150,152,165,173,178,182],"55000":[108,172],"550610e":59,"550698":117,"5510652":116,"55263":75,"553":48,"555312":38,"555784":29,"55645993":116,"5565":38,"5568":75,"55718082144":75,"55791711":75,"558":[61,75],"558500":139,"5588235294117647":14,"559":38,"56":[48,89,106,113,142,152,162,172],"560":117,"5600":166,"560000":38,"5603":75,"561":117,"562000":108,"562500":59,"563":117,"564":[38,139],"5643":[61,75],"56439":75,"5647":38,"565":[38,61,75],"5658":38,"566126":29,"566244":117,"5666666666666667":14,"567088":29,"567306":59,"567453":61,"567530":61,"567906":136,"568":75,"5686":38,"56917101":116,"57":[38,59,75,106,126,152,158,172],"570":186,"570000":38,"570434":117,"573":38,"573333":38,"5736":38,"5745":117,"5753":117,"576487":59,"576977":117,"578142e":59,"578621":29,"578809":117,"5789473684210527":14,"5796":149,"58":[35,48,59,113,152],"580000":38,"58000000000":167,"5811388300841898":24,"58113883008418981":24,"582000":139,"58313172":75,"583333":38,"584":29,"584095":29,"584223":117,"5849056603773586":14,"584943":38,"5850":35,"587461e":59,"587483":117,"5875":75,"58823529":75,"588333":38,"588462":38,"588470":117,"5889":75,"589":173,"589167":38,"589271":38,"58930337":152,"5896":[61,75],"59":[38,48,50,75,108,152,166,172,173,187,188],"590":173,"590000":38,"590909":38,"590px":160,"593279":117,"593450":29,"593661":59,"5938":56,"594450":29,"598":[152,156],"598150":173,"59831252":75,"59853725816836":152,"5985372581684":152,"59853725816868":152,"599167":38,"5b":[109,170],"5cm":46,"5e":36,"5f":[32,121,180],"5g":[68,77],"5k":50,"5m":38,"5more":57,"5s":[61,152],"5th":[43,99,116,168],"5vbcssa6":59,"5x5":[32,121],"6":[0,7,8,14,18,22,24,29,30,31,32,33,34,35,36,38,39,40,41,44,47,48,51,59,62,63,64,65,66,75,79,81,89,90,93,98,99,101,108,109,113,114,116,117,118,121,124,126,127,131,133,136,139,140,141,142,144,146,148,149,150,152,156,158,160,161,164,165,166,167,173,174,178,180,182,187,188],"60":[7,9,14,32,33,35,38,40,41,42,50,56,57,63,65,66,97,98,101,106,108,114,116,150,152,153,172,173,178,186,187],"600":[3,108,126,152],"6000":[33,35,58,79,81,126],"60000":[29,126],"600000":64,"600345":29,"600833":38,"600866":59,"600px":160,"603333":38,"6036":38,"60373":75,"604":75,"604039":61,"604384":[63,65],"6047":38,"605962":61,"606":[61,75,173],"606722816":38,"607008e":38,"6072":38,"6080":35,"6082":[61,75],"60869":149,"6090":35,"61":[38,50,59,64,139,141,152,173,187],"610000":38,"610505":117,"611":139,"611105":38,"612245":117,"613238":117,"614392":29,"6149":38,"615":34,"6150":35,"6153":33,"615385":38,"616":75,"616314e":38,"616364":29,"61663286":75,"616766":58,"616899":117,"617":34,"6170212765957446":14,"6173":38,"617423":[63,65],"617802e":59,"617895":117,"618468":117,"619047619047619":14,"619871":117,"62":[38,50,59,63,65,108,113,141,152,158,172,182,187],"6200":35,"620655":117,"621":38,"6210":35,"621116e":59,"6225":35,"62271805":75,"6231532":38,"624289":38,"6245":35,"624615":38,"6250":35,"625000":38,"62571878891146":152,"6266":38,"627175":38,"627590e":59,"628095":117,"6283":38,"6285":38,"6291":38,"63":[38,59,64,108,121,141,142,145,146,152,161,180],"6302":75,"630217":61,"6303904952264":58,"631":117,"6315":38,"632":117,"6327":38,"633":117,"633158":173,"6334":38,"633955":117,"634":117,"634125":117,"6342":38,"6345":[35,38],"635":[38,117],"6350":38,"6352":38,"6353":149,"6354":38,"6356":38,"635833":38,"6359":38,"636":117,"6361":38,"636149":117,"6362":38,"636238":59,"636364":160,"636368640":38,"6368":38,"6369":38,"6370":38,"6371":38,"6378":38,"6380":38,"6381":38,"638470":117,"639":59,"639426e":38,"64":[7,29,30,31,32,33,34,35,36,37,38,39,40,48,50,58,59,89,106,108,114,116,120,121,122,126,127,131,149,152,158,166,172,180,188],"640":139,"6400":35,"64000":58,"6404":149,"641035e":59,"641327":117,"642977":59,"6431":[61,75],"644082":136,"6445":[61,75],"6450":35,"645833":38,"646705152":38,"648":[61,75],"64859406":[61,75],"649167":38,"649288":117,"6497":48,"649855":38,"64c3":32,"64c5":32,"64c5s2":32,"64n":32,"64x64":[34,127],"65":[35,59,66,108,113,150,152,156,158,165,166,172,178,183,184,186,188],"650564":117,"650868":117,"652":[106,172],"65239850433215":152,"653":152,"6530":35,"653655":117,"654167":38,"6550":35,"655517642572828":152,"6559":117,"6560":117,"6561":117,"656881":29,"657":180,"65732685":75,"6590":35,"659379":117,"6595296662783818":117,"65952967":117,"659530":117,"6598":117,"6599":117,"66":[38,50,139,152,156,158,166,176,188],"6600":[35,117],"6602":117,"6604":117,"6605":117,"660833":38,"661054":38,"661068":61,"6611":75,"6615":35,"6621":38,"662185e":38,"662224":[63,65],"6625":38,"6627":38,"6631":38,"6632":38,"6635":38,"6638":38,"663964":117,"6640":38,"6641":38,"6647":38,"664918e":59,"66496461":75,"665":38,"665000":108,"6651":38,"6652":38,"6655":38,"6657":38,"666":139,"6660":35,"6662":38,"6663":38,"6666":38,"6666666666666666":50,"6666666666666667":[166,188],"666666666666667":166,"666667":38,"6669":38,"6674":38,"6680":35,"6683":38,"668363":117,"668870":117,"669000":139,"6695":35,"67":[49,52,58,152,156,157],"6700":35,"671131":29,"6715":117,"6717":117,"6718":117,"6719":117,"6720":35,"6721":117,"6722":117,"672225":59,"6725":35,"672864":61,"673":75,"673333":149,"673913":117,"6740":35,"674452224":38,"675833":38,"676667":38,"677000":117,"677258":59,"6780":35,"67858615":[61,75],"678678":29,"679630":29,"68":[14,59,61,66,152,156,158,173],"6800":35,"6808":117,"680851":117,"6809":117,"6810":[35,117],"681000":139,"6811":117,"6812":117,"681744":[63,65],"683":[136,139],"683516":29,"683782":59,"684":61,"6842":38,"68438":75,"6844":38,"684457140":38,"684500":29,"68478":61,"68491":75,"6850":35,"6851":38,"685191":29,"6852":38,"68537":75,"685433":75,"6855":38,"6858":38,"686275":117,"6868":38,"68684":61,"6869":38,"6870":[35,38],"6872":38,"6878":38,"688042":157,"6885":38,"6886":38,"6887":38,"6888":38,"6889":38,"6890":38,"6891":38,"6893":38,"6894":38,"6899":38,"69":[38,113,140,152,156,158,161],"690":186,"6900":[35,38],"690103":117,"6902":38,"6903":38,"6904":38,"6905":38,"6907":38,"6908":38,"6909":38,"6911":38,"69136631":152,"6914":38,"6915":38,"6917":38,"692":117,"6920":38,"6921":38,"6922":38,"692308":38,"6924":38,"6925":38,"692500":38,"692684":117,"6928":38,"6929":38,"693":117,"6930":38,"6933":38,"6934":38,"6935":38,"6936":38,"6937":38,"694":117,"6941":38,"6942":38,"6946":38,"6947":38,"6948":38,"695":117,"6950":35,"695000":139,"6952":38,"695662":173,"6958":38,"695833":38,"6960":38,"6961":38,"6963":38,"6965":38,"6968":38,"697":[75,117],"6970":[35,38],"6976998904709748":161,"697798":117,"6984":38,"6985":38,"6986":38,"699":[117,139],"6990":38,"699648":59,"6a":90,"6j":[166,188],"6m":[29,38],"6mmdhn2djnpyqgrayxddt5izqxtbz42iipcqon1dhjdqkz6kpxp4x":59,"6qepylt4v68sypax9kxk":59,"6qwd":59,"6s":[61,152],"7":[3,7,14,22,24,29,30,31,32,34,35,37,38,41,44,48,49,54,55,59,62,63,64,65,66,68,75,77,81,89,90,98,107,109,113,114,116,117,118,121,126,127,129,136,139,140,141,142,144,145,146,149,152,156,160,165,166,167,173,174,180,182,187,188,189],"70":[14,32,38,41,50,59,63,65,66,108,113,141,152,158,160,165,172,182],"700":[56,117],"7000":[1,75,116],"700px":156,"701":117,"7010":35,"701491":117,"702":[117,139],"7020":38,"702500":38,"703":117,"703982":[63,65],"704":117,"7048":38,"705":117,"70549":39,"7057":149,"706":117,"707296":117,"7099":[61,75],"71":[50,56,75,89,108,113,141,146,152,157,158,160,172,182],"710":139,"7100":35,"710000":61,"71086031":152,"710955":117,"7110":35,"712":[106,172],"7133":38,"713683":29,"714500":139,"7171":38,"71714":75,"71733307":[61,75],"717965":117,"7190":149,"719053":117,"719457":113,"7198":149,"72":[35,38,89,108,113,152,158,160,172],"720000":[108,117],"7209":38,"72093598500494":[63,65],"72101958323096":[63,65],"72164454424515":[63,65],"722071":136,"7222":38,"722717":38,"723358":117,"723684":113,"724046":29,"7245":38,"724590719956222":58,"724924":[63,65],"72581411":152,"726409595":117,"726562":59,"72663483920857":[63,65],"726845ca9638":111,"727199":117,"7276":38,"727750":136,"72788":75,"7280":38,"7281":38,"728127":117,"729076":117,"73":[38,50,108,113,139,141,152,158,160,187],"730":180,"7311":38,"732":152,"733707e":59,"734147e":59,"7345":35,"734924":[63,65],"73498":149,"735000":38,"7354":38,"735822":59,"736769":38,"7380":149,"7396":38,"74":[29,38,50,59,113,152,158,160,173],"740251e":38,"740725":117,"741":75,"741066":[63,65],"7415":35,"741619":139,"742":149,"7422":38,"7424":38,"742725":61,"74273":75,"742940":29,"74340771":75,"744051e":59,"744669":59,"744769":38,"745034":38,"7457":38,"7457109493044":64,"746454":117,"747373":117,"75":[7,32,33,38,48,50,54,56,57,58,59,61,64,66,75,113,121,131,139,141,142,144,145,149,152,157,158,161,166,173,181,182,183,184,188],"750":[50,58],"7500":61,"750000":[38,59,64,149],"750178363923474":64,"75151515":79,"753199":29,"754680":29,"755":75,"7561":149,"757500":38,"758667":64,"75th":[54,152],"76":[38,57,106,113,152,157,158,172,181],"760479":58,"760623":139,"761000":139,"762":117,"763":117,"763161":64,"763452":117,"764":117,"764029e":38,"764420":64,"765":117,"7660":35,"7666666666666667":64,"766995e":38,"767":117,"76731980371954":[63,65],"7675":128,"7678":[166,188],"768":[58,117],"7684":149,"769":117,"7690":38,"7691":38,"769231":38,"7699":38,"77":[38,59,108,152,157,158,160,187],"770103":117,"7705":35,"7706":38,"77100":75,"7712":38,"7715":38,"7719":38,"7722":38,"7723":38,"772308":38,"7724":38,"7727":38,"7728":35,"772823":58,"7730":38,"773202":117,"773820":29,"773897":29,"774000":108,"774272":149,"7746":38,"7750":38,"7754":38,"7759":38,"7763":38,"7777":38,"777777":41,"778824":117,"78":[38,50,59,141,152,157,158],"7800":38,"78100":75,"782925":38,"783423":29,"784":[29,30,32,41,47,79,81,120,125,176,186],"78431373":75,"7844":149,"784500":139,"785":[61,75],"7866666666666667":64,"787":75,"787490":29,"788104":117,"79":[38,52,59,75,106,108,152,158,161,172,173],"7900":61,"791419":117,"792":186,"792168":29,"7925":75,"79290307":152,"793560":38,"794615":38,"7949491493525":[63,65],"795":180,"7951":149,"79641063":152,"796958":29,"797":152,"797558":117,"7980":139,"799":156,"799154":38,"7995":38,"7998331943286072":157,"79m":38,"79uxx":59,"7d":[166,188],"7e100":166,"7m":38,"7poa":59,"7s":[61,152],"7vmzpnlc4g7slsg8kl3tmlapgxwxw2ftvkcnk1ktkbslg3jwgkumqukamoow9jx5ewjqzomeoir5fpqtdvgtxvvgxpelrg889cjligccpltukp":59,"7x7":[29,30,32],"8":[0,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,41,43,44,47,48,49,50,51,53,54,58,59,60,61,63,64,65,66,75,76,81,89,90,98,106,109,114,116,117,118,121,122,127,128,131,139,140,141,142,144,146,149,151,152,153,160,161,165,166,172,173,174,180,182,187,188,189],"80":[14,31,32,33,48,50,52,59,63,65,66,75,89,126,130,133,135,152,153,157,158,159,161],"800":[3,56,141,152],"8000":58,"800000":64,"800112":117,"800232":29,"80037642":152,"800px":[140,152,160],"801":117,"801034":117,"80117999":152,"802":117,"802422":29,"802500":38,"80290755":152,"803":117,"803383":117,"8034810001":173,"80389616":152,"804":117,"804221":38,"80468775":75,"805":[117,180],"80577065":75,"806":117,"807":117,"80730058":152,"808":[117,152],"808326e":38,"809":117,"81":[38,57,59,66,89,106,113,116,152,158,161,166,172,188,189],"8101":75,"81093633":152,"811":117,"811000":139,"811667":38,"812":117,"812500":38,"8133333333333334":64,"8140703517587939":161,"816":149,"818000":[108,172],"818286":29,"818557e":59,"82":[38,90,152,158],"822":34,"822259":139,"823":34,"8231":[61,75],"82485143":116,"825000":38,"826347":58,"827":38,"827204":29,"828066":64,"829500":139,"829756":[63,65],"83":[35,38,59,64,108,152,157,158,161,172],"8307692307692308":161,"831558":117,"831710":117,"832":[107,172],"833":139,"833333":38,"8333333333333334":152,"8340":35,"834883":117,"836":139,"836154":38,"836667":38,"837500":38,"837984":142,"838375":117,"839000":108,"84":[40,50,57,59,66,141,152,158,160],"840":136,"84001001":136,"84001003":136,"84001005":136,"84001007":136,"84001009":136,"8407":35,"84192557":152,"842069":29,"84236351":152,"843":137,"843001":117,"843333":64,"844925":142,"845":75,"8450":66,"845000":38,"8459":35,"8462":[61,75],"846646e":59,"84700":75,"847297":117,"84739223":152,"847699":117,"84797838907741":[63,65],"849525":117,"849831":117,"85":[18,38,56,57,61,75,106,107,113,136,152,157,158,172,173,182],"8504":149,"8510":139,"851852e":38,"852":137,"852500":38,"8529":35,"8544":35,"854448":149,"8554":35,"8554913294797688":57,"856196":[63,65],"856667":38,"8568203376968316":50,"857":180,"8572":35,"85796668":[61,75],"8584":35,"8595784":116,"86":[38,50,57,59,61,63,65,75,136,141,146,152,158],"8600":29,"860146":59,"860701":117,"8637678":[166,188],"863846":38,"8644":35,"8649":35,"8666666666666667":64,"86713461558":61,"8672":75,"867339":38,"867500":38,"868263":136,"868942":[63,65],"869231":38,"869547":[63,65],"869610":117,"87":[38,50,57,136,142,152,158,166,173],"87000":[183,184],"870000":38,"87005":75,"870053":61,"870455":149,"870784":117,"870815e":59,"871":117,"872":117,"873":117,"8734":35,"874":117,"874230":29,"874252":29,"875":117,"875699":117,"875750":139,"876":117,"877":117,"878":117,"88":[40,50,57,59,61,75,141,144,146,149,152,158],"880":[61,75],"8808":149,"881110":29,"8823":35,"88235294":75,"882430":59,"882500":38,"8830":35,"883321":117,"883489":117,"8845":35,"8855":59,"8858":59,"885964":[63,65],"886073":29,"8861":35,"88633901":152,"886391":117,"8864":149,"8883":35,"888687":29,"888888":144,"888889":113,"88889":180,"88k":50,"89":[38,50,57,141,152,158,165],"8924":35,"8926045016077171":57,"894":139,"89400":75,"89488":139,"896291e":59,"896499":59,"896727335512334":64,"8977517768607695":64,"8982142857142857":29,"898321":117,"899":136,"8aaad":59,"8b":90,"8barxiv":126,"8c74a315":[115,174],"8j":[166,188],"8s":[61,127,152],"8spbdlrp3lbr9j9uejdzgqul6":59,"8x8":[50,127],"9":[7,14,18,22,24,29,30,32,34,35,37,38,41,43,45,47,48,50,54,58,59,60,64,66,68,75,77,81,89,90,98,107,109,113,114,116,117,118,121,130,133,139,140,141,142,144,150,152,157,160,161,162,165,166,167,172,173,174,178,180,186,187,188,189],"90":[1,7,14,31,34,35,38,39,40,50,51,54,56,57,59,63,65,79,113,131,141,145,150,152,157,158,160,161,178,180,187],"900":56,"900000":64,"90022":75,"900225":61,"902000":108,"903846":113,"90385283885":75,"904227":29,"9042344":152,"905000":38,"908113e":59,"908426":59,"9086":35,"90909091":79,"91":[38,41,50,57,75,81,108,141,152,157,158,173],"910000":139,"9104":35,"910925":117,"91111":180,"912042":117,"912641e":38,"9136":35,"9137407":75,"914091":117,"9142":35,"914407":29,"916266":117,"916667":38,"9171":59,"917554018630476":64,"918462":38,"9187045":[61,75],"92":[38,40,49,57,59,68,77,113,144,152,158,180],"922500":38,"922706":38,"923":75,"92300":75,"923077":113,"9235":59,"923644":117,"9250":146,"925286":29,"92780":149,"93":[35,38,40,57,59,75,79,106,152,158,172],"9300":61,"930621":117,"930808":149,"930833":38,"9312":59,"931818":149,"9324":35,"933541":29,"933610":117,"934649":149,"934832":149,"935214":29,"935376":29,"93598814":[61,75],"936572":117,"938289":117,"938874":149,"93yueidgozr8cncbb6ln4itqhlckkqfh9taxiwd6gum6upgfyfcautkknrgsxo":59,"94":[29,38,47,48,50,57,59,68,75,77,106,113,152,160,172],"940000":38,"940000e":38,"940028":117,"940217":149,"9403":35,"941642":[63,65],"942":[118,174],"942500":38,"94257014456259":50,"943324":149,"944167":38,"945197":117,"946":50,"946246656":38,"948799":149,"949230e":38,"9494233119813256":50,"95":[18,32,35,37,38,40,47,50,57,59,68,75,77,81,89,108,113,141,150,152,153,178,180],"9500":61,"9503":149,"950791":149,"950964":58,"951123":149,"9511372931045574":50,"951644":117,"952074":29,"952655":149,"953":50,"953011":139,"953458db800a":135,"953588":117,"954":50,"954000":139,"9550":66,"9554938013125742":160,"955556":113,"9564565636458":[63,65],"9568":149,"957500":38,"958":57,"958084":58,"958434":29,"959":75,"9591":35,"959280":59,"95k":50,"96":[32,47,50,54,59,152],"960":186,"9600":66,"9600000000000002":64,"960304":29,"961":139,"961250":139,"962500":38,"96303579":75,"964126":117,"965":149,"9656":149,"965629":29,"966000":139,"9666666666666667":64,"9666666666666668":64,"968333":38,"9688888888888889":152,"96896536339727":64,"96918596":[150,178],"96945":38,"96982397":59,"97":[38,39,47,50,57,64,79,137,152,160,182,187],"97011173":59,"9709416":59,"971020":29,"972":186,"972145":117,"9723201967872726":[63,65],"9725":59,"97318436":59,"973292":29,"9733333333333334":64,"97458101":59,"975000":38,"9753462341111744":50,"975385344":38,"975532":59,"9756":59,"9757":75,"9759036144578314":161,"976":117,"977":117,"977255e":38,"9777777777777777":152,"978":117,"9780321601919":134,"978089":117,"9783":59,"97848561":59,"97849162":59,"97876502":59,"9789":59,"97899282":[61,75],"979":[117,173],"979029":117,"97988827":59,"98":[47,49,58,59,60,152,161],"980":117,"9807":59,"981":[29,117],"9810":149,"9816":59,"98176":131,"982109":136,"982185":117,"9824":59,"982500":38,"9827":59,"98296089":59,"983":117,"9830":59,"983000":108,"983077":38,"9832":59,"9835":59,"984":117,"985":117,"985000":38,"986":[38,117],"9866666666666667":64,"986792":139,"9868":59,"987500":38,"987654321":89,"98e3715f":98,"98gib":29,"99":[31,32,38,47,50,56,59,63,65,113,116,117,136,141,152],"990000":[183,184],"990133":29,"990470":117,"991":[57,161],"992212":139,"992258":29,"9924":35,"993":139,"993280":29,"9940711462450593":29,"9949":59,"994f5f":36,"995":35,"9950":35,"995000":139,"995873":38,"99609181":75,"996122":117,"996421":136,"996650":38,"996840":29,"997128":38,"997217":38,"99757":32,"998058":38,"998799":38,"998816":38,"999":[34,37,56,121,122],"999530266023044":58,"9996615456176722":[63,65],"9999":56,"9999965334550955":[63,65],"9999997207656334":173,"9999999987777783":76,"999999999601675":[63,65],"9be4c7yahuinv1h07ucme1co9p":59,"9ec22d57b796":98,"9ect":59,"9f84":115,"9f95":[115,174],"9k":38,"9k7zyhrlytbcgvrzowtshs0jkcwjaa":59,"9s":[61,152],"\u00b5":31,"\u00b5s":173,"\u00e1":137,"\u015fimdi":35,"\u03b3":59,"\u03b3xit":59,"\u03bb":149,"\u03bc":31,"\u03bc1":31,"\u03bc2":31,"\u03bcn":31,"\u03c3":31,"\u03c31":31,"\u03c32":31,"\u03c321":31,"\u03c322":31,"\u03c32n":31,"\u03c3n":31,"\u4e13\u4e1a\u7248":38,"\u5168dlc":38,"\u5b89\u88c5\u5373\u73a9":38,"\u6597\u9c7c\u89c6\u9891":38,"\u65b0\u5efa\u6587\u4ef6\u5939":38,"\u65e0\u9650\u91cd\u7f6e\u63d2\u4ef6":38,"\u7fa4\u661f":38,"\u8c6a\u534e\u4e2d\u6587":38,"\u8d60\u54c1":38,"\u8fc5\u96f7\u4e91\u76d8":38,"\u923d":98,"\u94f6\u6cb3\u5178\u8303dlc":38,"\u9a71\u52a8\u4eba\u751fc\u76d8\u642c\u5bb6\u76ee\u5f55":38,"a\u00e7\u0131l\u0131\u015f":35,"abstract":[1,8,111,116],"ayl\u00f8":139,"bia\u0142ecki":174,"boolean":[7,46,89,98,114,117,126],"break":[14,33,35,50,62,118,124,128,133,134,159,166,185,188],"byte":[29,68,77,116,166,173,188],"cach\u00e9":174,"caf\u00e9":149,"case":[3,7,8,14,18,29,30,40,43,49,52,54,57,58,59,64,66,75,79,89,90,98,99,103,105,108,111,113,114,116,117,118,121,123,127,131,133,134,135,136,139,140,141,142,144,145,146,149,150,152,156,157,159,160,161,165,166,168,170,173,180,182,187,188],"catch":[124,135],"char":166,"class":[3,7,14,22,24,29,30,31,33,34,36,37,38,40,41,43,49,52,53,54,55,57,58,59,60,61,64,68,75,77,78,79,80,90,91,97,107,114,116,117,122,123,124,126,127,128,129,130,135,139,141,142,144,145,146,149,150,152,153,156,157,159,160,161,166,167,172,176,180,182,183,186,188],"clion2020\u7834\u89e3":38,"d\u00fc\u015f\u00fck":35,"default":[7,22,29,33,45,46,49,50,52,53,54,57,58,62,63,65,68,77,79,82,90,98,106,114,116,117,121,122,123,126,127,131,135,140,144,150,152,157,158,166,178,180,181,186,187,188],"do":[0,1,3,7,8,10,13,14,17,18,21,23,25,26,28,29,30,31,32,33,36,40,41,43,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,68,71,75,77,79,85,87,89,90,95,97,98,99,100,101,103,105,106,107,108,109,110,113,114,116,117,118,121,123,124,126,127,130,131,133,135,136,137,139,141,142,144,145,148,149,150,151,152,153,156,157,159,160,164,165,167,174,180,181,182,185,187,188],"export":[134,153,156],"final":[7,31,32,33,41,47,48,50,51,54,55,56,58,59,68,77,79,90,103,114,117,121,126,127,128,130,134,135,136,141,144,145,146,147,150,152,153,156,159,160,161,165,166,176],"float":[22,34,35,38,43,44,46,48,49,51,55,59,89,90,114,116,117,121,125,129,140,142,165,167,173,180,189],"fran\u00e7oi":29,"function":[0,1,2,3,7,14,18,22,25,30,31,33,35,36,37,40,41,45,46,47,48,49,50,52,53,54,55,56,57,58,60,61,62,63,64,65,66,68,75,76,77,78,88,100,108,113,114,115,117,120,121,122,126,127,128,129,130,131,133,136,141,144,146,147,149,150,151,152,156,157,159,160,161,162,164,166,174,178,180,181,182,188,189],"g\u00f6rkem":34,"g\u00fcnai":34,"import":[1,2,3,7,12,14,15,17,18,21,22,23,24,25,30,31,32,34,35,36,38,39,40,42,43,45,46,47,48,50,55,62,63,65,67,68,75,76,77,79,81,83,89,90,91,95,96,97,98,99,100,101,103,104,105,106,107,108,111,113,116,117,120,121,123,124,125,126,127,128,129,130,131,133,134,136,137,138,139,140,141,143,144,145,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,162,166,167,168,170,172,173,176,178,180,181,185,187,188,189],"int":[7,14,22,31,39,50,56,81,89,90,116,117,121,122,126,127,128,129,130,144,153,165,166,167,173,188,189],"long":[1,8,14,33,35,36,45,47,48,53,55,56,59,64,68,77,79,97,98,101,108,111,116,123,124,127,130,131,135,148,151,153,159,165,166,167,181,187,188],"micha\u0142":174,"new":[7,9,14,17,22,23,31,33,34,35,41,43,45,47,48,49,50,52,53,54,55,59,60,61,62,64,68,77,81,89,90,96,97,98,99,101,103,105,106,109,110,111,113,115,118,120,121,123,124,125,126,131,132,134,135,137,140,141,144,145,146,147,148,149,150,151,152,156,159,160,161,162,164,165,166,168,170,171,173,174,175,176,178,180,185,188],"null":[38,44,46,48,60,75,114,117,139,149,153,160,161],"office2016\u7b80\u4f53\u4e2d\u658764\u4f4d":38,"p\u03b8":122,"pikach\u00fa":12,"public":[1,14,50,56,57,96,103,109,111,113,129,134,136,137,159,162,165,169,170,171],"return":[2,3,7,12,14,18,22,24,25,29,30,31,33,34,35,36,37,38,39,40,41,43,44,46,47,48,49,50,52,53,54,55,56,57,58,60,63,64,65,66,68,75,76,77,78,79,81,89,90,97,98,114,115,116,117,118,120,121,122,125,126,127,128,129,130,131,135,136,141,144,145,146,149,151,152,153,156,166,167,173,174,176,180,181,182,183,184,187,188],"short":[26,45,59,97,113,116,123,124,126,137,153,165,166,188],"static":[5,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,106,107,108,136,139,140,152,153,156,157,158,160,165,166,172,188],"super":[29,30,31,33,36,37,43,63,65,117,122,126,127,128,129,140,145,165,187],"switch":[0,7,14,47,50,135,141,165,187],"throw":166,"transient":133,"true":[1,7,9,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,44,46,47,48,49,50,51,52,53,54,55,56,57,58,60,62,64,66,68,75,77,79,89,93,94,97,98,105,106,113,114,116,117,118,121,122,124,125,126,127,128,129,131,136,139,140,141,142,144,148,149,150,151,152,153,158,160,161,162,164,165,166,167,172,173,176,178,182,186,187,188,189],"try":[1,3,4,5,7,9,11,14,16,18,25,29,31,35,36,44,45,47,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,79,80,86,89,97,98,99,101,104,105,106,107,108,111,114,115,117,118,121,127,128,129,135,136,137,139,140,144,145,146,148,149,150,151,152,153,155,157,158,159,160,161,162,163,164,166,167,180,185,188],"var":[18,38,51,55,68,77,105,122,141,144,160,172],"void":116,"while":[0,1,7,29,31,32,33,36,40,46,47,48,50,53,57,58,59,60,61,64,82,90,96,98,99,100,101,103,105,108,109,110,111,113,114,116,117,118,121,124,126,127,133,135,144,150,151,152,153,157,159,160,161,166,168,169,173,174,175,176,180,181,185,186,188],"y\u00fcksek":35,A:[0,1,4,5,6,7,12,13,14,15,18,19,21,23,26,28,29,32,36,40,41,43,45,47,48,49,50,51,52,56,57,58,59,62,63,64,65,66,68,72,75,77,79,82,85,86,87,89,90,96,97,98,99,101,103,105,106,107,109,110,111,113,114,115,116,117,118,120,121,122,124,125,126,127,129,130,131,133,134,135,136,138,139,140,141,142,144,145,149,150,152,153,156,159,161,162,164,165,166,167,170,171,173,174,176,178,181,182,185,186,187,188,189],AND:[89,90,105,116,117,165,166],AS:[22,25,45,47,48,89,90,165,166],And:[31,32,40,41,43,48,49,50,52,56,58,62,68,75,77,89,97,99,101,109,113,116,120,123,124,127,130,133,134,135,136,137,141,150,152,162,166,170,174,178,181,188],As:[1,3,7,8,33,34,36,40,41,43,47,48,49,50,51,52,53,54,56,57,58,59,60,61,68,75,77,79,80,96,97,103,106,109,111,113,114,116,117,118,126,127,128,133,134,135,141,144,145,149,150,151,152,156,159,160,161,162,165,166,167,171,173,176,185,187,188],At:[28,40,48,50,56,59,68,77,103,113,116,118,124,134,135,137,141,145,146,151,159,162,164,165,166,173,185,186],BE:[89,90,165,166],BUT:[89,90,165,166],BY:[98,135,140],Be:[82,88,101,105,116,153],Being:[43,62,98,101,117],But:[33,38,40,43,48,49,50,52,53,56,57,58,59,61,64,68,75,77,97,101,106,109,118,121,123,125,131,133,134,135,137,140,144,145,146,148,150,151,152,159,161,164,165,166,167,178,182],By:[7,18,29,40,41,46,49,52,53,54,57,59,68,75,77,96,106,111,114,116,117,118,122,131,133,134,136,139,140,141,142,149,152,156,159,160,161,165,176],FOR:[89,90,165,166],For:[7,19,29,30,31,32,35,36,38,39,40,41,43,45,46,47,48,49,50,51,54,59,60,61,64,66,67,68,69,71,72,75,81,82,83,85,86,87,88,97,98,99,108,109,110,111,113,114,116,117,120,123,124,125,127,129,131,133,134,135,136,137,139,140,141,142,144,145,146,149,150,151,152,153,156,157,158,159,160,161,162,164,165,166,167,168,178,182,185,186,188],IN:[25,79,89,90,165,166],IS:[22,45,47,48,54,89,90,94,139,165,166],IT:[54,96,134],If:[1,7,14,16,18,29,33,34,35,39,40,41,43,45,48,49,50,51,52,53,54,57,58,59,60,62,64,66,68,69,75,77,79,89,90,92,97,98,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,122,123,124,125,126,128,130,133,134,135,137,139,141,144,145,146,148,150,151,152,153,156,158,159,160,161,162,164,165,166,167,174,180,182,185,187,188,189],In:[1,3,7,8,9,11,12,13,14,16,18,19,21,24,28,29,30,31,32,33,36,39,40,41,43,45,46,47,48,49,50,52,53,54,57,58,59,60,61,62,64,66,68,69,71,75,76,77,79,80,85,86,87,89,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,131,133,134,135,136,137,139,140,141,142,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,166,167,168,171,173,174,175,180,182,183,184,185,186,188,189],Is:[50,90,94,96,100,103,108,109,110,122,134,135,139,153,159,161,162,189],It:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,20,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,77,79,80,81,82,83,85,86,87,88,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,121,122,123,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,156,157,158,159,160,162,164,165,166,167,169,170,176,180,181,182,183,185,186,188],Its:[123,144,149,161],NEAR:[61,75],NO:[89,90,165,166],NOT:[79,89,90,116,165,166],Near:[106,172],No:[7,20,29,33,50,54,56,64,79,85,90,95,97,98,107,124,137,141,150,152,157,165,166,169,172],Not:[7,40,43,49,52,54,56,68,77,98,108,114,115,128,145,157,160,161,166,181,188],OF:[22,45,47,48,89,90,165,166],ON:[118,174],ONE:7,OR:[22,45,47,48,89,90,116,165,166],Of:[50,98,99,101,111,152,167,168],On:[49,50,52,57,58,59,60,61,66,68,75,77,98,101,103,135,141,145,148,149,152,153,159,160,164,165,171,181],One:[1,7,11,28,40,43,49,50,52,53,54,55,57,58,59,66,80,95,100,101,103,105,107,111,113,116,121,123,129,135,140,142,144,150,159,160,162,165,166,167,171,172,173,178,180,185,188],Or:[32,40,50,58,75,99,101,116,123,124,135,139,142,159,165,166,181,185,188],Such:[1,7,30,40,43,49,50,54,113,135,136,160,165,187],THAT:79,THE:[89,90,165,166],TO:[54,89,90,130,165,166],That:[31,32,40,43,48,49,50,52,57,61,62,68,75,77,101,106,113,116,118,124,140,142,145,146,152,153,159,161,166,167,185],The:[0,3,5,6,7,8,12,13,14,15,16,18,19,24,25,26,28,29,30,31,32,33,34,35,37,39,40,41,45,46,47,48,49,50,52,54,55,56,57,58,59,60,61,62,63,64,65,66,68,71,75,77,80,81,87,88,89,90,96,99,100,101,103,105,106,107,109,110,111,112,113,115,116,117,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,144,145,146,147,148,149,150,153,156,157,159,160,161,167,168,170,171,172,176,177,179,180,181,182,183,184,185,186,189],Then:[7,31,45,47,50,56,66,79,98,101,113,116,117,121,122,125,128,130,135,136,137,140,141,142,144,145,149,153,160,164,165,166,167,181],There:[0,1,3,7,18,28,29,30,32,34,36,37,39,40,41,43,46,47,49,50,51,54,57,59,60,62,64,68,72,75,77,82,97,98,101,103,105,106,107,110,111,113,114,115,116,117,118,120,121,123,126,128,130,131,133,134,135,136,137,139,140,142,144,145,148,152,153,155,156,158,159,160,161,163,164,165,166,167,185,186,187,188],These:[7,30,31,39,41,45,49,54,56,59,60,75,96,98,101,103,106,109,110,115,116,117,126,134,140,144,145,149,151,152,159,165,167,169,171,173,174,176,187],To:[0,1,7,14,18,22,29,33,34,36,40,41,45,46,48,49,50,52,54,58,61,62,66,68,75,79,89,96,97,98,99,101,106,107,108,109,111,113,114,116,117,118,121,122,123,125,126,127,128,131,132,133,134,135,136,137,141,142,145,146,148,149,150,152,153,156,159,160,161,162,164,165,166,167,171,172,174,177,180,181,185,187,188,189],WITH:[89,90,165,166],Will:[137,161,167],With:[7,40,41,43,47,50,56,60,61,62,81,96,100,101,105,106,108,109,110,111,115,116,117,118,123,134,135,142,144,145,150,152,159,165,174,181,186],_0:145,_1:142,_2:142,_:[18,29,31,33,37,41,51,56,78,120,121,122,124,125,126,127,128,130,131,142,145,152,165,166,176,182,183,188],____:[3,12,22,24,25,46,89,90,94],_____:[24,89],______:[12,14,25],_______:14,________:14,_________:14,_________________________________________________________________:29,____i:90,__abs__:89,__add__:89,__all__:165,__annotations__:[165,187],__builtins__:165,__cached__:165,__call__:[63,65,122,127],__class__:[37,165],__dict__:[183,184],__doc__:[165,187],__eq__:89,__file__:[121,165],__finalize__:117,__future__:[37,121],__get__:117,__getitem__:117,__init__:[29,30,31,33,35,36,37,43,55,63,65,78,79,91,117,122,124,126,127,128,129,146,165,182,183,187],__iter__:33,__len__:33,__loader__:165,__main__:[35,121,124,153],__mul__:89,__name__:[35,37,121,124,153,165],__package__:165,__repr__:55,__spec__:165,__str__:89,__sub__:89,__truediv__:89,__version__:[41,152,187],_aspp:127,_attach:[115,174],_bin:54,_branch:127,_build_model:35,_bunch:[57,58],_caller:117,_check_indexing_error:117,_check_params_vs_input:140,_concaten:117,_consolidate_inplac:117,_constructor:117,_conv_block:127,_conv_bn_relu:127,_conv_relu:127,_data:117,_decor:117,_deeplabv3:127,_deprecate_mismatched_index:117,_deprecated_arg:117,_engin:117,_etag:[115,174],_fcn_16:127,_fcn_32:127,_fcn_8:127,_format_argument_list:117,_fuse_bn_tensor:126,_get_axi:117,_get_block_manager_axi:117,_get_comb_axi:117,_get_concat_axi:117,_get_label_or_level_valu:117,_get_list_axi:117,_get_merge_kei:117,_get_new_ax:117,_get_result_dim:117,_get_slice_axi:117,_get_valu:117,_get_values_for_loc:117,_getbool_axi:117,_getitem_axi:117,_getitem_lowerdim:117,_getitem_tupl:117,_i:[142,152],_identity_block:127,_ilocindex:117,_index:56,_invalid_index:117,_is_copi:117,_is_scalar_access:117,_j:[142,152],_k:124,_kmean:140,_label:57,_left:117,_lib:117,_locationindex:117,_locindex:117,_m:124,_make_concat_multiindex:117,_make_stag:126,_maybe_cast_for_get_loc:117,_maybe_cast_slice_bound:117,_maybe_check_integr:117,_mergeoper:117,_method:173,_mgr:117,_novalu:173,_other:117,_pad_1x1_to_3x3_tensor:126,_pickl:121,_recognized_scalar:117,_rid:[115,174],_right:117,_sec_1:90,_segnet:127,_self:[115,174],_sigmoid:[78,183],_skip:3,_slice:117,_subplot:75,_sum:173,_t:[115,174],_t_sne:180,_take:117,_take_with_is_copi:117,_takeabl:117,_valid_typ:117,_validate_integ:117,_validate_kei:117,_validate_tuple_index:117,_valu:117,a0958ad901d7:115,a0:[117,173],a10:117,a1:[116,117,173],a1gkdhua8we2lilmxcctgfiycqfttwx6tljchvsbz6sfau8wquo8541xaz2myyziork:59,a21453:166,a23:[165,187],a2:[116,117,173],a3:117,a3z5kdkfn3tbq:59,a4:117,a5:117,a7yia1n5fo6efhugqfis3dhueyjsa:59,a_:79,a_dict:166,a_i:[79,141],a_list:166,a_n:144,aaaaaa:[150,178],aafter:151,aaron:[29,50,125],ab:[50,63,65,89,90,117,121,122,129,152,165,166,188],abadi:125,abbeel:122,abbrevi:[118,122],abc:[90,117,166,173,189],abcd:[7,114,117,173],abcdef:117,abcmous:[109,170],abhinav:[133,137],abil:[43,52,54,68,77,105,123,133,134,144,150,153,159,165,167,178,185],abl:[3,7,10,11,14,16,20,31,40,49,50,52,53,54,57,61,62,75,98,101,107,109,111,115,116,117,123,131,134,136,139,145,148,151,153,156,159,160,161,162,164,170,180,183,184,187],abnorm:29,abnorml:66,abo:38,aboslut:151,about:[1,4,7,11,12,13,15,16,17,18,19,22,23,26,28,29,31,40,41,43,46,47,48,49,50,52,53,54,57,58,59,60,61,62,66,68,77,80,81,87,96,97,98,99,100,101,103,105,106,107,109,111,112,113,114,115,116,117,118,119,123,124,127,129,131,132,133,134,135,136,137,138,139,140,141,144,145,146,148,149,151,152,153,155,157,158,159,160,162,163,164,165,166,167,168,170,171,174,182,185,187,189],abov:[0,1,7,11,14,19,26,29,32,36,40,43,45,46,47,48,49,50,51,52,53,54,57,58,59,60,64,66,68,75,77,89,90,101,105,107,111,113,116,117,118,121,122,123,124,126,127,129,131,133,134,135,136,139,140,141,142,144,148,149,151,152,156,159,160,161,162,163,164,165,166,167,172,181,182],above_cutoff:152,abracadabra:166,abraham:189,abs_vector:[166,188],absenc:[54,180],absent:117,absolut:[47,80,89,113,116,135,144,148,151,165,166,167,188],absolute_import:121,abspath:121,abund:[107,172],ac:152,academ:[109,112,132,170],academi:187,acc:[33,39,47,49,52,57,121,130,186],acc_and_loss:121,acc_output:121,acceler:[97,107,108,135,137,160,172],accept:[16,40,57,68,77,80,97,100,103,109,116,117,126,135,137,145,149,159,165,171,185,186],access:[6,14,16,38,41,68,75,77,96,98,99,101,103,105,109,115,133,136,137,153,160,165,166,170,171,173,181,187,188],accessor:117,accident:145,acclaim:149,accommod:[7,36,47,114,166],accompani:[113,135,160],accomplish:[85,135,145,159,180,185],accord:[18,45,50,54,63,65,96,105,106,107,108,113,116,117,126,133,136,139,141,144,149,153,157,159,160,161,162,164,180],accordingli:[41,55,121,139,165,187],account:[0,6,8,14,16,50,89,98,99,109,113,115,116,141,145,160,161,170,173],accumul:[1,50,89,103,131,142,159,166,185],accur:[15,32,33,41,50,54,59,68,69,77,87,98,103,109,110,113,121,123,127,129,133,136,137,141,148,151,156,159,160,161,171],accuraci:[29,33,34,39,40,48,49,50,51,52,54,56,57,60,64,68,69,77,79,80,81,99,109,114,121,127,130,135,136,140,141,142,144,145,147,148,150,152,153,157,158,160,161,168,170,176,180],accuracy_of_batch:121,accuracy_scor:[29,30,39,49,50,51,52,56,57,59,60,68,77,80,144,149,153,157,158,161,180,183,184],achiev:[32,33,40,48,50,54,56,59,100,103,116,124,125,126,127,133,134,135,136,144,145,146,147,149,150,151,152,165],aci_servic:[9,97],aci_service_nam:[9,97],aciconfig:[9,97],acid:48,aciwebservic:[9,97],acm:[109,133,170],acoust:[138,139,140],acquir:[6,100,103,135,171],acquisit:[3,99,103,111,131,168,170],acronym:106,across:[33,43,47,54,68,77,99,109,111,113,116,117,118,121,131,133,134,135,137,145,149,152,165,166,168,170],act:[3,14,22,24,35,53,62,90,101,109,116,117,121,124,129,159,160,173,185],act_greedi:35,act_valu:35,action:[0,7,35,40,45,46,89,90,96,100,101,109,111,114,115,116,125,134,136,153,157,159,165,166,170,185],action_s:35,actions_count:35,activ:[0,29,30,32,33,34,35,36,39,40,41,43,44,45,47,48,56,57,62,79,109,120,121,122,126,127,128,129,130,136,145,151,152,156,170,175,176,181,186],activateion:128,activespac:174,actor:165,actual:[7,38,40,43,46,47,48,50,51,52,56,57,59,60,66,68,75,77,79,80,81,89,98,108,110,111,113,114,115,116,117,121,122,123,131,133,139,145,147,149,151,152,156,159,160,161,165,167,169,171,175,182,185],actual_result:[3,14,22,24,53,90],actual_valu:38,acut:144,ad:[1,7,18,22,29,32,36,38,41,43,45,48,50,52,54,59,64,68,77,89,90,108,110,113,115,121,122,126,132,134,135,144,145,146,148,150,159,160,166,182,188],ada:158,adaboost:[145,158],adaboost_clf:49,adaboostclassifi:[49,56,157,158],adagradoptim:135,adam:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,62,120,122,126,127,128,176],adamax:36,adamharlei:175,adamoptim:[121,125,135],adapt:[47,58,62,96,109,126,131,135,145,170,186],adaptiveaveragepooling2d:126,add:[1,7,9,14,17,18,30,31,32,33,34,35,36,38,39,41,42,43,44,45,46,47,50,52,54,61,62,63,65,66,89,90,105,107,110,113,115,117,118,120,121,122,126,127,128,129,134,144,145,146,148,149,150,151,153,158,159,160,161,162,164,165,166,167,174,176,178,181,182,185,186,188],add_:31,add_artist:[107,172],add_legend:139,add_selectbox:181,add_slid:181,add_subplot:[35,37,47,76,124],add_trick:165,add_weight:126,addison:134,addit:[1,7,18,23,32,41,46,54,59,64,66,75,89,100,101,103,105,109,110,113,114,115,116,118,124,126,127,128,129,131,135,137,141,145,146,148,149,150,152,160,166,167,173,174,188,189],addition:[31,114,116,118,134,139,141,145,150,174,178],additon:32,addon:122,address:[87,100,101,103,109,131,133,134,137,141,148,159,165,170,171],adel:144,adequ:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,82,85,86,87,88,113,135],adher:[48,103],adjac:165,adject:[166,188],adjunct:159,adjust:[29,33,36,45,55,57,58,126,135,144,145,150,158],admin2:136,admin:174,administr:[137,167],adobe_premier:38,adolesc:165,adopt:[59,82,99,109,134,135,137,141,145,168,170,189],adult:[165,187],advanc:[35,43,66,99,109,117,132,134,135,137,141,159,166,174,177],advantag:[40,50,54,68,77,117,126,134,137,144,147,148,150,166],advent:[49,123,134],advers:28,adversari:[36,137,177],advertis:101,advic:135,advis:[7,46,53,58,61,114,144],advoc:109,ae:[31,122],aebf:[115,174],aeroplan:7,aerospik:174,aesthet:22,affect:[7,17,33,39,49,52,54,56,58,68,77,79,99,101,103,109,113,114,124,126,135,142,148,150,151,165,168,170,178],affer:130,affin:[79,139],affinity_matrix_:152,afford:[7,75,114,159],african:[109,137,170],afro:[139,140],afropop:[139,140],after:[0,7,14,29,32,33,34,35,36,39,40,41,47,48,49,50,51,54,55,56,57,60,62,64,75,79,101,105,111,113,114,116,118,120,121,126,127,128,130,131,134,135,136,139,140,142,144,145,148,149,153,158,159,160,162,165,166,167,181,183,184,186,187,188],afterward:[32,116],afzal:133,ag:[9,18,22,50,51,75,85,89,90,97,98,111,113,115,116,117,134,139,141,142,146,149,156,159,163,164,165,166,167,173,174,183,184,185,187,188,189],again:[7,14,17,40,41,47,49,50,51,52,53,57,58,59,68,77,79,114,117,122,140,145,149,151,161,162,165,166,167,180,181],against:[0,18,41,47,50,59,101,109,111,113,117,131,135,145,151,153,164,179],agaricu:107,age_distribut:24,age_median_imput:22,age_sal_tre:50,age_tre:50,agefil:22,agenc:[101,159],agenda:[99,168],agent:[109,159,185],ageron:152,agg:[18,38,152],aggfunc:117,agglom:139,agglomerativeclust:152,aggreg:[7,14,49,103,108,121,141,144,149],aghdkaaa:126,aghdkaab:126,agil:[133,134],agnost:134,ago:[121,123,145],agre:[22,45,47,48,109],agricultur:[99,108,159,162,168,185],ahead:[49,52,57,101,131],ahnjovq9nfghs6fj4piqib3brpgnscyflm6riahdtaeyfclwo1cf:59,ai:[12,18,25,97,99,105,109,111,117,124,133,134,136,137,140,153,159,164,169,170,175,185,187],aid:[54,62,139,160],aim:[54,101,124,125,126,129,142,159,179],air:110,airbu:29,airflow:134,airlin:7,airplan:121,airport:[99,118,168,174],ajai:122,ajaymach:135,aka:[36,134],akinlua:133,akkio:169,al:[31,68,77,108,109,137,172],alabama:136,alacazam:166,albeit:[45,161],albifron:[106,172],album:139,alcohol:[48,98],alekseynp:152,alert:133,alex:[33,121,122,127],alexa:135,alexand:[119,121],alexandru:66,alexei:59,alexi:146,alexnet:126,alfredo:164,alg:56,algebra:[42,51,54,59,81,116,186],algo:145,algorithm:[3,31,41,49,51,52,53,55,56,57,58,59,60,61,71,76,79,80,81,87,89,96,97,98,99,109,116,121,122,123,126,129,131,132,133,134,135,137,140,141,142,146,147,148,150,151,156,157,159,162,165,168,170,178,179,180,182,183,184,185],algoritm:145,algorythm:80,alia:[116,180],alic:[166,173],align:[22,109,116,129,131,139,140,142,152,153,156,160,161,180],alik:[0,137,144],all:[0,1,3,6,7,8,11,12,14,16,18,19,22,25,26,27,29,31,32,33,34,36,37,38,39,40,41,43,46,48,49,50,51,52,54,56,57,58,59,60,62,64,66,68,77,79,81,86,89,90,95,96,97,98,99,100,101,103,104,105,106,107,109,111,113,114,115,116,117,121,122,123,124,125,126,127,128,130,133,134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,161,162,164,165,166,167,168,170,171,173,178,179,180,182,185,186,187,188,189],all_attr:31,all_clfs_acc:49,all_data:66,all_nod:1,all_photo:31,allbeit:79,allclos:79,allegrograph:174,allei:[54,66],allevi:[49,52,54],allianc:103,alloc:[29,40,50,109,176,180],allow:[1,3,14,18,48,50,54,59,96,97,98,100,108,109,110,111,113,115,116,117,118,120,124,126,127,133,134,135,139,145,148,149,150,156,157,160,164,165,166,167,180,181,187,188,189],allow_arg:117,allowed_arg:117,allowfullscreen:156,allpub:66,allud:50,almeida:48,almond:[107,156,157,172],almost:[7,31,36,40,43,50,57,62,99,101,114,118,144,145,159,160,165,166,181,185],alon:[103,137],along:[1,7,33,36,40,48,51,54,59,68,76,77,100,101,106,114,115,116,117,130,134,136,139,144,157,158,159,160,165,172,185],alongsid:[71,106,135],alot:[54,123],alpha:[36,55,66,76,80,106,121,141,144,145,149,150,151,152,166,172,178,180,183,184,188],alpha_:122,alpha_t:[122,145],alpha_t_bar:122,alpha_tb_t:145,alphabet:[110,115,153],alphago:[123,159],alphas_cumprod:122,alphas_cumprod_prev:122,alphas_t:122,alq:54,alreadi:[40,43,49,50,52,54,60,63,65,68,77,79,90,97,103,111,117,122,127,135,141,145,152,162,164,165,167,171,173],alright:[36,79],also:[0,1,3,7,14,16,18,20,23,28,29,30,31,32,33,34,36,39,40,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61,62,63,64,65,66,68,75,77,79,80,95,96,98,99,100,101,103,105,106,107,108,109,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,126,129,131,132,133,134,135,136,137,141,144,145,148,149,150,151,152,153,156,157,158,159,160,161,162,164,165,166,167,173,178,180,185,186,188],altair:181,altavista:145,alter:[81,103,110,165,171,187],alter_imag:81,altern:[7,16,32,45,54,59,62,108,109,114,116,135,139,150,151,165],altexsoft:134,although:[30,31,49,50,52,54,55,60,66,81,123,126,130,133,134,141,145,149,152,159,165,166],altogeh:134,altogeth:[14,151],altunyan:99,alwai:[7,14,30,33,34,36,40,43,45,47,48,49,52,54,55,57,58,59,61,68,77,101,106,113,116,117,118,122,123,124,126,131,134,135,136,137,144,145,149,150,151,152,156,159,161,165,166,167,187,188],am:[0,40,59,90,166,187],amax:35,amaz:[32,98,99,105,127,167,168],amazon:[96,133,134,135,137,174],ambigu:[33,103,117,165],america:[105,163],american:[109,137,170],aml:[9,97],aml_comput:[9,97],aml_config:[9,97],aml_nam:[9,97],amlb:135,amlcomput:[9,97],among:[7,56,59,64,113,116,126,134,135,144,145,149,159,161,179],amongst:139,amount:[7,17,31,56,59,96,97,98,107,108,111,117,118,121,123,126,133,135,145,146,150,151,153,159,162,165,166,169,170,172,173,174,178,180,185],amp:139,amplifi:[99,109],amus:139,an:[1,5,7,14,16,18,20,22,23,27,28,29,30,32,33,34,36,40,41,43,45,46,47,48,49,50,52,54,56,57,58,59,62,68,75,76,77,79,80,81,87,88,89,90,96,99,100,103,105,106,107,108,109,110,111,113,114,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,144,145,148,149,150,151,152,156,157,158,159,160,161,164,165,166,167,168,170,171,172,173,174,176,177,178,179,180,182,185,186,187,188,189],anaconda3:38,anaconda:144,anaemia:[9,97,98],analog:[49,113,116,117,146],analys:[7,54,96,114],analysi:[1,7,16,17,18,21,31,46,68,77,97,99,102,103,110,111,114,116,117,118,120,123,133,139,142,145,149,152,161,162,168,170,171,173],analyst:98,analyt:[1,35,51,56,96,99,116,133,141,145,149,168,169],analyticsvidhya:56,analyz:[16,17,59,96,99,102,110,111,113,133,137,139,149,152,157,160,163,172],anatida:[106,172],ancestor:145,anchor:129,and21:137,anderson:137,andon:109,andreetto:126,andrew:[105,113,121,126,133,135,136,159],android:153,anemia:98,anf:34,ang:160,angel:166,angelica:[156,157],angelina:50,angl:[81,105,144,151,175],ani:[0,3,7,14,17,18,22,26,30,31,40,43,45,47,48,49,50,51,52,53,54,55,56,57,58,60,62,64,68,75,77,79,89,90,96,97,101,103,106,107,109,113,114,116,117,118,123,124,126,130,131,133,134,135,136,137,139,141,142,144,145,148,149,151,152,153,156,159,161,162,164,165,166,167,170,180,181,185,187,188],anim:[117,122,141,159,176,185,187],anis:[107,156,157,172],anise_se:[156,157],ankl:[30,40,41],ann:[39,123],ann_build:44,anneal:32,anni:24,annot:[4,5,13,19,34,38,40,48,49,51,52,53,59,64,68,75,77,105,126,129,152],announc:79,annual:[118,137,174],anomagram:120,anomal:[29,45,135],anomali:[8,14,47,49,50,135,139,152],anomalies_mask:152,anomalous_test_data:29,anomalous_train_data:29,anomalydetector:29,anonym:[100,109,165,170,187],anoth:[1,3,7,8,10,14,30,31,33,40,43,46,47,49,50,52,54,56,59,66,68,77,87,89,96,98,101,105,106,107,108,111,113,114,115,117,118,121,126,131,132,134,135,136,137,138,139,140,141,142,144,145,148,149,151,152,158,159,160,165,166,172,173,180,187,188],another_tupl:166,anser:[106,172],anseriform:[106,172],ansibl:134,anspos:29,answer:[16,23,40,49,50,51,56,79,82,99,100,105,108,113,117,123,126,132,135,136,137,141,142,145,146,153,156,159,162,164,165,171],anthropolog:139,anti:[81,137],anticip:111,any_column:24,any_script_cont:3,any_style_cont:3,anymor:151,anyon:[109,132],anyth:[7,13,18,43,58,61,66,101,118,139,145,159,162,164,165,171,181,185],anywai:[57,161,166],anywher:[49,50,116,159,165],ap:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,106,139,140,152,156,157,158,160],apach:[22,45,47,48,63,65,80,81,133,134,174,180,181,182,183,186],apart:[7,36,54,62,114,117,118,145],api:[6,16,29,40,41,45,48,57,62,96,97,98,99,110,115,117,134,153,156,160,161,164,168],api_doc:122,api_kei:98,apostroph:128,app:[5,6,38,43,88,96,101,105,109,115,136,170,181],appar:[145,165],apparatu:[18,113],appdata:[57,62,180,187],appeal:[49,52,53],appear:[30,31,32,47,98,106,109,113,116,125,126,127,128,131,135,137,144,145,149,151,153,160,161,165,166,170,176,181,188],append:[1,3,7,14,31,33,35,36,37,38,39,42,44,46,49,50,54,76,79,80,81,89,116,117,121,122,124,126,127,128,129,130,139,140,144,146,152,165,166,167,180,187,188],append_diff_column:14,appl:[39,109,156,157,166,170,188],apple_brandi:[156,157],applet:150,appli:[1,3,14,16,28,29,31,34,36,37,38,40,45,46,50,54,56,57,59,62,63,65,66,78,79,80,89,99,100,103,105,106,110,111,113,115,116,117,118,121,123,124,126,127,131,133,134,135,136,137,139,141,144,145,148,150,151,152,153,159,160,161,162,166,172,173,178,180,181,183,185,188],appliabl:3,applic:[0,4,16,22,39,41,45,47,48,96,97,98,99,103,109,110,111,115,116,119,121,125,126,127,129,131,133,134,135,137,141,145,149,153,166,167,168,170,171,177,188],apply_along_axi:81,apply_gradi:[36,120,122,128],apply_if_cal:117,apply_kernel:33,appreci:36,approach:[1,23,29,33,45,48,50,54,58,59,66,79,99,103,109,111,114,126,133,134,135,136,137,138,139,142,144,145,150,152,159,160,161,165,166,167,168,171,185],appropri:[29,31,45,50,68,77,89,101,115,116,124,135,139,145,148,150,156,162,164,166,174,178],approv:[50,113,134],approx:[50,89,141,145],approxim:[7,30,48,50,78,90,125,131,141,145,149,160,182,183,186],apricot:[156,157],april:[136,160],aqi:110,aqx:54,ar:[0,1,2,3,6,7,8,9,11,14,16,17,18,21,23,24,28,29,30,31,32,33,34,35,36,37,38,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,72,75,76,77,79,80,82,85,89,90,92,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,144,145,146,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,167,169,170,171,172,173,174,175,176,177,178,180,181,182,185,186,187,188,189],arang:[29,50,55,79,116,130,131,152,173,180,183,184],arangodb:174,arbitrari:[18,47,116,117,145,149,166,186,187,188],arbitrarili:[152,166,188],arc:106,arcco:116,arcgi:99,architect:133,architectur:[33,36,62,98,103,109,115,126,127,128,129,133,135,136,141,151,153,170],archiv:[33,130],arcsin:116,arctan:116,are_anagram:166,area:[1,50,54,59,66,75,97,98,99,106,109,111,113,117,123,133,135,137,141,145,159,161,164,167,168,173,175],aren:[43,47,56,64,121,146,148,161],arff:57,arg:[22,39,47,48,89,90,117,121,129,145,165,187],argmax:[34,35,39,41,79,121,127,128,130,144,180],argmin:[152,180],argscop:129,argsort:[55,116,142],argtyp:121,argu:[55,111,135],argument2:167,argument3:167,argument:[7,40,50,62,89,100,101,115,116,117,121,126,127,140,148,151,166,167,186,188],arguments_dictionari:165,arguments_list:165,aris:[28,47,89,90,109,133,165,166],aristocraci:105,arithmet:[7,31,89,113,114,116,165],aritifici:170,arizona:108,armagnac:[156,157],armi:181,around:[1,3,7,10,13,16,18,20,31,33,37,39,43,45,48,54,55,96,101,102,105,108,109,111,113,114,117,118,135,136,139,145,152,153,158,159,160,164,166,170,173,182,188],arous:133,arr1:116,arr2:116,arr:[47,48,90,116,173],arrai:[1,7,18,31,34,35,39,40,41,42,43,44,45,49,50,55,57,59,60,61,63,65,66,75,76,78,79,80,81,106,107,113,121,122,124,126,128,130,139,140,141,142,144,145,150,152,153,158,160,161,164,166,167,178,182,183,184,188,189],arrang:[14,54,64,131,164],array_split:128,array_to_img:[36,127],arraylik:117,arriv:[103,113,161,171],arrow:[115,164],arrowprop:152,art:[31,121,126,128,132,134,135],artemisia:[156,157],arthur:[152,159,185],artichok:[156,157],articl:[28,35,37,41,49,50,52,99,101,105,107,111,113,134,139,142,145,166,168],articul:101,artifact:[39,98,105,134],artifici:[18,39,41,50,81,99,111,120,123,130,132,136,137,183,184,186],artist:[36,139],artist_top_genr:[139,140],artistanim:122,artwork:31,arument1:167,arxiv:[121,122,125,126,127,129,137],as_cmap:38,as_default:121,as_fram:[60,152],as_list:[43,121,126],as_panda:149,asabeneh:[167,189],asarrai:144,ascend:[1,31,50,51,54,56,116,156,157],ascii:130,ascrib:105,asia:[155,156],asian:156,asid:[33,50,148],ask:[8,11,23,41,50,57,58,71,99,100,101,103,105,109,111,117,123,126,132,135,153,156,157,159,160,161,164,166,168,171,185],asp:[165,166],aspect:[11,13,54,56,79,102,103,105,108,111,129,133,135,137,162,172],aspp_siz:127,assembl:[36,134,165],assert:[3,14,22,24,31,46,48,53,79,89,90,91,93,94,126,127,128,129,136,152,165,166,187,188],assert_called_onc:[24,53],assert_called_once_with:[24,53],assert_frame_equ:[14,22],assert_not_cal:[24,53],assert_series_equ:14,assertalmostequ:47,assertequ:90,assertionerror:[93,94],assertrais:[14,90],assess:[23,50,95,99,100,109,142,151],asset:[12,14,15,18,22,23,24,25,46,49,50,52,53,54,56,59,60,61,62,64,67,75,79,80,81,83,98,105,117,122,131,133,136,141,142,144,146,148,149,153,161,162,165,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,186,188,189],assgin:54,assign:[3,6,8,11,14,16,17,19,22,24,28,40,45,46,47,49,50,52,53,54,87,90,97,98,99,103,105,106,107,108,118,124,126,127,132,133,135,136,139,140,144,145,150,152,153,156,157,158,159,160,161,162,164,165,166,167,180,181,182,183,187,188],assist:[98,159,180],associ:[3,7,41,89,90,97,98,101,109,113,115,116,129,134,137,142,151,159,160,164,165,166,169,170,174,185],assort:116,assum:[7,48,49,50,56,57,58,89,113,116,117,122,124,129,135,141,142,152,160,165,166,186,188],assumpt:[31,48,55,75,113,135,141,145,150,151,180],assur:[0,135],asterisk:[90,167],astrophysicist:6,astyp:[22,29,30,31,35,36,38,44,50,56,107,120,152,172,176,180,186],asymmetr:[133,145],asymmetri:109,asymptot:144,atlanta:[118,174],att:126,attach:[41,98,107,115,172,174],attack:[97,98,137],attempt:[8,16,45,47,57,89,116,117,140,149,165,166,181,187,188],attend:122,attent:[80,117,122,123,126,128,142,144,145],attention_ax:122,attn_dim:122,attn_output:126,attr:[3,31],attract:[19,159],attrib:152,attribut:[7,31,50,51,58,80,89,98,110,111,133,142,149,165,180,187],attributeerror:[129,167],attributes_nam:31,attributes_path:31,attributes_respons:31,attributes_save_path:31,attributes_url:31,auc:[135,146,149,161],auc_weight:[9,97],auckland:[118,174],audienc:[138,171],audio:[31,41,110,145,159,185],audit:109,audubon:107,aug_test:56,aug_train:56,augment:[81,127,136,159,166],augment_input:127,augment_label:127,august:[134,160],aurelion:[43,49],australia:[14,153],australian:[49,52],autauga:136,authent:[98,133],author:[12,25,57,58,89,90,96,99,105,109,111,133,136,165,166,168],authorit:136,auto:[9,59,97,118,120,135,140,144,148,149,152,153,156,160,180],autoconfig:[3,14,22,24,53,75,89,90],autoencoder_cnn:31,autoencoder_ecg:29,autogluon:137,autograd:[31,37],autokera:137,autolayout:[62,131],autom:[0,41,97,98,99,103,109,134,135,137,159,168,169],automat:[0,31,33,36,38,43,52,53,57,97,98,111,116,117,120,121,134,135,136,137,138,144,148,159,160,165,166,185,188],automl:[10,20,117,137,157,169],automl_config:[9,97],automl_error:[9,97],automl_set:[9,97],automlconfig:[9,97],automlrun:97,automobil:[33,121],automobile_fil:33,autonom:[121,129,137,159,185],autopct:[51,107,172],autoregress:125,autotun:[122,126,127],autumn:[50,150,178],autumnali:[106,172],aux_loss:129,auxiliari:[50,79],av:54,avail:[1,3,7,14,29,33,38,40,50,51,52,53,54,57,62,68,72,75,77,97,98,100,103,106,107,108,109,113,114,117,118,124,131,133,135,136,137,139,144,145,156,162,164,165,170,171],avenu:99,averag:[7,14,18,22,24,25,29,32,33,37,48,49,50,52,53,59,66,90,101,110,111,113,116,121,122,126,139,140,141,142,144,145,149,152,158,160,161,164,180,187],average_length_of_word:89,average_pooling2d:126,averkiev:31,avg:[38,57,59,60,121,157,158,161,187],avg_pool2d:129,avg_pool:129,avgpool2d:32,avgpool:129,avil:[57,58],avocado:189,avoid:[40,47,49,50,53,54,57,58,101,108,117,118,128,134,135,137,144,148,152,158,159,162,164,165,174],avx2:29,aw:[40,133,134,136,137],awai:[49,64,101,107,139,150,152,159,165,166,182,185],awar:[99,101,105,109,116,117,159,165,168],awcmr9f:59,awesom:[89,90,98,107,123,145,165,167],awl5l8tdgiwmctxfgh6jcak4yfq0tjefleix2rxwp1hxh0npv4nnlt33ulavkea3fe3jccpqrfhztmttkgitkmcsow8nd:59,ax1:[55,131],ax2:[47,55,108,131,172],ax:[1,14,22,29,30,32,33,35,36,37,38,39,40,43,47,50,51,54,62,64,66,75,76,80,105,106,108,116,117,121,122,124,131,139,140,144,146,149,150,152,160,166,172,178,180,182],axacc:47,axes3d:[76,80,180],axessubplot:[57,59,60,61,75,106,117,139,156,160,161,172],axhlin:[14,180],axi:[1,3,7,14,22,30,31,32,33,34,36,37,38,39,42,43,44,49,50,51,52,53,54,56,57,59,61,62,63,64,65,67,68,75,77,79,105,106,108,109,113,114,117,121,122,124,126,127,128,129,131,134,139,142,144,146,148,149,150,152,156,157,158,160,161,162,164,170,172,173,176,178,180,181,186],axisgrid:[58,75,108,139,161,172],axloss:47,axvlin:[152,180],aymer:120,az:[108,172],azeem:133,azim:[80,150,178,180],azip:[150,178],azithromycin:1,azu18:115,azur:[95,96,99,103,109,117,133,134,136,137,153,155,163,168,169,170,174],azurecontain:98,azureml:[9,96,97],azurewebsit:134,b0:[117,173],b1:[116,117,124,173],b2:[116,117,124,173],b3:[115,124],b4ejbh5mczlor:59,b5couk05fwstwkyxnvi4e88ubjq0fcztrf9ujqfhqdcbqwcmx:59,b:[7,14,22,29,33,34,35,38,50,54,63,65,79,89,90,98,113,114,115,116,117,120,122,124,127,128,129,130,136,139,141,142,144,150,152,160,165,166,167,173,178,180,181,182,187,188,189],b_1:141,b_dtree:144,b_f:128,b_g:128,b_h:130,b_i:[128,141],b_k:144,b_n:[141,144],b_o:128,b_t:145,b_y:130,back:[1,7,29,30,31,40,43,45,46,53,75,86,90,96,97,101,111,113,114,116,117,118,122,131,133,134,135,141,151,153,159,162,164,165,166],backbon:[43,127,129],backend:[43,127,186],backfil:131,background:[39,92,99,126,131,153,159,185],background_color:3,backprop:[33,130],backpropag:[33,37,79,122,130,176],backpropaget:79,backpropog:43,backtick:117,backward:[7,31,33,37,79,114,122,159],bad:[7,40,49,50,61,68,77,101,105,116,135,152,153,161,165],bad_kmeans_plot:152,bad_n_clusters_plot:152,badli:[48,50,106,125,135,144,182],badrinarayanan:127,bag:[30,40,41,54,56,142,143,156],bag_classifi:49,bagging_fract:54,bagging_freq:54,bagging_se:54,baggingclassifi:[49,141,144],baggingregressor:[141,144],bai:[61,75],baidunetdisk:38,baidunetdiskdownload:38,balanc:[34,49,52,57,59,63,64,65,68,77,97,99,134,135,137,144,145,150,151,157,168,178],balanced_subsampl:144,baldwin:136,ball:[50,141],ballback:40,baltimor:[160,161],bam_extract_path:29,bam_zip_file_path:29,banana:[39,166,188,189],bandwidth:96,banerje:[59,149,181,186],bank:[50,99,110,115,137,139,159,174,185],banko:137,bankrupt:105,bar:[1,3,15,31,40,41,51,56,64,97,105,106,116,117,142,149,156,162,167,181],barack:89,barbour:136,barchart:160,bare:[134,144],baregg:131,barh:[66,156,172],barnrais:101,barnraisersllc:101,barometr:110,barplot:[39,54,68,77,139,140],base64:[31,59],base:[7,11,14,15,17,18,29,31,33,35,40,41,46,49,50,52,54,55,56,57,59,60,61,66,68,75,77,81,90,98,99,103,105,106,109,110,111,115,116,118,122,123,124,126,127,128,129,132,133,134,135,136,137,139,141,142,144,145,146,148,150,151,153,157,158,159,161,162,164,165,166,167,168,169,174,175,178,181,185,186,187,188],base_estim:49,base_learn:146,base_model:127,base_model_output:127,base_scor:[66,148,149],base_url:14,basebal:113,baseblockmanag:117,baseclassnam:165,baselin:[135,144,149,152],baselinems:48,basemen:[18,113],basement:54,basenam:[29,30,31,33,39,41,66],basex:174,basi:[1,22,45,47,48,50,60,61,96,116,123,145,150,167,180],basic:[7,14,15,18,24,30,36,40,48,50,55,57,58,99,105,106,108,113,114,115,120,123,130,131,132,134,136,140,141,144,145,149,150,151,153,156,159,160,161,162,164,165,168,169,171,172,174,175,176,177,178,179,180,181,182,183,184,185,186,187],basic_autoencoder_model:29,basic_autoencoder_model_nam:29,basic_autoencoder_model_respons:29,basic_autoencoder_model_save_path:29,basic_autoencoder_model_url:29,basicrnncel:130,basket:[156,160],batch:[31,32,36,41,44,45,48,79,121,122,125,126,127,128,133,134,135,136,137,139,156,176],batch_:36,batch_acc:33,batch_label:121,batch_loss:[33,128],batch_norm:126,batch_predict:121,batch_siz:[29,31,32,33,34,35,36,37,38,39,42,44,45,47,48,62,79,120,121,122,125,127,128,130,152,176,186],batch_x:120,batchnorm1d:31,batchnorm2d:37,batchnorm:[32,36,37,62,122,126,127],batchsiz:79,bathroom:54,batter_pow:[68,77],batteri:[68,77],battery_pow:[68,77],battl:107,bayesian:[122,127],baz:117,bb01:137,bb38:[115,174],bbox:[80,180],bbox_emb:129,bc:152,bce:31,bceloss:37,bdt:144,bdt_predict:144,beam:[135,153],bear:156,beat:[47,48,159,185],beatl:167,beauti:[104,107,108,180],beautifuli:40,beautifulli:[43,106],becam:[111,123,145],becaus:[1,3,7,12,14,18,22,28,30,31,32,33,36,40,41,43,45,46,47,49,50,52,54,56,57,58,59,60,64,68,75,77,80,98,101,108,109,110,111,113,114,115,116,117,122,123,125,129,131,133,134,135,136,137,140,141,144,145,146,149,150,151,152,156,159,160,162,165,166,167,173,178,180,182,185,187],becom:[7,32,35,36,45,50,55,79,89,98,109,111,113,116,123,124,125,128,130,133,134,135,137,141,145,146,149,156,159,166,176,187],bed_room:75,bedroom:[61,75],bedroomabvgr:54,bee:[13,108,172],beef:157,beehiv:[108,172],been:[3,6,7,12,14,15,17,18,23,29,30,31,40,49,52,62,98,99,101,103,105,107,109,110,114,116,117,123,125,128,129,134,136,137,139,141,145,146,149,151,152,153,165,167,171,176,182,187],befor:[7,8,14,16,32,33,34,35,40,41,43,45,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,68,75,77,80,81,97,98,101,103,105,108,111,114,115,117,118,121,122,124,125,126,127,131,133,134,135,136,137,139,142,144,148,151,153,156,159,160,164,165,166,167,171,172,173,182,185,187,188],began:136,begin:[1,7,14,32,33,35,47,49,50,52,64,66,109,114,116,118,131,135,137,141,142,144,145,151,160,163,165,166,167,171,174,176,180,182,187,188],beginn:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,46,54,67,68,69,71,72,82,83,85,86,87,88,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,118,133,139,140,153,156,157,158,160,161,162,164,167,168],behav:[7,106,109,116,118,126,139,165,166,170],behavior:[17,33,62,98,99,108,109,111,113,116,117,124,131,135,144,151,157,159,167,170,180,185],behaviour:[49,52,116,117,150,178],behind:[31,52,53,58,60,61,62,68,77,109,145,147,149,150,152,157,160,166,170,181],behold:121,being:[0,11,14,36,40,43,50,54,59,75,99,103,108,109,111,116,117,118,123,124,127,131,136,139,141,145,146,151,152,159,161,165,166,167,171,174,185],beings:111,believ:145,bell:[107,172],belli:[106,172],belong:[41,59,80,109,126,127,139,149,161,165,187],below:[0,3,7,12,14,15,16,17,22,24,30,39,41,43,45,46,47,48,50,53,54,57,59,60,64,89,90,93,94,99,101,107,109,113,115,116,121,123,126,133,134,135,136,137,141,142,144,148,149,150,151,152,153,158,160,165,167,172,182],belt:159,ben:160,benchmark:[48,99,135,137,159,168,185],bend:140,benefici:[30,166],benefit:[32,62,96,103,110,139,151,171],bengio:[29,50,125,175],benign:40,bensor:43,bereft:165,berkelei:[103,171],bernhard:59,bernoulli:145,bernulli:145,besid:[45,116,124,126,127,134,135,137,151,166,188],bespok:153,best:[1,3,10,20,22,31,33,39,40,45,47,48,49,50,52,53,54,56,57,58,59,61,66,75,79,80,81,98,105,107,110,116,117,118,124,131,133,135,141,144,145,150,151,152,156,157,159,160,161,162,166,172,173,178,179,181,182,185,188],best_estimator_:[52,53,56,57,58,59,60,61],best_image_add_mean:121,best_k:80,best_kmean:152,best_model:39,best_model_1:40,best_model_2:40,best_model_ann:44,best_model_ann_2:44,best_model_cnn:[39,44],best_model_cnn_2:44,best_model_lstm:44,best_model_lstm_2:44,best_model_rnn:44,best_model_rnn_2:44,best_param:54,best_params_:[50,52,53,54,56,57,58,59,60,61,81,144,152],best_run:[9,97],best_score_:[50,56,59,81,144],beta16:121,beta1:[37,121],beta2:121,beta:[37,121,126,151],beta_1:[34,176],beta_2:34,beta_end:122,beta_start:122,beta_t:122,betas_t:122,beth:163,better:[1,3,7,14,23,30,31,32,34,36,47,48,49,50,52,54,55,56,57,59,62,66,68,77,79,96,98,100,105,108,109,111,113,114,116,120,121,125,126,131,133,134,135,136,137,139,140,141,144,145,146,148,149,151,152,155,156,158,159,160,164,165,166,170,180,181,182],bettter:61,between:[7,14,18,21,30,31,33,34,36,40,41,47,48,49,50,52,53,57,59,60,61,62,63,64,65,80,83,85,89,98,99,101,103,106,108,109,110,111,113,115,117,118,120,121,122,123,124,125,126,127,128,130,131,133,134,135,136,137,139,140,142,145,147,150,151,152,153,156,158,159,160,161,162,163,164,165,166,171,172,174,176,178,180,182,185,187,188],bewar:153,bewild:157,beyond:[7,46,50,60,61,113,114,123,131,132,135,137,159,165,182],bfc_alloc:29,bfill:[7,114],bhwdaa:[115,174],bhwdapqz8s0:[115,174],bhwdapqz8s0baaaaaaaaaa:[115,174],bi:[96,166],bia:[37,45,54,56,63,65,75,78,99,109,120,121,126,130,131,135,137,141,150,168,170,182,183],bian:137,bias1x1:126,bias3x3:126,bias:[40,46,49,79,99,109,114,120,134,159,168,170],bias_add:121,biasid:126,bib:140,bibb:136,bibliographi:140,bicolor:[106,172],bidirect:128,big:[3,43,56,57,62,68,77,95,96,111,121,123,133,135,145,152,159,161,162,167,170],big_arrai:173,big_integ:[166,188],bigger:[121,135,137,139,145,160,187],biggest:[159,185],bigodot:128,bigoplu:128,bigtabl:174,bigtriangledown_:125,bilinear:[126,127,129,152],bill:[165,166,167,188],bin:[18,22,29,38,47,49,52,53,54,58,59,60,106,113,115,121,129,160,161,162,172],binar:57,binari:[22,29,36,41,50,54,56,59,68,75,77,81,89,116,121,128,144,145,146,149,150,152,156,157,159,164,166,173,188],binary_cross_entropi:31,binary_crossentropi:[40,176,186],binary_search:89,binaryclass:57,binarycrossentropi:36,bind:165,bing:[3,125,145],binomi:150,bio:99,biolog:123,biologist:7,birch:139,birchard:167,bird:[4,19,117,121],birth:15,birth_month:15,bit:[1,7,14,39,40,66,68,77,79,106,108,112,114,118,123,140,145,146,150,152,156,160,161,162,164,165,178],bitwis:[116,166,188],bitwise_and:116,bitwise_or:116,bitwise_xor:116,bivari:54,bizarr:105,bj:166,black:[1,47,50,54,106,107,121,124,126,150,152,153,164,172],blackbox:[57,58,159],blank:[115,139,153,156,162,165],blend:[57,121,126,141],blend_models_predict:54,bleu:135,blind:105,blit:122,blob:[116,128,152,160,161],blob_cent:152,blob_std:152,blobs_plot:152,block:[37,41,57,58,75,79,89,122,123,126,127,150,153,162,164,165,166,167,181,187,188,189],block_13_expand_relu:127,block_16_project:127,block_1_expand_relu:127,block_3_expand_relu:127,block_6_expand_relu:127,block_num:121,block_siz:121,blog:[1,14,28,29,31,50,56,96,99,101,107,116,117,134,135,140,145,152,168,174],blood:[24,98,164],bloom:133,blount:136,blq:54,blue:[30,38,41,42,45,50,54,68,77,101,105,106,113,126,134,139,140,144,145,160,164,165,172,182],blue_count:[68,77],blueprint:[165,187],bluetooth:[68,77],bluff:182,blur:[33,121],blurri:30,bm_axi:117,bmatrix:182,bmi:164,bmi_distribut:24,bmj:133,bn:[32,37,126,127],bn_axi:127,bn_conv1:127,bn_name_bas:127,bo:[126,127,152,180],board:[22,124,159],boat:176,bob:[166,173],bodi:[15,24,106,110,113,126,153,164,165],boil:50,bold:[62,80,131],boldfac:[159,185],bonu:[16,18,28],book:[0,12,18,25,49,50,90,101,105,109,111,113,116,117,120,121,131,132,137,140,142,144,152,157,161,165,173,187],book_cov:121,book_sal:131,bool:[14,29,114,116,117,129,152,165,166,167,173,188],bool_vec:117,boolean_arrai:116,booleanarrai:117,boost:[50,57,58,81,132,135,144,148,152,157],booster:[54,66,146,148,149],boosting_typ:54,boostrap:66,boot:[30,40,41,57],bootstrap:[49,52,53,142,144,145,149],border:[50,127,129,140,145,152,153,156,160],bore:38,born:145,borrow:165,boser:59,boss:50,boston:[109,170],bostrom:159,bot:135,both:[1,7,14,29,30,31,32,33,40,41,43,46,47,49,50,52,54,56,57,58,59,60,61,62,63,64,65,66,68,69,75,77,79,89,97,99,101,105,108,109,111,113,114,116,117,118,123,124,127,129,131,133,134,135,137,144,145,147,148,149,150,151,153,158,159,164,165,166,170,172,174,176,185],bother:[79,162],bottleneck:122,bottom:[31,34,50,116,161,162,181],bottommost:165,bottou:175,bouhsin:44,bounc:135,bound:[43,47,50,89,106,116,117,124,129,135,152,159,161,165],boundari:[50,59,60,61,113,117,121,137,140,141,144,186],box:[18,43,50,97,105,113,121,129,144,153,159,160,162,181],box_ind:129,box_logit:129,boxplot:[18,54,59,64,140],bp:164,br:15,brace:[166,188],bracket:[116,135,166,167,188],brain:[123,159,167,185],branch:[0,109,126,134,145,149,159,165,170,185],brand:[101,145,159,185],brave:165,brbpxsliqodzna6ju0hxiqid60bt7a6m1zezx02cvyzp:59,breach:[109,170],bread:117,breakdown:[14,110,167],breakfast:[165,187],breakthrough:121,breathtak:[99,168],breed:[37,127],breez:135,breiman:[141,144],breinman:142,breviti:165,breweri:113,bridg:[134,137],brief:[128,159],briefli:[17,28,54,109],bright:[34,121,126],brighter:106,brill:137,brilliant:156,brilliantli:145,bring:[49,52,54,98,118,128,134,136,145,174],britannica:111,british:[7,167],broad:[62,107,109,111,113,126,131,134,137,159,165,170,172,185],broadcast:117,broaden:99,broader:[109,111,132,135],broadli:109,broken:[51,59,103,110,134,142,171],brook:189,brought:[15,118],brown:[107,172],brows:[62,165],browser:[16,38,97,98,115,153],bruce:113,bruis:[107,172],brush:164,brute:136,bsmtcond:54,bsmtexposur:54,bsmtfinsf1:54,bsmtfinsf2:54,bsmtfintype1:54,bsmtfintype2:54,bsmtfullbath:54,bsmthalfbath:54,bsmtqual:54,bsmtunfsf:54,btc:38,btcdf:38,btcsave2:38,btn:153,bu:[29,113],bubbl:172,bucket:54,buddi:165,budget:[96,169],budgetari:98,buff:[107,172],buffer:[111,116,121],buffer_s:[122,127],bug:[4,47,101,128,134,135,167,187],buggi:[69,82],bui:[35,53,57,58,96,101,109,139,160],build:[1,4,8,13,33,40,43,49,52,57,58,59,64,69,75,79,80,82,86,95,96,97,98,99,101,103,106,107,108,109,111,113,115,117,120,121,122,123,126,127,128,129,130,132,133,134,135,136,137,141,142,144,145,148,149,155,157,158,159,163,164,165,166,168,169,171,174,177,182,184,185,188],build_vocab:128,builder:126,built:[1,3,7,12,29,40,43,50,66,69,79,82,88,105,106,107,108,109,113,116,117,118,132,133,134,136,140,145,146,153,161,164,165,166,167,173,177,187,188],builtin:[180,187],bulk:101,bulki:134,bull:141,bullet:145,bump:[109,170],bunch:[0,1,31,50,57,58,111,159,166,185],bundl:134,buolamwini:[99,168],burgeon:[118,174],burn:153,bushel:[160,162],busi:[7,96,99,101,103,109,111,131,133,134,135,136,137,139,153,168,171],buss:105,butter:117,button:[15,97,98,115,153,164,167,181],bw_adjust:106,bwteen:40,bx8rsirp:59,bx:[29,30,33,160,166],bytearrai:[166,188],bytesio:[121,130],c0:173,c1000:14,c100:14,c1:[14,22,24,53,89,127,173],c2:[14,24,53,89,127,129,173],c3:[14,89,127],c4:[14,50,127,129],c5:[32,127],c5sj3kb4tplbpbg9fpdiobxig4jqp6efthvujkxvcd0rurwoprdhovcizwv2:59,c64u:59,c92liuawc7t9bolpnzylr41pifoqdwltveln8yuk4ucftcddro2ieamgrivd26fcbgnhz9d7msi:59,c:[1,14,22,32,33,45,50,54,55,57,60,61,62,64,80,89,90,101,113,114,115,116,117,121,128,129,133,136,140,142,144,149,150,152,158,160,161,162,165,166,173,178,180,181,183,184,187,188],c_1:152,c_:[50,113,144,152],c_i:152,c_k:180,ca:[43,108,124,172],cab:[99,168],cach:[53,58,116,127,128,137,152,174],cache_data:181,cache_resourc:181,cachedproperti:117,caerulescen:[106,172],cal_data:61,calc_grad_til:121,calcul:[6,7,8,14,18,25,29,30,31,33,36,38,40,45,48,49,50,54,59,64,68,77,80,93,113,115,116,117,118,121,122,129,130,135,137,140,141,142,144,145,148,149,150,152,160,161,162,165,174,180,188],calculate_discrimin:166,calculate_sum:89,calendar:[165,187],calendar_clock:[165,187],calendarclock:[165,187],california:[14,75,109,159,173],caliv:137,call:[1,3,18,22,29,30,31,33,36,40,41,43,47,48,49,50,51,54,57,59,60,61,63,65,68,75,77,79,89,90,96,97,98,101,105,107,109,110,111,113,115,116,117,118,120,122,123,124,125,126,127,128,129,131,134,135,138,139,140,141,142,144,145,148,149,150,151,152,153,156,157,159,160,161,162,164,165,166,167,173,174,181,185,186,188],call_func:[165,187],callabl:59,callback:[32,39,44,66,127,148,149,151],caller:29,callout:160,cam_extract_path:29,cam_zip_file_path:29,came:[50,110,134,145],camera:[39,68,77,111,116,126],can:[0,1,3,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,36,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,71,75,76,77,79,80,82,88,89,90,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,139,140,141,142,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,161,162,163,164,165,166,167,168,171,172,173,174,176,178,180,181,182,185,186,187,188,189],canada:[14,153],canari:134,cancel:[40,109,141,159,170],cancer:40,candi:161,candid:[50,57,58,59,60,61,152,162,179],canin:165,cannot:[7,14,18,22,24,30,39,45,47,50,53,59,66,106,110,111,114,116,117,139,145,151,152,161,165,166,172,188],canon:116,canvas_orig:120,canvas_recon:120,cap:[107,172],capabl:[29,54,79,98,109,111,117,133,134,159,161,166,169,170,185,188],capac:[47,48,62,68,77,121,135],capcolor:[107,172],capit:[90,165,166],capital_gain:51,capital_loss:51,capitalize_first_lett:90,capitalize_word:90,capitalized_sent:90,capitalized_word:90,caption:[123,159],captiv:117,captur:[15,23,33,39,66,100,105,109,110,111,131,133,135,151,160,176],car:[57,58,109,110,123,124,127,133,159,170,185],car_data:57,car_label:57,car_labels_prepar:57,car_test:57,car_test_label:57,car_test_labels_prepar:57,car_test_prepar:57,car_train:57,car_train_prepar:57,carambola:39,carbon:99,card:[98,109,137,139,170],cardiovascular:98,care:[20,45,48,56,57,58,68,77,88,99,105,108,109,116,117,148,149,151,153,159,165,170],carefulli:[49,145],caregor:56,carlo:113,carnam:166,carri:[7,57,114],carrol:133,carrot:157,cart:[50,144,145],carton:160,carv:[140,161,163],cascad:127,cassandra:174,cassett:139,cast:[29,116,117,121,122,124,127,128,129,130],casted_kei:117,cat1:1,cat2:1,cat:[15,33,54,61,75,117,121,126,159,165,176,187],cat_col:54,cat_feat:[61,75],cat_feats_enc:75,cat_feats_encod:75,cat_feats_hot:75,cat_feats_pip:75,cat_feats_preprocess:75,cat_fil:33,cat_list:[61,75],cat_train:54,catalog:[16,23,99,106,168],catastroph:150,catboost_search:54,catboostregressor:54,catcher:113,categor:[49,50,52,56,58,61,66,80,108,110,113,114,115,116,117,135,144,146,159,161,164,174,185],categori:[1,7,39,41,50,51,54,56,59,60,68,75,77,96,101,103,105,106,107,109,110,111,121,123,124,126,127,133,135,137,140,142,150,152,156,157,158,159,160,161,164,166,171,172,173,178,185,186,188],categorical_crossentropi:[32,34,39,47],categoricalcrossentropi:[40,127],category_count:172,category_encod:51,cathi:173,catplot:[56,161],caught:117,cauliflow:156,caus:[1,14,18,28,46,47,49,54,57,59,62,63,64,65,68,77,98,99,108,109,111,113,114,117,133,134,135,142,144,148,150,151,165,166,168,178,187,188],causal:113,causat:139,caution:105,cb:54,cbar:[40,64,68,77],cbar_kw:38,cc:[29,43,49,98,121,135,140,142],ccaliva:137,ccc:142,cccc:142,ccd:108,ccp_alpha:[56,57,58],ccpa:109,cd4:134,cd4ml:134,cd:[0,134,136,139,153],cdata_estim:81,cdata_estimator_predict:81,cdc:136,cdeott:32,cdist:180,cdot:[79,142,145],ce:51,celebr:[31,50],cell:[0,3,7,17,38,40,42,43,44,45,46,47,48,57,58,60,61,66,79,93,94,98,114,115,116,117,123,128,130,131,139,140,148,149,152,160,162,164,173,175,189],cell_metadata_filt:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158],censor:90,censor_word:90,cent:[38,160],cent_histori:180,center:[14,22,38,66,80,96,103,107,113,116,118,129,134,136,139,140,142,150,152,153,156,160,172,178,180,182],center_circl:[107,172],centercrop:37,centernessnet:129,centimet:[60,172],centr:150,central:[53,58,98,133],centralu:98,centric:133,centroid:[139,140,180],centuri:[105,153],cerdeira:48,certain:[7,14,33,40,41,50,54,59,75,90,103,111,113,116,121,124,130,133,134,135,136,137,139,144,150,151,157,159,160,164,165,166,171,185,188,189],certainli:[36,123,152],cfees8eopk:115,cfg:129,cg:157,cgcug0a0c6nut:59,chain:[33,41,79,133,160,165],chainer:35,chair:[126,135],challeng:[3,8,28,39,41,46,96,99,100,108,111,113,114,117,118,134,135,136,137,139,149,157,159,167,168,174,189],champion:181,chanc:[36,49,56,68,77,113,118,123,137,148],chang:[0,7,8,14,20,30,33,40,43,45,47,48,49,50,52,53,55,56,57,62,63,65,76,80,82,88,98,99,100,103,105,106,107,108,110,113,114,115,116,117,118,121,122,124,125,127,129,130,134,135,136,137,139,140,142,144,145,150,153,155,159,160,162,165,166,167,168,173,174,178,180,187,188],changeabl:[166,188],changer:95,channel:[31,33,36,37,39,53,58,121,126,127,129,149,171],channels_first:129,channels_last:127,chao:50,chapman:133,chapter:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,36,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,77,82,83,85,86,87,88,89,90,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,124,125,126,127,128,129,130,131,136,139,140,141,142,144,145,146,148,149,152,153,156,157,158,159,160,161,162,163,164,165,166,167,173],chapter_id:152,charact:[3,47,97,105,109,110,111,115,166,167,188,189],characterist:[30,31,47,54,58,59,110,115,124,135,145,159,161],charg:[23,50,68,77,89,90,98,141,165,166],charli:166,charset:[15,153],chart:[13,19,27,106,107,109,140,149,160,162,170],chart_data:181,charticul:107,chase:153,chat:133,chatgpt:[89,90],chaudhari:137,chdir:121,cheaper:[103,109],cheat:[125,135,137,157,158],cheatsheet:157,check:[0,3,7,10,14,20,22,24,29,31,35,39,40,43,45,46,49,50,52,56,58,60,61,63,65,80,89,90,96,97,98,99,100,109,114,117,121,122,123,127,128,132,134,139,140,142,144,145,148,152,153,156,157,164,165,167,168,180,186,188],check_dtyp:14,check_nam:14,check_str_or_non:117,check_valu:136,check_win_condit:124,checklist:[28,170],checkout:[0,134],checkpoint:128,chef:156,chen:[126,127,129,137],cheng:137,cherri:[101,166,188],chervonenki:59,chess:[123,124,159],chicago:166,chieh:127,child:[142,158,165],children:[11,22,109,142,170],children_:152,china:[14,109],chines:[156,157,158],chinese_df:156,chinese_ingredient_df:156,chiphuyen:135,chlorid:48,chloroquin:[1,8],chmax:[53,58],chmin:[53,58],chnage:[63,65],choc:123,chocol:161,choderlo:105,choic:[7,27,32,40,49,68,77,98,103,105,109,111,114,116,121,123,125,128,135,139,144,145,152,156,157,159,161,170,185,186],chollet:29,choos:[7,29,46,48,49,56,59,68,76,77,97,101,108,114,116,117,123,124,126,131,133,134,135,137,139,140,141,144,145,150,151,152,158,159,161,167,179,180,185],chop:156,chord:[1,8],chose:[34,69,96,117,152,173],chosen:[33,48,54,59,98,108,116,135,141,150,152,153,181],chr:127,chri:32,christina:137,christoph:133,chrome:98,chronolog:[109,170],chuck:89,chunhua:129,chunk:111,churn:[141,144,145,159,185],churn_cal:141,churn_mean_scor:141,ci:[33,108,127,131,134,136],cifar10:[33,121,125],cifar10_extract_path:33,cifar10_label:121,cifar10_mdoel_nam:33,cifar10_model_respons:33,cifar10_model_save_path:33,cifar10_model_url:33,cifar10_nam:33,cifar10_respons:33,cifar10_save_path:33,cifar10_url:[33,121],cifar10_zip_file_path:33,cifar10cnnmodel:33,cifar:33,cifar_cnn_model:121,cifar_labels_fil:121,cifar_link:121,cifar_loss:121,cinnamon:[107,172],cipolla:127,circl:[105,107,139,150,172],circle_color:152,circu:167,circuit:[98,126],circuitri:98,circular:130,circumfer:108,circumst:109,cite:[57,58,129,136,164],citi:[12,17,23,49,52,75,99,105,109,123,135,153,160,161,162,168,170],citizen:[109,165,170],citric:48,city_:56,city_development_index:56,city_id:[12,118,174],ck:33,cla:180,claim:[89,90,165,166],claremont:99,clarif:23,clarifi:[100,101,149],clariti:[1,101,145],clasifi:80,class_busi:7,class_economi:7,class_emb:129,class_first:7,class_label:7,class_nam:[40,41,57,142],class_report:[52,57],class_weight:[49,52,57,144],classes_:157,classic:[40,41,50,60,61,80,120,124,125,146,150,156,159,161,185],classif:[9,32,36,39,43,53,58,61,64,82,97,98,99,103,109,117,120,121,123,127,128,129,130,135,141,142,144,146,147,149,150,151,152,157,164,168,170,171,176,179,183,184,185,186],classifi:[29,32,36,47,50,56,59,64,68,71,77,79,80,82,110,117,123,125,126,130,135,139,141,142,144,145,146,150,152,155,159,161,176,178,183,184,185,186],classification_accuraci:59,classification_error:59,classification_model_nam:41,classification_model_respons:41,classification_model_save_path:41,classification_model_url:41,classification_report:[39,40,47,51,52,57,59,60,68,77,81,153,157,158,161],classnam:37,claus:[115,165,166,187],clean:[3,18,20,22,36,40,46,54,86,99,100,103,105,128,130,131,133,135,136,140,157,158,159,160,162,168,171,173],clean_data:22,clean_fresh_fruit:[166,188],clean_text:130,cleand_df:46,cleaned_cuisin:[67,156,157,158],cleaner:165,cleanli:126,cleanprep:38,cleans:103,cleanup:133,clear:[3,7,8,12,14,25,39,40,50,51,59,101,108,116,117,134,142,145,158,159,161,164,166,167,188],clear_output:[79,125,127],clearer:[159,185],clearli:[1,14,16,28,36,47,48,52,57,58,101,130,131,135,137,145,159,160,167,180,185],clees:165,clever:[14,167],clf1:49,clf2:49,clf3:49,clf:[49,51,150,178,180],clf_tree:50,cli:98,click:[0,3,38,45,47,48,51,97,98,105,115,156,159,162,163,164,167,181],client:[15,17,23,50,96,137,141,145,152,159,165,181],climat:[99,108,168],climax:101,climb:38,clinic:164,clint:89,clion:38,clionproject:38,clip:[36,81,121,135,159,185],clip_by_valu:[29,30],clip_value_max:[29,30],clip_value_min:[29,30],clipart:38,clipped_zoom:81,clobber:116,clock:[98,165,187],clock_spe:[68,77],clockwis:[34,81],clone:[0,37,134],close:[1,7,8,29,30,31,33,37,38,39,44,49,50,52,56,59,64,68,75,77,89,98,105,107,113,114,117,121,123,124,125,140,144,149,152,160,167,172,182],close_pric:38,closer:[14,34,48,52,53,56,59,79,121,134,140,142,152,162,176],closest:[40,59,98,110,139,140,150,152,180],closur:[101,165],cloth:133,cloud:[1,3,21,88,98,99,103,111,115,117,133,134,135,137,153,157,168,170,171,174,177],cloudform:134,cloudmus:38,cloudwatch:133,club:85,cluster:[30,50,103,106,111,120,134,144,158,159,160,171,185],cluster_centers_:152,cluster_classification_plot:152,cluster_dist:152,cluster_std:[150,152,178],clusterer1:152,clusterer2:152,clusterpoint:174,clustr:132,clustroid:139,clutter:[106,126],cm:[31,40,41,46,51,52,57,59,60,68,77,80,114,142,152,172,180,183,184],cm_matrix:[51,59],cmap:[1,31,38,41,49,50,51,52,53,54,59,68,75,76,77,79,80,81,120,121,144,150,152,178,180,183,184,186],cmd:167,cn:38,cncf:134,cnn:[39,123,126],cnn_builder:44,cnt:55,co:[1,8,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,99,106,107,108,115,116,122,137,139,140,142,145,152,156,157,158,160,168,172,180],coars:[126,127],coat:[30,40,41],coca:25,coca_cola_co:25,cocacola:25,code3:136,code:[0,1,3,5,7,8,9,12,14,18,31,38,41,45,46,47,48,50,56,66,68,77,79,82,89,93,94,95,97,99,105,106,107,111,113,114,116,117,123,131,132,135,136,140,141,144,146,148,150,152,153,155,159,160,161,162,163,164,165,166,168,170,173,178,181,185,188,189],coef0:60,coef:[66,75],coef_:[66,75,160,182,183,184],coeff:152,coeffici:[54,66,75,131,144,145,151,152,160],coerc:[35,117],cognit:[1,96,109,116,170],coher:[26,140,174],coin:[159,185],coinbas:38,coincid:[105,122],col1:116,col2:116,col:[38,44,45,51,54,56,59,107,108,117,144,172,173,181],col_nam:[51,54,59],col_vector:116,col_wrap:[108,172],cola:25,colab:[40,43,45,47,48,123],cold:[103,171],colder:133,coll:[115,174],collabor:[99,109,134,136],collaps:[108,125],collect:[3,6,11,31,33,35,41,49,50,52,58,85,96,97,99,101,103,105,109,110,111,115,116,117,118,128,130,133,135,136,141,149,160,164,165,166,167,168,170,171,174,186,187,188,189],collector:39,collinear:66,colnam:117,colon:165,coloni:[13,108,172],color:[1,14,18,22,29,30,33,34,38,39,41,42,49,50,51,52,54,56,68,77,80,101,106,107,108,109,110,113,116,121,126,127,131,139,140,142,144,150,152,153,160,161,164,166,170,172,178,180,182,183,184,188],color_palett:131,colorbar:[41,180],colorblind:108,colorjitt:37,colormap:152,colour:126,colsample_bylevel:[66,148,149],colsample_bynod:[66,148,149],colsample_bytre:[66,148,149],colum:54,column1:14,column2:14,column:[1,6,14,17,18,22,24,29,30,31,38,39,40,43,44,45,46,47,48,52,53,55,56,57,58,59,60,64,66,68,75,77,80,97,98,100,107,108,110,114,115,116,118,123,131,136,139,140,144,146,149,153,156,157,160,161,162,166,172,173,174,182,188],column_diff:14,column_filt:14,column_index:117,column_nam:[14,22,24],column_name_to_diff:14,column_or_1d:57,column_to_diff:14,column_to_format:46,column_to_format_uniqu:46,column_valu:[14,22,24],column_value_fil:22,column_value_map:22,columnar:[115,174],columns_to_plot:24,columntransform:[61,75,182],com:[3,12,14,18,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,47,48,51,56,66,68,77,101,103,105,106,107,108,109,111,112,115,117,120,121,128,131,134,135,136,137,139,140,142,152,156,157,158,160,161,165,166,169,170,172,174,175,176],comapani:56,combin:[33,36,40,48,49,50,52,53,54,56,59,61,62,68,75,77,78,79,81,96,99,103,105,110,121,123,126,127,131,133,134,135,136,137,141,144,145,147,148,149,150,158,159,160,164,165,166,171,182,183,188],combined_imag:36,come:[7,35,43,48,51,57,62,64,66,68,77,95,100,101,103,105,106,109,110,111,113,116,117,123,125,126,131,132,136,139,141,144,146,149,150,151,159,160,165,166,167,173,178,180,181],comedi:167,comfort:[7,46,54,114,164],comma:[90,116,158,166,188],command:[47,51,98,109,110,118,124,148,164,166,167,174,188],comment:[45,48,50,101,109,110,121,164,170,187],commerc:139,commerci:101,commiss:[17,23],commit:[0,109],committe:62,commom:[60,68,77],common:[7,31,33,40,45,46,47,48,50,54,56,59,62,66,89,96,100,101,103,109,110,116,117,118,121,128,129,131,133,134,135,136,139,140,145,148,150,151,152,156,162,163,164,165,167,169,173,188],common_el:166,common_norm:[106,172],common_runtim:29,commonest:47,commonli:[41,54,61,62,68,77,96,117,123,133,134,135,136,149,151,159,165,186],commun:[28,43,100,102,103,109,111,123,132,134,136,145,159,167,176],compact:121,compani:[6,101,110,133,137,145,159,166,167],company_s:56,company_typ:56,companyx:166,compar:[14,18,21,31,33,41,47,48,50,51,54,60,61,63,64,65,68,75,77,87,89,90,98,105,106,108,111,113,116,117,120,122,126,134,135,136,141,142,144,149,157,159,161,166,185,188],comparis:[63,65],comparison:[8,14,48,50,89,103,108,110,113,115,135,141,145,150,157,165],compat:[15,55,98,116,117,124,125,130,132],compatible_format:187,compens:[149,152],compet:145,competit:[123,131,137,145,148,149],compexifi:50,compil:[1,7,29,30,32,34,35,38,39,42,44,45,47,48,62,127,134,167,173,176],compilaton:40,complaint:[101,109,170],compleletli:[68,77],complementari:131,complet:[1,8,21,24,34,40,41,49,50,52,53,56,57,58,62,68,69,77,98,103,105,109,111,113,116,117,121,122,126,129,130,131,133,135,137,149,152,159,160,161,162,165,166,167,169,180,187,188],complex32:116,complex:[0,1,31,32,33,49,57,58,60,61,63,64,65,66,68,77,108,111,116,118,123,126,129,131,132,133,134,135,137,141,147,150,151,152,156,159,165,167,175,176,178,179,186,189],complex_numb:165,complex_number_1:[166,188],complex_number_2:[166,188],complex_number__1:188,complexnumb:165,complexnumberwithconstructor:165,compli:109,complianc:[22,45,47,48,109,170],compliant:109,complic:[36,50,79,111,116,133,134,135,145,148,151,152,162,176],compon:[98,99,105,115,120,124,131,133,134,135,136,141,145,148,150,159,167,168],components_:[152,180],compos:[36,37,61,75,79,120,121,125,133,134,145,182],compose_greet_func:165,compose_greet_func_with_closur:165,composit:[116,144],compound:[166,173,188],compound_stmt:165,comprehend:49,comprehens:[90,105,117,135,160],compress:[29,30,31,103,120,123,126],compris:[39,98,134],compromis:[7,114],comput:[3,7,18,22,29,32,33,36,40,41,43,46,47,49,50,53,54,58,59,66,76,78,79,81,96,99,100,103,111,113,114,115,117,120,121,122,123,125,126,129,130,132,133,134,135,137,141,142,144,145,149,150,151,156,159,161,164,166,168,169,170,181,182,183,185,188,189],computation:[33,36,50,56,116,117,123,126,131,147],computationn:33,compute_reciproc:173,compute_target:[9,97],con:[7,47,56,98,109,153],concat:[22,30,36,38,42,54,56,66,122,126,127,128,129,131,156,165,166],concat_axi:117,concat_index:117,concaten:[34,38,55,116,117,122,127,129,162,166,176,182,183,184,188],concatenated_str:165,concav:122,conceiv:[136,165],concentr:139,concept:[3,18,29,31,47,50,59,98,99,111,113,115,116,121,125,126,132,133,134,135,136,142,145,149,150,157,161,164,166,175,188],conceptu:145,concern:[7,47,54,58,59,75,103,106,109,114,133,134,137,145,159,160,172,185],concis:[116,141,159,165,166,188],conclud:[56,59,99,105,113,135,142],conclus:[24,50,100,109,111,160],concret:[137,159,180],concurr:[81,97,98],conda:0,condens:124,condit:[3,22,31,39,40,45,47,48,50,54,90,99,109,116,122,126,135,142,144,145,160,161,165,166,167,187,188],condition2:54,condorcet:141,conduct:[56,97,109,170],conf:18,conf_conv:129,conf_matrix:[52,57],confer:[101,105,117,133,137],confid:[40,41,48,68,77,108,126,135,136,139,141,145],config:[9,38,50,66,128,131,141,144,180,181],configur:[10,41,45,47,96,98,130,133,134,135,159,162,163,165],confirm:[14,30,45,47,48,59,100,103,109,152,160,170,171],conflict:[90,101,109,117],conform:[110,117,133,135],confus:[7,34,40,50,52,57,60,68,77,80,101,114,116,142,144,149,151,156,165],confusingli:152,confusion_matrix:[34,39,40,51,52,57,59,60,68,77,80,81,157,158,161,183,184],confusion_mtx:34,congratul:[97,98,160,161,164,167],conjug:89,conjunct:111,connect:[6,30,32,33,41,43,45,48,62,79,89,90,99,101,109,113,121,126,127,130,135,151,165,166,176],connor:133,conquer:145,consciou:7,consecut:[14,32,40,49,149],consent:[109,170],consequ:[28,99,109,124,170],conserv:[106,172],conservationstatu:[106,172],consid:[1,3,7,8,11,14,18,22,24,29,36,39,40,41,45,46,49,50,53,56,62,64,90,98,100,101,103,105,110,111,112,113,114,120,121,124,126,128,131,134,135,136,137,139,141,142,144,145,146,149,150,151,152,153,159,161,164,165,166,178,180,187,188],consider:[59,98,103,109,111,112,117,145,148,152,170,171],consist:[0,1,3,8,15,30,33,34,36,41,45,49,50,52,54,59,85,103,109,114,116,120,126,127,133,134,135,136,137,142,151,159,160,162,166,170,171,174,185],consol:117,conspiraci:62,constant:[50,63,65,116,121,122,124,126,130,135,145,149],constant_initi:121,constantli:111,constrain:[30,124,139],constraint:[30,98,103,116,126,134,135,139,151,157,180],construct:[30,50,116,117,120,122,126,131,133,139,141,144,145,146,149,165,166,188],constructor:[117,126,165,166,187,188],consult:[7,117],consum:[10,20,41,45,95,97,98,100,105,108,109,110,133,135,137,150,153,159,169],consumpt:[105,153,169,173],cont:54,cont_num_var:54,contact:[115,174,181],contagi:161,contain:[1,3,6,7,12,14,15,17,22,29,31,33,36,37,39,40,41,45,46,47,48,49,50,51,52,54,57,59,60,62,68,75,77,80,83,88,89,90,97,98,100,103,110,113,114,115,117,118,123,126,127,130,133,134,135,139,141,144,146,149,152,153,156,159,160,161,162,164,165,166,173,187,188],container:134,content:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,59,62,63,64,65,66,67,68,69,71,72,75,77,79,80,81,82,83,85,86,87,88,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,124,125,126,127,128,129,130,131,132,135,137,139,140,141,142,144,145,146,148,149,153,156,157,158,159,160,161,162,164,165,166,167,173,180,181,182,183,186,188],contest:141,context:[9,28,31,50,59,97,99,101,103,109,117,121,127,135,137,139,140,151,152,153,163,165,166,168,170,171,188],contigu:116,contin:[57,58],continu:[0,1,17,18,31,33,34,40,47,48,50,54,55,58,59,62,96,97,99,106,108,113,116,118,122,127,134,135,136,137,139,140,144,145,146,151,153,159,161,167,185],contour:[150,152,178],contourf:[144,152,183,184],contract:[89,90,98,134,165,166],contradictori:135,contrari:[117,137],contrarili:165,contrast:[7,50,87,100,116,121,125,135,144,150,176],contrib:130,contribut:[46,52,53,57,58,66,99,116,117,132,135,141,142,144,165,166,167,168],contributor:132,control:[7,11,30,43,48,56,59,61,62,63,64,65,96,100,101,103,109,111,114,116,123,124,126,128,133,134,136,144,145,151,166,171,181,188],controlflow:165,conv0:129,conv1:[121,127],conv1_1:121,conv1_2:121,conv1_add_bia:121,conv1_bia:121,conv1_featur:121,conv1_kernel:121,conv1_pad:127,conv1_weight:121,conv1d:[44,123],conv2:121,conv2_1:121,conv2_2:121,conv2_add_bia:121,conv2_bia:121,conv2_featur:121,conv2_kernel:121,conv2_weight:121,conv2d:[29,30,31,32,33,34,36,37,39,121,122,123,126,127,129],conv2d_1:29,conv2d_2:29,conv2d_transpos:29,conv2d_transpose_1:29,conv2dtr:29,conv2dtranspos:[29,30,122,127,129],conv3_1:121,conv3_2:121,conv3_3:121,conv3_4:121,conv3d:123,conv4_1:121,conv4_2:121,conv4_3:121,conv4_4:121,conv5_1:121,conv5_2:121,conv5_3:121,conv5_4:121,conv:[37,121,126,127,129],conv_bias1:121,conv_bias2:121,conv_block:126,conv_bn:126,conv_bn_relu:126,conv_input_data:121,conv_kernel1:121,conv_kernel2:121,conv_kernel:121,conv_lay:121,conv_name_bas:127,convei:[101,105,171],conveni:[7,46,54,108,113,114,117,127,142,145,160,161,165],convent:[43,45,68,77,118,123,148,165,167],converg:[36,106,135,139,152,159,180],convers:[1,46,98,101,114,135,137,159,162],convert:[1,3,7,14,31,36,38,40,41,43,45,47,49,56,57,59,64,75,81,83,89,90,97,105,107,109,111,117,120,121,126,128,130,149,153,159,160,162,166,181,185,186,188],convert_indic:117,convert_to_tensor:126,convex:[107,122,172],convinc:[101,167,176],convlay:37,convnet:[122,123],convolut:[122,126,127,129,159,177,185],convolutional_autoencoder_model:29,convolutional_autoencoder_model_nam:29,convolutional_autoencoder_model_respons:29,convolutional_autoencoder_model_save_path:29,convolutional_autoencoder_model_url:29,convolv:121,convtranspose2d:[31,37],cooki:139,cool:[31,40,68,75,77,90,94,139,161],cooler:101,cooper:165,coord:116,coordin:[43,50,62,108,116,124,129,134,157,159],cope:[39,144,145],copi:[0,1,7,14,22,29,30,31,35,45,46,47,48,54,64,68,77,89,90,114,116,117,118,131,144,156,158,162,165,166,173,180,188],coppa:109,copyreg:187,copyright:[22,45,47,48,89,90,165,166],cor:38,cord:[1,109,116],core:[7,9,14,16,29,38,57,58,59,60,68,75,77,97,98,109,112,114,117,118,126,127,139,144,145,148,149,152,156,160,173],core_mask:152,core_sample_indices_:152,corinna:59,corner:116,coronaviru:[1,136],corpor:[18,109,111],corpora:137,corr:[24,38,48,49,52,53,54,64,68,75,77,139,144,160],corr_winedf:48,corrcoef:[18,113],correct:[18,29,40,41,45,48,49,50,51,52,54,56,59,62,66,68,77,79,93,94,105,107,109,113,115,117,125,126,135,140,141,145,149,150,151,158,161,165,170,180,186,187,189],correct_label:140,correcti:[52,57],correctli:[6,34,40,41,47,48,52,54,56,57,59,68,77,80,100,126,134,140,145,149,160,166,180],correl:[8,14,49,52,64,99,105,106,108,109,111,131,135,139,140,144,145,150,153,159,168,170,176,180,182,185],correspond:[0,14,29,33,40,41,46,47,49,50,62,75,79,80,89,90,97,109,113,114,116,117,122,127,131,134,135,140,141,145,160,165,170,186,187],correspondingli:135,corrmat:139,corrupt:159,corrwith:24,cort:59,cortex:175,cortez:48,cosin:[116,145],cosmo:[96,174],cost:[25,32,37,48,52,56,57,63,65,68,77,98,101,103,105,111,115,127,128,129,133,134,137,151,159,169,171],cost_funct:[63,65],costli:152,costlier:98,couchbas:174,couchdb:174,could:[0,5,7,10,16,17,20,23,26,29,32,33,34,40,45,46,47,48,50,54,55,57,58,59,62,64,66,68,77,79,96,98,101,106,108,109,110,113,114,115,116,118,124,126,131,133,134,135,136,137,139,140,141,145,149,151,152,153,156,157,159,160,161,165,166,173,174,176,185,188],couldn:[109,136,170],coulumn:14,count:[1,18,22,31,34,38,49,52,54,56,57,58,59,60,61,64,75,80,100,107,111,113,114,116,121,128,131,139,149,156,160,172,186,188],count_3g:[68,77],count_4g:[68,77],count_bug:187,count_digit:89,count_occurr:90,count_vowel:166,count_word_occurr:90,countabl:113,counter:[128,165,187],counterintuit:135,counti:105,countplot:[34,49,51,52,54,56,57,61,68,75,77],countri:[8,12,14,46,105,110,114,116,118,136,141,153,174,189],countries_and_region:14,countries_dataset_url:14,country_region:[14,136],coupl:[33,96,101,118,142,151,174],cours:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,29,34,39,40,44,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,64,67,68,69,71,72,75,77,79,82,83,85,86,87,88,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,121,122,124,126,127,130,131,135,139,140,141,145,146,148,149,152,153,156,157,158,159,160,161,162,164,187],courvil:[29,50,125],cov22:136,cov:[18,113],covari:[18,106,144,172],cover:[3,30,49,103,108,109,111,114,115,116,117,121,123,134,140,159,163,164,167,171,173],covert:[101,171],covid19:136,covid:[96,105,109,136,137,170],coxboost:145,cpickl:121,cpk:98,cpu:[29,31,33,37,53,58,97,98,180],cpu_cor:[9,97],cpu_feature_guard:29,cr:[106,172],craft:[101,145],crash:[135,159],crawler:136,crazi:146,creat:[0,1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,41,42,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,71,72,79,80,81,82,83,85,86,87,88,96,99,100,101,103,104,105,106,107,108,109,110,111,113,114,115,118,120,121,122,124,125,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,144,145,146,148,149,150,151,152,153,156,157,158,159,160,161,162,164,165,166,167,170,172,173,174,178,180,181,182,183,185,186,187,188,189],create_discrimin:176,create_gan:176,create_gener:176,create_ingredi:156,create_ingredient_df:156,create_mask:127,create_model:39,create_sub_plot_2_grid:22,create_test_df:[14,22,24],create_test_df_1:14,create_test_df_2:14,create_test_df_3:14,created_at:115,createlink:105,creatinin:98,creatinine_phosphokinas:[9,97,98],creation:[79,97,98,109,111,142,145,181],creativ:[7,105,145,159],creator:[117,121,136,145,153],credenti:98,credit:[26,50,99,109,137,139,142,170],crest:[49,52,53,75,106,172],crisi:96,crisp:103,criteria:[69,71,72,82,85,86,87,88,110,137,144,180],criterion:[31,37,50,56,57,58,109,142,144,186],critic:[29,36,54,98,99,101,106,111,133,135,136,137,159,172],crop:[31,39,121,160,161,162],crop_and_res:129,crop_height:121,crop_shap:129,crop_siz:129,crop_width:121,cross:[22,36,49,56,64,66,68,77,103,117,121,122,125,126,131,135,141,150,152,157],cross_color:152,cross_entropi:[33,121],cross_entropy_mean:121,cross_val_predict:[68,75,77],cross_val_scor:[50,54,56,59,64,66,68,75,77,80,81,144,157,158],cross_valid:56,cross_validated_roc_auc:59,crossentropi:[47,79],crosstab:22,crowd:[49,107,139,141,172],crucial:[56,98,124,144],cruel:139,cruis:167,crypto:38,cs231n:126,cs:[101,121,126,187],csci:187,csr:75,csr_matrix:75,css:[153,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],csse:[14,116,136],csse_covid_19_data:14,csse_covid_19_time_seri:14,cssegisanddata:14,csv:[1,2,6,14,15,17,22,23,29,32,35,38,42,46,47,48,49,50,51,52,53,54,56,59,60,61,62,64,66,67,68,75,77,79,80,81,83,106,107,108,110,116,117,131,136,139,140,141,142,144,146,148,149,153,156,157,158,160,161,162,166,172,180,182,183,184,186],ct:[9,97,99,123,182],cto:133,cu3tc99fx:59,cube:[166,188],cuda:[29,31,33,37],cuda_dnn:29,cuda_gpu_executor:29,cudnn:29,cuisin:[67,155,158,164],cuisines_df:[67,157,158],cuisines_feature_df:[67,157,158],cuisines_label_df:[67,157,158],cultur:[99,101,170],cummul:122,cumprod:122,cumsum:180,cumul:[124,146,160],cun:175,cur_group:126,cur_layer_idx:126,curat:[99,109,137,168],cure:52,curl:[12,25],curli:[166,167,188],curr_scor:55,currenc:38,current:[3,14,16,33,35,41,51,54,56,59,76,89,90,99,101,111,116,123,124,127,128,145,148,149,150,157,162,165,181,187],current_numb:165,current_posit:35,curriculum:[71,96,156,160,164],curtain:39,curv:[14,45,47,48,50,54,62,66,76,106,131,139,144,145,150,152,159,160,185],cusin:156,custom:[3,6,16,23,43,97,99,101,103,105,109,110,115,117,122,123,133,134,137,141,142,144,149,153,159,161,165,166,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],custom_callback:40,custom_exception_is_caught:165,custom_lay:127,custom_loss:122,cut:[39,50,144,152],cut_df:39,cutler:144,cutoff:128,cutoff_dist:152,cv2:[31,39,122],cv:[50,52,53,54,56,57,58,60,61,64,66,68,75,77,80,81,144,147,152],cv_cb:54,cv_fold:56,cv_gbc0:56,cv_gbc:56,cv_lgbm:54,cv_results_:[56,81],cv_ridg:66,cv_score:[56,64,80],cv_xgb:54,cvd:98,cvuychzptgtwqctglq450hqpjyevwjgw04zql3rg2wjbevooeqymmivpmiwybd:59,cycl:[45,53,58,98,103,109,128,131,134,135,148],cycler:131,d1:33,d3:174,d8ca7e:36,d:[1,14,17,25,32,37,38,39,40,48,50,51,54,59,63,65,66,68,77,79,80,90,100,105,106,109,113,114,116,117,120,124,125,126,127,130,133,134,135,137,139,140,142,144,145,150,152,162,164,166,169,171,173,174,176,178,180,181,187,188],d_:122,d_b1:125,d_b2:125,d_b3:125,d_b4:125,d_error:125,d_fake:125,d_g_z1:37,d_g_z2:37,d_i:116,d_layer_d_input:79,d_loss:[36,37,125],d_loss_fak:125,d_loss_metr:36,d_loss_real:125,d_model:129,d_opt:125,d_optim:36,d_pred_fak:125,d_pred_real:125,d_predict:144,d_real:125,d_var_list:125,d_w1:125,d_w2:125,d_w3:125,d_w4:125,d_x:37,da:32,dai:[8,14,39,44,49,50,52,98,99,101,110,131,135,136,141,149,159,160,167,168,181,189],daili:[1,8,14,38,99,109,131,136,159,167,168,185],daisi:165,damag:[89,90,105,165,166],damien:120,damn:135,danb:148,danceabl:[138,139,140],dancehal:[139,140],danger:[105,151],dangereus:105,daniel:137,daniil:135,dark:[109,137,170,181],darker:[50,99],darkgreen:[68,77],darkgrid:54,darrel:127,dasani:[139,160,161,162],dash:[97,152],dashboard:[96,99,133],dat:[49,75,99],data2:[50,117],data:[4,5,6,13,16,17,19,21,22,26,27,30,35,42,50,62,67,71,72,79,81,83,85,86,87,88,89,98,105,107,108,112,120,121,123,124,125,126,127,128,130,132,134,138,140,141,142,144,145,146,147,148,150,151,152,155,160,163,164,165,176,177,179,180,183,184,187],data_batch_:121,data_df:40,data_dir:[33,121,128,130,131],data_dmatrix:149,data_fil:[121,128,130],data_fold:125,data_format:129,data_i:[63,65],data_load:125,data_loc:121,data_nam:125,data_path:[36,44,68,77],data_prepar:44,data_sci:3,data_util:31,dataarrai:116,databas:[6,39,96,110,111,115,117,119,130,133,153,169,170,177],databrick:[96,98],dataconversionwarn:57,datadriveninvestor:120,datafi:109,dataflair:[99,168],dataflow:122,datafram:[1,8,14,17,22,23,24,29,30,31,36,38,39,40,44,46,47,48,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,68,75,77,81,83,106,107,118,131,139,140,148,149,152,153,156,157,158,160,161,162,172,181],datagen:[32,34],datajameson:33,datalira:39,dataload:[33,37,125],datanul:48,datapoint:[7,85,127,139,140,149,156],datasci:[103,134],dataset991:57,dataset:[1,2,4,7,9,10,13,14,15,17,18,19,20,23,24,25,26,27,34,36,37,38,40,44,49,50,52,53,54,56,57,58,60,61,62,63,64,65,66,68,69,71,75,77,81,83,85,95,99,100,107,108,109,110,111,113,114,115,116,120,121,122,123,125,130,131,133,135,137,138,139,140,141,142,145,146,148,150,151,152,157,158,159,160,161,162,168,170,176,178,181,185],dataset_991:57,dataset_path:[31,39],dataset_test:42,dataset_tot:42,dataset_train:42,datasets_nam:[29,31,39],datasets_respons:[29,31,39],datasets_save_path:[29,31,39],datasets_url:[29,31,39],datast:120,datastor:174,datastructur:166,datatyp:[7,48],date:[1,14,35,38,44,46,49,52,57,98,105,114,117,131,133,136,137,160,161,165,187],date_column:[38,44],date_rang:[14,38,44,117],date_split:35,date_train:[38,44],dateset:30,datetim:[1,14,38,40,117,160],datetime64:[38,131],datetimeindex:[38,117,131,160,162],datetimeindexopsmixin:117,datetimelik:117,daum:38,daunt:135,david:[90,125,134,137,152],davydov:137,day_of_year:160,dayofyear:160,db265359943e:120,db4o:174,db:[12,63,65,78,96,99,168,174,182,183],dbscan2:152,dbscan:139,dbscan_plot:152,dbscandbscan:152,dcab:[166,188],dcgan1:125,dd:162,de:[40,43,77,105,109,153,170],dead:165,deadlin:99,deal:[43,49,50,52,56,57,59,90,105,111,117,133,134,136,144,145,153,159,165,166,180,185],dealt:7,death:[1,8,14,22,98,105,136],death_ev:[9,97,98],deaths_dataset_url:14,deaths_df:14,deborah:133,debt:137,debug:[0,35,41,79,97,153,165,167],debug_log:[9,97],dec:[105,137],decad:[111,123,129,133,159],decai:[121,151,159,186],deceiv:[36,105,109,170],decemb:[49,52,156,160,169],decent:[63,65,121,135,146],decept:109,decid:[18,32,35,36,54,66,100,105,107,110,111,117,131,135,139,141,144,145,149,157,158],decim:[89,166,167,188,189],decion:57,decis:[3,11,47,48,49,52,53,54,56,59,60,61,62,68,77,98,99,101,103,107,109,110,111,123,124,133,135,136,137,140,141,142,145,148,149,150,157,158,159,168,170,178,180,185,186],decision_funct:[150,178],decisiontreeclassifi:[49,57,68,77,144,146,157,180],decisiontreeclassifierdecisiontreeclassifi:57,decisiontreeregressor:[50,58,144,146],decisiontreeregressordecisiontreeregressor:58,declar:[121,128,165,166,188],declin:[1,14,48,105,108],decod:[29,30,31,36,120,127,128,130],decode_raw:121,decoded_data:29,decoded_img:[29,30],decoder_b1:120,decoder_b2:120,decoder_h1:120,decoder_h2:120,decompos:89,decomposit:180,decompress:31,deconstruct:99,deconv:129,deconvolut:[120,127],decor:[117,181],decorate_with_div:[165,187],decorate_with_p:[165,187],decreas:[33,47,48,49,50,52,54,59,64,68,77,98,108,121,126,135,141,142,144,145,151,161,176],decres:146,dedic:[54,98],deduc:14,deem:66,deep:[16,29,30,31,32,33,34,35,36,37,38,39,40,42,44,47,48,50,62,75,98,113,116,117,120,121,125,126,127,128,129,130,132,135,136,137,151,164,175,183,184,186],deepcopi:31,deepen:[54,126,161,164],deeper:[7,13,17,19,48,50,98,103,113,126,135,142,150,151,156,157,160,171,178],deepfunnel:31,deeplabv3:127,deeplearn:159,deeplearningbook:120,deepli:[111,133,175],deeplizard:121,deepmind:159,deer:121,def:[1,3,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,43,44,47,48,49,50,51,52,53,54,55,56,57,58,60,63,64,65,66,68,75,76,77,78,79,81,89,90,91,117,120,121,122,124,125,126,127,128,129,130,131,136,141,144,146,150,152,153,156,158,166,173,176,178,182,183,184,187,189],default_n_init:140,default_target_attribut:57,defe:36,defect:[159,185],defenestr:[165,187],defin:[0,1,3,14,22,31,32,36,40,45,47,48,50,51,54,57,59,62,63,65,66,76,79,89,99,100,101,103,106,109,112,113,115,116,117,121,124,126,128,130,133,135,136,137,139,140,141,144,145,146,149,150,151,152,153,157,160,165,166,167,171,173,181,182,188],definit:[41,50,60,66,99,111,113,115,116,117,129,134,142,159,167,185,187],deforest:99,deform:126,degrad:[31,82,99,126,133,136,152,168],degre:[3,34,37,50,59,60,61,63,65,111,113,118,124,144,160,170,182],deje:137,del:[81,117,124,165],delai:[124,131],delet:[45,56,97,98,109,166,188],deliber:[164,167],delicassen:149,delicassesn:149,delici:[107,155,156],delimit:[31,38,180],deliv:[7,56,96,101,111,114,133,134,165],deliveri:[96,99,134,169],dell:101,delta:[47,55,59,122,165],deltamean:47,deltastd:47,deltatheta:124,demand:[7,49,52,96,98,108,131,133],demarc:140,demis:105,demo:[121,122,125,126,127,129,134,136,140,144,145,150,152,156,160,161],democrat:[99,109],demograph:56,demographi:136,demonstr:[3,8,18,41,45,47,48,59,62,69,106,113,114,116,134,139,142,144,160,162,164,165,166,173],demostr:32,dendrocygna:[106,172],deni:[50,109],denois:[120,122],denoise_model:122,denomin:[7,89],denot:[54,76,113,122,124,142,149,165,166,188],denounc:101,dens:[29,30,34,35,36,38,39,40,41,42,43,44,45,47,48,62,122,126,129,139,140,176,186],dense_1:43,dense_2:43,dense_3:43,dense_block:126,densenet121:127,densenet169:127,densenet201:127,densenet264:127,densiti:[4,48,113,122,139,141,144],deon:[28,109,170],deott:32,depart:[108,109,145,162,170],depend:[0,7,12,14,18,25,29,39,46,48,50,52,57,68,77,97,98,103,105,106,107,108,110,111,113,114,115,116,117,118,123,125,126,128,130,131,134,135,137,138,139,140,144,145,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,164,165,185],depict:[36,50,121,149],deploi:[5,10,20,41,43,88,95,96,97,98,109,123,126,134,136],deploy:[9,99,103,159,169,181,185],deploy_configur:[9,97],deprec:[62,116,117,152,180],deprecate_nonkeyword_argu:117,deprecation_mask:117,deprecationwarn:180,depth:[7,49,50,54,56,57,58,68,77,101,105,122,126,142,144,145,146,149,165,180],depth_multipli:126,depth_radiu:121,depthwis:[126,148,149],depthwise_separable_conv:126,depthwiseconv2d:126,dequ:35,der:126,dereferenc:116,deriv:[14,16,33,50,54,57,63,65,76,79,99,108,116,117,126,131,135,139,140,149,150,156,165,167,182,187],derivedclassnam:165,desat:131,desc:31,descend:165,descent:[33,45,49,54,68,77,78,79,122,126,135,146,149,150,157,160,178,182,183,186],descr:[57,58],descreas:56,describ:[1,2,9,11,21,28,38,40,45,47,48,49,50,51,52,53,56,57,58,59,61,64,68,75,77,79,80,85,97,100,101,106,109,113,115,116,117,118,126,129,131,133,134,135,139,145,148,149,150,165,174,176,180],descript:[0,9,28,50,57,85,97,98,116,117,122,128,135,153,159,165,166,167,171,185,186],description_vers:57,desert:135,deserv:113,design:[7,12,18,31,32,38,40,43,54,88,98,99,101,105,109,110,111,114,116,123,124,126,131,133,134,135,136,137,141,149,150,157,165,166,167,170,188],designated_hitt:113,desir:[34,89,103,109,111,116,124,134,159,165],desktop:[134,167],despin:[108,172],despit:[50,126,137],dest:131,destin:[116,133],detach:[33,37],detail:[7,11,14,16,26,29,41,50,54,57,68,71,77,82,98,101,107,110,113,114,115,117,121,127,134,135,136,142,145,146,148,151,157,159,160,165,167,173,180,185,189],detect:[43,46,47,49,50,59,60,61,64,99,109,114,117,123,133,135,139,144,151,159,165,168,185,187],detector:[159,185],detergents_pap:149,deterior:148,determ:32,determin:[22,32,50,51,54,59,68,77,89,97,98,103,111,113,116,117,118,121,124,126,130,134,135,137,139,140,142,145,150,151,156,159,160,161,163,164,165,166,171,173,174,178,185,186],determinist:[109,124,131],detr_structur:129,dev:[47,48,113,117,152,173],devast:108,devdoc:180,develop:[7,8,40,45,47,48,54,56,59,62,95,96,97,98,99,109,111,114,117,123,129,132,133,134,135,136,137,144,145,149,151,156,159,164,167,168,170,176,181,189],devi:[63,65],devianc:[56,146],deviat:[7,18,29,31,47,48,59,62,64,75,100,116,122,133,142,159],devic:[15,29,31,33,37,54,68,77,111,115,126,133,135,136,137,167],devicedataload:33,devid:56,devot:132,dexamethason:1,dexter:36,deza:164,df1:[22,117,173],df2:[22,51,117,173],df3:[117,173],df4:117,df5:117,df6:117,df7:117,df:[1,9,14,17,18,22,23,24,31,38,39,44,48,50,51,53,59,75,76,97,107,113,117,131,136,139,140,144,149,156,160,172,173,181],df____:24,df_attr:31,df_boxplot:24,df_corr:53,df_corr_i:24,df_corr_sex_with_i:24,df_desc:53,df_diff:14,df_filter:14,df_heat:53,df_hist:53,df_mean:24,df_null:53,df_pairplot:53,df_plot:24,df_rolling_mean:14,df_scale:44,df_scatterplot:24,df_sex_1:24,df_sex_2:24,df_std:24,df_train:[22,38,44,62],df_train_scal:44,df_valid:62,df_y:44,dfa:117,dfd:117,dfl:117,dfm:1,dfmt:1,dfmtp:1,dfrac:146,dfx:76,dfy:76,dg77ysplly4qtmh7trbd03p9nl1g:59,dhamaa:115,dhamaiusa4o:115,dhamaiusa4ohaaaaaaaaaa:115,dhariw:122,di:[22,59,98,109,166,170],diabet:[1,9,97,98,113,170],diabetes_progression_correlated_with_sex:24,diagnos:[1,8,43,45,159],diagnosi:[109,170],diagnost:30,diagnoz:185,diagon:[18,113,116],diagram:[1,5,8,18,50,59,103,112,113,121,133,140,147,148,149,150,152,160,170,171],diamond:165,dibia:29,dice:[113,117],dickinson:[99,168],dict1:90,dict2:90,dict3:90,dict4:90,dict5:90,dict6:90,dict7:90,dict:[1,3,22,39,80,106,121,124,126,129,131,152,166,167,172,180,186,188],dict_1:187,dict_2:187,dictat:[7,114,123],dictionari:[17,23,75,116,117,137,144,165,173,187],dictionary_for_string_kei:[166,188],dictionary_via_constructor:[166,188],dictionary_via_express:[166,188],did:[7,16,18,27,40,45,50,52,53,54,55,60,61,68,69,75,77,101,105,106,109,113,114,135,139,140,145,149,152,153,157,161,162,166,167,180],didn:[43,48,56,58,60,68,77,114,117],diego:125,diet:98,dietmar:137,dieu:[40,43,77],dif:14,diff:14,diff_seri:14,differ:[1,3,4,7,8,11,12,13,14,18,30,31,32,33,34,39,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,63,65,66,68,72,75,76,77,79,81,89,95,96,97,98,99,101,103,105,106,107,108,109,110,111,113,114,115,116,120,121,122,123,124,126,127,128,129,131,133,134,135,136,137,138,139,140,141,142,144,145,147,149,150,151,152,156,157,158,159,160,161,162,163,164,165,166,167,173,174,176,179,185,187,188,189],differenti:[21,96,120,121,126,135,145,149,150],differnt:55,difficult:[30,32,62,113,135,137,144,145,150,165,180],difficulti:[50,111,130,134,145],diffusion_models_tutori:122,difuss:122,dig:[13,19,82,106,156,157,160,162,172],digit:[16,29,31,32,41,47,79,89,99,105,109,120,133,136,152,166,168,170,180,186],digitdata:47,dilat:[126,127],dilation_r:[126,127],dilemma:109,dim:[33,120,122,186],dim_z:31,dimens:[7,29,33,43,48,59,106,114,116,120,121,122,123,126,133,150,159,185,186],dimension:[29,30,33,40,41,43,45,60,61,80,117,120,126,139,145,150,180],dimensions:33,dimenss:80,diment:[63,65],dimi:31,diminish:48,dimx:31,dioxid:48,dip:64,dir:[56,121,152,165],direct:[7,41,81,101,117,120,121,124,128,137,146,160],directli:[1,7,14,30,31,41,62,66,96,97,98,101,114,115,116,117,124,126,131,133,135,142,144,165,166,176,188],directori:[33,36,37,38,39,51,68,77,98,100,114,115,121,128,130,153,165,167],dirnam:[31,51,56,121],dirpath:31,dirti:[48,114],disabl:[106,108,144,165,166,172,188],disable_v2_behavior:[125,130],disadvantag:[31,49,150],disambigu:137,disappear:[126,161],disast:96,disc_num_var:54,discard:[47,117,149,166,188],discern:139,disciplin:[3,111],disclosur:109,discount:[35,124],discourag:116,discov:[3,4,13,19,21,36,47,100,103,105,106,108,109,110,111,112,114,119,135,138,139,157,161,162,163,164,171],discover:133,discoveri:[101,110,133],discret:[50,54,59,113,116,122,124,144,145,159],discrimin:[109,137,150,166,176,178],discriminator_opt:36,discriminator_verdict:36,discuss:[1,3,4,7,11,18,28,48,50,98,101,109,111,113,114,116,117,132,133,135,137,139,141,148,149,164,165,173],diseas:[8,14,98,99,136,156,159,161,164,185],dish:156,disk:[12,14,25,98,134,152],dislik:101,disord:108,dispar:137,dispers:[122,126,180],displai:[3,7,14,29,30,33,37,39,40,41,43,45,47,48,49,52,55,57,58,59,60,63,64,65,68,77,79,106,107,108,111,117,118,120,121,124,125,127,152,153,156,160,161,162,164,174],display_commandlin:124,display_imag:60,display_list:127,display_nam:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158],display_stat:39,display_statu:125,display_step:120,display_t:166,displaycallback:127,displi:46,disregard:120,dissatisfact:111,dissemin:109,dissert:137,dissimilar:50,dissoci:145,dist:54,distanc:[59,81,122,139,140,150,152,158,160,180],distance_down:124,distance_left:124,distance_right:124,distance_up:124,distant:[140,150],distinct:[51,54,124,137,142,152,156],distinctli:105,distinguish:[7,36,50,111,116,125,150,176,178],distort:106,distort_imag:121,distplot:[54,56],distract:148,distribut:[3,7,22,30,31,45,47,48,49,50,55,56,61,64,68,77,80,89,90,99,105,109,111,122,124,125,126,129,130,133,134,135,137,141,144,145,149,150,151,152,156,159,161,162,165,166,176,186],div:[3,22,153,156,160,165,187],dive:[7,16,50,98,99,108,117,135,137,159,160,172,185],diverg:[47,48,135,140],diverging_palett:38,divers:[99,109,133,134,138,155,159,185],divid:[14,25,31,36,40,41,47,50,59,68,77,79,89,106,109,111,113,115,116,118,121,123,126,133,135,139,140,141,142,144,153,157,158,159,161,166,170,174,185,188],divis:[14,47,89,116,121,135,150,165,166,167,173,187,188,189],divisible_by_2:116,divisor:[39,89],divorc:105,dl:[33,79,144,185],dll:187,dm:[59,103],dmatrix:[66,149],dmitri:[14,96,126,160],dna:99,dname:121,dnn:123,do_glob:165,do_loc:165,do_nonloc:165,do_noth:165,doc:[26,40,41,43,62,71,87,97,101,107,108,115,117,157,165,166,174],docker:[35,51,134],docloud:187,docstr:[75,79,117,165],doctyp:[3,15,153],document:[3,5,7,10,16,25,26,38,40,49,57,68,69,71,77,89,90,92,96,97,98,99,106,108,111,116,117,121,122,133,136,137,139,140,141,149,157,164,166,174,188],documentdb:174,docutil:160,docx:38,doe:[1,3,5,7,14,16,17,30,31,32,33,41,43,47,48,49,50,52,54,57,58,59,60,66,68,75,77,79,80,88,89,90,99,101,105,108,109,111,113,114,115,116,117,125,126,127,129,131,135,137,139,144,145,146,148,149,152,153,156,157,159,160,161,162,165,166,167,174,180,189],doesn:[7,26,31,32,33,39,49,52,56,57,58,64,66,68,77,79,90,101,106,110,116,117,125,131,133,144,146,149,158,165,166,187,188],doesnt:54,dog:[15,117,121,126,159,165,176,187],dogwithsharedtrick:165,dogwithtrick:165,doi:[14,137],dollar:[50,75,129],domain:[7,11,16,49,54,56,98,99,111,112,125,135,140,162,170],domin:[68,77,139,148,189],domino:174,don:[0,7,31,32,34,40,41,43,48,49,50,52,53,56,57,58,59,60,68,77,96,97,98,99,100,101,103,117,118,120,123,131,133,135,148,151,152,153,159,161,165,166,167,168,187,188],donald:[89,167],done:[1,3,7,14,25,35,36,40,43,49,50,52,54,56,61,79,97,98,105,107,115,116,117,118,120,121,131,134,139,142,145,149,151,152,153,160,165,166,167,174,181,188],donli:139,donn:22,donoghu:133,donut:[27,105],door:[57,58,159],dosag:[1,8],dot:[18,30,50,63,65,78,79,108,141,144,145,152,164,165,182,183,187],dou:137,doubl:[32,50,115,139,166,167,188,189],double_quote_str:[166,188],doubled_vector:[166,188],doubt:[97,98,137,145],doug:173,doughnut:107,douyupccli:38,down:[14,26,30,45,49,50,51,52,59,68,77,79,81,89,98,101,103,124,126,133,134,144,145,151,158,159,166,171,185,188],down_shifted_imag:81,down_stack:127,download:[1,3,12,25,36,37,38,47,48,57,58,68,77,79,98,111,115,116,121,122,125,126,127,128,130,152,157,162,167],download_fil:[9,97],download_read_data:[68,77],download_root:152,download_url:33,downsampl:[29,30,122,126,127],downsid:[57,58,131],downstream:133,downward:[105,122],dozen:[32,62,98,136],dp0dtheta:124,dp1dtheta:124,dp2dtheta:124,dp3dtheta:124,dp_dtheta:124,dpi:[140,152],dprobability0_dweight:124,dprobability1_dweight:124,dprobability2_dweight:124,dprobability3_dweight:124,dqn:124,dqnagent:35,draft:135,drag:[7,98,107],drain:159,dramat:[101,148],drastic:[54,126,135,180],draw:[1,3,8,14,18,31,49,50,52,59,60,61,68,75,76,77,106,107,108,111,113,120,124,141,145,150,153,159,160,164],drawback:[140,166],drawn:[49,105,113,135,141,176],dream:121,dress:[30,40,41],drewconwai:[112,170],drift:136,drive:[45,47,48,99,101,103,109,121,123,127,129,133,137,153,159],driven:[0,99,109,111,124,133,136,137,168],driver:[17,23,109,159],drop:[14,31,32,38,39,41,46,47,48,49,50,51,52,53,54,56,57,59,61,62,64,67,68,75,77,98,107,111,114,116,117,121,128,131,141,142,146,148,149,151,152,153,156,157,158,160,161,162],drop_column:14,drop_dupl:[46,114],drop_remaind:[44,122],drope:124,dropna:[7,38,46,54,66,114,117,131,146,148,153,160,161,173],dropnan:38,dropoff:[99,168],dropout1:126,dropout2:126,dropout:[30,33,34,36,39,42,44,79,120,121,125,126,127,130,135,176,186],dropout_keep_prob:130,dropout_r:126,dropoutlambda:47,drug:99,ds:[35,38,44],ds_train:122,ds_wordcloud:3,dset:37,dsse:59,dt:[38,59,116,160],dtest:66,dtl8folder:38,dtrain:[56,66,149],dtrain_predict:56,dtrain_predprob:56,dtree:144,dtyp:51,dtype:[7,14,22,24,31,33,35,38,43,48,51,56,57,58,59,60,61,64,66,75,107,114,116,117,121,122,126,128,129,130,131,139,140,142,144,149,152,156,157,160,173],dual:[68,77,105],dual_sim:[68,77],dube:133,duc:126,duca:174,duck:[89,106,172],due:[14,18,50,54,99,108,116,123,124,126,129,135,136,141,142,144,145,146,150,151,168,180],duel:105,dummi:[22,66,79,131,165],dummy_inst:165,dummyclass:165,dump:[9,81,97,139,153,187],dumpstack:38,duplic:[38,117,118,133,141,159,165,174],duplicate_kei:90,durabl:133,durat:[37,99,153,168],duration_histori:124,dure:[11,14,36,39,40,41,43,49,50,52,54,57,59,60,61,62,79,89,98,101,108,116,118,123,126,127,131,133,135,136,141,142,148,149,150,151,159,162,165,166,185,186,187],dutch:[167,189],dw:[63,65,78,182,183],dx:[31,113,122],dy:31,dy_pr:79,dynam:[111,131,134,165,167,187],dynamic_rnn:130,dynamodb:174,e024722:133,e23479:133,e24pc6fwtijzssqxp7ns3yqhydnshpycubsxuoacrqlpxngqdrjyenbdec6vi9bmnn0izuzie3eokikdk:59,e2:126,e2ab30:36,e5ni7of:59,e87ckhmr4qc:59,e:[1,3,8,14,16,33,35,36,39,42,49,50,51,52,54,55,59,63,64,65,68,77,79,89,90,98,99,109,110,111,113,114,116,117,120,122,124,125,126,129,130,133,139,141,145,146,151,152,157,159,160,161,165,166,168,170,173,176,180,182,185,186,187,188,189],e_1:141,e_:[122,144],e_n:141,e_x:141,e_z:144,each:[1,6,7,11,14,16,21,22,29,30,31,32,33,35,36,37,39,40,41,43,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,68,75,77,79,80,81,87,89,90,98,99,101,103,105,108,109,110,111,113,114,115,116,117,118,121,122,123,124,125,126,127,129,131,133,134,135,136,139,140,141,142,144,145,147,148,149,150,151,152,158,159,160,161,162,165,166,167,168,173,174,178,180,181,182,186,187,188],eagerli:151,earli:[40,50,56,57,59,97,109,144,148,149,159],earlier:[7,29,40,46,50,54,79,88,97,98,99,114,117,131,140,145,152,155,156,161,166],early_stop:[40,148],early_stopping_round:[66,149],earlystop:[39,40,44],earn:110,earth:[59,99,165,168,189],eas:[98,114,164],easi:[0,7,31,36,40,43,46,47,49,50,52,59,98,101,108,109,110,113,114,116,117,123,131,134,135,136,141,144,150,151,161,167,173,174,180,181,189],easier:[1,31,40,41,50,53,58,72,79,98,99,101,109,110,114,126,131,135,151,162,165,166,169,187,188],easiest:[14,40,113,116,135,180],easili:[1,7,26,39,45,46,47,49,50,57,58,59,61,68,77,101,105,108,114,116,117,125,133,134,135,136,137,142,144,152,161,181,183,184],eastwood:89,eat:[162,167,189],ebner:137,ebook:109,ecg5000:29,ecg_autoencoder_model:29,ecg_autoencoder_model_nam:29,ecg_autoencoder_model_respons:29,ecg_autoencoder_model_save_path:29,ecg_autoencoder_model_url:29,ecg_extract_path:29,ecg_zip_file_path:29,echo:[106,134,135,165],echo_funct:165,ecolog:105,econom:[50,99,109,131,168,170],econometr:50,economi:7,ecosystem:[99,153],ed:1,eda:[17,97,100,120],ede9d:36,edg:[15,98,115,130,166,174],edgecolor:[50,80,150,152,178,180],edibl:[107,172],edibleclass:[107,172],edit:[3,106,107,108,117,164,181],editor:[23,167,181,189],edu:[58,90,101,103,121,126,130,137,171,187],educ:[11,50,51,99,101,152,168],education_level:56,education_num:51,effect:[7,34,39,45,49,50,52,53,54,56,57,62,75,98,105,109,111,116,117,118,126,127,129,133,135,136,137,139,141,145,149,150,151,159,160,165,166,167,169,170,176,185,188],effectiviolog:101,effici:[30,32,54,59,96,98,103,111,116,117,120,123,126,131,135,141,144,149,165,167,169,171],effort:[98,99,101,110,135,168],eg8djywdmyg:156,eg:[3,7,113,160],egg:[165,166,187,188],ehealth:133,ei:55,eight:[81,131],either:[3,7,14,22,29,40,43,45,47,48,49,52,57,97,101,113,116,117,123,127,129,131,133,135,136,137,139,142,144,151,157,159,165,166,167,185],ejection_fract:[9,97,98],ejtdl1tzr2vxnvlm4pwxei:59,ekf6iw6gti6:59,el:[56,137],elabor:8,elaps:122,elast:145,elasticnet:[66,151,160],elasticsearch:174,elbow:152,elec_data:[49,52],elec_df:[49,52],electr:[49,52,54],electrocadriogram:29,electrocardiogram:29,electron:[68,77,98],eleg:167,elem:[166,188],element:[7,13,14,18,19,29,33,39,43,50,68,77,79,89,106,110,113,115,117,121,122,126,128,137,141,144,164,165,167,173,181,186,187,188],elementwis:[33,79],elev:[80,150,178,180],elif:[35,37,39,81,90,117,121,124,127,129,165,166,187],elimin:[28,66,99,109,166,168],elkan:152,ell:[50,141,144],ellips:151,ellipsi:116,ellipsoid:180,els:[1,7,24,31,33,35,37,38,39,41,50,51,54,55,57,58,78,79,81,90,91,96,116,117,118,121,122,124,125,126,127,128,129,130,152,165,166,167,183,187],elsevi:48,email:[2,100,101,110,156,159,181,185],email_df:2,emam:137,emb:[59,122,130,134,156],embark:[22,146],embarked_v:22,embarked_val_:22,embarked_val_c:22,embarked_val_q:22,embed:[30,120,122,123,126,128,129,130,134,136,159,165],embed_dim:126,embedding_dim:122,embedding_lookup:[128,130],embedding_mat:[128,130],embedding_output:[128,130],embedding_s:[128,130],embodi:130,embrac:[159,167],emerg:[111,153],emerson:101,emili:[99,168],emiss:59,emit:124,emot:[109,116,117,171],empath:101,emphas:[99,139],emphasi:54,empir:[50,111,145],emploi:[32,36,49,54,59,81,98,144,159],employ:[56,113],employe:[6,50,56,109,165,173,187],empow:132,empti:[3,7,14,24,31,40,49,53,89,90,110,114,116,117,120,152,160,165,166,173,181,188],empty_tupl:166,emrebulbul23:35,emreustundag:176,emul:174,en:[3,15,30,103,106,109,115,121,134,137,166,170,172,174],enabl:[0,7,29,41,59,97,98,105,114,117,121,126,129,133,141,144,153,156,159,169,185],enable_categor:[66,148,149],enable_early_stop:[9,97],encircl:167,enclos:[165,166,187,188],enclosedporch:54,encod:[9,22,29,30,31,47,48,49,52,54,57,61,64,68,77,97,120,121,127,130,135,140,146,153,159,160,185],encoded_c1:22,encoded_column_nam:22,encoded_column_name_prefix:22,encoded_data:29,encoded_img:[29,30],encoder_b1:120,encoder_b2:120,encoder_h1:120,encoder_h2:120,encoding_dim:30,encompass:7,encount:[7,34,46,101,109,113,114,139,167,187],encourag:[3,109,145],encrypt:[103,133,171],encyclopedia:111,end:[3,7,29,31,32,33,35,38,40,43,46,50,52,53,54,57,58,60,61,64,68,77,81,98,99,100,103,105,108,109,111,113,114,116,117,121,123,124,126,127,131,134,136,137,141,142,144,145,149,151,152,158,165,166,171,173,182,187,188],end_slic:117,endang:[106,172],endpoint:[111,169],endswith:[31,152],energet:139,energi:[68,77,138,139,140],enforc:[99,109,111,116,168],engag:[99,101,135],engin:[14,18,31,38,47,56,98,109,116,117,123,127,131,134,135,137,139,145,151,153,159,173,174,185,189],english:[135,166,188],enhanc:[105,106,108,159,173,185],enjoi:[105,139,189],enlarg:[127,145],enorm:[7,114,150],enough:[7,31,33,39,45,47,48,58,60,61,68,77,89,96,98,100,103,108,109,113,116,122,126,135,145,150,151,159,161,166,167,185],enrich:133,enrolled_univers:56,ensembl:[50,51,52,53,56,57,58,62,68,77,132,135,142,144,145,147,148,149,157,159,180],ensur:[31,33,47,48,101,103,105,106,109,110,114,116,118,126,130,133,134,135,149,151,152,158,164,170,171],entail:98,entangl:137,enter:[38,48,51,92,98,111,124,165,167,177,183,184,187],entertain:117,entir:[31,32,101,106,109,116,126,127,131,135,136,137,145,150,152,153,162,165,166,170,188],entireti:[103,171],entiti:[1,110,115,137,174],entri:[7,15,38,46,59,60,75,114,116,122,133,139,149,151,156,160,165],entropi:[36,121,122,125,142,144,146,150,151,157],entry_script:[9,97],enumer:[1,34,37,39,54,64,113,117,120,121,122,124,125,126,128,152,158,160,165,180,183,184,187],env:[0,35,89,90,117,157,161],env_test:35,envi:105,environ:[9,35,39,45,47,48,51,57,58,60,61,66,96,97,98,99,101,117,126,134,148,149,152,159,160,163,165,168,185],environment:98,environment_debug:35,envis:161,enzym:98,ep:[31,126,152],epic:38,epidem:[14,116],epidemiolog:136,episod:35,epistolari:105,epoch:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,62,79,122,125,127,128,130,133,135,146,151,176,186],epoch_acc:33,epoch_count:35,epoch_end:33,epoch_loss:33,epoch_seq:130,epoch_tim:37,epr:55,epsilon:[35,61,122,126,145],epsilon_decai:35,epsilon_min:35,epsilon_t:145,epub:128,epwxzn7xbrcqomkhcf8velmika8h865zrcf5vpp239awmfgsm7vlsy3zpqzij:59,eq:48,equal:[7,14,18,22,24,33,47,48,50,54,59,68,77,80,89,113,115,116,117,121,122,130,131,135,136,137,141,142,144,145,148,151,152,159,162,164,165,166,187,188],equal_var:[18,113],equat:[55,59,122,131,145,146,160,166],equilibrium:[36,125],equip:[103,111,134],equiprob:141,equit:[109,170],equiv:[15,117],equival:[7,31,47,75,116,117,126,131,133,135,145,165,166,186,188],era:137,eras:1,erasur:109,eratosthen:89,erc20:38,erencan:183,eric:137,eros:137,erp:133,err:[117,141],errd:37,errd_fak:37,errd_real:37,errg:37,erro:43,erron:106,error:[0,1,7,29,35,37,39,40,43,45,47,48,49,50,51,54,55,57,61,63,65,66,80,99,113,116,117,126,130,131,133,134,135,137,142,144,145,147,148,149,150,151,152,160,161,166,167,178,179,182,188],errormsg:47,errr:[53,58],erwo:89,es:174,escap:[166,188],especi:[43,49,62,66,101,105,106,107,111,133,134,135,144,145,149,152,158,159,165,176,185],essai:26,essenc:50,essenti:[1,7,50,96,98,111,114,125,128,145,157,173],establish:[7,33,68,77,96,109,127,131,135,140],estim:[18,49,50,52,53,54,56,57,58,59,60,61,64,79,81,98,101,106,110,111,113,116,124,135,136,137,139,140,141,144,148,150,152,158,160,164,172,179,183,184],estimators_:142,estonia:189,et:[31,35,109,137],eta:66,etc:[7,28,31,33,41,45,49,50,56,68,75,77,99,111,113,116,117,123,127,129,133,134,135,136,137,142,144,145,159,165,167,168,171,172,173,185],ethic:[99,103,112,133,137],ethiko:109,etho:109,ethos3:101,etl:133,euclidean:[89,139,180],euclidian:152,eugen:137,eumskiuekkeicr7ucbqntigtiqukhfk9r3ugcoxgjfgagytsqotjgkqreoppi37rrzisckqbihtgxt8maj9gkxaevmew12mhvkqhsc2hiykqkquwaxulrth6kepmuniqjr8lxka81jbqlyqwwtwos0joleq1:59,european:109,ev:[50,141],eva:[115,174],eval:[31,33,40,121,130],eval_epoch:31,eval_epoch_va:31,eval_everi:[121,128],eval_i:121,eval_index:121,eval_indic:121,eval_input:121,eval_input_shap:121,eval_metr:[66,148,149],eval_set:148,eval_target:121,eval_x:121,evalu:[29,33,36,50,59,66,81,99,100,103,109,114,116,117,121,122,126,128,134,141,142,144,145,148,149,150,151,152,159,164,165,166,167,168,170,178,179,180,185,188],evaluate_on_last_n_it:152,evaluation_s:121,evan:127,evanesc:[107,172],evauat:60,even:[1,3,7,18,33,41,46,48,50,60,62,64,66,68,77,89,96,101,105,107,108,111,113,114,116,117,123,124,131,133,134,135,136,137,139,141,144,145,148,152,158,159,160,161,164,165,166,173,180,181,185,187,188],even_numb:[165,187],evenli:[116,135],event:[89,90,96,113,117,133,134,136,165,166,170],event_nam:134,eventu:[54,133,141,174],ever:[79,97,115,118,159,166],everi:[3,7,33,37,40,43,47,49,52,56,59,62,64,79,101,109,110,111,114,115,116,117,118,122,124,126,127,128,131,135,136,142,144,145,146,149,151,152,159,165,166,167,175,180,181,185,188,189],everydai:[50,111,145],everyon:[96,101,115,136,145,156,180],everyt:145,everyth:[7,50,61,98,100,101,115,117,118,121,128,131,132,135,139,145,159,165],everytim:43,everywher:[111,160],evid:[17,18,54,101,111,113],evok:101,evolv:[1,96,108,134,149],ex:[38,54,106,109,159,172],exact:[68,77,97,113,133,135,141,142,145,150,151,178],exactli:[1,7,50,75,99,101,103,113,116,117,123,126,130,135,145,146,159,164,165,187],exagger:50,exam:182,exam_model:182,exam_scor:182,examin:[7,29,41,46,59,61,114,139,141,149,159,160,173,182],exampl:[1,2,3,7,14,16,18,19,26,28,30,31,32,33,35,38,39,40,41,43,45,46,47,48,49,51,52,56,57,59,64,68,75,77,79,90,98,99,100,101,103,105,106,108,109,110,111,113,114,115,117,118,120,121,123,125,126,127,128,129,130,133,134,135,136,137,139,141,144,147,149,150,152,153,156,158,160,161,162,164,165,166,167,168,173,175,176,186,187,188,189],example1:[7,114],example2:[7,114],example3:[7,114],example4:[7,114],example5:7,example6:7,example_batch:121,example_tensor:43,exce:151,excel:[23,25,29,99,107,110,115,127,150,168,172,178],except:[3,9,14,22,24,30,31,43,45,47,48,49,50,53,63,65,90,97,108,116,117,121,123,126,128,129,144,145,146,159,166,167,186,188],exception:133,exception_has_been_caught:165,exception_has_been_handl:165,exception_is_caught:165,exception_messag:165,excerpt:79,excess:[59,165],exchang:[101,109,134,153,171],excit:[50,101,111,121,130,159],exclaim:135,exclud:[54,90,116,117,148,152,164,166,188],exclude_word:90,exclus:[96,142,165],execut:[0,3,12,14,18,22,24,25,47,53,54,68,77,89,90,95,96,97,98,101,103,106,107,108,116,123,124,132,133,134,137,138,139,140,151,152,154,155,156,157,158,160,165,166,167,187],exemplari:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,82,85,86,87,88],exercis:[0,3,12,33,47,85,114,133,151,160,167],exhaust:[113,144,165],exhibit:[88,113,126,135,165],exhuast:56,exist:[1,7,9,14,29,30,31,33,37,39,41,45,47,50,54,56,59,64,66,79,90,97,98,99,101,109,110,111,113,115,117,121,128,130,133,134,135,136,137,139,141,142,145,151,159,165,166,168,173,174,187,188],exist_ok:[36,37,152],exit:[133,167],exogen:124,exot:[145,148],exp1:116,exp2:116,exp:[31,50,54,78,79,116,117,122,136,144,145,146,150,173,178,183,184],expand:[7,114,115,116,144,145],expand_dim:[36,41,44,116,121,128,182],expans:[150,165],expect:[7,33,35,41,47,48,51,57,75,79,88,106,111,113,114,116,117,124,134,135,141,145,160,162,165,167,189],expect_result:14,expected_df:22,expected_diff:14,expected_output:[14,90],expected_result:[14,22,90],expected_sequ:90,expected_sorted_list:90,expectil:145,expedi:124,expend:98,expens:[33,49,50,56,68,75,77,98,117,123,131,133,134,147,162,181],experi:[1,14,16,28,35,40,41,45,47,48,50,98,99,101,105,106,107,109,111,113,114,126,127,134,135,136,145,148,159,161,172,182,185],experienc:[28,109],experiment:[35,47,126,164],experiment_nam:[9,97],experiment_timeout_minut:[9,97],expert:[49,50,101,109,135,136,137,152],expertis:[98,99,111,135,136,168,170],expir:133,explain:[5,8,24,26,33,41,50,54,69,71,76,82,86,99,101,103,109,116,117,121,134,135,137,140,142,150,151,152,157,159,160,168,170,175,180],explained_variance_ratio:180,explained_variance_ratio_:180,explan:[10,20,24,45,47,98,109,117,137,145,151,166,188],explanatori:[24,106,148,160],explic:57,explicit:[116,117,165,180],explicitli:[79,116,117,124,140,159,165,185],explod:[51,128,135],exploit:152,explor:[9,18,23,28,35,45,47,54,60,80,95,96,97,98,99,101,102,103,104,107,108,109,110,117,118,132,134,136,139,141,145,147,150,151,153,156,158,159,160,161,162,164,168,171,174,181],exploratori:[17,68,77,97,120,171],expm1:66,expn:116,exponenti:[54,116,121,145,166,167,188,189],exponential_decai:121,expos:[54,99,109,117,136,170],expose_map:54,exposit:101,exposur:[101,109],express:[1,8,22,30,36,44,45,47,48,79,89,90,101,113,116,117,128,133,141,145,159,160,161,166,167,170,182,185,187,188],extend:[33,99,109,116,134,135,144,145,159,165,166,185,187,188],extens:[0,18,40,95,96,97,98,104,105,106,107,108,135,138,139,145,151,152,154,155,156,157,158,164,167,174,186,187,189],extensionarrai:117,extent:[113,126,150,152],extercond:54,exterior1st:54,exterior2nd:54,extern:[96,109,110,113,137,170],exterqu:54,extinct:[106,172],extra:[18,49,50,116,121,134,142,145,149,159,166],extract:[3,8,31,32,33,38,41,44,54,96,110,111,116,117,121,122,123,126,127,132,133,135,159,162,170,185],extract_fold:121,extract_net_info:121,extract_path:[29,30,31,39],extractal:[29,30,31,33,36,37,39,121],extracted_text:3,extractor:3,extrapol:[50,144],extratreesclassifi:144,extratreesregressor:144,extrem:[48,54,56,113,126,134,145,155,174],extremli:80,ey:[30,79,105,108,135,151,175,176,182],eyeglass:31,eyeglasses_data:31,eyeglasses_id:31,f0:116,f10:142,f1:[40,47,52,57,60,68,77,116,142,146,157,158,161],f1_score:146,f2:[116,142],f2ac792482e3:174,f35:59,f3:[116,142],f4:[116,117,142],f4bafb1ea019:152,f50duri2g6yv8pzu8ii:59,f5:142,f6:142,f7:142,f821:[165,166],f8:[116,142,173],f92ym7eqlakp9nle0rysqk8ksmqlcngjqoegdbg0angjq4daqst67cxfikzwsnwtu5ajx80rqf:59,f9:142,f:[0,1,3,9,14,18,24,29,30,31,33,35,37,38,39,45,47,48,50,51,55,64,76,79,81,89,90,97,105,113,116,117,120,121,122,124,128,131,139,141,142,144,145,146,149,156,157,160,166,167,173,181,188],f_0:145,f_:144,f_i:145,f_t:[128,145],fa:[54,124],face:[31,36,39,96,99,101,117,121,123,127,134,163,167,168,170,173,176],facebook:[109,137,170],facecolor:[36,80,150,152,178,180],facemask:[159,185],facet:105,facetgrid:[108,139,161,172],facial:[99,117,168],facil:[116,165],facilit:[53,116,165],fact:[1,4,14,18,19,39,40,43,49,50,52,57,58,62,68,77,100,105,106,107,109,110,111,113,116,118,125,138,140,141,144,145,150,151,152,157,159,161,162,165,166,183,184,185,186],factor:[50,53,54,63,65,68,77,89,96,98,108,122,126,134,141,142,144,150,151,159,165,178,183],factori:[89,96,103],fad:38,fadahunsi:133,faddfvgmmfhrdfp8aynqhtsioeg5b9f3k6nlgsbrsgtcefmco:59,fail:[1,16,47,48,50,59,61,68,77,90,109,123,133,135,159,165,170,185],failur:[9,29,95,121,134],fair:[52,57,58,68,77,99,109,111,121,135,138,141,149,168,170],fairlearn:99,fairli:[33,49,109,121,152,170],fairseq:122,fairytal:160,fake:[36,37,125,159,176],fake_label:37,fake_samples_epoch_:37,falcon:117,fall:[41,45,47,48,62,64,96,101,106,113,116,117,144,156,159,160,165,185],fallaci:101,fallback:135,fals:[1,3,7,9,14,18,22,24,29,30,31,33,35,36,37,38,39,40,41,46,49,51,52,53,54,56,57,64,66,68,75,77,79,81,89,97,98,106,108,113,114,116,117,121,124,126,127,128,129,131,135,137,141,144,148,149,150,152,156,157,158,161,165,166,167,172,173,176,178,187,188,189],false_boolean:[166,188],false_positive_r:59,falsehood:167,famili:[5,22,101,106,107,115,132,145,149,153,158,172,174],familiar:[28,59,62,99,106,115,117,118,141,146,151,160,161,167,168],family_s:22,family_size_max:22,familys:22,famou:[134,148],fan:[99,167],fan_out:129,fanci:[66,111,173],faoconnor:133,far:[4,7,17,31,36,40,56,64,68,75,77,106,113,114,121,122,139,149,150,152,159,160,166,178,182,186],fare:[22,146],fare_add_averag:22,fark:35,farlei:[125,134],farmer:141,farsight:124,farther:[75,139],fascin:[107,109,163],fashion:[20,29,30,95,97,98,99,106,116,123,126,149,160,165,180],fashion_classifi:40,fashion_classifier_21:40,fashion_classifier_22:40,fashion_classifier_23:40,fashion_classifier_24:40,fashion_classifier_2:40,fashion_classifier_3:40,fashion_classifier_4:40,fashion_classifier_vi:40,fashion_mnist:[29,30,40,41],fashion_test:40,fashion_test_label:40,fashion_train:40,fashion_train_label:40,fashon:30,fast:[7,36,40,41,45,48,50,75,98,103,116,117,134,149,159,166,171,173,181],fastai:55,fasten:54,faster:[36,45,47,49,53,54,59,68,77,79,111,116,134,148,149,152,159],fastest:[116,149,152],fastforwardlab:120,fastgfil:121,fatal:[8,14,165,187],fater:49,father:64,fault:134,favipiravir:1,favor:[144,145,151,159,167],favorit:[97,110,113,117],favorite_hobbi:90,fayyad:50,fc1:31,fc21:31,fc22:31,fc3:31,fc4:31,fc:[68,77,107,172],fcn:129,fcos_structur:129,fe:135,feasibl:[98,135,137,141,149],feat:121,feat_df:52,feat_dict:53,feat_imp:56,feat_import:[52,53],feat_map:75,featuir:54,featur:[7,9,16,20,22,30,31,33,34,38,39,40,41,44,45,49,58,60,61,62,63,64,65,66,79,81,97,98,100,109,110,111,115,116,117,120,121,122,123,126,127,129,134,136,141,143,144,145,147,150,151,153,156,157,161,164,165,166,169,173,180,182,186,188],feature_1:131,feature_2:131,feature_column:80,feature_df:156,feature_fract:54,feature_fraction_se:54,feature_importances_:[51,52,53,56,142],feature_indic:142,feature_nam:[7,40,57,58,114,142,180],feature_num:121,feature_rang:[38,42],feature_scor:51,feature_typ:66,featurecolumn:45,featureidx:47,featuremap:129,featurespr:45,februari:[135,167,171,174,189],fed:[31,41,49,51,59,117,126,130,141],feder:109,feed:[3,31,32,39,40,43,54,57,79,111,116,121,123,131,137,152,159,185],feed_dict:[121,124,125,130],feedback:[101,132,134,137],feedforward:[123,126],feel:[3,7,101,122,139,162,167,171],feet:66,fell:165,femal:[22,56,99,159],feminin:105,fenc:[54,66],fence_map:54,fenugreek:156,fernandez:113,fetch:[57,180],fetch_california_h:75,fetch_dataset:31,fetch_openml:[57,58,152],few:[1,7,9,14,36,39,40,41,43,45,46,47,48,50,52,57,58,59,61,66,68,77,79,85,97,98,99,100,101,103,106,108,109,113,114,115,116,117,121,126,127,128,131,132,134,135,136,139,140,145,148,149,151,152,153,159,161,165,166,173,176,185],fewer:[3,50,57,59,62,71,110,113,116,141,151,158,165],fewest:126,ff_dim:126,fff:153,ffill:[7,114],ffn:126,ffn_output:126,ffoutput:38,fg86ufl9igmpwtk6aurw9v5:59,fgsymyf:59,fh:128,fhxfwxna:129,fhxfwxnax4:129,fi:142,fib_sequ:90,fibonacci:165,fibonacci_at_posit:165,fibonacci_at_position_renam:165,fibonacci_function_clon:165,fibonacci_function_exampl:165,fibonacci_list:165,fibonacci_modul:165,fibonacci_module_renam:165,fibonacci_smaller_than:165,fiction:31,fido:[116,165],field:[7,43,49,50,52,79,106,115,117,126,127,131,132,133,139,141,150,153,159,160,166,174,175,185,188],fieldnam:116,fifth:[116,166,188],fifti:36,fig:[1,22,30,33,35,37,39,44,54,59,64,76,80,106,107,108,122,124,131,144,146,150,172,178,180],fig_dim:22,fig_extens:152,fig_id:152,fight:54,figsiz:[1,3,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,64,66,68,75,77,79,80,106,107,108,120,122,127,131,139,140,142,144,146,149,150,152,172,178,180,186],figsize_with_subplot:22,figur:[1,3,7,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,47,48,49,50,52,53,54,55,56,57,59,61,62,64,66,68,75,76,77,79,80,99,107,108,110,118,120,122,124,126,127,129,131,135,137,139,140,141,142,144,149,150,152,162,172,174,180,181,186],figure_format:[50,66,131,141,144,180],figureclass:[107,172],file:[0,1,6,9,12,17,22,23,25,29,30,31,33,36,37,38,39,41,42,45,47,48,51,54,59,66,71,87,89,90,97,98,105,110,111,115,116,117,121,124,128,130,134,139,140,153,156,157,158,160,162,164,165,166,173,186,187],file_conn:[121,128,130],file_id:57,file_loc:121,file_output:124,file_path:[29,30,31,33,41,66],file_path_to_metadata:1,filenam:[31,39,51,56,121,152,153],filename_queu:121,filepath:[39,44,121],fill:[1,11,14,15,18,22,24,46,48,49,51,52,56,66,68,75,77,94,98,106,114,116,117,122,131,142,148,150,153,159,160,172,178],fill_:37,fill_between:[29,144,150,178],fill_betweenx:152,fill_valu:117,fill_with_mean:7,fill_with_median:7,fill_with_mod:7,fillna:[1,7,14,18,22,46,51,54,56,66,114,131,173],film:105,filter:[7,14,16,24,31,33,34,39,46,54,106,116,117,118,121,122,126,127,139,162,174,187,188],filter_bi:24,filter_by_country_region:14,filter_ninfected_by_year_and_month:14,filteredbird:[106,172],filters1:127,filters2:127,filters3:127,filterwarn:[36,39,49,50,51,52,53,54,56,57,58,59,68,77,144,146,148,152],fin:[63,65],fin_col:54,final_conv_shap:121,final_df:38,final_estim:49,final_featur:153,final_imag:121,final_list:187,final_model_output:121,final_output:121,final_pip:[61,75],final_shap:121,final_st:128,final_state_c:128,final_state_h:128,financ:[6,99,111,168],financi:[6,117,124,145,159],find:[7,8,14,15,18,31,32,37,40,46,47,48,49,50,52,53,54,57,58,59,60,61,63,65,69,71,76,80,81,89,97,98,99,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,123,124,125,132,135,136,138,139,141,142,144,145,146,148,149,150,151,156,157,159,160,161,162,164,165,167,170,178,182,185,188],find_better_split:55,find_common_el:166,find_prime_factor:89,find_stack_level:117,find_varsplit:55,find_wanted_peopl:89,fine:[81,120,126,127,133,135,144,148,160],finer:[7,114,134],finish:[0,3,32,54,98,131,134,146,151,153,165,167],finit:[113,124,156,161],finland:189,fintech:38,fintype_map:54,fip:136,fire:30,firecolumn1:38,firecolumn2:38,firecolumn:38,firefox:98,firegod:38,firehos:133,fireplac:54,fireplacequ:54,first:[0,1,3,7,11,14,18,31,32,34,39,40,41,43,44,45,46,47,48,49,50,52,53,54,56,57,58,59,60,62,64,66,68,77,79,90,97,98,100,101,103,107,108,109,111,113,114,115,116,117,118,121,123,124,125,126,127,128,130,131,133,134,135,136,137,139,141,142,144,145,146,148,149,150,152,153,156,157,159,160,161,163,165,166,167,170,171,173,180,181,182,185,186,187,188,189],first_baseman:[18,113],first_char_set:166,first_nam:[90,187,189],first_numb:[166,188],first_param:165,first_term:121,first_tuple_numb:166,first_word:[165,187],firstli:[46,80,135],firstnam:[115,167,174],fiscal:25,fisher:7,fit:[29,30,31,32,33,34,35,36,38,39,40,41,42,44,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,65,66,68,75,77,78,80,81,85,89,90,97,110,111,115,124,127,131,133,135,136,137,140,142,144,145,146,147,148,149,152,153,156,157,158,160,161,164,165,166,178,180,183,184],fit_epoch:31,fit_epoch_va:31,fit_gener:32,fit_on_text:130,fit_predict:152,fit_resampl:156,fit_transform:[30,38,40,42,44,49,51,52,53,56,57,58,59,60,61,64,68,75,77,80,140,148,152,153,161,180,182,183,184],fitted_model:[9,97],fiumlogtswc31vrwbvd:59,five:[7,16,46,49,52,80,89,101,104,126,131,156,162,166,188],five_up:116,fix:[29,45,48,49,52,62,79,109,110,116,117,122,126,128,134,135,144,146,149,150,156,167,170,175,178,180],fixat:101,fixed_nois:37,fixedformatt:152,fixedlengthrecordread:121,fixedloc:152,fk:[12,118],flag:[3,29,33,35,117,126,135,139],flair:[99,168],flat:[39,64,139],flat_map:44,flat_output:121,flatten:[29,30,32,33,34,36,37,39,40,41,43,44,64,79,90,120,122,126,153,157,166,180,188],flatten_nested_list:90,flatten_vector:[166,188],flattened_list:90,flavor:[7,124,151],flaw:[66,69,82,88,99,168],fledg:145,flexibl:[7,66,96,110,116,117,118,132,133,134,145,150,169,173,174,181],flip:[68,75,77,105,121,124,125,127,159,185],flipsid:7,fll:46,float32:[29,30,31,33,35,43,116,120,121,122,124,125,126,127,129,130,152,176,186],float64:[14,24,38,44,59,60,64,75,114,116,117,139,144,160,173,180],float_format:[45,47,48],float_neg:[166,188],float_numb:[166,188],float_number_via_funct:[166,188],float_with_big_:[166,188],float_with_small_:[166,188],floatbox:129,floattensor:31,floor:[38,54,124,141,166,173,188,189],floppi:134,florian:127,florida:[105,173],flow:[32,34,50,106,123,166,188],flower:[60,80,105],flowform:150,flu:[99,168],flu_trend:131,fluctuat:[14,49,52,151,160],fluoresc:39,flush:187,fluvisit:131,fly:167,fma:29,fmt:[34,38,40,51,59,64,68,77,121],fn:[52,59,68,77,161],fname:31,fnlwgt:51,foconnora:133,focu:[1,14,18,49,54,59,79,96,99,100,103,108,110,111,116,117,118,133,135,142,156,157,159,160,168,174,181],focus:[46,98,99,100,101,103,107,109,110,114,115,132,134,135,136,145,158,163,164,168,170,171],foggi:124,fold:[49,50,56,57,58,60,61,64,68,77,80,147,152],folder:[14,31,33,39,97,105,121,139,153,156,162,167,172],folder_path:121,follow:[0,1,6,7,9,11,12,14,16,17,18,24,25,28,29,31,32,36,40,41,43,45,47,48,50,51,53,54,58,59,66,75,80,89,90,96,97,98,99,100,101,103,105,107,109,110,111,113,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,139,141,142,144,145,148,149,150,151,152,153,157,158,159,160,161,162,164,165,166,167,174,187,188],font:[59,107,153],fontsiz:[30,39,80,121,152],fontweight:80,foo:[116,117,167],food:[105,133,155,166,188],fool:[105,125,176],footbal:50,forc:[1,99,120,125,136,137,139,151,165],forcast:131,forcibl:187,ford:137,forecast:[38,50,97,103,136,171],forecasting_d:[38,44],forehead:176,foreign:118,forest:[50,57,58,62,66,68,77,120,141,143,145,148,158,159],forest_best:[52,53],forest_clf:52,forest_grid:50,forest_param:50,forest_reg:53,forget:[79,97,98,99,123,128,137,168],forgotten:[109,128,170],fork:0,form:[3,7,47,50,51,59,79,109,111,114,116,117,118,123,124,131,134,136,139,140,145,149,150,153,156,159,160,165,166,174,182,185,186,187],form_df:15,form_linearly_separable_data:50,formal:[18,50,109,113,126,137,142,144,165,187],format:[6,14,26,29,31,32,33,35,36,40,41,45,46,48,49,51,52,53,56,57,58,59,60,61,63,65,68,75,77,89,95,96,97,98,99,104,105,106,107,108,109,110,111,114,115,116,117,121,123,124,125,127,128,129,130,133,134,138,139,140,141,144,149,150,151,152,153,154,155,156,157,158,159,162,165,167,168,173,178,180,185,186,187,189],format_nam:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158],format_person_info:90,format_vers:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158,187],formatfactori:38,formatted_column:46,formatted_info:90,formatted_str:[166,188],former:[43,49,61,111,116,122,126,135,137,141,142,159,161,185],formul:[159,182],formula:[18,89,115,142,145,161,166],forth:[49,101],forthcom:164,fortran:116,fortun:[7,46,68,77,114,140,145,162],forum:132,forward:[7,31,32,33,37,46,79,114,121,134,159],found:[1,9,26,32,50,54,56,63,65,68,77,81,89,97,98,100,106,110,113,116,117,121,128,129,133,135,136,145,148,149,150,165,166,167,181,187,188],foundat:[109,111,132,133,134,136,145,159],foundationdb:174,founder:159,four:[7,32,41,50,51,59,68,77,89,98,114,115,116,131,142,151,156,164,165,166,187],four_g:[68,77],fourier:116,fourteen:180,fourth:[14,32,80,116],fowler:136,fp:[59,68,77,129,161],fpath:31,fpcoor:129,fpn:129,fpr:[59,161],fr:14,frac:[14,47,48,50,62,90,122,125,129,141,142,144,145,146,149,161,182],fractal:116,fraction:[41,50,62,144,151,152,161,166,186,188],fragil:[62,165],frame:[1,7,14,35,36,38,50,57,58,59,60,75,114,117,121,123,135,139,149,156,160],framework:[0,29,40,41,54,98,109,121,123,127,128,130,132,133,134,135,137,149,153],francesco:137,franci:141,frank:135,fraud:[99,139,159,168,185],free:[3,30,48,54,89,90,99,107,109,111,122,123,129,137,139,159,162,165,166,167,168,170,172],freecodecamp:175,freed_by_count:29,freedom:[99,113,117,124,168],french:105,freq:[38,44,57,64,75,117,131],frequenc:[1,3,61,64,131,133,135,144],frequent:[49,50,51,52,53,54,59,103,113,118,128,134,135,145,156,159,180],fresh:[69,109,149,153,162],fresh_fruit:[166,188],friedman:[50,144,149],friedman_ms:56,friend:[101,110,111,117,135],friendli:[99,105,134,135],frog:121,from:[0,1,3,4,6,7,9,11,12,14,16,17,18,22,23,24,25,26,28,29,30,31,32,33,35,36,37,38,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,75,76,77,79,80,81,85,88,89,91,95,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,113,114,115,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,144,145,146,148,149,150,151,152,153,156,157,158,159,160,161,162,164,165,167,168,169,170,171,172,173,174,176,178,181,182,184,185,187,188],from_arrai:117,from_categor:39,from_config:[9,97],from_lat:31,from_logit:[41,127],from_logitstru:127,from_se:43,from_tensor_slic:44,fromarrai:[31,121],front:[68,77,106,166,172,188],frozen:149,frozenset:[117,166,188],fruit:[166,188,189],fruit_nam:39,fruits_copi:[166,188],fruits_dictionari:[166,188],fruits_set:166,fruits_set_via_constructor:166,fruits_tupl:166,fruits_tuple_via_constructor:166,frustrat:133,ftc:[109,170],fu:117,fulfil:[116,145],full1:121,full1_bia:121,full1_input_s:121,full1_weight:121,full2:121,full2_bia:121,full2_weight:121,full3:121,full:[1,7,29,31,37,41,43,48,49,61,68,77,90,96,97,98,106,109,114,116,117,118,129,134,135,144,145,148,152,156,157,160,165,166,188],full_bias1:121,full_bias2:121,full_bias3:121,full_layer1:121,full_layer2:121,full_model_dir:128,full_mult1:121,full_mult2:121,full_mult3:121,full_weight1:121,full_weight2:121,full_weight3:121,fullbath:54,fulli:[0,32,33,41,45,48,64,79,82,121,123,124,126,127,129,133,134,135,136,145,152,159],fully_connected1:121,fully_connected_size1:121,fulvou:[106,172],fun:[57,79,116,160,161,187],func:[89,117,126,165,187],func_nam:165,func_wrapp:165,function_nam:167,function_that_receives_names_argu:165,function_wrapp:[165,187],functool:121,fund:56,fundament:[52,53,58,60,96,116,117,119,156,159],fungi:107,furnish:[89,90,165,166],further:[1,14,36,50,54,59,60,61,89,97,98,110,111,113,116,120,121,124,134,135,141,145,147,148,149,152,153,158,159,165,173,185],furthermor:[47,50,81,100,135,145],fuse:126,futher:54,futur:[29,38,44,47,54,58,99,109,111,136,137,145,153,156,159,161,165,185],future_step:[38,44],futurewarn:[117,140,152,180],futurolog:121,fx:128,fxbyxm:59,fy:25,fykun93:59,g:[3,37,38,39,42,50,51,54,56,59,79,90,99,109,111,116,117,120,121,124,125,126,129,130,133,139,144,145,151,157,161,165,166,168,170,173,176,186,188,189],g_b1:125,g_b2:125,g_b3:125,g_b4:125,g_error:125,g_k:124,g_loss:[36,37,125],g_loss_metr:36,g_opt:125,g_optim:36,g_origin:121,g_resolut:36,g_sampl:125,g_style:121,g_t:128,g_var_list:125,g_w1:125,g_w2:125,g_w3:125,g_w4:125,gain:[29,48,50,54,59,96,106,117,124,133,135,142,144,145,146,149],galaxi:6,gallagh:133,gallahad:165,galleri:136,galton:141,gam:145,gambl:99,gamboost:145,game:[35,38,50,95,99,124,125,137,159,185],gamedownload:38,gamma:[35,59,60,61,66,124,126,145,148,149,152],gan:[125,136,137],gan_input:176,gan_output:176,gan_structur:176,ganlab:[125,176],gao:126,gap:[14,22,41,50,59,101,109,126,135,151,162,170],garagearea:54,garagearea_mean:54,garagecar:54,garagecond:54,garagefinish:54,garagequ:54,garagetyp:54,garageyrblt:54,garbag:[39,116],garbl:133,gari:[38,137],garlic:156,gartner:[109,133,137],gartner_inc:137,gartnerinc:137,gate:[123,167],gatewai:133,gather:[15,39,99,100,111,122,130,135,137,139,153,158,160,168],gaug:161,gaussian:[30,59,122,139,145,157,159],gaussiannb:157,gaussianprocessclassifi:157,gave:[49,50,141],gazett:137,gb:1,gbc:56,gbdt:[54,145],gbm:[56,149],gbm_tuned_1:56,gbm_tuned_2:56,gbm_tuned_3:56,gbrt:145,gbtree:[54,148,149],gc:39,gca:[1,32,106,107,121,150,152,172,178],gcf:[107,172],gcp:134,gcv:144,gd:54,gdpr:109,gdprv:54,gdwo:54,gebru:[99,168],geeksforgeek:[135,150,187],gees:[19,106,172],geforc:29,gelu:122,gemston:174,gen_imag:37,gen_z:37,gender:[7,22,50,99,109,111,117,149,159,168,170],gender_df:22,gender_xt:22,gender_xt_pct:22,gener:[1,3,7,18,22,30,31,32,33,34,41,43,45,46,47,48,49,50,52,53,57,59,60,62,75,81,97,98,99,100,105,106,108,109,110,111,113,114,115,117,118,120,121,122,123,124,127,128,130,131,132,133,135,136,137,139,140,141,142,144,145,146,148,149,150,151,152,156,157,158,159,164,165,166,167,170,173,174,177,178,182,186,189],generalis:[54,150],generalist:101,generalizaton:34,generar:36,generate_from_frequ:3,generated_imag:[36,176],generated_paint:36,generated_path:36,generated_portrait:36,generated_text:128,generation_num:121,generator_opt:36,generd:125,genfromtxt:180,genom:99,genr:[139,140],genu:[106,172],geoffrei:[33,121,180],geograph:[61,98],geographi:136,geoloc:14,geometr:[139,150],geometri:[126,139],georg:[117,127,166,167,188],georgia:[109,129,170],geospati:[99,168],geq:145,geqq:122,gerg:124,germani:153,geron:[43,49],get:[0,7,9,11,14,16,18,22,28,29,30,31,32,33,36,37,39,41,43,46,47,48,49,52,53,54,56,57,58,59,60,61,62,64,66,68,77,79,96,97,98,99,100,101,105,106,109,113,114,115,117,118,121,123,124,126,128,130,131,133,134,135,136,140,141,142,145,146,148,149,151,152,153,156,157,158,159,160,161,162,163,165,166,167,173,176,180,185,187],get_accuraci:121,get_age_by_surviv:22,get_age_group:165,get_base_model:127,get_batch:31,get_bootstrap_sampl:141,get_cmap:180,get_count:165,get_dat:[165,187],get_default_devic:33,get_df_column_diff:14,get_df_corr_with:24,get_df_mean:24,get_df_std:24,get_dummi:[7,22,54,66,160],get_environ:[9,97],get_equivalent_kernel_bia:126,get_fil:[38,39,40,42,44],get_full_id:[165,187],get_grid:50,get_imaginari:165,get_index:117,get_initial_st:128,get_item:117,get_lay:[126,127],get_level_valu:117,get_loc:117,get_messag:[165,187],get_model:122,get_nam:[165,187],get_oper:121,get_output:[9,97],get_param:[52,53,57,58],get_pinfect:14,get_properti:[9,97],get_real:165,get_result:117,get_rolling_window:14,get_rt:14,get_shap:[121,124,126,130],get_slice_bound:117,get_smoothed_ax:14,get_std:24,get_survival_rate_by_gend:22,get_tensor_by_nam:121,get_text:165,get_the_unique_values_of_pclass:22,get_tim:[165,187],get_timestep_embed:122,get_transition_sigmoid:136,get_valu:117,get_vari:121,get_vers:127,get_xaxi:[29,30,121],get_xlim:[150,178],get_yaxi:[29,30,121],get_ylim:[150,178],getcwd:[29,30,31,33,39,41,66,121],gettint:43,gfile:121,ggplot:144,gh:[117,128],ghdoc:134,ghost:161,ghwa:126,ghwb:126,gift:162,gigabyt:[68,77],gigaspac:174,gill:[107,172],ginger:156,gini:[50,57,142,144,146],giraph:174,girshick:129,gist_rainbow:[68,77],git:[0,38,89,134],github:[5,14,35,38,51,57,58,60,61,66,99,116,117,120,121,128,132,134,135,136,140,148,149,152,156,160,161,164,175,176],githubusercont:[12,14,18,25,68,77,140,152],give:[1,7,18,24,36,41,49,50,51,54,56,59,63,65,75,97,98,101,105,106,109,111,113,114,116,117,123,126,129,135,140,142,145,146,149,150,152,159,160,161,165,166,167,170,185],give_me_sunglass:31,given:[1,7,14,18,19,22,29,33,34,40,44,47,49,50,52,53,54,56,57,58,59,60,68,75,77,79,89,90,96,98,105,106,107,108,113,116,117,120,123,124,126,127,129,135,136,137,139,140,142,144,145,149,150,151,152,156,157,159,160,161,162,164,165,166,172,173,179,180,182,185,187,188],gkioxari:129,glacier:133,glanc:[36,54,61,133,145,146,159],glean:101,glenc:56,glinternet:145,glmboost:145,glob:[2,31],global:[14,22,50,59,98,126,127,133,136,150,152,178,187],global_variables_initi:[121,125,130],globalaveragepooling2d:[126,127],gloss:101,glq:54,glu:[166,188],glue:133,gluon:135,gmail:159,gn:129,go:[0,1,7,31,36,41,43,48,49,50,52,53,55,57,58,60,61,63,65,66,68,75,77,79,86,95,96,97,98,101,105,106,108,113,114,116,117,118,122,123,127,128,133,134,135,140,142,145,148,151,152,156,159,161,164,165,166,167,169,176,180,185,187,189],goal:[1,7,8,16,29,46,71,75,92,99,100,101,103,111,120,124,135,136,137,145,149,150,151,159,160,168,170,171,176,185],goali:124,goalx:124,goe:[49,50,60,62,75,79,101,111,132,141,144,145,157,159,162,176,187],gog:38,gold:136,golden:[133,165],golovin:137,gomez:125,gone:[3,109,145,159,185],gonna:79,good:[1,3,7,18,19,25,31,39,40,41,43,45,47,48,49,50,52,53,54,57,59,60,61,62,63,65,66,68,77,79,81,97,99,101,105,106,108,109,111,113,114,121,122,125,126,133,135,136,137,139,140,141,144,145,146,150,152,153,157,158,159,160,161,162,165,167,172,178,179,180,181,186],good_init:152,goodby:165,goodfellow:[29,50,125,176],googl:[40,43,45,47,48,96,99,109,117,121,123,133,134,135,136,159,167,168,174,176,185],googleapi:121,googlenet:126,goos:[106,172],gosset:113,got:[7,43,50,51,56,79,140,145,146,152,167,181],gov:137,govern:[22,45,47,48,109,111,131,137,159,185],govt:109,gp:176,gpu:[29,33,36,40,43,49,54,97,98],gpu_0_bfc:29,gpu_devic:29,gpu_hist:54,gpu_id:[66,148,149],gqzcera47adwxyhstef0ylhkjkxs6mzc5wxktnnxrosnswyh9ihfnvbjcsbu6v8mav:59,grab:[41,116],gracefulli:[117,166],grad:[33,36,121],grad_bias:79,grad_boost_clf:49,grad_input:79,grad_output:79,grad_softmax_crossentropy_with_logit:79,grad_w:79,grad_weight:79,grade:[160,161,181],gradient:[33,36,47,48,54,57,58,63,65,68,77,78,79,120,121,122,123,124,126,128,132,135,144,148,150,157,160,178,182,183,186],gradient_boost:146,gradient_desc:76,gradient_i:76,gradient_loss:146,gradient_react_3d:160,gradient_x:76,gradientboostingclassifi:[49,56],gradientdescentoptim:121,gradienttap:[36,120,122,124,128],gradual:[64,108,135,145,152,159,185],graduat:56,grai:[18,29,30,31,47,79,106,111,120,121,152,172,180,186],grain:[7,114,133,144,160],gram:121,grand:126,granda:113,grant:[36,50,89,90,117,159,165,166],granular:[106,134,139,158],grape:[166,188],graph:[1,3,8,14,19,24,30,33,40,41,47,54,111,113,115,121,122,125,130,131,136,139,141,144,145,148,149,150,160,162,164,174],graph_def:121,graph_obj:35,graph_object:1,graphdef:121,graphic:[8,24,43,98,113,115,116,124,141,151,159,169,174,179],graphwin:124,grasp:[141,158],grass:[107,172],grassi:153,gratifi:107,grayscal:[41,152],great:[16,30,40,49,50,52,53,63,65,75,98,99,101,105,111,113,116,135,137,140,142,144,145,152,166,167,168,188],greater:[29,46,48,50,54,89,101,106,116,117,123,142,144,145,152,165,166,172,187,188],greater_equ:116,greatest:[50,89,116,121],greatli:[48,50,111,126,135,139,144,145],greedi:[50,145,149,180],greek:109,green:[49,50,51,52,101,105,106,107,113,124,126,134,145,160,162,166,167,172,183,184,188],greenawai:25,greengrass:136,greensock:105,greet:[165,187],greet_again:[165,187],greet_funct:165,greet_one_mor:[165,187],greet_someon:[165,187],greet_with_closur:165,greeter:165,greeting_with_div_p:165,greeting_with_p:165,greeting_with_tag:165,greetingclass:165,grei:50,gremlin:[115,174],greys_r:121,greyscal:121,grid:[18,22,29,41,50,53,56,57,59,60,66,75,79,81,124,129,136,139,141,150,153,178],grid_clf:152,grid_estim:81,grid_param:81,grid_pr:60,grid_search:[52,53,57,58,59,60],gridsearch:[52,53,57,58,60,144],gridsearchcv:[50,52,53,57,58,59,60,81,144,152],gridsearchcvgridsearchcv:[57,58,60,152],grlivarea:[54,66],groceri:[149,156],gross:25,ground:[66,126,166,186],groundbreak:123,groundwork:101,group:[14,18,22,31,38,49,50,54,75,98,99,101,103,104,105,107,108,109,110,111,113,115,122,126,128,133,135,136,138,139,140,141,144,149,153,156,157,159,161,162,163,164,166,168,170,171,172,173,174,180,185,187,188],group_by_categori:90,group_kei:[22,117],groupbi:[1,14,18,22,31,38,54,80,107,117,162,172],groupby_sum:14,grouper:38,groupnorm:[122,129],grover:55,grow:[79,98,107,113,116,118,129,134,145,174],grow_polici:[66,148,149],grown:144,growth:[126,131,144],growth_rat:126,grunin:14,gryffindor:181,gsearch3:56,gsearch4:56,gsearch5:56,gt:[46,128],gu:136,guarante:[50,116,117,134,167],guardian:105,guardrail:109,guarrant:[68,77],guava:39,guess:[7,18,47,50,53,56,58,89,90,114,135,141,145,157,161,165],guesser:50,gui:[54,98,169],guid:[0,17,23,50,54,56,96,109,111,116,117,132,134,135,136,159,165,169,175,185],guidanc:[45,48,59,76,109,135,159,180,185],guidelin:[48,109],guido:[166,167,187,188,189],guin:113,gun:105,gupta:[133,137],gust:124,gutedbanoeu:156,gutenberg:[99,128,168],guttula:133,guyon:59,gym:90,gz:[33,121,126],h0:172,h1:[1,15,18,124],h2:[1,18,124],h2o:[134,145],h5:[38,39,40,41,42,44],h:[18,31,33,38,81,90,109,121,122,127,128,130,145,149,166,183,188],h_:182,h_t:[130,145],ha:[5,6,7,12,14,15,16,17,18,23,29,30,31,33,36,39,40,41,43,45,46,47,48,49,50,52,54,56,57,62,63,64,65,68,75,77,79,85,96,98,99,100,101,103,105,106,107,108,110,111,113,114,115,116,117,118,121,123,126,127,128,129,130,131,134,135,136,137,138,139,140,141,144,145,146,148,149,150,151,152,153,158,159,160,161,164,165,166,167,171,172,173,174,176,180,181,182,185,186,187,188,189],habit:[23,165],habitat:[107,172],hack:[90,109],hacker:89,had:[16,29,39,45,47,48,49,50,52,56,57,59,68,77,99,101,109,116,117,118,145,149,160,165,168,170],haemoglobin:98,haffner:175,haha:167,half:[1,31,33,49,50,52,89,113,116,131,152,160,162],half_dim:122,halfbath:54,hall:[133,159],halloween:[160,163],halt:165,halv:[33,135],ham:[130,165,187],hamster:159,han:137,hand:[31,34,39,41,49,54,56,100,101,105,114,117,131,133,134,139,141,146,150,151,156,159,162,164,185],handbook:[57,58,60,61,105],handi:[40,75,116,139,165],handl:[0,7,23,39,49,50,54,56,58,60,61,68,77,89,90,98,101,105,106,109,111,114,116,117,123,133,134,135,136,137,139,144,147,150,157,159,164,166,169,178],handle_data:3,handle_endtag:3,handle_missing_valu:75,handle_starttag:3,handler:165,handout:140,handson:152,handwritten:[29,32,41,47,79,186],hang:157,hao:129,haoyi:137,happen:[1,7,18,41,48,54,60,63,65,101,110,113,116,117,124,135,138,145,151,153,165,175,181],happi:[101,105,113,117,159,181,185],happier:[48,108],har:[96,134],hard:[45,49,52,59,66,101,103,123,126,145,148,152,159,162,185],hardcod:165,hardcov:131,harder:[45,47,50,62,135,136,145,165],hardest:153,hardwar:[96,98,103,134,152],harm:[28,98,99,109,168,170],harmon:[40,52,57,59,68,77],harmoni:141,harness22:134,hartwig:[126,127],harvard:[101,133,137],harvest:161,hasattr:126,hash:[46,115,167,174],hashabl:[117,166],hashablet:117,hashtabl:117,hashtable_class_help:117,hashtag:96,hasn:[64,151],hasti:[144,145],hat:[126,141,142,145,149,181],have:[0,1,3,4,6,7,8,9,12,14,15,16,17,18,20,23,25,28,29,30,31,32,33,34,36,39,40,41,43,45,46,48,49,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,68,75,77,79,88,89,90,94,95,96,97,98,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,144,145,146,149,150,151,152,153,156,157,158,159,160,162,164,165,166,167,171,172,174,175,180,181,182,185,186,187,188],haven:[53,58,159],hawkin:133,hay:167,hazelcast:174,hbase:174,hbr:101,hd:39,hdbscan:139,hdf5:176,he:[18,113,117,126,129,131,134,141,144,153,159,185],he_norm:127,head:[1,14,15,24,29,31,35,38,39,40,44,47,48,49,50,51,52,53,54,56,57,59,60,61,63,64,65,66,67,68,75,77,80,83,106,107,108,114,117,126,129,131,136,139,141,142,146,149,153,156,157,160,161,162,172],head_dim:129,header:[18,29,38,47,115,121,139,166],headlin:28,headwai:102,health:[1,13,96,109,116,133,136,170],healthcar:[99,168],healthi:98,hear:159,heard:[28,38,75,101,139,145,146],heart:[6,9,33,50,95,110,137],heat:111,heatingqc:54,heatmap:[1,8,34,38,40,48,49,51,52,53,54,59,64,68,75,77,139],heav:135,heavi:[103,145,157],heavili:[121,124,134,140,159,162],heavyweight:157,height:[3,18,31,33,60,68,77,105,108,110,113,121,122,126,140,152,153,156,160,164,172],height_shift_rang:32,heirloom:160,held:[109,141],helicopt:124,hello:[41,90,117,121,164,165,166,167,173,187,188],hello_world_str:[166,188],helloworld:[167,189],help:[0,1,7,8,23,28,32,33,35,36,41,45,48,50,51,54,56,59,62,64,66,68,75,77,79,82,95,96,98,99,100,101,103,104,105,109,110,111,113,114,116,117,120,122,131,132,133,134,135,136,137,139,140,144,145,148,149,150,151,152,155,156,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,180,182,187],helper:[33,41,107,121,131],helvetica:153,henc:[7,40,48,54,59,60,61,63,65,75,120,133,141],heparin:1,her:[7,50,135],here:[1,7,11,14,18,24,28,32,35,40,41,43,45,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,68,75,76,77,79,81,89,90,93,94,97,98,99,101,103,105,107,109,111,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,131,132,133,134,135,139,140,142,145,146,148,149,151,152,157,158,159,160,161,164,165,166,167,173,174,176,180,181,182,185,187,188],hereaft:166,herebi:[89,90,165,166],hessian:145,heterogen:142,heurist:[50,135,137,145,159],hf10:134,hf:[9,97],hi:[7,49,64,113,117,121,142,151],hidden:[30,41,47,48,62,111,120,128,129,130,131,135,137,151,186],hidden_dim:129,hidden_layer_s:35,hidden_unit:186,hide:[18,47,49,52,53,57,58,68,77,165],hide_result:47,hierarch:[111,139,175],hierarchi:[110,126,127,165,175],high:[14,18,31,38,41,43,44,47,48,49,50,53,56,57,59,60,61,63,64,65,68,75,77,80,89,98,111,116,118,123,125,126,131,133,134,135,137,145,147,148,149,150,151,159,160,161,162,167,173,176,180,182,189],high_blood_pressur:[9,97,98],high_valu:136,higher:[18,29,33,39,45,49,50,52,54,56,57,64,66,75,98,99,101,106,113,116,127,131,135,142,144,148,150,151,152,160],highest:[33,41,47,126,127,149,162,186],highli:[48,52,54,75,113,124,133,135,136,137,144,167,180],highlight:[1,28,99,107,109,111,115,118,159,185],highlight_max:181,hilari:105,hill:137,him:145,hima:133,hint:[3,7,14,22,24,47,53,79,89,90,97,115,140,162,164],hinton:[33,121,151,180],hipaa:109,hire:[56,99,101,109,168],hire_d:173,hist2d:[106,172],hist:[1,18,22,29,39,47,49,52,53,56,58,59,60,61,66,106,141,172],hist_df:39,histogram:[1,4,18,40,47,49,52,54,58,59,60,75,105,113],histor:[99,105,136,159,160],histori:[29,31,32,33,34,35,36,38,39,40,44,45,47,48,62,98,99,131],history_df:[36,62],history_t:35,history_va:31,histplot:[68,77],hit:[7,124],hitchhik:134,hither:165,hjd:133,hline:142,hn7frmhbx0grnwcxwxgvksqremvudikmafwmruksyobbcirjjq0nqss6al2kvan3f4in:59,ho:[59,122,144],hoang:126,hobbi:90,hoc:134,holbrook:62,hold:[31,34,35,50,64,115,117,123,141,149,159,166],holder:[89,90,165,166],hole:107,holidai:160,hollow:162,holt:137,home:[50,75,153,181],homegrown:134,homeless:105,homepag:132,hometown:166,homogen:[7,116,142,173],honei:13,honestli:109,hong:187,honor:117,hood:[89,144,145,182],hope:[26,54,56,117,126,146,151,156,167,189],hopefulli:[41,54,61,75],hopkin:[14,116,136],hoptroff:137,horeca:149,horizon:[124,131],horizont:[14,51,105,116,117,121,127],horizontalalign:[80,180],horribl:[166,188],hors:121,horseradish:156,hospit:136,host:[48,96,99,103,110,133,134,168,169],hostel:142,hostel_data:142,hostel_factor:142,hot18:103,hot:[1,7,40,47,51,54,103,121,130,135,159,160,171],hotel:149,hotz:103,hour:[33,38,49,52,56,97,98,99,101,110,135,168,181,182],hour_df:38,hourli:[38,110],hours_per_week:51,hous:[50,54,61,75,123,135,136,137,159,181],house_price_test:54,house_price_train:[54,148],household:[61,75],housekeep:124,housing_median_ag:[61,75],how:[1,7,8,9,10,11,14,15,16,18,20,29,30,31,33,38,39,40,41,43,45,46,47,48,49,52,53,54,57,58,60,61,62,63,65,66,68,69,71,75,77,79,80,85,87,96,97,98,99,100,101,103,105,106,107,108,109,111,112,113,114,115,116,117,118,119,122,123,124,128,129,131,132,133,134,135,136,139,140,141,144,146,148,149,150,152,153,156,157,158,159,160,161,162,164,165,166,168,170,171,172,174,179,180,181,182,185,187,188],howard:126,howden:[160,161],howev:[1,3,7,28,30,32,33,36,45,46,47,48,50,54,56,62,66,79,98,100,109,110,111,113,114,116,117,118,120,121,127,128,129,134,135,142,145,147,150,151,152,157,159,160,162,164,165,166,167,170,180,189],hpo:135,hr:[38,56,173],href:[140,152,153,156,160,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],hs2tsaiyzwkbo6orj6wvehycjhbrkjuhw0crkpjtggndbp0arhryiicw5s0jc2svz2ebhfxhoobmrhcgskb0pxtwf:59,hs:[122,129],hsnxm5szde9abszvecizlizzyqekuo0ss8hzlzezp0:59,hspace:[31,152],hsplit:116,hstack:116,htkshwkqgmkzmgvh4qt4nn6juvi0bflsiclyxnon:59,html:[3,15,31,57,58,60,61,66,90,110,117,134,140,148,149,152,153,156,160,164,165,166,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],htmlparser:3,http:[3,12,14,15,18,22,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,51,56,57,58,66,68,77,79,90,97,98,99,103,105,106,107,108,109,111,112,115,117,120,121,122,126,127,128,129,130,131,134,135,136,137,139,140,150,152,156,157,158,160,161,165,166,168,169,170,171,172,174,175,176,180,187],http_get:3,httpmessag:152,huang:[89,90,126],hub:[16,96,99,111,136,168],huber:[44,122,145],hubspot:101,hue:[49,51,52,57,60,61,64,68,75,77,80,106,108,139,172],hufflepuff:181,huge:[1,64,96,123,133,159,185],human:[16,31,41,47,50,103,109,110,111,123,126,134,137,159,167,170,185],humanist:99,humbl:134,hundr:[7,122,135],hungri:[36,156],hunt:[71,79],husl:131,hutter:135,huyacli:38,huyenchip:134,hw8:59,hw:121,hxfbpxg4aih7u:59,hybrid:[96,131,169],hydroxychloroquin:1,hype:[38,109],hypeparamet:33,hyper:[32,60,126,128,145,179,180],hyperparam:54,hyperparamat:[49,60],hyperparamet:[33,45,48,49,50,52,53,54,57,58,60,61,63,65,68,77,81,97,123,126,131,136,145,149,150,152,159],hyperplan:[50,150,178],hypert:174,hypertens:98,hyphen:128,hypothes:[18,111,113],hypothesi:[29,63,65,149,160],hyungjin:129,i1:116,i4:[116,117,173],i6hdvncl4sdud5y6jyyqihm09adf43u3jaepldi0xp9cfogdawd7jds9m5kcdyifkqt7n6n6iacdgdb:59,i8:116,i:[1,3,8,14,16,18,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,49,50,51,52,54,55,56,57,58,59,60,64,66,68,75,76,77,78,79,89,90,97,98,99,100,101,103,105,111,113,116,117,120,121,122,123,124,125,126,127,128,130,131,133,136,140,141,142,144,145,146,149,150,151,152,160,166,173,179,180,181,182,183,184,186,187,188,189],i_1:116,i_:[14,142],i_batch:37,i_i:142,i_imag:37,i_j:149,i_m:116,i_t:[14,128],i_x:128,iaa:[96,134,169],iac:134,iam:133,ian:[29,50,125,176],iat:117,ibm:[99,109,133,134,168,174],ic:[58,130],iccv:137,iclr:135,icml:145,icon:[7,46,98,107,114,164,167],id3:50,id:[7,12,15,29,31,54,56,57,63,64,65,66,79,97,115,117,118,153,165,174],id_out:126,id_tensor:126,id_var:64,idea:[7,31,36,38,46,49,50,52,53,58,60,61,62,66,68,77,80,99,101,113,114,116,126,132,135,136,139,141,145,146,147,149,150,152,156,157,159,160,161,165,171,181,182,186],ideal:[54,75,101,111,113,121,135,141,145,148,150,151,160,161,165,167,187],ident:[41,50,109,115,116,117,124,126,127,130,133,134,144,166,174,188],identif:[124,133,150],identifi:[6,11,16,23,28,29,33,36,46,49,50,52,56,57,59,62,98,99,101,103,104,109,110,111,113,114,115,117,118,123,126,129,133,135,136,145,159,164,167,168,170,171,172,173,174,175,180,185],idl:[36,98,116],idx1:39,idx2:39,idx:[31,55,152],ie:15,ieee:[7,114,137],ifram:[140,152,156,160],ig:50,igam:38,iglob:31,ignit:174,ignor:[36,39,49,50,51,52,53,54,56,57,58,59,64,68,77,79,89,101,115,117,130,131,144,145,146,148,152],ignore_index:[117,173],ih:128,ihm:136,ii:[18,37,59],iii:31,ij:[18,113],iljxqfj1omejrnpbca8g:59,ill:148,illinoi:173,illumin:[39,126,129],illus:[109,170],illustr:[3,8,24,29,36,50,59,99,109,115,117,120,121,122,125,126,128,129,131,141,144,145,150,151,165,170,179],iloc:[1,14,31,35,39,42,46,47,48,50,54,64,79,81,117,142,144,157,173,182,183,184],ilsvrc:126,im:[122,129],im_batch_s:37,im_shap:122,imag:[3,28,31,34,35,36,39,40,43,47,51,59,60,64,68,76,77,79,81,89,99,101,104,105,110,111,116,120,121,122,123,124,125,129,130,135,137,139,141,145,148,149,156,159,160,161,167,168,170,172,176,185,186],image_:37,image_arrai:[37,121],image_batch:176,image_data_format:127,image_dataset_from_directori:[36,122],image_dict:121,image_dictionari:121,image_ev:121,image_extract:121,image_h:31,image_height:121,image_label:[40,121],image_pixel:125,image_s:[36,37,122,126,186],image_segmentation_diagram:152,image_shap:129,image_uint8imag:121,image_vec_length:121,image_w:31,image_width:121,imageclassificationbas:33,imagedatagener:[32,34],imagefold:[33,37],imageio:[31,121],imagenet:[121,137],imagenet_mean:121,imagenum:31,imageri:[39,101],images_path:152,images_to_vector:125,imagin:[50,110,118,135,139,145,151,153,156,164,174,181],imaginari:[18,89,165,166,188],imaginary_part:165,imbal:[52,68,77,133,135,156,159,161],imbalanc:[57,58,59,140,145],imbalnc:59,imblearn:156,imdb:[109,170],img0:121,img:[31,33,36,37,39,41,120,121,122,129],img_align_celeba:122,img_label:39,img_nois:121,img_path:39,img_pool:127,img_shift:121,imgplot:37,immedi:[7,43,46,50,75,101,114,124,145,153,162,165],immens:[50,117],immut:[43,166,167,188,189],imp_coef:66,impact:[28,41,49,52,54,99,101,109,124,135,137,160,168,179],impair:[50,105],implaus:176,implement:[0,16,31,33,36,46,47,49,50,51,52,53,54,57,58,59,61,68,75,77,79,89,93,94,101,109,116,117,122,125,126,127,128,130,134,135,137,144,148,150,152,159,165,166,173,188],impli:[22,45,47,48,59,64,89,90,97,130,134,135,139,159,161,165,166],implic:[16,109,130],implicit:[109,134,144,170],implicitli:[59,124,165],imporov:66,import_graph_def:121,importance_typ:[66,148,149],importantli:[98,117,169],importerror:[165,167],impos:[144,151],imposs:[111,159,185],impress:[3,40,52,60,101],improb:113,improv:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,32,33,36,40,41,43,47,48,49,50,54,59,64,66,68,69,71,72,77,82,85,86,87,88,90,97,99,101,109,111,114,122,124,126,128,132,133,134,136,137,141,144,145,148,149,150,152,158,159,160,161,170,180,185],impur:[50,142,144],imput:[7,22,51,54,56,61,66,68,75,77,148,159,185],impute_with_mean:22,impute_with_median:22,imputed_column_nam:22,imread:[31,37,39,121,152],imsav:121,imshap:129,imshow:[1,3,29,30,31,33,34,36,37,39,40,41,50,79,81,120,121,122,127,152,176,180,186],imura:164,imwrit:121,in_channel:[31,126],in_clust:152,in_dim:125,in_plan:126,inabl:123,inaccur:[7,46,99,109,114,124,131,145,148,168],inaccuraci:[46,114],inact:98,inadequ:59,inappropri:111,inargu:40,incent:109,incentiv:109,incept:121,inception5h:121,inch:[160,161,162],incid:28,incident:151,includ:[1,3,4,8,14,31,32,36,40,41,49,51,54,56,64,75,80,89,90,96,97,98,99,102,105,106,108,109,111,113,116,117,123,126,127,129,131,132,133,134,135,136,137,138,140,142,145,148,151,152,153,156,157,159,160,161,162,163,164,165,167,168,169,173,181,182,185,186,187],include_top:127,inclus:[99,109,117,124,134,135,170],incom:[50,51,75,109,135,142,159,166,170],income_evalu:51,incompar:105,incompat:[116,117],incomplet:[4,46,69,87,109,110,114,124],incomprehens:111,inconsist:[36,114,171],incorpor:[50,117,127,134,136],incorrect:[15,41,45,47,48,51,59,68,75,77,141,145,189],incorrectli:[40,52,57,59,68,77,133,135,145,158],increa:40,increas:[14,32,33,35,36,39,40,45,47,48,49,52,53,56,57,59,62,64,68,77,79,98,101,103,108,111,113,116,120,126,129,133,134,135,137,141,144,145,149,150,151,152,159,167,169,178,180,189],increasingli:[131,135,159],incred:[40,49,159],increment:[48,49,64,89,90,116,124,133,134,135,145,146,152,165],increment_count:165,increment_funct:165,incur:[98,137,169],ind1:116,ind2:116,ind:[116,142,173],ind_1:116,ind_2:116,ind_n:116,inde:[7,18,48,108,116,145,146,152,180],indefinit:130,indent:[81,165],indentationerror:189,independ:[0,54,113,116,122,124,130,134,141,144,149,161],index:[1,7,14,24,31,33,37,38,39,40,43,50,51,52,54,56,57,59,62,66,75,80,89,107,110,114,128,131,139,140,144,152,153,157,158,160,164,165,166,174,186,188],index_col:[46,54,131],index_nam:14,indexengin:117,indexerror:[63,65,116,117,167],indexin:[22,24],indexingerror:117,indi:139,india:[155,156],indian:[156,157,158],indian_df:156,indian_ingredient_df:156,indic:[1,7,14,16,22,29,41,46,47,48,54,56,64,79,89,96,97,99,109,110,113,114,117,118,124,126,127,128,140,141,142,151,159,160,162,165,166,167,173,185,186,188],indirect:116,indirectli:[49,165,166,186],indistinguish:150,individu:[7,14,41,49,50,54,56,62,99,101,109,114,115,122,135,137,141,144,159,165,166,168,173,185,188],induc:128,induct:[135,139],industri:[103,109,131,134,137,145,159,167,185],indx:37,ineffici:[98,116,145,149,166],inequ:152,inertia:[140,180],inertia_:[140,152,180],inertia_vs_k_plot:152,inexhaust:126,inf:[14,45,55],infect:[1,8,14,116,136],infected_dataset_url:14,infected_df:14,infecti:[14,136],infer:[9,97,98,126,127,128,133,134,135,136,137,139,153,159,173,185],infer_sampl:128,inference_config:[9,97],inferenceconfig:[9,97],inferior:50,infinispan:174,infinit:[14,56,101,124,145,165,166],infinitegraph:174,infinitydb:174,infix:116,inflection_idx:136,inflection_r:136,inflict:105,influenc:[17,52,54,103,109,124,140,153,158,159,166,171],influenti:109,info:[14,38,40,49,51,52,54,59,60,68,75,77,81,114,115,127,139,149,153,156,160,161,174],infocli:38,infograph:[101,105,111,139,140,156,160,161,162],inform:[1,4,12,14,15,17,22,23,24,25,31,38,40,41,43,46,48,49,50,52,53,54,56,57,58,68,75,77,90,96,97,98,99,100,101,103,106,107,109,110,111,113,115,116,117,118,123,124,126,127,128,129,131,133,135,136,137,139,142,144,145,149,150,151,152,159,160,164,165,166,168,170,171,174,176,187],infrastructur:[96,103,136,169],infti:[113,122,124,141],infus:158,ingest:134,ingredi:[155,157],ingredient_df:156,inher:[64,127],inherit:173,init:[30,56,78,89,121,125,130,140,152,165,182,183],init_imag:121,init_lr:122,init_notebook_mod:35,init_s:152,init_tim:122,initi:[0,3,15,33,35,43,48,49,50,54,55,63,64,65,76,79,89,90,96,99,109,110,116,120,121,124,125,126,127,128,129,133,135,137,140,144,145,148,159,160,162,165,166,168,173,180,187,188],initial_eda:51,initial_prob:146,initial_st:128,initiali:33,initialis:36,initialise_graph:124,inject:117,inland:[61,75],inlin:[49,51,52,53,55,57,58,59,60,61,62,66,75,76,79,80,81,121,144,150,152,153,178,180,182,183,184,186],inlinebackend:[50,66,131,141,144,180],inner:[38,89,117,118,131,165,174],innermost:[165,187],innov:[54,96,99,109,169],inordin:145,inplac:[1,7,14,22,30,37,38,46,48,50,51,54,117,131,148,153,156,161],input:[9,14,15,18,22,29,30,31,32,33,36,37,38,40,41,42,43,45,47,49,50,51,52,53,55,56,57,58,61,62,64,68,76,77,79,88,89,90,96,97,98,113,116,117,120,121,122,123,124,125,126,127,128,129,130,131,134,135,136,137,139,140,141,142,144,145,149,150,151,152,153,156,159,160,164,165,166,167,176,180,181,185,186],input_1:122,input_2:122,input_data:[9,48,52,53,57,58,75,97,121,125],input_dim:[35,36,45,47,48,126,176,186],input_funct:48,input_imag:[121,127],input_mask:127,input_pipelin:121,input_proj:129,input_s:[127,186],input_shap:[32,34,36,38,39,40,41,42,44,62,126,127,129],input_tensor:127,input_text:90,input_unit:79,input_valu:124,inquiri:[99,106],insensit:[118,144,150],insert:[63,65,115,116,117,145,165,187,188],insertion_sort:90,insid:[0,1,3,33,50,60,61,62,68,77,113,116,117,118,120,124,126,128,134,146,152,153,166,167,181,188],insight:[11,16,49,52,54,59,60,75,96,98,99,101,106,109,111,117,132,133,168,170],inspect:[41,57,58,59,68,75,77,159],inspir:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,77,79,80,81,82,83,85,86,87,88,89,90,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,118,120,121,122,123,124,125,126,127,128,129,130,131,135,136,139,140,141,142,144,145,146,148,149,153,156,157,158,159,160,161,162,164,175,180,181,182,183,185,186],instabl:50,instagram:117,instal:[0,3,12,18,25,35,43,51,95,96,97,98,105,106,107,108,115,123,138,139,140,151,152,153,154,155,156,157,158,160,165,181],instanc:[7,31,46,49,50,51,52,54,59,80,98,99,101,114,115,116,117,123,126,129,131,134,135,142,144,149,151,152,159,161,166,176,185,187,188],instant:[56,107],instanti:[43,51,59,80,117,149,161,165],instantli:132,instead:[7,22,31,32,33,43,47,48,49,50,53,54,57,58,61,62,79,96,101,105,107,109,110,111,116,117,123,126,127,131,133,134,135,144,145,146,148,151,152,153,159,160,162,165,166,167,180,181,185,188],institut:[50,136],instruct:[0,29,50,68,77,97,98,101,105,123,164,167],instrument:[99,109,139,140,141,145,153],insuffici:[16,105],insur:109,int16:116,int19:135,int32:[43,116,121,122,128,129,130,140,152],int64:[22,38,57,58,59,60,61,64,75,116,117,130,139,142,144,149,152,156,160,173],int64index:160,int8:[56,144],int8dtyp:131,int_:113,int_featur:153,int_memori:[68,77],int_seri:7,int_shap:127,intact:22,intang:109,integ:[7,12,40,41,47,53,54,56,58,89,114,117,121,124,126,127,165,167,173,187,189],integer_vari:[166,188],integr:[0,59,96,98,99,101,109,110,111,117,122,133,134,136,168,169],intellectu:[109,170],intellig:[39,41,96,99,111,123,133,136,137,169,170],intellisens:82,intend:[41,101,105,117,133,165],intenion:146,intens:[50,98,126,135,176,180],intent:[101,105,109,170],intention:145,inter:[59,113,126,134],interact:[5,7,16,29,96,97,98,101,105,111,114,117,124,125,132,133,134,145,150,160,164,165,167,169,178,181,187,189],interaction_constraint:[66,148,149],interactivesess:[121,125],intercept:[75,131,160,182],intercept_:[75,160,182],interchang:[7,118,159],interdisciplinari:[132,159,185],interest:[1,5,13,14,16,19,29,33,40,49,50,52,57,58,59,68,75,77,96,99,104,105,106,107,108,110,113,115,117,118,124,126,127,135,137,138,139,144,145,150,153,156,159,161,162,164,172,173,174,176],interestingli:[1,107,139],interfac:[16,95,98,107,110,116,167,169],interg:167,interleaf:164,intermedi:[18,30,127,152],intermediari:33,intern:[30,50,68,77,98,116,117,121,124,132,133,134,136,137,140,141,144],internet:[14,32,96,105,106,109,110,111,118,133,134,169],interpol:[1,31,50,121,126,127,152,156,176],interpret:[3,7,40,41,47,48,50,57,58,66,106,109,113,115,116,117,124,137,139,141,144,145,159,160,165,166,167,170,174,175,185,187,188],interquartil:54,interrelationship:101,interrupt:[98,151],intersect:[103,115,117,160,166],interspers:116,intersystem:174,interv:[49,52,56,108,116,122,124,133,136,141,150,178],interview:145,intimid:149,intl:[50,141],intp:116,intra:[126,129,152],intract:125,intricaci:101,intrins:153,intro:[113,134],introduc:[18,29,31,47,50,54,66,92,101,106,111,122,123,124,126,127,129,134,135,137,139,145,151,165,175,176,187],introducin:134,introduct:[7,37,43,61,102,115,124,133,135,137,159,163,166,174,175,176,177,178,180,182,185,187],intuit:[50,55,68,77,117,123,126,145,150,159,175,180],inv_i:38,inv_sigmoid:136,inv_yhat:38,invalid:[14,133,165,167],invalid_column:[14,24],invalid_column_nam:[14,22,24],invalid_column_valu:24,invalid_df:14,invalid_month_typ:14,invalid_window_typ:14,invalid_year_typ:14,invalidindexerror:117,invari:[126,135],invent:[145,159],inventori:[99,133],inventoryexampl:115,invers:[39,64,66,116,136,144],inverse_transform:[38,42,183,184],invert:[38,116],invest:[96,134],investig:[23,47,54,99,109,110,135,144,149,160,170],invis:[109,170],invit:116,invoc:[134,165],involv:[7,36,43,46,50,54,98,100,101,103,109,111,114,117,126,149,159,161,165,169,171,185],io:[30,31,98,121,130,134,153,160,175,176],ioc:134,ion:124,iot:[111,133,153,170],iou:135,ip:59,iplot:35,iplot_mpl:35,ipykernel_15370:172,ipykernel_24432:180,ipykernel_30912:187,ipykernel_44:165,ipykernel_6175:106,ipykernel_6417:117,ipykernel_6984:62,ipynb:[0,139,140,153,156,158,160,162,164,173],ipytest:[3,14,22,24,53,75,89,90],ipython:[12,22,25,39,55,60,64,79,95,96,97,98,106,107,108,116,117,123,125,127,138,139,140,150,151,152,154,155,156,157,158,160,187],ipywidget:[150,178],iqr:[54,113],ir1:66,irani:50,ireland:12,iri:[7,46,60,80,114,117,142],iris_data:142,iris_df:[7,46,114],iris_df____:46,iris_isduplicated_df:46,iris_isnull_df:46,iris_support:60,iris_versicolor_3:60,iris_virginica:60,iris_with_drop_duplicates_on_column_df:46,iris_with_drop_duplicates_on_df:46,iris_with_dropna_1_values_on_rows_df:46,iris_with_dropna_2_values_on_rows_df:46,iris_with_dropna_on_column_df:46,iris_with_dropna_on_row_df:46,iris_with_fillna_back_df:46,iris_with_fillna_back_df____:46,iris_with_fillna_df:46,iris_with_fillna_df____:46,iris_with_fillna_forward_df:46,iris_with_fillna_forward_df____:46,iris_with_missing_value_after_fillna_back_df:46,iris_with_missing_value_after_fillna_df:46,iris_with_missing_value_after_fillna_forward_df:46,iris_with_missing_value_df:46,irrelev:[123,150],irrespect:98,is_avail:[31,33,37],is_bool_index:117,is_cnn:31,is_empti:89,is_good_enough:90,is_hash:117,is_integ:117,is_leaf:55,is_list_like_index:117,is_marri:189,is_monotonic_increas:117,is_prim:89,is_scalar:117,is_uniqu:117,isabel:59,isalignedstruct:116,isalpha:166,isbn:134,ischoolonlin:[103,171],isclos:89,isdecim:166,isdir:[39,121],isfil:[121,128,130],ish:[36,66],isinst:[14,33,51,89,90,117,126,127,129,165,166,188],island:[61,75],isn:[39,45,48,117,142,151,153,165],isna:[14,51,56,100],isnan:[46,116],isnt:54,isnul:[7,22,46,47,48,49,51,52,53,54,57,58,59,61,64,68,75,77,100,114,139,149,162,173],iso2:136,iso3:136,iso:133,isol:[7,114,134,137],iss:29,issu:[0,7,28,40,45,46,49,50,54,57,58,66,68,77,101,109,114,117,125,128,132,134,140,145,150,152,170],issubclass:165,issubset:14,isupp:166,item:[31,33,37,43,59,89,108,109,115,116,117,121,128,135,139,158,161,164,165,167,173,187,188,189],item_from_zerodim:117,items:[116,173],iter:[31,33,35,37,48,55,61,63,65,68,76,77,89,90,97,98,117,121,122,124,125,134,135,136,140,145,147,148,149,152,159,161,165,166,167,181,187,188],iter_n:121,iterate_minibatch:79,iterated_numb:[165,187],iteration_count:128,iterrow:131,ith:[55,149],its:[4,6,7,12,18,22,26,28,29,31,33,39,40,41,43,48,49,50,54,59,61,62,68,75,77,82,90,96,98,99,100,103,105,106,108,109,110,111,114,115,116,117,118,120,122,123,124,126,127,131,133,134,135,137,139,140,141,142,144,145,146,149,150,151,152,153,156,158,159,161,162,164,165,166,167,168,171,172,173,176,178,180,185,188],itself:[7,14,50,54,79,105,111,115,118,133,134,135,136,144,145,153,159,161,165,166,180,185],itslek:54,iucn:106,ium:[166,188],ivborw0kggoaaaansuheugaaayqaaacccamaaabxtu9iaaaah1bmvex:59,ix2vocab:128,ix:[121,128],ix_:116,ix_cutoff:130,ix_to_vocab_dict:128,j7z80yoo:59,j:[1,32,33,34,37,38,48,50,56,89,90,105,116,120,124,125,126,135,141,142,144,145,149,152,166,167,180,183,184,188,189],jack:[166,188],jade:174,jag:[106,144],jain:[122,133],jake:[57,58,60,61,173],jakevdp:[150,178],jam:[36,111],jame:[113,133,187],jane:90,januari:[1,17],japan:[118,174],japanes:[156,157,158],japanese_df:156,japanese_ingredient_df:156,jar:134,jargon:[144,158],jasmin:25,jason:137,java:134,javascript:[110,115,136,153,167,189],jbase:174,jcodella:[109,170],jean:[40,43,77,125],jehx7a7:59,jellek:95,jello:[166,188],jen:[99,140,156,160,161,168],jenna:104,jerom:[144,145],jerri:[89,90],jesucristo:37,jetbrain:38,jez:134,jgzcjvracubdwr59:59,jha:122,ji:137,jian:[126,129],jiang:137,jim:[101,111],jitter:145,jl:127,jlwfklkcd5a5zdyvlszj0s5qme6nbl:59,joaquin:135,job:[3,29,31,38,59,66,81,96,98,101,110,111,134,135,137,139,144,157,159,166,185,188],joe:167,john:[14,89,90,116,133,136,165,166,167,187,188],johnson:90,joi:[99,168],join:[12,29,30,31,33,36,37,39,41,45,46,47,48,51,56,66,114,121,123,128,130,131,132,142,152,156,160,165,166,180,188],join_ax:173,join_nam:117,joint:122,jointli:127,jointplot:139,joli:50,jonathan:[122,127],jone:145,joseph:133,josip:133,journal:[50,133],journei:[99,111,132],jovian:33,jp:14,jpeg:[31,38,121],jpg:[31,36,38,60,121],jpn:133,js:[29,132,136,153,189],json:[6,9,81,97,105,110,111,153],judgment:141,jul:[99,168],juli:[17,111,134,135],jump:[81,97,101,108,116,152,165],jun:[98,189],jungl:139,junho:126,jupit:189,jupyt:[0,12,18,25,57,58,60,61,66,68,77,80,81,97,98,113,114,117,132,140,148,149,152,157,160,161,162,164,165,167,173,180,181,182,183,186,187],jupyterlab:0,jupyterlab_myst:[95,96,97,98,106,107,108,123,138,139,140,151,152,154,155,156,157,158,160],jupytext:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158],jupytext_vers:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158],juri:141,juror:141,just:[0,1,3,7,9,14,18,28,29,31,40,43,44,45,46,49,50,55,56,57,59,60,62,66,79,90,96,97,98,101,106,107,109,111,113,114,116,117,118,121,123,126,127,129,131,134,136,137,139,142,144,145,148,149,150,151,152,156,159,160,162,165,166,167,180,181,182,185,188],justifi:[48,101,135,153],jython:[166,188],k0:117,k0ejw9dkfvdwds21a1rdro0ancgqymgncr:59,k1:117,k2:117,k3:117,k4:117,k5:117,k5izpn8apjgrfovv82wjhtletgw:59,k5osgokaymjjuvfm5otnz2dlvb28rkyutra3q6ury8vlly8vf39:59,k8:134,k:[3,50,80,81,116,117,121,123,124,126,128,129,130,139,141,145,147,150,159,161,178,186],k_d:124,k_i:124,k_list:80,k_p:124,k_size:37,kaggl:[1,4,10,20,25,30,31,32,33,35,38,39,51,56,68,75,77,80,81,98,100,110,114,116,122,123,126,131,145,159,161,176,180,181,182,183,185,186],kaim:[126,129],kaiyang:137,kalenichenko:126,kam:144,kamal:109,kamala:109,kanta:109,kapoor:36,karen:126,karnika:36,karr:160,kashnitski:[50,141,142,144,145,180],kayod:133,kb:[29,38,50,60,114,139,149,160],kdd:133,kde:[22,54,56,106,139,172],kdeplot:[106,172],kdr:38,keep:[7,22,33,36,45,47,61,63,65,68,75,77,88,96,98,103,114,115,116,117,125,126,131,135,140,144,150,151,152,159,160,161,162,165],keep_dim:127,keepdim:[79,173],kei:[3,7,9,38,48,90,96,97,98,99,101,109,115,116,117,118,121,122,124,128,129,130,133,134,135,136,157,165,167,168,173,174,181,187,188,189],kendal:127,kept:[7,114,127],kera:[29,30,31,32,35,36,38,40,41,42,43,44,45,47,48,49,62,120,122,126,127,128,129,130,135,151,176],kernel1x1:126,kernel3x3:126,kernel:[29,31,32,33,56,60,61,121,126,127,131,139,149,158,160,177],kernel_initi:[127,129],kernel_s:[29,30,31,32,33,34,36,37,39,126,127],kernel_valu:126,kernelid:126,kernelspec:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158],keskar:135,key_dim:[122,126],key_is_scalar:117,keyerror:[89,117,128,167],keys_list:89,keyword:[3,90,97,110,111,115,116,117,118,140,151,166,167,174,187,188],kfhh15qw86isx1ucrjzsekn0ijaykf3i96hnjna:59,kfold:[56,59,64],kfold_scor:56,kfoldcv:64,khale:137,khg:129,khsa:126,khsb:126,kilian:126,kill:167,killer:46,kilobyt:[53,58,159],kim:[30,126,129],kind:[1,7,15,22,30,31,39,43,45,47,48,49,50,51,52,54,56,59,60,61,62,64,66,68,77,87,89,90,98,104,105,106,108,114,116,117,120,123,125,128,131,132,139,145,149,150,151,156,157,159,161,162,164,165,166,167,172,176,185],kinesi:133,kingdom:12,kingma:31,kingpin:105,kit:[62,95],kitchen:142,kitchenabvgr:54,kitchenqu:54,kiwi:[39,166,188],kld:31,km:[133,140],kmean:[140,152,180],kmeans_:152,kmeans__n_clust:152,kmeans_algorithm_plot:152,kmeans_bad:152,kmeans_good:152,kmeans_iter1:152,kmeans_iter2:152,kmeans_iter3:152,kmeans_k3:152,kmeans_k8:152,kmeans_per_k:152,kmeans_rnd_10_init:152,kmeans_rnd_init1:152,kmeans_rnd_init2:152,kmeans_variability_plot:152,kmeanskmean:152,kneighbor:[152,157,158],kneighborsclassifi:[56,80,81,152,158],kneighborsclassifierkneighborsclassifi:152,knife:181,knight:[165,166,188],knights_nam:165,knights_properti:165,knn:[50,56,120,144,152,158,159],know:[7,17,18,23,27,33,40,43,45,46,49,50,52,53,56,58,59,68,75,77,79,81,96,98,100,101,109,111,113,114,115,117,118,122,123,127,131,135,140,145,149,151,159,165,166,167,182,185,188],knowledg:[7,31,41,50,54,59,69,96,98,103,111,113,122,124,133,135,136,137,145,148,159,160,169,170],known:[32,50,57,58,59,68,77,103,109,110,111,113,116,117,123,127,129,131,132,133,134,135,136,141,145,150,159,165,166,185],kogwl43x3ogqzqjpuoe8b:59,kool_kheart:38,korbut:135,korean:[156,157,158],korean_df:156,korean_ingredient_df:156,kosaciec_szczecinkowaty_iris_setosa:60,kotthoff:135,kpash:59,kqxjp1r14yggzhpqx_gpx6580000gn:172,kriz:[121,126],krizhevski:[33,121],ks:[126,141],ksize:121,ksv:64,kubeflow:134,kubernet:134,kullback:122,kuqvjmwrkag9whlqdvrh:59,kurtosi:59,kw:121,kwangnam:122,kwarg:[43,106,117,127,129,165,172,187],l14:128,l14_intro:128,l1:[63,65,91,120,125,135],l1regular:[63,65],l2:[63,65,91,125,135,150],l2_leaf_reg:54,l2_loss:121,l2regular:[63,65],l3:125,l4lsxqfk:59,l9dkgf1pchhmpqsobc9eb:59,l:[35,50,55,79,113,117,120,121,124,129,130,144,145,146,149,161,166,173,174],l_1:[66,145],l_2:[66,145],l_:145,l_left:50,l_p:113,l_q:145,l_right:50,lab:[0,39,40,43,58,60,61,68,77,99,168],label:[1,7,15,22,29,30,31,32,33,34,36,37,38,39,40,41,42,45,46,47,48,49,50,52,53,56,57,58,59,61,64,66,68,75,76,77,79,81,97,98,105,106,107,108,115,121,124,125,126,127,130,135,136,139,140,141,144,149,150,152,153,156,157,158,160,161,167,172,173,175,176,180,182,183,184],label_batch:121,label_column_nam:[9,97],label_enc:[49,52,57],label_encod:[22,52,56],label_logit:129,label_mod:[36,122],labelbottom:152,labelencod:[38,49,52,56,57,64,80,140,153,161],labelleft:152,labels:[62,131,152],labels_:[140,152],labels_df:156,labels_fil:121,labelweight:[62,131],labl:3,labor:135,labori:[7,46,114],lachin:98,lack:[13,26,28,124,135,136,145,165],laclo:105,ladi:[105,139],ladybug:152,lag:38,lag_1:131,lai:[101,127],laid:101,lake:[96,111,133,170],laken:48,lamb:165,lambda:[1,14,22,31,32,36,38,44,47,54,56,66,117,136,149,160,166,179,187,188],lambda_l1:54,lambda_l2:54,lambdamart:145,lamda:[63,65],land:[54,133,159],landcontour:66,landmark:109,landscap:137,lang:[15,38],languag:[1,22,41,43,45,47,48,59,95,96,97,98,104,105,106,107,108,111,115,116,117,118,123,130,132,134,135,137,138,139,151,152,154,155,156,157,158,159,165,166,167,173,174,187,188,189],lap78:137,laped:137,laplacian:145,lar:135,larg:[1,7,11,30,31,39,45,46,49,50,51,54,59,60,61,62,63,65,66,71,96,98,99,100,101,103,109,111,114,115,116,117,118,120,123,126,128,131,133,134,135,137,139,141,142,144,145,148,149,150,151,152,158,159,160,166,169,170,173,176,178,180,181,188],larger:[14,29,48,59,89,98,109,116,120,121,122,135,145,148,161,166,173,175],largest:[48,59,96,116,126],larxel:98,laser:101,laskoski:138,lasso:[66,145,151,160],lasso_pr:66,lasso_sklearn:[63,65],lassocv:66,lassolarscv:66,lassoregress:[63,65],last:[7,8,14,29,32,38,39,40,41,43,44,45,47,49,52,55,60,62,68,77,79,80,90,101,109,111,114,116,117,121,123,127,130,131,133,134,135,140,145,151,156,157,159,162,165,166,170,173,185,186,187,188],last_index:166,last_nam:[90,187,189],last_new_job:56,last_stat:128,last_tl:35,lastli:[32,36,45,54,101],lastnam:167,lastnewjob:56,lat:[14,136,181],late:105,latenc:[126,131,134,137],latent:[29,31,36,120,122,135],latent_dim:[29,30,36],latent_vec:31,later:[7,18,37,40,41,43,47,50,53,54,59,79,80,101,103,109,111,113,114,117,118,121,123,124,131,135,148,149,152,159,164,165,166,167,182,185,189],latest:[98,121,123,134,136],latest_iter:181,latin1:121,latin:48,latitud:[61,75,153],latter:[40,109,111,116,117,122,123,126,135,136,141,142,153,157,160,161],launch:[16,98,115,134,137,177],lauren:126,lavend:131,lavenderblush:131,law:[22,45,47,48,99,103,109,168],layer:[29,30,31,33,34,35,36,38,39,40,42,43,44,45,48,62,105,117,120,121,122,125,126,127,128,129,130,135,149,151,176],layer_1:120,layer_2:120,layer_activ:79,layer_i:79,layer_input:79,layer_nam:127,layernorm1:126,layernorm2:126,layernorm:126,layout:[116,124],lbfg:[152,157],lc:[64,106,172],lcca:127,ldot:[145,146],le:[40,64,80,105,113,140,175],lea:124,lead:[48,50,59,64,101,109,111,113,116,117,124,131,133,134,140,141,142,148,151,165,170,173],lead_tim:131,leader:137,leaderboard:66,leaf:[50,54,144,149],leagu:113,leak:[57,109],leakag:[54,66,159],leaky_relu:125,leakyrelu:[31,36,37,123],lean:135,lear:148,learn:[0,3,7,12,16,18,21,22,25,28,29,30,31,32,33,34,35,37,38,39,40,42,44,46,47,48,49,51,52,53,54,55,57,58,60,61,62,66,68,69,71,76,77,79,87,89,90,95,96,97,99,100,101,103,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,125,126,127,128,130,133,134,136,139,140,141,144,145,146,147,148,149,150,155,158,161,165,166,167,170,173,174,175,176,177,179,182,183,184,186,187,189],learn_curv:64,learnabl:[32,79,126,135],learned_paramet:152,learner:[54,56,146,147,149],learning_curv:64,learning_r:[35,48,49,54,56,63,65,66,76,78,79,120,121,122,124,128,130,149,182,183],learningrateschedul:[32,122],learnpython:166,learnt:[18,54,57,64,127],least:[4,8,11,13,16,28,39,50,51,59,106,109,111,113,116,117,131,135,142,145,150,151,152,160,161,165,166,172],leav:[49,50,52,62,66,68,77,98,101,107,111,117,141,142,144,149,162,167,172,189],lectur:[80,113,133,145],led:58,lee:[7,104,159],leed:50,leff:133,left:[1,7,31,32,33,40,43,50,54,55,56,81,89,98,100,103,106,115,116,117,121,124,127,130,141,142,144,145,146,150,152,159,161,165,166,171,178,181],left_column:181,left_i:142,left_idx:55,left_index:[38,117],left_join_kei:117,left_on:117,left_output:124,left_shifted_imag:81,leftarrow:145,legaci:98,legal:[109,165],legend:[22,29,31,32,33,34,35,37,38,42,45,47,48,50,51,76,79,105,106,108,121,127,130,131,141,142,144,152,172,180,183,184],legibl:141,legisl:105,legitim:59,leibler:122,lejmjnc8nyfra0oarlwsptp1nrr855zaajnceahw7uhgewwf:59,len:[1,14,18,22,31,33,35,37,38,39,40,41,42,44,45,47,48,49,51,52,53,54,55,56,57,58,59,60,61,64,68,75,77,79,89,90,117,121,122,124,125,126,127,128,129,130,131,141,152,158,165,166,173,182,183,184,186,187,188],len_axi:117,lend:[137,161],lenet:126,length:[3,8,14,31,41,43,46,50,60,64,80,90,105,106,111,113,114,116,117,123,128,130,131,139,140,141,142,163,165,166,172,180,188],lenovo:62,leo:[141,142,144],lepiota:107,leq:[50,116,145],leqq:122,less:[1,6,7,8,18,26,29,31,33,36,39,40,41,49,50,52,54,56,59,66,89,96,98,101,106,108,109,115,116,123,128,133,134,135,137,139,141,144,145,148,149,151,152,159,162,165,166,170,173,187,188],less_equ:116,lesson:[54,62,72,128,131,160,161,162],let:[1,3,7,9,14,16,18,24,25,29,30,31,32,33,34,36,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,66,68,75,77,79,80,83,93,94,96,97,99,100,101,103,105,106,107,108,109,111,113,114,115,116,117,118,120,122,123,126,127,128,130,131,132,135,136,137,138,139,140,141,142,144,145,146,149,151,152,153,155,156,157,158,159,160,161,162,163,164,165,167,168,170,171,173,174,180,181,182,185,186,188],lett:89,letter:[7,90,97,105,109,111,114,117,118,153,165,166,188],level:[7,41,43,45,47,54,57,58,59,98,109,113,116,117,122,123,126,134,135,137,139,144,145,149,150,159,165,167,173,178,182,185,186,189],leverag:[0,41,49,54,55,96,132,133,134,135,137,153,156,157,158,162],lexsort:116,lfw:31,lfw_attribut:31,lg:161,lgbm:54,lgbmregressor:54,lh:55,lhs_cnt:55,lhs_std:55,lhs_sum2:55,lhs_sum:55,li:[33,45,50,105,137,187],liabil:[89,90,165,166],liabl:[89,90,165,166],liaison:105,liang:127,lib:[57,117,140,157,161,173,180,187],liblinear:157,librari:[0,1,3,7,8,18,33,35,36,39,41,45,46,47,48,56,72,75,83,98,100,105,106,107,108,114,115,116,132,135,137,139,141,142,144,145,153,157,158,160,161,162,163,167,172,173,176,181],licenc:[57,150,178],licens:[22,41,45,47,48,80,81,89,90,98,135,140,165,166,180,181,182,183,186],lidiya:189,lie:[50,105,113],lieu:145,life:[11,18,34,50,59,60,98,99,103,109,111,113,116,139,152,159,165,168,185],lifecycl:[17,23,97,99,100,134,136,137,177],lifetim:145,lift:103,light:[39,49,111,126,153,159,181,189],lightbgm:54,lightcor:29,lighter:[99,168],lightgbm:[49,146],lightgbm_search:54,lightgrai:1,lightn:149,lightweight:134,like:[7,11,14,17,18,23,28,30,31,33,34,36,40,41,43,46,48,49,50,52,53,54,55,56,57,58,59,60,61,62,66,68,75,77,79,96,97,99,100,103,105,106,109,110,111,113,114,115,116,118,121,123,126,128,130,131,132,133,134,135,136,137,139,140,141,142,144,145,148,149,151,152,153,156,157,159,160,161,162,164,165,166,167,168,171,173,174,176,181,182,185,186,187,188,189],likehood:145,likelihood:[101,122,125,150,156,159,161],likewis:[34,41,116],lili:24,limit:[7,14,16,22,28,31,45,47,48,50,56,59,68,75,77,89,90,98,103,109,115,116,117,124,128,129,133,135,136,141,142,145,149,159,165,166,188],limits_:[50,125,152],limits_k:50,limousin:[17,23],lin_pr:60,lin_reg:[160,182],lin_reg_2:182,lin_svc:60,lin_svr:61,linalg:152,line2d:[76,160],line:[1,14,18,31,41,45,49,50,52,59,60,61,76,79,98,105,106,109,116,117,121,124,131,139,140,145,150,152,153,156,158,161,162,164,165,166,167,173,175,182,186,188,189],line_chart:181,line_kw:54,lineag:[109,136,170],linear:[18,31,33,35,41,42,45,49,50,51,52,54,55,56,60,61,63,65,68,69,77,78,79,81,116,120,121,123,124,126,135,140,144,145,149,152,156,157,159,162,163,164,165,166,177,180,185,186],linear_beta_schedul:122,linear_model:[49,56,63,64,65,66,68,75,77,78,131,152,153,157,158,160,161,164,182,183,184],linear_reg:[63,65],linear_reward_:124,linear_scor:59,linear_svc1000:59,linear_svc100:59,linear_svc:59,linearli:[59,80,116,122,135,150],linearregress:[75,131,160,164,182],linearregressionlinearregress:[160,164],linearsvc:[59,60],linearsvclinearsvc:60,linearsvr:61,linearsvrlinearsvr:61,lineplot2:[108,172],lineplot:[49,52,56,64,108,140,161,172],liner:160,linestyl:[14,18,32,150,152,178],linewidth:[38,50,54,59,106,131,150,152,164,172,178],linguist:[137,161],link:[1,28,29,31,35,61,98,101,103,105,111,124,127,135,136,139,145,146,149,153,164,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],linkag:[99,152],linnerud:85,linspac:[50,76,79,116,122,144,150,152,178,182],linux:[115,126],lisa:173,lisens:[63,65],lisheng:155,list1:89,list2:89,list3:89,list4:89,list5:89,list:[1,3,7,12,14,18,28,31,33,35,38,39,40,41,43,44,45,49,50,51,52,53,54,57,58,59,61,63,64,65,71,75,79,80,87,97,106,107,108,111,113,114,115,116,118,121,124,125,126,127,129,130,134,135,137,142,144,146,153,158,159,162,172,173,174],list_i:34,list_of_char:[166,188],list_of_coordin:116,list_of_numb:[166,188],listcomp:[117,166,188],listdir:[33,37,38,39],listedcolormap:[183,184],listen:[0,135,166],listlik:117,listnod:91,lite:153,liter:[165,187],literari:99,litt:139,littl:[1,7,14,30,40,41,47,63,65,68,71,75,77,103,105,108,114,117,121,126,140,142,145,146,152,156,158,160,162,164,165,182],liu:[126,137],live:[48,50,96,98,99,109,110,131,132,139,140,153,159,177],ljust:166,lkei:117,ll:[16,22,28,29,33,41,45,47,48,50,62,64,66,71,79,96,99,100,102,103,105,109,110,115,116,117,118,119,122,127,131,133,135,140,141,142,145,146,148,151,153,156,157,162,163,164,165,166,173,174,188],llc:[45,47,48,101],lmdb:174,ln:145,lo:[40,121,166],load:[2,7,9,15,17,18,23,33,40,45,48,51,66,79,81,83,106,114,117,121,123,125,127,128,131,133,134,139,144,148,152,153,158,160,161,164,165,180,181,186,187],load_batch_from_fil:121,load_breast_canc:40,load_data:[29,30,40,41,120,176,186],load_dataset:79,load_diabet:164,load_digit:[50,152],load_ext:[12,25,40],load_imag:127,load_images_from_fold:39,load_img:39,load_iri:[7,46,114,180],load_model:[29,30,38,39,40,41,42,44,176],load_next_batch:152,loader:[33,125],loadmat:121,loadtestsfromtestcas:47,loan:[50,159,185],lobe:153,loc:[1,14,18,22,31,32,38,47,48,50,51,54,56,62,66,79,106,113,117,121,130,131,140,141,144,160,162,172,173,176,180],local:[14,28,43,57,62,97,98,103,115,117,121,126,127,129,150,153,157,159,164,165,173,178,180,187],localhost:29,localto:127,locat:[1,9,66,75,99,103,109,110,115,116,117,121,124,127,129,135,142,150,165,168,174],log1p:66,log2:[50,116,144],log:[0,9,16,37,38,40,54,66,79,81,97,98,111,116,122,125,127,133,134,145,146,170,183],log_2:50,log_classifi:49,log_dir:40,log_imag:125,log_model:[68,77],log_reg:[49,64,152],log_reg_scor:152,log_scor:[68,77],log_templ:31,log_transform:66,logaddexp:[116,146],loganberri:[166,188],logarithm:[116,135,137,186],logdir:40,logger:125,logging_level:54,logic:[3,34,50,79,116,117,133,159,161,164,166,188],logical_and:116,logical_not:116,logical_or:116,logical_xor:116,logist:[49,56,59,86,99,128,145,149,152,153,156,159,160,163,164,177,186],logisticregress:[49,56,64,68,77,152,153,157,158,161,183,184],logisticregressionlogisticregress:152,logisticregressor:64,logit:[37,41,79,121,125,126,128,129,130,135],logit_output:128,logitech:39,logits_concat:129,logits_for_answ:79,logits_out:130,logvar:31,lokesh:133,lon:181,london:[12,133],long_:136,longer:[7,32,36,40,45,48,49,50,52,54,62,75,98,103,110,117,135,148,152,165,180,187],longest:[68,77,101],longitud:[61,75,153],loo:161,looa:160,loob:160,look:[3,6,7,8,10,13,14,15,17,18,20,25,28,29,30,31,33,34,36,41,43,46,47,48,49,50,52,54,55,58,59,60,62,64,66,68,71,75,77,79,80,83,85,96,97,98,99,101,103,105,106,107,108,109,111,113,114,115,116,117,118,121,126,128,130,135,138,139,140,141,144,145,149,151,152,153,155,156,157,159,161,162,164,165,166,168,172,173,174,176,180,182,188],lookback:[38,44],lookout:117,lookup:[113,115,116],loop:[33,35,56,90,105,116,117,121,124,137,140,152,159,165,166,167,173,187,188],looper:[99,140,156,160,161,168],loos:[68,77,139],lopinavir:1,lose:66,loss:[13,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,48,54,55,56,62,117,120,121,122,123,127,128,130,144,146,147,149,151,157,176,178,179,182],loss_acc_metrics_df:40,loss_d:37,loss_fn:36,loss_fun:128,loss_funct:54,loss_g:37,loss_grad:79,loss_histori:146,loss_vae_fn:31,loss_valu:121,lossi:31,lossless:31,lost:31,lot:[3,7,14,46,48,49,50,52,56,59,66,82,96,97,98,110,111,114,126,128,131,139,142,144,145,146,148,149,151,153,156,158,159,165,185],lotarea:[54,66],lotfrontag:[54,66],lotfrontage_mean:54,lotshap:66,loud:[138,139,140],loudli:180,loukid:109,love:[36,50,90,156,165,189],low:[18,30,38,41,43,44,45,48,49,56,57,59,61,63,64,65,68,75,77,89,95,97,99,101,113,116,126,135,148,150,151,155,160,161,162,163,166,168,176],low_valu:136,lower:[1,3,7,29,47,48,49,54,56,59,64,75,90,98,109,113,116,117,120,121,128,130,135,141,145,152,160,161,166,170],lower_cas:94,lowercas:[90,166],lowest:[7,152],lowqualfinsf:54,loyal:141,loyal_cal:141,loyal_mean_scor:141,loyalti:105,lr:[31,33,34,37,48,63,64,65,78,150,157,176,178,182,183],lr_d:37,lr_decai:121,lr_g:37,lrn:121,lrschedul:122,ls:134,lst2:39,lst:[39,89,90,166,167],lstm:[42,123,128],lstm_builder:44,lstm_model:[38,42,128],lstm_output:128,lsuffix:117,lt:75,ltd:56,ltorgo:58,ltsm:123,ltv:145,lu:[126,127],luci:[24,137],lucidchart:101,luck:[47,105],lucki:[68,77],luckili:[79,128],lug_boot:57,luggag:57,lui:58,lunch:159,lund:187,lvert:[151,179],lvl:66,lw:[50,144,150,178,180],lwq:54,lxl:137,ly:79,m1:[18,164],m2:18,m:[1,3,12,18,24,25,37,59,63,65,66,95,96,97,98,101,106,107,108,109,116,117,123,124,135,136,138,139,140,141,144,145,146,150,151,152,154,155,156,157,158,159,160,166,173,178,185],m_:18,m_dep:[68,77],maaten:126,mac:[98,126,134,164],machin:[0,3,7,12,18,25,31,33,36,39,40,43,46,48,49,50,52,53,54,56,57,58,68,77,87,95,96,97,99,103,105,109,111,113,115,117,120,123,124,130,131,132,133,134,135,136,139,140,141,144,145,146,147,148,149,151,156,157,158,160,161,162,167,170,173,175,176,177,179,182,187,189],machine_cpu:58,machine_cup:53,machine_data:[53,58],machine_label:58,machine_learning_complet:77,maco:[115,167],macro:[35,57,59,60,157,158,161],made:[16,24,29,39,43,49,50,62,68,77,79,97,98,103,115,116,123,126,131,133,134,139,141,145,147,159,164,165,167,174,187],madip:[139,160,161,162],mae:[29,38,54,62,144],mae_cb:54,mae_lgbm:54,mae_xgb:54,magic:[145,159,166],magic_dict:89,magnitud:[66,80,113,160],mah:[68,77],mai:[1,8,12,14,22,25,28,29,30,31,32,34,40,45,46,47,48,49,50,52,56,57,58,59,60,62,63,64,65,68,75,77,79,98,99,100,101,103,106,109,110,111,113,114,115,116,117,118,121,124,126,127,131,133,134,135,136,137,139,141,142,144,145,148,149,150,151,152,153,159,160,161,165,166,167,168,171,178,187,188],mail:[50,111,141],main:[3,12,18,25,31,37,43,49,50,53,54,58,59,66,68,76,77,79,96,98,103,105,111,113,116,120,121,123,127,133,137,140,144,145,147,150,151,159,160,161,165,170,171,185],mainli:[54,120,126,130,150],maint:57,maintain:[31,57,96,110,123,126,132,134,136,144,159],mainten:[57,96,103,137,159,165,171,187],maje:133,major:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,77,79,80,81,82,83,85,86,87,88,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,124,125,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,144,145,146,148,149,152,153,156,157,158,159,160,161,162,164,165,166,167,175,180,181,182,183,186],major_axi:117,major_disciplin:56,majumdar:137,make:[0,1,3,4,5,7,9,11,15,18,22,30,31,32,35,38,39,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,66,68,75,77,79,81,89,96,98,99,100,101,103,106,108,109,110,111,113,114,116,117,118,121,122,123,124,125,126,128,130,131,133,134,135,136,137,139,140,141,142,144,145,146,148,150,151,152,153,156,159,160,164,165,166,167,168,170,173,174,181,182,185,188,189],make_blob:[150,152,178],make_circl:[144,150,178,183],make_classif:[183,184],make_dataclass:117,make_df:173,make_grid:33,make_increment_funct:165,make_lag:131,make_me_smil:31,make_moon:[152,183],make_multistep_target:131,make_pipelin:160,make_regress:[63,65],makedir:[29,30,31,33,36,37,39,41,66,121,128,130,152],maketran:90,makeup:105,male:[22,56,159],malici:109,malign:40,man:[98,153],manag:[0,38,96,97,98,99,100,101,110,117,119,133,134,136,144,163,167,168,174],manageri:101,mandat:109,mandi:139,maneuv:105,manfr:[166,188],mango:[39,189],mani:[1,3,7,18,29,35,36,39,40,43,44,46,47,49,50,51,52,53,54,56,57,58,59,60,61,66,68,75,77,80,85,96,97,98,99,100,101,103,105,107,108,109,111,113,114,116,117,119,121,123,124,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,144,145,148,149,150,151,152,153,156,157,159,162,164,165,166,167,169,170,173,176,185,187,188,189],manifold:[30,180],manipul:[81,105,109,111,117,118,119,124,159,166,173,181,185,188],manishmsft:[115,174],manner:[7,30,50,59,99,109,111,114,117,136,160,166,170,188],manual:[1,135,136,137,151,152,180],manual_se:33,manufactur:[134,159,185],map:[1,5,7,22,30,31,33,36,39,41,43,44,48,51,56,59,68,77,89,99,106,111,116,117,120,121,122,123,124,126,127,128,136,139,142,150,156,159,161,165,166,169,185,186,187,188],map_data:181,map_funct:89,mapper:[30,117],mapper_fruit_nam:39,mapper_noisi:30,mapper_org:30,mappingproxi:116,mar:[135,165,189],marcela:138,march:[115,169,174],marco:126,margarin:105,margin:[60,61,79,121,137,153],mari:[165,187],marital_statu:51,mark:[1,64,80,89,117,150,159,185],markdown:[39,164],marker:[80,117,152,161,180],marker_s:30,markeredgecolor:131,markeredgewidth:[150,178],markerfacecolor:131,markers:[150,152,178],market:[49,52,96,109,111,124,139,159,169],marketplac:109,marklog:174,marktab:103,maroon:[107,172],marquis:105,mart:145,martin:[22,135,136],martinfowl:134,mask:[7,46,54,64,114,116,117,127,173],mask_logit:129,maskrcnn_upxconv_head:129,mason:109,mass:[24,101,106,145,164],massiv:[41,99,137,168],master:[7,14,56,68,77,121,128,139,152],masteri:122,masvnrarea:54,masvnrtyp:54,mat:121,mat_mean:121,mat_tensor:43,match:[0,7,34,41,45,48,63,65,71,116,117,118,122,126,131,139,150,159,165,180],matconvnet:121,materi:[50,99,113,114],math:[18,29,31,36,38,43,46,60,61,89,113,122,127,160,161,162,167,187],mathbb:[113,124,125,145],mathbf:[142,152,182],mathcal:[124,145],mathemat:[54,56,59,89,90,110,111,113,116,121,122,123,125,136,139,145,151,159,160,166,167,173,182,188,189],mathematician:113,mathfrak:142,matlab_2016:38,matlotlib:121,matmul:[116,120,121,124,125,128,130],mato:48,matplotlib:[1,3,14,15,18,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,72,75,76,77,79,80,81,95,96,97,98,99,105,106,107,108,120,121,122,123,124,127,128,130,131,138,139,140,141,142,144,146,149,150,151,152,153,154,155,156,157,158,160,161,164,168,172,176,178,180,181,182,183,184,186],matplotlibdeprecationwarn:[62,180],matric:[45,50,66,116,130,135,150,161],matrix:[1,8,18,24,33,34,39,40,43,49,50,52,57,60,64,68,75,77,79,80,113,116,121,139,150,159,164,166,180,188],matter:[59,79,101,109,133,137,151,159,161,162,165,167,179],maverick:137,max:[3,7,18,22,32,33,38,39,41,47,48,50,57,58,59,60,61,64,75,100,106,117,121,125,129,130,139,144,146,149,152,153,166,172,183,184],max_ag:22,max_bin:[54,66,148,149],max_cat_threshold:66,max_cat_to_onehot:[66,148,149],max_concurrent_iter:[9,97],max_delta:121,max_delta_step:[66,148,149],max_depth:[49,50,52,54,57,58,66,142,144,146,148,149,180],max_depth_grid:144,max_document_length:130,max_featur:[49,50,52,57,58,142,144],max_features_grid:144,max_it:[56,64,76,152,153],max_ix:130,max_leaf_nod:[52,53,56,57,58,144],max_leav:[66,148,149],max_len:[130,166],max_nod:[9,97],max_pool1:121,max_pool2:121,max_pool:121,max_pool_size1:121,max_pool_size2:121,max_pooling2d:126,max_row:[45,47,48],max_sampl:49,max_sequence_length:130,max_val:29,maxbodymass:[106,172],maxim:[37,50,59,124,125,158,165,180],maximis:150,maximum:[3,7,22,47,48,49,50,53,56,57,58,76,79,97,98,106,120,121,126,144,150,161],maxiter:124,maxlen:[35,130],maxlength:[106,172],maxpool2d:[31,32,33,34,122],maxpool:121,maxpooling2d:[39,122,127],maxstep:124,maxval:[122,125],maxwingspan:[106,172],mayb:[7,62,101,108,117,131,140,146,158,160,162],maybe_cal:117,maybe_convert_indic:117,maze:124,maze_collect:124,maze_typ:124,mb:[29,38,59,75,156],mbox:[145,146],mcculloch:130,mcgraw:137,mckinnei:[116,117],md5_checksum:57,md:[95,96,97,98,104,105,106,107,108,129,138,139,151,152,154,155,156,157,158,164],mdp:124,me:[1,36,40,103,121,126,146,160,161,167,171,181],meadow:[107,172],mean:[3,7,14,18,22,29,31,32,33,34,36,37,38,40,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,75,77,79,80,81,89,96,97,98,99,100,101,105,108,109,110,111,114,116,117,118,120,121,124,125,128,130,131,135,137,139,141,142,144,145,146,148,149,150,151,158,159,160,161,162,165,166,167,168,173,178,182,183,185,186,188],mean_absolute_error:[54,148,186],mean_confidence_interv:18,mean_cross_v:54,mean_imput:75,mean_squar:120,mean_squared_error:[38,42,53,54,58,61,75,131,160,186],meanarr:48,meaning:[3,16,30,41,106,109,126,133,159,171],meansquarederror:[29,30],meant:[116,134],meantim:159,measur:[7,14,24,41,49,50,52,59,60,66,68,75,77,98,99,103,108,109,110,111,113,122,124,131,135,136,137,139,140,142,144,147,152,159,160,162,165,170,171,180,182,185],mechan:[45,116,123,126,133,134,165,187],med:[1,57,161],media:[5,49,50,52,99,101,134,136,137,159,168],median:[7,18,22,54,57,75,117,145,159],median_house_valu:[61,75],median_incom:[61,75],medic:[1,8,40,96,98,99,109,127,133,137,139,159,164,170],medicin:[8,111,159],medium:[1,59,68,75,77,101,109,120,174],meet:[101,105,109,116,134,137,162,170],mega:[68,77],megapixel:[39,68,77],megatrend:109,mehdi:125,mehta:133,mel:135,melt:64,member:[5,41,50,99,101,103,109,139,141,166,168,171,188],membership:[166,167,188],memcach:174,memcachedb:174,meme:145,memmap:152,memo:101,memor:[41,68,77],memori:[29,33,35,38,49,53,54,58,59,60,68,75,77,114,116,121,123,124,127,133,134,135,139,149,150,152,156,160,166,173],memory_gb:[9,97],memory_unit:124,memoryview:[166,188],men:[56,85,109,170],menglong:126,mention:[0,1,2,8,19,39,40,43,56,59,103,111,113,115,116,117,123,127,131,133,137,142,145,151,159,165,173],menu:[40,97,98,181],merchant:[89,90,165,166],mercuri:189,mere:116,merg:[14,31,38,89,114,145,165,166],merge_asof:117,merge_dict:90,merged_dict:90,merged_list:91,mergetwolist:91,merteuil:105,meshgrid:[50,76,144,150,152,178,183,184],mess:[68,77,162],messag:[50,59,89,98,101,110,117,130,141,159,165,166,171],messi:[133,159],met:[31,40,116],meta:[15,54,135,141,153],metadata:[1,7,46,110,114,116,117,118,133,165,187],metaflow:134,metal:134,meteorologist:131,meter:[99,168],metho:[63,64,65],method:[1,3,7,14,18,24,30,31,33,36,41,46,47,50,54,56,57,58,68,77,88,89,97,98,99,103,105,106,107,108,111,114,116,120,122,126,127,129,131,132,133,134,135,136,137,139,141,142,144,145,147,149,153,156,157,158,159,160,161,164,170,171,173,177,180,187],method_nam:165,methodnam:165,methodolog:[122,135,145],methylprednisolon:1,metric:[29,30,32,34,36,38,39,40,41,44,47,49,50,51,52,53,54,55,56,57,58,60,61,63,65,75,80,81,97,98,101,127,131,133,136,140,144,146,148,149,152,153,157,158,160,161,180,183,184],mhrw5iwz2ifmqolguyvnuygzqyrvbxwmbzgjluaj:59,mi:45,michael:137,michalbialecki:[115,174],michel:137,michigan:109,mickei:89,micro:[133,148,153],microcomput:134,microphon:135,microprocessor:[68,77],microsoft:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,38,41,46,49,54,67,68,69,71,72,82,83,85,86,87,88,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,118,133,134,137,139,140,153,156,157,158,160,161,162,164,168,170,174],mid:[89,136],middl:[85,89,107,127,140,150],middlenam:167,midnight:117,midpoint:[136,161],might:[1,7,11,14,18,26,33,34,39,43,47,49,54,55,59,62,64,66,68,77,96,98,105,108,110,111,113,114,116,118,124,129,131,133,135,139,141,144,151,152,157,159,160,161,164,165,166,167,174,176,182,185],migrat:133,mike:24,milk:149,miller:113,millimet:[118,174],million:[32,33,99,126,159,168,185],millionair:167,mimic:[32,41,111,116,159,165,185],min:[1,3,7,18,31,38,47,48,50,58,59,61,64,66,75,80,100,106,117,125,126,129,130,139,144,145,149,152,153,172,183,184],min_:[57,146,182],min_after_dequeu:121,min_child_sampl:54,min_child_weight:[54,66,148,149],min_freq:128,min_impurity_decreas:[56,57,58],min_impurity_split:[56,144],min_ix:130,min_leaf:55,min_nod:[9,97],min_sampl:152,min_samples_leaf:[50,52,57,58,144],min_samples_leaf_grid:144,min_samples_split:[52,53,57,58,144],min_val:29,min_weight_fraction_leaf:[56,57,58,144],min_word_freq:128,min_word_frequ:130,minbodymass:[106,172],mind:[7,36,45,99,103,114,117,126,135,137,140,161,171],mine:[3,48,50,103,119,133,150,167],minecraft:145,ming:187,mini:[135,161],miniatur:160,minibatch:[35,37,79],minibatch_kmean:152,minibatch_kmeans_vs_kmean:152,minibatchkmean:152,minibatchkmeansminibatchkmean:152,miniconda3:140,miniconda:[117,157,161],minim:[29,32,41,49,50,52,53,54,55,86,109,111,120,121,125,130,131,135,139,140,141,145,146,149,151,152,157,159,160,170,182,186],minima:[55,135],minimis:[150,178],minimum:[3,7,48,50,53,56,58,64,76,98,106,116,144,146,149,150,151,160,166,188],minio_url:57,minist:121,minlength:[106,172],minmax:125,minmaxscal:[38,40,42,47,60,62,68,75,77],minnesota:[4,106,172],minor:[48,59,66,156],minor_axi:117,minu:[145,146],minut:[9,47,49,50,52,97,98,101,110,111,116,121,134,136,139,140,141,152,156,158,159,164],minval:[122,125],minwingspan:[106,172],mirza:125,misc:[121,187],miscfeatur:[54,66],misclassfi:54,misclassif:[50,64,80],misclassifi:[54,64,133,149],miscval:[54,66],misgend:99,mishra:109,mislead:[57,109,133,159,170,185],misleading_label:36,mismatch:[58,116],misrepresent:[109,170],miss:[14,16,18,19,22,24,25,31,49,50,52,53,56,58,61,66,100,111,116,117,131,133,135,139,144,146,148,159,160,165,185],miss_rinola:38,missclass:50,missing_count:54,mission:109,mistak:[50,54,62,66,101,124,133,145,149,167],mistaken:165,misung:137,misus:134,mit:[41,56,89,90,99,109,140,150,165,166,168,170,178],mitchel:[50,159,185],mitig:[28,99,109,151,168],mitpress:90,mittal:133,mix:[117,145,160,162,166,188],mixed4d_3x3_bottleneck_pre_relu:121,mixed_list:[166,188],mixtur:[139,145],mkamal21:109,mkdir:[37,124],mkframe:14,ml2:152,ml:[48,49,52,60,66,67,68,69,71,72,82,83,85,86,87,88,95,96,123,130,131,132,134,135,137,153,155,156,157,158,159,160,161,162,163,164,169,185],mlaa:134,mlb:18,mlcc:[47,48],mleap:134,mlearn:58,mledu:[47,48],mlflow:[98,134],mlop:[132,133,136],mlp:[30,43,129,186],mlpclassifi:157,mlsummari:58,mltest:47,mm:162,mmax:[53,58],mmin:[53,58],mn:54,mncb:59,mnist:[29,30,40,79,120,125,152,176,186],mnist_784:152,mnist_8x8:180,mnist_data:125,mnist_test:[32,79,81],mnist_train:[32,79,81],mnist_train_smal:47,mnistdata:47,mnistdf:47,mnistdf_backup:47,mnistlabel:47,mnistpr:47,mnprv:54,mnww:54,mo:180,mobil:[68,77,101,126,134,153,181],mobile_price_test:[68,77],mobile_price_train:[68,77],mobile_test:[68,77],mobile_train:[68,77],mobile_wt:[68,77],mobilenetv1:127,mobilenetv2:[126,127],mock:[5,24,53],mock_df_boxplot:24,mock_df_hist:53,mock_df_pairplot:53,mock_df_plot:24,mock_pairplot:53,mod_resourc:187,mode:[0,7,33,51,54,98,125,126,127,129,134,135,152,153,160,161,165,177],modefin:46,modefined_sklearn_iris_dataset:46,model2:129,model:[7,10,14,20,31,32,35,42,55,58,60,61,62,63,81,82,85,86,87,95,99,100,103,109,110,111,113,114,116,117,120,121,123,125,128,132,133,139,141,142,144,145,146,147,149,150,152,155,156,157,158,169,170,171,174,177,178,180,181],model_1:40,model_auto:31,model_definit:121,model_ev:40,model_filenam:153,model_fn:121,model_histori:127,model_lasso:66,model_learning_r:121,model_mean:122,model_nam:[9,30,31,97,125],model_output:[121,128],model_path:[38,39,40,42,44,97,128],model_perform:54,model_respons:[30,31],model_ridg:66,model_save_path:[30,31],model_select:[29,30,31,32,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,64,66,68,75,77,80,81,131,144,146,148,149,152,153,157,158,160,161,164,180,182,183,184],model_url:[30,31,38,39,40,42,44],model_va:31,model_vae_nam:31,model_vae_respons:31,model_vae_save_path:31,model_vae_url:31,model_xgb:66,modelcheckpoint:[39,40,44],modelfit:56,moder:[64,137],modern:[62,103,123,134,136],modif:[29,126,144],modifi:[1,8,45,47,48,50,89,90,111,116,117,118,121,127,135,136,146,148,165,166,167,173,174,180,187,189],modifii:90,modnam:165,modul:[31,33,37,59,66,79,97,98,111,115,127,129,134,135,136,152,153,161,164],modulenotfounderror:[79,167],modulo:[166,188],modulu:[166,167,188,189],moment:[98,105,131,135,136,140,145,156,159,160,166,167,186],momentarili:173,momentum:[36,186],momentumoptim:121,mondai:[49,52],monei:[18,98,99,111,142,145,167,168],moneybal:99,mongodb:[111,174],monitor:[39,40,41,44,97,98,99,132,133,134,135,136,169],monkei:117,monoton:[117,137,144,165],monotone_constraint:[66,148,149],monster:79,month:[1,14,15,39,110,131,160,162,167],monthli:[1,110,131,160],mood:[99,168],moodle2:187,moon:31,moraga:146,moral:[6,105,109,170],mordvintsev:121,more:[1,2,3,7,8,14,16,17,18,21,23,28,29,33,34,35,36,39,40,41,43,46,48,50,53,54,56,57,58,59,62,63,64,65,66,75,79,96,97,98,99,100,101,103,104,105,106,107,108,109,110,111,113,114,115,116,117,118,121,123,124,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,144,145,148,149,150,151,152,153,156,158,159,160,161,163,164,165,166,167,168,171,173,174,178,180,181,182,185,186,187,188,189],moreov:[50,59,62,126,145,146],mosold:[54,66],mosquera:137,most:[1,3,7,14,17,18,24,29,30,31,32,36,40,41,43,47,48,49,50,51,52,53,54,55,57,58,59,60,62,63,65,66,75,79,96,98,101,104,106,107,108,109,111,113,114,115,116,117,118,120,123,124,125,126,131,132,133,134,135,136,137,139,140,141,142,144,145,146,149,150,151,152,156,157,159,162,164,165,166,167,169,172,173,180,185,186,187,188],mostli:[7,59,111,123,135,144,145,160,161,185],motiv:[58,61,99,109,123],motor:124,motorcycl:50,mount:137,mous:89,move:[7,14,33,39,47,49,52,79,101,103,105,116,121,122,123,133,135,136,141,145,148,152,166,167],move_down:124,move_left:124,move_right:124,move_up:124,movement:[124,145],movi:[99,105,109,159,168,170],moving_mean:126,moving_vari:126,mp3:31,mpeg:31,mpimg:37,mpl:[152,156],mpl_toolkit:[76,80,105,150,178,180],mplot3d:[76,80,105,150,178,180],mrcnn:129,mri:[99,137],mrr:135,ms:[152,173],mse:[35,38,44,45,47,48,50,53,55,58,61,75,80,120,135,142,144,149,160,182],mse_cross_v:75,mseloss:31,msg:[47,117,161],msi:38,msocach:38,msr:99,msrafil:129,mssubclass:[54,66],mszone:[54,66],mtwuhpol:59,mu:[31,113,122,141,144],mu_p:122,mu_q:122,much:[1,3,7,18,30,47,48,49,50,52,54,55,57,58,59,61,62,66,68,75,77,98,100,101,111,113,116,117,118,123,127,133,135,140,141,142,144,145,146,151,152,156,159,160,161,165,173,185],mudiger:135,mug:126,mujumdar:133,mul:[31,121],multi:[30,43,47,57,116,117,126,127,131,133,134,136,139,150,156,165,173,174],multi_class:[152,157],multi_grid:127,multi_line_str:[166,188],multiclass:[127,135,150,156,157],multicollinear:180,multidimension:[43,116,121],multifield:116,multiheadattent:[122,126],multiindex:117,multilabel:157,multilay:126,multilin:[108,166,167,188,189],multiline_str:166,multimod:113,multinomi:[157,161],multioutput:157,multioutputregressor:131,multipl:[0,7,12,16,18,33,41,43,45,49,52,53,56,66,80,85,89,90,103,106,108,111,114,117,118,121,123,126,128,131,133,134,135,137,139,145,147,149,150,151,164,167,173,174,178,187,188,189],multipli:[43,79,89,115,116,126,145,148,151,160,187],multipurpos:189,multitud:148,multivalu:174,multivari:182,munich:[109,170],munigala:133,muralidhar:64,muscl:167,mushroom:157,music:[138,139,140,141],muskmelon:39,must:[0,30,32,36,40,41,45,48,59,64,75,79,89,97,101,103,110,112,115,116,117,121,126,134,135,137,139,150,152,153,159,160,165,166,178,185,187,188],mustach:153,mustard:157,mutabl:[43,116,165,166,188],mutlipl:121,muufdbikxdmks9nw6kt1ryvntpqvf9:59,mv:174,mvbase:174,mventerpris:174,mxiwdgk8ic9dz8xhyd7evn2garncxycf6tjsnoupao3pjxyhxosmimbvb06qv7nnzxvaul:59,my:[34,54,116,117,128,129,135,136,165,166,181,187,188],my_conv_net:121,my_dict:[89,90],my_funct:187,my_get_text:[165,187],my_imput:148,my_list:[89,187],my_mnist:152,my_model:148,my_modul:187,my_optim:121,my_own_classifi:183,my_sum:[93,187],my_tupl:[166,188],mybind:177,mybnk3dsmcymz0gwylxxqfulhrvy5axto:59,mycount:165,myct:[53,58],mycustomerror:165,myfunct:187,myhtmlpars:3,mylst:167,mymodel0:56,mymodel:56,myownlinearregress:182,myownlogisticregress:[78,183],myqcloud:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,106,107,108,139,140,152,156,157,158,160,172],mysql:[118,174],myst:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158],mysteri:156,mythbusting_1:57,n24wr7ee6evwkotuekcka3picccvrgxpyku:59,n:[7,9,18,25,29,30,31,33,35,38,39,40,45,50,51,52,55,56,57,59,63,64,65,81,89,90,98,105,109,113,116,117,120,121,122,124,125,126,127,128,129,130,131,134,135,137,141,142,144,145,150,152,160,161,165,166,167,169,171,174,178,182,187,188],n_1:50,n_2:50,n_:144,n_anchor:129,n_arrai:43,n_batch:125,n_channel:31,n_class:[79,126],n_classifi:158,n_cluster:[140,152,180],n_clusters_:152,n_clusters_per_class:[183,184],n_col:[31,125],n_color:[131,152],n_column:48,n_compon:[30,180],n_connected_components_:152,n_core:[68,77],n_dense_block:126,n_estim:[49,50,51,52,53,54,55,56,66,142,144,149,158],n_featur:[38,63,65,78,182,183,184],n_features_in_:152,n_filter:126,n_group:122,n_head:122,n_hour:38,n_i:[50,116],n_imag:37,n_in:38,n_inform:[183,184],n_init:[140,152],n_input:37,n_iter:[54,61,78,152,182,183],n_iter_no_chang:56,n_job:[50,52,53,56,66,81,144,149],n_label:152,n_layer:126,n_layers_per_block:126,n_leaves_:152,n_neighbor:[80,81,152],n_ob:38,n_out:38,n_output:37,n_redund:[183,184],n_resnet:122,n_row:[31,48,125],n_sampl:[50,57,63,65,78,141,144,150,152,178,182,183],n_split:[56,59,64,144],n_test:[50,144],n_train:[50,144],n_train_hour:38,n_var:38,na:[7,14,46,51,54,66,114,117,129,135],na_val:51,nabla:145,naftaliharri:[140,152],nagalapatti:133,nair:[33,121],naiv:[79,116,145,148],name1:116,name2:116,name:[0,1,7,8,9,12,14,15,18,22,24,29,32,36,38,40,41,54,55,57,58,59,60,61,64,75,79,80,89,90,93,95,96,97,98,103,104,105,106,107,108,110,111,113,115,116,118,121,122,123,126,127,128,129,130,131,134,135,138,139,142,145,149,150,151,152,153,154,155,156,157,158,159,160,161,162,164,165,166,167,172,173,174,180,181,187,188,189],name_1:[166,188],name_2:[166,188],nameerror:[121,165,167],namespac:[117,165,187],nan:[1,14,18,38,45,46,47,51,54,56,64,66,75,114,116,117,135,148,149,160,161],nanosecond:[53,58],narr:[105,109],narrow:[45,49,50,89,107,141,158,159,172,185],nash:125,nasknxwdtb4aaaaasuvork5cyii:59,nasty_list:89,nat:35,nation:[99,153,156,168],nativ:[134,173,174],native_countri:51,native_country_41:51,natur:[1,39,43,45,47,54,59,101,104,107,108,109,111,116,117,123,124,130,131,135,137,139,160,162,167,182],naught:79,navig:[96,98,99,153,159,168],nax4:129,nbmake:0,nbsp:41,nbviewer:[57,58,60,61,66,148,149,152,160,164],nbyte:173,ncc:58,nchw:129,ncluster:140,ncol:[37,39,121],nconfus:39,ncss:129,ndarrai:75,ndf:38,ndframe:117,ndim:[43,116,117,173],ndimag:81,nearbi:[139,144],nearer:160,nearest:[1,31,80,81,139,140,150,152,157,159,165,176,178],nearest_neighbor:127,nearli:[49,52,68,77,129,173,182],neat:[66,160,161,165],neatli:157,necess:123,necessar:134,necessari:[0,7,12,18,20,25,39,45,50,96,97,105,106,107,108,109,114,116,117,121,123,131,133,134,135,138,139,140,150,151,152,154,155,156,157,158,159,160,162,165,166,185],necessarili:[49,66,101,113,120,135,160],need:[0,1,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,23,24,26,27,28,33,38,40,41,42,43,44,46,47,48,49,50,52,53,54,55,56,57,58,59,62,63,65,69,71,72,79,80,82,85,86,87,88,89,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,121,122,125,127,131,133,134,135,136,137,139,140,141,144,145,148,149,150,151,152,153,156,157,158,159,160,162,164,165,166,167,170,171,174,178,180,181,182,185,187,188],needless:[7,116],neg:[40,41,50,51,52,56,57,59,66,68,77,89,99,113,116,121,122,123,124,125,135,137,145,150,152,161,165,166,167,176,186,188,189],neg_mean_squared_error:66,neg_root_mean_squared_error:[54,75],negative_integ:[166,188],negative_slop:37,negativs:52,neglig:48,neigh_garag:54,neigh_lot:54,neighbor:[49,52,56,80,81,124,140,152,157,159],neighborhood:54,neightborhood:54,neither:[71,146],neo4j:174,nepoch:31,neptun:189,neq:[116,124,141],nervou:130,ness:129,nest:[56,90,105,116,117,165],nested_list:90,nested_tupl:166,nestim:59,net50:126,net:[6,25,32,35,47,126,127,130,134,145,149],netd:37,neteas:38,netflix:[109,123,159,170],netg:37,network:[5,29,30,31,36,38,41,43,45,47,48,49,62,64,68,77,96,99,111,116,117,120,124,126,127,128,129,131,132,133,134,135,137,145,151,153,156,157,159,164,169,170,177,184,185],network_weight:121,networth:167,neural:[29,30,31,35,36,37,41,43,45,47,49,62,64,68,77,116,117,120,124,126,127,128,129,131,132,135,137,145,151,153,156,157,159,164,176,177,184,185],neural_network:121,neuralearn:122,neuron:[30,40,41,45,47,62,123,130,135,151,175],neurral:151,neutral:134,neutron:59,never:[31,40,49,50,52,54,56,57,79,98,110,116,125,126,135,151,159,165,185],nevertheless:[7,80,114,116],new_ax:117,new_column:[14,160,161,162],new_data:117,new_df:30,new_dict:166,new_imag:34,new_label:117,new_pumpkin:[160,161,162],new_row:117,newaxi:[29,30,45,63,65,116,127,164],newbi:135,newer:[75,135,173],newli:[14,117,118,166],newlin:[128,166,187],newshap:116,newton:[89,157],next:[3,7,9,34,35,36,37,38,39,40,41,44,46,47,48,49,50,52,53,54,56,58,61,62,89,90,91,95,97,98,99,101,103,109,114,116,117,118,121,122,123,124,126,128,130,131,134,135,136,139,141,144,145,146,148,149,150,152,153,156,158,159,161,162,164,165,166,167,173,181,185,187,188],next_num:90,next_stat:35,nfals:59,nfold:149,ng17:135,ng:[105,121,133,135,136,159],ngo:56,nh:129,nhwc:[125,129],ni:[166,188],nice:[47,50,66,106,146,156,166,180,188],nicer:[1,14,165],nichol:122,nick:[103,121,128,130,159],nigeria:138,nigerian:[139,140],night:[50,121,141,153,182],ninfav:14,ninfect:14,nip:[121,137],nipy_spectr:180,nitin:133,niven:182,nj:[134,141],nl:57,nlargest:38,nlookup:116,nlp:[1,59,126,135],nlp_rake:3,nltk:1,nmodel:56,nmultilin:167,nn:[31,33,37,40,120,121,122,124,125,126,128,129,130],nn_vi:175,no_enrol:56,no_exceptions_has_been_fir:165,no_grad:[31,33],no_missing_data_df:46,no_missing_dup_data_df:46,no_smile_data:31,no_smile_id:31,no_smile_lat:31,noced:135,node:[1,29,30,41,50,97,98,105,115,121,128,134,142,144,149,174,189],node_id:142,nois:[3,29,31,36,37,41,45,50,59,64,68,77,120,121,124,125,137,139,144,145,150,151,152,176,178,182,183],noise_factor:[29,30],noise_s:125,noise_shap:47,noisi:[29,136,139,140,144,145],nol20:111,nolli:111,nomin:[54,57,149],non:[1,14,18,29,38,44,54,56,59,60,61,75,89,90,98,109,114,116,117,119,120,121,122,125,128,135,137,139,142,144,145,149,150,151,159,160,165,170,177,187],non_block:33,non_cor:152,non_core_mask:152,none:[3,9,14,18,22,24,29,35,36,38,39,45,47,48,49,52,53,55,56,57,58,63,65,66,68,77,78,86,90,91,97,98,107,108,114,116,117,122,124,125,126,127,129,130,131,140,141,144,148,149,150,151,152,156,160,165,166,172,178,180,182,183,188],nonetheless:152,nonetyp:[166,173,188],nonexistent_column:14,nonflat:139,noninfring:[89,90,165,166],nonlin:45,nonlinear:[32,45,61,121,123,126,135,151,160],nonoptim:135,nonparametr:[144,157],nonzero:[55,116],nooooooo:167,noqa:[165,166],nor:71,norm1:121,norm2:121,norm:[109,121,129,151,152],norm_hist:54,normal:[7,29,30,31,32,36,37,40,43,45,49,50,52,59,66,68,75,77,79,114,116,120,121,122,123,125,126,127,128,129,133,135,140,142,144,145,151,159,162,165,176,180,186],normal_:37,normal_goal_i:124,normal_goal_x:124,normal_i:124,normal_random:18,normal_test_data:29,normal_train_data:29,normal_x:124,normalizaiton:32,normalization_matrix:121,normalization_mean:121,normalized_data:[68,77],normalizedata:48,norri:89,north:[75,163],northgat:174,norwai:189,norwegian:165,nosql:[111,170],nostruct:116,not_equ:116,not_existing_charact:[166,188],not_existing_vari:165,not_ther:116,notabl:[61,123,159,174],notat:[54,110,115,116,117,165,166,188],notclean:38,note:[0,1,7,8,14,18,29,36,40,41,47,48,50,52,53,54,57,58,61,66,68,77,80,81,97,98,100,108,109,110,113,114,116,117,121,122,123,127,135,137,139,141,142,144,145,146,150,152,160,162,164,165,166,180,182,188],notebook:[0,4,7,9,13,16,17,18,19,22,23,30,31,33,36,40,41,49,53,54,57,58,60,61,63,64,65,66,68,69,72,77,79,80,81,82,86,98,99,100,113,114,123,132,139,140,148,149,152,153,157,160,161,162,163,167,168,173,177,180,181,182,183,186],notebook_path:[29,30,31,33,39,41,66],noteworthi:122,notexist:3,notfittederror:146,noth:[7,41,57,60,62,79,108,116,141,145,146,148,149,152,165],notic:[7,29,40,48,89,90,99,101,103,106,107,108,113,114,115,118,131,151,153,159,162,165,166,171,173,174,182,185,187],notifi:[109,170],notion:[49,58,159],notnul:[7,46,51,114,173],notori:[36,105],notwithstand:[7,114],noun:126,novel:[105,127,129],novemb:[105,131,134,135,136],novic:101,now:[1,3,6,7,10,14,16,17,18,20,29,30,33,34,35,36,40,41,43,45,46,47,48,49,50,51,52,54,56,57,58,59,60,61,62,66,68,75,77,79,80,86,88,96,97,98,99,101,107,108,109,110,111,113,114,116,117,118,121,127,128,129,130,131,134,135,140,141,142,144,145,146,149,150,151,152,153,156,157,159,160,161,162,164,165,166,167,168,174,180,181,182,188],nowadai:[111,150],nowdai:159,np:[1,7,14,18,22,24,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,75,76,78,79,81,83,113,114,116,117,120,121,122,124,125,126,128,129,130,131,136,141,142,144,146,149,150,152,153,156,157,158,160,161,164,173,176,178,180,181,182,183,184,186],np_util:32,npm:105,npredict:39,npy:34,npython:167,nrow:[33,37,39,121],ns:38,nsampl:[38,44,127],nsecond:166,nshape:[63,65],nstandard:18,nswdeman:[49,52],nswdemand:[49,52],nswprice:[49,52],nt:[106,172,174],ntest:[40,41,186],nthe:[40,49,52,53,57,58,60,61,68,77],ntrain:64,ntree:144,ntrue:59,nu:146,nudg:[109,170],nuforc:153,null_accuraci:59,num1:187,num2:187,num3:187,num:[61,75,89,116,120,122,125,127,128,166,187,188],num_allow_arg:117,num_anchor:129,num_batch:[125,128,130],num_block:126,num_boost_round:[66,149],num_categori:129,num_channel:121,num_class:[32,126,127,129],num_col:[41,54],num_conv:129,num_correct:121,num_epoch:[33,125],num_exampl:127,num_feat:[61,75],num_feats_imput:75,num_feats_pip:75,num_feats_preprocess:75,num_featur:[79,120],num_filt:126,num_gens_to_wait:121,num_head:[122,126],num_hidden_1:120,num_hidden_2:120,num_hours_studi:182,num_imag:41,num_img:36,num_input_data:[68,77],num_label:186,num_lay:126,num_list:[61,75],num_memory_unit:124,num_output:79,num_parallel_cal:127,num_parallel_tre:[66,148,149],num_patch:126,num_pip:61,num_preprocess:61,num_queri:129,num_row:41,num_scal:75,num_target:121,num_test_sampl:125,num_thread:121,num_to_plot:142,num_unit:[79,130],num_vowel:166,num_work:33,numa:29,numa_nod:29,number:[1,3,6,7,8,14,18,22,25,29,30,31,32,33,34,35,36,38,39,40,41,43,45,46,47,48,49,50,52,54,55,57,58,59,62,63,64,65,68,75,76,77,79,80,81,97,98,101,103,105,106,107,108,110,111,114,117,118,120,121,122,123,124,126,127,128,129,131,134,135,136,139,140,141,142,144,145,148,149,150,151,153,156,157,158,159,160,161,162,164,165,170,172,173,176,178,180,181,182,185,187],number_imgs_each_part:39,number_limit:165,number_of_iter:[165,187],number_of_part:39,number_to_be_found:[165,187],numbug:187,numclass:47,numcol:[108,172],numer:[1,8,31,33,40,43,46,49,52,57,58,61,66,68,77,79,89,98,100,105,106,107,108,110,113,114,115,116,118,121,123,124,135,140,142,144,158,159,160,162,164,166,172,174,185,188],numeric_:54,numeric_feat:66,numeric_train:54,numeric_v:89,numpi:[1,7,14,18,22,24,29,30,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,75,76,79,80,81,83,95,96,97,98,99,106,107,108,114,117,119,120,121,122,123,124,125,126,128,129,130,131,138,139,140,141,142,144,146,149,150,151,152,153,154,155,156,157,158,160,161,164,165,168,176,177,178,180,181,182,183,184,186],numvehicl:131,nuniqu:51,nusvc:59,nvalid:64,nvarianc:18,nvidia:29,nw:129,nx0:129,nx1:55,nx4:129,nx:[38,44,116],nxcx:129,nxn:121,ny0:129,ny:[38,44,116,137],nyandwi:[40,43,49,52,53,68,75,77,159],nyc:[99,103,105,168],nyu:187,nz:37,o4yuzatazi:59,o6hc4qs8gkymfwwpxf6fxtxiucvqqcrsvyah3ppbsfh7yeiqsd:59,o:[12,25,42,51,54,55,59,80,109,116,124,129,130,133,137,141,152,166,186,188],o_lay:121,o_t:128,ob:35,obama:[89,137],obei:[40,116,150],obes:98,obj:[116,117,165,173],object:[3,7,9,14,16,24,31,36,38,43,44,47,48,50,53,54,56,57,59,64,66,75,76,79,80,97,99,105,107,110,114,115,120,121,123,125,126,127,131,134,135,136,138,139,145,148,149,150,151,153,156,157,159,160,166,167,168,172,174,175,186,187,188,189],object_:116,objectdatabas:174,objectdb:174,objectstor:174,observ:[1,3,7,18,30,38,47,53,59,110,111,114,117,122,124,131,133,135,139,140,141,142,145,148,156,160,161,180],observablehq:160,observepoint:101,obtain:[3,22,24,45,47,48,50,58,59,79,89,90,111,113,116,122,135,142,144,147,149,160,165,166,170,188],obviou:[18,56,107,113,126,144],obvious:[50,56,108,150,176],ocademi:[0,12,18,25,94,132,140,167,175,187,189],occam:151,occasion:165,occlud:[126,129],occlus:[39,126],occup:[51,149],occur:[1,7,8,28,49,52,59,109,116,121,128,131,135,151,153,162,165,166,181,187],occurr:[1,2,8,28,46,47,54,59,114,161],ocean:[61,75],ocean_proxim:[61,75],oceanproxim:75,octav:121,octave_n:121,octave_scal:121,octob:[109,162,174],od:165,odaba:174,odd:[89,187],odor:[107,172],odot:122,odunsi:139,ofcours:123,off:[30,34,36,37,39,40,46,49,50,52,56,59,61,62,68,77,79,103,121,122,124,126,127,128,131,141,144,149,151,152,159,165,171,176,186],offer:[21,40,96,105,106,107,109,116,126,133,139,148,156,157,158,161,162,170,173],offic:[111,126,131],office16:38,offici:[43,116,149],offlin:[35,153],offset:[116,145],often:[1,3,7,8,40,41,46,49,50,52,54,59,62,68,77,98,99,105,109,110,111,113,114,116,122,124,126,128,131,134,135,141,142,144,145,151,152,157,159,161,162,163,165,166,170,173,187,188],oftentim:111,oh:[47,128,141],ohadlight:126,ohh:[49,52,57,68,77],oil:36,ok:[115,117,118,141],okai:[41,57,58,152],old:[50,117,134,140,156,167,187],older:[113,116],oldid:174,oleksii:[89,90,165,166],ols:150,omar:56,omega_t:130,omit:[1,29,113,117,141,145,165,166],on3sx3y9kwmxfjcw:59,on_bad_lin:38,on_epoch_end:[40,127],onboard:[101,133],onc:[0,7,41,43,45,48,53,55,58,75,79,97,98,109,111,113,114,116,117,125,128,131,133,134,135,145,146,149,151,153,158,159,161,165,167,187,189],one:[1,6,7,8,11,13,14,16,18,19,21,22,24,26,27,28,29,31,32,33,36,39,40,41,43,44,45,46,47,48,49,50,51,52,54,56,58,59,60,61,62,63,65,66,68,69,72,75,76,77,79,81,82,87,88,89,90,96,98,99,101,103,104,105,106,107,108,109,111,113,114,115,116,117,118,121,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,144,145,148,149,150,151,152,153,156,157,158,159,160,161,163,164,165,166,167,168,172,173,174,178,181,182,185,186,187,188,189],one_hot:[7,75,121,125],one_hot_data:7,one_hot_encod:[22,75],one_trunc:117,onefield:116,onehotencod:[51,61,75,182],ones:[7,11,36,37,43,46,49,50,56,63,65,66,98,99,101,105,114,116,120,122,126,133,139,140,144,149,151,161,162,167,168,173,176,182],ones_for_answ:79,ones_lik:125,ones_tensor:43,ones_tensor_1:43,ongo:[103,137,171],onion:157,onli:[0,1,7,11,14,18,24,27,29,31,32,33,34,36,39,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,63,65,66,68,75,77,79,87,89,90,95,96,97,98,101,103,106,109,110,113,114,115,116,117,118,121,123,124,125,126,129,131,133,134,135,137,139,142,144,145,149,150,151,152,153,157,160,161,162,165,166,167,169,171,174,178,180,187,188,189],onlin:[1,28,109,111,113,116,117,134,135,137,153,159,165],only_path:39,onnx:[134,153],ontario:14,onto:[47,51,101,120,136,180,182],ontotext:174,onward:14,oob:141,oob_scor:144,oocademi:167,op:[117,121,128,130],open:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,36,37,38,39,40,41,42,43,44,46,49,50,52,53,54,55,56,57,58,59,60,61,62,64,66,67,68,69,71,72,75,77,79,80,81,82,83,85,86,87,88,89,90,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,139,140,141,142,144,145,146,148,149,153,156,157,158,159,160,161,162,164,165,166,167,173,180,181,182,183,185,186,187,189],open_access:140,opencv:[38,122],openinsight:174,openlink:174,openml1:57,openml:[53,57,58],openporchsf:54,openqm:174,oper:[7,18,25,29,33,40,49,56,59,89,96,98,109,111,113,115,121,124,126,128,132,133,134,135,136,161,165,167,169,170,189],operand:[116,166,173,188],operation:[109,170],opinion:135,oppon:125,opportun:[54,98,99,100,135,137,153],oppos:[117,148,165,166],opposit:[7,105,120,138,146,151,161,176],oppurtun:145,opt:[96,140,159],opt_func:33,optic:[134,139],optim:[29,30,31,32,33,34,35,36,38,39,40,41,42,43,44,45,47,50,52,54,57,62,76,80,98,99,101,106,116,117,120,121,122,123,124,125,126,127,128,130,133,136,137,140,142,144,145,146,148,149,150,157,160,161,176,178,180],optimis:150,optimist:[49,141],optimizerd:37,optimizerg:37,optimum:[56,140],option:[1,7,15,16,43,45,48,50,68,75,77,90,91,97,99,103,108,109,114,115,116,117,131,133,134,137,145,152,153,157,158,165,166,167,168,173,186,187,188],oracl:[118,174],orang:[39,50,105,106,113,124,156,161,166,172,188,189],orchestr:[133,134],ord:127,ord_col:54,ord_enc:57,order:[1,3,6,7,14,18,31,40,43,46,47,50,53,54,55,57,58,64,68,75,77,79,80,89,106,107,109,110,111,113,114,115,116,117,122,124,126,129,131,135,136,137,141,144,145,146,149,150,153,159,160,161,165,166,167,170,172,174,180,182,185,187,188,189],ordin:161,ordinal_map:54,ordinalencod:[57,75],ordinari:[57,75,131,161],ordinary_encod:75,oreilli:101,org:[3,22,45,47,48,57,58,60,61,66,101,117,121,122,126,127,128,129,135,137,148,149,150,152,160,164,165,166,174,175,180,187],organ:[34,40,96,97,99,103,106,109,110,111,114,115,116,126,133,134,159,164,168,170,171,172,174,180,181,185],organiz:109,orgin:[53,58,75],orient:[36,123,126,133,164,165,166,167,188],orientdb:174,origin:[3,7,14,29,30,31,34,36,39,45,49,50,55,57,58,59,63,65,77,86,89,90,108,111,116,117,120,121,125,131,133,134,139,141,142,144,145,146,149,150,152,156,160,161,162,166,174],original_featur:121,original_imag:121,original_image_fil:121,original_image_weight:121,original_label:117,original_lay:121,original_layers_w:121,original_loss:121,original_minus_mean:121,original_norm:121,original_str:[94,166],originl:55,ornella:99,orthogon:[120,180],os:[29,30,31,33,35,36,37,38,39,41,45,47,48,51,56,59,66,79,81,95,96,97,98,106,107,108,121,123,124,128,130,134,138,139,140,151,152,154,155,156,157,158,160,165],oscil:125,ossif:109,ot:121,other:[3,7,14,17,18,20,31,33,35,40,41,43,44,46,48,49,51,52,53,54,56,57,58,59,62,64,66,75,79,80,82,85,89,90,95,97,98,99,101,106,107,108,109,110,113,114,115,117,118,120,122,123,126,127,129,131,132,133,134,135,136,137,138,139,140,141,142,144,145,148,149,150,151,152,155,156,159,160,162,163,164,165,166,167,173,174,180,182,183,184,185,186,187,188],other_nam:[165,187],otherwis:[33,61,79,89,90,116,117,118,121,126,135,137,139,144,148,159,160,162,165,166],ouch:152,our:[1,3,7,14,18,29,30,31,32,33,34,36,39,40,41,43,46,47,48,50,52,54,55,56,57,58,59,60,63,65,66,68,75,77,79,80,99,100,101,107,108,109,111,113,114,117,118,120,121,122,123,126,129,131,132,135,136,137,139,140,141,142,144,145,146,149,151,152,153,156,157,158,159,160,161,164,165,167,170,173,174,180,181,185,189],ourselv:[48,54,131,145],oustand:49,out1:126,out:[3,7,8,14,15,18,29,33,34,35,37,41,43,48,50,53,54,56,59,62,64,66,68,77,89,90,96,97,99,101,105,106,108,109,110,111,113,114,116,117,118,121,122,123,124,125,126,127,129,131,132,134,135,137,139,140,142,144,145,148,149,151,153,156,157,158,159,161,162,164,165,166,167,173,174,180,181,185,187],out_channel:[31,126],out_col:54,out_conn:128,out_dir:125,out_filt:127,out_sampl:122,out_sent:128,out_siz:127,outbreak:14,outcom:[7,16,56,59,99,103,109,111,113,114,122,133,141,156,160,161],outer:[156,165,173],outermost:[117,165],outfield:113,outli:135,outlier:[7,45,46,47,60,61,75,104,106,113,133,135,139,140,141,144,145,150,152,172],outliers_influ:[54,64],outlin:[54,101,109,131,134],outlook:159,outperform:[49,135],output:[7,9,29,30,31,33,36,37,38,40,41,43,46,47,48,50,51,56,76,79,96,97,98,114,116,117,118,120,121,123,124,125,126,127,128,129,130,131,135,136,137,139,141,142,144,145,146,149,151,152,153,156,159,160,161,165,166,167,173,174,175,176,181,185,186,188],output_channel:127,output_class:127,output_everi:121,output_fil:121,output_file_nam:124,output_final_layer_before_activation_funct:124,output_gener:121,output_imag:37,output_indic:121,output_loc:121,output_memori:124,output_prepar:[38,44],output_s:126,output_stag:127,output_unit:79,outsid:[54,101,113,116,117,148,157,165,187],outwork:159,over:[1,7,8,13,14,24,31,32,33,36,40,46,48,49,51,52,54,59,68,77,79,87,90,96,99,101,105,108,109,114,116,118,120,121,123,124,125,126,128,129,130,131,133,134,135,136,137,139,141,142,144,145,146,149,152,153,156,157,158,161,163,165,166,167,168,169,172,174,187,188],over_sampl:156,overal:[7,13,14,30,31,48,49,50,54,56,99,100,108,110,111,114,135,142,145,159,160,185],overallcond:54,overallqu:54,overcom:[49,52,57,58,150],overdu:50,overexcit:151,overfit:[32,33,40,41,47,48,49,50,52,53,54,57,58,60,61,62,63,65,66,68,77,79,131,135,141,144,145,147,148,149,150,158,178,186],overfit_cat:54,overfit_num:54,overflow:117,overhead:[129,173],overlap:[18,113,116,117,139,140,165],overli:[49,50],overlin:[122,142],overload:150,overlook:[109,159],overrid:[117,165,187],override_groups_map:126,oversampl:156,overshadow:137,overshoot:146,oversimplif:101,overtim:159,overtrain:64,overview:[50,71,98,101,103,106,114,117,123,133,135,177],overwhelm:111,overwrit:[124,166,187,188],ovr:[152,157],owlim:174,own:[0,11,17,28,39,41,50,62,85,87,96,97,98,99,103,105,109,113,116,117,120,124,126,133,136,137,141,144,145,150,151,152,159,165,171,185],owner:[133,142],ownership:[50,109,170],ox:128,oxford:[109,170],oxford_iiit_pet:127,ozair:125,p1:187,p2:[32,122,187],p8jfm99bcnocr0fprrwgct14av4jdyx2gbnqpcnfextg3ams9qwtwvps5ycf06zz62cbjwwxw4muuruopw4ovcvkv7zqj4edmwgpr6w:59,p:[3,18,32,37,48,50,55,56,57,113,116,117,122,124,125,131,135,140,141,142,144,146,149,150,151,152,153,156,159,160,165,166,178,182,185,187,188],p_1:[50,113,122],p_2:[50,113],p_:[50,122,125],p_i:[50,122],p_k:50,p_n:[113,122],p_sampl:122,p_z:125,paa:[96,169],pace:41,pack:[116,164,166,187],packag:[18,35,51,57,99,113,116,117,134,139,140,145,153,156,157,159,160,161,162,164,168,173,176,180,187],packed_tupl:166,pacsuta:124,pad:[1,14,18,29,30,32,33,34,36,37,39,54,116,120,121,122,126,127,129,130,152,153],pad_bord:129,pad_sequ:130,padding_11:126,paderborn:124,page:[3,21,26,40,43,57,58,60,61,66,98,99,101,110,111,117,136,148,149,152,153,160,161,164,168],pagefil:38,pai:[18,59,80,96,109,123,128,142,144,160,169,170],paid:[109,123,170],pain:152,paint:[36,115],pair:[7,50,87,90,113,115,116,144,145,152,157,165,166,167,174,187,188,189],pair_list:3,pairgrid:[58,75,161],pairplot:[58,68,75,77],pairwis:[80,144],pal:36,palett:[39,51,56,68,77,105,106,108,131,172],palette_kwarg:131,palette_kwargs_:131,palinami:[63,65],palyground:160,pamphlet:50,pan:127,pancak:124,panda:[1,2,14,15,17,18,22,23,24,29,30,31,32,34,35,36,38,39,40,42,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,75,77,79,80,81,83,95,96,97,98,99,106,107,108,114,116,119,123,131,132,136,138,139,140,141,142,144,146,148,149,151,152,153,154,155,156,157,158,160,161,162,168,171,172,176,177,180,181,182,183,184,186],pandasarrai:117,pandem:[1,11,116,136],panel:181,papandr:127,paper:[7,14,21,26,28,49,50,99,111,113,121,123,125,127,128,129,149,152,161,168,175],paperback:131,papercodereview:129,papiu:66,par:66,parabol:160,paradigm:[111,159,185],paragraph:[85,87,128,165],parallel:[37,54,96,98,127,144,148,149],param:[29,47,48,61,63,64,65,66,121,127,149,165],param_distribut:[54,61],param_grid:[50,56,57,58,59,60,152],param_lst:54,param_test1:56,param_test2:56,param_test3:56,param_test4:56,param_test5:56,paramet:[3,7,10,22,31,32,33,34,41,45,48,49,52,57,58,59,60,61,62,63,64,65,66,68,77,78,79,81,97,98,106,108,113,114,116,117,120,121,122,123,126,127,128,130,131,135,136,145,146,148,149,150,151,152,157,158,160,161,165,166,167,179,182,183,187,188],parameteriz:136,parameterless:165,parameters_input:167,parameters_output:167,parametr:150,params_grid:[52,53,57,58,60],paramt:[33,146],parch:22,paremet:[60,75],parent:[6,22,109,117,165,170],parenthes:[7,165,166,187,188],park:153,parma:[63,65],parmet:151,parquet:111,parquet_url:57,parrot:[117,165,187],parrot_typ:165,pars:[3,114,131],parse_d:131,parsed_data:3,parsefromstr:121,parser:[3,165],part:[1,7,8,11,30,33,34,39,43,47,50,54,68,77,79,89,96,97,100,101,103,104,105,109,111,112,114,115,116,117,120,124,125,126,127,128,129,131,132,133,134,135,136,137,139,140,141,144,145,150,151,153,158,159,160,162,163,164,165,166,167,172,176,178,185,187,188,189],parti:[96,101,111],partial:[39,76,82,107,116,133,135,139,145,146,149,172],partial_deriv:122,partial_fit:152,partially_propag:152,particip:[50,109,130,141,145,170],particular:[7,31,43,49,50,51,57,59,75,89,90,100,103,107,108,110,114,115,116,117,123,125,135,141,142,145,152,159,160,165,166,171,185,188],particularli:[7,46,106,108,109,114,139,140,162,166,188],partit:[50,115,116,133,140,150],partner:[109,170],pascal:165,pass:[0,3,7,31,36,40,46,48,50,54,56,57,58,59,79,89,100,101,106,109,116,117,121,122,123,126,146,151,157,160,165,166,167,172,181,187,188],passag:105,passeng:[7,17,22,23],passenger_class:22,passengerid:146,passion:[101,166,188],passthrough:182,past:[49,50,54,109,118,121,126,129,130,131,134,136,137,153,175],pastel2:152,patch:[24,49,53,96,126,160],patch_dim:126,patch_project:126,patch_siz:126,patchifi:126,patel:133,path:[0,2,15,17,23,29,30,31,33,36,37,39,41,45,47,48,50,51,56,66,68,77,97,107,109,116,121,122,127,128,130,131,137,145,146,152,158,165,172,187],path_to_param:121,pathcollect:160,pathlib:131,pathnam:[45,47,48],patienc:[39,40,44],patient:[24,40,97,98,99,135,164],patrick:56,pattern:[36,54,55,56,62,64,99,100,103,108,109,111,123,131,134,137,138,139,147,151,159,161,164,165,170,171,185],paul:[38,167],paus:124,pave:66,pavithra:[63,65],pawel:189,payment:50,paz20:137,pazzanes:137,pb:121,pbar_out:31,pc:[68,77],pca:[120,159],pci:29,pclass:[22,146],pclass_xt:22,pclass_xt_pct:22,pcolormesh:50,pctdistanc:[107,172],pd:[1,2,7,14,15,17,18,22,23,24,29,30,31,32,34,35,36,38,39,40,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,75,77,79,81,83,106,107,108,114,117,131,136,139,140,141,142,144,146,148,149,153,156,157,158,160,161,162,172,176,180,181,182,183,184,186],pdf:[126,127,128,187],peac:101,peach:39,peak:148,pear:[39,166,188],pearsonr:66,pedestrian:159,pedoia:137,peek:[81,89,161],peep:40,peer:99,peke:187,penal:[123,145,159,176,185],penalti:[59,109,120,126,145,150,151],pendant:[107,172],peopl:[3,14,31,40,46,49,56,75,90,96,98,99,101,103,105,109,111,113,114,115,116,117,134,135,137,159,166,169,170,174,185,187],people_info:90,people_to_check1:89,people_to_check2:89,pep557:117,per:[33,39,45,47,48,49,50,60,106,108,116,117,121,122,126,127,129,135,152,156,160,162,172,173],per_image_standard:121,perceiv:[139,159,185],percent:[1,180,186],percentag:[14,34,41,50,52,59,62,68,75,77,98,135,144,161],percentil:[113,141,152],percentile_closest:152,percept:[139,159],perceptron:30,perceptu:126,perceptualedg:101,perfect:[47,49,59,64,90,106,151,152,172],perfectli:[7,50,64,68,77,114,135,141,150,160,178],perform:[1,7,18,29,31,32,33,39,40,41,48,49,50,51,53,54,56,58,59,61,62,64,66,75,79,80,81,86,90,96,98,103,111,113,115,116,118,122,123,124,126,127,129,132,133,134,135,136,137,139,141,142,144,145,146,148,149,150,151,152,156,157,160,161,164,165,166,167,169,171,173,179,181,182,187,188],performcv:56,perhap:[4,47,48,62,106,122,127,131,139,152,153,159,176,185],period:[13,14,38,39,44,49,52,98,99,117,131,137,165],period_rang:131,periodindex:131,perm:90,permiss:[22,45,47,48,89,90,98,109,165,166],permit:[89,90,116,165,166],permut:[31,33,79,90,125,130],perpendicular:[50,59],perplex:135,persimmon:39,persist:[9,124],person:[6,7,14,28,31,36,50,51,57,89,90,97,99,101,109,110,111,113,115,123,131,134,159,164,165,166,167,170,185,187],person_id:31,personsdata:115,perspect:[99,109,126,145],perst:174,persuad:101,persuas:101,pervas:[109,111],pet:15,petabyt:[99,168],petal:[46,60,80,114,142,180],petallength:[80,117,142],petallengthcm:64,petalratio:117,petalwidth:[80,117,142],petalwidthcm:64,peter:[113,166,188],petra:133,petrova:14,pfa:134,pg100:128,pg4mtoh4b05qn5dt:59,ph:48,ph_delta_weights_list:124,phase:[33,56,100,101,136,139,159,185],phd:56,phenomenon:137,phi:122,philip:133,phillip:137,phone:[6,68,77,101,109,110,111,166,170,181,188],phonem:128,photo:[31,34,43,95,102,104,117,119,155,163,176],photo_id:31,photo_numb:31,photo_path:31,photograph:[111,117,138],photoshopcs6:38,php:[174,187],phrase:[29,126,159,171],physic:[50,98,124,134],physicochem:48,physiolog:85,pi:[122,124,142,166,167,187,188],pi_j:142,pi_valu:[166,188],pic:31,pic_input:31,pic_output:31,pick:[16,26,28,33,36,64,66,68,77,87,101,108,115,121,124,140,144,146,149,152,162,164,174],pickl:[128,134,187],pickler:187,pickletool:187,pickup:[99,168],pictur:[1,3,14,30,31,37,50,51,59,60,111,113,116,117,123,135,141,142,145,159,176,180,185],pid:124,pie:[27,51,68,77,105,160,162],pie_pumpkin:160,piec:[46,51,59,94,100,111,114,133,136,148,164,176],piecewis:50,pieter:122,pii:109,pil:[31,36,121],pillow:165,pin:181,pin_memori:33,pineappl:[166,188],pinfect:14,pink:[1,105,107,172],pinpoint:54,piotr:[129,135],pip:[3,12,18,25,95,96,97,98,106,107,108,123,138,139,140,151,152,153,154,155,156,157,158,160,181],pipe:57,pipelin:[53,56,57,58,60,61,64,97,98,121,127,133,134,135,136,152,160],pipeline_scor:152,pipelinepipelin:[152,160],pipeln:64,piplin:[121,124],pitaya:39,pitch:136,pitt:130,pivot:[38,111],pivot_t:117,pix2pix:127,pixel:[29,30,33,36,39,40,41,43,47,50,68,77,81,116,126,127,129,135,159,180],pk:[12,118],pkl:153,pktfrwjz:59,pl:142,place:[7,33,46,50,54,89,90,98,100,101,105,111,114,116,117,123,133,141,156,159,161,164,165,166,167,188],placehold:[121,124,125,126,130,153,167,181],plai:[3,14,18,43,48,50,56,75,97,111,113,133,145,150,158,164,165,178,181],plain:[3,126],plainli:107,plan:[1,50,96,101,133,136,141],plane:[50,126,139,150,160,180],planet:[6,99,168,189],planetari:[99,168],plastic:139,platelet:[9,97,98],platform:[10,20,29,43,96,98,101,133,134,137,145,153,159,167,169,185],plausibl:176,player:[18,99,113,125,134,159],playground:[136,145,156],playgroundn:160,pleas:[15,29,45,46,47,48,49,52,57,58,60,61,66,79,97,117,121,126,148,149,151,152,153,160,164,165,177],plenti:[105,133,135,137,145,152],plot:[1,3,8,14,15,18,19,29,31,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,54,56,57,59,60,61,62,64,66,68,76,77,79,80,85,105,111,113,117,121,122,124,127,128,130,131,135,139,142,144,146,150,151,152,156,157,159,160,162,164,178,180,182,183,184,185,186],plot_3d:[150,178],plot_accuraci:33,plot_align:22,plot_centroid:152,plot_clust:152,plot_clusterer_comparison:152,plot_color:22,plot_dat:35,plot_data:152,plot_dbscan:152,plot_decision_boundari:152,plot_galleri:31,plot_imag:41,plot_import:149,plot_infected_vs_recov:14,plot_kind:22,plot_loss:[33,37],plot_model:186,plot_multistep:131,plot_param:131,plot_profit:35,plot_spectral_clust:152,plot_support:[150,178],plot_surfac:76,plot_svc_decision_funct:[150,178],plot_svm:[150,178],plot_titl:22,plot_train:39,plot_tre:[57,142],plot_value_arrai:41,plotli:[1,30,35,44],plt:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,75,76,77,79,80,81,106,107,108,120,121,122,124,127,128,130,131,139,140,141,142,144,146,149,150,152,156,160,162,164,172,176,178,180,182,183,184,186],plu:[32,50,78,105,116,117,182,183],plugin:0,pluginfil:187,plum:39,plumag:165,plymouth:141,pm:[103,113,165,187],pmlr:137,pmml:134,pneumonia:1,png:[3,36,37,39,59,66,124,152,160,161],po:[54,124,129,152],poc:98,poem:99,poetic:99,poetri:[99,168],poignant:108,poin:64,point3d:117,point:[7,8,11,15,16,28,29,30,31,33,36,40,41,47,48,49,50,52,59,60,61,62,68,75,76,77,81,101,103,105,106,108,110,113,114,116,117,124,125,129,130,131,134,135,139,140,141,144,145,149,150,151,152,153,156,158,159,160,161,162,163,164,165,166,173,179,180,181,182,185,186,188],pointer:[89,116,118],pointwis:126,pois:117,poison:[107,172],pojo:134,polar:38,poli:[59,60,61,160],polic:99,polici:[96,103,159,185],polli:117,poloclub:[175,176],poly_best:60,poly_pr:60,poly_svc100:59,poly_svc:[59,60],poly_svr:61,poly_transform:182,polynomi:[60,61,69,150,151,163],polynomialfeatur:[160,182],polynomialfeaturespolynomialfeatur:160,pomegran:39,pool1:121,pool1_pad:127,pool2:121,pool3:121,pool4:121,pool:[32,121,123,126,127],pool_layer1:121,pool_layer2:121,pool_siz:[34,39,126],poolarea:[54,66],poolqc:[54,66],poor:[31,40,53,58,59,64,68,75,77,116,128,135,139,145,151,159],poorli:[33,59,82,135,150,151,159,179],pop:[7,14,35,89,101,117,122,139,140,166,173,188],popul:[4,13,14,61,75,107,110,113,118,131,141,144,145,160,162,164,172,174],popular:[1,43,45,50,59,100,101,103,110,115,123,132,134,135,136,137,138,139,140,145,146,147,149,156,161,166,167,180],porch:54,port:22,portabl:[109,122,187],portal:[9,50,98],portion:[33,50,89,90,116,126,133,135,164,165,166],portrait:36,pose:[36,39,49],posit:[3,28,35,40,50,51,52,54,56,57,66,68,76,77,89,99,113,116,123,124,126,129,135,142,145,150,161,165,166,167,175,180,182,187,188,189],position_embed:126,position_salari:182,positionalembed:122,positive_integ:[166,188],positive_vector:[166,188],positv:59,possess:[54,68,75,77,159,185],possibl:[1,11,34,40,43,45,47,48,50,52,54,59,61,68,75,77,89,99,105,111,113,116,117,121,122,123,126,128,131,133,134,135,136,141,144,145,149,150,152,159,160,165,166,168,185,188],post:[0,1,14,28,29,32,43,50,116,117,129,130,153,169],postdoc:167,posterior:144,posterior_vari:122,posterior_variance_t:122,postur:36,potenti:[23,28,40,47,54,57,98,99,101,103,106,109,111,113,116,117,121,123,124,134,135,137,149,156,162,168,170,179],pothol:[109,170],potrait:36,potrait_gener:36,potraits_gener:36,pouget:125,pound:[108,141,162],pow:[31,120,124],power:[1,7,33,43,49,52,53,57,58,59,60,61,95,96,99,101,105,116,117,121,123,124,135,137,145,149,150,159,160,165,166,167,168,173,187,188],power_of:[165,187],ppf:18,pprint:31,pq:57,practic:[4,7,16,30,40,45,47,48,50,53,58,59,61,99,103,109,111,113,114,116,118,123,125,126,127,128,130,131,134,135,137,141,145,148,150,151,153,159,161,164,165,166,167,170,180,187],practical_dl:79,practis:150,practition:[109,131,170],prafulla:122,prashant111:51,prashant:[59,149,181,186],pre:[3,9,41,47,96,98,117,127,134,135,136,137,148,151,160,164],preced:[47,116,126,165],precis:[29,40,46,47,52,54,57,60,66,68,77,79,89,100,116,130,135,136,151,157,158,161,165,182],precision_recall_curv:[157,158],precision_scor:[29,30,157,158],precison:[52,57],precomput:117,pred:[29,33,39,40,49,52,53,54,56,57,58,66,121,131,146,160,180],pred_class:39,pred_mask:127,predefin:[33,113,115,124,139,158,174],predf:55,predi:55,predicit:146,predict:[9,22,29,33,34,35,36,38,40,43,44,45,47,48,49,51,52,53,55,57,58,59,60,61,62,63,64,65,66,68,75,78,79,81,99,103,109,111,113,121,122,123,124,125,126,128,129,130,131,133,134,135,136,137,140,141,142,144,145,146,147,148,150,152,153,156,158,159,160,161,162,163,164,165,168,169,170,171,176,185,186],predict_class:47,predict_imag:33,predict_proba:[56,146,152,157,161,180],predict_row:55,predicted_column:[38,44],predicted_correctli:121,predicted_df:[38,44],predicted_label:41,predicted_nois:122,predicted_pric:42,predicted_valu:38,prediction_text:153,predictions_arrai:41,predictions_on_train:[68,77],predictions_singl:41,predictor:[49,56,66,135,142,148,149,152,160],predominantli:[36,99,168],preds_test_cb:54,preds_test_lgbm:54,preds_test_xgb:54,prefer:[48,56,64,75,99,109,113,116,135,144,149,151,152,159,161,163,166,167,168,188],prefetch:[44,121,122,127],preffer:64,prefix:[22,56,165,166,188],preiousli:36,preliminari:140,preload:160,premis:[96,103,134,156,171],prep:[38,156],prepackag:164,prepar:[18,22,43,49,52,53,57,58,68,75,77,97,98,100,101,103,105,119,120,133,152,159,169,171,180],prepend:165,prepocess:36,preprint:[14,50,137],preprints202006:14,preprocess:[32,34,38,40,42,43,44,50,51,54,59,62,64,80,126,130,135,140,153,160,161,164,182,183,184],preprocessor:62,prerequisit:[0,121,132,165],presenc:[54,135],present:[1,3,4,5,7,9,13,14,19,21,26,27,35,46,49,51,52,54,57,69,71,82,86,87,89,90,99,101,105,107,113,114,116,117,126,129,132,133,136,137,156,157,159,165,167,168],preserv:[46,81,109,114,116,117,123,152,161,165],preset:16,press:[38,51,124,131,133,164,167,181],pressur:[24,98,110,111,164],presum:[36,139],pretend:[18,145,165],pretrain:[123,127,176],pretti:[7,31,54,57,58,60,64,66,139,140,142,148,152,157,158,159,161,162,182],prevent:[28,30,32,41,43,47,50,54,98,99,116,117,122,124,135,136,141,144,150,151,165,166,178,188],preview:[59,98,99],previou:[7,14,17,32,35,40,47,48,49,50,55,56,57,79,97,100,105,106,110,113,114,115,116,117,122,126,127,128,131,135,137,140,141,144,145,146,147,148,149,152,153,157,158,159,160,162,165,166,185,188],previouli:49,previous:[18,41,54,57,114,116,134,140,141,158,161,173],previous_numb:165,prgn:[68,77],price:[22,38,49,52,54,57,66,68,75,99,108,123,135,142,156,159,160,161,168,184,185],price_add_averag:22,price_rang:[68,77],priceperlb:[108,172],pricier:162,prim:165,primari:[6,7,46,56,68,77,97,98,110,111,114,117,118,149,174,175],primarili:[7,101,117,142,159,164,185],primary_metr:[9,97],prime:[89,165],prime_factor:89,prime_text:128,primit:[166,188],princ:55,princip:[120,159],principl:[31,45,47,48,50,56,76,96,99,111,118,124,141,149,150,151,165,170],print:[1,2,3,9,15,17,18,23,24,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,63,64,65,66,68,75,76,77,79,80,81,89,97,107,113,114,116,120,121,122,124,126,127,128,130,131,140,141,142,144,146,148,149,152,153,156,157,158,160,161,162,164,165,166,167,172,173,176,180,182,183,184,186,187,188,189],print_four_numb:187,print_funct:[37,121],print_stat:29,printfeatureimport:56,printmd:39,prior:[59,98,105,108,121,130,149,169],priorit:135,prioriti:98,privaci:[103,109,137,170],privat:[56,96,103,134,169,171],privileg:165,prix:126,priya:42,prize:[109,170],pro:[7,38,47,56,98,109,153],prob:[38,146],proba:157,probabilist:[59,122,123],probability_model:41,probabl:[7,31,33,40,41,48,49,50,52,55,56,58,79,95,98,99,100,101,103,106,110,111,112,118,122,123,124,125,126,135,139,140,141,144,145,146,152,158,159,160,162,164,166,176],probalist:123,probe:[6,59],problem:[7,11,23,29,36,41,45,46,47,48,49,52,54,56,57,58,60,62,64,81,87,97,100,101,103,105,109,111,113,114,116,117,123,124,125,126,127,128,129,131,132,134,135,140,141,142,146,149,150,151,152,156,157,162,166,170,171,178,179],problemat:[18,26,135],proce:[36,54,68,77,79,149],procedur:[47,50,54,131,137,141,144,145,149,160],proceed:[50,133,137],process:[1,3,7,11,18,28,30,31,32,34,36,41,42,43,45,46,48,50,51,53,56,57,58,59,62,68,76,77,79,87,89,96,97,98,99,100,101,109,110,111,116,120,123,124,126,127,130,131,132,134,135,137,140,141,144,145,146,147,148,149,150,152,153,156,157,158,159,160,164,165,166,167,168,169,170,173,179,180,181,185,186],processed_data:31,processing_d:57,processor:[68,77,81],prod:[116,134],produc:[7,29,31,32,36,46,51,57,59,62,98,105,106,108,111,114,116,125,129,131,133,134,139,141,149,151,159,162,165,166,170,176],product:[11,13,49,89,96,98,99,101,108,109,110,111,113,116,117,122,126,131,132,133,134,135,136,153,159,161,168,169,170,172,181,185,186,187],production:[46,136,137],prodvalu:[108,172],profession:[96,134,139,149,159,167,170],professor:[145,159],profil:[59,109,171],profit:[35,115,133,145,174],profium:174,prognosi:159,program:[38,41,50,57,96,98,109,110,117,118,122,123,132,133,134,135,150,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,186],programm:[110,159,165,167,185,189],programmat:[7,98,114],progress:[14,36,40,45,47,108,121,133,135,158,159,164,165,176],progress_info:121,project:[5,7,9,16,22,30,31,36,38,58,59,66,76,89,90,96,99,101,103,107,109,114,116,120,121,122,124,125,126,127,128,129,130,132,133,134,135,136,137,150,156,159,164,165,167,168,169,171,178,180,181,185],project_fold:97,project_root_dir:152,promin:50,promis:[45,79,109,170],promot:159,promote_typ:116,prompt:[6,98,153,167],prone:[66,144],pronounc:[118,164],proof:[28,98,139],propag:[7,31,79,114,117,131,139,152,186],propens:148,proper:[18,49,52,53,57,58,68,77,101,116,121,125,139,159],properli:[5,46,64,79,88,114,133,135,141,147,159,161,162,185],properti:[9,14,31,33,36,47,48,50,55,80,97,109,113,115,116,117,135,142,144,145,150,160,165,166,170,174],proport:[50,59,62,105,113,144,145,151],propos:[59,100,101,122,125,126,128,129,137,141,144,150,152,171,178,186],proposals2:129,proprocess:40,prose:31,prospect:101,protagonist:105,protect:[14,96,99,109,133,159,168,170],protocol:[117,133],prototyp:[47,48,98,99],prove:[18,26,28,50,105,111,113,135,139,141,144],provid:[0,1,7,12,14,15,16,17,21,23,28,33,34,40,41,45,46,48,49,50,52,53,54,57,58,59,75,79,89,90,96,98,99,100,101,103,105,109,111,114,115,116,117,118,120,121,123,126,129,131,132,133,134,135,136,139,141,142,144,145,149,151,152,153,157,159,162,164,165,166,167,168,170,171,174,176,185,186,188],provinc:14,province_st:[14,136],provis:[97,134],provisioning_configur:[9,97],proxim:[75,139,144],prp:[53,58],prune:[50,126],pseudo:[18,145],pseudocod:145,pseudonym:113,psgk:59,psycholog:139,pt:58,pth:[31,33,37],public_dataset:[68,77],publicli:[98,136],publish:[50,53,58,59,89,90,98,113,133,134,165,166,169],publish_tim:1,pubu:[68,77],pull:[50,105,109,117],pullov:[30,40,41],puls:59,pulsar:59,pulsar_star:59,pumpkin:[72,86,88,156,160,161,163],pun:165,punctuat:[89,90,128],pungent:[107,172],purchas:[96,101,108,111,160],pure:[40,48,59,79,113,117,144,165],puriti:142,purpl:[30,105,107,172],purpos:[16,30,35,47,48,58,59,60,61,89,90,103,109,116,117,121,123,125,135,139,149,152,153,159,161,164,165,166,167,170,171,173,185,187,188,189],pursu:[99,135,153,159,185],push:[0,47,89,101,105,124,134,165,173],pussin:[89,90],put:[38,40,43,50,55,62,98,101,109,118,123,130,141,145,151,159,164,165,166,167,185,187,188],pval:[18,113],pvt:56,pw:142,px:[30,33,44],px_height:[68,77],px_width:[68,77],pxi:117,py3:187,py:[9,57,62,97,106,117,121,124,140,153,157,161,165,166,167,172,173,180,187,188,189],pycharm:38,pycharmproject:187,pycon:117,pydata:[116,117],pylab:22,pylint:[165,166,188],pyobjecthasht:117,pypi:[166,188],pyplot:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,68,75,76,77,79,80,81,106,107,108,120,121,122,124,127,128,130,131,139,140,141,142,144,146,149,150,152,156,160,162,164,172,176,178,180,182,183,184,186],pyramid:[127,136],pytest:[0,3,14,22,24,53,75,89,90,132,165,166,188],python37:187,python38:[57,180],python3:[89,90,95,96,97,98,104,105,106,107,108,117,138,139,140,151,152,153,154,155,156,157,158,161,173],python3_7_4:187,python:[0,1,3,7,18,22,23,33,35,38,43,46,49,51,56,57,58,59,60,61,79,95,96,97,98,99,100,104,105,106,107,108,113,114,117,119,121,122,126,128,130,132,134,138,139,151,152,153,154,155,156,157,158,162,168,169,170,171,172,174,175,176,177,178,179,180,181,182,183,184,185,186],python_3_2021:187,python_cast:166,python_datatyp:166,python_dictionari:166,python_funct:187,python_numb:166,python_oper:166,python_ref_str:166,python_set:166,python_str:166,python_try_except:165,python_tupl:166,python_vari:166,pythonista:166,pythonpath:165,pythontutor:[165,167],pythonwin:187,pytorch:[31,33,98,123,153],pytutor:0,pyvideo:117,pywaffl:[107,172],pyx:117,q1:113,q3:113,q:[22,35,50,116,122,126,161,187],q_:[122,124],q_sampl:122,qbcdxtzitda:59,qgl:59,qhbdyylbkvbnfrlfmvucxrow5xhs1wmxbnfgnxdijre3r9vnpmddx8mskgudzlfb10qnqi:59,qizx:174,qmcrlph5c7vc:59,qmqvejnztng9kv28rwerdmjfiwjrgfn:59,qq:[3,14,22,24,53,89,90],qqpcmgr_docpro:38,qty:115,quad:[141,145],quadrat:[54,59,144,145,150,166],quadraticdiscrinationanalysi:157,qualit:[6,24,101,110,133,159,170],qualiti:[0,39,46,47,48,53,54,56,62,66,79,82,98,100,103,106,109,110,113,126,134,136,137,139,141,142,144,158,159,160,161,162,170,171,180],quan:57,quantifi:[59,103,171],quantil:[54,100,145],quantit:[6,50,54,101,110,133,159,170],quantiti:[4,103,107,111,115,124,131,159],quantiz:[126,135],quarter:126,quarterli:110,quartil:[7,18,54],quebec:14,queliti:31,queri:[2,12,16,25,46,96,110,111,114,118,122,133,153,171,174],query_emb:129,question:[0,16,17,23,28,32,47,49,50,51,57,58,59,71,99,100,101,103,105,108,109,111,113,117,123,125,132,135,136,137,145,146,150,153,156,159,160,164,170,171,173,185],queue:[101,121],qui:134,quick:[40,48,49,52,53,54,61,80,98,117,135,137,139,150,156,159,162,163],quickli:[7,14,40,45,47,48,58,68,75,77,98,106,108,114,116,122,133,134,145,149,160,161,173,176],quicksight:133,quickstart:134,quiet:[3,12,18,25,95,96,97,98,106,107,108,123,138,139,140,151,152,154,155,156,157,158,160],quirk:166,quit:[1,3,7,18,33,34,36,39,40,50,59,60,61,68,77,107,108,117,118,129,135,141,142,144,152,157,158,159,160,164,166,185],quora:137,quot:[117,165,166,167,188,189],quotient:[89,116],qx5jiesrfw94xegtzrdtkdjuz7nhti39ouuuo8wwxphae76msb63ba1hgkn0vbrht0vdl3u8tzoejcarcybnqi8lslxo2ysfgf08tsx3pdj2jjdzwa:59,r2:[63,65],r2_score:[63,65],r2_socr:[63,65],r:[22,29,30,31,33,36,37,39,55,59,64,75,79,108,113,116,121,124,127,128,130,133,134,139,144,145,150,152,153,166,172,178,180,182],r_0:14,r_:[50,81,124,145,152],r_k:124,r_p:113,r_t:[8,145],rabbit:187,race:51,racial:99,radial:[60,61,150],radic:126,radio:[59,181],radiolog:121,raffael:111,rai:99,rainbow:108,rainfall_id:[118,174],rainforest:110,rais:[3,14,22,24,53,89,90,93,94,99,109,116,117,127,135,166,168,187,188],rake:3,ram:[39,53,68,77,98,144],ramif:158,ran:[10,20,29,167],rand:[18,35,49,50,144,173],rand_i:121,rand_index:121,rand_tensor:43,rand_x:121,randint:[31,37,50,121,141,173,176,186],randn:[31,37,79,117,181],randn_lik:31,random:[29,31,32,33,35,36,37,38,39,40,43,44,45,47,50,55,56,57,58,59,60,61,62,64,66,68,77,79,100,116,117,120,121,122,124,125,126,127,128,130,135,140,141,143,145,148,149,151,152,156,158,159,173,176,180,181,186],random_bright:121,random_contrast:121,random_flip_left_right:[121,122],random_index:[40,122],random_norm:[120,121],random_normal_initi:129,random_se:33,random_split:33,random_st:[29,30,31,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,75,80,140,142,144,146,148,149,150,152,153,158,160,161,178,180,182,183,184],random_strength:54,random_transform:37,random_uniform:[125,130],randomappli:37,randomflip:127,randomforest:56,randomforestclassifi:[49,50,51,52,56,142,144,157,158],randomforestregressor:[53,142,144],randomhorizontalflip:37,randomizedsearchcv:[54,61],randomizedsearchcvrandomizedsearchcv:61,randomli:[30,34,50,54,55,62,66,121,122,126,127,141,142,144,151,152,180],randomnorm:[120,126],randomrot:37,randomst:[144,173],randomtreesembed:144,randrang:35,rang:[1,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,50,51,52,53,54,55,56,57,58,63,64,65,68,75,76,78,79,80,81,90,96,98,99,106,109,111,113,116,120,121,122,124,125,126,127,128,129,130,131,133,134,135,140,142,146,147,148,152,161,166,169,170,173,176,180,181,182,183,184,186,187,188],rangeindex:[38,59,60,75,114,139,149,156,173],rank:[43,109,116,117,135,139,142,145,157,170],rankboost:145,rapid:[99,167],rapidli:[116,133],rare:[54,59,103,125,135,139,144,145,173],rasa:128,rasb:128,rasbt:128,raschka:[50,120,125,128,130],rate:[6,8,14,22,33,35,47,48,49,55,62,64,76,98,99,101,105,110,121,123,124,126,127,128,135,136,142,146,148,149,151,152,159,161,180,185,186],rater:47,rather:[7,31,36,46,54,68,77,96,108,111,114,116,117,118,134,139,144,150,152,159,160,164,165,166,173,181,185,188],ratio:[14,40,46,49,52,57,59,117,135,142,152],ration:[40,101],rational:142,ravel:[50,56,57,144,146,150,152,157,158,178,183,184],ravenclaw:181,ravendb:174,raw:[6,12,14,16,18,25,43,45,57,58,62,68,77,110,111,113,114,117,126,133,135,136,140,152,153,159,162,173,185],raw_data:29,razor:151,rb:[121,153],rbf:[60,61,152,178],rbf_score:59,rbf_svc:59,rbk:59,rbkzduqmatb85:59,rbr_1x1:126,rbr_dens:126,rbr_ident:126,rbr_reparam:126,rc:[22,36,62,131,152],rcl:[141,144],rcnn:129,rcparam:[14,59,66,144,172],rdbm:174,rdss:89,re:[3,7,15,31,34,38,40,41,45,47,48,52,57,62,64,66,68,77,79,99,101,103,114,115,116,117,118,121,126,127,128,129,130,135,136,145,146,151,153,156,159,160,164,165,166,168,174,181,185],re_fit:60,reach:[33,36,41,48,50,55,103,125,142,144,148,150,165,166],react:[160,189],reaction:132,read:[16,29,31,40,45,47,53,54,58,68,77,79,98,105,106,107,108,109,111,113,115,116,121,128,130,132,135,156,157,160,161,164,165,166,187],read_cifar_fil:121,read_csv:[1,2,14,15,17,18,22,23,24,29,31,32,35,38,42,44,46,47,48,49,50,51,52,53,54,56,59,60,61,62,64,66,67,68,75,77,79,80,81,83,106,107,108,117,131,136,139,140,141,142,144,146,148,149,153,156,157,158,160,161,162,172,182,183,184,186],read_data_set:[121,125],readabl:[0,107,134,153,166,167,188,189],reader:[96,121],readi:[34,40,41,49,51,52,59,68,77,98,133,134,135,136,137,139,146,153,157,158,159,160,162,164],readm:[5,105],readthedoc:30,real:[0,7,11,28,29,33,34,35,36,37,38,39,40,42,45,46,50,53,57,58,59,60,89,109,111,114,115,116,117,124,125,126,129,131,133,134,136,137,141,145,151,152,159,160,165,166,167,170,173,174,176,177,182,185,188],real_imag:[36,37],real_label:37,real_part:165,real_sampl:37,real_stock_pric:42,realist:[39,125,176],realiti:[7,56,109,123,135,161,174],realiz:[103,124,130,145,161],realli:[40,49,54,56,60,61,66,68,77,97,101,108,149,151,157,159,161,165,166,185,188],realm:[50,174],realpython:165,rearrang:105,reason:[7,11,14,40,46,49,50,60,62,66,68,75,77,79,96,111,113,114,116,121,134,135,141,142,146,148,149,159,164,166,169,185],reassign:166,reboot:99,rebuild:[29,40],rec:54,recal:[29,40,47,50,52,57,60,68,77,100,116,135,141,146,157,158,161,173],recalcul:142,recall_scor:[29,30],receiv:[6,41,59,79,97,100,101,110,117,124,136,145,161,165,171],recent:[14,43,79,101,116,117,131,137,140,145,157,173,187],recept:175,recgon:186,recip:[145,182],recipi:110,recogn:[40,43,62,68,77,99,116,123,126,129,133,159,165,168,185],recognit:[30,39,41,121,123,126,128,136,159,185],recommend:[15,45,49,98,99,101,108,109,111,115,116,117,121,135,142,144,145,152,164,165,167,170],recon_x:31,reconstr_img:120,reconstruct:[29,30,31,120,137],reconstructed_imag:120,record:[9,15,97,109,110,116,121,122,123,131,133,136,139,145,159,165,173,185,187],record_byt:121,record_length:121,record_str:121,recov:[14,136,145],recovered_dataset_url:14,recovered_df:14,recoveri:[8,14,38,96,133,136],recreat:[48,106,107,120],recruit:109,rect:[37,180],rectangl:[50,115,124],rectifi:[79,109,121,123,126],rectifier_:121,recur:47,recurr:[28,156],recurs:[50,89,90,130,165],recycl:38,red08:133,red:[14,38,41,42,45,48,49,50,52,56,62,98,101,105,106,107,113,126,142,144,150,151,152,160,166,167,172,178,182,183,184,188],red_win:62,reddit:105,redefin:[47,100,103,165],redhat:134,redi:174,redman:133,redo:[88,133],redshift:133,reduc:[7,30,32,36,40,45,47,49,50,52,54,56,57,58,61,64,89,98,103,116,121,123,126,127,134,135,139,141,144,145,148,149,151,152,153,159,161,166,180,185,186,187],reduce_max:29,reduce_mean:[120,121,125,126,128,130],reduce_min:29,reduce_sum:[121,128],reduct:[31,50,54,120,131,141,142,144,159,185],reduction_model:30,redund:[120,149,165],ref:[30,134,158],refer:[3,17,22,23,24,33,34,43,46,49,50,52,54,56,57,58,60,75,96,97,100,101,103,105,109,113,114,115,116,117,118,120,121,122,123,124,126,130,133,135,136,137,139,140,141,151,153,158,159,160,165,166,185],referenc:[50,165,166],reference_answ:79,referenti:111,refin:137,refit:[52,53,57,58],reflect:[7,28,39,40,88,109,133,139,153],reformat:41,refram:38,refresh:[98,134,136,162],refus:[45,109,170],reg:[54,66],reg_alpha:[54,148,149],reg_lambda:[54,148],reg_model:75,reg_tre:50,reg_tree_pr:50,regard:[7,33,50,108,114,116,124,144,145,149,161,166],regardless:[46,113,116,134,137,139,165,166],regener:[48,130],regex:[160,162],regim:151,region:[14,75,98,109,129,136,140,149,155,165],regist:[9,97,98,187],register_model:[9,97],registr:[1,116],registri:[98,134],regplot:[54,131],regress:[40,43,45,47,49,52,54,55,56,57,59,60,66,88,97,103,123,135,140,141,142,144,146,147,149,152,153,155,156,158,171,177,179,185,186],regressor:[42,49,50,135,144,146,182],regressorchain:131,regul:[103,137,158],regular:[1,8,36,41,52,53,57,59,61,64,68,77,120,121,131,135,144,145,149,150,152,158,178,186],regularioz:[63,65],regularis:[150,178],regularization_weight:121,regularli:[136,137],rei:48,reilli:[109,137],reimport:[29,165],reindex:131,reinforc:[31,109,124,137,145],reinforcement_learning_course_materi:124,reinvent:137,reiter:[101,133],reject:113,rekognit:137,rel:[1,36,39,41,49,51,52,53,58,89,106,111,113,118,122,126,135,139,145,153,166,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],rel_tol:89,relat:[1,3,16,18,28,47,56,92,98,101,108,109,110,113,117,119,122,130,135,136,144,151,159,161,165,167,172,177,185,186],relationship:[1,33,40,49,51,52,56,64,66,68,77,80,83,85,100,103,105,106,111,113,115,123,131,136,139,150,151,156,159,160,161,162,163,164,165,171,182,185],relax:[116,124,150],releas:[109,116,134,167,170,180,189],release_d:[139,140],relev:[3,16,28,96,99,109,111,113,116,123,124,135,145,159,161,168,185],relevent_experi:56,reli:[57,62,68,77,103,110,111,114,115,159,161,166,188],reliabl:[96,99,109,134,144,159,169,170],relief_pitch:113,reload:[46,47,114],reloop:55,relplot:[108,172],relu1:121,relu1_1:121,relu1_2:121,relu2:121,relu2_1:121,relu2_2:121,relu3_1:121,relu3_2:121,relu3_3:121,relu3_4:121,relu4_1:121,relu4_2:121,relu4_3:121,relu4_4:121,relu5_1:121,relu5_2:121,relu5_3:121,relu5_4:121,relu:[29,30,31,32,33,34,35,36,37,39,40,41,43,44,47,48,62,79,121,123,126,127,129,176,186],relu_conv1:121,relu_conv2:121,relu_grad:79,remain:[7,50,54,59,62,68,77,89,90,109,114,116,117,122,126,133,141,149,165],remaind:[89,115,116,165,166,167,182,188],remark:[49,57,60,61,68,77,137,141,167,189],remdesivir:1,rememb:[7,35,48,52,57,68,77,101,111,116,125,128,131,135,141,145,146,151,161,164,166,175,182],remind:160,remix:99,remot:[0,134],remote_run:[9,97],remov:[1,3,14,29,31,36,37,49,50,51,52,55,59,62,64,68,77,79,89,103,106,108,109,128,135,139,140,151,156,159,161,165,167,171,180,188],remove_dupl:[90,166],ren:[126,129],renam:[1,18,59,117,165],render:[16,54,57,58,60,61,66,148,149,152,153,160,164,166,181,188],render_deepdream:121,render_templ:153,rent:96,rep:101,repack:[160,161],repai:159,reparameter:31,repay:[159,185],repeat:[36,38,44,50,55,76,81,90,111,116,117,127,133,140,141,144,145,149,152,160,166,180,188],repeat_delai:122,repeatedli:[89,148,187],repetit:[49,52,53,58,135],replac:[7,14,22,30,31,32,35,41,46,49,51,54,55,56,66,79,98,114,116,125,126,128,131,135,141,152,160,165,166,188],replai:35,replec:49,replic:116,replica:29,repo:[0,5,127],report:[14,33,39,40,52,56,57,60,101,109,136,153,157,158,161,162,165,170],repositori:[0,1,14,58,116,130,132,134,159],repres:[1,7,18,30,31,35,36,39,40,41,43,46,47,48,50,51,52,54,56,57,59,64,75,89,97,99,100,101,107,109,110,111,113,114,115,116,122,123,126,131,135,139,140,141,142,145,146,152,166,167,173,174,180,188],represent:[7,22,29,30,36,41,50,57,58,60,61,64,66,68,75,77,89,100,103,106,114,115,116,120,124,126,130,132,148,149,150,151,152,159,160,164,173,174,187],representative_digit_idx:152,representative_images_diagram:152,reproduc:[39,45,48,135,141,142,149,173],reproduct:14,repvgg:126,repvgg_convert:126,repvggblock:126,request:[3,16,29,30,31,33,36,37,39,41,61,66,68,75,77,79,97,99,109,111,117,121,128,130,137,152,153,159,166,185,188],requir:[0,1,15,22,24,31,33,41,43,45,47,48,56,59,61,75,83,90,96,98,99,101,103,109,110,114,115,116,127,129,131,133,134,135,136,137,139,144,145,148,152,153,159,164,165,166,169,170,171,188],requires_grad:33,requisit:9,rerun:[40,43,57,58,60,61,66,148,149,152,160,162,164,181],res_block:122,resblock:122,rescal:[40,62,75,159],research:[1,16,28,96,101,106,107,108,109,117,123,133,135,136,137,145,156,158,159,164,169,170],researchg:50,resembl:[75,138],reserv:[50,79],reset:[35,45,47,48,117,124,128,151],reset_default_graph:[121,128,130],reset_index:[1,14,38,39,47,48,54,64],reshap:[29,30,31,32,34,35,36,38,42,43,44,47,50,79,81,117,120,121,122,125,126,128,129,144,150,152,157,160,173,176,178,180,182,183,184,186],reshaped_dim:121,reshaped_imag:[81,121],reshaped_output:121,reshuffle_each_iter:122,resid:[75,153],residu:[48,55,66,121,122,126,145,147,149],residual_block:126,resist:48,resiz:[31,37,39,121,122,126,127,128,186],resize_bilinear:121,resize_image_with_crop_or_pad:121,resize_with_pad:122,resizemethod:127,resnet101:127,resnet152:127,resnet50:127,resnet:[122,127],resolut:[31,39,41,68,77,117,122,129,152,165],resolv:[15,46,50,100,114,117,127,135,165],reson:[43,75],resourc:[28,40,43,96,97,99,103,109,111,116,117,118,133,134,135,137,139,159,165,166,169],resource_group:9,respect:[1,14,30,33,35,47,49,50,52,54,66,75,76,79,109,116,117,118,120,122,126,128,142,149,152,159,164,166,185],respond:[131,164],respons:[3,9,17,36,37,50,97,98,99,109,121,128,133,142,144,160,164,170,171,182],rest:[50,57,97,98,114,115,116,134,145,151,152,157,160,161,165,166,174,188],rest_of_the_numb:165,restart:153,restat:101,restor:[30,122,145],restore_best_weight:40,restrict:[7,48,89,90,110,114,144,165,166],result:[0,1,7,8,9,14,16,18,22,24,31,32,33,36,37,38,44,45,46,47,49,50,51,52,53,54,57,58,60,66,68,75,76,77,81,88,89,90,97,98,99,100,103,109,111,113,114,116,117,118,120,121,123,124,126,127,133,134,135,136,137,139,140,141,142,144,145,148,150,151,152,153,156,157,158,159,160,161,165,166,167,170,171,176,178,180,181,185,186,187,188],result_typ:116,resultdf:157,resulting_height:121,resulting_width:121,results_df:81,resum:110,ret:129,retail:[131,133,149],retain:[31,126,159,180],rethinkdb:174,retina:[50,66,131,141,144,180],retrain:[40,45,47,52,53,82,109,121,135,159],retri:161,retriev:[3,25,53,68,77,90,100,103,105,109,115,120,134,135,161,165,169,171,187],retrospect:145,retun:[63,65],return_count:186,return_sequ:[42,44,128],return_st:128,return_valu:[24,53],return_x_i:[152,164],reus:[114,121,123,126,127,144,165,187],reusabl:[134,167],reuse_vari:121,reveal:[26,132],revel:[26,174],reveng:105,revenu:[25,101],revers:[35,105,109,113,127,188],reversed_list:166,reveurmichael:120,review:[45,96,98,99,101,105,109,122,133,134,139,145,158,159],revis:109,revisit:[99,101,106,127,137,161,168],revolutionari:[68,77,153],revolv:43,reward:[35,109,159,185],rewritten:[79,145],rex:116,rezend:31,rf:[12,25,40,144],rf_predict:144,rfc:[51,142,144],rfc_100:51,rfi:59,rfst:158,rgb:[33,36,39,116,126],rh:55,rho:[144,145],rho_t:145,rhs_cnt:55,rhs_std:55,rhs_sum2:55,rhs_sum:55,rhythm:29,ri:[33,142],ri_j:142,riak:174,rice:156,rich:[43,111],richard:137,richer:152,rid:[1,14,121,123,139,160,166],ridg:[66,68,77,151,160],ridge_sklearn:[63,65],ridge_sol:66,ridgecv:66,ridgeregress:[63,65],right:[1,22,27,30,31,36,38,41,45,47,50,51,54,55,56,57,58,62,64,66,68,75,77,79,81,89,90,101,107,108,109,111,115,116,117,121,123,124,126,134,135,137,139,140,141,142,144,145,146,148,150,151,153,159,161,164,165,166,167,170,172,178,181,185],right_column:181,right_i:142,right_idx:55,right_index:[38,117],right_join_kei:117,right_kei:117,right_on:117,right_output:124,right_shifted_imag:81,rightarrow:141,rightmost:[116,142],rigid:126,rigor:48,ring:[107,172],ringo:167,riot:38,rise:[1,101,106,108,113,132,151,161,177],risk:[97,98,99,109,116,134,137,150,178],riski:145,riskiest:134,ritonavir:1,river:[134,174],rk:[33,117],rkei:117,rkswahlyepd0yioe0t4oe3i3:59,rl:66,rm:[12,25,40,187],rmse:[38,53,54,58,61,66,75,131],rmse_cb:54,rmse_cross_v:75,rmse_cv:66,rmse_lgbm:54,rmse_xgb:54,rmsle:66,rmsprop:186,rmspropoptim:130,rnd_indx:37,rnd_search:61,rng:173,rnn1:130,rnn2:130,rnn3:130,rnn4:130,rnn:[125,128,130],rnn__slide:128,rnn_builder:44,rnn_cell:130,rnn_model:42,rnn_size:[128,130],rnplwnsp1zaqp:59,ro:[33,76,180],road:[68,77,111,123,159],roadwai:[109,170],roam:187,robert:144,roberto:127,robin:[89,165],roblem:140,robot:[109,129,159,185],robust:[7,36,39,49,54,60,62,127,137,144,145,149,150],robustscal:[51,54],roc3qtujlwlgnjug8xyjhmyab7mslm:59,roc:135,roc_auc:[56,59],roc_auc_scor:[56,59,146,161,180],roc_curv:[59,161],rocket:[39,174],roi:[101,129],roi_align:129,roialign:129,role:[14,18,56,75,92,103,111,113,116,123,133,137,145,150,162,175,178],roll:[14,113,121,128,134,165],rollback:[133,134],rollout:134,rom:125,ronald:7,room:[39,49,75,111,117,136,142,159],root:[50,53,58,61,63,65,89,105,107,109,122,125,139,142,153,162,166,186],ropdlmfyn4ohgsyja3v360gmftkvclk41nfwlarseergxyopsipx93d46srv8ri2d64xaa7qwptq9xydracyi8rh:59,ropsasrsaeuchxukvv2ymdhz:59,ross:[106,129,172],rossii:[106,172],rossum:[167,187,189],rotat:[1,3,18,22,34,39,41,51,54,81,124,129,139,140,152,172],rotate_in_all_direct:81,rotated_imag:81,rotation_rang:[32,34],roug:135,roughli:[14,45,47,50,113,125,152],round:[39,40,46,48,59,64,80,81,89,121,134,139,148,149,166,180,188],rout:[7,99,114,133,153,168],routin:116,row:[2,6,7,14,29,38,39,40,41,43,45,46,47,48,49,51,52,54,55,56,57,58,59,64,66,68,77,98,100,107,108,110,114,115,116,117,118,130,131,136,140,146,156,157,160,161,162,166,172,173,174,182,188],row_index:117,row_vector:116,rowsum:116,rpjd4ybgjdq7gkacrtovujgsdyhalfr1w5fyhbiykds2iefhc89farl5yiokg0wjchcyl3mhl2bebrqo90lbfmfd7oyzgqnciklgibijeokjhnkz2318t:59,rpn:129,rpn_head:129,rrgtp8yqcvnf:59,rror:141,rsuffix:117,rt:[14,146],rt_with_na_fil:14,rtol:14,rtx:29,ruhi:133,rule:[40,43,50,75,79,89,100,110,111,117,123,133,135,137,139,144,145,152,157,159,166,173,185,188],run:[0,5,7,14,32,33,38,39,40,43,45,47,48,49,51,52,53,56,57,66,68,76,77,79,80,81,88,93,94,96,97,98,105,111,113,114,115,116,117,120,121,124,125,127,128,129,130,133,134,135,144,145,148,149,151,152,153,157,159,160,165,167,173,180,181,185,187,189],run_functions_eagerli:128,run_optim:120,rundetail:[9,97],runner:134,running_loss:31,running_mean:126,running_var:126,runtim:[0,40,134,137,148,153],rush:[110,137,139],russian:31,rutherford:167,rutwik:137,rvert:[151,179],rx:[33,180],ryan:62,ryanholbrook:131,s1:[24,55,116,117,164,166,188],s1qqhlobm9hyrc7kgf87fdwaibhqseihtedrbe6uai7ny2paowiewltl6:59,s2:[55,117,167],s3:[116,133],s6:24,s:[1,3,6,7,9,12,14,17,18,20,22,23,24,25,28,29,30,31,32,33,34,35,36,37,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,69,77,79,80,81,83,88,89,90,93,94,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,123,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,144,146,148,149,151,152,153,155,156,157,158,159,160,163,164,165,167,168,174,179,180,181,182,185,186,188],s_0:50,s_1:[50,113],s_2:50,s_i:[50,113],s_j:113,s_n:113,s_o:50,s_text:128,s_text_ix:128,s_text_word:128,sa:117,saa:[96,133,153,169],sack:162,sacrific:50,sad:101,saddl:134,sadli:48,safari:98,safe:[60,121,134,159,180],safefi:57,safeti:[57,58,99,109,121,159,168,170],sag:[153,157],saga:157,sagemak:[133,134,136],sahara:135,sai:[7,31,33,36,48,49,50,52,57,58,59,66,68,75,77,96,109,113,114,116,123,131,135,138,141,145,151,159,161,165,166,176,180,188],said:[7,40,43,49,50,58,64,101,126,159,185],sake:[54,127,142,144],salari:[18,50,182,183,184],salary_data:182,sale:[131,159,160,161,162,166,185],salecondit:66,salepric:[66,148],saletyp:[54,66],same:[0,1,7,9,18,29,30,31,32,33,34,36,39,40,41,43,44,45,46,47,48,49,50,51,52,54,57,58,59,61,62,63,65,68,75,77,80,85,90,97,101,103,107,108,110,113,114,115,116,117,118,120,121,122,125,126,127,128,129,130,131,133,134,135,139,141,142,144,145,146,149,151,152,156,158,159,160,161,165,166,167,171,173,181,187,188,189],sameep:133,samll:[63,65],sampl:[2,5,9,18,25,30,33,34,35,36,37,38,40,41,47,48,49,50,53,56,57,59,60,62,63,64,65,66,68,72,77,79,80,90,97,98,108,109,113,114,115,121,124,128,129,134,136,137,140,141,142,144,145,149,150,151,153,156,158,159,160,161,164,167,171,178,185,186,189],sample_imag:[33,127],sample_kernel:33,sample_mask:127,sample_s:18,sample_time_series_covid19_deaths_u:136,sample_weight:144,sampledb:115,sampler:33,samuel:[89,90,159,185],sandal:[30,40,41],sanit:[99,168],saniti:[48,128,135],sankei:1,santino:139,sape:[166,188],sar:1,satellit:127,satisfi:[48,54,116,135,136,145,166,188],saturn:189,saurabh:137,save:[1,29,30,31,33,36,40,41,45,47,48,51,56,66,79,98,116,121,122,127,128,130,135,141,144,145,150,152,156,157,165,176,181],save_best_onli:[39,40,44],save_everi:128,save_fig:152,save_format:[29,30],save_imag:37,save_images_from_dict:121,savefig:[124,152],saw:[10,13,20,40,47,49,50,52,57,68,77,97,105,131,141,145,151,152,159,161,162,166,185,188],say_goodby:165,say_hello:[165,187],sc1:152,sc2:152,sc:[42,64,152,183,184],sc_h:[68,77],sc_w:[68,77],scalabl:[50,96,98,99,109,133,134,144,150,169,170,178],scalar:[43,124,127,145,180],scalar_tensor:43,scale:[0,7,15,38,40,41,45,47,49,53,56,57,58,60,61,62,64,96,98,99,105,109,114,116,121,126,127,129,134,135,137,140,144,151,159,164,169,174,176,180,185],scale_feat:[68,77],scale_pip:[53,58,60],scaler:[38,40,44,51,53,54,58,59,60,61,64,68,75,77],scaler_i:44,scali:[107,172],scam:159,scan:[99,123,139],scari:163,scatter3d:[150,178],scatter:[18,24,45,50,60,66,80,105,106,107,108,113,117,139,140,144,150,152,160,162,164,172,178,180,182,183,184],scatter_3d:30,scatter_kw:131,scatterplot:[19,24,49,52,60,61,68,75,77,106,139,140,160,161,162,164],scaveng:71,sceipt:134,scenario:[26,39,49,52,53,96,101,109,111,134,137,159,185],scene:157,schedul:[49,52,133,136],schema:[98,111,133],schema_max:48,schema_min:48,scheme:[50,108,157],scholar:133,school:[11,50,56,99,187],schroff:127,sci:[62,164],scienc:[1,2,4,5,7,8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,46,48,54,56,57,58,60,61,98,100,101,105,106,107,108,110,112,113,114,115,116,117,118,131,132,133,145,153,164,167,173,177],scientif:[1,50,59,111,116,132,137,156,166,170,188],scientificnam:[106,172],scientist:[3,6,7,21,56,96,97,98,99,100,103,104,105,108,109,110,111,112,113,133,134,135,145,156,159,162,163,164,168,169,171,172],scikit:[7,40,46,47,49,51,57,58,61,62,66,69,71,95,96,97,98,106,107,108,114,123,131,134,137,138,139,140,141,144,148,149,151,152,153,154,155,156,158,161,163],scipi:[18,66,75,81,113,117,121,150,178,180],scoop:165,scope:[60,61,121,123,157,159,166,182,185,188],score:[9,35,40,41,45,47,48,50,51,52,54,55,56,57,60,63,64,65,66,68,75,77,80,81,97,98,99,111,127,129,135,138,142,144,146,148,152,157,158,160,161,182],score_cb:54,score_lgbm:54,score_xgb:54,scoreboard:161,scoring_file_v_1_0_0:[9,97],scout:99,scrape:[99,110,168],scrapi:[99,168],scratch:[43,96,97,121,135,184],screen:[68,77,105],screenporch:54,screenshot:[16,101,129],script:[3,97,98,121,132,165,167,181,187,189],script_file_nam:[9,97],scroll:[105,140,152,156,160],scrollytel:105,scrutin:109,scullei:137,scylladb:174,sd:59,sdjfhhes1figky8fmsto5n:59,sdk:[95,98,117,134,169],sdpzzf8euy6hn86ydqexmfsez:59,se4ml:137,se:18,sea:75,seaborn:[22,30,34,36,38,39,40,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,68,72,75,77,80,105,106,108,131,139,140,141,142,144,150,161,172,178,180],seali:113,seam:118,seamless:98,search:[1,46,50,52,53,56,57,59,60,61,62,66,81,97,98,99,101,106,109,110,111,114,116,117,135,136,137,139,144,145,149,165,166,168,188],searchitoper:134,searchsort:116,season:[17,23,49,52,99,110,131],sebastian:[50,120,125,128,130],second:[0,7,18,31,32,39,40,41,43,48,49,50,57,98,106,109,113,115,116,117,121,125,126,131,135,141,142,145,146,149,152,153,158,159,160,165,166,167,181,186,188,189],second_baseman:[18,113],second_char_set:166,second_numb:[166,188],second_term:121,second_term_numer:121,second_tuple_numb:166,second_word:[165,187],secondari:[6,110],secondli:145,secret:[26,89,137],section:[2,3,7,13,15,16,17,19,21,28,29,36,45,47,48,54,59,64,69,82,86,87,88,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,113,114,115,116,117,118,119,121,122,124,133,134,135,136,137,139,140,141,146,147,148,149,150,151,153,155,156,157,158,159,160,161,162,163,164,166,167,171,173,174,181,188,189],sector:[50,56],secur:[96,99,109,153,168,169,170],sedol:159,see:[1,3,6,7,8,9,10,14,18,22,30,31,32,34,36,40,41,43,45,46,47,48,49,50,51,52,53,54,57,58,59,60,61,64,66,68,75,76,77,79,80,89,95,96,97,98,101,106,107,108,109,111,113,114,116,117,118,121,123,124,128,129,130,131,133,135,139,140,141,144,145,146,149,150,152,153,156,157,159,160,161,162,164,165,166,167,174,180,182,185,187,188],seed:[33,36,38,39,43,44,50,64,79,127,140,141,144,145,146,149,152,173,180],seed_numb:43,seek:[75,101,150,159,160,164,178,185],seem:[7,17,22,30,32,33,40,48,49,50,52,62,66,68,77,106,108,109,113,114,118,131,135,139,145,151,160,162,170],seen:[1,7,28,30,40,41,46,49,52,54,58,59,106,108,109,113,114,116,118,120,123,125,126,135,141,144,145,150,153,159,160,165,166,185],segment:[43,99,107,123,129,139,145,156,159],segmentation_mask:127,segmented_img:152,segreg:59,seir:136,select:[3,12,14,15,16,22,24,25,29,31,47,48,50,59,62,64,66,98,100,105,106,107,109,115,116,118,121,126,130,136,137,140,141,142,144,145,149,150,152,153,161,162,164,165,174,177,180,181],select_dtyp:[54,107,148,172],selected_featur:[153,161],selector:181,self:[3,14,18,22,24,29,30,31,33,35,36,37,40,43,47,53,55,63,65,78,79,89,90,91,122,126,127,128,129,132,146,150,159,178,182,183,187],self_dense_2:43,self_dense_3:43,sell:[35,89,90,109,160,165,166],selu:[44,123],sem:18,semant:[111,117,127,165],semi:[6,110,111,139,152,159,170],semicolon:[166,188],send:[97,101,133,171],sender:[101,159,171],senet:126,sens:[1,3,7,18,32,46,49,50,53,66,68,75,77,89,98,110,111,113,114,116,117,123,141,146,159,160,162,165,174,182],sensibl:135,sensit:[38,50,59,118,126,133,135,137,147,166,175,180,188],sensor:[110,111],sent:[97,110,123,133,136,153,159],sentenc:[85,90,123,128,166,167,189],sentiment:[99,111,123,168],sentinel:173,seok:30,sep:[9,18,24,31,47,99,165,166,187],sepal:[60,80,114,117,142,180],sepal_ratio:117,sepallength:[80,117,142],sepallengthcm:64,sepalratio:117,sepalwidth:[80,117,142],sepalwidthcm:64,separ:[1,7,29,50,61,80,103,111,113,115,116,117,118,121,126,129,131,135,136,140,145,150,160,162,165,166,180,188],septemb:[103,156,162],sequel:118,sequenc:[14,18,38,41,43,49,75,99,113,116,123,126,128,130,131,142,165,166,167,187,188],sequenti:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,54,56,62,79,123,124,126,130,146,147,149,166,176,180,186],sequential_2:29,sequential_3:29,sequential_window_dataset:44,ser1:173,ser2:173,ser:[117,173],sercostams:80,sergei:[31,152],seri:[7,8,14,18,22,24,31,34,38,46,49,50,51,52,56,57,58,60,66,75,105,114,115,123,126,127,130,136,140,145,157,163,165,167,174],serial:[131,134,153,187],series_to_supervis:38,seriou:59,serum:98,serum_creatinin:[9,97,98],serum_sodium:[9,97,98],serv:[43,97,103,105,116,117,135,136,137,165],server:[96,103,111,118,134,153,164,167,174],serverless:133,servic:[1,9,50,96,97,98,99,101,103,109,116,117,123,133,134,135,136,141,142,153,159,168,169,170,185],sesame_oil:157,sesame_se:157,sess1:121,sess2:121,sess:[121,124,128,130],session:[80,121,125,130,136,186,187],session_st:181,set1:[51,80],set2:56,set:[0,3,7,14,17,22,29,31,33,34,35,36,38,39,40,43,44,45,46,47,48,50,56,58,60,61,62,63,64,65,66,68,69,76,77,79,81,82,89,90,96,97,98,99,101,103,106,108,109,110,113,114,115,116,117,118,120,121,122,124,125,126,127,128,129,130,131,132,134,135,136,139,140,141,142,144,145,148,150,151,152,153,156,157,158,159,160,161,162,163,164,165,168,172,173,178,180,181,185,188],set_aspect:131,set_axis_off:37,set_color:41,set_grad_en:31,set_index:[1,14,38,117,131],set_major_formatt:152,set_major_loc:152,set_printopt:182,set_prop_cycl:131,set_properti:131,set_se:[43,44],set_styl:[54,80],set_them:139,set_ticklabel:[80,180],set_titl:[1,22,37,39,51,55,59,64,76,80,131,150,178],set_vis:[29,30,121],set_xlabel:[22,47,55,59,76,80,131,144,150,178],set_xlim:[150,178],set_xtick:[1,33,152],set_xticklabel:[1,51],set_ylabel:[22,47,55,59,64,76,80,131,144,150,178],set_ylim:[14,32,144,150,178],set_ytick:[1,33],set_yticklabel:1,set_zlabel:[76,80,150,178],setfil:124,setosa:[60,64,80,117,142,180],settl:[109,170],settlement:[109,170],setup:[0,45,47,56,121,124,134,160,164],sever:[7,8,14,21,35,41,45,51,54,56,63,65,72,96,98,106,107,108,111,114,116,117,118,126,128,129,134,135,139,141,146,149,153,156,157,158,160,161,162,164,165,166,167,180,186,187,188],sew:145,sex:[9,22,51,97,98,146,164],sex_distribut:24,sex_val:22,sgd:[33,40,45,49,62,68,77,135,186],sgd_classifi:49,sgd_clf:[68,77],sgd_score:[68,77],sgdclassifi:[49,68,77],shade:[39,47,99,105,109,168,170],shadi:105,shadow:[39,51],shah:137,shakespear:128,shakespeare_fil:128,shakespeare_model:128,shakespeare_url:128,shall:[89,90,165,166],shallow:[116,127,135,159,166,185,188],shanghai:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,106,132,139,140,152,156,157,158,160,187],shanmukha:133,shannon:50,shaoq:[126,129],shape:[29,30,31,32,33,34,36,38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,63,64,65,66,78,79,81,107,113,114,116,120,121,122,125,126,127,128,129,130,134,140,144,150,152,153,156,160,161,162,164,172,173,175,176,178,180,182,183,184,186],shape_i:[63,65],shape_img:39,shape_y_0:[63,65],share:[28,33,50,51,57,59,99,100,101,103,108,109,110,111,114,116,117,129,132,134,136,141,142,145,157,159,161,165,168,173,185],sharei:[50,55],sharma:133,sharmila:137,sharp:[135,141],shashank:133,shazia:133,she:[18,135,159,185],sheet:[135,137,157,158],shelham:127,shell:[165,189],shen:129,sherjil:125,shg:137,shift:[8,14,38,44,51,54,62,68,77,81,90,121,130,131,134,136,139,150],shift_in_all_direct:81,shift_in_one_direct:81,shifted_imag:81,shine:[145,153],ship:[49,62,121],shipment:133,shirlei:105,shirt:[30,40,41],shop:[39,139],shortcom:126,shortcut:[126,127,165,167],shorten:59,shorter:[21,26,98,117],shorthand:[116,165],shortli:[139,164],shortsight:124,shortstop:113,shot:36,should:[7,18,29,32,33,36,39,41,45,46,47,48,50,51,58,59,63,64,65,79,80,89,90,97,98,100,101,103,105,109,111,113,114,116,117,118,121,123,124,126,127,128,130,133,134,135,136,137,139,140,144,148,149,151,152,153,156,157,158,159,160,161,163,164,165,166,167,170,171,176,181,182,186,187,188],shouldn:[56,101],show:[1,3,5,7,8,9,13,14,15,16,18,19,29,30,31,32,34,35,38,39,40,41,42,44,45,47,49,50,51,52,53,55,56,57,58,59,60,61,62,64,66,68,76,77,79,81,97,99,100,101,106,107,108,113,114,115,116,117,120,121,122,123,124,127,128,129,130,131,134,135,136,139,140,142,144,145,146,148,149,150,152,156,157,159,160,161,162,164,167,172,174,176,180,182,183,184,185,186],show_centroid:152,show_generated_img:37,show_imag:33,show_images_batch:33,show_img:36,show_nam:187,show_new_sampl:34,show_output:[9,97],show_point:30,show_predict:127,show_xlabel:152,show_ylabel:152,showarrai:121,showcas:[28,66,99,168],showclassificationresult:47,showdown:107,showexampl:47,showmean:18,shown:[0,7,14,16,30,32,49,50,52,59,69,98,113,116,126,136,137,144,150,152,159,161,165,185],showregressionresult:48,shp:129,shrink:[38,152],shrinkag:146,shrivastava:137,shuffl:[29,30,33,37,38,39,40,43,48,56,64,79,105,121,122,125,127,128,130,131,135,144,158],shuffle_batch:121,shuffle_tensor:43,shuffled_ix:130,shufflenet:126,shuga:139,shut:62,sibl:22,sibsp:[22,146],sicp:90,sid:105,side:[7,8,14,54,55,59,68,75,77,108,117,124,137,145,150,157,165,166,167,188],siev:89,sieve_of_eratosthen:89,sigh:135,sight:[153,157],sigkdd:133,sigma:[113,122,128,130,141,142,144,149],sigma_ix_i:113,sigma_p:122,sigma_q:122,sigma_t:122,sigmoid:[29,30,31,36,37,40,43,60,61,78,120,123,124,128,129,136,146,161,176,186],sigmoid_cross_entropy_with_logit:125,sigmoid_svc100:59,sigmoid_svc:59,sign:[50,53,56,63,65,98,101,115,116,144,145,159,166],signal:[48,59,66,68,77,101,135,140,142,151,159,164,171,176],signatur:[99,117,166,168,188],signifi:7,signific:[18,40,48,54,98,101,111,113,141,142,144,150,166,175],significantli:[47,50,133,135,139,144,145,152,160,166,180],signup:56,silenc:180,silent:[46,54,148,166],silhouett:152,silhouette_analysis_plot:152,silhouette_coeffici:152,silhouette_sampl:152,silhouette_scor:[140,152],silhouette_score_vs_k_plot:152,silu:122,silver:145,sim:[68,77,145],sim_count:[68,77],simcard:[68,77],similar:[3,6,7,14,29,31,39,43,47,50,52,59,63,65,68,77,101,103,109,111,113,114,115,116,117,120,121,127,129,130,131,134,135,136,137,139,140,141,145,150,153,156,158,159,160,165,166,167,171,173,185,188,189],similarli:[18,49,50,57,59,64,116,117,133,135,148,166],simonyan:126,simpl:[1,3,15,30,33,34,40,41,43,47,48,49,50,54,55,59,64,68,75,76,77,80,81,100,108,111,116,117,120,121,123,126,127,129,131,134,144,145,149,150,152,159,164,165,166,167,172,175,176,180,185,188],simplefilt:131,simpleimput:[54,61,75,148],simpler:[31,45,47,48,116,134,135,152,159,173],simplernn:44,simplest:[3,18,32,43,47,48,50,79,111,116,134,135,145,151,152,159,165,180,186],simpli:[0,7,30,33,43,46,47,48,49,50,51,79,97,101,105,114,117,123,127,135,141,145,148,150,151,152,159,160,165,166,173,181,185,188],simplic:[97,126,131,142,144,145],simplifi:[1,29,30,48,55,99,111,116,122,133,134,135,139,145,168],simpson:38,simul:[0,116,136,137,165],simultan:[36,113,126,129,134],sin:[18,116,122,145,187],sinc:[18,22,30,32,33,35,36,40,41,45,47,48,49,50,52,53,54,56,58,59,60,61,62,64,66,68,75,77,79,98,109,111,113,116,117,121,123,126,127,128,129,131,134,135,141,142,145,148,149,150,151,152,153,157,158,160,161,164,165,166,170,180,186,187,188],sine:116,singh:137,singl:[7,32,34,41,43,47,49,50,54,56,59,68,77,89,96,108,110,114,117,121,126,129,130,131,135,136,144,147,148,149,152,159,165,166,167,185,188,189],single_quote_str:[166,188],singleton_tupl:166,sink:96,sinn:119,sinusoid:122,siobhan:133,sir:[14,136],sirkap:99,sit:[57,58,103,159,171],site:[16,57,96,105,109,111,117,137,139,140,157,161,164,173,180,187],situat:[28,54,59,101,111,113,124,133,135,137,142,145,160,165,166],situp:85,six:[39,121],sixth:[166,188],size:[1,7,14,18,22,31,32,33,34,35,36,37,38,39,40,43,45,46,48,49,50,52,53,57,58,59,60,61,62,68,75,76,77,79,80,81,89,97,98,107,108,113,114,116,117,120,121,123,125,126,127,128,129,130,135,137,140,141,144,145,149,150,151,152,153,159,160,161,166,172,173,176,179,180,185,186,188],sjoerd:[166,188],ska20:135,skalski:135,skalskip:[80,81],skeeter:150,skeptic:145,sketch:167,sketchnot:164,skew:[7,22,54,57,59,66,68,77,106,140,156],skewed_feat:66,skf:144,skill:[38,47,98,99,105,106,111,118,168,172,189],skim:[97,162],skimag:121,skin:[99,168],skip:[0,3,31,38,41,43,47,48,106,127,165,166,172],skip_head:180,skiprow:31,skiti:[63,65],sklearn:[7,29,30,31,32,34,38,39,40,42,44,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,68,77,80,81,114,131,140,141,144,146,148,149,150,151,152,153,157,158,160,161,164,182,183,184],sklz5kcmqsshyyfixsjcin0srf5:59,sl:142,slate:115,slaughter:141,sleep:181,slept:182,slice:[51,59,79,121,165,166,173,188],slice_index:117,slice_loc:117,slice_obj:117,slicer:117,slide:[14,33,101,132,136,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],slideshow:177,slight:[56,144],slightli:[18,30,32,41,49,50,56,64,66,101,121,122,144,145,151,160,165],slope:160,slow:[14,40,49,62,75,116,129,134,173],slower:[7,98,121],slowest:152,slowli:[45,48],slytherin:181,sm:[130,161],small:[0,15,29,32,33,41,48,49,50,57,58,60,61,63,64,65,66,68,75,77,79,98,113,115,116,117,121,122,126,127,128,129,133,135,137,141,144,145,148,150,151,152,153,159,160,161,164,165,167,170,176,180],smaller:[7,18,30,33,36,48,62,79,89,106,114,116,120,126,135,141,144,148,161,173],smallest:[89,135],smart:[116,135,148],smartphon:[68,77,111,123],smartwatch:[6,110],smelyanskii:135,smile_data:31,smile_id:31,smile_lat:31,smile_vec:31,smith:90,smo:[150,178],smoke:[9,97,98],smoker:156,smooth:[14,50,106,107,121,136,144,172],smoother:106,smoothli:[59,106,161],smote:156,smsspamcollect:130,smv:[60,61],sn:[30,34,36,38,39,40,48,49,50,51,52,53,54,56,57,58,59,60,61,64,66,68,75,77,80,106,108,131,139,140,141,142,144,150,161,172,178,180],sna:180,snake:50,snapshot:[39,98,107],sne:[152,159,180],sneaker:[30,40,41],snippet:[7,50,136,166],snow:[19,106,172],snr:59,so:[1,4,7,15,17,18,29,30,31,32,33,34,36,39,40,41,43,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,68,75,77,79,89,90,94,98,99,101,105,106,107,108,109,113,114,116,117,118,120,121,122,123,125,126,127,128,130,131,132,133,134,135,136,137,139,140,141,142,144,145,146,148,149,150,151,152,153,156,157,158,159,160,161,162,164,165,166,167,168,173,180,185,188],social:[5,99,101,105,109,111,168,170],social_network_ad:[183,184],societi:[109,137],socio:[99,109,170],socr:18,socr_mlb:18,soda:[115,174],sodium:98,soft:[59,152],softmax:[32,34,39,40,41,47,79,121,123,124,126,128,130,186],softmax_crossentropy_with_logit:79,softwar:[0,22,23,45,47,48,89,90,95,96,103,113,115,133,134,135,136,137,153,164,165,166,167,169,174,189],sold:[25,54,162],sole:[54,135,144,165],solid:[19,48,153],solidifi:145,soluion:[63,65],solut:[11,28,50,66,69,89,96,98,99,101,105,109,133,134,135,136,137,144,145,150,152,153,159,162,166,169,170,174,178,182],solv:[50,52,54,57,97,100,101,103,113,116,117,123,124,126,129,134,135,137,145,149,150,152,156,157,159,166,171,185],solvabl:[136,145],solver:[124,152,153,157],somber:101,some:[0,1,3,7,8,10,11,12,14,15,16,17,18,20,21,25,28,30,31,33,34,36,39,40,41,43,45,46,47,49,50,52,54,55,56,57,58,59,60,62,64,66,68,72,75,77,79,80,82,89,96,98,99,100,101,102,103,105,106,107,108,109,110,111,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,138,139,141,144,145,146,148,149,150,151,152,153,156,157,158,159,160,161,162,164,165,167,169,170,171,173,174,176,178,182,185,188],some_digit:81,some_digit_imag:81,somehow:[7,113,116,162],someon:[7,49,95,96,101,103,133,135,145,159,160,165,171],someth:[7,43,54,62,68,77,79,101,106,110,111,115,116,117,118,123,137,146,151,159,160,165,166,174,175,176,185,188],sometim:[7,30,46,49,59,62,107,110,111,113,114,116,117,118,120,124,126,131,133,135,136,137,145,148,159,160,161,165,166,173,185,188],somewhat:[7,47,107,152,160,161,181],somewher:[113,145,159,160,161],sonali:101,song:[138,139,140],soo:68,soon:[29,40,145],sophist:[49,105,106,134,141,144,159,172,185],sore:123,sort:[22,39,45,50,54,62,89,111,117,121,126,139,144,152,156,159,162,165,166,172,181,185,187,188],sort_i:55,sort_idx:55,sort_index:117,sort_valu:[1,31,50,51,54,56,66,156,157],sort_x:55,sosa:160,sosb:160,soshnikov:[14,96,160],sound:[7,18,31,45,113,114,123,141,148,159,185],sound_packag:165,sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,39,40,43,44,46,49,50,52,53,54,55,56,57,58,59,60,61,62,64,66,67,68,69,71,72,75,77,79,80,81,82,83,85,86,87,88,89,90,96,97,98,99,100,101,103,104,105,106,107,108,109,111,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,144,145,146,148,149,150,152,153,156,157,158,159,160,161,162,164,165,166,167,173,175,180,181,182,183,185,186,187,189],source_indic:1,sours:130,south:[49,52],soy_sauc:157,space:[1,6,29,31,36,39,50,79,89,90,99,105,107,113,116,117,120,124,126,129,135,136,142,144,145,149,150,153,158,161,162,165,166,167,168,172,180,187,188,189],spacing_h:129,spacing_w:129,spam:[130,156,159,165,166,185,188],span:[108,166,188],spanish:50,spark:[133,134],sparki:139,spars:[75,120,144,145,149],sparse_categorical_crossentropi:[40,47,128],sparse_softmax_cross_entropy_with_logit:[121,130],sparsecategoricalcrossentropi:[40,41,127],sparsiti:149,spatial:[99,123,126,127,129,180],speak:[101,105,108,133,135,153,165],speaker:135,speci:[60,64,80,106,107],special:[7,29,31,54,62,98,111,114,116,123,139,149,150,159,161,164,165,166,173,187],specialti:162,specif:[3,7,14,22,28,31,39,40,43,45,46,47,48,49,50,52,62,68,77,96,99,100,109,110,114,116,117,118,126,127,130,133,134,135,137,139,141,144,145,146,150,158,159,160,165,166,167,175,180,187,188],specifi:[1,7,14,22,31,33,34,40,43,46,48,81,96,114,116,117,121,126,136,144,148,149,157,159,165,166,185,188],spectral:139,spectralclust:152,spectralclusteringspectralclust:152,spectrum:113,specular:39,speech:[41,96,123,159],speechi:[138,139,140],speed:[14,40,54,62,68,77,79,98,103,109,116,117,126,129,135,136,137,148,149,159],spend:[23,49,68,77,96,101,134,145,148,159],spent:[101,135,145],spepal:46,spigeabqjcqcjpji8ek2gq3feuwpa07b3mmrhwktxsn67uoiyut4sgkuoutl8jqc5a:59,spike:[1,104,105,108,172],spinach:162,spine:108,spline:145,split:[31,33,35,38,40,49,52,55,56,60,61,62,64,79,80,116,117,118,124,125,126,127,128,129,130,131,133,135,141,142,144,145,146,150,152,159,160,161,164,165,166,167,173,174,178,180,187,188],split_col:55,split_data:146,split_nam:55,splitidx:48,splitted_str:166,splitted_sub_str:166,splitter:[57,58],sponsor:[103,134,171],spore:[107,172],sport:99,sports_hobbi:90,spot:[7,46,114,116,151,159,185],spotifi:139,spous:22,spread:[14,111,113,118,122,124,139,145,162],spreadsheet:[6,23,25,27,71,110,117,118,153,159,162,185],spring:[136,165],springer:135,spruce:162,spuriou:[59,62,105],sql:[12,25,96,111,115,117,118,133,174],sqlite:[12,25],sqrt:[38,52,53,54,55,56,58,61,66,75,90,113,122,125,126,129,142,144,160,180],sqrt_alphas_cumprod:122,sqrt_alphas_cumprod_t:122,sqrt_iter:90,sqrt_one_minus_alphas_cumprod:122,sqrt_one_minus_alphas_cumprod_t:122,sqrt_recip_alpha:122,sqrt_recip_alphas_t:122,sqrzypw0qccfugn2wxewatjnaka17wwjlsrqdqfu1jch8nwfc14oqv2anesclwvrugbvlhspfwzjrcf8etm8okncdewokyi:59,squar:[38,40,45,48,50,53,58,61,63,65,66,68,77,89,107,116,120,121,122,124,131,135,139,140,141,144,145,149,150,151,152,160,161,166,181,182,186,187,188],square_root:89,square_tupl:[166,188],squared_error:58,squarederror:54,squeez:[29,30,31,36,37,121,129,150],sr:129,src:[105,129,140,152,156,160],ss20:[120,125,128,130],ssh:98,sssg17:137,stabal:62,stabil:[79,108,135,140],stabl:[1,66,116,117,135,152,180],stack:[1,22,31,33,40,54,105,116,117,123,126,129,133,145,172],stack_clf:49,stackingclassifi:49,stacklevel:117,stackoverflow:18,staff:142,staff_id:[165,187],stage0:126,stage1:126,stage2:126,stage3:126,stage4:126,stage:[17,23,55,56,59,100,101,103,126,127,129,134,149,151,159,171],stai:[48,75,135,153,181],staircas:121,stakehold:[101,103,171],stalk:[107,172],stamp:[49,52],stand:[49,59,62,68,77,101,108,146,149,162],standard:[7,18,29,31,46,47,48,59,62,64,75,86,100,103,109,114,116,117,118,123,131,133,134,136,142,145,148,150,159,160,162,165,187],standard_d2_v2:[9,97],standardscal:[44,53,58,59,61,62,64,75,183,184],stanford:[37,99,126,145,159,160,161],star:[59,156,166],starch:157,starri:121,starry_night:121,start:[0,1,3,8,11,13,18,29,33,34,37,41,43,45,46,47,48,54,56,59,61,68,76,77,79,81,89,90,96,97,98,99,100,101,105,106,108,109,111,113,114,115,116,117,121,122,124,125,128,130,131,132,136,140,142,144,145,146,148,149,150,151,152,153,156,158,159,160,161,162,165,166,167,169,173,175,176,180,181,183,184,185,188],start_idx:79,start_queue_runn:121,start_slic:117,start_tim:39,starter:[31,105,161],starti:124,starting_pitch:113,startswith:[3,152],startup:[43,56],startx:124,stat453:[120,125,128,130],stat:[18,40,49,53,54,58,64,66,113,135,136,141,150,178],stat_interv:141,state:[9,13,14,15,31,35,49,50,52,59,97,99,105,108,110,116,117,118,121,123,126,128,130,133,134,135,136,141,146,153,156,158,159,162,165,172,174,181],state_c:128,state_dict:37,state_h:128,state_s:35,statement:[31,33,93,94,109,110,113,115,118,124,164,167,174],stationeri:38,statist:[7,39,47,50,52,54,59,61,103,108,109,111,112,116,122,130,132,135,136,137,139,141,144,145,150,156,159,160,171,173,176],statsmodel:[54,64],statu:[22,57,97,98,106,124,125,134,136,172],std:[18,24,29,31,38,47,48,58,59,61,64,75,79,113,116,126,139,144,149,152,173],std_agg:55,stdarr:48,stddev:[121,122,125,129,130],stderr:47,stdout:187,steam:38,steep:[136,161],steer:41,stellar:59,stem:[7,56],step:[0,7,9,16,28,31,33,35,36,37,38,39,40,41,43,44,47,48,49,50,52,54,59,60,61,62,64,76,79,89,96,97,98,99,100,101,103,106,109,111,114,115,116,117,118,120,121,122,123,124,126,128,130,133,134,135,136,137,140,141,142,149,152,153,156,159,160,162,165,166,170,173,180,183,184,185],steps_mean:124,steps_per_epoch:[32,127],steps_taken:124,stepwis:160,stereotyp:109,stick:[48,101],sticki:107,stiff:165,stikeleath:101,still:[7,18,36,48,49,52,53,57,113,114,116,117,123,127,128,130,131,133,134,135,137,145,152,159,165,166,181,188],stochast:[79,122,124,145,157,159,186],stock:[108,124,159,172],stockast:[49,68,77],stop:[33,39,40,50,55,97,116,117,122,144,148,149,165,173,183,184],stop_gradi:129,stop_train:40,storag:[11,33,96,98,103,111,118,121,160,161,169,170,171,174],store:[6,7,11,12,29,30,31,33,39,41,46,50,53,64,66,68,77,89,90,93,96,101,110,111,114,116,117,118,119,120,121,122,123,125,128,131,133,134,135,136,137,142,148,150,165,166,167,169,174,181,188,189],stori:[4,13,19,50,104,105,137,166,171,172,188],storymap:99,storytel:[19,26,171],stott:7,str1:[48,166],str2:166,str:[1,9,14,33,35,37,47,48,54,56,59,66,68,77,80,97,117,121,122,127,129,142,148,160,162,165,166,167,173,187,188,189],straight:[43,45,50,101,148,150,160,164,178,182,186],straightforward:[31,111,116,135,148,153,161,164,165],straightfoward:131,strang:[18,105,162],strateg:[124,159],strategi:[7,29,41,47,49,52,61,68,75,77,101,109,124,127,135,136,156,159,185],strategist:101,stratifi:[144,180],stratifiedkfold:[64,144],stratifiedkfoldcv:64,stream:[47,50,96,123,124,129,133,134,137,159,185,187],stream_executor:29,streamlin:[126,132],streamlit:136,street:[60,61,66,109,170],strenghten:55,strength:[1,54,131,135,150,178],strengthen:[96,145],stretch:[1,8,116],strftime:38,strict:[103,117,135],strictli:165,stride:[29,30,31,32,33,34,36,37,120,121,122,126,127,129],string:[7,14,22,39,54,56,59,80,114,116,117,128,162],string_input_produc:121,string_vari:[166,188],string_with_whitespac:[166,188],strip:[3,14,59,128,165,166,188],stripe:161,stripplot:161,strive:36,strong:[18,43,49,52,54,64,66,106,108,113,125,126,139,141,145,147,149,159],stronger:35,strongest:[54,109],strongli:[113,145,152,159,185],struct:116,structur:[6,7,12,22,30,31,38,40,41,50,57,58,87,89,109,110,111,115,118,120,121,123,124,125,126,127,129,133,146,149,150,153,157,159,160,162,165,167,170,172,174,175,178,180,185,187],struggl:[135,141],strutur:148,stubbornli:45,stuck:[62,135],student:[16,18,64,111,113,115,136,151,160,164,174],student_admiss:187,studi:[14,16,33,39,50,123,145,150,155,157,159,168,170,173,182,185],studio:[7,9,97,99,160,162,163,164,168],study_15:57,study_1:57,study_20:57,study_41:57,study_7:57,stuff:[79,165],stump:145,stun:57,style:[0,3,32,36,38,51,62,88,116,117,126,131,132,136,139,140,144,152,153,156,160,168,169,170,171,172,173,174,175,176,178,179,180,182,183,184,185,186,187,188,189],style_expect:121,style_featur:121,style_gram_matrix:121,style_imag:121,style_image_fil:121,style_image_weight:121,style_lay:121,style_loss:121,style_minus_mean:121,style_norm:121,style_shap:121,style_weight:121,stylesheet:[153,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],sub:[1,86,116,121,128,130,135,160,161],sub_str:166,subarrai:173,subclass:[3,29,165],subdimension:116,subgroup:[50,99,109],subitem:165,subject:[1,7,31,36,45,50,89,90,99,101,109,110,116,165,166,168,170,176],sublicens:[89,90,165,166],sublist:90,subm:54,submiss:54,submit:[9,15,66,72,85,97,101,135,153],submodul:165,subnet:133,suboptim:152,subpackag:165,subplot:[1,29,30,31,33,34,36,37,38,39,40,41,50,51,54,55,59,64,79,106,108,121,122,127,131,139,140,144,146,150,152,172,178,180,186],subplot_kw:39,subplots_adjust:[31,34,150,152,178],subregion:121,subsampl:32,subscrib:[109,134,170],subscript:[96,98,109,159,170],subscription_id:9,subsect:[7,46,114],subsequ:[31,32,49,54,116,124,144,148,149,158,166,181,188],subset:[7,18,33,41,46,49,50,68,75,77,80,83,86,109,113,114,116,117,120,123,134,135,144,145,148,149],subspac:[49,116,144,180],substanti:[89,90,141,142,165,166],substitut:[7,11,165,187],substr:[1,166,188],subsubitem:165,subtl:[7,114,148],subtract:[89,116,121,127,166,167,173,188,189],subtre:50,subtyp:166,subwai:99,succe:159,succeed:149,success:[99,101,109,116,126,135,136,137,145,159,165,166,182],successfulli:[36,37,50,56,124,135,136,145],succinct:101,sudden:64,suddenli:64,sue:173,suffer:[56,57,58,123,131],suffici:[30,32,113,141,145,149,150,166],suffix:[117,153,164,165],sugar:[48,116,165],suggest:[11,14,18,33,59,113,142,144,145,159,160],suit:[43,47,59,60,61,117,140,159,161,172],suitabl:[3,54,60,116,123,133,137,145,157,159,165,186],sulfur:48,sulphat:48,sum:[1,7,14,18,22,25,31,33,38,47,48,49,50,51,52,53,54,55,56,57,58,59,61,63,65,66,68,75,77,78,79,113,115,116,117,121,122,124,125,130,131,139,140,141,142,144,145,147,149,150,152,156,160,162,165,173,178,182,183,186,187],sum_:[50,122,124,125,130,141,142,144,145,149,151,179,182],sum_i:[120,141],sum_inertia_:152,sum_of_list:89,sum_of_valu:89,sum_t:145,summar:[51,59,75,100,101,113,126,128,142,159],summari:[7,29,30,36,46,47,49,52,53,58,98,101,114,116,122,123,165,170,173,176],summaris:59,summat:126,summer16:187,summer:[17,99,103],sun:[57,126,129,137],sundai:[49,52],sunglass:31,sunglasses_data:31,sunglasses_id:31,sunglasses_lat:31,sunglasses_vec:31,sunshin:39,sup:48,supercalifragilisticexpialidoci:[166,188],supercharg:105,superclass:126,superimpos:[45,108],superman:89,supermarket:39,superpow:58,supervis:[29,36,38,50,52,53,57,58,59,60,61,68,77,126,127,132,135,137,138,139,144,145,149,150,152,156,157,158,164,180],supervisor:124,suppli:[7,49,52,85,99,108,116,133,165],support:[0,1,7,18,29,43,47,48,49,50,52,54,57,58,68,77,79,98,99,100,101,103,105,107,109,110,113,116,117,127,132,133,134,135,139,141,144,145,149,152,153,157,159,161,164,165,166,173,181,188],support_vectors_:[150,178],suppos:[18,49,50,111,113,116,127,141,142,150,162,166],suppress:[117,140],supris:40,suptitl:18,sure:[0,4,9,11,46,49,50,52,79,101,105,107,109,110,113,114,116,121,131,134,135,137,140,146,152,156,157,159,160,164,165,166,170],surfac:[50,54,76,107,172],surmis:140,surpass:29,surpris:[7,114,116,139,159,162,165],surprisingli:[53,161],surround:[111,127,159,160,166],survei:[6,7,111,133,142,170],surveil:[111,129,137],surviv:[22,136,145,159,185],survivor:22,suscept:136,suspect:[59,182],suspicion:133,sustain:[16,98,134],sustract:146,sv_classifi:49,svc:[49,56,59,60,150,157,178],svcsvc:60,svm:[49,56,120,157,158,159],svr:61,svr_rnd:61,svrsvr:61,svxnq0nwbkfkeool59ws3awqcdihomgjxzrj7rcf7inikape9zeqssiu0czvvz9siareaafurxwl8b:59,sw:142,swap:[90,116,117,166],swarmplot:161,sweden:189,sweet:151,swiss:181,switzerland:131,sx:121,sy:[3,12,18,25,29,38,47,79,95,96,97,98,106,107,108,121,123,138,139,140,151,152,154,155,156,157,158,160,165,187],syllabl:166,symbol:[44,56,165,167],symmetr:[129,133,145,166],synaps:96,sync:113,synchron:137,synonym:[59,126,173],synset:126,syntact:[116,165,187],syntax:[116,117,118,153,165,173],syntaxerror:[165,167],synthes:81,synthesi:[81,133],synthet:[50,135,136,137,156],syphili:[109,170],system:[14,38,39,41,48,50,75,96,98,99,101,103,109,110,115,116,123,124,130,132,133,134,135,136,137,145,153,164,167,168,170,174,176,189],systemat:[109,133,137,159],sz:121,t:[0,1,7,14,18,24,26,30,31,32,33,34,35,36,38,39,40,41,43,45,47,48,49,50,51,52,53,55,56,57,58,59,60,63,64,65,66,68,75,77,78,79,90,96,97,98,99,100,101,103,105,106,109,110,113,114,115,116,117,118,120,121,122,123,124,125,126,128,129,130,131,133,135,136,142,144,145,146,148,149,150,151,152,153,156,157,158,159,160,161,162,164,165,166,167,168,170,172,173,178,180,182,183,184,185,187,188],t_1:[113,144],t_2:113,t_:124,t_dim:122,t_fix:124,t_grad:121,t_index:122,t_input:121,t_k:124,t_loss:31,t_maze:124,t_n:144,t_obj:121,t_preprocess:121,t_score:121,ta:54,tab:[22,31,97,98,115,117,165],tabl:[11,12,14,46,71,105,107,111,113,115,116,133,135,136,139,142,157,160,161,165,166,181,188],table_data:[166,188],table_str:[166,188],tableau:[101,107],tabular:[40,51,59,98,116,123,148,159,166,174,185],tac:165,tack:116,tackl:[50,54,60,61,99,117,132,135,149,152,162],tag:[3,9,57,97,110,165],tag_nam:165,tags_decor:165,tags_to_skip:3,taha:44,tail:[38,46,49,52,54,66,68,75,77,114],tajgahors4ocotjy9nzfd2lup14efuvkaejjbkdpghifzjonppwudirlzfb2z0zcqcqr18iv0f7ro4iebuqiyaif9q0jgojxciilkn7anonkruijjrghi:59,take:[1,3,7,8,9,11,14,17,18,29,30,31,32,33,34,36,39,41,43,45,47,48,49,50,52,53,54,56,57,58,59,61,64,66,68,75,76,77,79,80,85,89,96,97,98,99,100,101,103,105,107,108,109,110,111,113,114,116,117,118,120,121,122,123,124,126,127,128,132,133,134,135,137,139,140,141,144,145,148,149,151,152,153,156,157,158,159,160,161,162,164,165,166,167,170,176,180,185,187,189],takeabl:117,takeawai:[7,24,46,101,114],taken:[1,24,28,34,35,46,56,103,111,113,114,116,124,131,149,162,171,182],talent:99,talk:[16,18,50,62,68,77,99,101,105,109,111,113,132,146,149,159,161,168,170,182],talk_tim:[68,77],tall:[108,124,126],taller:[18,113],tan:[107,116,172],tandem:187,tang:135,tangent:116,tangerin:[166,188],tangibl:96,tanh:[36,37,45,125,128,176,186],tape:[0,36,124,128],tar:[33,121,126],tarantool:174,tarfil:[33,121],target:[1,9,29,30,35,37,40,49,50,52,53,55,56,57,58,60,62,63,64,65,66,68,75,76,77,79,85,89,97,98,120,121,128,129,131,133,134,135,140,141,142,144,145,146,150,152,159,164,165,180,182,185,186],target_class:59,target_f:35,target_fil:121,target_indic:1,target_nam:40,target_s:121,target_shap:121,tarih:35,task:[7,8,9,16,29,36,41,43,46,47,51,57,58,59,60,68,77,92,96,97,98,100,103,104,105,106,109,111,114,115,116,117,123,126,127,129,132,133,134,135,137,138,145,146,147,149,150,152,153,155,156,157,158,159,161,162,163,164,167,169,172,182,185,187],task_typ:54,tast:[138,139],tasti:[107,172],taught:[54,139],tax:36,taxi:[17,103],taxicab:[99,168],taxonom:7,tbd:[120,121,122,124,125,126,127,128,129,130,131,139,140,141,142,144,145,146,148,149,159],tc:164,tcl:146,tdd:132,tdsp:103,teach:[40,105,189],team:[17,18,23,99,101,103,109,113,132,134,137],teammat:[92,101],tecent_fil:38,tech:[43,159,185],technic:[38,43,50,109,118,133,134,137,145,146,148,159,170,174,185],techniqu:[1,4,7,15,17,32,34,41,46,49,50,54,56,57,58,59,60,69,71,75,81,82,99,100,103,104,108,109,111,113,114,116,123,135,139,140,141,144,148,149,151,156,157,158,159,160,161,162,164,166,171,182],technolog:[56,96,99,110,133,137,145,153,159],tediou:[103,115,150,160],telecom_churn:[50,141,144],telecom_data:141,telemetri:29,televis:101,tell:[4,7,13,19,36,50,54,55,56,60,68,77,99,101,104,105,109,113,123,131,144,151,159,172,176,185,187],temb:122,temp:[38,62,121,166,180,187],temp_accuraci:121,temp_original_loss:121,temp_output_:121,temp_test_acc:[121,130,144],temp_test_loss:130,temp_train_acc:[121,130,144],temp_train_loss:[121,130],temp_train_pr:121,temperatur:[110,111,163],templat:[38,115,136,153],tempo:[139,140],temporari:[116,121],temporarili:33,temporary_attribut:165,tempt:[48,113],temptat:48,ten:[47,56,75,121,126,156],tencent:38,tend:[40,49,52,53,56,57,58,59,62,105,106,116,117,123,140,141,159,174],tendenc:[104,172],tens_reshap:43,tension:127,tensor2tensor:122,tensor:[33,121,126,127,173,186],tensor_0:43,tensor_1:43,tensor_1d:43,tensor_2:43,tensor_2d:43,tensor_3d:43,tensor_nam:43,tensor_shuffl:43,tensorflow:[30,36,38,39,41,42,44,45,47,48,49,57,58,62,98,120,122,123,124,125,126,127,128,129,130,132,134,135,136,137,153,156,164,176,186],tensorflow_addon:[122,126],tensorflow_cookbook:[121,128,130],tensorflow_dataset:[126,127],tensorflow_exampl:127,tensorflow_inception_graph:121,tensorpack:129,term:[1,3,31,47,49,50,52,57,59,97,99,108,111,115,116,118,121,122,123,124,126,130,133,137,139,140,145,150,151,152,158,159,160,161,165,168,174,178,182,185],termin:[0,40,97,98,105,124,153,162,165,167],terminolog:[1,59,109,115,118,139,158],terribl:47,territori:14,test:[0,14,15,22,29,31,32,35,38,39,40,41,50,55,58,60,61,64,66,68,77,81,90,96,98,99,106,109,111,116,120,121,125,126,127,128,130,131,134,135,139,140,141,144,145,146,151,152,153,157,158,159,160,161,164,165,167,176,179,180,185,186],test_absolute_valu:89,test_acc:[41,121,144],test_accuraci:[121,130],test_addit:89,test_append_diff_column_happy_cas:14,test_append_diff_column_with_empty_column_to_diff:14,test_append_diff_column_with_empty_df:14,test_append_diff_column_with_empty_new_column:14,test_append_diff_column_with_invalid_column_to_diff_nam:14,test_append_diff_column_with_invalid_column_to_diff_typ:14,test_append_diff_column_with_invalid_df_typ:14,test_append_diff_column_with_invalid_new_column_typ:14,test_append_diff_column_with_none_column_to_diff:14,test_append_diff_column_with_none_df:14,test_append_diff_column_with_none_new_column:14,test_batch:[121,127],test_calculate_happy_cas:90,test_calculate_with_invalid_c_input:90,test_calculate_with_none_input:90,test_calculate_with_str_input:90,test_capitalize_words_default:90,test_capitalize_words_exclude_word:90,test_censor_word:90,test_censor_words_no_censor:90,test_censor_words_partial_match:90,test_column_filter_happy_cas:14,test_column_filter_with_empty_column_nam:14,test_column_filter_with_empty_df:14,test_column_filter_with_invalid_column_name_typ:14,test_column_filter_with_invalid_df_typ:14,test_column_filter_with_none_column_nam:14,test_column_filter_with_none_df:14,test_conjug:89,test_cont:3,test_count_occurr:90,test_count_occurrences_empty_list:90,test_count_occurrences_str:90,test_count_word_occurr:90,test_count_word_occurrences_empty_text:90,test_count_word_occurrences_same_word_rep:90,test_data:[29,49,52,53,57,61,75,120],test_data_path:[68,77],test_data_schema:48,test_dataset:33,test_df:[14,22,24,53,79,81],test_df_1:14,test_df_2:14,test_df_3:14,test_df_boxplot_happy_cas:24,test_df_boxplot_with_empty_df:24,test_df_boxplot_with_none_df:24,test_df_hist_happy_cas:53,test_df_hist_with_empty_df:53,test_df_hist_with_none_df:53,test_df_pairplot_happy_cas:53,test_df_pairplot_with_empty_df:53,test_df_pairplot_with_none_df:53,test_df_plot_happy_cas:24,test_df_plot_with_empty_df:24,test_df_plot_with_none_df:24,test_df_scatterplot_happy_cas:24,test_df_scatterplot_with_empty_df:24,test_df_scatterplot_with_none_df:24,test_dict:[121,130],test_divis:89,test_drop_columns_happy_cas:14,test_drop_columns_with_empty_column:14,test_drop_columns_with_empty_df:14,test_drop_columns_with_invalid_columns_input:14,test_drop_columns_with_invalid_columns_nam:14,test_drop_columns_with_invalid_columns_typ:14,test_drop_columns_with_invalid_df_typ:14,test_drop_columns_with_none_column:14,test_drop_columns_with_none_df:14,test_dtyp:48,test_empty_list:89,test_equ:89,test_existing_el:89,test_feed_happy_cas:3,test_feed_with_empty_cont:3,test_feed_with_empty_tag:3,test_feed_with_non:3,test_feed_with_skipped_tag:3,test_fibonacci_sequ:90,test_fibonacci_sequence_single_term:90,test_fibonacci_sequence_zero_term:90,test_filter_by_country_region_happy_cas:14,test_filter_by_country_region_with_empty_country_region_nam:14,test_filter_by_country_region_with_empty_df:14,test_filter_by_country_region_with_invalid_country_region_name_typ:14,test_filter_by_country_region_with_none_country_region_nam:14,test_filter_by_country_region_with_none_df:14,test_filter_by_country_region_with_wrong_country_region_nam:14,test_filter_by_country_region_without_none_province_st:14,test_filter_by_happy_cas:24,test_filter_by_invalid_column_nam:24,test_filter_by_invalid_column_valu:24,test_filter_by_with_empty_df:24,test_filter_by_with_none_df:24,test_filter_ninfected_by_year_and_month_happy_cas:14,test_filter_ninfected_by_year_and_month_with_empty_df:14,test_filter_ninfected_by_year_and_month_with_invalid_df_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_month_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_year_numb:14,test_filter_ninfected_by_year_and_month_with_invalid_year_typ:14,test_filter_ninfected_by_year_and_month_with_none_df:14,test_filter_ninfected_by_year_and_month_with_none_month:14,test_filter_ninfected_by_year_and_month_with_none_year:14,test_flatten_nested_list:90,test_flatten_nested_lists_empty_list:90,test_flatten_nested_lists_no_nested_list:90,test_float_numb:89,test_fold:121,test_format_person_info:90,test_format_person_info_empty_list:90,test_format_person_info_single_person:90,test_funct:165,test_function_scop:165,test_get_df_column_diff_happy_cas:14,test_get_df_column_diff_with_empty_column:14,test_get_df_column_diff_with_empty_df:14,test_get_df_column_diff_with_invalid_column_nam:14,test_get_df_column_diff_with_invalid_df_typ:14,test_get_df_column_diff_with_none_column_nam:14,test_get_df_column_diff_with_none_column_typ:14,test_get_df_column_diff_with_none_df:14,test_get_df_corr_with_happy_cas:24,test_get_df_corr_with_with_empty_df:24,test_get_df_corr_with_with_invalid_column_nam:24,test_get_df_corr_with_with_none_df:24,test_get_df_mean_happy_cas:24,test_get_df_mean_with_empty_df:24,test_get_df_mean_with_none_df:24,test_get_df_std_happy_cas:24,test_get_df_std_with_empty_df:24,test_get_df_std_with_none_df:24,test_get_pinfected_happy_cas:14,test_get_pinfected_with_empty_df:14,test_get_pinfected_with_invalid_df_typ:14,test_get_pinfected_with_none_df:14,test_get_rolling_window_happy_cas:14,test_get_rolling_window_with_empty_column:14,test_get_rolling_window_with_empty_df:14,test_get_rolling_window_with_invalid_column_nam:14,test_get_rolling_window_with_invalid_column_typ:14,test_get_rolling_window_with_invalid_df_typ:14,test_get_rolling_window_with_invalid_window_typ:14,test_get_rolling_window_with_negative_window:14,test_get_rolling_window_with_none_column:14,test_get_rolling_window_with_none_df:14,test_get_rolling_window_with_none_window:14,test_get_rt_happy_cas:14,test_get_rt_with_empty_column:14,test_get_rt_with_empty_df:14,test_get_rt_with_invalid_column_nam:14,test_get_rt_with_invalid_column_typ:14,test_get_rt_with_invalid_df_typ:14,test_get_rt_with_invalid_window_typ:14,test_get_rt_with_negative_window:14,test_get_rt_with_none_column:14,test_get_rt_with_none_df:14,test_get_rt_with_none_window:14,test_get_smoothed_ax_happy_cas:14,test_get_smoothed_ax_with_empty_column_nam:14,test_get_smoothed_ax_with_empty_df:14,test_get_smoothed_ax_with_invalid_column_name_typ:14,test_get_smoothed_ax_with_invalid_df_typ:14,test_get_smoothed_ax_with_invalid_window_numb:14,test_get_smoothed_ax_with_invalid_window_typ:14,test_get_smoothed_ax_with_none_column_nam:14,test_get_smoothed_ax_with_none_df:14,test_get_smoothed_ax_with_none_window:14,test_get_smoothed_ax_with_nonexistent_column:14,test_global_variable_access:165,test_group_by_categori:90,test_group_by_category_empty_input:90,test_group_by_category_no_categori:90,test_group_by_category_single_categori:90,test_groupby_sum_happy_cas:14,test_groupby_sum_with_empty_column_nam:14,test_groupby_sum_with_empty_df:14,test_groupby_sum_with_invalid_column_nam:14,test_groupby_sum_with_invalid_column_name_typ:14,test_groupby_sum_with_invalid_df_typ:14,test_groupby_sum_with_none_column_nam:14,test_groupby_sum_with_none_df:14,test_http_get_happy_cas:3,test_http_get_with_invalid_url:3,test_http_get_with_none_url:3,test_i:[38,148],test_imag:[41,121,125,127],test_impute_with_mean_happy_cas:22,test_impute_with_mean_invalid_column_nam:22,test_impute_with_mean_with_empty_df:22,test_impute_with_mean_with_none_df:22,test_impute_with_median_happy_cas:22,test_impute_with_median_invalid_column_nam:22,test_impute_with_median_with_empty_df:22,test_impute_with_median_with_none_df:22,test_index:144,test_init:3,test_input_data:[61,75],test_input_dim:48,test_insertion_sort:90,test_insertion_sort_empty_list:90,test_insertion_sort_single_element_list:90,test_insertion_sort_sorted_list:90,test_is_empti:89,test_label:[29,41,61,75,121],test_label_encode_happy_cas:22,test_label_encode_invalid_column_nam:22,test_label_encode_invalid_encoded_column_nam:22,test_label_encode_with_empty_df:22,test_label_encode_with_none_df:22,test_large_numb:89,test_load:33,test_loss:[29,41,130],test_lstm_model:128,test_merge_dicts_with_list:90,test_merge_nested_dict:90,test_merge_three_dict:90,test_merge_two_dict:90,test_mkframe_happy_cas:14,test_mkframe_with_empty_column_nam:14,test_mkframe_with_empty_df_1:14,test_mkframe_with_empty_df_2:14,test_mkframe_with_empty_df_3:14,test_mkframe_with_invalid_column_nam:14,test_mkframe_with_invalid_column_typ:14,test_mkframe_with_invalid_df_1_typ:14,test_mkframe_with_invalid_df_2_typ:14,test_mkframe_with_none_column_nam:14,test_mkframe_with_none_df_1:14,test_mkframe_with_none_df_2:14,test_mkframe_with_none_df_3:14,test_model_output:121,test_ms:[61,75],test_multipl:89,test_nam:[66,121],test_negative_numb:89,test_nois:125,test_non_existing_el:89,test_nul:48,test_one_as_input:89,test_one_hot_encode_happy_cas:22,test_one_hot_encode_invalid_column_nam:22,test_one_hot_encode_with_empty_df:22,test_one_hot_encode_with_none_df:22,test_output:121,test_permut:90,test_permutations_empty_list:90,test_permutations_single_el:90,test_pop:89,test_positive_numb:89,test_pr:[60,61,75,121],test_pred_poli:60,test_predict:121,test_preprocess:[61,75],test_push:89,test_rang:48,test_remove_dupl:90,test_remove_duplicates_empty_dict:90,test_remove_duplicates_empty_list:90,test_remove_duplicates_no_dupl:90,test_remove_duplicates_str:90,test_respons:66,test_result:33,test_rms:[61,75,131],test_rt_with_na_filled_happy_cas:14,test_rt_with_na_filled_with_empty_df:14,test_rt_with_na_filled_with_invalid_df_typ:14,test_rt_with_na_filled_with_none_df:14,test_same_numb:89,test_sampl:[9,97],test_save_path:66,test_scal:[53,60],test_scor:[56,64],test_single_element_list:89,test_siz:[29,31,32,34,40,49,50,51,52,53,54,56,57,58,59,60,61,75,80,131,144,146,148,149,153,157,158,160,161,164,180,182,183,184],test_sqrt:90,test_sqrt_non_perfect_squar:90,test_sqrt_perfect_squar:90,test_square_funct:89,test_str:90,test_string_input:89,test_string_numb:89,test_string_upper_empty_str:90,test_string_upper_happy_cas:90,test_string_upper_none_str:90,test_subtract:89,test_target:121,test_url:[3,66],test_vari:165,test_wrong_target_typ:89,test_x:[38,63,65,148],test_xdata:121,test_zero:89,testabl:132,testappenddiffcolumn:14,testbinarysearch:89,testcalcul:90,testcalculatesum:89,testcapitalizefirstletterp:90,testcapitalizeword:90,testcas:[3,14,22,24,47,53,90],testcensorword:90,testcleanfar:22,testcolumnfilt:14,testcomplex:89,testcountdigit:89,testcountoccurr:90,testcountwordoccurr:90,testdfboxplot:24,testdfhist:53,testdfplot:24,testdfscatterplot:24,testdropcolumn:14,testfactori:89,testfibonacci:90,testfilterbi:24,testfilterbycountryregion:14,testfilterninfectedbyyearandmonth:14,testfindprimefactor:89,testflattennestedlist:90,testformatpersoninfo:90,testgcd:89,testgetdfcolumndiff:14,testgetdfcorrwith:24,testgetdfmean:24,testgetdfstd:24,testgetpinfect:14,testgetrollingwindow:14,testgetrt:14,testgetsmoothedax:14,testgroupbycategori:90,testgroupbysum:14,testimoni:101,testinsertionsort:90,testlabelencod:22,testload:47,testmapfunct:89,testmean:47,testmergedict:90,testmkfram:14,testmyhtmlpars:3,testonehotencod:22,testpermut:90,testremovedupl:90,testrtwithnafil:14,testset:[42,54],testsieveoferatosthen:89,testsqrt:90,testsquareroot:89,teststack:89,teststd:47,teutschmann:163,texa:[109,153,173],text3d:[80,180],text:[1,12,15,23,38,40,41,43,48,57,58,59,66,68,75,77,90,96,99,101,105,110,111,115,116,123,128,130,133,135,139,140,142,144,145,152,153,156,159,160,164,165,166,167,168,169,170,171,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189],text_data:130,text_data_target:130,text_data_train:130,text_process:130,text_represent:[95,96,97,98,104,105,106,107,108,138,139,151,152,154,155,156,157,158],text_str:130,textbar:134,textbf:142,textbook:[50,145,159],textbox:82,textcolor:151,textcoord:152,texts_to_sequ:130,texttestrunn:47,textual:[1,8,105,107,165],tf0btgg9:59,tf:[29,30,36,38,39,40,41,42,44,45,47,48,120,121,122,124,125,126,127,128,129,130,135,151,156,176],tf_data:125,tfa:[122,126],tfboard_callback:40,tfd:[126,127],tfdetect:129,tffunc:121,tfv1:129,tgz:33,th:[50,113,116,122,141,144],thai:[156,157,158],thai_df:156,thai_ingredient_df:156,than:[1,2,7,8,14,18,29,30,31,32,33,35,39,40,41,43,45,46,47,49,50,52,54,56,57,59,60,61,62,64,68,71,77,79,89,96,98,101,106,108,109,111,113,114,115,116,117,118,121,122,123,126,128,131,134,135,137,139,140,141,142,144,145,148,149,150,151,152,157,158,159,160,161,162,164,165,166,167,170,173,174,178,180,181,182,185,187,188,189],thang:126,thank:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,77,79,80,81,82,83,85,86,87,88,89,90,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,124,125,126,127,128,129,130,131,135,139,140,141,142,144,145,146,148,149,153,156,157,158,159,160,161,162,164,165,166,167,180,181,182,183,186],thecodeship:165,thee:166,theguardian:105,thei:[1,6,7,12,15,18,23,25,31,40,41,43,46,47,48,49,50,52,56,57,58,59,62,66,68,75,77,79,87,96,97,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,131,133,134,135,137,139,141,142,144,145,149,150,151,152,153,159,160,161,162,164,165,166,167,168,170,171,173,175,180,185,187,188,189],them:[0,1,3,7,15,21,26,31,33,34,36,39,40,41,43,45,46,49,50,52,54,56,57,58,59,60,61,64,68,75,77,79,80,82,87,90,96,97,98,100,101,103,105,107,108,109,111,113,114,116,117,118,119,120,121,122,123,126,127,128,129,131,132,133,134,135,136,137,141,144,145,146,148,149,150,151,152,156,159,160,161,162,164,165,166,167,169,170,174,180,185,186,187,188],theme:[30,38,101],themselv:[7,62,101,103,116,123,145,159,161,185],theorem:141,theoret:[111,135,141,144,150,164],theori:[50,100,105,113,122,125,130,145,150],thereaft:124,therebi:[139,150],therefor:[7,30,32,45,50,54,98,116,122,124,126,133,135,144,145,146,149,150,152,165,166,180,188],thereof:173,theta:[122,144,145,146,182],theta_0:145,theta_1:[144,146],theta_2:144,theta_i:[144,145],theta_n:146,theta_t:145,thi:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,76,77,79,80,81,82,83,85,86,87,88,89,90,96,97,98,99,100,101,103,105,106,107,108,109,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,153,155,156,157,158,159,160,162,163,164,165,166,167,168,170,171,172,173,174,175,180,181,182,183,184,185,186,187,188,189],thick:1,thicksim:[122,125],thing:[1,7,40,43,49,50,52,53,57,60,63,65,66,68,75,77,79,97,98,100,101,103,105,109,111,113,114,116,117,118,123,131,136,138,139,145,152,153,156,159,165,166,174,176,180,181,185,188],think:[7,11,18,26,28,31,34,41,43,47,48,49,50,55,62,68,77,99,101,105,109,111,116,117,118,135,136,139,140,150,151,156,158,159,161,162,164,165,166,178,180,188],thinkhdi:101,third:[14,32,40,49,50,64,96,101,113,116,125,142,145,165],third_baseman:113,third_term:121,third_tuple_str:166,thisag:167,thisplot:41,tho:[166,188],thoma:133,thon:[166,188],thorough:134,thoroughli:100,those:[1,7,14,16,18,32,39,44,47,49,50,52,56,57,62,68,75,77,98,100,101,103,106,107,108,109,110,111,113,114,116,117,121,124,128,130,131,133,134,136,139,141,142,145,148,150,156,159,160,165,166,171,185,187,188],thou:128,though:[7,41,47,62,99,101,108,116,117,125,131,135,136,148,158,161,165],thought:[7,16,30,34,53,58,68,77,101,111,116,134,159,171,173],thoughtfulli:87,thousand:[29,49,50,75,105,136,149],threadpoolctl:140,threaten:[106,172],three:[7,13,14,19,21,27,29,32,36,39,48,49,50,52,56,60,71,75,80,85,89,90,95,96,99,107,110,115,116,117,121,126,127,129,131,133,135,136,137,139,140,150,152,153,165,166,168,173,178,187,188],three_g:[68,77],thresh:[7,114],threshold:[1,18,29,46,47,50,54,59,113,133,135,144,145,161],through:[1,3,9,10,20,24,30,31,41,45,47,48,54,61,62,63,65,79,87,89,96,97,98,100,101,103,105,106,109,110,111,115,116,117,121,122,124,125,126,127,128,130,131,132,133,134,135,136,137,139,140,145,146,148,151,156,157,159,160,164,165,166,167,170,173,176,177,182,185,187],throughout:[79,101,103,113,145,159,160,171,185],thrown:116,thrwebnuukudcrmdcyspswrnn7srqiwzrty3f44vjwvswkbhy5p:59,thu:[3,14,32,43,47,49,50,53,54,57,59,98,108,111,113,116,117,123,139,141,142,144,148,149,150,151,159,160,161,162,163,165],thunder9:38,thunder:38,ti:[101,130],tial:[63,65],tian:129,tibco:174,tibshirani:144,tic:165,tick:[3,97,139,142,152],tick_param:[54,152],ticker:152,ticket:101,tid:105,tidi:162,tier:133,tight_layout:[18,31,37,39,41,54,106,152,172],tiktok:137,tile:[98,121,152],tile_s:121,till:[56,151],tim:182,time:[0,1,7,8,9,13,14,29,31,32,33,35,37,38,39,40,42,43,45,49,50,52,53,54,56,58,59,60,61,62,63,65,66,68,75,77,79,97,98,99,100,101,103,105,107,108,111,113,114,116,117,118,121,122,123,124,125,126,127,128,130,133,134,135,136,137,140,141,142,145,148,149,150,151,152,153,157,159,160,161,162,164,165,166,167,168,169,172,174,180,181,182,185,187,188],time_model:39,time_series_covid19_confirmed_glob:14,time_series_covid19_deaths_glob:14,time_series_covid19_recovered_glob:14,time_signatur:[139,140],time_step:122,time_t:35,timeit:[152,173],timelin:[92,136],timeseri:44,timeseriesclassif:29,timestamp:[38,110,117,131,133],timestap:44,timestep:[38,44,122,130],timnit:[99,168],tin:144,ting:160,tini:[33,152],tiniest:159,tip:[17,23,79,101,161],titan:146,titanic_train:22,titanic_train_and_test:146,titl:[15,22,29,30,31,32,33,34,37,38,39,40,42,45,47,48,50,54,55,56,59,64,66,68,76,77,79,80,106,107,108,110,121,127,128,130,139,140,142,144,152,153,164,166,172,174,180,182,183,184],title1:152,title2:152,title_cas:94,titlepad:[62,131],titles:[62,131],titleweight:[62,131],tj:38,tl:35,tl_start:35,tld:59,tmp:[12,25,29,30,31,33,36,37,38,39,41,66,106,117,128,130,165],tmp_folder_path:[29,30,31,33,39,41,66],tmp_zip_path:39,tn:[52,59,68,77,161],tnhyqyfnsetmngznqkkxbxoqiy1gnxcjp6di0o2y4r8h3cdbjmbistoucntckz29yda5fw64wk4fpnxb1wvkic4rnetvukhrbqdw:59,to_categor:[32,39,186],to_csv:[66,156],to_datetim:[1,14,35,38,44,160],to_devic:33,to_fil:3,to_fram:[117,156],to_lat:31,to_numer:[35,56],to_numpi:[44,117,160],to_pandas_datafram:[9,97],to_period:131,to_print:124,to_pydatetim:117,to_seri:38,toarrai:75,tobacco:98,tobia:126,toc:134,tocilizumab:1,todai:[105,109,128,132,133,135,137,145,146,159],todd:137,toe:165,togeth:[0,1,3,7,8,14,38,40,41,46,49,50,90,101,107,113,114,115,116,118,122,134,139,142,145,149,151,165,166,167,174,187,188],toggl:98,toh:30,toi:[18,142,145],token:[43,126,130,167],tokyo:[14,118,174],tol:56,told:101,toler:[117,137],tolist:[38,39,44,49,142],tom:[24,159,167,185],tomato:[39,162],tomomi:164,tomorrow:186,tone:99,tong:129,tongchuan:38,too:[18,32,47,48,49,50,52,53,54,57,58,61,64,66,75,105,106,108,117,122,123,125,131,134,135,139,140,141,145,148,151,157,159,160,161,162,165,166,188],took:[17,20,39,50,101,145,152],tool:[7,35,40,51,54,59,96,98,99,100,103,109,110,111,114,117,122,132,133,134,135,137,140,145,155,160,162,163,165,166,168,169,173],toolbox:[111,145],toolchain:134,toolkit:[99,134],tooltip:105,top:[3,7,16,30,31,34,40,41,45,50,52,54,57,64,75,79,81,89,98,101,108,115,116,117,129,132,133,136,139,140,141,156,161,162,165,173,181,182,189],top_pol:38,top_sen:38,top_tweet:38,top_vol:38,topic:[1,96,99,100,101,107,109,113,114,115,116,132,137,183,184],topilimag:33,topolog:30,toppredict:157,torch:[31,33,37,125],torchvis:[33,37,125],torgo:58,toronto:[121,126,151],tort:[89,90,165,166],tosin:133,total:[7,29,31,35,37,38,40,43,48,50,51,54,56,57,58,59,60,61,68,75,77,89,105,108,113,114,115,116,121,126,136,139,141,142,144,149,152,160,166,180,186,187],total_bedroom:[61,75],total_incom:166,total_len:31,total_na:51,total_profit:35,total_room:[61,75],total_s:121,total_var_i:121,total_var_x:121,total_variation_loss:121,total_volum:166,totalbath:54,totalbsmtfin:54,totalbsmtsf:54,totallot:54,totalporch:54,totalprod:[108,172],totalprofit:35,totalsf:54,totensor:[33,37,125],totrmsabvgrd:54,toucantoco:101,touch:[60,61,68,77,111,159],touch_scr:[68,77],touch_screen:[68,77],touchscreen:[68,77],tour:105,toward:[59,101,109,116,144,153,166,170],towardsdatasci:[111,135,174],tp:[52,59,68,77,161],tpr:[59,161],tpsnva:101,tqdm:[31,36,37,79],tqdm_notebook:37,tqglcthldriywg8myzqcl7noahjavxjdfcxbw4s9zs28husnqyjpw:59,traceback:[79,116,117,140,173,187],track:[3,36,40,45,47,90,98,99,101,109,115,117,135,136,145,152],tractabl:122,trade:[49,56,68,77,124,126,144,151,159,163],tradeoff:[7,52,57,68,77,114,135],trader:38,tradit:[3,45,54,98,101,113,126,134,135,136,137,155,159,164,174,185],tradition:[101,133,135],traffic:[99,110,111,134,159],trail:[59,116,158,166],train:[9,10,20,29,38,42,43,44,45,48,50,56,62,63,65,66,81,88,95,99,101,103,109,111,113,117,120,121,124,126,128,129,130,131,133,134,137,139,141,142,144,145,146,147,148,150,151,152,153,157,158,160,161,164,168,169,170,176,178,179,180],train_acc:[121,144],train_accuraci:[40,130],train_batch:127,train_d:33,train_data:[29,37,49,50,52,53,57,61,68,75,77,120],train_data_path:[68,77],train_dataset:122,train_df:[79,81],train_dict:[121,130],train_dir:121,train_dl:33,train_fold:121,train_i:[38,148],train_imag:[41,127],train_index:144,train_label:[29,37,41,50,121],train_length:127,train_load:[33,37],train_log:[79,121],train_loss:[29,31,33,40,121,128,130],train_nam:[66,121],train_on_batch:176,train_op:[121,128],train_respons:66,train_rms:131,train_save_path:66,train_scor:64,train_siz:[33,64],train_step:[36,121,128,130],train_test_split:[29,30,31,32,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,64,75,80,131,144,146,148,149,152,153,157,158,160,161,164,180,182,183,184],train_url:66,train_va:31,train_x:[31,38,148],train_xdata:121,trainabl:[29,62,120,121,122,126,127,157,176],trainable_vari:[120,128],trainable_weight:[36,122],trainhistori:[45,47,48],training_block:122,training_data:[9,97],training_data_preprocess:[61,75],training_fin:[68,77],training_hour:56,training_input_data:[61,68,75,77],training_label:[61,68,75,77],training_loss:64,training_s:64,training_sc:42,training_seq_len:128,training_step:[33,120],trainset:42,traj1:124,tran:[160,161],trane:[63,65],trang:79,transact:[6,17,118,139],transcrib:137,transcript:137,transduct:[135,139],transfer:[31,33,49,52,115,120,123,127],transform:[7,22,30,33,37,40,41,42,44,45,46,47,49,50,51,52,53,54,56,57,60,61,62,66,79,80,96,106,114,116,117,120,121,122,125,126,129,131,132,133,135,140,142,148,150,152,159,180,182,183,184,185,187],transform_fpcoor_for_tf:129,transformed_df:156,transformed_feature_df:156,transformed_label_df:156,transformer_block:126,transformerblock:126,transfrom:60,transit:[96,126,136,145],transition_block:126,translat:[41,90,101,111,123,133,136,159],transmit:111,transpar:[109,137,170],transpos:[29,37,40,45,61,75,79,116,120,121,129,130,166,188],transposed_matrix:[166,188],transposed_row:[166,188],trap:[109,135,170],trash:164,travel:131,travers:[31,166],treat:[1,7,56,59,68,77,109,114,116,117,118,126,134,135,165,170],treatment:[109,116,137,164,170],tree:[31,49,52,53,54,55,62,68,77,121,124,135,141,142,145,146,148,157,158,159,180,185],tree_best:[57,58],tree_clf:[57,68,77],tree_grid:50,tree_list:142,tree_method:54,tree_param:50,tree_pr:50,tree_reg:58,tree_reg_sc:58,tree_scor:[68,77],treebeardtech:0,trees_grid:144,trekhleb:[89,90,165,166],tremend:7,trend:[14,49,52,99,101,105,109,110,151,168,170,172],treshold:1,trevor:[127,144],tri:[36,50,56,58,63,65,141,151,159],triag:134,trial:[48,135,157,164],triangl:152,triangular:139,trick:[32,36,105,109,120,135,148,149,150,151,159,165,170],tricki:150,trickier:[118,174],trigger:[0,109,116,133,134,136],trim:128,trip:[23,99,168],tripadvisor:142,tripl:[116,166,167,188,189],triplestor:174,triu:64,triumphantli:135,trivial:[79,123,126],troubl:[62,105,139,144],trouser:[30,40,41,50],truck:[121,123],true_boolean:[166,188],true_label:41,true_positive_r:59,truli:[49,54,57,64],trump:167,truncat:130,truncated_norm:[121,124,130],truncated_normal_initi:121,truncated_normal_var:121,trust:[57,58,60,61,66,101,105,137,148,149,152,160,164,177],trustworthi:137,truth:[105,116,126,137,166,167,182,186,188],ts:131,tsl:29,tsne:180,tstep:124,tsv:[18,24],ttest_ind:[18,113],tthoe3gp290gz:59,tue:57,tumor:139,tunabl:[50,186],tune:[47,49,50,59,60,66,68,77,81,120,131,144,145,147,149,159,179],tup:117,tupl:[33,34,49,126,127,129,164,165,174,180,188],turn:[3,7,30,33,40,41,48,50,117,132,151,181,185],turntabl:138,turori:134,turtl:116,tuskege:[109,170],tutor:132,tutori:[1,29,31,59,107,116,117,121,125,127,132,151,162,164,165,166,167,176,182],tv:101,tval:[18,113],tweak:[82,107,140,158],tweet:[96,115],tweet_vol:38,twenti:85,twice:[116,130,165],twinx:[108,172],twitter:[96,115,174],two:[1,3,7,8,12,13,14,18,19,27,29,30,31,32,34,36,38,39,40,41,43,45,46,48,49,50,52,53,54,56,57,59,60,61,62,63,65,68,72,75,76,77,79,80,81,87,89,90,95,98,99,101,103,105,106,107,108,109,113,114,115,116,117,118,120,121,122,123,125,126,128,129,131,134,135,136,137,139,142,144,145,149,150,151,152,153,156,157,158,159,160,161,164,165,171,174,176,178,181,185,187,188],twofield:116,twon:124,txt:[31,121,124,128,130,153,159],type:[1,6,7,9,15,19,20,29,31,33,38,39,40,43,45,46,48,49,50,52,53,57,58,59,60,61,64,68,75,77,90,91,97,98,99,103,106,107,108,109,110,113,114,115,117,118,120,121,122,124,126,127,130,131,133,134,135,137,139,140,145,147,148,149,150,153,160,161,162,163,164,165,168,169,170,171,172,173,174,175,176,178,179,180,181,182,183,184,186,187],typeerror:[89,90,116,117,140,167,173,187],typic:[3,8,14,22,32,43,45,46,47,49,50,56,62,64,68,75,77,96,103,110,111,113,114,116,117,120,123,131,133,134,135,136,137,144,145,148,149,156,160,161,165,182],u10:[116,173],u2:174,u:[66,108,124,127,142,166],u_:124,u_k:124,ua:[15,187],uber:[99,168],ubuntu:134,ucb:[103,171],uci:[48,58,130],ucl:[159,185],ucla:136,uclaacm:160,ufo:153,ufunc:7,ugli:[105,166],ugqbzwiq8iiufasvi9dz:59,ugqprfa:59,uhbmv7qcey4:56,ui:[98,134,181],uid:136,uid_iso_fips_lookup_t:14,uint8:[31,36,116,121],uk:[14,124,153],ultim:[89,90,110,111,159,185],ultra:126,um:50,umap:30,umap_3d:30,umap_df:30,umbrella:[115,134,174],umn:101,umokw0jfgt13wtybc8bwnpnzgvwr859t7tsomewf31raloux4ychbk5bd97j5wopu3d0g2fnghimgunwegmg31qizveudt5:59,umr_sum:173,umt:171,un:[153,166,188],unabl:[54,57,58,60,61,64,66,144,148,149,152,160,164],unacc:57,unaffect:116,unalign:117,unambigu:116,unansw:101,unbalanc:[66,68,77,145,150,178],unbatch:122,unbias:[135,141],uncertain:124,uncertainti:50,unchang:166,uncom:14,uncondition:[165,187],unconstrain:39,uncorrel:[66,141,144],uncov:[19,54,103,162,163],undeclar:137,undefin:[7,18,165],under:[0,22,31,39,45,47,48,50,51,63,65,80,81,98,106,109,113,115,116,121,129,134,135,136,137,144,145,150,157,161,162,167,173,174,178,180,181,182,183,186,189],under_name_scop:129,undercomplet:30,underfit:[61,62,63,65,135,148],underli:[59,64,96,103,106,113,123,151,159,160,173,182,185,186],underlin:152,undermin:105,underneath:59,underrepres:[68,77],underscor:[97,115,165,166,174,188],underset:[79,145],understand:[7,16,23,30,31,41,43,45,48,50,75,96,97,98,99,100,103,104,105,106,108,109,110,111,113,116,117,123,131,132,135,136,137,139,145,146,148,149,150,151,153,155,157,159,160,161,162,164,166,167,168,170,171,174,183,184,185],understood:[7,54,103,110,116,165,171],undertak:101,undesir:28,undestard:146,undo:121,unearth:54,unemploy:136,unet:122,unet_model:127,uneven:[139,156],unexpect:[48,88,117,135,140,151,165,187],unexpectedli:165,unf:54,unfair:109,unfamiliar:159,unfold:[50,105,130],unfortun:[18,97,145,152],unhandl:165,unhealthi:98,unhelp:156,unicorn:135,unidata:174,unifi:[103,129,135],uniform:[18,36,43,47,55,113,121,122,124],uniformli:[7,141,152],unimagin:133,unimport:66,unindex:[116,166],uninform:56,unintend:[28,99,109,170],unintention:165,union:[109,116,117,166],uniq:51,uniqu:[5,14,22,39,46,47,50,51,56,57,64,75,90,98,115,117,123,131,135,145,152,153,156,159,160,165,166,167,174,183,184,186,188,189],unique_list:90,unique_numb:166,unique_valu:90,uniqueag:167,unit:[0,12,30,32,40,41,42,43,45,47,48,53,58,62,75,79,98,99,108,110,115,116,118,121,123,126,128,134,135,136,141,151,159,160,161,162,168,174,176,186,187],unittest:[3,14,22,24,47,48,53,75,89,90],univari:[7,76,122,164],univers:[14,64,109,113,124,132,137,151,174,186,187],unix:[44,133],unknown:[57,58,113,124,128,139,145,151,165],unknowningli:54,unlabel:[120,135,139,144,152,159,180,185],unlaw:109,unless:[22,45,47,48,56,117,131,165,187],unlik:[33,56,60,66,79,116,135,141,144,166,167,173,176,183,184,188,189],unlimit:[166,188],unlock:[26,162],unnam:[67,156,157,158,160,161],unnecessari:[116,118,151,152],unord:[75,166,167,188,189],unpack:[3,117,139,161,166],unpickl:187,unpreced:109,unprun:144,unqualifi:165,unreason:137,unrel:3,unreli:159,unrol:130,unsaf:116,unscal:[40,58],unse:40,unseen:[40,41,50,64,144,159,164],unsort:90,unsorted_list:90,unspecifi:[43,116],unsplash:[95,102,104,119,138,155,163],unsqueez:[31,33],unstabl:[62,135,145],unstack:41,unstructur:[6,110,111,133,159,170,185],unsuccess:135,unsupervis:[36,50,132,135,137,139,144,158,164,177],unsupervised_learn:152,unsupport:[159,166,173,188],unsur:15,unsurprisingli:153,until:[31,33,50,55,61,89,100,116,118,135,140,141,144,152,159,165,166,174,180,185],untouch:117,untrain:36,untruncated_norm:129,unununium:[166,188],unus:[116,162],unusu:[116,151],unweight:161,unwrap:109,unzip:[36,37,121],up:[0,3,5,7,14,18,22,33,36,38,40,46,48,49,50,52,53,54,56,58,60,62,64,66,68,77,81,82,83,89,96,97,98,99,100,101,103,105,109,113,114,115,116,117,118,121,124,125,126,127,129,131,134,135,136,137,139,141,144,145,146,148,149,150,151,152,153,156,159,160,161,162,163,165,166,167,174,185,188],up_shifted_imag:81,up_stack:127,upbeat:101,upcast:[7,114],upcom:7,updat:[0,31,36,37,41,43,48,49,52,55,63,65,76,78,79,89,90,110,120,121,122,123,124,128,130,131,134,135,145,146,148,149,152,159,169,176,180,181,182,183,186],update_st:36,update_trac:30,update_weight:124,upfront:101,upgrad:[96,134],upload:[9,20,97,98,115,136],upload_d:57,upon:[40,50,64,98,109,111,118,149],upper:[7,30,32,51,89,117,118,120,121,130,134,135,152,166,187],upper_cas:94,uppercas:167,uppered_anim:187,upsampl:[29,30,122,127],upsampling2d:[36,127],upward:122,uranu:189,urban:[107,172],url:[0,3,57,60,98,99,103,109,111,112,115,121,122,126,127,128,129,134,135,136,137,152,160,161,168,170],url_for:153,url_setosa:60,url_versicolor:60,url_virginica:60,urllib:[61,68,75,77,79,121,152],urlretriev:[68,77,79,121,152],us:[0,1,2,3,4,5,6,7,8,9,11,12,14,15,16,17,18,19,20,22,23,24,27,29,31,32,34,35,36,38,39,42,43,44,45,46,47,49,50,51,52,53,54,55,57,58,60,61,66,68,69,72,75,76,77,79,81,83,86,88,95,96,97,98,99,100,103,104,107,108,109,110,111,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,136,139,140,141,142,144,145,146,147,148,150,151,155,156,158,163,164,165,166,168,169,170,171,173,174,176,177,178,180,182,185,187,188,189],usa:136,usabl:[105,133],usag:[5,38,49,54,59,60,75,98,99,109,114,139,145,149,156,160,164,165,166,168,169,188],usd:35,usd_tri:35,usda:162,usdt:[38,44],use_bia:[126,129],useless:116,user:[6,17,23,43,54,57,62,95,96,98,99,101,105,107,108,109,110,111,116,117,134,135,137,159,164,165,167,168,169,170,173,180,181,185,187],userwarn:[106,117,152,157,161,172],usr:[117,157,161,173],usual:[7,46,48,49,50,52,54,59,66,68,77,79,96,100,101,106,110,114,116,117,120,122,123,124,125,126,130,131,133,134,135,137,139,144,145,150,151,159,162,165,166,167,182],ut:141,utf:[15,128,153],util:[31,32,33,37,38,39,40,42,44,54,57,58,66,89,114,117,125,127,129,134,135,136,149,164,165,186],utilitarian:135,v0_8:62,v1:[14,57,116,121,124,125,130,134],v2:134,v2rayn:38,v3:[38,116,134],v65nkkht5gsyqed6jhn7nvl3x672hikcirp:59,v7:59,v7lab:135,v7t09o1tbxdw8p7:59,v:[1,3,38,56,125,151,179],v_:124,vaccin:[11,136],vae:31,vae_model:31,vagu:[101,159],val1:89,val2:89,val3:89,val4:89,val:[31,55,79,89,91,128],val_acc:[33,39,47],val_accuraci:[32,39,40],val_d:33,val_dl:33,val_load:33,val_log:79,val_loss:[31,33,34,38,39,44,47,48,62,127],val_siz:33,val_subsplit:127,val_x:31,valdat:33,valentina:137,valid:[7,14,15,31,34,39,40,46,49,56,62,66,68,77,79,90,109,114,116,117,121,126,127,133,135,141,144,148,151,157,159,160,165,167,186],validation_data:[29,30,32,34,38,62,127],validation_dir:121,validation_epoch_end:33,validation_fract:56,validation_loss:64,validation_split:[38,39,40,44,47,48],validation_step:[33,127],valmont:105,vals1:173,vals2:173,valu:[1,3,6,8,14,15,18,22,29,31,32,34,36,38,39,40,41,42,43,44,45,46,48,49,50,52,53,55,58,60,61,63,64,65,66,76,79,80,81,82,93,94,97,99,100,103,106,107,108,109,110,111,113,114,115,118,120,121,122,123,126,127,128,129,131,133,135,136,139,140,141,142,144,145,146,147,148,150,152,153,156,157,159,160,161,162,163,164,167,170,171,174,179,180,181,182,183,184,185,187,188,189],valuabl:[7,136,144],value_count:[7,14,15,22,34,39,51,54,56,57,59,60,61,64,68,75,77,139,140,156,172],valueerror:[89,116,117,127,165,166,167,188],valueless:7,values_list:89,van:[126,167,187,189],vanderpla:[57,58,60,61],vanilla:[7,128],vanish:[123,125,126,128],vanooteghem:95,vanschoren:135,vapnik:59,var1:38,var2:38,var3:38,var4:38,var5:38,var_idx:55,var_list:125,var_tensor:43,vare:29,varepsilon_i:141,varepsilon_j:141,vari:[36,40,49,52,54,98,110,111,116,133,140,144,152,162,180],variabl:[7,22,31,33,37,39,50,53,54,56,58,64,66,68,75,76,77,80,85,89,90,93,94,98,103,105,106,108,114,120,121,122,123,124,125,128,130,133,135,136,139,140,142,144,145,150,153,156,159,160,163,164,167,171,172,181,182,185,189],variable_nam:165,variable_scop:121,variables_and_typ:166,variad:165,varianc:[18,50,54,56,63,65,79,106,120,141,149,172,180],variance_inflation_factor:[54,64],variance_scaling_initi:129,variant:[59,123,152,165],variat:[39,47,121,122,126,129,145,165,186],varieti:[41,43,54,116,126,131,137,145,151,157,160,161,166,188],varinac:[63,65],variou:[16,28,30,36,39,40,50,54,59,62,82,87,96,98,99,104,105,107,108,109,110,115,116,117,123,126,127,133,134,136,138,139,141,145,156,158,159,162,164,167,172,174,185],vassilvitskii:152,vast:[7,22,96,111,114,133],vastli:36,vault:98,vb:127,vc:39,vdf:38,ve:[7,28,31,50,79,99,101,103,109,114,115,116,117,118,126,131,141,145,151,159,161,165,166,168,174,181,187],vec:[31,79,141],vect_tensor:43,vector:[7,29,31,33,43,45,49,50,55,57,63,64,65,68,77,79,116,120,121,122,125,126,127,128,130,135,144,151,153,157,159,160,166,173,180,182,185,186,188],vectorregress:150,vectors_to_imag:125,vegan:164,veget:[157,163],vegetable_oil:157,vehicl:[123,131,159,185],veil:[107,172],veloc:[124,174],vend:133,venn:[112,170],venu:[99,140,165,189],verb:165,verbos:[32,35,38,39,41,44,45,47,48,50,52,53,54,56,57,58,59,60,61,62,81,105,144,148,152],verdict:36,verghes:101,veri:[14,18,30,31,39,40,41,45,47,49,50,52,53,54,55,57,58,59,62,63,64,65,68,75,77,80,95,98,100,101,103,106,107,111,113,116,117,120,121,123,126,128,130,131,133,134,135,136,137,139,140,142,144,145,148,149,150,151,152,153,155,156,158,159,161,162,164,165,166,167,173,176,179,180,183,184,188,189],verif:[0,113],verifi:[33,40,45,47,48,58,75,93,94,107,108,117,126,135,139,146,152],verify_integr:[117,173],versa:[49,50,52,56,57,68,77,113],versant:174,versatil:[166,188],versicolor:[60,64,80,142],versicolour:[80,180],version:[1,7,22,29,33,35,45,46,47,48,49,50,57,59,98,103,113,116,117,118,123,127,129,130,134,135,139,146,148,152,164,167,173,180,189],version_info:[79,152],versu:[145,164],vert:18,vertex:50,vertic:[3,18,105,113,116],veryde:121,verydeep:121,vet:[105,117],vf4l3peswap51eb6clsmx7uuklt158tt0o:59,vg1e19lamcl0zwjb346nru0q5g1n9m1cgakz9gnqxe43qpp0nhlch:59,vgan:125,vgg16:127,vgg19:127,vgg:[121,126],vgg_data:121,vgg_layer:121,vgg_net:121,vgg_network:121,vgg_path:121,vgood:57,vhigh:57,vhx8dhywgnjy2:59,vi:140,via:[7,106,115,117,121,127,145,150,151,152,157,165,180],viabil:98,vibranc:105,vibrant:159,vicdemand:[49,52],vice:[49,50,52,56,57,68,77,113],vicin:[1,8],viciou:105,vicki:[166,188],vicomt:105,vicpric:[49,52],victor:29,victoria:[49,52],video:[43,110,111,115,116,121,123,129,137,145,148,156,159,162,163,164,167,170,185],view:[7,30,31,33,37,40,47,59,80,96,97,98,101,105,111,115,125,126,127,149,153,161,162,173],view_init:[150,178],viewpoint:[124,126,129],viewport:15,vijai:127,vinai:137,vinod:[33,121],viola:145,violat:[109,137,170],violenc:105,violinplot:56,virginica:[60,64,80,142,180],viridi:[38,76,144],virtual:[96,98,134,164],virtuoso:174,visibl:[30,57,101,124,126],vision:[33,41,43,81,96,117,121,123,126,129,135,137,145,153,156,159,175,185],visiontransform:126,visit:[96,99,103,109,111,112,115,121,122,126,127,128,129,131,134,135,141,160,161,168,170],visitor:[142,159],visual:[0,1,5,8,14,15,16,18,19,30,45,46,49,50,51,52,53,54,58,59,68,75,77,81,96,97,98,99,109,111,113,114,116,117,120,121,123,126,127,131,132,133,139,140,141,142,144,145,149,150,152,153,156,157,159,160,163,164,165,168,170,171,175,177,180,182,185],visualcapitalist:101,visualis:[31,59,150,160],vital:54,vitobha:133,viz:152,vjmi9yzk0h151fljqxe0c6kcd5dgcxydykwchd1eqbm4vtx3fmdgbr8xnmgivfktk28qnpkt1akrcd9vvkustvhxh6ggj8ifmemubkcwjsg5w69rdxnksqoyqlkymbnjlauf6xayut7pg1sxzhwp:59,vladimir:59,vlfeat:121,vm:[96,97,98],vm_size:[9,97],vmail:[50,141],vmax:[31,38,139],vmin:31,vocab2ix:128,vocab:128,vocab_processor:130,vocab_s:[128,130],vocab_to_ix_dict:128,vocabulari:[128,130,139],voic:[50,123,141],voila:[107,142],vol:38,volatil:48,voldemort:174,volt:165,voltag:165,volum:[7,44,96,98,133,134,135,137,160,162,169],volume_btc:38,volume_dollar:38,volumetr:123,volunt:109,voluntari:109,voluntarili:109,voom:165,vooooom:165,voronoi:[140,152],voronoi_plot:152,vot_classifi:49,vote:[113,132,136,141,144,145,157],votingclassifi:49,vs:[33,38,39,41,55,59,68,77,82,98,101,103,106,107,109,124,133,134,135,139,146,148,152,156,157,160,161,162,164,171,177,182],vs_code_with_a_notebook_open:164,vscode:173,vscodecod:38,vstack:[116,150,178],vthyuhdilvw8hkemhmr:59,vu:[106,172],vue:105,vulner:[106,117,172],vutil:37,w0:130,w1:[124,130],w2:[124,130],w3:124,w3school:[165,166],w:[29,31,33,63,65,75,79,80,81,113,120,121,124,127,128,130,131,145,149,151,152,165,174,179,180],w_0:145,w_:[128,142],w_box:129,w_crop:129,w_d:125,w_g:125,w_h:130,w_hh:130,w_hx:130,w_i:[142,145,151,179],w_img:129,w_j:[145,149],w_n:144,w_xaxi:[80,180],w_yaxi:[80,180],w_yh:130,w_zaxi:[80,180],wa:[1,11,16,28,32,33,39,40,43,45,49,50,52,53,54,57,58,59,60,61,75,89,99,101,103,105,109,110,111,113,116,117,123,126,127,129,131,133,134,136,139,140,141,142,145,152,153,156,157,158,159,164,165,166,167,168,171,180,182,185,188,189],waffl:[27,105],wai:[0,1,3,7,11,18,30,36,40,41,43,46,49,50,52,53,54,56,57,58,59,60,61,62,68,71,75,77,79,95,96,99,100,101,105,106,107,108,109,110,111,113,114,115,116,117,118,119,121,123,124,126,129,130,132,133,134,135,136,139,140,141,144,145,146,148,149,151,152,153,156,157,158,159,161,162,164,165,166,167,171,172,173,174,181,182,185,187,188],waistlin:85,wait:[1,98,100,121,127,148,159,167],wait_for_complet:[9,97],wait_for_deploy:[9,97],wake:135,wale:[49,52],walk:[1,31,51,56,87,115,117,136,148,156,158],wall:[124,157,180],walter:130,wang:126,want:[1,3,7,8,14,16,17,18,23,30,39,40,41,43,46,47,48,49,50,51,52,53,56,57,58,59,62,63,65,68,75,77,79,80,96,98,99,101,106,109,110,111,113,114,116,117,118,121,123,124,125,126,127,129,131,135,139,142,145,146,148,149,150,151,153,156,158,159,160,161,164,165,166,167,171,172,174,178,180,181,182,185,187,188],wanted1:89,wanted2:89,wanted_peopl:89,ward:[125,139],warehous:[96,133],wark:133,warm_start:[56,144],warn:[36,39,48,49,50,51,52,53,54,56,57,58,59,68,77,106,116,117,123,131,140,144,146,148,152,157,161,172,180],warn_singular:[106,172],warrant:[32,140],warranti:[22,45,47,48,89,90,165,166],warren:130,warrior:145,wasn:101,wast:[99,107,133,137,166,172],watch:[56,111,123,159,160,161,162],water:[99,176],waterfowl:[106,172],watson:134,wavenet:123,wb:[29,30,31,33,36,37,39,41,66,153],wc:3,wcss:140,wd:66,wdrfosfa13slih0epo:59,we:[1,3,7,8,9,10,11,14,16,17,18,20,22,23,24,30,31,32,33,34,36,39,40,43,44,46,47,48,49,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,75,76,77,79,80,81,95,96,97,98,99,100,101,103,106,108,109,111,113,114,115,116,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,139,140,141,142,144,145,146,147,148,149,150,151,152,153,156,157,158,159,160,161,162,164,165,166,167,168,170,171,172,173,174,175,178,180,181,182,185,186,187,188,189],weak:[46,54,55,56,114,125,131,135,139,144,145,147,149,161],weaker:1,weapon:[109,166,188],wear:[159,185],wearer:6,weather:[99,131],web:[5,39,88,96,97,98,99,105,110,111,134,136,137,139,164,167,168,177,189],webapp:136,webservic:[9,97],websit:[96,111,124,126,136,137,142,159,160,162,164,185],wechat:38,wechat_fil:38,wechat_files_comput:38,weeight:151,week:[38,49,50,52,101,131],weekend:101,weekli:[14,131,136],weigh:[56,145,162],weight:[7,18,30,33,36,38,39,40,43,45,47,49,52,54,56,57,58,59,60,62,63,64,65,66,68,75,77,78,79,81,97,101,113,116,120,121,122,124,126,128,129,130,131,135,141,142,144,149,150,151,152,156,157,158,161,162,173,176,182,183],weight_1:131,weight_2:131,weightag:54,weights_init:37,weights_list:124,weijun:126,weinberg:126,weird:159,welcom:[132,164,166,187,188],well:[3,5,15,18,30,31,36,39,40,43,45,46,47,49,50,53,54,56,57,58,59,60,61,64,66,68,69,71,75,77,79,80,85,86,100,101,103,105,106,108,110,111,113,114,115,116,117,118,123,124,125,126,127,129,131,134,135,139,140,141,144,145,149,151,152,158,159,160,161,162,164,165,167,171,173,176,179,182,185,189],went:[10,40,46,49,52,101,114,159,165],wer:160,were:[7,10,12,16,20,29,31,39,40,43,47,49,50,52,53,57,58,60,61,62,66,68,69,75,77,98,100,101,109,113,115,116,117,118,122,131,133,134,136,140,141,145,149,152,159,160,161,165,167,170,174,175,185,187],weslei:134,west:75,weyand:126,wget:[121,126],wh:130,wha21:134,wha:135,what:[1,7,10,16,17,18,21,26,31,36,40,47,48,49,50,52,53,54,55,56,57,60,62,63,65,66,68,75,77,79,87,95,99,100,103,106,108,109,110,113,114,115,116,117,118,121,123,124,125,130,134,135,136,138,139,145,149,151,152,153,156,158,160,161,162,164,165,167,168,174,175,181],whatev:[57,58,79,101,123,126,148,151,159,165],wheat:[157,159,185],wheel:137,when:[1,3,4,7,10,14,16,18,20,30,31,33,34,35,36,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,63,64,65,66,68,75,77,80,82,95,98,100,101,103,105,106,107,109,110,111,113,114,115,116,117,118,121,122,123,125,126,127,128,131,133,134,135,136,137,139,141,142,144,145,148,149,150,151,152,153,156,157,158,160,161,163,164,165,166,167,169,170,171,173,175,176,180,181,182,185,187,188],whenev:[43,116,134,135,151],where:[2,7,12,14,17,25,28,29,31,33,34,39,40,41,45,46,49,50,51,54,55,58,59,61,64,68,75,77,79,89,98,99,100,101,103,105,106,107,109,110,113,114,115,116,117,118,121,122,127,131,133,134,135,138,140,141,142,144,145,148,149,150,151,152,153,156,159,160,161,162,164,165,166,167,168,170,171,173,174,180,181,182,185,188],wherea:[31,50,54,57,59,68,77,116,150,159,161,164,165,166,178,185],wherefor:128,wherev:165,whether:[7,22,23,29,32,36,46,47,48,50,51,58,80,89,90,97,106,109,113,114,116,117,126,127,133,135,137,144,145,156,159,161,164,165,166,185,187,188],which:[0,1,3,7,8,11,12,14,18,22,24,29,31,33,34,36,39,40,41,43,46,47,48,49,50,52,53,54,55,56,58,59,60,62,63,64,65,68,72,75,77,79,80,89,90,96,97,98,99,100,101,105,107,108,109,110,111,113,114,115,116,117,118,120,121,122,123,125,126,127,128,129,130,131,132,133,134,135,136,137,139,140,141,142,144,145,146,148,149,150,151,152,153,156,157,158,159,160,161,162,164,165,166,167,171,172,173,174,176,178,181,182,185,187,188],whichev:131,whiskei:[156,157],whistl:[106,172],white:[3,38,47,48,50,106,107,121,124,126,136,137,161,164,167,172,180,189],white_bread:[156,157],white_win:[156,157],whitegrid:[51,62,80,131],whiten:121,whitesmok:[107,172],whitespac:[46,114,165,166,188],who:[31,43,46,50,56,75,96,100,101,103,109,110,113,114,133,141,145,159,165,166,167,170,171,188],whole:[14,40,43,50,52,53,54,56,57,58,59,62,68,75,77,113,120,121,123,125,133,134,136,137,141,144,149,156,159,166,172,176,188],whole_grain_wheat_flour:[156,157],wholesale_customers_data:149,whom:[89,90,110,132,165,166],whose:[56,62,106,116,117,124,130,165,166,188],why:[7,16,18,40,43,45,46,47,48,49,50,53,60,66,69,79,82,87,95,98,99,100,101,103,109,113,114,116,118,121,125,139,140,141,145,146,150,152,157,159,161,162,165,168,170,171,174],wide:[43,54,61,96,98,109,116,117,123,125,126,129,131,133,137,145,147,166,169,174,188],wider:[113,136,151],widespread:145,widget:[9,97],width:[1,3,14,15,31,33,46,60,61,68,77,80,105,107,114,121,122,126,140,142,152,153,156,160,162,172,180],width_multipli:126,width_shift_rang:32,wifi:[68,77],wifi_count:[68,77],wik:121,wiki:[3,121],wikimedia:[60,123],wikipedia:[3,43,111,113,121,149,159,174,175,185],wild:[31,117,139,153],wildli:[148,157],william:113,willing:36,willingli:7,willpow:79,win32:187,win:[57,124,126,145,149],wind:124,window:[14,39,44,115,121,165,167,174,187],window_s:44,wine:[48,62,156,157],wine_feature_col:48,wine_feature_row:48,wine_schema:48,winedf:48,winefeatur:48,winefeaturessimpl:48,winefeaturessmal:48,winelabel:48,winelabelssmal:48,winequ:48,wingspan:106,winner:145,winston:56,winter:[17,103],wirefram:101,wisdom:[49,141],wise:[7,54,116,117,121,122,126,127,128,149],wish:[116,117,118,166,167,187,188],with_column:24,with_info:127,with_titl:31,withdraw:109,withheld:109,within:[6,33,46,47,48,50,54,56,75,80,97,100,101,103,106,107,109,110,113,114,115,129,134,140,149,153,160,164,165,166,173,180,187,188],without:[0,1,4,16,18,21,22,29,34,39,43,45,47,48,50,52,57,60,64,89,90,98,101,105,109,113,116,117,120,126,133,135,148,149,150,153,159,165,166,167,178,180,185,188],woke:146,woman:[50,98],women:[109,170],won:[7,49,52,56,60,101,116,118,123,124,125,126,135,148,149,151,159,162,182,185],wonder:[45,48,99,105,118],wood:[107,156,157,172],wooddecksf:54,word1:166,word2:166,word:[1,3,31,40,41,43,49,54,59,68,77,85,87,90,100,104,106,109,111,113,114,116,123,125,126,128,129,130,131,135,141,144,145,149,151,159,160,164,165,166,167,170,171,172,182,185,187,188],word_count:[90,128,130],word_index:[165,187],word_list:128,wordcloud:3,wordnet:126,words_length:165,work:[1,3,4,7,11,18,19,24,30,31,33,36,40,41,43,45,46,49,52,53,54,57,58,59,60,61,63,65,66,68,71,72,75,77,79,80,82,87,96,97,98,99,100,101,103,105,109,110,111,113,114,115,117,118,120,121,122,123,125,127,128,129,131,132,133,134,135,136,139,140,141,142,144,146,148,149,151,152,153,155,156,157,158,159,160,161,162,163,165,166,167,170,171,173,180,181,182,185,187],workbench:[99,168],workbook:115,workclass:51,workflow:[0,54,80,97,98,99,101,109,117,133,134,137,148,168],workload:[98,133,159],workplac:[6,101],worksheet:115,workshop:[117,137],workspac:134,workstat:98,world:[0,7,18,28,29,33,35,37,39,40,41,45,46,50,53,57,58,60,62,90,105,109,111,114,115,117,121,123,126,129,131,133,134,136,137,141,145,146,151,153,159,160,165,166,167,170,173,174,177,185,187,188,189],worldwid:[98,109],worri:[96,113,159,165],wors:[41,47,135,144,152,158,176],worst:[59,160,161],worth:[6,32,48,66,104,106,126,144,145,146,159,167,172,185],would:[1,7,11,14,16,18,23,24,30,31,36,40,43,47,49,50,52,54,56,58,59,60,61,62,66,68,71,75,77,79,85,87,101,103,110,111,113,114,116,117,118,121,122,123,131,135,136,139,140,141,144,145,146,148,150,151,152,153,156,158,159,160,161,162,164,165,166,174,180,181,185,188],wouldn:[7,110,145,165],wow:[47,49,52,57,61,152],wrangl:116,wrap:[33,66,108,120,121,131,134,165],wrapper:[33,116,117,121,131,165,187],wrestl:[7,114],wrgsj6ct4mkv0s6rpj6xety7gqmy8lit80oz:59,write:[0,1,3,7,21,22,23,26,29,30,31,33,36,37,39,41,45,47,48,50,51,56,66,79,90,97,101,109,111,116,117,118,121,123,124,128,130,135,141,144,145,152,159,164,165,166,167,185,187,188],writefil:187,written:[7,85,105,116,117,122,128,132,144,149,165,166,167,187,188,189],wrong:[1,14,41,47,56,109,111,113,117,126,135,145,152,165,166,167,188],wrong_nam:14,wrong_sampl:18,wrote:[47,167],wrt:51,ws:[9,97,173],wspace:[150,152,178],wsr4u5caj:59,wt:130,wts2:44,wu:[105,137],www:[22,25,32,45,47,48,56,58,103,105,109,115,121,122,126,128,131,134,135,137,140,150,152,156,165,166,169,174,175,176,187],wxzsnhukpclpvn1op9pjq61679mjrojzzhfons0:59,x0:129,x0_box:129,x1:[32,50,106,116,127,129,152,172,173,183,184],x1_max:50,x1_min:50,x1y1x2y2:129,x27:[57,58,60,61,148,149,152,160],x2:[32,50,106,116,152,172,173,183,184],x2_max:50,x2_min:50,x3:[32,106,172,173],x4:[106,172],x4kimebdus7rzgkszdigbxnkbyqt65wweq9sbl7:59,x5:[106,172],x6:[106,172],x80:38,x86:38,x99ve:38,x:[1,14,15,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,51,52,54,55,56,57,59,60,61,63,64,65,66,68,75,76,77,78,79,80,81,89,90,99,105,106,108,109,113,116,117,120,121,122,124,125,126,127,128,129,130,131,136,139,140,141,142,144,145,146,148,149,150,152,153,156,157,158,159,160,161,164,165,166,167,170,172,173,176,178,180,181,182,183,184,185,187,188],x_0:[122,130],x_1:[50,113,122,130,141,142,144,152,159,185],x_1p_1:113,x_2:[50,113,122,130,142,144,152,159,185],x_2p_2:113,x_3:142,x_4:142,x_:[18,122,124,142],x_batch:[79,122,125,152],x_center:180,x_cluster_dist:152,x_data:[128,130],x_digit:152,x_digits_dist:152,x_dist:152,x_histori:76,x_i:[18,113,120,122,144,145],x_init:[76,152],x_input:121,x_input_shap:121,x_int:76,x_j:[18,142,144],x_k:[124,144],x_m:141,x_max:50,x_min:[50,76],x_mm:152,x_n:[113,122,159,185],x_new:152,x_noisi:122,x_np_n:113,x_organ:34,x_pca:180,x_po:124,x_poli:182,x_rang:[144,165],x_reduc:180,x_representative_digit:152,x_set:[183,184],x_shape:122,x_shuffl:130,x_start:122,x_t:130,x_test:[29,30,32,34,40,42,49,50,51,52,53,56,58,59,60,66,79,80,81,120,130,131,144,146,149,152,153,157,158,160,161,164,176,180,182,183,184,186],x_test_circl:144,x_test_noisi:[29,30],x_test_scal:40,x_train2:32,x_train:[29,30,31,32,34,38,39,40,42,44,49,50,51,52,53,54,56,58,59,60,62,66,79,80,81,120,130,131,144,146,149,152,153,157,158,160,161,164,176,180,182,183,184,186],x_train_add:81,x_train_batch:130,x_train_circl:144,x_train_combin:81,x_train_flat:30,x_train_noisi:[29,30],x_train_noisy_flat:30,x_train_partially_propag:152,x_train_scal:[40,53,58,60],x_tsne:180,x_umap:30,x_val2:32,x_val:[31,54,79],x_valid:62,x_vif:64,xa:55,xarrai:116,xavier_init:125,xaxi:180,xb:33,xception:127,xe2:38,xentropi:79,xfb:59,xfhxfw:129,xfit:[150,178],xfyplk79sjp:59,xgb:[54,56,66,149],xgb_clf:149,xgb_cv:149,xgb_pred:66,xgb_reg:54,xgb_search:54,xgbclassifi:[56,149],xgbclassifierxgbclassifi:149,xgboost:[49,56,131,145,146,147],xgboostclassifi:56,xgbregressor:[54,66,131,148],xgbregressorxgbregressor:[66,148],xhf2neuisqwe9q2ota5bqxws9epzwd8lkdb71jfdsfuznneuj7l6wzrdiqtftipxfy26z2ldqwncov6aej8o2inlmd9ckymesp0bjkgsguh1bmu6jzdb0c4aratff2cwxagqw:59,xi:[55,59,127],xiangyu:126,xiao:137,xingjian:137,xiong:137,xit:59,xj:59,xk:124,xknfkgixmjdoybdf7ugnnwjivklotgyiz7k2rgnwbhlk95pyt6emrffsjbdva02xmfqpp:59,xks2cxejztkqivxffffcr4:59,xl5eghoaagicdnz2kpksvr69cqkiljsvoaghjsukxfxd4ehhqufanjycqebaehh5aqebjy2m3nzdawlpisegdoarbaaaqeeleqvr4no1diwkqohdnrbu3wjdarbi02tp:59,xl:161,xla:29,xlabel:[18,22,29,31,32,33,34,35,37,38,39,40,41,42,50,55,56,57,59,60,61,66,68,76,77,80,106,117,121,124,127,128,130,140,141,152,160,161,164,172,180,182,183,184],xlim:[50,56,142,144,150,178,180,183,184],xor:116,xplzqjohaao63bfq05ntwlheg6anqrhcuin:59,xrp:44,xs:[55,117,127],xtick:[3,18,22,31,37,39,41,47,54,56,139,140,142,152,172],xticklabel:[40,68,77],xu:125,xuanyu:137,xuhong:137,xw:59,xx1:144,xx2:144,xx:[50,152],xxl:161,xxxx:98,xy:[150,152,160,178],xytext:152,y0:129,y1:[55,129,152],y1x1y2x2:129,y212szmlszq:173,y2:[55,152],y3:55,y4:55,y5:55,y:[14,30,34,35,38,39,40,44,45,47,49,50,51,52,54,55,56,57,59,60,61,63,64,65,66,68,75,76,77,78,79,80,90,105,106,108,113,116,117,121,122,124,128,130,131,136,139,140,141,142,144,145,146,148,149,150,152,153,157,158,159,160,161,162,164,166,167,172,176,178,180,182,183,184,185,187,188],y_2:130,y_:124,y_batch:79,y_clr:180,y_cluster_kmean:140,y_di:176,y_digit:152,y_dist:152,y_distribut:24,y_fit:131,y_gen:176,y_hat:144,y_histori:76,y_i:[50,55,142,144,145,149],y_init:76,y_j:50,y_k:124,y_lag_2:131,y_lag_3:131,y_lag_4:131,y_lag_5:131,y_lag_6:131,y_lag_:131,y_max:50,y_min:[50,76],y_output:[128,130],y_po:124,y_pred:[51,55,59,63,65,80,131,146,149,152,157,158,164,182,183,184],y_pred_100:51,y_pred_idx:152,y_pred_sklearn:[63,65],y_pred_test:59,y_pred_train:59,y_predict:[34,78,182,183],y_predict_class:34,y_predicted_cl:[78,183],y_prob:146,y_representative_digit:152,y_score:161,y_set:[183,184],y_shuffl:130,y_step_1:131,y_step_2:131,y_step_3:131,y_step_:131,y_target:121,y_test:[30,32,34,39,40,49,50,51,52,53,56,58,59,60,79,80,81,120,130,131,144,146,149,152,153,157,158,160,161,164,176,180,182,183,184,186],y_test_circl:144,y_test_class:39,y_test_prepar:[49,52],y_train2:32,y_train:[30,32,34,38,39,40,42,44,49,50,51,52,53,54,56,58,59,60,62,79,80,81,120,130,131,144,146,149,152,153,157,158,160,161,164,176,180,182,183,184,186],y_train_add:81,y_train_batch:130,y_train_circl:144,y_train_combin:81,y_train_partially_propag:152,y_train_prepar:[49,52],y_train_propag:152,y_true:34,y_val2:32,y_val:[54,79],y_valid:62,ya:[59,79],yahoo:145,yam:[156,157],yandex:[54,145],yandexdataschool:79,yang:127,yaxi:[152,180],yb:33,ye:[7,45,50,97,98,108,109,137,141,159,165,167],year:[1,13,14,24,25,49,50,51,52,56,101,108,109,111,117,118,121,131,134,145,149,160,164,166,167,170,172,174,182,187],yearbuilt:54,yearn:135,yeast:[156,157],yellow:[17,23,50,101,105,106,107,160,166,172,188],yet:[0,14,36,43,50,53,58,60,90,97,98,105,135,145,146,159,165,180],yetayeh:189,yf:145,yfit:[150,178],yfozmvgstfo5xi:59,yhat:38,yi:55,yield:[31,33,50,59,79,108,117,145,148,149,165,172],yieldpercol:[108,172],yiyiwang0826:25,yizh:160,yk_temp:38,ylabel:[18,22,29,31,32,33,34,35,37,38,40,42,50,55,56,57,59,60,61,64,66,68,76,77,80,106,108,117,121,124,127,128,130,140,141,152,160,161,162,164,172,180,182,183,184],ylgnbu:[51,59],ylim:[41,48,127,150,178,183,184],ylorbr:[108,172],ymean:47,ymeanactu:47,yml:0,ymp6irqbiss3usmcdyxx:59,yogurt:[156,157],yolo:129,york:[14,17,23,50,113,135,137,166,173],yoshua:[29,50,125],you:[0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,38,40,41,42,43,44,45,46,48,49,50,51,52,53,54,56,57,58,60,62,66,68,69,71,75,76,77,79,80,82,86,87,88,89,90,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,112,113,114,115,116,117,118,119,120,121,122,123,124,126,127,129,131,132,133,135,136,137,139,140,141,142,144,145,146,148,149,150,151,152,153,155,156,157,158,159,162,163,164,165,166,167,168,169,171,172,174,180,181,182,183,184,187,188,189],young:137,younger:115,your:[0,7,9,11,16,17,19,23,26,27,28,29,32,33,40,45,46,47,49,50,52,53,58,60,62,66,68,69,71,75,77,79,80,82,85,87,88,89,90,93,94,104,117,123,151,152,155,163,180,181,185],yourself:[7,47,50,99,101,106,108,114,144,159],yourthoughtpartn:101,yousfi:56,youtub:[43,56,121,123,133,136,156,159],youyang:136,ypred:47,yrsold:[54,66],ys:55,ystd:47,ystdactual:47,yt:156,ytick:[31,37,39,41,152,180],yticklabel:[40,68,77],yu:122,yup:75,yuri:[50,141,142,144,145,180],yy:[50,152],yyyi:162,z1:[31,89],z2:[31,89],z5bt0bx2dkfaicvnnfxngetnt0e2j7y77:59,z:[30,31,37,45,48,76,90,116,117,122,124,125,127,130,135,136,144,152,165,166,167,188],z_h:130,z_j:142,z_y:130,zalando:41,zaxi:180,zd_zt:38,zdcy9hbpglxfy7px9hrlmewpjjzzzjhnajf0t78plkqryfsznc4xql3:59,zealand:[118,174],zero:[1,33,36,37,43,50,54,55,63,65,66,78,79,89,90,99,113,116,117,121,124,125,126,128,129,135,141,144,146,151,165,166,167,173,176,180,182,183,187,188,189],zero_grad:[31,33,37],zero_var:121,zerodivisionerror:[89,90,165,167,187],zeropadding2d:[36,126,127],zeros_lik:[79,121,125,152],zeroth:[166,188],zettabyt:109,zh:81,zhang:[126,137],zhangqi:173,zhi:129,zhu:126,zhuang:126,zia:[112,170],zinkevich:135,zip:[18,22,29,30,31,33,36,37,39,41,66,116,120,121,122,124,127,128,130,150,165,166,178,180,186,187,188],zip_file_path:[29,30,31,39],zip_filenam:[36,37],zip_ref:[29,30,31,33,36,37,39],zip_store_path:[29,30,31,33,41,66],zip_url:[36,37,130],zipfil:[29,30,31,33,36,37,39,66,130],zisserman:126,zlad:38,zn:31,znqn85053zltaka5jxfylfyesc1k5w8dzgqesmbrcz:59,zodb:174,zone:133,zoom:81,zoom_rang:[32,34,81],zoomed_imag:81,zopedb:174,zorder:152,zorro:89,zsy:59,zth:129,zucchini:[156,157],zut3vtnbg6hloje6yfvqbbk0jiyijjbtnsshondn6:59,zw:81},titles:["37. Self-paced assignments","37.22. Analyzing COVID-19 papers","37.27. Analyzing data","37.9. Analyzing text about Data Science","37.13. Apply your skills","37.16. Build your own custom vis","37.17. Classifying datasets","37.26. Data preparation","37.24. Data processing in Python","37.41. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","37.40. Data Science project using Azure ML SDK","37.10. Data Science scenarios","37.20. Displaying airport data","37.15. Dive into the beehive","37.23. Estimation of COVID-19 pandemic","37.25. Evaluating data from a form","37.36. Explore a planetary computer dataset","37.37. Exploring for answers","37.19. Introduction to probability and statistics","37.12. Lines, scatters and bars","37.39. Low code/no code Data Science project on Azure ML","37.38. Market research","37.29. Matplotlib applied","37.28. NYC taxi data in winter and summer","37.18. Small diabetes study","37.21. Soda profits","37.35. Tell a story","37.14. Try it in Excel","37.11. Write a data ethics case study","37.98. Intro to Autoencoders","37.99. Base/Denoising Autoencoder & Dimension Reduction","37.100. Fun with Variational Autoencoders","37.87. How to choose cnn architecture mnist","37.91. Object Recognition in Images using CNN","37.89. Sign Language Digits Classification with CNN","37.109. DQN On Foreign Exchange Market","37.110. Art by gan","37.112. Generative Adversarial Networks (GANs)","37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment","37.104. NN Classify 15 Fruits Assignment","37.103. Neural Networks for Classification with TensorFlow","37.113. Basic classification: Classify images of clothing","37.96. Google Stock Price Prediction RNN","37.92. Intro to TensorFlow for Deep Learning","37.101. Time Series Forecasting Assignment","37.80. Counterintuitive Challenges in ML Debugging","37.79. Data engineering","37.81. Case Study: Debugging in Classification","37.82. Case Study: Debugging in Regression","37.72. Beyond random forests: more ensemble models","37.73. Decision trees","37.77. Random Forest Classifier with Feature Importance","37.71. Random forests for classification","37.70. Random forests intro and regression","37.76. Boosting with tuning","37.75. Gradient boosting","37.74. Hyperparameter tuning gradient boosting","37.64. Decision Trees - Classification","37.63. Decision Trees - Intro and Regression","37.60. Kernel method assignment 1","37.62. Support Vector Machines (SVM) - Classification","37.61. Support Vector Machines (SVM) - Intro and SVM for Regression","37.67. Dropout and Batch Normalization","37.68. Lasso and Ridge Regression","37.66. Learning Curve To Identify Overfit & Underfit","37.65. Model selection assignment 1","37.69. Regularized Linear Models","37.85. Build Classification Model","37.84. Build classification models","37.54. Create a regression model","37.58. Delicious asian and indian cuisines","37.59. Explore classification methods","37.52. Exploring visualizations","37.55. Linear and polynomial regression","37.51. Managing data","37.45. ML linear regression - assignment 1","37.46. ML linear regression - assignment 2","37.47. ML logistic regression - assignment 1","37.48. ML logistic regression - assignment 2","37.49. ML neural network - Assignment 1","37.42. Machine Learning overview - assignment 1","37.43. Machine Learning overview - assignment 2","37.86. Parameter play","37.57. Pumpkin varieties and color","37.50. Regression tools","37.44. Regression with Scikit-learn","37.56. Retrying some regression","37.83. Study the solvers","37.53. Try a different model","37.8. Python programming advanced","37.7. Python programming basics","37.6. Python programming introduction","37.5. Project Plan\u200b Template","37.3. First assignment","37.4. Second assignment","8. Data Science in the cloud","8.1. Introduction","8.3. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","8.2. The \u201clow code/no code\u201d way","9. Data Science in the real world","7.2. Analyzing","7.3. Communication","7. Data Science lifecycle","7.1. Introduction to the Data Science lifecycle","6. Data visualization","6.4. Making meaningful visualizations","6.1. Visualizing distributions","6.2. Visualizing proportions","6.3. Visualizing relationships: all about honey \ud83c\udf6f","4.2. Data Science ethics","4.3. Defining data","4.1. Defining data science","4. Introduction","4.4. Introduction to statistics and probability","5.5. Data preparation","5.2. Non-relational data","5.3. NumPy","5.4. Pandas","5.1. Relational databases","5. Working with data","24. Autoencoder","21. Convolutional Neural Networks","30. Diffusion Model","20. Intro to Deep Learning","27. Deep Q-learning","22. Generative adversarial networks","28. Image classification","29. Image segmentation","25. Long-short term memory","31. Object detection","23. Recurrent Neural Networks","26. Time series","Learn AI together, for free","34. Data engineering","36. Model deployment","35. Model training & evaluation","32. Overview","33. Problem framing","14. Clustering models for Machine Learning","14.1. Introduction to clustering","14.2. K-Means clustering","15.1. Bagging","15.3. Feature importance","15. Getting started with ensemble learning","15.2. Random forest","16.1. Gradient Boosting","16.2. Gradient boosting example","16. Introduction to Gradient Boosting","16.3. XGBoost","16.4. XGBoost + k-fold CV + Feature Importance","18. Kernel method","19. Model selection","17. Unsupervised learning","12. Build a web app to use a Machine Learning model","13.4. Applied Machine Learning : build a web app","13. Getting started with classification","13.1. Introduction to classification","13.2. More classifiers","13.3. Yet other classifiers","10. Machine Learning overview","11.3. Linear and polynomial regression","11.4. Logistic regression","11.2. Managing data","11. Regression models for Machine Learning","11.1. Tools of the trade","3. Python programming advanced","2. Python programming basics","1. Python programming introduction","38.10. Data Science in real world","38.9. Data Science in the cloud","38.4. Data Science introduction","38.8. Data Science lifecycle","38.7. Data visualization","38.6. NumPy and Pandas","38.5. Relational vs. non-relational database","38.20. Convolutional Neural Network","38.21. Generative Adversarial Network","38. Slides","38.18. Kernel method","38.19. Model Selection","38.17. Unsupervised learning","38.16. Build an machine learning web application","38.12. Linear Regression","38.13. Logistic Regression","38.14. Logistic Regression","38.11. Machine Learning overview","38.15. Neural Network","38.3. Python programming advanced","38.2. Python programming basics","38.1. Python programming introduction"],titleterms:{"0":59,"1":[3,24,30,32,43,49,50,52,53,54,56,57,58,59,60,61,65,68,75,77,79,80,101,110,116,126,168,169,170,171,172,173,174,175,176,178,182,184,188,189],"10":[40,56,121,126],"100":[51,59,126],"1000":[59,126],"11":56,"12":56,"13":56,"15":39,"19":[1,8,14],"1d":116,"2":[3,24,30,32,43,44,49,50,51,52,53,54,56,57,58,60,61,68,76,77,78,81,101,110,116,168,169,170,171,172,173,174,175,176,178,182,184,188,189],"2d":[30,116,178],"3":[3,24,32,39,43,49,50,52,53,54,56,57,58,60,61,68,75,77,101,116,168,169,170,171,172,173,175,176,182,188,189],"3d":[30,80,105,178],"4":[3,24,32,43,49,50,51,52,53,54,56,57,58,60,61,68,77,101,168,169,170,171,172,173,174,188,189],"5":[24,32,43,49,50,53,54,56,57,58,60,61,68,77,80,101,126,168,169,170,171,172,174,188,189],"50":56,"500":56,"6":[43,50,52,53,54,56,57,58,60,61,68,77,168,169,170,171,172],"7":[43,50,52,53,56,57,58,60,61,168,171,172],"8":[52,56,171],"9":56,"boolean":[116,166,167,188,189],"break":[89,165,187],"case":[28,45,47,48,50,101,109,162,178],"class":[35,39,47,50,51,63,65,89,165,187],"default":[51,59,165],"do":[47,111,161,162,166,170,178],"final":[49,75],"float":[7,166,188],"function":[43,51,59,79,89,90,116,123,124,145,165,167,173,183,184,186,187],"import":[9,29,33,37,41,44,49,51,52,53,54,56,57,58,59,60,61,64,66,80,114,122,135,142,149,164,165,182,183,184,186],"long":128,"new":[56,91,116,117,183,184],"null":[7,59,173],"public":37,"return":[91,124,165],"short":128,"true":59,"try":[0,27,48,68,77,88,165,187],"while":[89,165,187],A:[31,123,151,157,158,160],And:159,At:46,But:162,By:145,For:89,Is:137,It:[118,161,174],NOT:161,Not:159,On:35,One:[75,76,186],That:183,The:[9,36,43,51,53,79,97,98,114,118,151,152,158,162,164,165,166,169,173,174,175,178,187,188],There:162,To:[64,151],With:[34,131],about:[3,33,108,156,161,172],acceler:152,access:[90,116,117],accuraci:[32,41,47,59,126,149,186],acknowledg:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,77,79,80,81,82,83,85,86,87,88,89,90,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,122,124,125,126,127,128,129,130,131,132,135,139,140,141,142,144,145,146,148,149,150,153,156,157,158,159,160,161,162,164,165,166,167,175,178,180,181,182,183,186],ackowledg:176,action:124,activ:123,actual:101,ad:[30,31,47,62,66,116,151],adaboost:49,adam:186,add:[48,116,135],addit:117,advanc:[32,89,116,165,187],adversari:[37,125,176],after:[30,151,179],ag:24,against:48,agent:[35,124],agglom:152,aggreg:[116,117,170,173],ahead:79,ai:[36,41,132,180],airport:12,aka:64,algorithm:[50,54,124,136,139,144,145,149,152],align:117,all:[24,47,75,108,118,160,172,174],alpha:122,an:[9,31,64,66,97,98,101,115,116,153,175,181],anagram:166,analysi:[8,38,49,51,52,53,54,56,57,58,59,60,61,75,96,100,159,180,185],analyz:[1,2,3,18,100,116,162,171],anchor:[39,51],anim:105,ann:44,annot:[165,187],anomal:47,anomali:29,anoth:37,answer:17,api:[34,43],app:[153,154],append:[90,173],appli:[4,22,47,109,154,157,158,170],applic:[50,120,159,181,185],approach:[51,101,118,157,174],ar:166,arbitrari:165,architectur:[32,121,123,175,186],argument:[165,187],arithmet:[117,166,188],arrai:[116,117,173],art:36,artifici:[159,185],artwork:36,ascend:[90,91],ascent:125,asian:70,ask:162,assert:51,assign:[0,12,25,39,44,59,65,75,76,77,78,79,80,81,93,94,116,117,184],assist:127,attribut:[59,116,117,173],auc:[56,59],audienc:101,augment:[32,34,122],author:164,autoencod:[29,30,31,120],automl:[9,97,98,135],avail:116,averag:[89,162],avoid:[105,151],axi:116,azur:[9,10,20,97,98,115],babylonian:90,background:122,backprop:79,bag:[49,141,144,149],balanc:156,bar:[19,22,172],base:[30,89,117,149],basebal:18,baselin:[47,48,159,185],basi:59,basic:[29,32,41,43,90,109,116,117,124,166,167,170,173,188,189],batch:[33,62,152],beehiv:13,begin:101,behind:55,best:[9,32,37,97,137],beta:122,better:[157,161],between:[24,54,56,68,75,77,116,144,170,173],beyond:[40,49,150,178],bi:54,bia:[64,144,151,179],bibliographi:25,big:186,binai:54,binari:[40,161],binder:0,bird:[106,172],bit:[31,116],bitcoin:38,blend:54,bmi:24,boost:[49,54,55,56,145,146,147,149],bootstrap:141,bound:122,boundari:[150,152,178],boxplot:[24,80],bp:24,brain:175,broadcast:[116,173],bug:48,build:[5,29,31,32,36,41,50,51,67,68,77,105,140,153,154,160,161,162,172,181],c:59,cach:181,calcul:[47,89,90,166],call:187,callabl:117,callback:40,can:[50,56,111,170],candid:56,capac:151,captur:[103,171],cardin:51,cast:[166,188],catalog:133,catboost:54,categor:[7,51,54,57,68,75,77,160,182],categori:90,categorical_crossentropi:186,caus:45,central:[18,113],centroid:152,chain:117,challeng:[1,14,22,45,109,116,123,126,129,170],chang:[34,54],changin:34,channel:101,chart:[105,108,172,181],check:[30,47,48,51,53,57,59,68,75,77,135,149,162,166,189],checkbox:181,checklist:109,choic:[117,137],choos:[32,50,75,96,98,105,157,169],churn:50,cifar:[121,126],citi:[56,118,174],classic:[126,127,129,145],classif:[34,40,41,47,49,50,51,52,57,59,60,67,68,71,77,80,126,145,155,156,158,159,161,178],classifi:[6,39,40,41,49,51,52,57,60,149,156,157,158],clean:[114,153,156,161],cloth:41,cloud:[9,95,96,97,169],cluster:[9,97,98,138,139,140,152,180],cnn:[32,33,34,44,121,129,175],code:[20,98,109,120,121,122,124,125,126,127,128,129,130,134,167,169,176,187],collect:[39,159,185],color:[83,105],column:[7,51,54,117,181],combin:[116,117,173],come:183,comment:[59,166,167,188,189],common:[63,65,114,123,166],commun:[101,171],compani:56,compar:[59,172],comparison:[116,144,166,188],compil:[36,40,41,186],complex:[48,50,89,166,188],compon:180,comprehens:[161,166,188],comput:[1,9,14,16,24,97,98,116,173,175,186],con:[50,144],concat:[117,173],concaten:[54,173],concept:[109,118,170,174],conclus:[1,18,31,32,34,45,47,48,59,63,65,101,113,118,145,148,149,151,162,179],conculs:36,condit:89,confid:[18,113],configur:[9,97,122,164],confus:[51,59,161,183,184],connect:[120,123,132,175],consider:153,constant:43,consum:9,consumpt:[97,98,133],contain:116,content:[33,57,58,60,61,185,187],context:56,continu:[89,124,165,187],control:[40,165,167,187],converg:[45,125],convert:[54,116],convolut:[29,32,33,120,121,123,175],corp:18,correl:[18,24,48,53,54,68,75,77,113,160,161],correspond:1,cosin:122,cosmo:115,count:[89,90,166],counterintuit:45,covari:113,covid:[1,8,14,116],creat:[9,32,39,40,43,45,68,69,75,77,89,90,97,98,116,117,176],creation:[56,63,65,116],criteria:50,cross:[50,59,75,80,149,183],crucial:50,csv:44,cuisin:[70,156,157],cultur:109,current:121,curv:[36,59,64,135,151,161],custom:[5,40,50],cv:[59,149],d3:105,data:[1,2,3,7,8,9,10,11,12,14,15,18,20,23,24,25,28,29,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,68,74,75,77,80,95,96,97,99,100,101,102,103,104,106,109,110,111,113,114,115,116,117,118,119,122,131,133,135,136,137,139,149,153,156,157,158,159,161,162,166,167,168,169,170,171,172,173,174,178,181,182,185,186,188,189],databas:[12,118,174],databasetyp:174,dataclass:117,datafram:[7,114,117,173],dataset:[6,16,29,30,31,33,35,39,41,45,46,47,48,51,59,80,97,98,106,117,126,127,144,149,156,164,172,173,180,182,183,184,186],datatyp:116,date:162,db:115,dbscan:152,deal:[7,46,54,89,114,116],debug:[45,47,48,135],decept:105,decis:[50,51,57,58,144,152],decisiontre:55,decisiontreeclassifi:50,declar:[51,59,149],decor:[165,187],decorrel:144,decreas:45,deep:[41,43,123,124,131,159,185],deepdream:121,deeplab:127,def:[165,167],defin:[29,33,35,110,111,122,127,131,159,161,170,185,187],definit:[109,122,124,165,170],degre:24,del:[90,166,188],delet:117,delici:70,demens:30,denois:[29,30],dens:[32,79,123],densenet:126,densiti:[22,106,172],depend:[24,124],deploi:[9,159,185],deploy:[97,98,134,136],depth:135,descent:[76,125,145],describ:[7,110],descript:[59,80,100],design:[182,186],detect:[7,29,129],determin:162,detr:129,develop:0,deviat:113,diabet:[24,164],diagnosi:1,dict:[89,90,117],dictionari:[89,90,166,167,188,189],differ:[24,88,117],diffus:122,digit:[34,50,81,111,121],dimens:[30,51,80,180],dimension:[59,76,116,144,173],direct:131,dirrec:131,disciplin:56,discov:156,discrimin:[36,37,125],diseas:24,dispers:59,displai:[12,51,105,116,140,181],distant:178,distribut:[18,24,51,54,59,106,113,139,172],dive:[13,150],diverg:122,divid:80,docstr:[166,187,188],document:[115,165,187],doe:[0,176],dog:37,donut:[107,172],download:29,dqn:35,draw:[178,181],drop:7,drop_dupl:7,dropout:[32,47,62,151,179],dual:[108,172],duplic:[7,46,90,114,166],earli:[151,162,179],early_stopping_round:148,easi:137,ecg:29,eda:[51,68,77,149,159,185],educ:56,effect:[101,171],elbo:122,elbow:140,element:[90,116,166],elif:89,els:89,emot:101,emul:115,encod:[7,51,56,75,80,182,186],end:101,endpoint:[9,97,98],engin:[46,48,51,54,133,136],enrol:56,enrollee_id:56,ensembl:[49,54,141,143,158],entropi:[50,183],envireon:35,environ:[0,124,164,167],episod:124,equat:182,equival:48,error:[59,141,159,165,185,187],establish:[47,48,159,185],estim:[14,22],ethic:[28,109,170],eval:117,evalu:[15,40,41,49,52,53,54,57,58,60,61,68,75,77,80,124,135,136,186],everyth:[116,170,173],evid:122,evil:18,evolut:[134,149],exampl:[29,37,50,62,96,116,124,131,142,145,146,148,151,159,174,182,185],excel:27,except:[89,165,187],exchang:35,exercis:[7,139,140,153,156,157,158,161,162,164],exist:[43,116],expect:122,experi:[9,32,56,97,162],explod:45,exploit:124,explor:[7,16,17,31,33,41,46,49,51,52,59,68,71,72,75,77,100,106,114,115,124,172,173],exploratori:[38,49,51,52,53,56,57,58,59,60,61,75,100,159,185],express:165,extend:90,extract:[1,175],extrem:[144,149],f1:59,facet:[108,172],failur:[97,98],fals:59,fashion:[40,41],faster:129,fcn:127,fco:129,featur:[32,47,48,50,51,52,53,54,56,57,59,68,75,77,80,131,132,135,142,149,159,160,175,183,184,185],feed:41,fibonacci:90,field:[111,116,170],file:[34,44,167,189],fill:[7,54,89],filter:166,find:[51,56,68,77,152,166],fine:121,first:[29,80,93,162,164],fit:[45,56,64,150,151,179,182,186],fix:47,flask:153,flat:116,flatten:175,flow:[165,167,187],flu:131,fold:[59,149],forecast:[44,131],foreign:35,forest:[49,51,52,53,142,144],fork:31,form:15,format:[47,90,166,188],formul:[68,77,185],formula:90,forward:122,four:160,frame:[136,137],free:132,frequenc:51,friedman:145,from:[15,34,39,43,63,65,78,90,116,117,166,175,180,183,186],fruit:39,full:[79,175],fulli:120,fun:31,gan:[36,37,176],gate:128,gbm:145,gcd:89,gender:[24,56],gener:[36,37,39,90,116,125,176],geograph:75,ger:176,get:[1,3,24,40,45,80,90,107,111,116,122,139,143,155,164,172],giant:180,gif:122,github:0,give:31,glass:31,global:[32,80,165],go:[40,157],goal:[3,114],good:[64,151,182],googl:42,govern:133,gradient:[45,49,55,56,76,125,145,146,147,149],grid:[108,161,172],gridsearch:59,gridsearchcv:56,group:[80,90,117],guid:41,hand:166,handl:[46,57,59,64,75,165,173],handwritten:[50,121],have:[47,54,161],head:7,heart:[97,98],hello:156,here:162,hidden:123,hide:181,hierarch:[117,152],high:[45,117,144],higher:59,hing:150,hint:48,histogram:[22,53,106,172],histori:[126,127,129,145],honei:[108,172],hood:59,hot:[75,186],how:[0,32,50,110,121,127,137,145,151,167,175,176,178,186],human:[99,168],hyperparamet:[56,59,135],hyperplan:59,hypothesi:[18,24,113,182],id:[39,51],identifi:[7,54,64,100],iiit:127,illustr:142,imag:[29,30,32,33,37,41,117,126,127,152,175],imagenet:126,imbalanc:47,impact:151,implement:[34,40,48,90,146,149,182],improv:[52,53,56,57,58,60,61,135],includ:[166,188],inconsist:[46,100],indent:[166,167,188,189],index:[116,117,173],indian:70,indic:116,individu:[33,75,116],industri:[99,168],inequ:122,inertia:152,info:7,inform:[7,59,114],infrastructur:134,ingest:[133,136],ingredi:156,inherit:[165,187],initi:[9,37,56,152],input:[48,59,75],insensit:178,insert:[90,166],insid:[165,187],insight:[3,68,77],instal:[164,167],instanc:[97,165],instruct:[4,5,6,10,11,13,15,16,17,19,20,21,23,26,27,28,69,71,82,85,86,87,88],integ:[116,166,188],intellig:[159,185],interpret:[64,135,151],interv:[18,113],intro:[29,43,53,58,61,123],introduc:[117,173],introduct:[9,18,24,30,50,54,59,62,64,75,91,96,97,101,103,112,113,116,139,140,145,147,149,156,160,161,162,164,167,170,179,181,183,184,186,189],intuit:[59,142,149],inventori:115,investig:14,involv:116,iri:[64,180],isol:54,item:[90,166],iter:116,jensen:122,job:56,join:[90,117,118,173,174],js:105,json:115,just:54,k:[59,140,144,149,152,158,180],kaggl:22,kei:[159,166,185],kera:[34,39,186],kernel:[22,59,150,175,178],keyword:165,kl:122,knn:80,know:[107,172],l1:[151,179],l2:[151,179],label:[51,80,117,159,185,186],lag:131,lambda:[89,151,165],languag:34,larg:[32,113],lasso:[63,65],lasson:[63,65],last:[46,56],latent:30,law:113,layer:[32,41,47,79,123,133,186],layout:181,lda:152,learn:[9,36,41,43,45,50,56,59,63,64,65,75,80,81,85,98,120,123,124,131,132,135,137,138,143,151,152,153,154,156,157,159,160,162,163,164,169,180,181,185],learning_r:148,length:89,let:[150,166,176,178,187],level:[34,56],libari:33,librari:[29,32,34,37,38,42,51,59,80,122,149,164,182,183,184,186],lifecycl:[102,103,171],lightgbm:54,like:[101,117],limit:[18,113,152],line:[19,108,160,172,178,181],linear:[47,48,59,66,73,75,76,122,131,150,151,158,160,161,178,182,183,184],linearli:178,list:[89,90,91,117,165,166,167,187,188,189],liter:[166,188],load:[12,14,25,29,30,31,32,34,35,36,37,38,39,41,42,44,47,49,52,53,54,56,57,58,60,61,80,97,98,122,149],local:0,logic:55,logist:[64,68,77,78,150,157,161,178,183,184],look:[1,40,53,56,160],loop:[37,55,79,89],loss:[45,47,64,79,125,135,145,150,183,186],lot:[54,161],low:[20,98,169],lower:[94,122],lstm:[38,44],machin:[9,41,59,60,61,75,80,81,98,137,138,150,153,154,159,163,164,169,178,181,185],magic:181,main:[124,149],maintain:[103,171],mainten:136,major:56,make:[14,36,41,105,127,149,162,183,184],manag:[74,103,115,162,171],mani:32,manipul:[43,116],map:[32,54,75,158,181],margin:[59,150,178],market:[21,35,162],mask:129,math:[55,116,150],matplotlib:[22,162],matrix:[48,51,54,59,161,182,183,184],max:[116,170,173],max_depth:56,max_featur:56,maxim:[150,178],maximum:[59,173],mean:[24,113,122,140,152,180],meaning:[101,105],media:96,median:113,medicin:1,memori:128,men:24,merg:[90,91,117,173],method:[49,59,71,90,101,117,140,150,152,165,166,178,186,188],metric:[59,68,77,135,186],min:[116,170,173],min_samples_leaf:56,min_samples_split:56,mind:101,mini:152,minimum:173,miscellan:56,miss:[7,46,51,54,57,59,68,75,77,89,114,149,162,173],ml:[9,10,20,45,75,76,77,78,79,97,98,145],mnist:[32,41,47,50,121,180],mobilenet:126,mode:113,model:[8,9,29,30,33,34,36,37,38,39,40,41,43,44,45,47,48,49,50,51,52,53,54,56,57,59,64,65,66,67,68,69,75,77,80,88,97,98,122,124,126,127,129,131,134,135,136,137,138,140,148,151,153,159,160,161,162,163,164,176,179,182,183,184,185,186],modul:[165,187],more:[32,49,52,68,77,157,162],most:56,mostli:54,motiv:150,much:32,multiclass:40,multicollinear:[54,64],multidimension:76,multioutput:131,multipl:[116,152,165,166,182],multistep:131,mushroom:[107,172],mutabl:90,n_estim:148,n_job:148,name:[51,117],namedtupl:117,nan:[7,173],nation:157,nativ:116,ndarrai:[116,117],nearest:144,need:161,neighbor:[144,158],nest:[166,188],network:[32,33,37,39,40,79,105,121,123,125,130,175,176,183,186],neural:[32,33,39,40,79,121,123,130,175,183,186],next:29,nn:39,nois:[30,122],noisi:30,non:[7,115,174,178],none:[7,173],nonlinear:[47,48,79],nonloc:165,normal:[18,22,44,48,62,113,182],nosql:[115,174],note:49,notebook:[97,164],now:178,number:[51,56,89,90,113,116,152,166,167,186,188,189],numer:[7,50,51,54,59,75,173],numpi:[34,116,173],nyc:23,o:39,object:[33,116,117,129,165,173],obtain:137,occurr:90,odd:162,one:162,oper:[43,90,116,117,166,173,188],optim:[37,48,56,59,135,152,182,186],option:[0,47,98,150,181],order:90,ordin:54,ordinari:[159,185],orign:30,other:[29,50,68,77,111,116,158,161],our:[182,186,187],out:[0,141],outlier:[54,59],outlin:[178,179,180],output:[75,122,187],over:[151,179],overfit:[59,64,151],overiew:131,overview:[29,41,80,81,120,124,125,128,136,151,159,185],own:[5,182,187],oxford:127,pace:0,packag:165,pad:175,pair:32,pairplot:[53,80],panda:[7,44,100,117,173],pandem:14,paper:[1,8,96,116],paramet:[37,50,51,56,80,82,144,186],parameter:122,part:[24,53],pass:47,path:44,pca:[152,180],pd:173,peopl:89,percentag:51,perform:[43,68,77,117,159,185,186],permut:142,pet:127,phrase:101,pickl:153,pictur:39,pie:[107,172],piec:89,pipelin:[75,126],pivot:117,plai:[82,175,176,183],plan:[56,92,158],planetari:16,plot:[22,24,30,32,55,75,106,108,161,172,181],plote:36,point:178,polici:124,polynomi:[59,73,160,182],pool:175,popul:90,posit:[59,117],potenti:120,practic:[142,144],pre:[14,38,56],precis:59,predict:[39,41,42,50,54,56,77,80,97,98,127,149,151,157,179,182,183,184],predictor:54,prepar:[7,31,32,34,40,44,114,127,131,140,158,160,162],prepreprocess:36,preprocess:[36,37,41,49,52,53,56,57,58,60,61,66,68,75,77,122,152,159,185,186],prerequisit:[140,160,161],preserv:173,preview:[51,149],price:[42,77,162],princip:180,principl:109,pro:[50,144],probabl:[18,24,113,170],problem:[50,51,59,68,77,136,137,144,145,159,182,185],process:[8,14,38,47,54,75,103,117,122,133,136,171,175],product:137,profession:109,profil:100,profit:25,program:[89,90,91,116,159,165,166,167,185,187,188,189],progress:[24,181],project:[10,20,92,97,98,105],promot:116,properti:[51,122],proport:[107,172],pumpkin:[83,162],put:[75,137,160],python:[8,89,90,91,116,149,164,165,166,167,173,187,188,189],q:124,qualiti:[50,133,135],quantiti:172,quartil:113,queri:[100,115,117],question:[161,162],quot:180,r:129,r_t:14,radial:59,rainfal:[118,174],rais:165,random:[18,30,49,51,52,53,113,142,144,170],rang:[77,89,117,165],rate:[45,56,59],rbf:[59,150],re:122,reach:45,read:[44,50,149],readabl:105,readi:24,real:[18,96,99,113,135,144,168],reason:[64,157],recal:59,recogn:81,recognit:[33,50],record:117,recurr:[123,130],recurs:[131,166],reduc:48,reduct:[30,180],redund:54,refer:[14,168,169,170,171,172,173,174,187,188,189],refresh:64,regress:[48,50,53,58,61,63,64,65,68,69,73,75,76,77,78,84,85,86,131,145,150,151,157,159,160,161,162,163,164,178,182,183,184],regressor:[53,58,61],regul:109,regular:[47,63,65,66,151,179],reinforc:[159,185],relat:[111,115,118,170,174],relationship:[54,75,108,118,172,174],relev:56,remov:[7,46,47,54,56,90,114,116,166],renam:51,replac:90,report:[51,59],represent:144,research:[21,99,121,168],reshap:116,resnet:126,resourc:98,respons:101,result:[3,30,39,40,48,56,59,149,182,183,184],retri:86,retriev:[118,174],revers:[122,166],reward:124,ridg:[63,65],right:[98,105,162],rl:124,rnn:[42,44,123],road:79,roc:[59,161],role:[49,53],root:90,rotaion:34,row:80,rubric:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,82,85,86,87,88],rule:116,run:[9,59,164],s:[75,122,145,150,161,162,166,170,171,172,173,176,178,183,184,187,189],salepric:54,sampl:[31,100,122],satisf:135,save:[9,37,97],scalar:[116,117],scale:[30,51,54,59,68,75,77,80,183,184],scatter:[19,22,55],scatterplot:[54,108,172],scenario:11,schedul:122,schema:[12,48],scienc:[3,9,10,11,20,95,96,97,99,102,103,109,111,159,168,169,170,171,185],scientif:96,scikit:[50,59,63,65,85,157,160,162,164],scope:[165,187],score:[59,140,149],scratch:[39,63,65,78,182,183,186],sdk:[9,10,97],search:[89,133],second:[29,47,94,162],secur:[103,133,171],see:[56,175],segment:[127,152],segnet:127,select:[43,51,65,117,135,151,159,173,179,185],selectbox:181,self:[0,96,97,98,99,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,124,130,133,135,136,137,139,140,153,156,158,160,161,162,164,165,166],sens:14,sentenc:89,sentiment:[38,96],separ:[51,59,149,178,183],sequenc:90,sequenti:43,seri:[44,117,131,173],serv:134,set:[32,41,49,51,52,53,54,57,59,75,80,149,166,167,182,183,184,186,189],setdefault:90,setup:[37,48,97,167],sex:24,shape:[7,43,80,149],shell:167,shortcom:[118,174],show:[37,80,105,181],showcas:133,shuffl:[47,59],side:161,sidebar:181,sigmoid:[59,183,184],sign:34,silhouett:140,similar:144,simpl:[31,44,45,135,151,160,173,182],simul:[18,55],singl:[33,75,90,116,118,123,174],size:56,skew:47,skicit:[63,65],skill:4,sklearn:[75,142,178,180],slice:[47,90,116,117,135],slide:177,slider:181,small:[24,56],smile:31,social:96,soda:25,solut:[45,47,48,124],solver:87,some:[37,86,166],someth:162,sort:[90,116],sourc:110,space:[30,59],special:128,specif:[9,56,59],specifi:90,spectral:152,split:[34,47,48,50,51,54,57,59,75,90,149,157,158,182,183,184],splite:80,spread:[8,116],spreadsheet:115,squar:90,st:181,stack:[49,89],standard:[113,126],start:[40,118,135,139,143,155,164,174],state:124,statement:[51,89,145,165,166,187,188],statist:[18,24,48,51,57,68,75,77,100,113,149,170],step:[3,29,56,75,131,145],still:161,stock:42,stop:[151,179],storag:133,store:[103,115,171],stori:[26,101],storytel:101,str:[90,94],strategi:[1,114,131,134,162],stratifi:59,streamlit:181,stride:116,string:[89,90,165,166,167,187,188,189],structur:[1,32,116,117,173],student:[99,168],studi:[24,28,45,47,48,87,96,97,98,99,101,103,105,106,107,108,109,110,111,113,114,115,116,117,118,120,121,124,130,133,135,136,137,139,140,153,156,158,160,161,162,164,165,166],studio:[98,167],style:[105,121,181],stylenet:121,subarrai:116,subclass:43,subplot2grid:22,subplot:22,subsambl:32,subsampl:56,sum:89,summari:[32,45,51,57,59,68,77,149,150,186],summer:23,sup:174,supervis:[159,185],support:[59,60,61,150,158,178],sustain:[99,168],svc:158,svm:[59,60,61,150,178],svr:150,swarm:161,syntax:[166,167,188],system:[159,185],tabl:[33,117,118,174,185,187],tail:7,take:40,target:[51,54,59,149],task1:44,task2:[44,56],task5:52,task:[24,44,49,50,52,53,54,56,75,110,124,131],taxi:23,taxonomi:124,tell:26,templat:92,tensor:43,tensorboard:40,tensorflow:[29,40,43,121],term:[90,128],terminolog:[124,159,185],test:[18,24,33,34,47,48,49,51,52,53,54,56,57,59,75,79,80,113,122,136,149,182,183,184],text:[3,106,172],text_input:181,tf:43,thank:185,theme:181,theorem:[18,113],theori:31,thi:[0,41,55,161],thing:162,third:29,tidi:161,time:[44,96,131,175,176],titan:22,titl:[90,94,116],togeth:[54,132,160],toi:50,tool:[84,116,153,164],top:126,trade:164,tradeoff:[151,179],traffic:131,train:[30,31,32,33,34,35,36,37,39,40,41,47,49,51,52,53,54,57,58,59,60,61,64,68,75,77,79,80,97,98,122,123,125,127,135,136,149,159,182,183,184,185,186],trane:182,transfer:135,transform:[3,59,75,111,123,144],transpos:117,treatment:1,tree:[50,51,56,57,58,144,149],trend:[1,121,131],trick:[59,122,178],trigonometr:116,tune:[54,56,80,121,135,148],tunnel:131,tupl:[116,117,166,167,189],turn:[96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,118,120,121,122,124,125,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,144,145,146,148,149,150,153,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,187,188,189],tweet:38,twiddl:116,two:[91,166,173],type:[51,54,56,101,105,111,116,123,159,166,167,185,188,189],typic:[159,185],ufunc:[116,173],under:[59,151,179],underfit:[59,64,151],understand:[47,54,101],univari:[54,182],univers:[56,116,173],unpack:[165,187],unstructur:116,unsupervis:[120,152,159,180,185],up:[41,90,164],updat:125,upper:[90,94],upvot:31,us:[10,30,33,40,41,48,56,59,62,63,64,65,80,89,90,101,105,106,132,135,137,149,152,153,157,159,160,161,162,167,172,181,186],useless:54,v3:127,v:[150,178,183,184],valid:[32,33,47,48,50,54,59,64,75,80,149],valu:[7,24,47,51,54,56,57,59,68,75,77,89,90,116,117,124,149,151,165,166,172,173],variabl:[18,24,32,43,51,59,113,116,149,152,161,165,166,170,187,188],varianc:[24,64,113,122,140,144,151,179],variat:[31,54],varieti:83,vector:[51,59,60,61,117,149,150,158,178],veri:48,verifi:41,versa:166,vggnet:126,vi:5,via:[32,161],vice:166,view:[51,116,186],vif:64,violin:161,visual:[3,22,39,40,56,72,80,100,104,105,106,107,108,161,162,166,167,172,186],visualis:[182,183,184],vit:126,volum:38,vote:49,vowel:166,vs:[149,159,174,185],w:39,waffl:[107,172],wai:[9,97,98,160,169],wait:162,want:89,we:[50,56],web:[153,154,181],weight:[37,145],what:[24,32,43,80,96,97,98,101,111,126,127,129,131,137,146,148,157,159,169,170,171,172,176,180,182,185,189],when:[159,183],where:111,whole:182,why:[96,123,167,169,178,189],widget:181,width:135,wingspan:172,winter:23,within:116,women:24,word:[89,101],work:[0,50,56,106,116,119,145,164,172,176],workflow:[159,185],workspac:[9,97,98],world:[99,113,135,168],write:[28,181],x_t:122,xgboost:[54,66,148,149],y:24,yet:158,you:[47,111,161,170,185],your:[4,5,48,96,97,98,99,100,101,103,105,106,107,108,109,110,111,113,114,115,116,118,120,121,122,124,125,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,144,145,146,148,149,150,153,156,157,158,159,160,161,162,164,165,166,167,168,169,170,171,172,173,174,187,188,189],zero:47,zoom:34}}) \ No newline at end of file +Search.setIndex({docnames:["assignments/README","assignments/data-science/analyzing-COVID-19-papers","assignments/data-science/analyzing-data","assignments/data-science/analyzing-text-about-data-science","assignments/data-science/apply-your-skills","assignments/data-science/build-your-own-custom-vis","assignments/data-science/classifying-datasets","assignments/data-science/data-preparation","assignments/data-science/data-processing-in-python","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way","assignments/data-science/data-science-project-using-azure-ml-sdk","assignments/data-science/data-science-scenarios","assignments/data-science/displaying-airport-data","assignments/data-science/dive-into-the-beehive","assignments/data-science/estimation-of-COVID-19-pandemic","assignments/data-science/evaluating-data-from-a-form","assignments/data-science/explore-a-planetary-computer-dataset","assignments/data-science/exploring-for-anwser","assignments/data-science/introduction-to-statistics-and-probability","assignments/data-science/lines-scatters-and-bars","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml","assignments/data-science/market-research","assignments/data-science/matplotlib-applied","assignments/data-science/nyc-taxi-data-in-winter-and-summer","assignments/data-science/small-diabetes-study","assignments/data-science/soda-profits","assignments/data-science/tell-a-story","assignments/data-science/try-it-in-excel","assignments/data-science/write-a-data-ethics-case-study","assignments/deep-learning/autoencoder/autoencoder","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market","assignments/deep-learning/gan/art-by-gan","assignments/deep-learning/gan/gan-introduction","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment","assignments/deep-learning/nn-classify-15-fruits-assignment","assignments/deep-learning/nn-for-classification-assignment","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing","assignments/deep-learning/rnn/google-stock-price-prediction-rnn","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning","assignments/deep-learning/time-series-forecasting-assignment","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging","assignments/machine-learning-productionization/data-engineering","assignments/machine-learning-productionization/debugging-in-classification","assignments/machine-learning-productionization/debugging-in-regression","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models","assignments/ml-advanced/ensemble-learning/decision-trees","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance","assignments/ml-advanced/ensemble-learning/random-forests-for-classification","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression","assignments/ml-advanced/gradient-boosting/boosting-with-tuning","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting","assignments/ml-advanced/kernel-method/decision_trees_for_classification","assignments/ml-advanced/kernel-method/decision_trees_for_regression","assignments/ml-advanced/kernel-method/kernel-method-assignment-1","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression","assignments/ml-advanced/model-selection/dropout-and-batch-normalization","assignments/ml-advanced/model-selection/lasso-and-ridge-regression","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit","assignments/ml-advanced/model-selection/model-selection-assignment-1","assignments/ml-advanced/model-selection/regularized-linear-models","assignments/ml-fundamentals/build-classification-model","assignments/ml-fundamentals/build-classification-models","assignments/ml-fundamentals/create-a-regression-model","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines","assignments/ml-fundamentals/explore-classification-methods","assignments/ml-fundamentals/exploring-visualizations","assignments/ml-fundamentals/linear-and-polynomial-regression","assignments/ml-fundamentals/linear-regression-implementation-from-scratch","assignments/ml-fundamentals/linear-regression/gradient-descent","assignments/ml-fundamentals/linear-regression/linear-regression-metrics","assignments/ml-fundamentals/linear-regression/loss-function","assignments/ml-fundamentals/managing-data","assignments/ml-fundamentals/ml-linear-regression-1","assignments/ml-fundamentals/ml-linear-regression-2","assignments/ml-fundamentals/ml-logistic-regression-1","assignments/ml-fundamentals/ml-logistic-regression-2","assignments/ml-fundamentals/ml-neural-network-1","assignments/ml-fundamentals/ml-overview-iris","assignments/ml-fundamentals/ml-overview-mnist-digits","assignments/ml-fundamentals/parameter-play","assignments/ml-fundamentals/pumpkin-varieties-and-color","assignments/ml-fundamentals/regression-tools","assignments/ml-fundamentals/regression-with-scikit-learn","assignments/ml-fundamentals/retrying-some-regression","assignments/ml-fundamentals/study-the-solvers","assignments/ml-fundamentals/try-a-different-model","assignments/prerequisites/python-programming-advanced","assignments/prerequisites/python-programming-basics","assignments/prerequisites/python-programming-introduction","assignments/project-plan-template","assignments/set-up-env/first-assignment","assignments/set-up-env/second-assignment","data-science/data-science-in-the-cloud/data-science-in-the-cloud","data-science/data-science-in-the-cloud/introduction","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way","data-science/data-science-in-the-cloud/the-low-code-no-code-way","data-science/data-science-in-the-wild","data-science/data-science-lifecycle/analyzing","data-science/data-science-lifecycle/communication","data-science/data-science-lifecycle/data-science-lifecycle","data-science/data-science-lifecycle/introduction","data-science/data-visualization/data-visualization","data-science/data-visualization/meaningful-visualizations","data-science/data-visualization/visualization-distributions","data-science/data-visualization/visualization-proportions","data-science/data-visualization/visualization-relationships","data-science/introduction/data-science-ethics","data-science/introduction/defining-data","data-science/introduction/defining-data-science","data-science/introduction/introduction","data-science/introduction/introduction-to-statistics-and-probability","data-science/working-with-data/data-preparation","data-science/working-with-data/non-relational-data","data-science/working-with-data/numpy","data-science/working-with-data/pandas","data-science/working-with-data/relational-databases","data-science/working-with-data/working-with-data","deep-learning/autoencoder","deep-learning/cnn","deep-learning/difussion-model","deep-learning/dl-overview","deep-learning/dqn","deep-learning/gan","deep-learning/image-classification","deep-learning/image-segmentation","deep-learning/lstm","deep-learning/object-detection","deep-learning/rnn","deep-learning/time-series","intro","machine-learning-productionization/data-engineering","machine-learning-productionization/model-deployment","machine-learning-productionization/model-training-and-evaluation","machine-learning-productionization/overview","machine-learning-productionization/problem-framing","ml-advanced/clustering/clustering-models-for-machine-learning","ml-advanced/clustering/introduction-to-clustering","ml-advanced/clustering/k-means-clustering","ml-advanced/ensemble-learning/bagging","ml-advanced/ensemble-learning/feature-importance","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning","ml-advanced/ensemble-learning/random-forest","ml-advanced/gradient-boosting/gradient-boosting","ml-advanced/gradient-boosting/gradient-boosting-example","ml-advanced/gradient-boosting/introduction-to-gradient-boosting","ml-advanced/gradient-boosting/xgboost","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance","ml-advanced/kernel-method","ml-advanced/model-selection","ml-advanced/unsupervised-learning","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model","ml-fundamentals/classification/applied-ml-build-a-web-app","ml-fundamentals/classification/getting-started-with-classification","ml-fundamentals/classification/introduction-to-classification","ml-fundamentals/classification/more-classifiers","ml-fundamentals/classification/yet-other-classifiers","ml-fundamentals/ml-overview","ml-fundamentals/regression/linear-and-polynomial-regression","ml-fundamentals/regression/logistic-regression","ml-fundamentals/regression/managing-data","ml-fundamentals/regression/regression-models-for-machine-learning","ml-fundamentals/regression/tools-of-the-trade","prerequisites/python-programming-advanced","prerequisites/python-programming-basics","prerequisites/python-programming-introduction","slides/data-science/data-science-in-real-world","slides/data-science/data-science-in-the-cloud","slides/data-science/data-science-introduction","slides/data-science/data-science-lifecycle","slides/data-science/data-visualization","slides/data-science/numpy-and-pandas","slides/data-science/relational-vs-non-relational-database","slides/deep-learning/cnn","slides/deep-learning/gan","slides/introduction","slides/ml-advanced/kernel-method","slides/ml-advanced/model-selection","slides/ml-advanced/unsupervised-learning","slides/ml-fundamentals/build-an-ml-web-app","slides/ml-fundamentals/linear-regression","slides/ml-fundamentals/logistic-regression","slides/ml-fundamentals/logistic-regression-condensed","slides/ml-fundamentals/ml-overview","slides/ml-fundamentals/neural-network","slides/python-programming/python-programming-advanced","slides/python-programming/python-programming-basics","slides/python-programming/python-programming-introduction"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["assignments/README.md","assignments/data-science/analyzing-COVID-19-papers.ipynb","assignments/data-science/analyzing-data.ipynb","assignments/data-science/analyzing-text-about-data-science.ipynb","assignments/data-science/apply-your-skills.md","assignments/data-science/build-your-own-custom-vis.md","assignments/data-science/classifying-datasets.md","assignments/data-science/data-preparation.ipynb","assignments/data-science/data-processing-in-python.md","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.ipynb","assignments/data-science/data-science-project-using-azure-ml-sdk.md","assignments/data-science/data-science-scenarios.md","assignments/data-science/displaying-airport-data.ipynb","assignments/data-science/dive-into-the-beehive.md","assignments/data-science/estimation-of-COVID-19-pandemic.ipynb","assignments/data-science/evaluating-data-from-a-form.ipynb","assignments/data-science/explore-a-planetary-computer-dataset.md","assignments/data-science/exploring-for-anwser.ipynb","assignments/data-science/introduction-to-statistics-and-probability.ipynb","assignments/data-science/lines-scatters-and-bars.md","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.md","assignments/data-science/market-research.md","assignments/data-science/matplotlib-applied.ipynb","assignments/data-science/nyc-taxi-data-in-winter-and-summer.ipynb","assignments/data-science/small-diabetes-study.ipynb","assignments/data-science/soda-profits.ipynb","assignments/data-science/tell-a-story.md","assignments/data-science/try-it-in-excel.md","assignments/data-science/write-a-data-ethics-case-study.md","assignments/deep-learning/autoencoder/autoencoder.ipynb","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.ipynb","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.ipynb","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.ipynb","assignments/deep-learning/gan/art-by-gan.ipynb","assignments/deep-learning/gan/gan-introduction.ipynb","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb","assignments/deep-learning/nn-classify-15-fruits-assignment.ipynb","assignments/deep-learning/nn-for-classification-assignment.ipynb","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.ipynb","assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.ipynb","assignments/deep-learning/time-series-forecasting-assignment.ipynb","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging.ipynb","assignments/machine-learning-productionization/data-engineering.ipynb","assignments/machine-learning-productionization/debugging-in-classification.ipynb","assignments/machine-learning-productionization/debugging-in-regression.ipynb","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models.ipynb","assignments/ml-advanced/ensemble-learning/decision-trees.ipynb","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-for-classification.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.ipynb","assignments/ml-advanced/gradient-boosting/boosting-with-tuning.ipynb","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment.ipynb","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_classification.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_regression.ipynb","assignments/ml-advanced/kernel-method/kernel-method-assignment-1.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.ipynb","assignments/ml-advanced/model-selection/dropout-and-batch-normalization.ipynb","assignments/ml-advanced/model-selection/lasso-and-ridge-regression.ipynb","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.ipynb","assignments/ml-advanced/model-selection/model-selection-assignment-1.ipynb","assignments/ml-advanced/model-selection/regularized-linear-models.ipynb","assignments/ml-fundamentals/build-classification-model.ipynb","assignments/ml-fundamentals/build-classification-models.ipynb","assignments/ml-fundamentals/create-a-regression-model.md","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.ipynb","assignments/ml-fundamentals/explore-classification-methods.md","assignments/ml-fundamentals/exploring-visualizations.md","assignments/ml-fundamentals/linear-and-polynomial-regression.ipynb","assignments/ml-fundamentals/linear-regression-implementation-from-scratch.ipynb","assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb","assignments/ml-fundamentals/linear-regression/loss-function.ipynb","assignments/ml-fundamentals/managing-data.ipynb","assignments/ml-fundamentals/ml-linear-regression-1.ipynb","assignments/ml-fundamentals/ml-linear-regression-2.ipynb","assignments/ml-fundamentals/ml-logistic-regression-1.ipynb","assignments/ml-fundamentals/ml-logistic-regression-2.ipynb","assignments/ml-fundamentals/ml-neural-network-1.ipynb","assignments/ml-fundamentals/ml-overview-iris.ipynb","assignments/ml-fundamentals/ml-overview-mnist-digits.ipynb","assignments/ml-fundamentals/parameter-play.md","assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb","assignments/ml-fundamentals/regression-tools.ipynb","assignments/ml-fundamentals/regression-with-scikit-learn.md","assignments/ml-fundamentals/retrying-some-regression.md","assignments/ml-fundamentals/study-the-solvers.md","assignments/ml-fundamentals/try-a-different-model.md","assignments/prerequisites/python-programming-advanced.ipynb","assignments/prerequisites/python-programming-basics.ipynb","assignments/prerequisites/python-programming-introduction.ipynb","assignments/project-plan-template.ipynb","assignments/set-up-env/first-assignment.ipynb","assignments/set-up-env/second-assignment.ipynb","data-science/data-science-in-the-cloud/data-science-in-the-cloud.ipynb","data-science/data-science-in-the-cloud/introduction.ipynb","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way.ipynb","data-science/data-science-in-the-cloud/the-low-code-no-code-way.ipynb","data-science/data-science-in-the-wild.md","data-science/data-science-lifecycle/analyzing.md","data-science/data-science-lifecycle/communication.md","data-science/data-science-lifecycle/data-science-lifecycle.md","data-science/data-science-lifecycle/introduction.md","data-science/data-visualization/data-visualization.ipynb","data-science/data-visualization/meaningful-visualizations.ipynb","data-science/data-visualization/visualization-distributions.ipynb","data-science/data-visualization/visualization-proportions.ipynb","data-science/data-visualization/visualization-relationships.ipynb","data-science/introduction/data-science-ethics.md","data-science/introduction/defining-data.md","data-science/introduction/defining-data-science.md","data-science/introduction/introduction.md","data-science/introduction/introduction-to-statistics-and-probability.md","data-science/working-with-data/data-preparation.md","data-science/working-with-data/non-relational-data.md","data-science/working-with-data/numpy.md","data-science/working-with-data/pandas.md","data-science/working-with-data/relational-databases.md","data-science/working-with-data/working-with-data.md","deep-learning/autoencoder.md","deep-learning/cnn.md","deep-learning/difussion-model.md","deep-learning/dl-overview.ipynb","deep-learning/dqn.md","deep-learning/gan.md","deep-learning/image-classification.md","deep-learning/image-segmentation.md","deep-learning/lstm.ipynb","deep-learning/object-detection.md","deep-learning/rnn.md","deep-learning/time-series.md","intro.md","machine-learning-productionization/data-engineering.md","machine-learning-productionization/model-deployment.md","machine-learning-productionization/model-training-and-evaluation.md","machine-learning-productionization/overview.md","machine-learning-productionization/problem-framing.md","ml-advanced/clustering/clustering-models-for-machine-learning.ipynb","ml-advanced/clustering/introduction-to-clustering.ipynb","ml-advanced/clustering/k-means-clustering.ipynb","ml-advanced/ensemble-learning/bagging.md","ml-advanced/ensemble-learning/feature-importance.md","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.md","ml-advanced/ensemble-learning/random-forest.md","ml-advanced/gradient-boosting/gradient-boosting.md","ml-advanced/gradient-boosting/gradient-boosting-example.md","ml-advanced/gradient-boosting/introduction-to-gradient-boosting.md","ml-advanced/gradient-boosting/xgboost.md","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.md","ml-advanced/kernel-method.md","ml-advanced/model-selection.ipynb","ml-advanced/unsupervised-learning.ipynb","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.md","ml-fundamentals/classification/applied-ml-build-a-web-app.ipynb","ml-fundamentals/classification/getting-started-with-classification.ipynb","ml-fundamentals/classification/introduction-to-classification.ipynb","ml-fundamentals/classification/more-classifiers.ipynb","ml-fundamentals/classification/yet-other-classifiers.ipynb","ml-fundamentals/ml-overview.md","ml-fundamentals/regression/linear-and-polynomial-regression.ipynb","ml-fundamentals/regression/logistic-regression.md","ml-fundamentals/regression/managing-data.md","ml-fundamentals/regression/regression-models-for-machine-learning.md","ml-fundamentals/regression/tools-of-the-trade.md","prerequisites/python-programming-advanced.md","prerequisites/python-programming-basics.ipynb","prerequisites/python-programming-introduction.ipynb","slides/data-science/data-science-in-real-world.ipynb","slides/data-science/data-science-in-the-cloud.ipynb","slides/data-science/data-science-introduction.ipynb","slides/data-science/data-science-lifecycle.ipynb","slides/data-science/data-visualization.ipynb","slides/data-science/numpy-and-pandas.ipynb","slides/data-science/relational-vs-non-relational-database.ipynb","slides/deep-learning/cnn.ipynb","slides/deep-learning/gan.ipynb","slides/introduction.md","slides/ml-advanced/kernel-method.ipynb","slides/ml-advanced/model-selection.ipynb","slides/ml-advanced/unsupervised-learning.ipynb","slides/ml-fundamentals/build-an-ml-web-app.ipynb","slides/ml-fundamentals/linear-regression.ipynb","slides/ml-fundamentals/logistic-regression.ipynb","slides/ml-fundamentals/logistic-regression-condensed.ipynb","slides/ml-fundamentals/ml-overview.ipynb","slides/ml-fundamentals/neural-network.ipynb","slides/python-programming/python-programming-advanced.ipynb","slides/python-programming/python-programming-basics.ipynb","slides/python-programming/python-programming-introduction.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,66,67,68,74,75,76,77,79,80,81,82,83,84,85,93,94,95,99,100,101,102,108,109,110,111,112,117,118,120,121,124,125,126,127,128,129,130,131,132,133,134,135,138,139,140,142,143,144,145,146,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,168,169,170,171,174,176,177,180,182,184,185,186,187,188,190,191,192,193],"00":[25,29,38,57,59,60,121,165,170,177],"000":[7,29,33,41,50,56,63,65,118,130,157,177,190],"0000":[29,61,119,178],"000000":[38,58,61,64,79,117,121,143,146,153],"00000000":[119,178],"000000000":38,"000000001":38,"000000002":38,"000000003":38,"000000004":38,"000001":93,"000004":143,"000035e":59,"0001":[54,56,61,64,79,126,128,139,180,186],"000169":143,"000187":143,"0002":191,"000234":143,"000261":121,"0003":[75,145],"00030352119521741776":14,"0004":145,"0005":[37,66,134],"000537":143,"00058":79,"000581":61,"0006070423904348355":14,"000655":121,"000665":143,"0009105635856522532":14,"000z":119,"001":[14,31,33,34,35,37,45,54,60,64,66,82,94,128,132,133,139,187],"001054":121,"001112":121,"001214084780869671":14,"001238e":59,"0012919896640826":79,"001413":38,"001667":146,"001955":121,"002":191,"002079":121,"00228":134,"002467":121,"00259226":168,"002962":153,"003115":121,"003308":161,"003411e":59,"003750":153,"00390625":132,"00398532":79,"005":[56,125,143],"00561v3":131,"005674":121,"006457":153,"006624":161,"007000":143,"007185":[63,65],"007273":38,"007380":153,"0078125":132,"008080":153,"008281":153,"008906e":59,"0092":145,"0098":145,"01":[1,14,29,31,35,38,45,48,50,54,56,59,60,64,77,79,83,113,115,119,121,124,133,145,150,156,174],"010000":61,"010122":121,"010309":117,"010a691e01d7":[119,178],"01130490957":79,"011305":61,"01171875":132,"012114":38,"01246024":[61,79],"012518e":121,"013246":146,"01324612":146,"013417":153,"013547":153,"01355":133,"013978":121,"014371":153,"014940":38,"01497":133,"015":143,"0152":145,"015345":121,"015574":121,"015625":[59,132],"016186":153,"016305":143,"01632993161855452":64,"016667":38,"017":164,"0170":59,"017500":38,"01764613":168,"017692":38,"018147":121,"0183":35,"0189":38,"019231":38,"0195":38,"01953125":132,"0196":[38,145],"0198":38,"01990749":168,"02":[14,35,37,38,56,59,121,126,148],"0204":38,"0205":38,"0207":38,"020724e":38,"0210":38,"0212":38,"0213":38,"02137124":156,"021448":38,"0215":38,"0218":38,"02187239":168,"021919":29,"0220":38,"02201274":121,"0220127417608955":121,"022013":121,"022331":[63,65],"022377":29,"0226":38,"022738":38,"0229":38,"0230":38,"0231":38,"0233":38,"0234":38,"0234375":132,"0238":38,"0246":38,"024613e":59,"0255":[38,145],"025568e":59,"025820":146,"0260":38,"026109":79,"02653783":79,"0268":38,"02689146":[61,79],"02734375":132,"0276":38,"02763018":79,"027800":143,"028300":143,"0289":14,"0292":38,"0296":38,"02d":36,"03":[14,29,35,37,38,59,119,121,178],"030097":121,"0302":38,"0311":38,"031141":121,"03125":132,"031506725":29,"03265986323710903":64,"0327":38,"0328":38,"03385":130,"033892e":38,"0339":38,"0342":38,"034449":121,"03482076":168,"035077":146,"03515625":132,"035187":121,"0352":38,"0353":38,"035499e":59,"035711":[63,65],"035785":146,"0358":38,"03676084":79,"0372":38,"0375":38,"037540":38,"0376":38,"037668e":121,"037692":38,"0377":38,"03807591":168,"0383":38,"0386":38,"0390":38,"0390625":132,"039105":146,"039164":38,"0392":38,"039250":143,"0393":38,"0394":38,"03942163":79,"039738":146,"039893":38,"0399":38,"03_intellij":38,"03d":[31,37],"04":[14,29,35,38,48,59,112,117,121,138],"0400":38,"04000000001":38,"0402":38,"0404":38,"0407":38,"04124236":79,"0416":38,"0418":38,"0420":38,"042143e":59,"0423":38,"042321":29,"0424":143,"04251990648936265":156,"042796":121,"042823":161,"04296875":132,"0430":38,"04340085":168,"0435":38,"0436":38,"044":143,"0440":38,"044025":121,"0442235":168,"044444":117,"04460606335028361":164,"0447":[38,143],"0448":38,"045000":38,"04555172":79,"045561":38,"045637":38,"0458":38,"04597":131,"0463":38,"0467":38,"046875":132,"04690235":79,"0471":38,"04764906":79,"048550":121,"04861":130,"048622":79,"0496":38,"049672":79,"04d":128,"04t22":57,"05":[14,35,36,38,47,59,66,77,83,121,125,139,145,152,156],"0500":150,"0506":38,"050647":121,"05068012":168,"05078125":132,"05093587":120,"051164":59,"05129013":79,"051320":121,"05163977794943221":64,"051695":38,"0517":38,"052646":38,"052771":121,"0528":38,"05283644":79,"053607":38,"053899":146,"053903":38,"054000":64,"0541":38,"054430e":59,"0546875":132,"05558296":79,"05587v3":131,"055nnvtoa3qdwa3bvtpoxd6eljn4usoouann3ovpiyhpax3neltd9abdu17":59,"057504":[63,65],"058588":121,"05859375":132,"0589":38,"059025":29,"059100":143,"059136e":59,"0595":38,"05_fco":133,"05d":[37,128],"06":[14,35,38,59,121,164],"060282":121,"0612":35,"061476":146,"06156753":[154,182],"06169621":168,"061881":146,"062052":121,"0621118":145,"0625":[132,154,182],"062868":38,"065508":79,"06576":125,"0660":35,"06640625":132,"066561":121,"0668":38,"067482e":59,"067669":121,"068415":59,"06870":133,"0688":59,"0694":38,"069473e":59,"06993":130,"07":[1,29,35,38,50,59,121,139,145,164,177],"0703125":132,"070833":38,"071203171893359e":177,"071268":38,"0713":38,"071856":58,"071918":121,"072332":121,"07272727":83,"07383654":79,"07421875":132,"074246":38,"07432988":79,"074776":146,"075":184,"0754":38,"075650":143,"07604103":79,"076923":38,"077357":161,"07737338323":61,"077500":38,"077712":146,"078125":132,"07878788":83,"078843":38,"078910":[63,65],"078934e":59,"079167":38,"07959982":79,"07_detr":133,"08":[29,35,38,48,59,93,112,116,117,119,121,138,164,169,174,191],"080870":38,"0819":38,"08203125":132,"0822":143,"0829":143,"083333":38,"083831":121,"0839":35,"08484848":83,"085":184,"085537":177,"085742":121,"0859375":132,"086798":29,"086953":121,"087":143,"088448":121,"088730":146,"088992":38,"0893":38,"089525":143,"08984375":132,"089906":121,"09":[25,29,35,38,59,79],"090000":38,"090298":38,"090321":143,"090548":38,"090717":38,"09090909":83,"091439":38,"091489":38,"091574":59,"091799":121,"0924":35,"092939":143,"09375":132,"094025":38,"094383":38,"0944":35,"094493":38,"095000":38,"095163":38,"095922":38,"096164":38,"0964":143,"096545":38,"096688":38,"09704554168":79,"097061":38,"097124":38,"09736372":79,"097565":38,"09765625":132,"097692":38,"097950":143,"098004":38,"098200":29,"098327":38,"098485":38,"0985":38,"098512":38,"099139":38,"099198":38,"099369":38,"099380":38,"099428":38,"099534":38,"099587":38,"099596":38,"099674":38,"0cm":46,"0f":41,"0n":32,"0nb81h2lf3u6tgo":59,"0rvhljoesr6bt4cmi":59,"0s":[29,35,38,54,60,61,79,156,163],"0th":[41,121],"0x132a05eb0":176,"0x1f49b239f08":79,"0x1f4a26c7b08":79,"0x1f4a26efc48":79,"0x1f4a2788808":79,"0x1f4a27bb588":79,"0x1f4ad02ae08":79,"0x1f4ad061988":79,"0x227c78bf790":58,"0x2587be67a00":80,"0x28523a37dc0":143,"0x7e1538110d60":156,"0x7f0183efaad0":120,"0x7f4914ba8340":165,"0x7f4914ba8c10":165,"0x7f8e07dec8e0":164,"0x7f8e12ab4790":164,"0x7fc69f463af0":112,"1":[0,1,6,7,9,14,15,18,22,25,29,31,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,51,55,62,63,64,66,67,74,75,76,77,80,82,85,93,94,95,96,97,99,100,101,102,108,109,110,111,112,113,115,117,118,121,122,124,125,126,127,128,129,131,132,133,134,135,137,138,139,140,142,143,144,145,146,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,168,169,170,171,184,185,187,190,191],"10":[1,2,7,14,18,22,24,25,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,77,79,80,81,83,84,85,93,94,102,105,107,110,113,115,119,120,121,126,127,132,134,135,138,139,140,141,143,144,145,146,148,149,153,154,156,160,162,164,168,169,170,174,176,177,182,184,185,186,187,188,190,191,192,193],"100":[7,14,18,31,34,35,36,37,40,41,46,47,48,49,50,52,53,54,56,60,62,63,64,65,66,68,74,76,79,80,81,83,84,93,111,120,125,128,129,131,132,139,140,141,143,145,148,152,153,154,156,157,162,164,165,169,170,176,177,180,182,184,185,190,191,192],"1000":[3,14,18,31,33,47,50,54,56,58,60,61,64,82,83,85,103,108,117,124,126,131,132,139,145,146,148,150,152,156,165,169,172,176,185,187,188,191],"10000":[14,29,33,37,56,64,83,126,128,130,157],"100000":[54,64,126],"1000000":[169,171,177],"1001":140,"1003":140,"1004":132,"100486":38,"1005":140,"100579":121,"1006":132,"1007":[79,140],"10086":121,"10087":121,"100878":29,"10088":121,"10089":121,"1009":[132,140],"10090":121,"10091":121,"10092":121,"10093":121,"100942":38,"100k":162,"100m":139,"100tl":35,"101":[132,146,156],"1010":143,"10119387961131":[63,65],"1012000":112,"101250":121,"1014":132,"101451":38,"1015":132,"1015625":132,"1018":38,"102":[50,59,132,143,146],"1020":[110,176],"1021":132,"10220":52,"1023":132,"1024":[32,33,37,62,126,129,130,131,180],"1024n":32,"1026":132,"102657":38,"1027":132,"102724":38,"1028":[34,132],"1029":132,"102b":140,"102k":50,"103":[50,56,59,132,145,146],"1030":[34,132],"103095":38,"1032":132,"1033":132,"103500":143,"1036":132,"1038":132,"103997":38,"104":[50,59,145,146],"1040":[111,132,176],"1040000":112,"104412":38,"10444444444444445":156,"104496":121,"10452":38,"1048":[38,132],"105":[132,140,143,144,156,160,164],"1050":[110,132,176],"1052":132,"105237":79,"1053":79,"10546875":132,"105586":38,"1056":132,"105651e":38,"105748":146,"105937":153,"106":[59,121,132],"1063":132,"1064":132,"1065":121,"10655":153,"1066":[110,121,176],"106649":38,"1067":121,"1068":[121,132],"10689":141,"1069":[38,121],"107":[50,121,132,145],"1070":121,"1071":132,"1072":[111,121,176],"107282":38,"1073":[121,132],"1075":132,"107959":121,"108":[121,132,180,191],"108032":38,"1084":132,"1085":132,"1086":121,"1087":132,"1088":[121,132],"1089":121,"109":121,"1090":121,"109091":117,"1091":132,"109167":38,"10928802805393":58,"1093":132,"109375":132,"1096":[132,177],"1097":57,"1098":132,"1099":33,"10k":125,"10m":[113,174],"11":[14,22,25,29,35,38,47,48,50,57,59,60,62,64,85,93,94,99,100,101,102,103,108,109,110,111,112,120,121,128,132,135,138,142,143,144,145,146,148,155,156,158,159,160,161,162,164,165,169,170,172,191,192],"110":[14,50,58,59,66,121,145,169],"1100":143,"110000":38,"1104":132,"110426":59,"1105":[61,79],"1106":[61,79,132],"1107":132,"11088":25,"1109":141,"111":[35,59,80,121,128,132,143],"111000":143,"11109":93,"1111":[122,178],"111101":38,"11111":93,"1112":132,"1114":132,"1116058338033":64,"111618":38,"1117":132,"111700":38,"111752":38,"112":[64,121,132,143],"112151":153,"1123":132,"11239":126,"1123949416":178,"1124":132,"112425":38,"11250":66,"112522":29,"1128":132,"1129":132,"113":[38,50,57,110,121,132,145,176],"1130":143,"1132":132,"11328125":132,"1133":132,"113362":38,"113402":117,"1135":38,"1136000":[112,176],"1137":132,"1138":[61,79],"114":[50,61,79,132,145],"1142000":112,"1144":[111,176],"1145":132,"114639":[63,65],"1147":38,"114700":79,"115":[57,59,132,143],"1151":35,"115237":61,"115238":79,"1153":132,"11530945":[154,182],"115337":146,"1157":132,"1158":121,"1159":121,"116":[35,64,110,132,143,176],"1160":[29,121,132,143],"1160103":38,"11609933":79,"1161":121,"1162":[121,132],"1163":[121,132],"1164":[121,132],"1165":121,"1166":[61,79],"11663747":79,"1167":132,"1168":29,"116819":146,"117":[61,125,132],"1171875":132,"11742":79,"1175":132,"117513":61,"117522":143,"1176":[122,178],"11761":58,"11770":25,"118":[61,79,132],"1180":132,"1183":132,"1184":132,"118616":121,"1187":132,"119":[61,79,132,156],"119048":38,"1191":[59,132],"1192":132,"1196":153,"119621":29,"1197":145,"1197000":112,"1198":145,"11983416102879":156,"1199":[132,161,162],"11th":44,"12":[14,22,25,29,35,37,38,39,41,43,44,49,50,51,52,53,54,59,61,66,68,79,81,93,94,102,110,112,117,120,121,130,132,138,143,144,145,146,148,150,153,156,157,165,169,170,176,184,187,188,191,192],"120":[14,37,38,60,64,93,132,154,182,191],"1200":[56,132],"12000":153,"120000":[61,79,170],"1201":132,"1202":130,"1207":132,"121":[47,50,61,64,79,132,141,145,156],"12108":58,"12109375":132,"1211":38,"121237":59,"1213":132,"121358":38,"121669":[63,65],"1218":132,"1219000":112,"12195403":79,"122":[47,50,61,79,132,145,156,185],"1220":[33,132],"122021":38,"1222":132,"122411":38,"1225673588504812":66,"1227":132,"122784":38,"122785e":59,"122827":121,"1229":132,"123":[14,50,93,121,132,145,153,170],"1232":132,"12326000":[112,176],"1234":[132,170,192],"123431":29,"12345":[38,170],"123456789":93,"123492":59,"1235":132,"123588":143,"1236":34,"1237":34,"1238":132,"1239":132,"124":[38,58,61,79,132],"1240":132,"124210":38,"124217":121,"1245":132,"124505":38,"124734e":121,"125":[31,58,64,132,143,170,177,192],"1250":132,"1251":79,"125115":140,"1253":132,"1254":132,"125457e":59,"125479":38,"1259":42,"126":[38,61,79],"126299":38,"1264085":38,"12647":153,"12669":153,"1267":132,"12693":25,"12697628":120,"127":[59,66,121,126,132,143,156,180],"127101":121,"127304":79,"12733734668670776":66,"1274":[61,79],"127469":38,"1275":132,"1276":132,"127696":38,"1279":132,"128":[31,32,33,34,36,37,39,41,50,58,83,124,125,126,130,131,132,145,170,190],"1280":60,"128188":146,"1284":132,"1285":132,"1286":132,"1287":132,"1288":121,"12882135":177,"128894":121,"1289":121,"12890625":132,"128n":32,"128x128":131,"129":[38,46,61,79,132,143],"1290":[121,132],"1291":[121,132],"12919":38,"1292":121,"1293":132,"1295":132,"129527":38,"1297":132,"12985994":79,"12e4":[170,192],"12px":157,"13":[14,25,38,49,50,52,55,93,94,99,100,101,102,108,109,110,111,112,113,120,121,130,132,137,138,142,143,145,146,148,150,155,156,158,159,160,161,162,164,169,170,191],"130":[9,14,101,102,110,143,176],"1300":[54,156],"1300131294":[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,75,110,111,112,143,144,156,160,161,162,164,176],"1301":150,"130353":121,"1306":132,"130634":38,"1307":132,"130748":143,"1308":132,"131":[29,64],"1310":132,"1311":132,"1312":132,"1313":132,"1315":132,"1316":38,"131667":38,"13168":79,"131688":143,"1317":132,"131741":38,"132":[29,58],"1320":29,"1321":[121,132],"1322000":112,"1323":121,"1324":121,"132500":38,"13255":25,"1326":[121,132],"13265":153,"1327":121,"1328":132,"1328125":132,"132931":38,"133":[29,143],"13326":79,"133260":61,"1334":[44,132],"1338":153,"13390011":79,"133927":79,"134":[29,46,84,156,184],"1340":132,"134156":38,"134280":121,"1345":132,"1346":132,"135":[29,110,121,132,141,149,156,176],"1350":132,"135000":38,"135088":38,"135117":38,"1354":132,"1356":132,"1358":132,"1359":132,"136":[29,59,121,132],"1361000":[112,176],"1362":132,"136302":[63,65],"1364":132,"13671875":132,"1368":132,"1369099078838":[63,65],"136m":35,"137":[9,29,50,101,102,132,145],"1371":132,"137210":38,"137321189738925e":117,"1376":132,"138":[29,121,132],"1382":132,"1385":132,"1386":[122,178],"1387":79,"1388":132,"139":[29,57,59,132],"1391":132,"139167":38,"1393":132,"1394":132,"1396":38,"1397":132,"1399":132,"14":[14,25,29,38,50,54,58,59,61,64,93,94,102,120,132,133,135,138,141,143,146,148,150,156,170,184,191,192,193],"140":[14,29,56,59,130],"140000":66,"140419":121,"1405":132,"1406":129,"140625":132,"1407":132,"140769":38,"1409":130,"141":[29,132],"14100":170,"1411":[131,132],"1412":132,"141297":177,"1413000":38,"1413001":38,"1414":132,"14159":[170,171,192],"141592653589793":191,"1416":144,"141645":121,"1419":132,"142":[132,170,192],"1422":[61,79,132],"1425":132,"142543":79,"14260":66,"143":46,"1430":132,"14318":59,"1432":33,"1432780985872142341":119,"1438":132,"1439":132,"144":[46,64,111,164,169,176],"1440":132,"144000":143,"1441":132,"1442":132,"144218":38,"1443":34,"144336":121,"1444":[34,132],"1445":[61,79,122,178],"14453125":132,"145":[29,63,64,65,118,146],"146":[64,118,121,146],"1461":132,"1464":[121,132],"1465":121,"1466":[121,132],"1467":[61,79,121],"1468":[79,121,132],"1469":[121,132],"147":[46,64,118,121,132,146],"1470":[121,132],"147308":143,"1475":132,"147704":146,"148":[50,64,118,121,132,145,146],"1480":132,"1484375":132,"148495":[63,65],"1485000":[112,176],"148533":143,"14857187":146,"148572":146,"1488":132,"148822":[63,65],"148884":29,"14888888888888888":156,"149":[60,64,118,132,146],"1490":[38,132],"149000":102,"1492":132,"1498":132,"14999":[61,79],"149995":177,"14m":35,"14x14":32,"15":[3,14,18,25,31,32,33,36,38,40,48,49,50,51,52,53,54,55,57,58,60,61,64,66,79,84,93,102,105,107,112,120,125,131,143,145,146,148,150,153,156,164,170,176,184,191,192],"150":[7,14,39,46,50,60,64,79,83,118,121,128,132,140,146,148,184],"1500":[31,54,56,58,111,176],"150000":38,"150451":121,"1505":131,"1506":133,"1508":[125,132],"150800":79,"1508000":112,"150px":157,"151":132,"1510":38,"1511":131,"1512":130,"151462":29,"1516198":79,"151727":121,"151882e":59,"152049":143,"1521":132,"1522":132,"1523":132,"15234375":132,"1524":153,"1525":132,"1526":153,"15262765526":61,"1527":132,"153":132,"1530":132,"1531":132,"1532":132,"1533":153,"1536936":38,"154":132,"1541":132,"1544":132,"1545":132,"1548000":112,"1555":[57,121],"1556":[121,130],"1557":121,"1558":132,"155833":38,"1561":121,"156199":121,"15625":132,"1563":121,"156302":121,"1564":121,"1565":121,"1566":132,"1567":[110,176],"157":[121,132,140],"1570":132,"1572":132,"157256e":121,"1576":[38,132],"157729":[63,65],"15777777777777777":156,"158":[38,121],"1580":132,"158079":121,"1583":132,"1586":121,"1587":121,"1588":121,"1589":121,"159":[121,132],"1590":[121,132],"159000":[112,176],"1593":132,"1594":132,"1594000":[112,176],"1595":132,"1599":[48,132],"159998":121,"15m":35,"16":[14,25,29,30,31,32,33,36,37,38,43,44,46,48,50,51,54,56,58,59,61,62,79,93,94,102,103,111,120,126,129,130,131,132,133,135,143,145,146,148,150,153,154,156,164,165,170,176,177,182,184,191,192],"160":[29,117,121,132,164,165],"1600":54,"16000":[58,112,176],"1600000":112,"1600x1200":153,"16015625":132,"1604":132,"1605":132,"1607":132,"1608":130,"161":[50,121,132,145],"16111":[57,184],"1612":132,"1614":121,"1615":121,"1616":[121,132],"161677":58,"1617":38,"1618":121,"1619":121,"162":[50,132,145,165],"1620":121,"16200":57,"162016":146,"1621":132,"162308":38,"162460":121,"16259":59,"1627":[61,79],"162754":121,"162829":153,"1629":132,"163":38,"1630":164,"1630251618197":[63,65],"1630537000":119,"1630544034":[119,178],"1632":132,"1635":132,"1636":79,"163636":117,"1639":[29,59],"163mb":125,"164000":143,"1640625":132,"1641":132,"1644":132,"1645":132,"1646353":38,"16465":25,"1648":132,"1649":34,"165":[110,121,132,176],"1650":34,"1653":132,"1654":79,"165539":121,"16578108":79,"1658":132,"166":[50,132,145,165],"1660":132,"166163":121,"1665":79,"16666667":177,"166667":38,"1669":38,"167":58,"1671":132,"167573":38,"1676":132,"1679":132,"16796875":132,"168":[111,176],"1682":132,"168266":121,"1683":[122,132,178],"16837":79,"1685":132,"168525738":169,"1686":132,"1687":132,"1688000":[112,176],"169":132,"1690":[122,178],"1692":132,"16928":52,"16933":153,"1694":165,"1695":[132,165],"1696":165,"1697":165,"1698":165,"169811":143,"16m":35,"16x16":131,"17":[14,25,38,50,55,57,58,59,61,79,93,102,103,120,132,140,143,146,148,150,156,164,165,170,172,184,191,192],"1703":[132,133],"170312":177,"1704":130,"170446e":59,"1706":131,"17082872753491":35,"1709":132,"1710":132,"1712":132,"1713":132,"1715":38,"1718":132,"171875":132,"171909":59,"172":58,"1720":132,"1723000":112,"1725":[61,79],"1726":29,"17296777":120,"173":[57,64,184],"1731":132,"173211":[63,65],"173253":121,"1733":132,"173400":79,"1738":164,"1739":164,"174":[38,132],"1740":164,"1741":[132,164],"1742":[132,164],"174330":38,"1745":132,"1747":38,"1748":132,"17482":25,"1749":132,"175":177,"1750":132,"175000":38,"175135":143,"1752":132,"1757":166,"17578125":132,"175833":38,"175m":38,"176":[58,117],"1760000":112,"1762":153,"176277":38,"1764":132,"1765":132,"176m":38,"177":[61,79],"1770":132,"177000":143,"1775000":112,"1776":153,"1777":153,"1779":[122,178],"177m":38,"178":[66,132],"1782":109,"1784":145,"178449":59,"178456":38,"1788":[132,153],"17889":25,"178930":59,"17897":59,"17898":59,"178m":38,"179":132,"1790":[63,65],"179056":38,"1795":132,"1796875":132,"1798":132,"179800":[61,79],"179m":38,"17m":35,"18":[14,25,36,38,50,51,54,57,58,59,61,62,76,79,93,102,117,119,120,130,132,135,140,143,150,156,164,169,171,178,186,191],"180":[113,117,128,154,182],"1800000":112,"180088":38,"180163":121,"1803":132,"1805":132,"1806":132,"1807":132,"1808":132,"180833":38,"1810":132,"181033e":59,"1811":132,"1811000":112,"1812":132,"181408":29,"181500":66,"1817":132,"181916":38,"181m":38,"182":[29,117],"1820":153,"18215":25,"1823":132,"1827":132,"1827000":112,"182830":121,"182m":38,"183":[38,132],"183150":146,"183173":121,"183580":29,"18359375":132,"1836":132,"1836633":38,"1839":132,"18390":[61,79],"183914":29,"183m":38,"184":[117,132],"1840":132,"18421":25,"1846":121,"1847":[121,132],"1848":121,"1848000":112,"1849":121,"184m":38,"185":[42,56,117],"1850":121,"1851":121,"1852":[121,132],"1853":121,"1855":34,"18557502":[61,79],"1856":[111,132,176],"1857":132,"18576":[61,79],"1858":34,"185946e":59,"185m":38,"186":[50,61,79,132,145],"1860":79,"186096":121,"1862":132,"18677":79,"1869":132,"186m":38,"1871":79,"1872":132,"1872000":112,"1874":[122,178],"187449":29,"1875":132,"1875693":38,"18772155":79,"1879":132,"187m":38,"188":117,"1880":[1,132],"188054e":59,"1882":[38,132],"1885":132,"1889000":112,"188m":38,"189":[117,132],"1892":132,"1893":132,"1896":132,"18965517":79,"1897":29,"1899":132,"189m":38,"18m":35,"18th":109,"19":[38,50,59,61,76,93,102,113,120,125,130,132,137,140,141,143,156,164,171,174,175,177,184],"190":[56,61,79],"190222":38,"1904":133,"19053":25,"1906":145,"1908":132,"190m":38,"19126407":38,"19140625":132,"1915":132,"19157667":79,"191m":38,"192":[59,111,125,176],"1920000":112,"1921":132,"192298":121,"192380":38,"1925":132,"19269777":79,"192m":38,"193":177,"1930":[110,132,143,176],"193100":79,"193137":29,"193203":38,"1933666654":[110,176],"193573":121,"1936":7,"193633":146,"1939":132,"193m":38,"194":[117,191],"1941":132,"194167":38,"1943":134,"1944":132,"1944000":[112,176],"1945":132,"194532e":38,"194763":38,"194m":38,"195":[50,63,65,145],"1950000":112,"19517":152,"195256":38,"1953125":132,"1954":132,"1954000":112,"19541375872382852":156,"1955":132,"19552860":177,"1959":[63,65,163,189],"195m":38,"196":[50,132,145],"1963":59,"1964":132,"1965":[63,65],"19651127":177,"196923":38,"196m":38,"197":[50,117,132,145],"1970":38,"1972":[113,132,174],"1973":132,"197317":74,"1974":[113,132],"1978":141,"197m":38,"198":[58,132],"1980":[137,138],"1981":132,"198279":38,"1984":132,"198667":64,"199":[117,165],"19902":25,"1991":[132,171,193],"1992":[50,59],"19921875":132,"1993":[59,113,174],"199305":143,"1994":145,"1995":59,"1996":[49,52,113,132],"1997":[50,163,189],"1998":[49,52,112,113,133,143,176,179],"199833":59,"1999":[112,149],"1999000":112,"199m":38,"19m":35,"1\u0435":148,"1_bar":126,"1d":[38,43,44,57,121,127],"1e":[14,32,83,93,125,126,130,139],"1e10":[154,182],"1e6":[154,177,182],"1f":[34,45,46,47,48,51,64,111,156,162,176,190],"1h":[61,79],"1min":184,"1pjb":38,"1px":157,"1s":[29,61,79,156,163],"1st":[7,14,18,22,37,54,120,124,125],"1stflrsf":54,"1u":38,"1x":[133,170],"1x1":130,"1x784":125,"1xcxhxw":133,"1xfhxfwx":133,"1xfhxfwxna":133,"1xn":125,"2":[0,6,7,11,14,18,22,29,31,33,34,35,36,37,38,39,40,41,42,45,46,47,48,55,59,63,64,65,66,74,75,76,77,79,83,84,93,94,95,96,97,101,102,107,109,110,111,112,113,115,117,118,121,122,124,125,126,128,129,130,131,132,133,134,135,137,138,139,140,143,144,145,146,148,149,150,153,154,155,156,157,160,161,162,163,164,165,166,168,169,170,171,183,184,185,187,189,190,191],"20":[7,9,14,18,29,30,31,32,34,37,38,39,40,44,47,48,49,50,52,53,54,55,56,57,58,59,60,61,63,65,66,68,76,79,81,84,93,101,102,105,109,110,115,117,120,121,128,130,131,132,134,135,137,139,140,141,144,148,156,166,171,176,177,184,185,190,193],"200":[17,31,38,46,48,50,52,53,54,56,60,64,83,102,117,128,129,131,132,144,154,156,182,184,190],"2000":[14,35,54,58,110,112,121,156],"20000":[14,112,124,125,171],"200010":121,"2001":[112,141],"200126e":38,"2002":[35,112],"2003":[112,135],"2004":[112,177],"2005":[112,129,132,135],"2006":[66,112,126,138,156],"200611":38,"2007":[66,112,113,174],"2008":[50,66,112,137,177],"2009":[48,112,132,141],"201":[38,58,117,132],"2010":[112,135,138],"2011":[112,149],"2012":[112,177],"2013":[31,113,116,138,174],"20130101":121,"20130102":121,"20130104":121,"2014":[57,130,141,143,177,180],"2015":[22,103,130,141,143,172],"2016":[50,56,143,149,163],"2016000":112,"2017":[109,121,139,141,143],"2018":[35,38,45,47,48,93,94,107,113,119,122,132,143,169,170,174,178,191],"2019":[17,113,122,132,137,139,143,174,178],"2019\u7248\u5b89\u88c5\u6559\u7a0b":38,"201m":38,"2020":[1,14,38,54,57,93,113,115,122,125,132,137,139,140,141,143,163,174,178],"2020060289":14,"2021":[1,38,103,113,119,132,133,137,138,141,172,173,174,178],"2022":[14,103,107,109,113,115,116,119,125,137,138,139,140,164,165,172,173,174,178,193],"2023":[25,29,38,93,126,130,131,133,173,175,178],"2025":113,"202500":38,"202656":121,"2028":132,"202895":38,"203":117,"2030":[103,141,172],"203125":132,"2033000":[112,176],"203450":38,"203488":38,"2035":[63,65],"203578":146,"2037":132,"203848":38,"204":[34,58,117,132],"2040":132,"20433":79,"204445":38,"2045":132,"204565":38,"2048":[32,131],"2048n":32,"205":[34,58,117,132],"2050":[110,176],"205000":38,"205244":146,"2053":132,"2054":132,"2055":132,"2056":132,"206":[58,143],"2060":29,"2061":[61,79,132],"2062":34,"2063":132,"20635":79,"20636":79,"20637":79,"20638":79,"20639":79,"2064":61,"20640":[61,79],"206881":[61,79],"2069":132,"206937":[63,65],"207":[35,58,132],"2070":132,"20703125":132,"207495":38,"207552":121,"207758":143,"207m":38,"208":[58,132],"208342":143,"208500":66,"208516":38,"20876306":156,"2089":132,"208969":38,"209":[58,117,132],"209435":38,"20944":14,"2099":38,"209m":38,"20gemi":35,"20px":157,"20th":55,"20verileri":35,"21":[14,29,38,59,61,68,79,81,93,94,102,103,120,121,132,137,140,141,156,164,165,169,171,184,191],"210":117,"210113":38,"2103":[132,141],"210424":38,"2105":132,"210545":121,"2107":132,"2109":132,"2109375":132,"211":[50,156],"2112000":[112,176],"2115":132,"211667":38,"2117":132,"211714":38,"211771":38,"2118":132,"212":132,"212514":38,"212563":38,"212626":38,"212639":121,"2127":[61,79,132],"212782":38,"212m":38,"213":[38,117],"2137":132,"214":[132,153],"214141":38,"2144":132,"2145":132,"214693":38,"21475352":156,"214756":38,"2148":[111,176],"214824":38,"21484375":132,"2149":132,"215":117,"215058":38,"2153":153,"2155":132,"2156":132,"215643":38,"21567622":156,"215682":61,"21578029":79,"2158":132,"216":[132,170],"216148":38,"216719002155":156,"2169":[61,79],"216924":38,"217":140,"2173424":38,"217478":38,"2175":132,"2176":132,"217739":38,"2178":132,"2180":79,"21806371":156,"218161":[63,65],"218217":38,"218509":143,"218612":38,"21875":132,"218966":38,"219":[61,79,117,132,156],"2190":38,"219305":121,"219367":38,"219453":146,"219544":38,"2196":132,"2198447506":191,"21m":35,"22":[14,38,46,50,54,59,61,76,79,111,113,120,131,135,140,148,150,156,171,174,176,178,191],"220":[38,58,117,132,169],"22000":112,"220173":38,"2202":132,"2203":132,"2204":132,"220500":143,"2207":132,"2208":132,"2209":132,"221":[117,132],"22102":79,"2217":132,"2218":132,"221846":38,"2219":[79,132],"22199004":79,"222":33,"2222":132,"222222":117,"222298":143,"222337":[63,65],"2224":132,"22265625":132,"223":[38,59,79,132],"223242233890716":35,"2235":132,"223500":66,"223854":38,"223910":38,"224":[125,132],"2241":132,"22426":25,"2243":132,"2246467991473532e":191,"225":[132,161],"2250":132,"2251":132,"2254":79,"2255":132,"2259":132,"226":132,"22615":153,"2265":132,"2265625":132,"2268":132,"227":[132,162],"227031":38,"2272":132,"227546":38,"2278":132,"228":132,"228077":29,"228120e":38,"2282":132,"2284":[111,176],"2287":132,"2288":132,"2290":132,"2291":132,"2292":132,"2293":132,"229673984":38,"23":[14,38,46,61,76,79,93,111,120,132,137,140,143,156,164,169,170,176,178,191],"230":[59,132],"23000":112,"230000":38,"230352":121,"23046875":132,"230769":38,"230m":38,"231":[38,117,132,156],"2310":132,"2313":132,"231342":38,"23157000":[112,176],"231640":38,"23170093":79,"231768":38,"2318":132,"232":[58,132,156,162],"2326":132,"2327":132,"2328":132,"2329":132,"233":[132,169],"2332":132,"2333":132,"2334":132,"2335":132,"234":[132,161],"2340":132,"234330":38,"234368":29,"234375":132,"234571":59,"235":[61,79],"2353":132,"2354":132,"235449e":38,"2355":132,"235636":38,"2357":132,"236":[132,161],"2360":132,"236000":38,"2360000":112,"23606797749979":93,"2361":132,"2364":132,"2365":132,"2366":132,"2367":132,"2369":132,"237":38,"237185":38,"2373":132,"2376":132,"237692":38,"2377":132,"2378":132,"2379":132,"238":132,"2380":132,"2381":132,"2383":132,"2384":[61,79],"238462":38,"2385":132,"2386":132,"2387":132,"2388":132,"2389":132,"239":132,"239001e":59,"2392":132,"2394000":112,"2395":132,"2396":132,"2397":132,"2398":132,"24":[14,32,38,49,52,58,59,61,76,79,103,120,121,125,132,139,140,144,148,156,164,165,172],"240":[132,162],"24000":112,"2401":[61,79,132],"240213":121,"2403":132,"2404":132,"2405":153,"2408":132,"2409":132,"241":132,"2411":132,"241108":79,"241287":38,"2413":132,"2416":132,"2418":132,"2419000":112,"242":132,"242098":143,"2421875":132,"242225":59,"2426":132,"2427":132,"243":[50,145],"2430a9896ce5":[119,178],"2433":132,"243338e":38,"243422":38,"2435":132,"243534":38,"243875":38,"244":[50,145],"244215":38,"2443":132,"2444":38,"2446":132,"244655":38,"2447":[132,160],"2448":160,"244898":146,"245":[132,140],"2450":132,"2451":132,"245820":38,"24591009185":79,"246":[132,162],"2460":132,"246046":38,"24609375":132,"2465":132,"247":[132,161],"2472":132,"2475":132,"2477":132,"2479":132,"248":130,"2480":132,"2481":132,"2483":132,"2488":132,"2489":132,"249":[63,65,132],"2495":132,"2498":132,"24c5":32,"25":[7,14,31,32,35,36,37,38,39,40,41,49,50,52,54,55,58,59,61,64,79,83,84,93,94,102,117,120,121,125,128,132,134,135,140,143,145,149,152,153,156,164,165,170,171,177,185,187,188,190,191,192,193],"250":[34,58,60,125,132,134,156,193],"2500":150,"25000":112,"250000":[38,64,66,153],"250077":121,"2503":132,"250448":38,"2505":132,"250522":29,"251":132,"2513":132,"252":59,"2520000":112,"2522":132,"2524":132,"252468":121,"2525":132,"2526":132,"2528":132,"2529":132,"253":132,"253000":112,"2532":132,"2537000":112,"25390625":132,"254":[50,132,145,162],"2547":38,"255":[29,30,31,32,36,40,41,47,124,125,130,131,190],"255000":143,"2555":132,"25551336":156,"2556":132,"2559":132,"256":[31,32,33,34,36,37,38,39,58,60,62,120,124,125,126,129,130,131,152,153,180,190],"256217e":59,"256221e":59,"2568":132,"256952":38,"256n":32,"256x256x3":120,"257":[161,191],"2574":[61,79],"257484e":121,"2577":132,"257740":29,"2578125":132,"258":39,"258445":[63,65],"2586":132,"2586000":112,"2587":132,"259":[38,59,61,79],"2593":132,"2599":132,"25th":54,"26":[38,50,58,59,64,79,112,116,120,121,132,140,141,145,150,156,164,165,171,174,177,186],"260":38,"2600":[38,61],"260000":[9,101,102],"260c2de0a050":179,"261":132,"2613":[52,132],"26150":79,"2617":132,"26171875":132,"262":132,"262048":38,"262207":38,"2624":132,"2625":132,"2629":132,"263":132,"2631":[61,79],"263694e":38,"263863":38,"2639":132,"264":[64,132],"2640":[38,132],"264064":121,"26448193":177,"264485":121,"264700":[61,79],"265":[50,132,145],"265056":[63,65],"265412":143,"26541833":79,"265625":132,"2659":132,"26590556":120,"265909":153,"266":[58,132],"2661":129,"2664":132,"2664364997":62,"2666666666666666":14,"267":164,"2670":132,"267059e":59,"2671":132,"2672":132,"2673":132,"2674":[132,153],"2677":132,"268":132,"268016":29,"2681":132,"2687":132,"269":[58,132,135,190],"2692":132,"26953125":132,"269534380":121,"269573":59,"26th":137,"27":[38,46,50,58,61,116,120,132,139,145,153,156,164,169,170,174,192],"270":[132,164,165],"27000":[112,176],"2701":132,"27017952":79,"270551":38,"2706":132,"270833":38,"2709":132,"271":38,"2710":132,"2713":132,"2716":132,"271796":38,"2719":132,"272":132,"2720":143,"2723":79,"2725":132,"2727":132,"27298934":79,"273":[132,149],"273000":79,"2732":132,"27342931":[61,79],"2734375":132,"2738":132,"274":[59,132,164],"274082":[63,65],"275":132,"2751":38,"2752":132,"275264":121,"2753":132,"2759":132,"276":132,"2761":132,"2763":132,"2768":132,"276923":38,"277":79,"277078":61,"277273":153,"27734375":132,"277392":29,"27745":79,"277600":38,"2778":79,"278":[79,132],"2780":132,"2784":79,"2785":79,"2787":132,"279":[61,79,132],"2794":132,"28":[29,30,32,38,40,41,47,50,57,59,61,68,79,81,83,85,93,117,120,124,125,129,132,141,145,150,156,171,180],"280":[38,61,79,132,164,165],"280195":121,"280369":121,"2807":132,"2809":132,"2809000":112,"281":[38,164],"28109":25,"28125":132,"281427e":38,"2815":132,"2816":132,"2820":153,"2824":132,"2831":132,"2832":132,"28327":25,"2833":[132,150],"2836":132,"2838":132,"284":132,"2840":132,"28433":25,"2849":132,"285":121,"28515625":132,"2854":132,"2855":132,"28566":[61,79],"28571428571428414":156,"285843":29,"28585348":156,"286":[121,144],"2860":132,"287":[121,132],"288":[38,132],"2880":132,"2881":153,"2882":132,"289":160,"2890625":132,"28964":25,"28x28":[29,30,32,41,125],"29":[14,25,38,50,58,59,61,79,93,120,132,145,156,164,165],"290":132,"2900":58,"2904":132,"29040966":156,"290833":38,"291":132,"2911":132,"2915":132,"2916":132,"2919":132,"291954":121,"292":[111,132,176],"292181e":59,"2922":132,"292669":[63,65],"29296875":132,"2933":132,"2938":[63,65],"293846":38,"29399768":156,"294":[38,132,156],"2945":132,"295":[61,79,132],"29513185":79,"2954":132,"296":[29,132],"2962":132,"2963":132,"2966":132,"296638":121,"296875":132,"297":[130,132],"2971":132,"2974":132,"2975":132,"2976":132,"2977":132,"297727":153,"2978":132,"298750":143,"299":[50,79,102,132,145],"2995":132,"2998":38,"2\u5347\u7ea7\u8865\u4e01":38,"2_2":124,"2_intro_to_tensorflow_for_deeplearn":43,"2_k":128,"2_p":126,"2_q":126,"2a":131,"2b":131,"2c":131,"2d":[1,33,43,77,84,110,111,121,126,154,164,166,184],"2d2d2d":157,"2e":[126,129],"2f":[18,50,117,125,135,144,148,150,156],"2fe":145,"2g4adil3rc2ig":59,"2j":[120,170,192],"2m":38,"2nd":[18,22,37,54,64,120,121,124,125],"2ndflrsf":54,"2p_":50,"2s":[61,133,156,184],"2urviv":150,"2uzaipygetzmkni96ng18dyippbmj3hekpjeafd3fcrkemh4azefi2mqvxrfngxztozguhnbefu2la3avusz":59,"2vtlmaj":83,"2x":[57,75,170],"2x_i":75,"2xbdtm2l70p":59,"2yf":149,"3":[0,1,6,7,8,9,11,14,16,22,23,29,30,31,33,34,35,36,37,38,40,41,44,46,47,48,51,59,62,63,64,65,66,71,74,77,80,83,84,85,93,94,95,97,99,100,101,102,107,108,109,110,111,112,113,114,116,117,118,119,121,122,125,126,127,128,129,130,131,132,133,135,137,138,139,140,142,143,144,145,146,148,149,150,153,154,155,156,157,158,159,160,161,162,163,164,165,166,168,169,170,171,178,182,184,185,187,188,189,190,191],"30":[7,14,18,29,32,35,38,40,47,49,50,51,52,55,56,59,60,61,62,63,65,66,93,94,102,105,110,111,120,121,125,132,135,140,143,145,148,149,154,156,169,170,171,176,177,182,185,187,188,191],"300":[18,49,52,53,54,140,148,149,154,156,169,182],"3000":[14,18,54,75,132],"30000":[14,112,186],"300000":64,"3000000000":171,"300000012":152,"3004967298995864":121,"300497":121,"3005":132,"30078125":132,"30082566":156,"300k":141,"300px":157,"301":[38,132],"3010":132,"3014":[61,79],"3015":132,"3019":132,"302":38,"3022":132,"3028":132,"303347":38,"3046875":132,"304888":[63,65],"3049":132,"305":132,"3054":132,"3055":132,"3064":132,"3067":132,"3071":[132,153],"3075":132,"3078":132,"308":132,"3080":132,"3081":132,"3082":132,"3085":132,"30859375":132,"3086":132,"3087":132,"308894":121,"3089":132,"30927452":79,"30957512":79,"30990":25,"30px":157,"31":[1,38,50,57,59,68,79,81,93,102,120,132,139,140,143,156,184,186],"3100":[58,132],"3105":132,"3106":132,"3107":132,"3109":132,"311":132,"3111":132,"3112":132,"3113":132,"311377":29,"3116":132,"31168387":79,"3117":132,"312":[49,52],"3120":132,"312037":74,"3125":132,"3127":153,"3128":132,"313090":121,"3131":132,"3133":132,"3134":132,"313482":121,"313765e":38,"314":38,"3140":132,"3141":132,"3145":132,"3146":132,"3148":[111,176],"3149":[61,79],"315":117,"315000":38,"31501":121,"3159":132,"316":132,"3161":132,"3163":132,"31640625":132,"316509":121,"316667":38,"3168":132,"317":132,"3170":132,"3177":132,"3179":132,"318":[38,121],"3181":132,"3184":132,"31856":25,"318823":29,"318988":121,"319":[121,132],"3191":132,"3196":132,"31t19":119,"32":[29,31,32,33,34,35,36,37,38,39,40,42,43,44,50,55,58,61,63,65,79,83,93,105,120,125,126,130,131,140,145,156,169,170,191],"320":[38,39,121,160],"32000":[58,112],"3202":132,"3203125":132,"3208":132,"320833":38,"321":156,"3210":132,"321097":29,"32137599":156,"322":[38,61,79,121,132,156,190],"32208":38,"3224000":112,"322500":38,"322616":121,"322727":153,"3228":132,"323":156,"323328":59,"3234":132,"3235":132,"3238":132,"324":156,"3242":132,"32421875":132,"3245":132,"3246":132,"3248":132,"3249":132,"325":[121,132,156],"3252":[61,79],"325417":121,"3255522":[170,192],"32561":51,"326":[38,121,132,156],"3261":132,"326460":[63,65],"326667":38,"32674535":[61,79],"3269":132,"327":[121,132],"3270":132,"327500":38,"328":[38,121,132],"328086e":38,"328125":132,"328333":38,"3285":132,"3286":132,"3288":132,"328865":153,"3289":59,"328947":117,"329":[38,121,132],"3291":132,"329167":38,"3293":153,"329816":38,"32995317":156,"32c3":32,"32c5":32,"32c5s2":32,"32n":32,"32x32":[33,125,130,131],"33":[38,50,59,61,79,120,121,132,140,141,145,154,156,165,168,182],"330":[79,121],"3300000":[112,176],"3301":132,"3306":[59,132],"3308":132,"3309":132,"331":[121,132],"3310":[110,176],"331000":143,"33146":121,"3316":132,"3319":132,"332":132,"33203125":132,"3323":132,"332354":58,"3326":132,"3327":132,"333":[32,170,192],"3331":132,"3333":132,"333333":[38,121],"333701":143,"3338":132,"333884":29,"3339440331":184,"334":132,"33416821":79,"3342":132,"334288":74,"3346":132,"3349":132,"335":132,"3357":132,"3359375":132,"336000":112,"336342":[63,65],"336432":121,"337":132,"337692":38,"3377000":112,"3378712":79,"3379":132,"33812285":[154,182],"338224":29,"3385":132,"339":[79,132],"3394":132,"33984375":132,"33j5zsqxrbaifkki8kiqevc9w9loi3sltucxl49t":59,"34":[38,50,58,59,61,64,79,94,112,120,132,144,145,156,169,170,171,192],"3404":132,"3406":132,"340769":38,"341":132,"34110223":79,"3412":132,"341300":[61,79],"3414":132,"341649":59,"342200":[61,79],"342277":121,"34227718":121,"34227718263016094":121,"3425":132,"343":[132,170],"343590":121,"3436":132,"34375":132,"34376245":120,"344":[38,132],"3444":132,"3445000":[112,176],"344698":61,"344828":117,"345":[33,79],"3455":132,"345608":121,"345872":121,"346":132,"3468":132,"346987":121,"347029":121,"3471":132,"34765625":132,"3477":132,"348":132,"3480":143,"3483":132,"349":[79,132],"349388":38,"3497":132,"349751":29,"35":[14,31,35,38,61,68,79,81,94,120,131,132,148,150,156,165,170,192],"350":[121,132],"3500":[61,170],"35000":[112,170,192],"350000":64,"3502":132,"350816":29,"3509":132,"3510":132,"35119":25,"3513":132,"3514":132,"351423":121,"3515625":132,"3516":153,"3519":[59,132],"351957":121,"352100":[61,79],"3522":132,"352540":121,"353":132,"3537240779558":[63,65],"35410":25,"3544":165,"3548":132,"355":132,"3554":153,"35546875":132,"3555":132,"35554":79,"3557":132,"3558":132,"356":[79,132],"3561":137,"3562":137,"35656222554887711":[170,192],"3571":132,"358":184,"3580":59,"358500":[61,79],"359":132,"359375":132,"3595":132,"3596":132,"359870":121,"35e3":[170,192],"36":[38,50,63,65,79,101,120,121,132,156,170,191,192],"360":[34,66],"3600":143,"36000":112,"3605":132,"360769":38,"361":184,"3611":132,"3612":132,"36155096":146,"361551":146,"36159148":156,"3618":132,"3619":132,"362000":143,"362069":117,"3623":132,"3625":132,"3627":[132,153],"362759e":59,"3628800":93,"3630":132,"363270":38,"36328125":132,"363636":164,"36398808":79,"365":132,"3650":132,"365349":38,"366":121,"3664":132,"367":121,"3670":132,"3671875":132,"3672":132,"3673":132,"368":[38,111,121,176],"3681":132,"368430":38,"369":[121,132],"3697":132,"37":[38,50,59,61,63,65,79,93,120,131,132,145,149,156,177,185],"370":121,"370000":38,"3703":132,"371":[121,132],"37109375":132,"3715":132,"371667":38,"371682":29,"371962":121,"372":121,"372294e":59,"3723":132,"3725":38,"373":121,"3730":132,"373333":38,"37350000":[112,176],"373539":121,"3737":132,"374":[79,121,156],"374603":117,"3748":132,"375":[121,132],"375147":191,"3752":132,"375275":121,"3756":132,"37570172":[61,79],"375833":38,"3759":132,"376":[121,132],"3760":38,"376041":29,"3764":132,"3769":132,"377":[121,132],"377175":153,"3773":132,"3776":132,"378":121,"3781":132,"3782":132,"3788":132,"37890625":132,"379":[61,79,121,132],"3791":[38,132],"379601e":38,"38":[9,38,50,51,59,64,79,101,102,117,120,132,145,150,156],"380":[57,79,121,132,160,161],"3800":132,"38000":112,"380000":38,"3801":132,"3802":[121,132],"3803":121,"380350":38,"3804":121,"3805":[121,132],"3806":121,"3807":121,"3808":121,"3809":121,"381":[57,121,132,160],"3810":121,"3817":132,"3819":132,"382":[132,161],"3822":[38,132],"382308":38,"3824":38,"3828125":132,"3830":38,"3830571":38,"38332521":177,"383564":29,"3836":132,"3837":132,"3838":132,"3839":132,"384":[125,132,160],"3843":132,"384615":38,"384761":29,"385":[38,57,132,160],"3852":132,"385733e":38,"386":57,"3861":132,"3862":38,"386411":121,"38671875":132,"387":[57,132],"387129":140,"3877":132,"3878":38,"38828582528":61,"3884":121,"3886":[79,121],"3887":121,"3888":[29,121],"3889":[121,132],"389":[57,132],"3890":121,"3891":121,"389167":38,"3892":121,"3894":132,"3895":121,"3896":121,"3897":121,"39":[35,38,59,60,63,65,79,120,132,156,191],"390":[57,121],"3900":121,"3901":121,"3902":121,"3903":[121,132],"3904":[38,132],"390566":143,"390625":132,"3909":35,"391":132,"3915":153,"3916":[111,132,176],"392":[57,132],"3922":153,"3925":132,"3929":132,"393":57,"39320":[61,79],"393580":59,"3937":132,"3939":132,"394":132,"394004":121,"3942":132,"394229":29,"39453125":132,"3950":132,"3952":132,"3954":132,"395833":38,"396":38,"3966":132,"3967":132,"39696":143,"397":38,"397366":121,"3974":132,"3975":132,"3976":38,"39761905":145,"398":132,"3980":38,"3984375":132,"398856":121,"399":132,"3991":79,"3994":160,"3995":160,"3998":38,"39th":141,"3c11c1d80358":113,"3d":[38,77,80,120,154,164,166,177,184],"3f":[38,170,184,192],"3g":[68,81],"3int8":120,"3j":193,"3ltlqmqsncb9d0rthglvb3gjj3":59,"3rd":[22,37,54,120],"3s":[38,59,61,156],"3ssnporch":54,"3x3":[32,33,130],"3x4":[170,192],"3yqlb":59,"4":[0,6,7,14,22,29,30,31,33,34,35,36,37,38,39,40,41,44,47,48,59,63,64,65,66,74,76,79,80,83,85,93,94,95,102,103,109,110,111,112,113,114,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,135,138,139,140,143,144,145,146,148,149,150,152,153,154,156,160,161,164,165,168,169,170,171,180,182,184,185,186,187,188,191],"40":[1,7,9,14,32,38,50,59,63,65,83,84,85,101,102,110,111,113,119,120,132,143,149,156,169,174,176,184,185,186,191],"400":[7,53,56,110,118,130,164],"4000":[14,35,54,58,156],"40000":[14,112],"400000":64,"40000000":171,"4002912":141,"40067661":120,"4007":132,"400833":38,"400mg":[1,8],"401":132,"401135":121,"4012":132,"4013":132,"4016":38,"4018":132,"402":57,"40234375":132,"402632":121,"4029":132,"403":177,"403000":143,"403011":29,"4038":132,"4038v2":131,"404049":121,"4041":132,"4048":132,"40480256345":79,"4050":[110,176],"405278":74,"405309e":38,"4056":38,"406":132,"40618608":156,"40625":132,"4066":132,"406667":38,"4067":132,"407":132,"4071":132,"4077":132,"4077193":145,"408":[50,132,145,153],"4080":132,"4081":38,"40827":153,"408376":61,"4084":132,"4087":132,"409":[34,79,132,161],"4093":132,"4096":131,"4098":[170,192],"41":[29,38,50,61,79,93,120,132,145,156],"410":[61,79],"410014":58,"41015625":132,"411":[34,38],"4119":132,"4120":132,"41212121":83,"412214e":38,"41242353":[61,79],"4127":[170,192],"413":132,"4139":[170,192],"4140625":132,"41420614":79,"4147":132,"4148":132,"4149":132,"415":[50,145,164,166],"4153":132,"415385":38,"4162":132,"4165":58,"417":[61,79,132],"4179":132,"41796875":132,"41863":25,"4189":132,"4192":132,"419621e":59,"4197":35,"4198":35,"4199":[35,132],"42":[31,33,34,35,38,40,43,44,49,52,53,56,57,58,59,60,61,64,74,83,105,120,131,132,144,148,156,165,169,170,177,184,191,192],"420":143,"4200":35,"420000":38,"4201":35,"4202":35,"4203":35,"4204":[35,132],"4205":35,"4206":35,"4208":[111,176],"421":[38,132],"421456":29,"4215":38,"421622":121,"421797":29,"421875":132,"4218916":79,"4219":132,"4221":153,"4222":132,"4223":52,"42237836":79,"4229":132,"423":132,"4236":132,"4238":132,"423967":177,"424":132,"4243":132,"424866":38,"424965632":38,"425684e":38,"42578125":132,"4261":132,"426142":121,"4265":132,"427":132,"4270":132,"427000":112,"427500":38,"428793":177,"429055":38,"4291":132,"429113":121,"4296875":132,"43":[38,50,58,59,64,79,93,120,132,156,169],"430":[57,68,81],"4300":132,"43000":112,"4303":132,"431":132,"43116792":[154,182],"431800e":59,"432":[29,132],"433":79,"4334":132,"43359375":132,"433594":64,"4336":132,"434":132,"4345":132,"435":[61,79],"4350":132,"43539442771396":156,"4354":38,"435833":38,"4362":132,"436250":29,"436517":146,"437":132,"4375":132,"438":132,"4381":132,"439":[132,153],"44":[29,38,57,59,79,93,111,117,119,120,132,156,157,162,169,176,178,191],"440":153,"4400":132,"440000":38,"440110":121,"4405":132,"44085502":[61,79],"441":[68,81],"441195":121,"44140625":132,"4419":132,"442":[132,160,168],"4427":132,"44294":25,"4432":38,"4434":132,"44359863":[154,182],"44406":39,"4448":132,"4449":132,"4450":132,"4452":38,"4453125":132,"445368":64,"445375":38,"4455":38,"445716":146,"4459":132,"446":132,"446873":[63,65],"4475":38,"447541":121,"449":[132,177],"44921875":132,"4494":132,"45":[14,31,34,38,41,49,50,52,58,102,110,112,117,120,132,143,144,145,156,165,173,176,177,190],"450":50,"4500":33,"450000":[38,112,176],"45053314":120,"451":132,"451667":38,"452":132,"4522":132,"452600":[61,79],"4527":132,"453125":132,"453172e":59,"4535":132,"4539":132,"454335":38,"4544":132,"454545":164,"455":40,"4554":132,"4555":132,"455649e":59,"4557":132,"455850496":38,"45585107":[61,79],"4559":38,"456":[33,93,170],"4562":132,"456269":121,"4567":132,"45703125":132,"458":57,"4586":38,"4588":132,"4590":132,"4591":132,"45998":25,"46":[38,58,59,85,112,120,132,156,177,184],"460":132,"4601":132,"4602":132,"460483":146,"4608":132,"4609375":132,"4612":132,"461295":121,"461758453195614":177,"46175845319564":177,"461822":[63,65],"4620":38,"463":132,"463333":38,"4635":132,"463724e":59,"463988":74,"464":[47,132],"464186":143,"4646":38,"4647":132,"464776":[63,65],"46484375":132,"465":132,"4650":38,"465318":59,"4654":132,"46542":25,"4655":132,"466":132,"466330":121,"46679593":156,"4670":132,"467450":61,"4676":132,"467674":38,"468052":153,"4681":132,"468333":38,"46854":25,"4686":132,"468720":59,"46875":132,"4691":[38,132],"4699":132,"47":[38,48,50,59,79,93,110,117,120,132,145,156,176,177],"470":132,"4704":132,"4705882352941178":14,"471":132,"472":132,"47265625":132,"473":79,"4730":132,"473497":61,"474":132,"4741":132,"474392":121,"474986":29,"475":132,"4750":132,"4755":153,"4758":132,"475921":121,"4759332":156,"4760":132,"476172":121,"4762":132,"476333":29,"4764":132,"4765625":132,"476572":146,"476631":146,"47663104":146,"4767":[132,153],"4771":132,"477328":[63,65],"477377":121,"477492":29,"4775":132,"477520":121,"478":132,"4781":132,"4782":132,"4785":132,"4786":132,"479":132,"4790":132,"47943":153,"4795":132,"47992614761185":[63,65],"48":[32,38,49,52,59,79,84,93,105,120,132,143,156,177,184],"480":[58,132,177],"48017":25,"4802":132,"4803":132,"48046875":132,"4808":38,"481":132,"4815":132,"4818":132,"482":132,"4824":125,"482578":146,"4829":38,"483":132,"4833":132,"483724":74,"484167":38,"4842":132,"484375":132,"485":[79,132],"485006":121,"4854":[132,153],"48542":132,"486111":61,"48624811":79,"4869":132,"487090":121,"487439":58,"4876":132,"487864":143,"488":[68,81],"48817":132,"488186":121,"48828125":132,"48868864572551":64,"489000":38,"48909":132,"4896":132,"48965":132,"4897":48,"489816":121,"489919":58,"48c5":32,"49":[38,50,56,79,120,130,132,146,156,165,170,192],"490":[68,81,132],"4900":61,"490000":38,"49017":132,"490473":29,"49050":132,"4906":132,"490659":29,"4907":132,"491":132,"4914":132,"4918":132,"4921875":132,"492209":[63,65],"492279":121,"4928":132,"493182":153,"4932":38,"4938":132,"49381":132,"494":132,"49416":132,"49439034":156,"4947":132,"49473684":145,"495":50,"49529":132,"496":[38,61,79,132],"49609375":132,"49663":132,"4966309980255":[63,65],"497":132,"49719":132,"4974":132,"4975":132,"497500":38,"49752":132,"49763":132,"49791":132,"498":132,"49834":132,"49847":132,"4985":132,"499":[61,79],"499111":29,"49914":132,"4996":38,"49960":132,"49960699":[110,176],"49971":132,"49972":132,"49974":132,"49981":132,"49984":132,"4999":[56,61,79],"49c57b793eef1b8e55f297e5e019fdbf":57,"4a16":[119,178],"4ac":170,"4c":94,"4d":120,"4f":[31,33,37,51,59,64,153],"4g":[68,81],"4j":[171,193],"4px":157,"4s":[61,156],"4th":[46,120],"4x3":120,"4x4":[32,131],"5":[0,1,3,4,6,7,8,14,22,29,30,31,33,34,35,36,37,38,39,40,41,44,45,46,47,52,55,59,63,64,65,66,71,74,75,76,77,79,80,82,83,85,93,94,99,100,101,102,107,108,109,110,111,112,113,114,117,118,120,121,122,125,126,129,131,132,133,134,135,137,139,140,142,143,144,145,146,148,149,150,152,153,154,155,156,158,159,160,161,162,164,165,168,169,170,171,177,180,182,184,186,187,188,190,191],"50":[7,14,29,31,32,35,37,38,42,44,45,46,47,48,49,50,52,53,55,58,59,60,61,62,63,64,65,66,79,84,93,103,105,109,112,120,125,128,130,132,134,139,140,143,145,146,148,149,150,153,154,155,156,157,161,162,169,177,180,182,184,185],"500":[1,9,31,47,49,50,52,53,54,66,101,102,125,130,132,148,156],"5000":[33,35,47,54,56,83,125,130,156,170],"50000":[18,33,63,65,130],"500000":[38,58,64,121,143,153],"5000000005092593":80,"500001":[61,79],"5000x1000":35,"500135":38,"500216":177,"5007":132,"5008":132,"501":132,"501017e":59,"50114":132,"5012":46,"5013":132,"5014":132,"50159":132,"50177":132,"502":132,"5024":132,"502500":38,"5027":132,"50273":132,"50325":132,"5033":132,"50334":132,"503355363845":[63,65],"5033565506537":[63,65],"503371776776":[63,65],"50343":132,"5035673795078":[63,65],"50363":132,"50390625":132,"50467":132,"5047":132,"505":132,"5050":93,"50510":132,"50531":132,"5055":132,"50562":132,"50596":132,"506":132,"5060835072245":[63,65],"50635":79,"50636":132,"50641":132,"50654":132,"506579":29,"5067":132,"507":153,"5072":132,"50728":132,"50732":132,"50735":132,"50751":132,"507547":143,"50755":132,"507609":121,"50774":132,"507812":59,"5078125":132,"50783":132,"50784":132,"50797":132,"5079999999999996":76,"508":132,"508128e":38,"5083":132,"50832":132,"5085":132,"50859":132,"509":132,"5091":132,"50910":132,"50949":132,"5095":38,"50966":132,"50982":132,"509938":121,"50_startup":186,"50k":[51,113,125,174],"51":[38,48,59,79,120,132,156],"510":132,"5101":132,"51010":132,"51011":132,"51027":132,"51043":132,"51047":132,"5105":132,"510636288":38,"51070":132,"51078":132,"51095":132,"51101":132,"51112":132,"51133":132,"51135":132,"51167":132,"51171":132,"51171875":132,"51173":132,"511738":143,"51187":132,"511893":38,"512":[29,32,33,36,37,58,125,129,130,131,180],"51206":132,"51211":132,"51212":132,"51241":132,"51249":132,"51259":132,"5126":132,"51262":132,"51267":132,"51288":132,"51289":132,"512n":32,"513":[57,61],"51304":132,"51311":132,"51312":132,"5132":132,"51323":132,"513333":38,"51356":132,"51358":132,"513588e":59,"51367":132,"51368":132,"51375":132,"51378":132,"51379":132,"51382":132,"51385":132,"51390":132,"51391":132,"51392":132,"51393":132,"51398":132,"514":57,"514000":143,"51402":132,"51406":132,"51407":132,"51408":132,"51409":132,"5142":132,"51425":132,"51443":132,"51445":132,"51449":132,"51461":132,"51470":132,"51471":132,"51492":132,"51498":132,"515088":59,"51517":132,"51524":132,"51525":132,"51527":132,"51533":132,"51537":132,"5154":132,"51540":132,"51542":132,"51543":132,"5155":132,"51551":132,"51556":132,"51559":132,"5156":132,"515625":132,"51563":132,"51564":132,"51565":132,"51587":132,"51589":132,"51594":132,"516":[57,132],"51600":132,"51606":132,"51610":132,"51612":132,"51615":132,"51622":132,"51633":132,"51634":132,"51635":132,"51636":132,"5164":38,"5165":132,"51654":132,"51655":132,"51665":132,"51673":132,"51676":132,"51687":132,"51688":132,"51691":132,"51694":132,"517":[57,79,132],"51714":132,"51716":132,"5172":132,"51721":132,"51729":132,"51734":132,"51742":132,"51743":132,"517460":117,"51747":132,"51750":132,"51770":132,"51772":132,"51775":132,"51777":132,"51784":132,"51786":132,"518":132,"5180":132,"51818":132,"51832":132,"51839":132,"51843":132,"51847":132,"5185":153,"51851":132,"51853":132,"518601":143,"51863":132,"51865":132,"51867":132,"5187":38,"51870":132,"51874":132,"518743":29,"51879":132,"51886":132,"5189":132,"51891":132,"51895":132,"51896":132,"519":132,"51907":132,"5191":132,"51912":132,"51915":132,"51918":132,"519196":29,"5192":132,"519229":29,"519278":38,"51935":132,"51941":132,"51944":132,"51946":132,"51948":132,"51950":132,"51953125":132,"519536":29,"51955":132,"51956":132,"519645":29,"51969":132,"5197":48,"51974":132,"51981":132,"51985":132,"52":[35,38,48,53,58,61,63,65,79,112,117,120,132,156,164],"52000":112,"52004":132,"52005":132,"52018":132,"5202":132,"52037":132,"52049":132,"52056":132,"52063":132,"52065":132,"52066":132,"52080":132,"52081":132,"52084":132,"52096":132,"52097":132,"521":[57,132],"52109":132,"52110":132,"52112":132,"52113":132,"52115":132,"52116":132,"52117":132,"52120":132,"52138":132,"52141":132,"52142":132,"52150":132,"52153":132,"52155":132,"52156":132,"52169":132,"52171":132,"52176":132,"5218":132,"52182":132,"52183":132,"522":[57,132],"52205":132,"52207":132,"52213":132,"52214":132,"52216":132,"52218":132,"52223":132,"52225":132,"52226":132,"52242":132,"52244":132,"52245":132,"52246":132,"52247":132,"522482":121,"522500":38,"52266":132,"52272":132,"52278":132,"52282":132,"52285":132,"52286":132,"522940":121,"52297":132,"52298":132,"52299":132,"52300":132,"52303":132,"52308":132,"52310":132,"52314":132,"52317":132,"52326":132,"52329":132,"52331":132,"52333":132,"52335":132,"52339":132,"5234375":132,"52346":132,"52347":132,"52350":132,"52351":132,"52353":132,"52356":132,"52358":132,"52359":132,"52361":132,"52364":132,"523701":121,"52373":132,"52383":132,"52385":132,"52389":132,"52392":132,"523965":[63,65],"524":132,"52408":132,"52412":132,"52421":132,"52422":132,"52426":132,"52427":132,"52428":132,"52429":132,"52432":132,"52436":132,"52440":132,"52442":132,"52444":132,"52447":132,"52448":132,"52452":132,"52457":132,"52460":132,"524601e":38,"52463":132,"52473":132,"52474":132,"52478":132,"52489":132,"5249":132,"52490":132,"52492":132,"52495":132,"52496":132,"5250":132,"52505":132,"52516":132,"52518":132,"52524":132,"52528":132,"52534":132,"52537":132,"525385":38,"52539":132,"52541":132,"52553":132,"52558":132,"52561":132,"52564":132,"52567":132,"52569":132,"52572":132,"52574":132,"52577":132,"52579":132,"52581":132,"52587":132,"52590":132,"52594":132,"52596":132,"526":132,"52600":132,"52602":132,"52603":132,"52606":132,"52610":132,"52618":132,"52628":132,"52641":132,"52647":132,"52650":132,"52653":132,"52658":132,"5266":132,"52661":132,"52666":132,"526667":38,"52672":132,"52678":132,"52679":132,"52680":132,"52683":132,"52686":132,"52689":132,"52690":132,"52691":132,"52692":132,"52693":132,"52694":132,"52700":132,"52706":132,"52707":132,"52709":132,"52717":132,"52720":132,"52733":132,"52734375":132,"52737":132,"52738":132,"52742":132,"52743":132,"52744":132,"52748":132,"52749":132,"52750":132,"52752":132,"527625":38,"52763":132,"52764":132,"52765":132,"52769":132,"52770":132,"52771":132,"52774":132,"52776":132,"52777":132,"52778":132,"5278":132,"52783":132,"52791":132,"52795":132,"52796":132,"528":57,"52800":132,"52805":132,"5281":132,"52812":132,"52819":132,"52826":132,"52828":132,"52833":132,"52836":132,"52837":132,"52839":132,"52840":132,"52841":132,"52845":132,"52847":132,"52850":132,"52853":132,"52855":132,"52861":132,"52862":132,"52863":132,"52877":132,"52886":132,"528869":121,"52888":132,"52890":132,"52893":132,"529":143,"52904":132,"52906":132,"52907":132,"5291":132,"52912":132,"52914":132,"52916":132,"5292":132,"52920":132,"52922":132,"529231":38,"5293":132,"52934":132,"52935":132,"52938":132,"52939":132,"52941":132,"52945":132,"52946":132,"5295":132,"52951":132,"52952":132,"52954":132,"52957":132,"52959196":117,"5296":132,"52962":132,"52963":132,"52965":132,"52967":132,"52969":132,"52970":132,"52972":132,"52975":132,"52976":132,"52980":132,"52981":132,"52987":132,"52988":132,"5299":132,"52996":132,"52998":132,"52999":132,"53":[38,57,59,110,112,117,120,132,144,150,156,162,176],"530":[79,143],"53000":[112,176],"530000":38,"53004":132,"53006":132,"53013":132,"53014":132,"53018":132,"53025":132,"53027":132,"53028":132,"53036":132,"53037":132,"53038":132,"53048":132,"53052":132,"53058695":156,"53060":132,"53061":132,"53062":132,"53066":132,"53068":132,"53071":132,"53076":132,"53077":132,"53079":132,"53081":132,"53087":132,"53090":132,"53094":132,"530m":[113,174],"530wv2bvx2w7ycwfpl":59,"53101":132,"53103":132,"53105":132,"53106":132,"53108":132,"53109":132,"53110":132,"53123":132,"53125":132,"531254":29,"53129":132,"53130":132,"53134":132,"531452":29,"53146":132,"53151":132,"53154":132,"53157":132,"53159":132,"53161":132,"53165":132,"53166":132,"53179":132,"53183":132,"53184":132,"53189":132,"53190":132,"53192":132,"53198":132,"53200":132,"53202":132,"53210":132,"53214":132,"53217":132,"532197":29,"53222":132,"53224":132,"53227":132,"53237":132,"53238":132,"53243":132,"53245":132,"53246":132,"53248":132,"53249":132,"5325":132,"53255":132,"53256":132,"53259":132,"53262":132,"53265":132,"53276":132,"53279":132,"5328":132,"53281":132,"53282":132,"53287":132,"53292":132,"53295":132,"53296":132,"53299":132,"533":156,"5330":132,"53301":132,"53306":132,"53315":132,"53321":132,"53324":132,"5333":132,"53333":132,"5333333333333334":14,"53334":132,"53341":132,"53346":132,"53349":132,"53351":132,"53352":132,"53353":132,"53354":132,"53356":132,"53358":132,"5336":132,"53360":132,"53363":132,"53364":132,"53366":132,"53370":132,"53380":132,"53382":132,"533846":38,"53387":132,"53388":132,"53389":132,"53391":132,"53392":132,"53393":132,"53396":132,"534":132,"5340":38,"534000":143,"53401":132,"53403":132,"53409":132,"5341":[61,79],"53411":132,"53413":132,"5342":132,"53421":132,"53426":132,"53427":132,"53428":132,"53430":132,"53437":132,"53438":132,"53441":132,"5345":38,"53450":132,"534510":29,"534563":[63,65],"53458":132,"53462":132,"53465":132,"53468":132,"53470":132,"53474":132,"53475":132,"53478":132,"53482":132,"53488":132,"5349":132,"53491":132,"53494":132,"53495":132,"535":132,"5350":132,"53508":132,"53513":132,"53515625":132,"53517":132,"53518":132,"53520":132,"53521":132,"53525":57,"53529":132,"53531":132,"53536":132,"53538":132,"53551":132,"53553":132,"53556":132,"53557":132,"53560":132,"53563":132,"53566":132,"53570":132,"53571":132,"53574":132,"53580":132,"53584":132,"53587":132,"53588":132,"53589":132,"53593":132,"53594":132,"53595":132,"53597":132,"536":132,"53606":132,"53607":132,"53616":132,"53617":132,"53627":132,"53628":132,"53630":132,"53635":132,"53642":132,"53645":132,"53652":132,"53655":132,"53657":132,"53661":132,"53662":132,"53663":132,"53666312":79,"53668":132,"53672":132,"53673":132,"53674":132,"53675":132,"53686":132,"53687":132,"536879":[63,65],"53691":132,"536923":38,"53693":132,"53696":132,"53697":132,"53699":132,"537":[61,79],"5370":132,"53706":132,"53709":132,"53712":132,"53715":132,"53719":132,"53726":132,"53728":132,"53729":132,"53732":132,"53738":132,"53747":132,"53748":132,"53749":132,"53751":132,"537551":121,"53757":132,"53760":132,"53762":132,"53765":132,"53768":132,"53769":132,"53771":132,"53772":132,"53774":132,"53778":132,"5378":132,"53782":132,"53783":132,"53786":132,"53788":132,"53789":132,"53797":132,"53798":132,"53807":132,"538085":121,"53811":132,"53812":132,"53814":132,"53818":132,"53819":132,"53826":132,"53829":132,"538356":29,"53837":132,"53842":132,"53849":132,"538491832234":[63,65],"53850":132,"53855":132,"53857":132,"53859":132,"53860":132,"53863":132,"53865":132,"53866":132,"53870":132,"53871":132,"53872":132,"53879":132,"53883":132,"53891":132,"53892":132,"53894":132,"53897":132,"53899":132,"5390625":132,"53907":132,"53908":132,"53911":132,"53912":132,"53913":132,"53919":132,"53923":132,"53924":132,"53927":132,"53938":132,"53944":132,"53946":132,"53947":132,"5395":132,"53952":132,"539527":140,"539534":38,"53955":132,"53957":132,"53965":132,"53967":132,"53971":132,"53974":132,"53975":132,"53976":132,"53979":132,"53986":132,"53987":132,"53989":132,"53991":132,"53993":132,"53995":132,"53gib":29,"54":[29,38,57,59,79,94,156,162,177,191],"540":132,"5400":[57,61],"54001":132,"54004":132,"54005":132,"54010":132,"54014":132,"54027":132,"54031":132,"54034":132,"54035":132,"54040":132,"54044":132,"5405":132,"54054":132,"54055":132,"54062":132,"54063":132,"54068":132,"54085":132,"54086":132,"54090":132,"54094":132,"54095":132,"54097":132,"5410":153,"541112":38,"54112":132,"54119":132,"54121":132,"54128":132,"54134":132,"54135":132,"54136":132,"54142":132,"54146":132,"54152":132,"54155":132,"54156":132,"54158":132,"5416":132,"54165":132,"54167":132,"54171":132,"54174":132,"54177":132,"54179":132,"54184":132,"54186":132,"54188":132,"54189":132,"5419":132,"54196":132,"542":[102,132],"54202":132,"54205":132,"542066":121,"54210":132,"54211":132,"54213":132,"54216":132,"54219":132,"54221":132,"54222":132,"54226":132,"54228":132,"54229":132,"54230":132,"54232":132,"54236":132,"54243":132,"54244":132,"54253":132,"54261":132,"54266":132,"54273":132,"54276":132,"54279":132,"54282":132,"54283":132,"54284":132,"54288":132,"5429":38,"54293":132,"54294":132,"54296875":132,"54300":132,"54302":132,"54303":132,"54306":132,"54311":132,"54317":132,"54318":132,"543182":153,"54321":170,"54330":132,"54331":132,"54332":132,"54334":132,"54335":132,"54336":132,"54337":132,"54338":132,"54346":132,"54349":132,"54351":132,"54359":132,"54364":132,"54366":132,"54370":132,"54376":132,"54381":132,"54383":132,"54388":132,"54389":132,"54390":132,"54394":132,"54395":132,"54396":132,"54397":132,"54398":132,"54406":132,"54407":132,"54421":132,"54422":132,"54423":132,"54427":132,"54434":132,"54439":132,"54440":132,"54442":132,"54444":132,"54445":132,"54447":132,"54454":132,"54456":132,"54457":132,"5446":38,"54461":132,"54464":132,"54470":132,"54473":132,"54474":132,"54479":132,"54485":132,"54491":132,"54494":132,"54495":132,"54497":132,"54498":132,"545":132,"54501":132,"54504":132,"54505":132,"54507":132,"54509":132,"5451":132,"54516":132,"54519":132,"54524":132,"54526":132,"54527":132,"54528":132,"54530":132,"54534":132,"54536":132,"54538":132,"54540":132,"54545":132,"54554":132,"54556":132,"54559":132,"5456":132,"54564":132,"54567":132,"54570":132,"54571":132,"54573":132,"54575":132,"54582":132,"54583":132,"545833":38,"54584":132,"545850":38,"54587":132,"54589":132,"54593":132,"54595":132,"54596":132,"54598":132,"546":132,"546021":[63,65],"54603":132,"54605":132,"54614":132,"54621":132,"54627315":120,"5463":132,"54630":132,"54634":132,"54636":132,"54640":132,"54641":132,"54647":132,"5465":132,"54655":132,"54658":132,"54659":132,"54662":132,"54663":132,"54667":132,"5466747351275563":144,"54670":132,"54671":132,"54672":132,"54676":132,"54679":132,"5468":132,"54683":132,"546875":132,"54693":132,"54697":132,"54699":132,"547":48,"54705":132,"54710":132,"54715":132,"54717":132,"54718":132,"54725":132,"54731":132,"54737":132,"54738":132,"54739":132,"54741244":79,"54750":132,"54752":132,"54765":132,"54769":132,"54770":132,"54782":132,"54784":132,"54789":132,"54798":132,"548":132,"54803":132,"54808":132,"54808703":156,"54810":132,"5482":38,"54824":132,"54832":132,"548329":121,"54833":132,"54834":132,"54836":132,"54841":132,"54842":132,"54843":132,"54846":132,"54848":132,"54854":132,"54865":132,"54866":132,"54869":132,"54877":132,"54878":132,"54880":132,"54888":132,"54898":132,"54901961":79,"54905":132,"54914":132,"5492":132,"54921":132,"54925":132,"54927":132,"54930":132,"54931":132,"54941":132,"54944":132,"54945":132,"54947":132,"54949":132,"54958":132,"5495868399385304":121,"54958684":121,"549587":121,"54961":132,"54966":132,"54969":132,"54970":132,"54971":132,"54972":132,"54974":132,"54976":132,"54979":132,"54980":132,"54984":132,"54988":132,"54996":132,"54997":132,"54998":132,"55":[14,38,50,59,64,93,112,117,132,153,154,156,169,177,182,186],"550":132,"55000":[112,176],"55010":132,"55012":132,"55017":132,"55024":132,"55029":132,"55030":132,"55031":132,"55034":132,"55035":132,"55040":132,"55053":132,"550530":121,"55054":132,"55056":132,"55057":132,"55060":132,"550610e":59,"55062":132,"55066":132,"55071":132,"55072":132,"55074":132,"55077":132,"55078":132,"55078125":132,"55081":132,"55083":132,"55086":132,"55087":132,"55100":132,"55103":132,"5510652":120,"55107":132,"55110":132,"55116":132,"55120":132,"55124":132,"55126":132,"55127":132,"55135":132,"5514":132,"55142":132,"55149":132,"55158":132,"5516":132,"55161":132,"55164":132,"55168":132,"55179":132,"5518":132,"55181":132,"55183":132,"55186":132,"55187":132,"55191":132,"552":132,"55200":132,"55204":132,"55209":132,"55212":132,"55220":132,"55225":132,"55231":132,"55234":132,"55236":132,"55241":132,"55246":132,"55250":132,"55253":132,"55255":132,"55259":132,"5526":132,"55263":79,"55264":132,"55265":132,"55268":132,"55276":132,"55281":132,"55284":132,"55287":132,"55288":132,"55290":132,"553":48,"55309":132,"5531":132,"55310":132,"55329":132,"55330":132,"55348":132,"55350":132,"55355":132,"55359":132,"55364":132,"55366":132,"5537":132,"55373":132,"55381":132,"55386":132,"554":132,"55408":132,"55415":132,"55426":132,"55428":132,"55433":132,"55454":132,"5546875":132,"55477":132,"55481":132,"55487":132,"55491":132,"555":132,"55501":132,"5552":132,"55523":132,"55526":132,"55527":132,"55531":132,"555312":38,"55535":132,"5554":132,"55546":132,"55547":132,"55549":132,"55550":132,"55552":132,"55553":132,"55556":132,"55557":132,"55559":132,"55563":132,"55567":132,"5557":132,"55570":132,"555784":29,"5559":132,"55592":132,"55598":132,"55606":132,"55609":132,"55613":132,"55620":132,"55621":132,"55623":132,"55635":132,"55636":132,"55637":132,"55645993":120,"55649":132,"5565":38,"55653":132,"55656":132,"55662":132,"55666":132,"55668":132,"55670":132,"5568":79,"55697":132,"557":132,"55701":132,"55703":132,"55706":132,"55713":132,"55716":132,"55718082144":79,"557209":121,"55727":132,"55731":132,"55737":132,"55748":132,"55758":132,"55761":132,"55782":132,"55788":132,"55791711":79,"55799":132,"558":[61,79],"55801":132,"55812":132,"55830":132,"55844":132,"55846":132,"558500":143,"55851":132,"55859375":132,"55866":132,"55867":132,"55870":132,"55881":132,"5588235294117647":14,"55884":132,"55888":132,"55892":132,"55895":132,"55896":132,"559":[38,132],"55902":132,"55910":132,"55912":132,"55954":132,"55957":132,"55976":132,"55978":132,"55981":132,"55988":132,"55989":132,"55994":132,"55995":132,"56":[48,93,110,117,146,156,166,176],"560":121,"5600":170,"560000":38,"5600000000000002":76,"56012":132,"56015":132,"5603":79,"56035":132,"56039":132,"56045":132,"56048":132,"56057":132,"56058":132,"56060":132,"56062":132,"56065":132,"56069":132,"56090":132,"56093":132,"560977":121,"56098":132,"561":[121,132],"5610":132,"56102":132,"561129":121,"56113":132,"56115":132,"56116":132,"56119":132,"56120":132,"56125":132,"56127":132,"56135":132,"56137":132,"56139":132,"56148":132,"56152":132,"56159":132,"56163":132,"56171":132,"56190":132,"562000":112,"56212":132,"56217":132,"5622":132,"56220":132,"56226":132,"56231":132,"56242":132,"56244":132,"56245":132,"56247":132,"5625":132,"562500":59,"56255":132,"56261":132,"56262":132,"56267":132,"56276":132,"5628":132,"563":121,"56303":132,"56306":132,"56308":132,"5631":132,"56335":132,"56342":132,"56352":132,"5637":132,"56376":132,"5638":132,"56381":132,"56390":132,"56394":132,"56396":132,"564":[38,132,143],"5640":132,"564091":121,"56424":132,"56427":132,"5643":[61,79,132],"56431":132,"56435":132,"56439":79,"56447":132,"56454":132,"56466":132,"5647":38,"56471":132,"56474":132,"56499":132,"565":[38,61,79],"56504":132,"56508":132,"56509":132,"56510":132,"56521":132,"56526":132,"56538":132,"5654":132,"56544":132,"56546":132,"56550":132,"56558":132,"5657":132,"56574":132,"56576":132,"5658":38,"56596":132,"566":132,"566126":29,"56624":132,"566270":121,"56636":132,"56637":132,"56639":132,"56640625":132,"56646":132,"56647":132,"56649":132,"56660":132,"5666666666666667":14,"5669":132,"56699":132,"567":132,"567088":29,"56721":132,"56729":132,"567306":59,"56735":132,"56740":132,"567453":61,"567530":61,"56755":132,"56770":132,"56771":132,"56777":132,"56790":132,"567906":140,"56791":132,"568":[79,132],"56805":132,"56806":132,"56812":132,"56823":132,"56837":132,"56852":132,"56858":132,"5686":38,"56886":132,"5689":132,"56895":132,"569":132,"56917101":120,"56918":132,"56919":132,"56922":132,"56928":132,"56949":132,"5695":132,"56982":132,"5699":132,"56993":132,"56997":132,"57":[38,59,79,110,130,156,176],"570":190,"5700":132,"570000":38,"57006":132,"57013":132,"57026":132,"5703":132,"5703125":132,"57033":132,"5704":132,"57046":132,"57060":132,"5706829878497204":76,"57070":132,"57084":132,"57085":132,"57098":132,"571":132,"57110":132,"57115":132,"57123":132,"57143":132,"57147":132,"57153":132,"57157":132,"57161":132,"57163":132,"57166":132,"57172":132,"57178":132,"57196":132,"5720":132,"57214":132,"57228":132,"57242":132,"57250":132,"57260":132,"57268":132,"57276":132,"57290":132,"57294":132,"57297":132,"57299":132,"573":[38,132],"57307":132,"573183e":121,"57323":132,"57328":132,"573333":38,"57336":132,"573435":121,"5736":38,"573832":121,"57389":132,"57391":132,"57395":132,"57401":132,"57415":132,"57417":132,"57418":132,"57421875":132,"5745":121,"57467":132,"57489":132,"57498":132,"575":132,"57508":132,"57522564":121,"5752256412522594":121,"575226":121,"5753":[121,132],"57538":132,"57542":132,"57547":132,"57553":132,"57554":132,"57556":132,"57560":132,"57570":132,"57593":132,"57595":132,"57597":132,"576":132,"5761":132,"57637":132,"576487":59,"57652":132,"57654":132,"5766":132,"57669":132,"5767":132,"57679":132,"57685":132,"57690":132,"57693":132,"57704":132,"577188":121,"57744":132,"5777":132,"57789":132,"57799":132,"578":132,"578125":132,"578142e":59,"57819":132,"57840":132,"57841":132,"57852":132,"578621":29,"578889":121,"5789473684210527":14,"57909":132,"57916":132,"57929":132,"57942":132,"579596":121,"5796":153,"57961":132,"57987":132,"57993":132,"58":[35,48,59,117,132,156],"580000":38,"58000000000":171,"58001":132,"58019":132,"5802":132,"58023":132,"5803":132,"58042":132,"5805":132,"5807":132,"58078":132,"581":132,"58110":132,"5811388300841898":24,"58113883008418981":24,"58137":132,"58149":132,"58164":132,"58172":132,"58177":132,"58195":132,"58197":132,"582":132,"5820":132,"582000":143,"58203125":132,"58260":132,"58294":132,"58310":132,"58313172":79,"58330":132,"583333":38,"5834":132,"58379":132,"58380":132,"584":29,"584095":29,"58454":132,"58468":132,"5849056603773586":14,"58494":132,"584943":38,"585":132,"5850":35,"58516":132,"58520":132,"58525":132,"58526":132,"58565":132,"5857":132,"58581":132,"58585":132,"5859375":132,"5861":132,"58611":132,"58615":132,"58651":132,"58702":132,"58716":132,"58730":132,"587461e":59,"5875":79,"58761":132,"58768":132,"58799":132,"588":132,"58800":132,"58810":132,"5882":132,"58823529":79,"58829":132,"58832":132,"588333":38,"58840":132,"588462":38,"58860":132,"5889":79,"589":177,"589167":38,"589271":38,"58930337":156,"58936":132,"58941":132,"58946":132,"58952":132,"58957":132,"5896":[61,79],"58978":132,"58984375":132,"58986":132,"58994":132,"59":[38,48,50,79,112,132,156,170,176,177,191,192],"590":[132,177],"590000":38,"59026":132,"5908":132,"59080":132,"590909":38,"590px":164,"59114":132,"59115":132,"59139":132,"59146":132,"59171":132,"5919":132,"59210":132,"59229":132,"59248":132,"59250":132,"59257":132,"593":132,"59334":132,"59337":132,"59345":132,"593450":29,"593661":59,"593695":121,"59375":132,"5938":56,"59421":132,"59432":132,"594450":29,"5947":132,"59493":132,"595":132,"5950":132,"59512":132,"5952":132,"59524":132,"59529":132,"5954":132,"59564":132,"59566":132,"5957":132,"596":132,"59617":132,"59670":132,"597":132,"59756":132,"59765625":132,"598":[156,160],"598048":121,"5981":132,"598150":177,"59823":132,"59831252":79,"59842":132,"59853725816836":156,"5985372581684":156,"59853725816868":156,"59854":132,"59880":132,"59886":132,"599167":38,"59970":132,"59981":132,"5b":[113,174],"5cm":46,"5e":36,"5f":[32,125,184],"5g":[68,81],"5k":50,"5m":38,"5more":57,"5s":[61,156],"5th":[43,103,120,172],"5vbcssa6":59,"5x5":[32,125],"6":[0,7,8,14,18,22,24,29,30,31,32,33,34,35,36,38,39,40,41,44,47,48,51,59,62,63,64,65,66,74,76,77,79,83,85,93,94,97,102,103,105,112,113,117,118,120,121,122,125,128,130,131,132,135,137,140,143,144,145,146,148,150,152,153,154,156,160,162,164,165,168,169,170,171,177,178,182,184,186,191,192],"60":[7,9,14,32,33,35,38,40,41,42,50,56,57,63,65,66,76,101,102,105,110,112,118,120,154,156,157,162,176,177,182,190,191],"600":[3,112,130,156],"6000":[33,35,58,83,85,130],"60000":[29,130],"600000":64,"60028":132,"600345":29,"60045":132,"600833":38,"600866":59,"600px":164,"60116":132,"60122":132,"60144":132,"6015625":132,"60192":132,"60239":132,"6026":132,"603":132,"60306":132,"60320":132,"60321":132,"603333":38,"60349":132,"6036":38,"60373":79,"604":[79,132],"604039":61,"60409":132,"6041":132,"604382":74,"604384":[63,65],"60465":132,"6047":38,"60522":132,"60523":132,"6053":132,"60546875":132,"60550":132,"605962":61,"606":[61,79,177],"60623":132,"6065":132,"606722816":38,"607":132,"607008e":38,"6072":38,"60733":132,"60744":132,"6075":132,"6076":132,"60764":132,"6078":132,"6080":35,"6081":132,"6082":[61,79],"60850":132,"60851":132,"60863":132,"60869":153,"6088":132,"609":132,"6090":35,"60904":132,"6092":132,"60925":132,"609375":132,"6095":132,"6096":132,"60970":132,"6098":132,"6099":132,"61":[38,50,59,64,132,143,145,156,177,191],"610":132,"610000":38,"6107":132,"611":143,"611105":38,"61122":132,"6117":132,"61184":132,"61204":132,"61205":132,"61216":132,"612245":121,"6123":132,"61238":132,"6124":132,"6125":132,"613":132,"61328125":132,"61351":132,"614392":29,"614495":121,"6149":38,"615":[34,132],"6150":35,"61501":132,"61516":132,"6153":33,"615385":38,"61547":132,"616":79,"61622":132,"61630":132,"616314e":38,"616364":29,"61663286":79,"616766":58,"617":34,"6170212765957446":14,"6171875":132,"6173":38,"617423":[63,65],"6175":132,"61760":132,"617802e":59,"618":132,"619047619047619":14,"61905":132,"61965":132,"62":[38,50,59,63,65,112,117,132,145,156,176,186,191],"6200":35,"6201":132,"62037":132,"6204":132,"62046":132,"6205":132,"62055":132,"62066":132,"6208":132,"62084":132,"621":[38,132],"6210":35,"62107":132,"62109375":132,"62110":132,"621116e":59,"6212":132,"6213":132,"62134":132,"622":132,"6220":132,"6225":35,"62271805":79,"6230":132,"6231532":38,"62329":132,"62374":132,"624":132,"62405":132,"62419":132,"624289":38,"6245":[35,132],"6246":132,"624615":38,"625":132,"6250":35,"625000":38,"6254":132,"62571878891146":156,"626037":121,"6263":132,"626322":121,"6266":38,"627":132,"62712":132,"627175":38,"6274":132,"62740":132,"627590e":59,"6283":38,"6285":38,"62860":132,"62890625":132,"62891":132,"6291":38,"6294":132,"62993":132,"63":[38,59,64,112,125,132,145,146,149,150,156,162,165,184],"630":132,"6302":79,"630217":61,"63022":132,"6303904952264":58,"6308":132,"631":121,"63119":132,"6312":132,"6313":132,"6315":38,"631656":121,"63169":132,"63197":132,"632":121,"63204":132,"63256":132,"63262":132,"6327":38,"6328125":132,"633":121,"633158":177,"63339":132,"6334":38,"634":121,"6342":38,"6345":[35,38,132],"6348":132,"63481":132,"635":[38,121,132],"6350":38,"6352":38,"6353":153,"6354":38,"635504":121,"6356":38,"635833":38,"6359":38,"636":[121,132],"63603":132,"63608":132,"6361":38,"6362":38,"636238":59,"636364":164,"636368":121,"636368640":38,"63637":132,"63655":132,"6366":132,"63671875":132,"6368":38,"6369":[38,132],"6370":38,"6371":[38,132],"6374":132,"63752":132,"63759":132,"6378":38,"63792":132,"638":132,"6380":38,"63803":132,"6381":38,"63851":132,"6387":132,"6388":132,"639":[59,132],"63940":132,"639426e":38,"639468":121,"63960":132,"64":[7,29,30,31,32,33,34,35,36,37,38,39,40,48,50,58,59,77,93,110,112,118,120,124,125,126,130,131,132,135,153,156,162,170,176,184,192],"640":143,"6400":35,"64000":58,"6404":153,"640625":132,"64073":132,"641035e":59,"642":132,"64206":132,"64243":132,"642977":59,"643":132,"64300":132,"6431":[61,79],"6435":132,"643626":121,"644":132,"644082":140,"6442":132,"64438":132,"6445":[61,79,132],"64453125":132,"644588e":121,"64497":132,"6450":35,"6451":132,"64568":132,"645833":38,"646705152":38,"64671":132,"64681":132,"6471":132,"6473":132,"6479":132,"648":[61,79],"6482":132,"6484375":132,"64851":132,"64859406":[61,79],"649167":38,"6492":132,"6497":48,"649855":38,"64c3":32,"64c5":32,"64c5s2":32,"64n":32,"64x64":[34,131],"65":[35,59,66,112,117,154,156,160,169,170,176,182,187,188,190,192],"6500":132,"652":[110,176],"6522":132,"65234375":132,"65239850433215":156,"6527":132,"653":156,"6530":[35,132],"6532":132,"65334":132,"65347":132,"6535":132,"6538":132,"65380":132,"654167":38,"65443":132,"65480":132,"65492":132,"6550":35,"65526":132,"655517642572828":156,"65555":132,"6559":121,"6560":121,"6561":121,"65611":132,"65625":132,"656881":29,"657":184,"65732685":79,"65746":132,"65793":132,"6581":132,"6590":35,"65949":132,"65962":132,"6598":121,"6599":121,"66":[38,50,132,143,156,160,162,170,180,192],"660":132,"6600":[35,121],"66015625":132,"6602":121,"66022":132,"66036":132,"6604":121,"6605":121,"660833":38,"66098":132,"661054":38,"661068":61,"6611":79,"6615":35,"662":132,"6621":38,"662185e":38,"662224":[63,65],"6625":38,"6627":38,"663":132,"6631":38,"6632":38,"66327":132,"663302":121,"6635":38,"66369":132,"6638":38,"6640":38,"6640625":132,"6641":38,"6646":132,"6647":38,"664918e":59,"66496461":79,"665":38,"665000":112,"6651":[38,132],"6652":38,"6655":38,"6657":[38,132],"666":143,"6660":35,"6662":38,"66623":132,"6663":38,"6665":132,"6666":38,"666647":121,"6666666666666666":50,"6666666666666667":[170,192],"666666666666667":170,"666667":38,"6669":38,"667":132,"6670":132,"6671":132,"6674":38,"6675":132,"667557":121,"667650":121,"6678":132,"66796875":132,"6680":35,"6683":38,"66840":132,"66845":132,"669":132,"669000":143,"6691":132,"6695":35,"66977":132,"67":[49,52,58,132,156,160,162],"670":132,"6700":35,"67000":132,"67021":132,"671131":29,"67131":132,"6715":121,"6717":121,"6718":121,"671875":132,"6719":121,"6720":35,"6721":121,"6722":[121,132],"672225":59,"67225":132,"6725":35,"672864":61,"673":[79,132],"673333":153,"67374":132,"673913":121,"6740":35,"67434":132,"674452224":38,"6750":132,"6754":132,"67550":132,"675780":121,"67578125":132,"6758":132,"675833":38,"6765":132,"676667":38,"6767":132,"6768":132,"6770":132,"6771":132,"677258":59,"6775":132,"6779":132,"6780":35,"6783":132,"6784":132,"67843":132,"67858615":[61,79],"6786":132,"678678":29,"6788":132,"678856e":121,"67912":132,"67953":132,"679630":29,"6796875":132,"6797":132,"68":[14,59,61,66,132,156,160,161,162,177],"6800":35,"68076":132,"6808":121,"680851":121,"6809":121,"6810":[35,121],"681000":143,"6811":121,"6812":121,"68141":132,"681744":[63,65],"6818":132,"68201":132,"6821":132,"682598e":121,"68269":132,"683":[140,143],"683100":121,"683516":29,"68359375":132,"683782":59,"684":61,"6842":[38,132],"684324":121,"68438":79,"6844":38,"684457140":38,"6845":132,"684500":29,"684554":121,"68478":61,"68491":79,"6850":35,"6851":38,"685191":29,"6852":38,"68537":79,"685433":79,"6855":38,"68557":132,"6858":38,"68617":132,"686275":121,"6866":132,"6868":38,"68684":61,"6869":38,"6870":[35,38],"6872":38,"6875":132,"6878":38,"68796":132,"688":132,"68849":132,"6885":38,"6886":38,"6887":38,"6888":38,"6889":38,"689":132,"6890":38,"6891":38,"689182":121,"6893":[38,132],"6894":38,"68969":132,"6897":132,"6899":38,"69":[38,117,132,144,156,160,162,165],"690":190,"6900":[35,38],"6902":38,"6903":38,"69037":132,"6904":38,"690424":121,"6905":38,"6907":38,"6908":38,"6909":38,"691":132,"6911":38,"69136631":156,"6914":38,"69140625":132,"691456":121,"6915":38,"6917":38,"69178":132,"692":[121,132],"6920":38,"6921":38,"69211":132,"6922":38,"692308":38,"6924":38,"6925":38,"692500":38,"69261":132,"6928":38,"6929":38,"693":121,"6930":38,"69318":132,"6933":38,"6934":[38,132],"6935":38,"6936":38,"6937":38,"69378":132,"69399":132,"694":[121,132],"69400":132,"6941":38,"69411":132,"6942":38,"69456":132,"6946":[38,132],"6947":38,"6948":38,"695":[121,132],"6950":35,"69500":132,"695000":143,"6952":38,"6953125":132,"695662":177,"6958":38,"695833":38,"6960":38,"6961":38,"6962":132,"6963":38,"6965":38,"6968":38,"6969":132,"697":[79,121,132],"6970":[35,38],"69764":132,"6976998904709748":165,"69779":132,"6982":132,"6983":132,"69831":132,"6984":38,"6985":38,"6986":38,"699":[121,143],"6990":38,"69921875":132,"699648":59,"6999":132,"6a":94,"6j":[170,192],"6m":[29,38],"6mmdhn2djnpyqgrayxddt5izqxtbz42iipcqon1dhjdqkz6kpxp4x":59,"6qepylt4v68sypax9kxk":59,"6qwd":59,"6s":[61,156],"7":[3,7,14,22,24,29,30,31,32,34,35,37,38,41,44,48,49,54,55,59,62,63,64,65,66,68,76,77,79,81,85,93,94,102,111,113,117,118,120,121,122,125,130,131,132,133,140,143,144,145,146,148,149,150,153,156,160,164,169,170,171,177,178,184,186,191,192,193],"70":[14,32,38,41,50,59,63,65,66,112,117,132,145,156,162,164,169,176,186],"700":[56,121],"7000":[1,79,120],"7009":132,"700px":160,"701":[121,132],"7010":[35,132],"7010426719637757":74,"7011":132,"7012":132,"702":[121,143],"7020":38,"702500":38,"70282":132,"703":121,"7030":132,"703125":132,"7032":132,"7034":132,"7036":132,"703982":[63,65],"704":[121,132],"70429":132,"7048":38,"705":[121,132],"705190496574":152,"705228":121,"7054":132,"70549":39,"7057":153,"70584":132,"706":121,"70633":132,"706867":121,"706899":121,"70698":132,"70703125":132,"7073":132,"70760":132,"708":132,"70884":132,"709":132,"70935":132,"7099":[61,79],"71":[50,56,79,93,112,117,132,145,150,156,162,164,176,186],"710":[132,143],"7100":35,"710000":61,"710151":121,"7104":132,"7107":132,"71086031":156,"7109375":132,"7110":[35,132],"7111":132,"711166":121,"71130":132,"7117":132,"712":[110,176],"712226":121,"7125":132,"7127411872482181":76,"7131":132,"7133":38,"713683":29,"713707":121,"714500":143,"71469":132,"71484375":132,"715":132,"7153":132,"71537":132,"71625":132,"716440":74,"7171":38,"71714":79,"71733307":[61,79],"71817":132,"7184":132,"7185":132,"71875":132,"7189":132,"718916":121,"7190":153,"719227":121,"719457":117,"71977":132,"7198":153,"71995":132,"72":[35,38,93,112,117,156,161,162,164,176],"720000":[112,121],"7203":132,"72035":132,"7209":[38,132],"72093598500494":[63,65],"721":132,"72101958323096":[63,65],"72108":132,"72115":132,"72164454424515":[63,65],"722":132,"722071":140,"7222":38,"7225":132,"72265625":132,"722717":38,"723":132,"723684":117,"724046":29,"7245":38,"724590719956222":58,"7247":132,"724924":[63,65],"725":132,"72568":132,"72581411":156,"726409595":121,"726562":59,"7265625":132,"72663483920857":[63,65],"726845ca9638":115,"727":132,"7276":38,"727750":140,"72788":79,"7280":38,"7281":38,"729":132,"7293":132,"72991":132,"73":[38,50,112,117,143,145,156,162,164,191],"730":184,"7302":132,"73041":132,"73046875":132,"7305":132,"731":132,"7311":[38,132],"731123":121,"7312":132,"73167":132,"73183":132,"732":156,"7327":132,"7329":132,"733707e":59,"73372":132,"7340":132,"734147e":59,"7343":132,"734375":132,"7345":35,"734924":[63,65],"734936":121,"73498":153,"735":132,"735000":38,"7351":132,"7354":38,"735822":59,"7363":132,"73645":132,"736769":38,"73779":132,"738":132,"7380":153,"73828125":132,"7386":132,"738720":121,"73886":132,"739":132,"7390":132,"73914":132,"7396":38,"74":[29,38,50,59,117,132,156,162,164,177],"740251e":38,"741":79,"741066":[63,65],"741306":121,"7415":35,"741619":143,"74170":132,"742":[132,153],"7421875":132,"7422":[38,132],"742398":121,"7424":38,"74250283":121,"7425028341431366":121,"742503":121,"742725":61,"74273":79,"7428":132,"742940":29,"74306":132,"74310":132,"74340771":79,"74354":132,"74360":132,"74382":132,"744":132,"744051e":59,"744398":121,"744669":59,"744769":38,"745034":38,"74569":132,"7457":38,"7457109493044":64,"7458":132,"746":132,"74609375":132,"74703":132,"74763":132,"748":132,"7483":132,"7486":132,"7488":132,"749080":74,"7493":132,"7495":132,"7499":132,"75":[7,32,33,38,48,50,54,56,57,58,59,61,64,66,79,117,125,132,135,143,145,146,148,149,153,156,161,162,165,170,177,185,186,187,188,192],"750":[50,58,132],"7500":61,"750000":[38,59,64,153],"750178363923474":64,"75151515":83,"75181":132,"75226":132,"753199":29,"75390625":132,"75453":132,"754680":29,"7549":132,"755":[79,132],"755160":121,"7552043176561298":76,"755293":121,"75555":132,"75572":132,"7558":132,"755925":121,"7561":153,"7563":132,"7567":132,"757229":121,"75727":132,"757500":38,"7578125":132,"758":132,"75837":132,"75860":132,"758667":64,"759":132,"7590":132,"7592":132,"75929":132,"7596":132,"7598":132,"7599":132,"75th":[54,156],"76":[38,57,110,117,132,156,161,162,176,185],"76006":132,"7603":132,"760479":58,"760623":143,"76074":132,"761":132,"761000":143,"76150":132,"76171875":132,"76193":132,"762":121,"76219":132,"7622":132,"763":121,"763161":64,"76349":132,"764":[121,132],"764029e":38,"764420":64,"7645":132,"7647":132,"765":121,"76536":132,"765625":132,"765848":121,"7660":35,"76605":132,"7666666666666667":64,"7667":132,"7668":132,"766995e":38,"767":121,"76701":132,"7673":132,"76731980371954":[63,65],"7675":132,"7678":[170,192],"768":[58,121],"7682":132,"7684":153,"7688":132,"769":[121,132],"7690":38,"7691":38,"76921":132,"769231":38,"7692735413614223":74,"76953125":132,"76968":132,"7699":38,"77":[38,59,112,156,161,162,164,191],"770":132,"77016":132,"77019":132,"7704":132,"7705":35,"7706":38,"77064":132,"77100":79,"7712":38,"7715":38,"7719":38,"772":132,"7721":132,"7722":38,"7723":38,"772308":38,"7724":38,"77259":132,"7727":38,"772764":121,"7728":[35,132],"772823":58,"7730":[38,132],"77332":132,"7734375":132,"773820":29,"773897":29,"774000":112,"77419":132,"774272":153,"77455":132,"7746":38,"7749":132,"7750":38,"77506":132,"7752":132,"77531":132,"7754":38,"775714":121,"77584":132,"7759":38,"7762":132,"7763":38,"77734375":132,"7777":38,"777777":41,"778":132,"7780":132,"7784":132,"77847":132,"7785":132,"7786":132,"7788":132,"779":132,"78":[38,50,59,132,145,156,161,162],"7800":38,"78008":132,"7805":132,"7807":132,"78100":79,"7812":132,"78125":132,"7829":132,"782925":38,"78319":132,"783423":29,"784":[29,30,32,41,47,83,85,124,129,132,180,190],"78431373":79,"7844":[132,153],"784500":143,"78466":132,"785":[61,79,132],"7851":132,"78515625":132,"7852":132,"78573":132,"7858":132,"7860":132,"7866":132,"7866666666666667":64,"7868":132,"787":79,"7870":132,"7871":132,"787490":29,"78775":132,"78855":132,"7888":132,"7890625":132,"78911":132,"79":[38,52,59,79,110,112,132,156,162,165,176,177],"790":132,"7900":61,"7906":132,"7908":132,"7909":132,"791":132,"7912":132,"791419":121,"792":190,"792168":29,"7925":79,"79260":132,"79290307":156,"79296875":132,"7934":132,"793560":38,"7936":132,"794615":38,"794658":121,"794885":121,"7949":132,"7949491493525":[63,65],"795":184,"7951":153,"7952":132,"7954":132,"7958":132,"7959":132,"7963":132,"79641063":156,"7968":132,"796875":132,"796958":29,"797":156,"79704":132,"7971":132,"797955":121,"798":132,"7980":[132,143],"7984":132,"799":160,"7990":132,"7991":132,"799154":38,"79948":132,"7995":38,"79m":38,"79uxx":59,"7d":[170,192],"7e100":170,"7m":38,"7poa":59,"7s":[61,156],"7vmzpnlc4g7slsg8kl3tmlapgxwxw2ftvkcnk1ktkbslg3jwgkumqukamoow9jx5ewjqzomeoir5fpqtdvgtxvvgxpelrg889cjligccpltukp":59,"7x7":[29,30,32],"8":[0,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,41,43,44,47,48,49,50,51,53,54,58,59,60,61,63,64,65,66,74,76,77,79,80,85,93,94,102,110,113,118,120,121,122,125,126,131,132,135,143,144,145,146,148,150,153,155,156,157,164,165,169,170,176,177,178,184,186,191,192,193],"80":[14,31,32,33,48,50,52,59,63,65,66,79,93,130,132,134,137,139,156,157,161,162,163,165],"800":[3,56,145,156],"8000":58,"800000":64,"800232":29,"80037642":156,"8005":132,"80078125":132,"800px":[144,156,164],"801":121,"80117999":156,"8012":132,"8013":132,"8014":132,"8015":132,"8016":132,"80180":132,"8019":132,"802":121,"8020":132,"802422":29,"802500":38,"8027":132,"80290755":156,"803":121,"8033":132,"8034810001":177,"80351":132,"80354":132,"80389616":156,"8039":132,"804":121,"804221":38,"8045":132,"804562":121,"8046":132,"8046875":132,"80468775":79,"8049":132,"805":[121,184],"80577065":79,"8058":132,"8059":132,"806":121,"8061":132,"8065845639670534":74,"8066":132,"807":121,"80730058":156,"808":[121,156],"808326e":38,"80859375":132,"809":[121,132],"8091":132,"81":[38,57,59,66,93,110,117,120,132,156,161,162,165,170,176,192,193],"8100":132,"8101":79,"8106":132,"81093633":156,"81098":132,"811":[121,132],"811000":143,"8115":132,"811667":38,"8117":132,"8118":132,"81180":132,"812":[121,132],"8121":132,"8125":132,"812500":38,"8131776480400333":161,"8132":132,"8133":132,"8133333333333334":64,"8134":132,"8135":132,"8137":132,"8140703517587939":165,"8141":132,"8143":132,"8145":132,"8147":132,"815":132,"8154":132,"8155":132,"815768":121,"816":153,"81640625":132,"8169":132,"817745":121,"818":132,"818000":[112,176],"818286":29,"818557e":59,"819":132,"8192":132,"8195":132,"8196":132,"82":[38,94,132,156,161,162],"8200":132,"8203125":132,"820455":121,"8206":132,"821":132,"8216":132,"8218":132,"822":34,"8220":132,"8222":132,"822259":143,"823":[34,132],"8231":[61,79],"8235":132,"823723":121,"8242":132,"82421875":132,"8243":132,"8248":132,"82485143":120,"8250":132,"825000":38,"8256":132,"8259":132,"826":132,"8260":132,"826347":58,"827":38,"827204":29,"828066":64,"828125":132,"8283":132,"8286":132,"829":132,"829500":143,"829756":[63,65],"83":[35,38,59,64,112,156,162,165,176],"830":132,"8307692307692308":165,"832":[111,176],"83203125":132,"833":143,"833176":121,"833333":38,"8333333333333334":156,"8340":35,"8359375":132,"836":143,"836154":38,"836667":38,"837500":38,"837984":146,"839000":112,"83984375":132,"84":[40,50,57,59,66,132,145,156,161,162,164],"840":140,"84001001":140,"84001003":140,"84001005":140,"84001007":140,"84001009":140,"8407":35,"841254":121,"84192557":156,"842":132,"842069":29,"84236351":156,"843":141,"843102":121,"843333":64,"84375":132,"844225":121,"844925":146,"845":79,"8450":66,"845000":38,"8459":35,"846":132,"8462":[61,79],"846646e":59,"84700":79,"84739223":156,"84765625":132,"84797838907741":[63,65],"849":132,"849276":121,"85":[18,38,56,57,61,79,110,111,117,132,140,156,162,176,177,186],"850":132,"8504":153,"851":132,"8510":143,"8515625":132,"851852e":38,"852":[132,141],"852500":38,"852758":121,"8529":35,"854":132,"854071":121,"8544":35,"854448":153,"855305":121,"8554":35,"85546875":132,"8554913294797688":57,"855678":121,"856":132,"856196":[63,65],"856667":38,"8568203376968316":50,"857":184,"8572":35,"85796668":[61,79],"8584":35,"858443":121,"859375":132,"8595784":120,"86":[38,50,57,59,61,63,65,79,132,140,145,150,156,162],"860":132,"8600":29,"860146":59,"863":132,"86328125":132,"8637678":[170,192],"863846":38,"864":132,"8644":35,"8649":35,"866":132,"8666666666666667":64,"86713461558":61,"8671875":132,"8672":79,"867339":38,"867500":38,"867773":121,"868263":140,"868786":121,"868942":[63,65],"869":132,"869231":38,"869547":[63,65],"869888":161,"87":[38,50,57,140,146,156,161,162,170,177],"870":132,"87000":[187,188],"870000":38,"87005":79,"870053":61,"870455":153,"870815e":59,"871":121,"87109375":132,"872":[121,132],"873":[121,132],"8734":35,"874":[121,132],"874230":29,"874252":29,"875":[121,132],"875723":121,"875750":143,"876":121,"877":[121,132],"8776021588280649":76,"878":121,"878510":121,"87890625":132,"879":132,"88":[40,50,57,59,61,79,132,145,148,150,153,156,161,162],"880":[61,79],"8808":153,"881110":29,"8823":35,"88235294":79,"882430":59,"882500":38,"8828125":132,"883":132,"8830":35,"8845":35,"885":132,"8855":59,"885692":121,"8858":59,"885823":121,"885964":[63,65],"886073":29,"8861":35,"88633901":156,"8864":153,"88671875":132,"8883":35,"888687":29,"888888":148,"888889":117,"88889":184,"888938":121,"889":132,"889508":121,"88k":50,"89":[38,50,57,132,145,156,162,169],"890":132,"890625":132,"890963":121,"892":132,"8924":35,"8926045016077171":57,"894":[132,143],"89400":79,"894232":121,"89453125":132,"89488":143,"895":132,"896":132,"896291e":59,"896499":59,"896727335512334":64,"8977517768607695":64,"898":132,"8981005311027566":74,"8982142857142857":29,"8984375":132,"899":140,"8aaad":59,"8b":94,"8barxiv":130,"8c74a315":[119,178],"8j":[170,192],"8s":[61,131,156],"8spbdlrp3lbr9j9uejdzgqul6":59,"8x8":[50,131],"9":[7,14,18,22,24,29,30,32,34,35,37,38,41,43,45,47,48,50,54,58,59,60,64,66,68,74,76,77,79,81,85,93,94,102,111,113,117,118,120,121,122,125,132,134,137,143,144,145,146,148,154,156,161,164,165,166,169,170,171,176,177,178,182,184,190,191,192,193],"90":[1,7,14,31,34,35,38,39,40,50,51,54,56,57,59,63,65,83,117,132,135,145,149,154,156,162,164,165,182,184,191],"900":[56,132],"900000":64,"90022":79,"900225":61,"900815":121,"901429":74,"902000":112,"902037":121,"90234375":132,"903846":117,"90385283885":79,"904227":29,"9042344":156,"905000":38,"905390":121,"906":132,"90625":132,"907":132,"908":132,"908113e":59,"908426":59,"9086":35,"909":132,"90909091":83,"91":[38,41,50,57,79,85,112,132,145,156,161,162,177],"910":132,"910000":143,"91015625":132,"9104":35,"911":132,"91111":184,"912641e":38,"9136":35,"9137407":79,"9140625":132,"9142":35,"914407":29,"915":132,"915919":121,"916667":38,"917":132,"9171":59,"917554018630476":64,"91796875":132,"918462":38,"9187045":[61,79],"919":132,"92":[38,40,49,57,59,68,81,117,132,148,156,162,184],"920":132,"921":132,"921875":132,"922":132,"922500":38,"922706":38,"923":79,"92300":79,"923077":117,"9235":59,"925":132,"9250":150,"925286":29,"92578125":132,"92780":153,"929":132,"9296875":132,"93":[35,38,40,57,59,79,83,110,132,156,162,176],"930":132,"9300":61,"930478":121,"930808":153,"930833":38,"931074":121,"931166":121,"9312":59,"931818":153,"932":132,"9324":35,"933":132,"933541":29,"93359375":132,"934649":153,"934832":153,"935214":29,"935376":29,"93598814":[61,79],"937":132,"9375":132,"938":132,"938874":153,"939":132,"93yueidgozr8cncbb6ln4itqhlckkqfh9taxiwd6gum6upgfyfcautkknrgsxo":59,"94":[29,38,47,48,50,57,59,68,79,81,110,117,132,156,164,176],"940000":38,"940000e":38,"940217":153,"9403":35,"941":132,"94140625":132,"941642":[63,65],"942":[122,178],"942500":38,"94257014456259":50,"943":132,"943324":153,"944167":38,"945":132,"9453125":132,"945989":121,"946":[50,132],"946246656":38,"948799":153,"94921875":132,"949230e":38,"9494233119813256":50,"95":[18,32,35,37,38,40,47,50,57,59,68,77,79,81,85,93,112,117,145,154,156,157,161,182,184],"9500":61,"9503":153,"9505769161049876":164,"950777":121,"950791":153,"950964":58,"951":132,"951123":153,"9511372931045574":50,"952074":29,"952655":153,"953":50,"953011":143,"953125":132,"953458db800a":139,"954":[50,132],"954000":143,"954656":121,"9550":66,"955556":117,"956":132,"9564565636458":[63,65],"9568":153,"957500":38,"958":[57,132],"958084":58,"958434":29,"959":79,"9591":35,"959280":59,"95k":50,"96":[32,47,50,54,59,132,156],"960":[132,190],"9600":66,"9600000000000002":64,"960012":121,"960255":121,"960304":29,"9609375":132,"961":[132,143],"961250":143,"962500":38,"963":132,"96303579":79,"96484375":132,"965":153,"9656":153,"965629":29,"966":132,"966000":143,"9666666666666667":64,"9666666666666668":64,"967":132,"968333":38,"96875":132,"9688888888888889":156,"96896536339727":64,"96918596":[154,182],"96945":38,"96982397":59,"97":[38,39,47,50,57,64,83,132,141,156,164,186,191],"97011173":59,"9709416":59,"971020":29,"972":[132,190],"9723201967872726":[63,65],"9725":59,"97265625":132,"973":132,"97318436":59,"973291":121,"973292":29,"9733333333333334":64,"97458101":59,"975":132,"975000":38,"9753462341111744":50,"975385344":38,"975532":59,"9756":59,"9757":79,"9759036144578314":165,"976":[121,132],"9765625":132,"977":121,"977255e":38,"9777777777777777":156,"978":[121,132],"9780321601919":138,"9783":59,"97848561":59,"97849162":59,"97876502":59,"9789":59,"97899282":[61,79],"979":[121,132,177],"979150e":121,"97988827":59,"98":[47,49,58,59,60,132,156,165],"980":[121,132],"98046875":132,"9807":59,"981":[29,121],"9810":153,"9816":59,"98176":135,"982109":140,"9824":59,"982500":38,"9827":59,"98296089":59,"983":[121,132],"9830":59,"983000":112,"983077":38,"9832":59,"9835":59,"984":121,"984375":132,"985":121,"985000":38,"986":[38,121,132],"9866666666666667":64,"986792":143,"9868":59,"987":132,"987500":38,"987654321":93,"98828125":132,"98e3715f":102,"98gib":29,"99":[31,32,38,47,50,56,59,63,65,117,120,121,140,145,156],"990":132,"990000":[187,188],"990133":29,"991":[57,165],"9921875":132,"992212":143,"992258":29,"9924":35,"993":[132,143],"993280":29,"9940711462450593":29,"9949":59,"994f5f":36,"995":35,"9950":35,"995000":143,"995873":38,"996":132,"99609181":79,"99609375":132,"996421":140,"996650":38,"996840":29,"996895":121,"997":132,"997128":38,"997217":38,"99757":32,"998058":38,"998799":38,"998816":38,"999":[34,37,56,125,126],"999530266023044":58,"9996615456176722":[63,65],"9999":56,"9999965334550955":[63,65],"9999997207656334":177,"9999999987777783":80,"999999999601675":[63,65],"9be4c7yahuinv1h07ucme1co9p":59,"9ec22d57b796":102,"9ect":59,"9f84":119,"9f95":[119,178],"9k":38,"9k7zyhrlytbcgvrzowtshs0jkcwjaa":59,"9s":[61,156],"\u00b5":31,"\u00b5s":177,"\u00e1":141,"\u015fimdi":35,"\u03b3":59,"\u03b3xit":59,"\u03bb":153,"\u03bc":31,"\u03bc1":31,"\u03bc2":31,"\u03bcn":31,"\u03c3":31,"\u03c31":31,"\u03c32":31,"\u03c321":31,"\u03c322":31,"\u03c32n":31,"\u03c3n":31,"\u4e13\u4e1a\u7248":38,"\u4f7f\u7528\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":74,"\u5168dlc":38,"\u5b89\u88c5\u5373\u73a9":38,"\u6597\u9c7c\u89c6\u9891":38,"\u65b0\u5efa\u6587\u4ef6\u5939":38,"\u65e0\u9650\u91cd\u7f6e\u63d2\u4ef6":38,"\u7fa4\u661f":38,"\u8bad\u7ec3\u6a21\u578b":74,"\u8c6a\u534e\u4e2d\u6587":38,"\u8d60\u54c1":38,"\u8fc5\u96f7\u4e91\u76d8":38,"\u923d":102,"\u94f6\u6cb3\u5178\u8303dlc":38,"\u9a71\u52a8\u4eba\u751fc\u76d8\u642c\u5bb6\u76ee\u5f55":38,"a\u00e7\u0131l\u0131\u015f":35,"abstract":[1,8,115,120],"ayl\u00f8":143,"bia\u0142ecki":178,"boolean":[7,46,93,102,118,121,130],"break":[14,33,35,50,62,75,122,128,132,137,138,163,170,189,192],"byte":[29,68,81,120,170,177,192],"cach\u00e9":178,"caf\u00e9":153,"case":[3,7,8,14,18,29,30,40,43,49,52,54,57,58,59,64,66,75,77,79,83,93,94,102,103,107,109,112,115,117,118,120,121,122,125,127,131,135,137,138,139,140,143,144,145,146,148,149,150,153,154,156,160,161,163,164,165,169,170,172,174,177,184,186,191,192],"catch":[128,139],"char":170,"class":[3,7,14,22,24,29,30,31,33,34,36,37,38,40,41,43,49,52,53,54,55,57,58,59,60,61,64,68,74,75,77,79,81,82,83,84,94,95,101,111,118,120,121,126,127,128,130,131,132,133,134,139,143,145,146,148,149,150,153,154,156,157,160,161,163,164,165,170,171,176,180,184,186,187,190,192],"clion2020\u7834\u89e3":38,"d\u00fc\u015f\u00fck":35,"default":[7,22,29,33,45,46,49,50,52,53,54,57,58,62,63,65,68,81,83,86,94,102,110,118,120,121,125,126,127,130,131,135,139,144,148,154,156,161,162,170,182,184,185,190,191,192],"do":[0,1,3,7,8,10,13,14,17,18,21,23,25,26,28,29,30,31,32,33,36,40,41,43,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,68,71,74,76,79,81,83,89,91,93,94,99,101,102,103,104,105,107,109,110,111,112,113,114,117,118,120,121,122,125,127,128,130,131,134,135,137,139,140,141,143,145,146,148,149,152,153,154,155,156,157,160,161,163,164,168,169,171,178,184,185,186,189,191,192],"export":[138,157,160],"final":[7,31,32,33,41,47,48,50,51,54,55,56,58,59,68,74,81,83,94,107,118,121,125,130,131,132,134,138,139,140,145,148,149,150,151,154,156,157,160,163,164,165,169,170,180],"float":[22,34,35,38,43,44,46,48,49,51,55,59,93,94,118,120,121,125,129,133,144,146,169,171,177,184,193],"fran\u00e7oi":29,"function":[0,1,2,3,7,14,18,22,25,30,31,33,35,36,37,40,41,45,46,47,48,49,50,52,53,54,55,56,57,58,60,61,62,63,64,65,66,68,74,79,80,81,82,92,104,112,117,118,119,121,124,125,126,130,131,132,133,134,135,137,140,145,148,150,151,153,154,155,156,160,161,163,164,165,166,168,170,178,182,184,185,186,192,193],"g\u00f6rkem":34,"g\u00fcnai":34,"import":[1,2,3,7,12,14,15,17,18,21,22,23,24,25,30,31,32,34,35,36,38,39,40,42,43,45,46,47,48,50,55,62,63,65,67,68,74,75,76,77,79,80,81,83,85,87,93,94,95,99,100,101,102,103,104,105,107,108,109,110,111,112,115,117,120,121,124,125,127,128,129,130,131,132,133,134,135,137,138,140,141,142,143,144,145,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,163,164,165,166,170,171,172,174,176,177,180,182,184,185,189,191,192,193],"int":[7,14,22,31,39,50,56,85,93,94,120,121,125,126,130,131,132,133,134,148,157,169,170,171,177,192,193],"long":[1,8,14,33,35,36,45,47,48,53,55,56,59,64,68,81,83,101,102,105,112,115,120,127,128,131,134,135,139,152,155,157,163,169,170,171,185,191,192],"micha\u0142":178,"new":[7,9,14,17,22,23,31,33,34,35,41,43,45,47,48,49,50,52,53,54,55,59,60,61,62,64,68,74,77,81,85,93,94,100,101,102,103,105,107,109,110,113,114,115,117,119,122,124,125,127,128,129,130,135,136,138,139,141,144,145,148,149,150,151,152,153,154,155,156,160,163,164,165,166,168,169,170,172,174,175,177,178,179,180,182,184,189,192],"null":[38,44,46,48,60,79,118,121,143,153,157,164,165],"office2016\u7b80\u4f53\u4e2d\u658764\u4f4d":38,"p\u03b8":126,"pikach\u00fa":12,"public":[1,14,50,56,57,100,107,113,115,117,133,138,140,141,163,166,169,173,174,175],"return":[2,3,7,12,14,18,22,24,25,29,30,31,33,34,35,36,37,38,39,40,41,43,44,46,47,48,49,50,52,53,54,55,56,57,58,60,63,64,65,66,68,74,75,77,79,80,81,82,83,85,93,94,101,102,118,119,120,121,122,124,125,126,129,130,131,132,133,134,135,139,140,145,148,149,150,153,155,156,157,160,170,171,177,178,180,184,185,186,187,188,191,192],"short":[26,45,59,101,117,120,127,128,130,141,157,169,170,192],"static":[5,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,75,110,111,112,140,143,144,156,157,160,161,162,164,169,170,176,192],"super":[29,30,31,33,36,37,43,63,65,121,126,130,131,132,133,144,149,169,191],"switch":[0,7,14,47,50,139,145,169,191],"throw":170,"transient":137,"true":[1,7,9,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,44,46,47,48,49,50,51,52,53,54,55,56,57,58,60,62,64,66,68,75,76,77,79,81,83,93,97,98,101,102,109,110,117,118,120,121,122,125,126,128,129,130,131,132,133,135,140,143,144,145,146,148,152,153,154,155,156,157,162,164,165,166,168,169,170,171,176,177,180,182,186,190,191,192,193],"try":[1,3,4,5,7,9,11,14,16,18,25,29,31,35,36,44,45,47,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,74,77,83,84,90,93,101,102,103,105,108,109,110,111,112,115,118,119,121,122,125,131,132,133,139,140,141,143,144,148,149,150,152,153,154,155,156,157,159,161,162,163,164,165,166,167,168,170,171,184,189,192],"var":[18,38,51,55,68,81,109,126,145,148,164,176],"void":120,"while":[0,1,7,29,31,32,33,36,40,46,47,48,50,53,57,58,59,60,61,64,75,77,86,94,100,102,103,104,105,107,109,112,113,114,115,117,118,120,121,122,125,128,130,131,137,139,148,154,155,156,157,161,163,164,165,170,172,173,177,178,179,180,184,185,189,190,192],"x\u7684\u7f3a\u5931\u503c\u6570\u91cf":74,"y\u00fcksek":35,"y\u7684\u7f3a\u5931\u503c\u6570\u91cf":74,A:[0,1,4,5,6,7,12,13,14,15,18,19,21,23,26,28,29,32,36,40,41,43,45,47,48,49,50,51,52,56,57,58,59,62,63,64,65,66,68,72,74,75,76,79,81,83,86,89,90,91,93,94,100,101,102,103,105,107,109,110,111,113,114,115,117,118,119,120,121,122,124,125,126,128,129,130,131,133,134,135,137,138,139,140,142,143,144,145,146,148,149,153,154,156,157,160,163,165,166,168,169,170,171,174,175,177,178,180,182,185,186,189,190,191,192,193],AND:[93,94,109,120,121,169,170],AS:[22,25,45,47,48,93,94,169,170],And:[31,32,40,41,43,48,49,50,52,56,58,62,68,74,77,79,81,93,101,103,105,113,117,120,124,127,128,131,134,137,138,139,140,141,145,154,156,166,170,174,178,182,185,192],As:[1,3,7,8,33,34,36,40,41,43,47,48,49,50,51,52,53,54,56,57,58,59,60,61,68,77,79,81,83,84,100,101,107,110,113,115,117,118,120,121,122,130,131,132,137,138,139,145,148,149,153,154,155,156,160,163,164,165,166,169,170,171,175,177,180,189,191,192],At:[28,40,48,50,56,59,68,75,81,107,117,120,122,128,138,139,141,145,149,150,155,163,166,168,169,170,177,189,190],BE:[93,94,169,170],BUT:[93,94,169,170],BY:[76,102,139,144],Be:[86,92,105,109,120,157],Being:[43,62,102,105,121],But:[33,38,40,43,48,49,50,52,53,56,57,58,59,61,64,68,77,79,81,101,105,110,113,122,125,127,129,135,137,138,139,141,144,148,149,150,152,154,155,156,163,165,168,169,170,171,182,186],By:[7,18,29,40,41,46,49,52,53,54,57,59,68,76,77,79,81,100,110,115,118,120,121,122,126,135,137,138,140,143,144,145,146,153,156,160,163,164,165,169,180],FOR:[93,94,169,170],For:[7,19,29,30,31,32,35,36,38,39,40,41,43,45,46,47,48,49,50,51,54,59,60,61,64,66,67,68,69,71,72,75,77,79,85,86,87,89,90,91,92,101,102,103,112,113,114,115,117,118,120,121,124,127,128,129,131,133,135,137,138,139,140,141,143,144,145,146,148,149,150,153,154,155,156,157,160,161,162,163,164,165,166,168,169,170,171,172,182,186,189,190,192],IN:[25,83,93,94,169,170],IS:[22,45,47,48,54,93,94,98,143,169,170],IT:[54,100,138],If:[1,7,14,16,18,29,33,34,35,39,40,41,43,45,48,49,50,51,52,53,54,57,58,59,60,62,64,66,68,69,74,76,77,79,81,83,93,94,96,101,102,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,126,127,128,129,130,132,134,137,138,139,141,143,145,148,149,150,152,154,155,156,157,160,162,163,164,165,166,168,169,170,171,178,184,186,189,191,192,193],In:[1,3,7,8,9,11,12,13,14,16,18,19,21,24,28,29,30,31,32,33,36,39,40,41,43,45,46,47,48,49,50,52,53,54,57,58,59,60,61,62,64,66,68,69,71,74,75,76,77,79,80,81,83,84,89,90,91,93,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,135,137,138,139,140,141,143,144,145,146,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,177,178,179,184,186,187,188,189,190,192,193],Is:[50,94,98,100,104,107,112,113,114,126,138,139,143,157,163,165,166,193],It:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,20,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,76,77,79,81,83,84,85,86,87,89,90,91,92,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,125,126,127,128,129,130,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,160,161,162,163,164,166,168,169,170,171,173,174,180,184,185,186,187,189,190,192],Its:[127,148,153,165],NEAR:[61,79],NO:[93,94,169,170],NOT:[83,93,94,120,169,170],Near:[110,176],No:[7,20,29,33,50,54,56,64,83,89,94,99,101,102,111,128,141,145,154,156,161,169,170,173,176],Not:[7,40,43,49,52,54,56,68,81,102,112,118,119,132,149,161,164,165,170,185,192],OF:[22,45,47,48,93,94,169,170],ON:[122,178],ONE:7,OR:[22,45,47,48,93,94,120,169,170],Of:[50,102,103,105,115,156,171,172],On:[49,50,52,57,58,59,60,61,66,68,79,81,102,105,107,139,145,149,152,153,156,157,163,164,168,169,175,185],One:[1,7,11,28,40,43,49,50,52,53,54,55,57,58,59,66,84,99,104,105,107,109,111,115,117,120,125,127,133,139,144,146,148,154,163,164,166,169,170,171,175,176,177,182,184,189,192],Or:[32,40,50,58,79,103,105,120,127,128,139,143,146,163,169,170,185,189,192],Such:[1,7,30,40,43,49,50,54,117,139,140,164,169,191],THAT:83,THE:[93,94,169,170],TO:[54,93,94,134,169,170],That:[31,32,40,43,48,49,50,52,57,61,62,68,79,81,105,110,117,120,122,128,144,146,149,150,156,157,163,165,170,171,189],The:[0,3,5,6,7,8,12,13,14,15,16,18,19,24,25,26,28,29,30,31,32,33,34,35,37,39,40,41,45,46,47,48,49,50,52,54,55,56,57,58,59,60,61,62,63,64,65,66,68,71,74,77,79,81,84,85,91,92,93,94,100,103,104,105,107,109,110,111,113,114,115,116,117,119,120,121,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,148,149,150,151,152,153,154,157,160,161,163,164,165,171,172,174,175,176,180,181,183,184,185,186,187,188,189,190,193],Then:[7,31,45,47,50,56,66,74,76,83,102,105,117,120,121,125,126,129,132,134,139,140,141,144,145,146,148,149,153,157,164,168,169,170,171,185],There:[0,1,3,7,18,28,29,30,32,34,36,37,39,40,41,43,46,47,49,50,51,54,57,59,60,62,64,68,72,79,81,86,101,102,105,107,109,110,111,114,115,117,118,119,120,121,122,124,125,127,130,132,134,135,137,138,139,140,141,143,144,146,148,149,152,156,157,159,160,162,163,164,165,167,168,169,170,171,189,190,191,192],These:[7,30,31,39,41,45,49,54,56,59,60,75,76,77,79,100,102,105,107,110,113,114,119,120,121,130,138,144,148,149,153,155,156,163,169,171,173,175,177,178,180,191],To:[0,1,7,14,18,22,29,33,34,36,40,41,45,46,48,49,50,52,54,58,61,62,66,68,74,75,79,83,93,100,101,102,103,105,110,111,112,113,115,117,118,120,121,122,125,126,127,129,130,131,132,135,136,137,138,139,140,141,145,146,149,150,152,153,154,156,157,160,163,164,165,166,168,169,170,171,175,176,178,181,184,185,189,191,192,193],WITH:[93,94,169,170],Will:[141,165,171],With:[7,40,41,43,47,50,56,60,61,62,85,100,104,105,109,110,112,113,114,115,119,120,121,122,127,138,139,146,148,149,154,156,163,169,178,185,190],_0:149,_1:146,_2:146,_:[18,29,31,33,37,41,51,56,75,82,124,125,126,128,129,130,131,132,134,135,146,149,156,169,170,180,186,187,192],____:[3,12,22,24,25,46,93,94,98],_____:[24,93],______:[12,14,25],_______:14,________:14,_________:14,_________________________________________________________________:29,____i:94,__abs__:93,__add__:93,__all__:169,__annotations__:[169,191],__builtins__:169,__cached__:169,__call__:[63,65,126,131],__class__:[37,169],__dict__:[75,187,188],__doc__:[169,191],__eq__:93,__file__:[125,169],__finalize__:121,__future__:[37,125],__get__:121,__getitem__:121,__init__:[29,30,31,33,35,36,37,43,55,63,65,74,75,82,83,95,121,126,128,130,131,132,133,150,169,186,187,191],__iter__:33,__len__:33,__loader__:169,__main__:[35,125,128,157],__mul__:93,__name__:[35,37,125,128,157,169],__operators__:132,__package__:169,__repr__:55,__spec__:169,__str__:93,__sub__:93,__truediv__:93,__version__:[41,156,191],_aspp:131,_attach:[119,178],_bin:54,_branch:131,_build_model:35,_bunch:[57,58],_caller:121,_check_indexing_error:121,_check_params_vs_input:144,_concaten:121,_consolidate_inplac:121,_constructor:121,_conv_block:131,_conv_bn_relu:131,_conv_relu:131,_data:121,_decor:121,_deeplabv3:131,_deprecate_mismatched_index:121,_deprecated_arg:121,_engin:121,_etag:[119,178],_fcn_16:131,_fcn_32:131,_fcn_8:131,_format_argument_list:121,_fuse_bn_tensor:130,_get_axi:121,_get_block_manager_axi:121,_get_comb_axi:121,_get_concat_axi:121,_get_label_or_level_valu:121,_get_list_axi:121,_get_merge_kei:121,_get_new_ax:121,_get_result_dim:121,_get_slice_axi:121,_get_valu:121,_get_values_for_loc:121,_getbool_axi:121,_getitem_axi:121,_getitem_lowerdim:121,_getitem_tupl:121,_i:[76,77,146,156],_identity_block:131,_ilocindex:121,_index:56,_invalid_index:121,_is_copi:121,_is_scalar_access:121,_j:[146,156],_k:128,_kmean:144,_label:57,_left:121,_lib:121,_locationindex:121,_locindex:121,_m:128,_make_concat_multiindex:121,_make_stag:130,_maybe_cast_for_get_loc:121,_maybe_cast_slice_bound:121,_maybe_check_integr:121,_mergeoper:121,_method:177,_mgr:121,_novalu:177,_other:121,_pad_1x1_to_3x3_tensor:130,_pickl:125,_recognized_scalar:121,_rid:[119,178],_right:121,_sec_1:94,_segnet:131,_self:[119,178],_sigmoid:[82,187],_skip:3,_slice:121,_subplot:79,_sum:177,_t:[119,178],_t_sne:184,_take:121,_take_with_is_copi:121,_takeabl:121,_valid_typ:121,_validate_integ:121,_validate_kei:121,_validate_tuple_index:121,_valu:121,a0958ad901d7:119,a0:[121,177],a10:121,a1:[120,121,177],a1gkdhua8we2lilmxcctgfiycqfttwx6tljchvsbz6sfau8wquo8541xaz2myyziork:59,a21453:170,a23:[169,191],a2:[120,121,177],a3:121,a3z5kdkfn3tbq:59,a4:121,a5:121,a7yia1n5fo6efhugqfis3dhueyjsa:59,a_:83,a_dict:170,a_i:[83,145],a_list:170,a_n:148,aaaaaa:[154,182],aafter:155,aaron:[29,50,77,129],ab:[50,63,65,76,93,94,121,125,126,133,156,169,170,192],abadi:129,abbeel:126,abbrevi:[122,126],abc:[94,121,170,177,193],abcd:[7,118,121,177],abcdef:121,abcmous:[113,174],abhinav:[137,141],abil:[43,52,54,68,74,76,81,109,127,137,138,148,154,157,163,169,171,182,189],abl:[3,7,10,11,14,16,20,31,40,49,50,52,53,54,57,61,62,74,79,102,105,111,113,115,119,120,121,127,135,138,140,143,149,152,155,157,160,163,164,165,166,168,174,184,187,188,191],abnorm:29,abnorml:66,abo:38,aboslut:155,about:[1,4,7,11,12,13,15,16,17,18,19,22,23,26,28,29,31,40,41,43,46,47,48,49,50,52,53,54,57,58,59,60,61,62,66,68,76,77,81,84,85,91,100,101,102,103,104,105,107,109,110,111,113,115,116,117,118,119,120,121,122,123,127,128,131,133,135,136,137,138,139,140,141,142,143,144,145,148,149,150,152,153,155,156,157,159,161,162,163,164,166,167,168,169,170,171,172,174,175,178,186,189,191,193],abov:[0,1,7,11,14,19,26,29,32,36,40,43,45,46,47,48,49,50,51,52,53,54,57,58,59,60,64,66,68,79,81,93,94,105,109,111,115,117,120,121,122,125,126,127,128,130,131,133,135,137,138,139,140,143,144,145,146,148,152,153,155,156,160,163,164,165,166,167,168,169,170,171,176,185,186],above_cutoff:156,abracadabra:170,abraham:193,abs_vector:[170,192],absenc:[54,184],absent:121,absolut:[47,74,77,84,93,117,120,139,148,152,155,169,170,171,192],absolute_error:76,absolute_import:125,absolute_percentage_error:76,abspath:125,abtract:77,abund:[111,176],ac:156,academ:[113,116,136,174],academi:191,acc:[33,39,47,49,52,57,125,134,190],acc_and_loss:125,acc_output:125,acceler:[101,111,112,139,141,164,176],accept:[16,40,57,68,81,84,101,104,107,113,120,121,130,139,141,149,153,163,169,175,189,190],access:[6,14,16,38,41,68,77,79,81,100,102,103,105,107,109,113,119,137,140,141,157,164,169,170,174,175,177,185,191,192],accessor:121,accident:149,acclaim:153,accommod:[7,36,47,118,170],accompani:[117,139,164],accomplish:[89,139,149,163,184,189],accord:[18,45,50,54,63,65,100,109,110,111,112,117,120,121,130,137,140,143,145,148,153,157,161,163,164,165,166,168,184],accordingli:[41,55,74,125,143,169,191],account:[0,6,8,14,16,50,76,77,93,102,103,113,117,119,120,145,149,164,165,174,177],accumul:[1,50,93,107,135,146,163,170,189],accur:[15,32,33,41,50,54,59,68,69,76,81,91,102,107,113,114,117,125,127,131,133,137,140,141,145,152,155,160,163,164,165,175],accuraci:[29,33,34,39,40,48,49,50,51,52,54,56,57,60,64,68,69,74,76,77,81,83,84,85,103,113,118,125,131,134,139,140,144,145,146,148,149,151,152,154,156,157,161,162,164,165,172,174,180,184],accuracy_of_batch:125,accuracy_scor:[29,30,39,49,50,51,52,56,57,59,60,68,81,84,148,153,157,161,162,165,184,187,188],achiev:[32,33,40,48,50,54,56,59,104,107,120,128,129,130,131,137,138,139,140,148,149,150,151,153,154,155,156,169],aci_servic:[9,101],aci_service_nam:[9,101],aciconfig:[9,101],acid:48,aciwebservic:[9,101],acm:[113,137,174],acoust:[142,143,144],acquir:[6,104,107,139,175],acquisit:[3,103,107,115,135,172,174],acronym:110,across:[33,43,47,54,68,77,81,103,113,115,117,120,121,122,125,135,137,138,139,141,149,153,156,169,170,172,174],act:[3,14,22,24,35,53,62,94,105,113,120,121,125,128,133,163,164,177,189],act_greedi:35,act_valu:35,action:[0,7,35,40,45,46,93,94,100,104,105,113,115,118,119,120,129,138,140,157,161,163,169,170,174,189],action_s:35,actions_count:35,activ:[0,29,30,32,33,34,35,36,39,40,41,43,44,45,47,48,56,57,62,77,83,113,124,125,126,130,131,132,133,134,140,149,155,156,160,174,179,180,185,190],activateion:132,activespac:178,actor:169,actual:[7,38,40,43,46,47,48,50,51,52,56,57,59,60,66,68,74,75,76,77,79,81,83,84,85,93,102,112,114,115,117,118,119,120,121,125,126,127,135,137,143,149,151,153,155,156,160,163,164,165,169,171,173,175,179,186,189],actual_result:[3,14,22,24,53,94],actual_valu:[38,76],acut:148,ad:[1,7,18,22,29,32,36,38,41,43,45,48,50,52,54,59,64,68,74,81,93,94,112,114,117,119,125,126,130,136,138,139,148,149,150,152,154,163,164,170,186,192],ada:162,adaboost:[149,162],adaboost_clf:49,adaboostclassifi:[49,56,161,162],adagradoptim:139,adam:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,62,124,126,130,131,132,180],adamax:36,adamharlei:179,adamoptim:[125,129,139],adapt:[47,58,62,77,100,113,130,135,139,149,174,190],adaptiveaveragepooling2d:130,add:[1,7,9,14,17,18,30,31,32,33,34,35,36,38,39,41,42,43,44,45,46,47,50,52,54,61,62,63,65,66,74,77,93,94,109,111,114,117,119,121,122,124,125,126,130,131,132,133,138,148,149,150,152,153,154,155,157,162,163,164,165,166,168,169,170,171,178,180,182,185,186,189,190,192],add_1:132,add_:31,add_artist:[111,176],add_legend:143,add_selectbox:185,add_slid:185,add_subplot:[35,37,47,80,128],add_trick:169,add_weight:130,addison:138,addit:[1,7,18,23,32,41,46,54,59,64,66,74,75,77,79,93,104,105,107,109,113,114,117,118,119,120,122,128,130,131,132,133,135,139,141,145,149,150,152,153,154,156,164,170,171,177,178,192,193],addition:[31,74,118,120,122,138,143,145,149,154,178,182],additon:32,addon:126,address:[74,75,91,104,105,107,113,135,137,138,141,145,152,163,169,174,175],adel:148,adequ:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,86,89,90,91,92,117,139],adher:[48,107],adjac:169,adject:[170,192],adjunct:163,adjust:[29,33,36,45,55,57,58,75,77,130,139,148,149,154,162],adjusted_r2_scor:76,admin2:140,admin:178,administr:[141,171],adobe_premier:38,adolesc:169,adopt:[59,86,103,113,138,139,141,145,149,172,174,193],adult:[169,191],advanc:[35,43,66,103,113,121,136,138,139,141,145,163,170,178,181],advantag:[40,50,54,68,81,121,130,138,141,148,151,152,154,170],advent:[49,127,138],advers:28,adversari:[36,141,181],advertis:105,advic:139,advis:[7,46,53,58,61,118,148],advoc:113,ae:[31,126],aebf:[119,178],aeroplan:7,aerospik:178,aesthet:22,affect:[7,17,33,39,49,52,54,56,58,68,74,81,83,103,105,107,113,117,118,128,130,139,146,152,154,155,169,172,174,182],affer:134,affin:[83,143],affinity_matrix_:156,afford:[7,79,118,163],african:[113,141,174],afro:[143,144],afropop:[143,144],after:[0,7,14,29,32,33,34,35,36,39,40,41,47,48,49,50,51,54,55,56,57,60,62,64,74,79,83,105,109,115,117,118,120,122,124,125,130,131,132,134,135,138,139,140,143,144,146,148,149,152,153,157,162,163,164,166,169,170,171,185,187,188,190,191,192],afterward:[32,120],afzal:137,ag:[9,18,22,50,51,79,89,93,94,101,102,115,117,119,120,121,138,143,145,146,150,153,160,163,167,168,169,170,171,177,178,187,188,189,191,192,193],again:[7,14,17,40,41,47,49,50,51,52,53,57,58,59,68,81,83,118,121,126,144,149,153,155,165,166,169,170,171,184,185],against:[0,18,41,47,50,59,76,77,105,113,115,117,121,135,139,149,155,157,168,183],agaricu:111,age_distribut:24,age_median_imput:22,age_sal_tre:50,age_tre:50,agefil:22,agenc:[105,163],agenda:[103,172],agent:[113,163,189],ageron:156,agg:[18,38,156],aggfunc:121,agglom:143,agglomerativeclust:156,aggreg:[7,14,49,77,107,112,125,145,148,153],aghdkaaa:130,aghdkaab:130,agil:[137,138],agnost:138,ago:[125,127,149],agre:[22,45,47,48,113],agricultur:[103,112,163,166,172,189],ahead:[49,52,57,105,135],ahnjovq9nfghs6fj4piqib3brpgnscyflm6riahdtaeyfclwo1cf:59,ai:[12,18,25,76,101,103,109,113,115,121,128,137,138,140,141,144,157,163,168,173,174,179,189,191],aid:[54,62,77,143,164],aim:[54,74,75,77,105,128,129,130,133,146,163,183],air:114,airbu:29,airflow:138,airlin:7,airplan:125,airport:[103,122,172,178],ajai:126,ajaymach:139,aka:[36,138],akinlua:137,akkio:173,al:[31,68,81,112,113,141,176],alabama:140,alacazam:170,albeit:[45,165],albifron:[110,176],album:143,alcohol:[48,102],alekseynp:156,alert:137,alex:[33,125,126,131],alexa:139,alexand:[123,125],alexandru:66,alexei:59,alexi:150,alexnet:130,alfredo:168,alg:56,algebra:[42,51,54,59,85,120,190],algo:149,algorithm:[3,31,41,49,51,52,53,55,56,57,58,59,60,61,71,74,75,80,83,84,85,91,93,100,101,102,103,113,120,125,126,127,130,133,135,136,137,138,139,141,144,145,146,150,151,152,154,155,160,161,163,166,169,172,174,182,183,184,186,187,188,189],algoritm:149,algorythm:84,alia:[120,184],alic:[170,177],align:[22,76,113,120,133,135,143,144,146,156,157,160,164,165,184],alik:[0,141,148],all:[0,1,3,6,7,8,11,12,14,16,18,19,22,25,26,27,29,31,32,33,34,36,37,38,39,40,41,43,46,48,49,50,51,52,54,56,57,58,59,60,62,64,66,68,77,81,83,85,90,93,94,99,100,101,102,103,104,105,107,108,109,110,111,113,115,117,118,119,120,121,125,126,127,128,129,130,131,132,134,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,165,166,168,169,170,171,172,174,175,177,182,183,184,186,189,190,191,192,193],all_attr:31,all_clfs_acc:49,all_data:66,all_nod:1,all_photo:31,allbeit:83,allclos:83,allegrograph:178,allei:[54,66],allevi:[49,52,54],allianc:107,alloc:[29,40,50,113,180,184],allow:[1,3,14,18,48,50,54,59,75,76,77,100,101,102,104,112,113,114,115,117,119,120,121,122,124,128,130,131,137,138,139,143,149,152,153,154,160,161,164,168,169,170,171,184,185,191,192,193],allow_arg:121,allowed_arg:121,allowfullscreen:[77,160],allpub:66,allud:50,almeida:48,almond:[111,160,161,176],almost:[7,31,36,40,43,50,57,62,103,105,118,122,148,149,163,164,169,170,185,189],alon:[107,141],along:[1,7,33,36,40,48,51,54,59,68,74,80,81,104,105,110,118,119,120,121,134,138,140,143,148,161,162,163,164,169,176,189],alongsid:[71,110,139],alot:[54,127],alpha:[36,55,66,76,80,84,110,125,145,148,149,153,154,155,156,170,176,182,184,187,188,192],alpha_:126,alpha_t:[126,149],alpha_t_bar:126,alpha_tb_t:149,alphabet:[114,119,157],alphago:[127,163],alphas_cumprod:126,alphas_cumprod_prev:126,alphas_t:126,alq:54,alreadi:[40,43,49,50,52,54,60,63,65,68,77,81,83,94,101,107,115,121,126,131,139,145,149,156,166,168,169,171,175,177],alright:[36,83],also:[0,1,3,7,14,16,18,20,23,28,29,30,31,32,33,34,36,39,40,43,45,46,47,48,49,50,52,53,54,55,56,57,59,60,61,62,63,64,65,66,68,74,76,77,79,81,83,84,99,100,102,103,104,105,107,109,110,111,112,113,114,115,116,117,118,119,120,121,122,124,125,126,127,128,129,130,133,135,136,137,138,139,140,141,145,148,149,152,153,154,155,156,157,160,161,162,163,164,165,166,168,169,170,171,177,182,184,189,190,192],altair:185,altavista:149,alter:[75,85,107,114,169,175,191],alter_imag:85,altern:[7,16,32,45,54,59,62,112,113,118,120,139,143,154,155,169],altexsoft:138,although:[30,31,49,50,52,54,55,60,66,74,85,127,130,134,137,138,145,149,153,156,163,169,170],altogeh:138,altogeth:[14,155],altunyan:103,alwai:[7,14,30,33,34,36,40,43,45,47,48,49,52,54,55,57,58,59,61,68,81,105,110,117,120,121,122,126,127,128,130,135,138,139,140,141,148,149,153,154,155,156,160,163,165,169,170,171,191,192],am:[0,40,59,94,170,191],amalgam:77,amax:35,amaz:[32,102,103,109,131,171,172],amazon:[100,137,138,139,141,178],ambigu:[33,107,121,169],america:[109,167],american:[113,141,174],aml:[9,101],aml_comput:[9,101],aml_config:[9,101],aml_nam:[9,101],amlb:139,amlcomput:[9,101],among:[7,56,59,64,117,120,130,138,139,148,149,153,163,165,183],amongst:143,amount:[7,17,31,56,59,75,100,101,102,111,112,115,121,122,125,127,130,137,139,149,150,154,155,157,163,166,169,170,173,174,176,177,178,182,184,189],amp:143,amplifi:[103,113],amus:143,an:[1,5,7,14,16,18,20,22,23,27,28,29,30,32,33,34,36,40,41,43,45,46,47,48,49,50,52,54,56,57,58,59,62,68,75,76,77,79,80,81,83,84,85,91,92,93,94,100,103,104,107,109,110,111,112,113,114,115,117,118,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,148,149,152,153,154,155,156,160,161,162,163,164,165,168,169,170,171,172,174,175,176,177,178,180,181,182,183,184,186,189,190,191,192,193],anaconda3:38,anaconda:148,anaemia:[9,101,102],analog:[49,75,117,120,121,150],analys:[7,54,100,118],analysi:[1,7,16,17,18,21,31,46,68,74,81,101,103,106,107,114,115,118,120,121,122,124,127,137,143,146,149,153,156,165,166,172,174,175,177],analyst:102,analyt:[1,35,51,56,100,103,120,137,145,149,153,172,173],analyticsvidhya:56,analyz:[16,17,59,100,103,106,114,115,117,137,141,143,153,156,161,164,167,176],anatida:[110,176],ancestor:149,anchor:133,and21:141,anderson:141,andon:113,andreetto:130,andrew:[77,109,117,125,130,137,139,140,163],android:157,anemia:102,anf:34,ang:164,angel:170,angelica:[160,161],angelina:50,angl:[85,109,148,155,179],ani:[0,3,7,14,17,18,22,26,30,31,40,43,45,47,48,49,50,51,52,53,54,55,56,57,58,60,62,64,68,74,76,79,81,83,93,94,100,101,105,107,110,111,113,117,118,120,121,122,127,128,130,134,135,137,138,139,140,141,143,145,146,148,149,152,153,155,156,157,160,163,165,166,168,169,170,171,174,184,185,189,191,192],anim:[121,126,145,163,180,189,191],anis:[111,160,161,176],anise_se:[160,161],ankl:[30,40,41],ann:[39,127],ann_build:44,anneal:32,anni:24,annot:[4,5,13,19,34,38,40,48,49,51,52,53,59,64,68,79,81,109,130,133,156],announc:83,annual:[122,141,178],anomagram:124,anomal:[29,45,139],anomali:[8,14,47,49,50,139,143,156],anomalies_mask:156,anomalous_test_data:29,anomalous_train_data:29,anomalydetector:29,anonym:[104,113,169,174,191],anoth:[1,3,7,8,10,14,30,31,33,40,43,46,47,49,50,52,54,56,59,66,68,75,76,81,91,93,100,102,105,109,110,111,112,115,117,118,119,121,122,125,130,135,136,138,139,140,141,142,143,144,145,146,148,149,152,153,155,156,162,163,164,169,170,176,177,184,191,192],another_tupl:170,anser:[110,176],anseriform:[110,176],ansibl:138,anspos:29,answer:[16,23,40,49,50,51,56,83,86,103,104,109,112,117,121,127,130,136,139,140,141,145,146,149,150,157,160,163,166,168,169,175],anthropolog:143,anti:[85,141],anticip:115,any_column:24,any_script_cont:3,any_style_cont:3,anymor:155,anyon:[76,113,136],anyth:[7,13,18,43,58,61,66,105,122,143,149,163,166,168,169,175,185,189],anywai:[57,165,170],anywher:[49,50,120,163,169],ap:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,75,110,143,144,156,160,161,162,164],apach:[22,45,47,48,63,65,84,85,137,138,178,184,185,186,187,190],apart:[7,36,54,62,118,121,122,149],api:[6,16,29,40,41,45,48,57,62,100,101,102,103,114,119,121,138,157,160,164,165,168,172],api_doc:126,api_kei:102,apostroph:132,app:[5,6,38,43,92,100,105,109,113,119,140,174,185],appar:[149,169],apparatu:[18,117],appdata:[57,62,184,191],appeal:[49,52,53],appear:[30,31,32,47,102,110,113,117,120,129,130,131,132,135,139,141,148,149,153,155,157,164,165,169,170,174,180,185,192],append:[1,3,7,14,31,33,35,36,37,38,39,42,44,46,49,50,54,80,83,84,85,93,120,121,125,126,128,130,131,132,133,134,143,144,148,150,156,169,170,171,184,191,192],append_diff_column:14,appl:[39,113,160,161,170,174,192],apple_brandi:[160,161],applet:154,appli:[1,3,14,16,28,29,31,34,36,37,38,40,45,46,50,54,56,57,59,62,63,65,66,75,82,83,84,93,103,104,107,109,110,114,115,117,119,120,121,122,125,127,128,130,131,135,137,138,139,140,141,143,145,148,149,152,154,155,156,157,163,164,165,166,170,176,177,182,184,185,187,189,192],appliabl:3,applic:[0,4,16,22,39,41,45,47,48,75,76,100,101,102,103,107,113,114,115,119,120,123,125,129,130,131,133,135,137,138,139,141,145,149,153,157,170,171,172,174,175,181,192],apply_along_axi:85,apply_gradi:[36,124,126,132],apply_if_cal:121,apply_kernel:33,appreci:36,approach:[1,23,29,33,45,48,50,54,58,59,66,75,83,103,107,113,115,118,130,137,138,139,140,141,142,143,146,148,149,154,156,163,164,165,169,170,171,172,175,189],appropri:[29,31,45,50,68,74,77,81,93,105,119,120,128,139,143,149,152,154,160,166,168,170,178,182],approv:[50,117,138],approx:[50,93,145,149],approxim:[7,30,48,50,75,82,94,129,135,145,149,153,164,186,187,190],apricot:[160,161],april:[140,164],aqi:114,aqx:54,ar:[0,1,2,3,6,7,8,9,11,14,16,17,18,21,23,24,28,29,30,31,32,33,34,35,36,37,38,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,72,74,75,76,77,79,80,81,83,84,86,89,93,94,96,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,148,149,150,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,171,173,174,175,176,177,178,179,180,181,182,184,185,186,189,190,191,192,193],arang:[29,50,55,83,120,134,135,156,177,184,187,188],arangodb:178,arbitrari:[18,47,120,121,149,153,170,190,191,192],arbitrarili:[156,170,192],arc:110,arcco:120,arcgi:103,architect:137,architectur:[33,36,62,102,107,113,119,130,131,132,133,137,139,140,145,155,157,174],archiv:[33,134],arcsin:120,arctan:120,are_anagram:170,area:[1,50,54,59,66,76,79,101,102,103,110,113,115,117,121,127,137,139,141,145,149,163,165,168,171,172,177,179],aren:[43,47,56,64,77,125,150,152,165],arff:57,arg:[22,39,47,48,93,94,121,125,133,149,169,191],argmax:[34,35,39,41,83,125,131,132,134,148,184],argmin:[156,184],argscop:133,argsort:[55,120,146],argtyp:125,argu:[55,115,139],argument2:171,argument3:171,argument:[7,40,50,62,93,104,105,119,120,121,125,130,131,144,152,155,170,171,190,192],arguments_dictionari:169,arguments_list:169,aris:[28,47,93,94,113,137,169,170],aristocraci:109,arithmet:[7,31,93,117,118,120,169],aritifici:174,arizona:112,armagnac:[160,161],armi:185,around:[1,3,7,10,13,16,18,20,31,33,37,39,43,45,48,54,55,76,100,105,106,109,112,113,115,117,118,121,122,139,140,143,149,156,157,162,163,164,168,170,174,177,186,192],arous:137,arr1:120,arr2:120,arr:[47,48,94,120,177],arrai:[1,7,18,31,34,35,39,40,41,42,43,44,45,49,50,55,57,59,60,61,63,65,66,74,76,77,79,80,82,83,84,85,110,111,117,125,126,128,130,132,134,143,144,145,146,148,149,154,156,157,162,164,165,168,170,171,182,186,187,188,192,193],arrang:[14,54,64,135,168],array_split:132,array_to_img:[36,131],arraylik:121,arriv:[107,117,165,175],arrow:[119,168],arrowprop:156,art:[31,125,130,132,136,138,139],artemisia:[160,161],arthur:[156,163,189],artichok:[160,161],articl:[28,35,37,41,49,50,52,103,105,109,111,115,117,138,143,146,149,170,172],articul:105,artifact:[39,102,109,138],artifici:[18,39,41,50,85,103,115,124,127,134,136,140,141,187,188,190],artist:[36,143],artist_top_genr:[143,144],artistanim:126,artwork:31,arument1:171,arxiv:[125,126,129,130,131,133,141],as_cmap:38,as_default:125,as_fram:[60,156],as_list:[43,125,130],as_panda:153,asabeneh:[171,193],asarrai:148,ascend:[1,31,50,51,54,56,120,160,161],ascii:134,ascrib:109,asia:[159,160],asian:160,asid:[33,50,152],ask:[8,11,23,41,50,57,58,71,103,104,105,107,109,113,115,121,127,130,136,139,157,160,161,163,164,165,168,170,172,175,189],asp:[169,170],aspect:[11,13,54,56,83,106,107,109,112,115,133,137,139,141,166,176],aspp_siz:131,assembl:[36,138,169],assert:[3,14,22,24,31,46,48,53,83,93,94,95,97,98,130,131,132,133,140,156,169,170,191,192],assert_called_onc:[24,53],assert_called_once_with:[24,53],assert_frame_equ:[14,22],assert_not_cal:[24,53],assert_series_equ:14,assertalmostequ:47,assertequ:94,assertionerror:[97,98],assertrais:[14,94],assess:[23,50,74,76,99,103,104,113,146,155],asset:[12,14,15,18,22,23,24,25,46,49,50,52,53,54,56,59,60,61,62,64,67,79,83,84,85,87,102,109,121,126,135,137,140,145,146,148,150,152,153,157,165,166,169,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,190,192,193],assgin:54,assign:[3,6,8,11,14,16,17,19,22,24,28,40,45,46,47,49,50,52,53,54,74,77,91,94,101,102,103,107,109,110,111,112,122,128,130,131,136,137,139,140,143,144,148,149,154,156,157,160,161,162,163,164,165,166,168,169,170,171,184,185,186,187,191,192],assist:[102,163,184],associ:[3,7,41,93,94,101,102,105,113,117,119,120,133,138,141,146,155,163,164,168,169,170,173,174,178,189],assort:120,assum:[7,48,49,50,56,57,58,74,93,117,120,121,126,128,133,139,145,146,156,164,169,170,190,192],assumpt:[31,48,55,79,117,139,145,149,154,155,184],assur:[0,139],asterisk:[94,171],astrophysicist:6,astyp:[22,29,30,31,35,36,38,44,50,56,111,124,156,176,180,184,190],asymmetr:[137,149],asymmetri:113,asymptot:148,atlanta:[122,178],att:130,attach:[41,102,111,119,176,178],attack:[101,102,141],attempt:[8,16,45,47,57,93,120,121,144,153,169,170,185,191,192],attend:126,attent:[84,121,126,127,130,132,146,148,149],attention_ax:126,attn_dim:126,attn_output:130,attr:[3,31],attract:[19,163],attrib:156,attribut:[7,31,50,51,58,84,93,102,114,115,137,146,153,169,184,191],attributeerror:[133,171],attributes_nam:31,attributes_path:31,attributes_respons:31,attributes_save_path:31,attributes_url:31,auc:[139,150,153,165],auc_weight:[9,101],auckland:[122,178],audienc:[142,175],audio:[31,41,114,149,163,189],audit:113,audubon:111,aug_test:56,aug_train:56,augment:[74,85,131,140,163,170],augment_input:131,augment_label:131,august:[138,164],aurelion:[43,49],australia:[14,157],australian:[49,52],autauga:140,authent:[102,137],author:[12,25,57,58,93,94,100,103,109,113,115,137,140,169,170,172],authorit:140,auto:[9,59,101,122,124,139,144,148,152,153,156,157,160,164,184],autoconfig:[3,14,22,24,53,79,93,94],autoencoder_cnn:31,autoencoder_ecg:29,autogluon:141,autograd:[31,37],autokera:141,autolayout:[62,135],autom:[0,41,101,102,103,107,113,138,139,141,163,172,173],automat:[0,31,33,36,38,43,52,53,57,101,102,115,120,121,124,125,138,139,140,141,142,148,152,163,164,169,170,189,192],automl:[10,20,121,141,161,173],automl_config:[9,101],automl_error:[9,101],automl_set:[9,101],automlconfig:[9,101],automlrun:101,automobil:[33,125],automobile_fil:33,autonom:[125,133,141,163,189],autopct:[51,111,176],autoregress:129,autotun:[126,130,131],autumn:[50,154,182],autumnali:[110,176],aux_loss:133,auxiliari:[50,83],av:54,avail:[1,3,7,14,29,33,38,40,50,51,52,53,54,57,62,68,72,79,81,101,102,104,107,110,111,112,113,117,118,121,122,128,135,137,139,140,141,143,148,149,160,166,168,169,174,175],avenu:103,averag:[7,14,18,22,24,25,29,32,33,37,48,49,50,52,53,59,66,74,76,77,94,105,114,115,117,120,125,126,130,143,144,145,146,148,149,153,156,162,164,165,168,184,191],average_length_of_word:93,average_pooling2d:130,averkiev:31,avg:[38,57,59,60,125,161,162,165,191],avg_pool2d:133,avg_pool:133,avgpool2d:32,avgpool:133,avil:[57,58],avocado:193,avoid:[40,47,49,50,53,54,57,58,105,112,121,122,132,138,139,141,148,152,156,162,163,166,168,169,178],avx2:29,aw:[40,137,138,140,141],awai:[49,64,105,111,143,154,156,163,169,170,186,189],awar:[74,103,105,109,113,120,121,163,169,172],awcmr9f:59,awesom:[93,94,102,111,127,149,169,171],awl5l8tdgiwmctxfgh6jcak4yfq0tjefleix2rxwp1hxh0npv4nnlt33ulavkea3fe3jccpqrfhztmttkgitkmcsow8nd:59,ax1:[55,135],ax2:[47,55,112,135,176],ax:[1,14,22,29,30,32,33,35,36,37,38,39,40,43,47,50,51,54,62,64,66,79,80,84,109,110,112,120,121,125,126,128,135,143,144,148,150,153,154,156,164,170,176,182,184,186],axacc:47,axes3d:[80,84,184],axessubplot:[57,59,60,61,79,110,121,143,160,164,165,176],axhlin:[14,76,184],axi:[1,3,7,14,22,30,31,32,33,34,36,37,38,39,42,43,44,49,50,51,52,53,54,56,57,59,61,62,63,64,65,67,68,74,75,77,79,81,83,109,110,112,113,117,118,121,125,126,128,130,131,132,133,135,138,143,146,148,150,152,153,154,156,160,161,162,164,165,166,168,174,176,177,180,182,184,185,190],axisgrid:[58,79,112,143,165,176],axloss:47,axvlin:[156,184],aymer:124,az:[112,176],azeem:137,azim:[84,154,182,184],azip:[154,182],azithromycin:1,azu18:119,azur:[99,100,103,107,113,121,137,138,140,141,157,159,167,172,173,174,178],azurecontain:102,azureml:[9,100,101],azurewebsit:138,b0:[121,177],b1:[120,121,128,177],b2:[120,121,128,177],b3:[119,128],b4ejbh5mczlor:59,b5couk05fwstwkyxnvi4e88ubjq0fcztrf9ujqfhqdcbqwcmx:59,b:[7,14,22,29,33,34,35,38,50,54,63,65,76,83,93,94,102,117,118,119,120,121,124,126,128,131,132,133,134,140,143,145,146,148,154,156,164,169,170,171,177,182,184,185,186,191,192,193],b_1:145,b_dtree:148,b_f:132,b_g:132,b_h:134,b_i:[132,145],b_k:148,b_n:[145,148],b_o:132,b_t:149,b_y:134,back:[1,7,29,30,31,40,43,45,46,53,79,90,94,100,101,105,115,117,118,120,121,122,126,135,137,138,139,145,155,157,163,166,168,169,170],backbon:[43,131,133],backend:[43,77,131,190],backfil:135,background:[39,96,103,130,135,157,163,189],background_color:3,backprop:[33,134],backpropag:[33,37,83,126,134,180],backpropaget:83,backpropog:43,backtick:121,backward:[7,31,33,37,83,118,126,163],bad:[7,40,49,50,61,68,81,105,109,120,139,156,157,165,169],bad_kmeans_plot:156,bad_n_clusters_plot:156,badli:[48,50,110,129,139,148,186],badrinarayanan:131,bag:[30,40,41,54,56,146,147,160],bag_classifi:49,bagging_fract:54,bagging_freq:54,bagging_se:54,baggingclassifi:[49,145,148],baggingregressor:[145,148],bai:[61,79],baidunetdisk:38,baidunetdiskdownload:38,balanc:[34,49,52,57,59,63,64,65,68,77,81,101,103,138,139,141,148,149,154,155,161,172,182],balanced_subsampl:148,baldwin:140,ball:[50,145],ballback:40,baltimor:[164,165],bam_extract_path:29,bam_zip_file_path:29,banana:[39,170,192,193],bandwidth:100,banerje:[59,153,185,190],bank:[50,103,114,119,141,143,163,178,189],banko:141,bankrupt:109,bar:[1,3,15,31,40,41,51,56,64,76,101,109,110,120,121,146,153,160,166,171,185],barack:93,barbour:140,barchart:164,bare:[138,148],baregg:135,barh:[66,160,176],barnrais:105,barnraisersllc:105,barometr:114,barplot:[39,54,68,81,143,144],base64:[31,59],base:[7,11,14,15,17,18,29,31,33,35,40,41,46,49,50,52,54,55,56,57,59,60,61,66,68,74,76,77,79,81,85,94,102,103,107,109,110,113,114,115,119,120,122,126,127,128,130,131,132,133,136,137,138,139,140,141,143,145,146,148,149,150,152,154,155,157,161,162,163,165,166,168,169,170,171,172,173,178,179,182,185,189,190,191,192],base_estim:49,base_learn:150,base_model:131,base_model_output:131,base_scor:[66,152,153],base_url:14,basebal:117,baseblockmanag:121,baseclassnam:169,baselin:[139,148,153,156],baselinems:48,basemen:[18,117],basement:54,basenam:[29,30,31,33,39,41,66],basex:178,basi:[1,22,45,47,48,50,60,61,100,120,127,149,154,171,184],basic:[7,14,15,18,24,30,36,40,48,50,55,57,58,103,109,110,112,117,118,119,124,127,134,135,136,138,140,144,145,148,149,153,154,155,157,160,163,164,165,166,168,169,172,173,175,176,178,179,180,181,182,183,184,185,186,187,188,189,190,191],basic_autoencoder_model:29,basic_autoencoder_model_nam:29,basic_autoencoder_model_respons:29,basic_autoencoder_model_save_path:29,basic_autoencoder_model_url:29,basicrnncel:134,basket:[160,164],batch:[31,32,36,41,44,45,48,77,83,125,126,129,130,131,132,137,138,139,140,141,143,160,180],batch_:36,batch_acc:33,batch_label:125,batch_loss:[33,132],batch_norm:130,batch_predict:125,batch_siz:[29,31,32,33,34,35,36,37,38,39,42,44,45,47,48,62,83,124,125,126,129,131,132,134,156,180,190],batch_x:124,batchnorm1d:31,batchnorm2d:37,batchnorm:[32,36,37,62,126,130,131],batchsiz:83,bathroom:54,batter_pow:[68,81],batteri:[68,81],battery_pow:[68,81],battl:111,bayesian:[126,131],baz:121,bb01:141,bb38:[119,178],bbox:[84,184],bbox_emb:133,bc:156,bce:31,bceloss:37,bdt:148,bdt_predict:148,beam:[139,157],bear:160,beat:[47,48,163,189],beatl:171,beauti:[108,111,112,184],beautifuli:40,beautifulli:[43,110],becam:[115,127,149],becaus:[1,3,7,12,14,18,22,28,30,31,32,33,36,40,41,43,45,46,47,49,50,52,54,56,57,58,59,60,64,68,74,75,79,81,84,102,105,112,113,114,115,117,118,119,120,121,126,127,129,133,135,137,138,139,140,141,144,145,148,149,150,153,154,155,156,160,163,164,166,169,170,171,177,182,184,186,189,191],becom:[7,32,35,36,45,50,55,75,77,83,93,102,113,115,117,120,127,128,129,132,134,137,138,139,141,145,149,150,153,160,163,170,180,191],bed_room:79,bedroom:[61,79],bedroomabvgr:54,bee:[13,112,176],beehiv:[112,176],been:[3,6,7,12,14,15,17,18,23,29,30,31,40,49,52,62,77,102,103,105,107,109,111,113,114,118,120,121,127,129,132,133,138,140,141,143,145,149,150,153,155,156,157,169,171,175,180,186,191],befor:[7,8,14,16,32,33,34,35,40,41,43,45,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,68,74,75,77,79,81,84,85,101,102,105,107,109,112,115,118,119,121,122,125,126,128,129,130,131,135,137,138,139,140,141,143,146,148,152,155,157,160,163,164,168,169,170,171,175,176,177,186,189,191,192],began:140,begin:[1,7,14,32,33,35,47,49,50,52,64,66,77,113,118,120,122,135,139,141,145,146,148,149,155,164,167,169,170,171,175,178,180,184,186,191,192],beginn:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,46,54,67,68,69,71,72,86,87,89,90,91,92,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,122,137,143,144,157,160,161,162,164,165,166,168,171,172],behav:[7,110,113,120,122,130,143,169,170,174],behavior:[17,33,62,102,103,112,113,115,117,120,121,128,135,139,148,155,161,163,171,174,184,189],behaviour:[49,52,120,121,154,182],behind:[31,52,53,58,60,61,62,68,75,81,113,149,151,153,154,156,161,164,170,174,185],behold:125,being:[0,11,14,36,40,43,50,54,59,79,103,107,112,113,115,120,121,122,127,128,131,135,140,143,145,149,150,155,156,163,165,169,170,171,175,178,189],beings:115,believ:149,bell:[111,176],bell_pepp:161,belli:[110,176],belong:[41,59,84,113,130,131,143,153,165,169,191],below:[0,3,7,12,14,15,16,17,22,24,30,39,41,43,45,46,47,48,50,53,54,57,59,60,64,74,93,94,97,98,103,105,111,113,117,119,120,125,127,130,137,138,139,140,141,145,146,148,152,153,154,155,156,157,162,164,169,171,176,186],belt:163,ben:164,benchmark:[48,103,139,141,163,172,189],bend:144,benefici:[30,170],benefit:[32,62,100,107,114,143,155,175],bengio:[29,50,77,129,179],benign:40,bensor:43,bereft:169,berkelei:[107,175],bernhard:59,bernoulli:149,bernulli:149,besid:[45,120,128,130,131,138,139,141,155,170,192],bespok:157,best:[1,3,10,20,22,31,33,39,40,45,47,48,49,50,52,53,54,56,57,58,59,61,66,74,79,83,84,85,102,109,111,114,120,121,122,128,135,137,139,145,148,149,154,155,156,160,161,163,164,165,166,170,176,177,182,183,185,186,189,192],best_estimator_:[52,53,56,57,58,59,60,61],best_image_add_mean:125,best_k:84,best_kmean:156,best_model:39,best_model_1:40,best_model_2:40,best_model_ann:44,best_model_ann_2:44,best_model_cnn:[39,44],best_model_cnn_2:44,best_model_lstm:44,best_model_lstm_2:44,best_model_rnn:44,best_model_rnn_2:44,best_param:54,best_params_:[50,52,53,54,56,57,58,59,60,61,85,148,156],best_run:[9,101],best_score_:[50,56,59,85,148],beta16:125,beta1:[37,125],beta2:125,beta:[37,125,130,155],beta_1:[34,180],beta_2:34,beta_end:126,beta_start:126,beta_t:126,betas_t:126,beth:167,better:[1,3,7,14,23,30,31,32,34,36,47,48,49,50,52,54,55,56,57,59,62,66,68,74,75,76,81,83,100,102,104,109,112,113,115,117,118,120,124,125,129,130,135,137,138,139,140,141,143,144,145,148,149,150,152,153,155,156,159,160,162,163,164,168,169,170,174,184,185,186],bettter:61,between:[7,14,18,21,30,31,33,34,36,40,41,47,48,49,50,52,53,57,59,60,61,62,63,64,65,74,75,76,84,87,89,93,102,103,105,107,110,112,113,114,115,117,119,121,122,124,125,126,127,128,129,130,131,132,134,135,137,138,139,140,141,143,144,146,149,151,154,155,156,157,160,162,163,164,165,166,167,168,169,170,175,176,178,180,182,184,186,189,191,192],bewar:157,bewild:161,beyond:[7,46,50,60,61,117,118,127,135,136,139,141,163,169,186],bfc_alloc:29,bfill:[7,118],bhwdaa:[119,178],bhwdapqz8s0:[119,178],bhwdapqz8s0baaaaaaaaaa:[119,178],bi:[100,170],bia:[37,45,54,56,63,65,74,75,79,82,103,113,124,125,130,134,135,139,141,145,154,172,174,186,187],bian:141,bias1x1:130,bias3x3:130,bias:[40,46,49,83,103,113,118,124,138,163,172,174],bias_add:125,biasid:130,bib:[76,144],bibb:140,bibliographi:[76,144],bicolor:[110,176],bidirect:132,big:[3,43,56,57,62,68,81,99,100,115,125,127,137,139,149,156,163,165,166,171,174],big_arrai:177,big_integ:[170,192],bigger:[125,139,141,143,149,164,191],biggest:[163,189],bigodot:132,bigoplu:132,bigtabl:178,bigtriangledown_:129,bilinear:[130,131,133,156],bill:[169,170,171,192],bin:[18,22,29,38,47,49,52,53,54,58,59,60,110,117,119,125,133,164,165,166,176],binar:57,binari:[22,29,36,41,50,54,56,59,68,77,79,81,85,93,120,125,132,148,149,150,153,154,156,160,161,163,168,170,177,192],binary_cross_entropi:31,binary_crossentropi:[40,180,190],binary_search:93,binaryclass:57,binarycrossentropi:[36,77],bind:169,bing:[3,129,149],binomi:154,bio:103,biolog:127,biologist:7,birch:143,birchard:171,bird:[4,19,121,125],birth:15,birth_month:15,bit:[1,7,14,39,40,66,68,77,81,83,110,112,116,118,122,127,144,149,150,154,156,160,164,165,166,168,169,182],bitwis:[120,170,192],bitwise_and:120,bitwise_or:120,bitwise_xor:120,bivari:54,bizarr:109,bj:170,black:[1,47,50,54,110,111,125,128,130,154,156,157,168,176],black_bean:161,blackbox:[57,58,163],blank:[119,143,157,160,166,169],blend:[57,125,130,145],blend_models_predict:54,bleu:139,blind:109,blit:126,blob:[120,156,164,165],blob_cent:156,blob_std:156,blobs_plot:156,block:[37,41,57,58,79,83,93,126,127,130,131,154,157,166,168,169,170,171,185,191,192,193],block_13_expand_relu:131,block_16_project:131,block_1_expand_relu:131,block_3_expand_relu:131,block_6_expand_relu:131,block_num:125,block_siz:125,blog:[1,14,28,29,31,50,56,100,103,105,111,120,121,138,139,144,149,156,172,178],blood:[24,102,168],bloom:137,blount:140,blq:54,blue:[30,38,41,42,45,50,54,68,74,81,105,109,110,117,130,138,143,144,148,149,164,168,169,176,186],blue_count:[68,81],blueprint:[169,191],bluetooth:[68,81],bluff:186,blur:[33,125],blurri:30,bm_axi:121,bmatrix:186,bmi:168,bmi_distribut:24,bmj:137,bn:[32,37,130,131],bn_axi:131,bn_conv1:131,bn_name_bas:131,bo:[130,131,156,184],board:[22,128,163],boat:180,bob:[170,177],bodi:[15,24,110,114,117,130,157,168,169],boil:50,bold:[62,84,135],boldfac:[163,189],bonu:[16,18,28],book:[0,12,18,25,49,50,76,94,105,109,113,115,117,120,121,124,125,135,136,141,144,146,148,156,161,165,169,177,191],book_cov:125,book_sal:135,bool:[14,29,118,120,121,133,156,169,170,171,177,192],bool_vec:121,boolean_arrai:120,booleanarrai:121,boost:[50,57,58,85,136,139,148,152,156,161],booster:[54,66,150,152,153],boosting_typ:54,boostrap:66,boot:[30,40,41,57],bootstrap:[49,52,53,146,148,149,153],border:[50,131,133,144,149,156,157,160,164],bore:38,born:149,borrow:169,boser:59,boss:50,boston:[113,174],bostrom:163,bot:139,both:[1,7,14,29,30,31,32,33,40,41,43,46,47,49,50,52,54,56,57,58,59,60,61,62,63,64,65,66,68,69,75,77,79,81,83,93,101,103,105,109,112,113,115,117,118,120,121,122,127,128,131,133,135,137,138,139,141,148,149,151,152,153,154,155,157,162,163,168,169,170,174,176,178,180,189],bother:[83,166],bottleneck:126,bottom:[31,34,50,120,165,166,185],bottommost:169,bottou:179,bouhsin:44,bounc:139,bound:[43,47,50,93,110,120,121,128,133,139,156,163,165,169],boundari:[50,59,60,61,77,117,121,125,141,144,145,148,190],box:[18,43,50,101,109,117,125,133,148,157,163,164,166,185],box_ind:133,box_logit:133,boxplot:[18,54,59,64,144],bp:168,br:15,brace:[170,192],bracket:[120,139,170,171,192],brain:[127,163,171,189],branch:[0,113,130,138,149,153,163,169,174,189],brand:[105,149,163,189],brave:169,brbpxsliqodzna6ju0hxiqid60bt7a6m1zezx02cvyzp:59,breach:[113,174],bread:121,breakdown:[14,114,171],breakfast:[169,191],breakthrough:125,breathtak:[103,172],breed:[37,131],breez:139,breiman:[145,148],breinman:146,breviti:169,breweri:117,bridg:[138,141],brief:[132,163],briefli:[17,28,54,113],bright:[34,125,130],brighter:110,brill:141,brilliant:160,brilliantli:149,bring:[49,52,54,77,102,122,132,138,140,149,178],britannica:115,british:[7,171],broad:[62,111,113,115,117,130,135,138,141,163,169,174,176,189],broadcast:121,broaden:103,broader:[77,113,115,136,139],broadli:113,broken:[51,59,107,114,138,146,175],brook:193,brought:[15,122],brown:[111,176],brows:[62,169],browser:[16,38,101,102,119,157],bruce:117,bruis:[111,176],brush:168,brute:140,bsmtcond:54,bsmtexposur:54,bsmtfinsf1:54,bsmtfinsf2:54,bsmtfintype1:54,bsmtfintype2:54,bsmtfullbath:54,bsmthalfbath:54,bsmtqual:54,bsmtunfsf:54,btc:38,btcdf:38,btcsave2:38,btn:157,bu:[29,117],bubbl:176,bucket:54,buddi:169,budget:[100,173],budgetari:102,buff:[111,176],buffer:[115,120,125],buffer_s:[126,131],bug:[4,47,105,132,138,139,171,191],buggi:[69,86],bui:[35,53,57,58,100,105,113,143,164],build:[1,4,8,13,33,40,43,49,52,57,58,59,64,69,74,75,76,79,83,84,86,90,99,100,101,102,103,105,107,110,111,112,113,115,117,119,121,124,125,126,127,130,131,132,133,134,136,137,138,139,140,141,145,146,148,149,152,153,159,161,162,163,167,168,169,170,172,173,175,178,181,186,188,189,192],build_vocab:132,builder:130,built:[1,3,7,12,29,40,43,50,66,69,83,86,92,109,110,111,112,113,117,120,121,122,136,137,138,140,144,149,150,157,165,168,169,170,171,177,181,191,192],builtin:[184,191],bulk:105,bulki:138,bull:145,bullet:149,bump:[113,174],bunch:[0,1,31,50,57,58,115,163,170,189],bundl:138,buolamwini:[103,172],burgeon:[122,178],burn:157,bushel:[164,166],busi:[7,100,103,105,107,113,115,135,137,138,139,140,141,143,157,172,175],buss:109,butter:121,button:[15,101,102,119,157,168,171,185],bw_adjust:110,bwteen:40,bx8rsirp:59,bx:[29,30,33,164,170],bytearrai:[170,192],bytesio:[125,134],c0:177,c1000:14,c100:14,c1:[14,22,24,53,93,131,177],c2:[14,24,53,93,131,133,177],c3:[14,93,131],c4:[14,50,131,133],c5:[32,131],c5sj3kb4tplbpbg9fpdiobxig4jqp6efthvujkxvcd0rurwoprdhovcizwv2:59,c64u:59,c92liuawc7t9bolpnzylr41pifoqdwltveln8yuk4ucftcddro2ieamgrivd26fcbgnhz9d7msi:59,c:[1,14,22,32,33,45,50,54,55,57,60,61,62,64,76,77,84,93,94,105,117,118,119,120,121,125,132,133,137,140,144,146,148,153,154,156,162,164,165,166,169,170,177,182,184,185,187,188,191,192],c_1:156,c_:[50,74,117,148,156],c_i:156,c_k:184,ca:[43,112,128,176],cab:[103,172],cach:[53,58,120,131,132,141,156,178],cache_data:185,cache_resourc:185,cachedproperti:121,caerulescen:[110,176],cal_data:61,calc_grad_til:125,calcul:[6,7,8,14,18,25,29,30,31,33,36,38,40,45,48,49,50,54,59,64,68,75,76,77,81,84,97,117,119,120,121,122,125,126,133,134,139,141,144,145,146,148,149,152,153,154,156,164,165,166,169,178,184,192],calculate_discrimin:170,calculate_sum:93,calculu:75,calendar:[169,191],calendar_clock:[169,191],calendarclock:[169,191],california:[14,79,113,163,177],caliv:141,call:[1,3,18,22,29,30,31,33,36,40,41,43,47,48,49,50,51,54,57,59,60,61,63,65,68,74,77,79,81,83,93,94,100,101,102,105,109,111,113,114,115,117,119,120,121,122,124,126,127,128,129,130,131,132,133,135,138,139,142,143,144,145,146,148,149,152,153,154,155,156,157,160,161,163,164,165,166,168,169,170,171,177,178,185,189,190,192],call_func:[169,191],callabl:59,callback:[32,39,44,66,131,152,153,155],caller:29,callout:164,cam_extract_path:29,cam_zip_file_path:29,came:[50,114,138,149],camera:[39,68,81,115,120,130],can:[0,1,3,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,36,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,71,74,75,76,77,79,80,81,83,84,86,92,93,94,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,143,144,145,146,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,175,176,177,178,180,182,184,185,186,189,190,191,192,193],canada:[14,157],canari:138,cancel:[40,113,145,163,174],cancer:40,candi:165,candid:[50,57,58,59,60,61,156,166,183],canin:169,cannot:[7,14,18,22,24,30,39,45,47,50,53,59,66,110,114,115,118,120,121,143,149,155,156,165,169,170,176,192],canon:120,canvas_orig:124,canvas_recon:124,cap:[111,176],capabl:[29,54,83,102,113,115,121,137,138,163,165,170,173,174,189,192],capac:[47,48,62,68,81,125,139],capcolor:[111,176],capit:[94,169,170],capital_gain:51,capital_loss:51,capitalize_first_lett:94,capitalize_word:94,capitalized_sent:94,capitalized_word:94,caption:[127,163],captiv:121,captur:[15,23,33,39,66,74,76,104,109,113,114,115,135,137,139,155,164,180],car:[57,58,113,114,127,128,131,137,163,174,189],car_data:57,car_label:57,car_labels_prepar:57,car_test:57,car_test_label:57,car_test_labels_prepar:57,car_test_prepar:57,car_train:57,car_train_prepar:57,carambola:39,carbon:103,card:[102,113,141,143,174],cardiovascular:102,care:[20,45,48,56,57,58,68,81,92,103,109,112,113,120,121,152,153,155,157,163,169,174],carefulli:[49,149],caregor:56,carlo:117,carnam:170,carri:[7,57,118],carrol:137,cart:[50,148,149],carton:164,carv:[144,165,167],cascad:131,cassandra:178,cassett:143,cast:[29,120,121,125,126,128,131,132,133,134],casted_kei:121,cat1:1,cat2:1,cat:[15,33,54,61,79,121,125,130,163,169,180,191],cat_col:54,cat_feat:[61,79],cat_feats_enc:79,cat_feats_encod:79,cat_feats_hot:79,cat_feats_pip:79,cat_feats_preprocess:79,cat_fil:33,cat_list:[61,79],cat_train:54,catalog:[16,23,103,110,172],catastroph:154,catboost_search:54,catboostregressor:54,catcher:117,categor:[49,50,52,56,58,61,66,74,77,84,112,114,117,118,119,120,121,139,148,150,163,165,168,178,189],categori:[1,7,39,41,50,51,54,56,59,60,68,77,79,81,100,105,107,109,110,111,113,114,115,125,127,128,130,131,137,139,141,144,146,154,156,160,161,162,163,164,165,168,170,175,176,177,182,189,190,192],categorical_crossentropi:[32,34,39,47],categoricalcrossentropi:[40,77,131],category_count:176,category_encod:51,cathi:177,catplot:[56,165],caught:121,cauliflow:160,caus:[1,14,18,28,46,47,49,54,57,59,62,63,64,65,68,81,102,103,112,113,115,117,118,121,137,138,139,146,148,152,154,155,169,170,172,182,191,192],causal:117,causat:143,caution:109,cb:54,cbar:[40,64,68,81],cbar_kw:38,cc:[29,43,49,76,102,125,139,144,146],ccaliva:141,ccc:146,cccc:146,ccd:112,ccp_alpha:[56,57,58],ccpa:113,cd4:138,cd4ml:138,cd:[0,138,140,143,157],cdata_estim:85,cdata_estimator_predict:85,cdc:140,cdeott:32,cdist:184,cdot:[75,77,83,146,149],ce:51,celebr:[31,50],cell:[0,3,7,17,38,40,42,43,44,45,46,47,48,57,58,60,61,66,83,97,98,102,118,119,120,121,127,132,134,135,143,144,152,153,156,164,166,168,177,179,193],cell_metadata_filt:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162],censor:94,censor_word:94,cent:[38,164],cent_histori:184,center:[14,22,38,66,84,100,107,111,117,120,122,133,138,140,143,144,146,154,156,157,160,164,176,182,184,186],center_circl:[111,176],centercrop:37,centernessnet:133,centimet:[60,176],centr:154,central:[53,58,102,137],centralu:102,centric:137,centroid:[143,144,184],centuri:[109,157],cerdeira:48,certain:[7,14,33,40,41,50,54,59,74,77,79,94,107,115,117,120,125,128,134,137,138,139,140,141,143,148,154,155,161,163,164,168,169,170,175,189,192,193],certainli:[36,127,156],cfees8eopk:119,cfg:133,cg:161,cgcug0a0c6nut:59,chain:[33,41,75,83,137,164,169],chainer:35,chair:[130,139],challeng:[3,8,28,39,41,46,75,77,100,103,104,112,115,117,118,121,122,138,139,140,141,143,153,161,163,171,172,178,193],champion:185,chanc:[36,49,56,68,81,117,122,127,141,152],chang:[0,7,8,14,20,30,33,40,43,45,47,48,49,50,52,53,55,56,57,62,63,65,77,80,84,86,92,102,103,104,107,109,110,111,112,114,117,118,119,120,121,122,125,126,128,129,131,133,134,138,139,140,141,143,144,146,148,149,154,157,159,163,164,166,169,170,171,172,177,178,182,184,191,192],changeabl:[170,192],changer:99,channel:[31,33,36,37,39,53,58,125,130,131,133,153,175],channels_first:133,channels_last:131,chao:50,chapman:137,chapter:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,36,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,79,81,86,87,89,90,91,92,93,94,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,128,129,130,131,132,133,134,135,140,143,144,145,146,148,149,150,152,153,156,157,160,161,162,163,164,165,166,167,168,169,170,171,177],chapter_id:156,charact:[3,47,101,109,113,114,115,119,170,171,192,193],characterist:[30,31,47,54,58,59,76,114,119,128,139,149,163,165],charg:[23,50,68,81,93,94,102,145,169,170],charli:170,charset:[15,157],chart:[13,19,27,110,111,113,144,153,164,166,174],chart_data:185,charticul:111,chase:157,chat:137,chatgpt:[74,93,94],chaudhari:141,chdir:125,cheaper:[107,113],cheat:[129,139,141,161,162],cheatsheet:161,check:[0,3,7,10,14,20,22,24,29,31,35,39,40,43,45,46,49,50,52,56,58,60,61,63,65,74,84,93,94,100,101,102,103,104,113,118,121,125,126,127,131,132,136,138,143,144,146,148,149,152,156,157,160,161,168,169,171,172,184,190,192],check_dtyp:14,check_nam:14,check_str_or_non:121,check_valu:140,check_win_condit:128,checklist:[28,174],checkout:[0,138],checkpoint:132,chef:160,chen:[130,131,133,141],cheng:141,cherri:[105,170,192],chervonenki:59,chess:[127,128,163],chicago:170,chicken:161,chieh:131,child:[146,162,169],children:[11,22,113,146,174],children_:156,china:[14,113],chines:[160,161,162],chinese_df:160,chinese_ingredient_df:160,chiphuyen:139,chlorid:48,chloroquin:[1,8],chmax:[53,58],chmin:[53,58],chnage:[63,65],choc:127,chocol:165,choderlo:109,choic:[7,27,32,40,49,68,81,102,107,109,113,115,118,120,125,127,129,132,139,143,148,149,156,160,161,163,165,174,189,190],chollet:29,choos:[7,29,46,48,49,56,59,68,76,80,81,101,105,112,118,120,121,127,128,130,135,137,138,139,141,143,144,145,148,149,154,155,156,162,163,165,171,183,184,189],chop:160,chord:[1,8],chose:[34,69,100,121,156,177],chosen:[33,48,54,59,102,112,120,139,145,154,156,157,185],chr:131,chri:32,christina:141,christoph:137,chrome:102,chronolog:[113,174],chuck:93,chunhua:133,chunk:115,churn:[145,148,149,163,189],churn_cal:145,churn_mean_scor:145,ci:[33,112,131,135,138,140],cifar10:[33,125,129],cifar10_extract_path:33,cifar10_label:125,cifar10_mdoel_nam:33,cifar10_model_respons:33,cifar10_model_save_path:33,cifar10_model_url:33,cifar10_nam:33,cifar10_respons:33,cifar10_save_path:33,cifar10_url:[33,125],cifar10_zip_file_path:33,cifar10cnnmodel:33,cifar:33,cifar_cnn_model:125,cifar_labels_fil:125,cifar_link:125,cifar_loss:125,cinnamon:[111,176],cipolla:131,circl:[109,111,143,154,176],circle_color:156,circu:171,circuit:[102,130],circuitri:102,circular:134,circumfer:112,circumst:113,cite:[57,58,133,140,168],citi:[12,17,23,49,52,79,103,109,113,127,139,157,164,165,166,172,174],citizen:[113,169,174],citric:48,city_:56,city_development_index:56,city_id:[12,122,178],ck:33,cla:184,claim:[93,94,169,170],claremont:103,clarif:23,clarifi:[77,104,105,153],clariti:[1,75,105,149],clasifi:84,class_busi:7,class_economi:7,class_emb:133,class_first:7,class_label:7,class_nam:[40,41,57,146],class_report:[52,57],class_weight:[49,52,57,148],classes_:161,classic:[40,41,50,60,61,84,124,128,129,150,154,160,163,165,189],classif:[9,32,36,39,43,53,58,61,64,75,86,101,102,103,107,113,121,124,125,127,131,132,133,134,139,145,146,148,150,151,153,154,155,156,161,168,172,174,175,180,183,187,188,189,190],classifi:[29,32,36,47,50,56,59,64,68,71,81,83,84,86,114,121,127,129,130,134,139,143,145,146,148,149,150,154,156,159,163,165,180,182,187,188,189,190],classification_accuraci:59,classification_error:59,classification_model_nam:41,classification_model_respons:41,classification_model_save_path:41,classification_model_url:41,classification_report:[39,40,47,51,52,57,59,60,68,81,85,157,161,162,165],classnam:37,claus:[119,169,170,191],clean:[3,18,20,22,36,40,46,54,74,90,103,104,107,109,132,134,135,137,139,140,144,161,162,163,164,166,172,175,177],clean_data:22,clean_fresh_fruit:[170,192],clean_text:134,cleand_df:46,cleaned_cuisin:[67,160,161,162],cleaner:169,cleanli:130,cleanprep:38,cleans:107,cleanup:137,clear:[3,7,8,12,14,25,39,40,50,51,59,76,105,112,120,121,138,146,149,162,163,165,168,170,171,192],clear_output:[83,129,131],clearer:[163,189],clearli:[1,14,16,28,36,47,48,52,57,58,105,134,135,139,141,149,163,164,171,184,189],clees:169,clever:[14,171],clf1:49,clf2:49,clf3:49,clf:[49,51,154,182,184],clf_tree:50,cli:102,click:[0,3,38,45,47,48,51,101,102,109,119,160,163,166,167,168,171,185],client:[15,17,23,50,77,100,141,145,149,156,163,169,185],climat:[103,112,172],climax:105,climb:38,clinic:168,clint:93,clion:38,clionproject:38,clip:[36,85,125,139,163,189],clip_by_valu:[29,30],clip_value_max:[29,30],clip_value_min:[29,30],clipart:38,clipped_zoom:85,clobber:120,clock:[102,169,191],clock_spe:[68,81],clockwis:[34,85],clone:[0,37,138],close:[1,7,8,29,30,31,33,37,38,39,44,49,50,52,56,59,64,68,74,75,77,79,81,93,102,109,111,117,118,121,125,127,128,129,144,148,153,156,164,171,176,186],close_pric:38,closer:[14,34,48,52,53,56,59,76,83,125,138,144,146,156,166,180],closest:[40,59,102,114,143,144,154,156,184],closur:[105,169],cloth:137,cloud:[1,3,21,92,102,103,107,115,119,121,137,138,139,141,157,161,172,174,175,178,181],cloudform:138,cloudmus:38,cloudwatch:137,club:89,cluster:[30,50,107,110,115,124,138,148,162,163,164,175,189],cluster_centers_:156,cluster_classification_plot:156,cluster_dist:156,cluster_std:[154,156,182],clusterer1:156,clusterer2:156,clusterpoint:178,clustr:136,clustroid:143,clutter:[110,130],cm:[31,40,41,46,51,52,57,59,60,68,81,84,118,146,156,176,184,187,188],cm_matrix:[51,59],cmap:[1,31,38,41,49,50,51,52,53,54,59,68,79,80,81,83,84,85,124,125,148,154,156,182,184,187,188,190],cmd:171,cn:38,cncf:138,cnn:[39,127,130],cnn_builder:44,cnt:55,co:[1,8,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,75,103,110,111,112,119,120,126,141,143,144,146,149,156,160,161,162,164,172,176,184],coars:[130,131],coat:[30,40,41],coca:25,coca_cola_co:25,cocacola:25,code3:140,code:[0,1,3,5,7,8,9,12,14,18,31,38,41,45,46,47,48,50,56,66,68,74,76,77,81,83,86,93,97,98,99,101,103,109,110,111,115,117,118,120,121,127,135,136,139,140,144,145,148,150,152,154,156,157,159,163,164,165,166,167,168,169,170,172,174,177,182,185,189,192,193],coef0:60,coef:[66,79],coef_:[66,79,164,186,187,188],coeff:156,coeffici:[54,66,74,76,77,79,135,148,149,155,156,164],coerc:[35,121],cognit:[1,100,113,120,174],coher:[26,144,178],coin:[163,189],coinbas:38,coincid:[109,126],col1:120,col2:120,col:[38,44,45,51,54,56,59,111,112,121,148,176,177,185],col_nam:[51,54,59],col_vector:120,col_wrap:[112,176],cola:25,colab:[40,43,45,47,48,127],cold:[107,175],colder:137,coll:[119,178],collabor:[103,113,138,140],collaps:[112,129],collect:[3,6,11,31,33,35,41,49,50,52,58,74,89,100,101,103,105,107,109,113,114,115,119,120,121,122,132,134,137,139,140,145,153,164,168,169,170,171,172,174,175,178,190,191,192,193],collector:39,collinear:66,colnam:121,colon:169,coloni:[13,112,176],color:[1,14,18,22,29,30,33,34,38,39,41,42,49,50,51,52,54,56,68,74,76,81,84,105,110,111,112,113,114,117,120,125,130,131,135,143,144,146,148,154,156,157,164,165,168,170,174,176,182,184,186,187,188,192],color_palett:135,colorbar:[41,184],colorblind:112,colorjitt:37,colormap:156,colour:130,colsample_bylevel:[66,152,153],colsample_bynod:[66,152,153],colsample_bytre:[66,152,153],colum:54,column1:14,column2:14,column:[1,6,14,17,18,22,24,29,30,31,38,39,40,43,44,45,46,47,48,52,53,55,56,57,58,59,60,64,66,68,74,75,79,81,84,101,102,104,111,112,114,118,119,120,122,127,135,140,143,144,148,150,153,157,160,161,164,165,166,170,176,177,178,186,192],column_diff:14,column_filt:14,column_index:121,column_nam:[14,22,24],column_name_to_diff:14,column_or_1d:57,column_to_diff:14,column_to_format:46,column_to_format_uniqu:46,column_valu:[14,22,24],column_value_fil:22,column_value_map:22,columnar:[119,178],columns_to_plot:24,columntransform:[61,79,186],com:[3,12,14,18,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,47,48,51,56,66,68,75,76,77,81,105,107,109,110,111,112,113,115,116,119,121,124,125,135,138,139,140,141,143,144,146,156,160,161,162,164,165,169,170,173,174,176,178,179,180],comapani:56,combin:[33,36,40,48,49,50,52,53,54,56,59,61,62,68,75,77,79,81,82,83,85,100,103,107,109,114,125,127,130,131,135,137,138,139,140,141,145,148,149,151,152,153,154,162,163,164,168,169,170,175,186,187,192],combined_imag:36,come:[7,35,43,48,51,57,62,64,66,68,76,81,99,104,105,107,109,110,113,114,115,117,120,121,127,129,130,135,136,140,143,145,148,150,153,154,155,163,164,169,170,171,177,182,184,185],comedi:171,comfort:[7,46,54,77,118,168],comma:[94,120,162,170,192],command:[47,51,102,113,114,122,128,152,168,170,171,178,192],comment:[45,48,50,105,113,114,125,168,174,191],commerc:143,commerci:105,commiss:[17,23],commit:[0,113],committe:62,commom:[60,68,81],common:[7,31,33,40,45,46,47,48,50,54,56,59,62,66,74,93,100,104,105,107,113,114,120,121,122,125,132,133,135,137,138,139,140,143,144,149,152,154,155,156,160,166,167,168,169,171,173,177,192],common_el:170,common_norm:[110,176],common_runtim:29,commonest:47,commonli:[41,54,61,62,68,74,81,100,121,127,137,138,139,140,153,155,163,169,190],commun:[28,43,104,106,107,113,115,127,136,138,140,149,163,171,180],compact:125,compani:[6,105,114,137,141,149,163,170,171],company_s:56,company_typ:56,companyx:170,compar:[14,18,21,31,33,41,47,48,50,51,54,60,61,63,64,65,68,74,76,79,81,91,93,94,102,109,110,112,115,117,120,121,124,126,130,138,139,140,145,146,148,153,161,163,165,170,189,192],comparis:[63,65],comparison:[8,14,48,50,93,107,112,114,117,119,139,145,149,154,161,169],compat:[15,55,102,120,121,128,129,132,134,136],compatible_format:191,compel:77,compens:[153,156],compet:149,competit:[127,135,141,149,152,153],compexifi:50,compil:[1,7,29,30,32,34,35,38,39,42,44,45,47,48,62,131,138,171,177,180],compilaton:40,complaint:[105,113,174],compleletli:[68,81],complementari:135,complet:[1,8,21,24,34,40,41,49,50,52,53,56,57,58,62,68,69,75,81,102,107,109,113,115,117,120,121,125,126,130,133,134,135,137,139,141,153,156,163,164,165,166,169,170,171,173,184,191,192],complex32:120,complex:[0,1,31,32,33,49,57,58,60,61,63,64,65,66,68,74,77,81,112,115,120,122,127,130,133,135,136,137,138,139,141,145,151,154,155,156,160,163,169,171,179,180,182,183,190,193],complex_numb:169,complex_number_1:[170,192],complex_number_2:[170,192],complex_number__1:192,complexnumb:169,complexnumberwithconstructor:169,compli:113,complianc:[22,45,47,48,113,174],compliant:113,complic:[36,50,83,115,120,137,138,139,149,152,155,156,166,180],compon:[75,102,103,109,119,124,128,135,137,138,139,140,145,149,152,154,163,171,172],components_:[156,184],compos:[36,37,61,79,83,124,125,129,137,138,149,186],compose_greet_func:169,compose_greet_func_with_closur:169,composit:[120,148],compound:[170,177,192],compound_stmt:169,comprehend:49,comprehens:[94,109,121,139,164],compress:[29,30,31,107,124,127,130],compris:[39,77,102,138],compromis:[7,118],comput:[3,7,18,22,29,32,33,36,40,41,43,46,47,49,50,53,54,58,59,66,74,75,76,80,82,83,85,100,103,104,107,115,117,118,119,121,124,125,126,127,129,130,133,134,136,137,138,139,141,145,146,148,149,153,154,155,160,163,165,168,170,172,173,174,185,186,187,189,192,193],computation:[33,36,50,56,120,121,127,130,135,151],computationn:33,compute_reciproc:177,compute_target:[9,101],con:[7,47,56,102,113,157],concat:[22,30,36,38,42,54,56,66,126,130,131,132,133,135,160,169,170],concat_axi:121,concat_index:121,concaten:[34,38,55,74,120,121,126,131,133,166,170,180,186,187,188,192],concatenated_str:169,concav:126,conceiv:[140,169],concentr:143,concept:[3,18,29,31,47,50,59,74,75,76,102,103,115,117,119,120,125,129,130,136,137,138,139,140,146,149,153,154,161,165,168,170,179,192],conceptu:149,concern:[7,47,54,58,59,79,107,110,113,118,137,138,141,149,163,164,176,189],concis:[120,145,163,169,170,192],conclud:[56,59,75,103,109,117,139,146],conclus:[24,50,104,113,115,164],concret:[141,163,184],concurr:[85,101,102],conda:0,condens:128,condit:[3,22,31,39,40,45,47,48,50,54,94,103,113,120,126,130,139,146,148,149,164,165,169,170,171,191,192],condition2:54,condorcet:145,conduct:[56,101,113,174],conf:18,conf_conv:133,conf_matrix:[52,57],confer:[105,109,121,137,141],confid:[40,41,48,68,81,112,130,139,140,143,145,149],config:[9,38,50,66,132,135,145,148,184,185],configur:[10,41,45,47,100,102,134,137,138,139,163,166,167,169],confirm:[14,30,45,47,48,59,104,107,113,156,164,174,175],conflict:[94,105,113,121],conform:[114,121,137,139],confus:[7,34,40,50,52,57,60,68,81,84,105,118,120,146,148,153,155,160,169],confusingli:156,confusion_matrix:[34,39,40,51,52,57,59,60,68,81,84,85,161,162,165,187,188],confusion_mtx:34,congratul:[101,102,164,165,168,171],conjug:93,conjunct:115,connect:[6,30,32,33,41,43,45,48,62,83,93,94,103,105,113,117,125,130,131,134,139,155,169,170,180],connectionist:77,connor:137,conquer:149,consciou:7,consecut:[14,32,40,49,153],consent:[113,174],consequ:[28,103,113,128,174],conserv:[110,176],conservationstatu:[110,176],consid:[1,3,7,8,11,14,18,22,24,29,36,39,40,41,45,46,49,50,53,56,62,64,74,75,76,77,94,102,104,105,107,109,114,115,116,117,118,124,125,128,130,132,135,138,139,140,141,143,145,146,148,149,150,153,154,155,156,157,163,165,168,169,170,182,184,191,192],consider:[59,102,107,113,115,116,121,149,152,156,174,175],consist:[0,1,3,8,15,30,33,34,36,41,45,49,50,52,54,59,89,107,113,118,120,124,130,131,137,138,139,140,141,146,155,163,164,166,170,174,175,178,189],consol:121,consolid:75,conspiraci:62,constant:[50,63,65,75,77,120,125,126,128,130,134,139,149,153],constant_initi:125,constantli:115,constrain:[30,128,143],constraint:[30,102,107,120,130,138,139,143,155,161,184],construct:[30,50,120,121,124,126,130,135,137,143,145,148,149,150,153,169,170,192],constructor:[121,130,169,170,191,192],consult:[7,121],consum:[10,20,41,45,99,101,102,104,109,112,113,114,137,139,141,154,157,163,173],consumpt:[109,157,173,177],cont:54,cont_num_var:54,contact:[119,178,185],contagi:165,contain:[1,3,6,7,12,14,15,17,22,29,31,33,36,37,39,40,41,45,46,47,48,49,50,51,52,54,57,59,60,62,68,79,81,84,87,92,93,94,101,102,104,107,114,117,118,119,121,122,127,130,131,134,137,138,139,143,145,148,150,153,156,157,160,163,164,165,166,168,169,170,177,191,192],container:138,content:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,59,62,63,64,65,66,67,68,69,71,72,76,79,81,83,84,85,86,87,89,90,91,92,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,128,129,130,131,132,133,134,135,136,139,141,143,144,145,146,148,149,150,152,153,157,160,161,162,163,164,165,166,168,169,170,171,177,184,185,186,187,190,192],contest:145,context:[9,28,31,50,59,75,77,101,103,105,107,113,121,125,131,139,141,143,144,155,156,157,167,169,170,172,174,175,192],contigu:120,contin:[57,58],continu:[0,1,17,18,31,33,34,40,47,48,50,54,55,58,59,62,75,76,77,100,101,103,110,112,117,120,122,126,131,138,139,140,141,143,144,148,149,150,155,157,163,165,171,189],contour:[77,154,156,182],contourf:[148,156,187,188],contract:[93,94,102,138,169,170],contradictori:139,contrari:[121,141],contrarili:169,contrast:[7,50,77,91,104,120,125,129,139,148,154,180],contrib:134,contribut:[46,52,53,57,58,66,76,103,120,121,136,139,145,146,148,169,170,171,172],contributor:136,control:[7,11,30,43,48,56,59,61,62,63,64,65,100,104,105,107,113,115,118,120,127,128,130,132,137,138,140,148,149,155,170,175,185,192],controlflow:169,conv0:133,conv1:[125,131],conv1_1:125,conv1_2:125,conv1_add_bia:125,conv1_bia:125,conv1_featur:125,conv1_kernel:125,conv1_pad:131,conv1_weight:125,conv1d:[44,127],conv2:125,conv2_1:125,conv2_2:125,conv2_add_bia:125,conv2_bia:125,conv2_featur:125,conv2_kernel:125,conv2_weight:125,conv2d:[29,30,31,32,33,34,36,37,39,125,126,127,130,131,133],conv2d_1:29,conv2d_2:29,conv2d_transpos:29,conv2d_transpose_1:29,conv2dtr:29,conv2dtranspos:[29,30,126,131,133],conv3_1:125,conv3_2:125,conv3_3:125,conv3_4:125,conv3d:127,conv4_1:125,conv4_2:125,conv4_3:125,conv4_4:125,conv5_1:125,conv5_2:125,conv5_3:125,conv5_4:125,conv:[37,125,130,131,133],conv_bias1:125,conv_bias2:125,conv_block:130,conv_bn:130,conv_bn_relu:130,conv_input_data:125,conv_kernel1:125,conv_kernel2:125,conv_kernel:125,conv_lay:125,conv_name_bas:131,convei:[105,109,175],conveni:[7,46,54,112,117,118,121,131,146,149,164,165,169],convent:[43,45,68,81,122,127,152,169,171],converg:[36,75,110,139,143,156,163,184],convers:[1,46,76,102,105,118,139,141,163,166],convert:[1,3,7,14,31,36,38,40,41,43,45,47,49,56,57,59,64,74,79,85,87,93,94,101,109,111,113,115,121,124,125,130,132,134,153,157,163,164,166,170,185,189,190,192],convert_indic:121,convert_to_tensor:130,convex:[111,126,176],convinc:[105,171,180],convlay:37,convnet:[126,127],convolut:[126,130,131,133,163,181,189],convolutional_autoencoder_model:29,convolutional_autoencoder_model_nam:29,convolutional_autoencoder_model_respons:29,convolutional_autoencoder_model_save_path:29,convolutional_autoencoder_model_url:29,convolv:125,convtranspose2d:[31,37],cooki:143,cool:[31,40,68,79,81,94,98,143,165],cooler:105,cooper:169,coord:120,coordin:[43,50,62,112,120,128,133,138,161,163],cope:[39,148,149],copi:[0,1,7,14,22,29,30,31,35,45,46,47,48,54,64,68,81,93,94,118,120,121,122,135,148,160,162,166,169,170,177,184,192],coppa:113,copyreg:191,copyright:[22,45,47,48,93,94,169,170],cor:38,cord:[1,113,120],core:[7,9,14,16,29,38,57,58,59,60,68,79,81,101,102,113,116,118,121,122,130,131,143,148,149,152,153,156,160,164,177],core_mask:156,core_sample_indices_:156,corinna:59,corner:120,coronaviru:[1,140],corpor:[18,113,115],corpora:141,corr:[24,38,48,49,52,53,54,64,68,79,81,143,148,164],corr_winedf:48,corrcoef:[18,117],correct:[18,29,40,41,45,48,49,50,51,52,54,56,59,62,66,68,81,83,97,98,109,111,113,117,119,121,129,130,139,144,145,149,153,154,155,162,165,169,174,184,190,191,193],correct_label:144,correcti:[52,57],correctli:[6,34,40,41,47,48,52,54,56,57,59,68,77,81,84,104,130,138,144,149,153,164,170,184],correl:[8,14,49,52,64,103,109,110,112,113,115,135,139,143,144,148,149,154,157,163,172,174,180,184,186,189],correspond:[0,14,29,33,40,41,46,47,49,50,62,75,77,79,83,84,93,94,101,113,117,118,120,121,126,131,135,138,139,144,145,149,164,169,174,190,191],correspondingli:139,corrmat:143,corrupt:163,corrwith:24,cort:59,cortex:179,cortez:48,cosin:[120,149],cosmo:[100,178],cost:[25,32,37,48,52,56,57,63,65,68,74,75,81,102,105,107,109,115,119,131,132,133,137,138,141,155,163,173,175],cost_funct:[63,65],costli:156,costlier:102,couchbas:178,couchdb:178,could:[0,5,7,10,16,17,20,23,26,29,32,33,34,40,45,46,47,48,50,54,55,57,58,59,62,64,66,68,81,83,100,102,105,110,112,113,114,117,118,119,120,122,128,130,135,137,138,139,140,141,143,144,145,149,153,155,156,157,160,161,163,164,165,169,170,177,178,180,189,192],couldn:[113,140,174],coulumn:14,count:[1,18,22,31,34,38,49,52,54,56,57,58,59,60,61,64,79,84,104,111,115,117,118,120,125,132,135,143,153,160,164,176,190,192],count_3g:[68,81],count_4g:[68,81],count_bug:191,count_digit:93,count_occurr:94,count_vowel:170,count_word_occurr:94,countabl:117,counter:[132,169,191],counteract:77,counterintuit:139,counti:109,countplot:[34,49,51,52,54,56,57,61,68,79,81],countri:[8,12,14,46,109,114,118,120,122,140,145,157,178,193],countries_and_region:14,countries_dataset_url:14,country_region:[14,140],coupl:[33,100,105,122,146,155,178],cours:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,29,34,39,40,44,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,64,67,68,69,71,72,79,81,83,86,87,89,90,91,92,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,125,126,128,130,131,134,135,139,143,144,145,149,150,152,153,156,157,160,161,162,163,164,165,166,168,191],courvil:[29,50,77,129],cov22:140,cov:[18,117],covari:[18,110,148,176],cover:[3,30,49,76,107,112,113,115,118,119,120,121,125,127,138,144,163,167,168,171,175,177],covert:[105,175],covid19:140,covid:[100,109,113,140,141,174],coxboost:149,cpickl:125,cpk:102,cpu:[29,31,33,37,53,58,101,102,184],cpu_cor:[9,101],cpu_feature_guard:29,cr:[110,176],craft:[105,149],crash:[139,163],crawler:140,crazi:150,creat:[0,1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,41,42,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,71,72,74,76,83,84,85,86,87,89,90,91,92,100,103,104,105,107,108,109,110,111,112,113,114,115,117,118,119,122,124,125,126,128,129,130,131,132,133,134,135,137,138,139,140,141,143,144,145,146,148,149,150,152,153,154,155,156,157,160,161,162,163,164,165,166,168,169,170,171,174,176,177,178,182,184,185,186,187,189,190,191,192,193],create_discrimin:180,create_gan:180,create_gener:180,create_ingredi:160,create_ingredient_df:160,create_mask:131,create_model:39,create_sub_plot_2_grid:22,create_test_df:[14,22,24],create_test_df_1:14,create_test_df_2:14,create_test_df_3:14,created_at:119,createlink:109,creatinin:102,creatinine_phosphokinas:[9,101,102],creation:[83,101,102,113,115,146,149,185],creativ:[7,109,149,163],creator:[121,125,140,149,157],credenti:102,credit:[26,50,103,113,141,143,146,174],crest:[49,52,53,79,110,176],crisi:100,crisp:107,criteria:[69,71,72,86,89,90,91,92,114,141,148,184],criterion:[31,37,50,56,57,58,77,113,146,148,190],critic:[29,36,54,76,102,103,105,110,115,137,139,140,141,163,176],crop:[31,39,125,164,165,166],crop_and_res:133,crop_height:125,crop_shap:133,crop_siz:133,crop_width:125,cross:[22,36,49,56,64,66,68,77,81,107,121,125,126,129,130,135,139,145,154,156,161],cross_color:156,cross_entropi:[33,125],cross_entropy_mean:125,cross_val_predict:[68,79,81],cross_val_scor:[50,54,56,59,64,66,68,79,81,84,85,148,161,162],cross_valid:56,cross_validated_roc_auc:59,crossentropi:[47,83],crosstab:22,crowd:[49,111,143,145,176],crucial:[56,76,102,128,148],cruel:143,cruis:171,crypto:38,cs231n:130,cs:[105,125,130,191],csci:191,csr:79,csr_matrix:79,css:[157,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],csse:[14,120,140],csse_covid_19_data:14,csse_covid_19_time_seri:14,cssegisanddata:14,csv:[1,2,6,14,15,17,22,23,29,32,35,38,42,46,47,48,49,50,51,52,53,54,56,59,60,61,62,64,66,67,68,74,79,81,83,84,85,87,110,111,112,114,120,121,135,140,143,144,145,146,148,150,152,153,157,160,161,162,164,165,166,170,176,184,186,187,188,190],ct:[9,101,103,127,186],ctc:77,ctc_batch_cost:77,cto:137,cu3tc99fx:59,cube:[170,192],cuda:[29,31,33,37],cuda_dnn:29,cuda_gpu_executor:29,cudnn:29,cuisin:[67,159,162,168],cuisines_df:[67,161,162],cuisines_feature_df:[67,161,162],cuisines_label_df:[67,161,162],cultur:[103,105,174],cummul:126,cumprod:126,cumsum:184,cumul:[128,150,164],cun:179,cur_group:130,cur_layer_idx:130,curat:[103,113,141,172],curb:77,cure:52,curl:[12,25],curli:[170,171,192],curr_scor:55,currenc:38,current:[3,14,16,33,35,41,51,54,56,59,77,80,93,94,103,105,115,120,127,128,131,132,149,152,153,154,161,166,169,185,191],current_numb:169,current_posit:35,curriculum:[71,100,160,164,168],curtain:39,curv:[14,45,47,48,50,54,62,66,76,80,110,135,143,148,149,154,156,163,164,189],cusin:160,custom:[3,6,16,23,43,101,103,105,107,109,113,114,119,121,126,127,137,138,141,145,146,148,153,157,163,165,169,170,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],custom_callback:40,custom_exception_is_caught:169,custom_lay:131,custom_loss:126,cut:[39,50,148,156],cut_df:39,cutler:148,cutoff:132,cutoff_dist:156,cv2:[31,39,126],cv:[50,52,53,54,56,57,58,60,61,64,66,68,79,81,84,85,148,151,156],cv_cb:54,cv_fold:56,cv_gbc0:56,cv_gbc:56,cv_lgbm:54,cv_results_:[56,85],cv_ridg:66,cv_score:[56,64,84],cv_xgb:54,cvd:102,cvuychzptgtwqctglq450hqpjyevwjgw04zql3rg2wjbevooeqymmivpmiwybd:59,cycl:[45,53,58,102,107,113,132,135,138,139,152],cycler:135,d1:33,d3:178,d8ca7e:36,d:[1,14,17,25,32,37,38,39,40,48,50,51,54,59,63,65,66,68,77,81,83,84,94,104,109,110,113,117,118,120,121,124,128,129,130,131,134,137,138,139,141,143,144,146,148,149,154,156,166,168,170,173,175,177,178,180,182,184,185,191,192],d_:126,d_b1:129,d_b2:129,d_b3:129,d_b4:129,d_error:129,d_fake:129,d_g_z1:37,d_g_z2:37,d_i:120,d_layer_d_input:83,d_loss:[36,37,129],d_loss_fak:129,d_loss_metr:36,d_loss_real:129,d_model:133,d_opt:129,d_optim:36,d_pred_fak:129,d_pred_real:129,d_predict:148,d_real:129,d_var_list:129,d_w1:129,d_w2:129,d_w3:129,d_w4:129,d_x:37,da:32,dai:[8,14,39,44,49,50,52,77,102,103,105,114,135,139,140,145,153,163,164,171,172,185,193],daili:[1,8,14,38,103,113,135,140,163,171,172,189],daisi:169,damag:[93,94,109,169,170],damien:124,damn:139,danb:152,danceabl:[142,143,144],dancehal:[143,144],danger:[109,155],dangereus:109,daniel:141,daniil:139,dark:[113,141,174,185],darker:[50,103],darkgreen:[68,81],darkgrid:54,darrel:131,dasani:[143,164,165,166],dash:[76,101,156],dashboard:[100,103,137],dat:[49,79,103],data2:[50,121],data:[4,5,6,13,16,17,19,21,22,26,27,30,35,42,50,62,67,71,72,75,76,77,83,85,87,89,90,91,92,93,102,109,111,112,116,124,125,127,128,129,130,131,132,134,136,138,142,144,145,146,148,149,150,151,152,154,155,156,159,164,167,168,169,180,181,183,184,187,188,191],data_batch_:125,data_df:40,data_dir:[33,125,132,134,135],data_dmatrix:153,data_fil:[125,132,134],data_fold:129,data_format:133,data_i:[63,65],data_load:129,data_loc:125,data_nam:129,data_path:[36,44,68,81],data_prepar:44,data_sci:3,data_util:31,dataarrai:120,databas:[6,39,100,114,115,119,121,123,134,137,157,173,174,181],databrick:[100,102],dataconversionwarn:57,datadriveninvestor:124,datafi:113,dataflair:[103,172],dataflow:126,datafram:[1,8,14,17,22,23,24,29,30,31,36,38,39,40,44,46,47,48,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,68,74,79,81,85,87,110,111,122,135,143,144,152,153,156,157,160,161,162,164,165,166,176,185],datagen:[32,34],datajameson:33,datalira:39,dataload:[33,37,129],datanul:48,datapoint:[7,89,131,143,144,153,160],datasci:[107,138],dataset991:57,dataset:[1,2,4,7,9,10,13,14,15,17,18,19,20,23,24,25,26,27,34,36,37,38,40,44,49,50,52,53,54,56,57,58,60,61,62,63,64,65,66,68,69,71,74,77,79,81,85,87,89,99,103,104,111,112,113,114,115,117,118,119,120,124,125,126,127,129,134,135,137,139,141,142,143,144,145,146,149,150,152,154,155,156,161,162,163,164,165,166,172,174,180,182,185,189],dataset_991:57,dataset_path:[31,39],dataset_test:42,dataset_tot:42,dataset_train:42,datasets_nam:[29,31,39],datasets_respons:[29,31,39],datasets_save_path:[29,31,39],datasets_url:[29,31,39],datast:124,datastor:178,datastructur:170,datatyp:[7,48],date:[1,14,35,38,44,46,49,52,57,102,109,118,121,135,137,140,141,164,165,169,191],date_column:[38,44],date_rang:[14,38,44,121],date_split:35,date_train:[38,44],dateset:30,datetim:[1,14,38,40,121,164],datetime64:[38,135],datetimeindex:[38,121,135,164,166],datetimeindexopsmixin:121,datetimelik:121,daum:38,daunt:139,david:[94,129,138,141,156],davydov:141,day_of_year:164,dayofyear:164,db265359943e:124,db4o:178,db:[12,63,65,75,82,100,103,172,178,186,187],dbscan2:156,dbscan:143,dbscan_plot:156,dbscandbscan:156,dcab:[170,192],dcgan1:129,dd:166,de:[40,43,81,109,113,157,174],dead:169,deadlin:103,deal:[43,49,50,52,56,57,59,75,76,94,109,115,121,137,138,140,148,149,157,163,169,170,184,189],dealt:7,death:[1,8,14,22,102,109,140],death_ev:[9,101,102],deaths_dataset_url:14,deaths_df:14,deborah:137,debt:141,debug:[0,35,41,83,101,157,169,171],debug_log:[9,101],dec:[109,141],decad:[115,127,133,137,163],decai:[125,155,163,190],deceiv:[36,109,113,174],decemb:[49,52,160,164,173],decent:[63,65,125,139,150],decept:113,decid:[18,32,35,36,54,66,77,104,109,111,114,115,121,135,139,143,145,148,149,153,161,162],decim:[93,170,171,192,193],decion:57,decis:[3,11,47,48,49,52,53,54,56,59,60,61,62,68,76,77,81,102,103,105,107,111,113,114,115,127,128,137,139,140,141,144,145,146,149,152,153,154,161,162,163,172,174,182,184,189,190],decision_funct:[154,182],decisiontreeclassifi:[49,57,68,81,148,150,161,184],decisiontreeclassifierdecisiontreeclassifi:57,decisiontreeregressor:[50,58,148,150],decisiontreeregressordecisiontreeregressor:58,declar:[125,132,169,170,192],declin:[1,14,48,109,112],decod:[29,30,31,36,124,131,132,134],decode_raw:125,decoded_data:29,decoded_img:[29,30],decoder_b1:124,decoder_b2:124,decoder_h1:124,decoder_h2:124,decompos:93,decomposit:184,decompress:31,deconstruct:103,deconv:133,deconvolut:[124,131],decor:[121,185],decorate_with_div:[169,191],decorate_with_p:[169,191],decreas:[33,47,48,49,50,52,54,59,64,68,81,102,112,125,130,139,145,146,148,149,155,165,180],decres:150,dedic:[54,102],deduc:14,deem:66,deep:[16,29,30,31,32,33,34,35,36,37,38,39,40,42,44,47,48,50,62,77,79,102,117,120,121,124,125,129,130,131,132,133,134,136,139,140,141,155,168,179,187,188,190],deepcopi:31,deepen:[54,130,165,168],deeper:[7,13,17,19,48,50,74,102,107,117,130,139,146,154,155,160,161,164,175,182],deepfunnel:31,deeplabv3:131,deeplearn:163,deeplearningbook:124,deepli:[115,137,179],deeplizard:125,deepmind:163,deer:125,def:[1,3,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,43,44,47,48,49,50,51,52,53,54,55,56,57,58,60,63,64,65,66,68,74,75,77,79,80,81,82,83,85,93,94,95,121,124,125,126,128,129,130,131,132,133,134,135,140,145,148,150,154,156,157,160,162,170,177,180,182,186,187,188,191,193],default_n_init:144,default_target_attribut:57,defe:36,defect:[163,189],defenestr:[169,191],defin:[0,1,3,14,22,31,32,36,40,45,47,48,50,51,54,57,59,62,63,65,66,74,75,76,77,80,83,93,103,104,105,107,110,113,116,117,119,120,121,125,128,130,132,134,137,139,140,141,143,144,145,148,149,150,153,154,155,156,157,161,164,169,170,171,175,177,185,186,192],definit:[41,50,60,66,103,115,117,119,120,121,133,138,146,163,171,189,191],deforest:103,deform:130,degrad:[31,86,103,130,137,140,156,172],degre:[3,34,37,50,59,60,61,63,65,115,117,122,128,148,164,174,186],deje:141,del:[85,121,128,169],delai:[128,135],delet:[45,56,101,102,113,170,192],deliber:[168,171],delicassen:153,delicassesn:153,delici:[111,159,160],delimit:[31,38,184],deliv:[7,56,100,105,115,118,137,138,169],deliveri:[100,103,138,173],dell:105,delta:[47,55,59,77,126,169],deltamean:47,deltastd:47,deltatheta:128,delv:[75,76,77],demand:[7,49,52,100,102,112,135,137],demarc:144,demis:109,demo:[125,126,129,130,131,133,138,140,144,148,149,154,156,160,164,165],democrat:[103,113],demograph:56,demographi:140,demonstr:[3,8,18,41,45,47,48,59,62,69,74,76,110,117,118,120,138,143,146,148,164,166,168,169,170,177],demostr:32,dendrocygna:[110,176],deni:[50,113],denois:[124,126],denoise_model:126,denomin:[7,77,93],denot:[54,75,80,117,126,128,146,153,169,170,192],denounc:105,dens:[29,30,34,35,36,38,39,40,41,42,43,44,45,47,48,62,77,126,130,133,143,144,180,190],dense_1:43,dense_2:43,dense_3:43,dense_block:130,densenet121:131,densenet169:131,densenet201:131,densenet264:131,densiti:[4,48,117,126,143,145,148],deon:[28,113,174],deott:32,depart:[112,113,149,166,174],depend:[0,7,12,14,18,25,29,39,46,48,50,52,57,68,74,76,81,101,102,107,109,110,111,112,114,115,117,118,119,120,121,122,127,129,130,132,134,135,138,139,141,142,143,144,148,149,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,168,169,189],depict:[36,50,125,153],deploi:[5,10,20,41,43,92,99,100,101,102,113,127,130,138,140],deploy:[9,103,107,163,173,185,189],deploy_configur:[9,101],deprec:[62,120,121,156,184],deprecate_nonkeyword_argu:121,deprecation_mask:121,deprecationwarn:184,depth:[7,49,50,54,56,57,58,68,81,105,109,126,130,146,148,149,150,153,169,184],depth_multipli:130,depth_radiu:125,depthwis:[130,152,153],depthwise_separable_conv:130,depthwiseconv2d:130,dequ:35,der:130,dereferenc:120,deriv:[14,16,33,50,54,57,63,65,74,80,83,103,112,120,121,130,135,139,143,144,153,154,160,169,171,186,191],derivedclassnam:169,desat:135,desc:31,descend:169,descent:[33,45,49,54,68,74,77,81,82,83,126,130,139,150,153,154,161,164,182,186,187,190],descr:[57,58],descreas:56,describ:[1,2,9,11,21,28,38,40,45,47,48,49,50,51,52,53,56,57,58,59,61,64,68,74,79,81,83,84,89,101,104,105,110,113,117,119,120,121,122,130,133,135,137,138,139,143,149,152,153,154,169,178,180,184],descript:[0,9,28,50,57,89,101,102,120,121,126,132,139,157,163,169,170,171,175,189,190],description_vers:57,desert:139,deserv:117,design:[7,12,18,31,32,38,40,43,54,75,77,92,102,103,105,109,113,114,115,118,120,127,128,130,135,137,138,139,140,141,145,153,154,161,169,170,171,174,192],designated_hitt:117,desir:[34,74,93,107,113,115,120,128,138,163,169],desktop:[138,171],despin:[112,176],despit:[50,130,141],dest:135,destin:[120,137],detach:[33,37],detail:[7,11,14,16,26,29,41,50,54,57,68,71,75,81,86,102,105,111,114,117,118,119,121,125,131,138,139,140,146,149,150,152,155,161,163,164,169,171,177,184,189,193],detect:[43,46,47,49,50,59,60,61,64,103,113,118,121,127,137,139,143,148,155,163,169,172,189,191],detector:[163,189],detergents_pap:153,deterior:152,determ:32,determin:[22,32,50,51,54,59,68,75,76,77,81,93,101,102,107,115,117,120,121,122,125,128,130,134,138,139,141,143,144,146,149,154,155,160,163,164,165,167,168,169,170,175,177,178,182,189,190],determinist:[113,128,135],detr_structur:133,dev:[47,48,117,121,156,177],devast:112,devdoc:184,develop:[7,8,40,45,47,48,54,56,59,62,99,100,101,102,103,113,115,118,121,127,133,136,137,138,139,140,141,148,149,153,155,160,163,168,171,172,174,180,185,193],devi:[63,65],devianc:[56,150],deviat:[7,18,29,31,47,48,59,62,64,76,77,79,104,120,126,137,146,163],devic:[15,29,31,33,37,54,68,81,115,119,130,137,139,140,141,171],devicedataload:33,devid:56,devis:75,devot:136,dexamethason:1,dexter:36,deza:168,df1:[22,121,177],df2:[22,51,121,177],df3:[121,177],df4:121,df5:121,df6:121,df7:121,df:[1,9,14,17,18,22,23,24,31,38,39,44,48,50,51,53,59,75,79,80,101,111,117,121,135,140,143,144,148,153,160,164,176,177,185],df____:24,df_attr:31,df_boxplot:24,df_corr:53,df_corr_i:24,df_corr_sex_with_i:24,df_desc:53,df_diff:14,df_filter:14,df_heat:53,df_hist:53,df_mean:24,df_null:53,df_pairplot:53,df_plot:24,df_rolling_mean:14,df_scale:44,df_scatterplot:24,df_sex_1:24,df_sex_2:24,df_std:24,df_train:[22,38,44,62],df_train_scal:44,df_valid:62,df_y:44,dfa:121,dfd:121,dfl:121,dfm:1,dfmt:1,dfmtp:1,dfrac:150,dfx:80,dfy:80,dg77ysplly4qtmh7trbd03p9nl1g:59,dhamaa:119,dhamaiusa4o:119,dhamaiusa4ohaaaaaaaaaa:119,dhariw:126,di:[22,59,102,113,170,174],diabet:[1,9,101,102,117,174],diabetes_progression_correlated_with_sex:24,diagnos:[1,8,43,45,163],diagnosi:[113,174],diagnost:30,diagnoz:189,diagon:[18,117,120],diagram:[1,5,8,18,50,59,107,116,117,125,137,144,151,152,153,154,156,164,174,175],diamond:169,dibia:29,dice:[77,117,121],dice_loss:77,dickinson:[103,172],dict1:94,dict2:94,dict3:94,dict4:94,dict5:94,dict6:94,dict7:94,dict:[1,3,22,39,84,110,125,128,130,133,135,156,170,171,176,184,190,192],dict_1:191,dict_2:191,dictat:[7,118,127],dictionari:[17,23,79,120,121,141,148,169,177,191],dictionary_for_string_kei:[170,192],dictionary_via_constructor:[170,192],dictionary_via_express:[170,192],did:[7,16,18,27,40,45,50,52,53,54,55,60,61,68,69,79,81,105,109,110,113,117,118,139,143,144,149,153,156,157,161,165,166,170,171,184],didn:[43,48,56,58,60,68,81,118,121],diego:129,diet:102,dietmar:141,dieu:[40,43,81],dif:14,diff:14,diff_seri:14,differ:[1,3,4,7,8,11,12,13,14,18,30,31,32,33,34,39,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,63,65,66,68,72,74,75,76,79,80,81,83,85,93,99,100,101,102,103,105,107,109,110,111,112,113,114,115,117,118,119,120,124,125,126,127,128,130,131,132,133,135,137,138,139,140,141,142,143,144,145,146,148,149,151,153,154,155,156,160,161,162,163,164,165,166,167,168,169,170,171,177,178,180,183,189,191,192,193],differenti:[21,75,100,124,125,130,139,149,153,154],differnt:55,difficult:[30,32,62,117,139,141,148,149,154,169,184],difficulti:[50,115,134,138,149],diffusion_models_tutori:126,difuss:126,dig:[13,19,86,110,160,161,164,166,176],digit:[16,29,31,32,41,47,83,93,103,109,113,124,137,140,156,170,172,174,184,190],digitdata:47,dilat:[130,131],dilation_r:[130,131],dilemma:113,dim:[33,124,126,190],dim_z:31,dimens:[7,29,33,43,48,59,74,77,110,118,120,124,125,126,127,130,137,154,163,189,190],dimension:[29,30,33,40,41,43,45,60,61,84,121,124,130,143,149,154,184],dimensions:33,dimenss:84,diment:[63,65],dimi:31,diminish:48,dimx:31,dioxid:48,dip:64,dir:[56,125,156,169],direct:[7,41,74,85,105,121,124,125,128,132,141,150,164],directli:[1,7,14,30,31,41,62,66,77,100,101,102,105,118,119,120,121,128,130,135,137,139,146,148,169,170,180,192],directori:[33,36,37,38,39,51,68,81,102,104,118,119,125,132,134,157,169,171],dirnam:[31,51,56,125],dirpath:31,dirti:[48,118],disabl:[110,112,148,169,170,176,192],disable_v2_behavior:[129,134],disadvantag:[31,49,154],disambigu:141,disappear:[130,165],disast:100,disc_num_var:54,discard:[47,121,153,170,192],discern:143,disciplin:[3,115],disclosur:113,discount:[35,128],discourag:120,discov:[3,4,13,19,21,36,47,104,107,109,110,112,113,114,115,116,118,123,139,142,143,161,165,166,167,168,175],discover:137,discoveri:[105,114,137],discrep:77,discret:[50,54,59,77,117,120,126,128,148,149,163],discrimin:[113,141,154,170,180,182],discriminator_opt:36,discriminator_verdict:36,discuss:[1,3,4,7,11,18,28,48,50,74,102,105,113,115,117,118,120,121,136,137,139,141,143,145,152,153,168,169,177],diseas:[8,14,102,103,140,160,163,165,168,189],dish:160,disk:[12,14,25,102,138,156],dislik:105,disord:112,dispar:[75,77,141],dispers:[126,130,184],displai:[3,7,14,29,30,33,37,39,40,41,43,45,47,48,49,52,55,57,58,59,60,63,64,65,68,74,77,81,83,110,111,112,115,121,122,124,125,128,129,131,156,157,160,164,165,166,168,178],display_commandlin:128,display_imag:60,display_list:131,display_nam:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162],display_stat:39,display_statu:129,display_step:124,display_t:170,displaycallback:131,displi:46,disregard:[75,124],dissatisfact:115,dissemin:113,dissert:141,dissimilar:[50,77],dissoci:149,dist:54,distanc:[59,85,126,143,144,154,156,162,164,184],distance_down:128,distance_left:128,distance_right:128,distance_up:128,distant:[144,154],distinct:[51,54,128,141,146,156,160],distinctli:109,distinguish:[7,36,50,115,120,129,154,180,182],distort:110,distort_imag:125,distplot:[54,56],distract:152,distribut:[3,7,22,30,31,45,47,48,49,50,55,56,61,64,68,76,77,81,84,93,94,103,109,113,115,126,128,129,130,133,134,137,138,139,141,145,148,149,153,154,155,156,160,163,165,166,169,170,180,190],div:[3,22,157,160,164,169,191],dive:[7,16,50,102,103,112,121,139,141,163,164,176,189],diverg:[47,48,139,144],diverging_palett:38,divers:[103,113,137,138,142,159,163,189],divid:[14,25,31,36,40,41,47,50,59,68,81,83,93,110,113,115,117,119,120,122,125,127,130,137,139,143,144,145,146,148,157,161,162,163,165,170,174,178,189,192],divis:[14,47,93,120,125,139,154,169,170,171,177,191,192,193],divisible_by_2:120,divisor:[39,93],divorc:109,dl:[33,83,148,189],dll:191,dm:[59,75,107],dmatrix:[66,153],dmitri:[14,100,130,164],dna:103,dname:125,dnn:127,do_glob:169,do_loc:169,do_nonloc:169,do_noth:169,doc:[26,40,41,43,62,71,91,101,105,111,112,119,121,161,169,170,178],docker:[35,51,138],docloud:191,docstr:[79,83,121,169],doctyp:[3,15,157],document:[3,5,7,10,16,25,26,38,40,49,57,68,69,71,81,93,94,96,100,101,102,103,110,112,115,120,121,125,126,137,140,141,143,144,145,153,161,168,170,178,192],documentdb:178,docutil:164,docx:38,doe:[1,3,5,7,14,16,17,30,31,32,33,41,43,47,48,49,50,52,54,57,58,59,60,66,68,74,75,76,79,81,83,84,92,93,94,103,105,109,112,113,115,117,118,119,120,121,129,130,131,133,135,139,141,143,148,149,150,152,153,156,157,160,161,163,164,165,166,169,170,171,178,184,193],doesn:[7,26,31,32,33,39,49,52,56,57,58,64,66,68,75,77,81,83,94,105,110,114,120,121,129,135,137,148,150,153,162,169,170,191,192],doesnt:54,dog:[15,121,125,130,163,169,180,191],dogwithsharedtrick:169,dogwithtrick:169,doi:[14,141],dollar:[50,79,133],domain:[7,11,16,49,54,56,76,102,103,115,116,129,139,144,166,174],domin:[68,81,143,152,193],domino:178,don:[0,7,31,32,34,40,41,43,48,49,50,52,53,56,57,58,59,60,68,77,81,100,101,102,103,104,105,107,121,122,124,127,135,137,139,152,155,156,157,163,165,169,170,171,172,191,192],donald:[93,171],done:[1,3,7,14,25,35,36,40,43,49,50,52,54,56,61,83,101,102,109,111,119,120,121,122,124,125,135,138,143,146,149,153,155,156,157,164,169,170,171,178,185,192],donli:143,donn:22,donoghu:137,donut:[27,109],door:[57,58,163],dosag:[1,8],dot:[18,30,50,63,65,74,75,82,83,112,145,148,149,156,168,169,186,187,191],dou:141,doubl:[32,50,119,143,170,171,192,193],double_quote_str:[170,192],doubled_vector:[170,192],doubt:[101,102,141,149],doug:177,doughnut:111,douyupccli:38,down:[14,26,30,45,49,50,51,52,59,68,75,81,83,85,93,102,105,107,128,130,137,138,148,149,155,162,163,170,175,189,192],down_shifted_imag:85,down_stack:131,download:[1,3,12,25,36,37,38,47,48,57,58,68,81,83,102,115,119,120,125,126,129,130,131,132,134,156,161,166,171],download_fil:[9,101],download_read_data:[68,81],download_root:156,download_url:33,downsampl:[29,30,126,130,131],downsid:[57,58,135],downstream:137,downward:[109,126],dozen:[32,62,102,140],dp0dtheta:128,dp1dtheta:128,dp2dtheta:128,dp3dtheta:128,dp_dtheta:128,dpi:[144,156],dprobability0_dweight:128,dprobability1_dweight:128,dprobability2_dweight:128,dprobability3_dweight:128,dqn:128,dqnagent:35,draft:139,drag:[7,102,111],drain:163,dramat:[105,152],drastic:[54,130,139,184],draw:[1,3,8,14,18,31,49,50,52,59,60,61,68,79,80,81,110,111,112,115,117,124,128,145,149,154,157,163,164,168],drawback:[144,170],drawn:[49,109,117,139,145,180],dream:125,dress:[30,40,41,77],drewconwai:[116,174],drift:140,drive:[45,47,48,103,105,107,113,125,127,131,133,137,141,157,163],driven:[0,103,113,115,128,137,140,141,172],driver:[17,23,113,163],drop:[14,31,32,38,39,41,46,47,48,49,50,51,52,53,54,56,57,59,61,62,64,67,68,74,75,79,81,102,111,115,118,120,121,125,132,135,145,146,150,152,153,155,156,157,160,161,162,164,165,166],drop_column:14,drop_dupl:[46,118],drop_remaind:[44,126],drope:128,dropna:[7,38,46,54,66,74,118,121,135,150,152,157,164,165,177],dropnan:38,dropoff:[103,172],dropout1:130,dropout2:130,dropout:[30,33,34,36,39,42,44,83,124,125,129,130,131,134,139,180,190],dropout_keep_prob:134,dropout_r:130,dropoutlambda:47,drug:103,ds:[35,38,44],ds_train:126,ds_wordcloud:3,dset:37,dsse:59,dt:[38,59,120,164],dtest:66,dtl8folder:38,dtrain:[56,66,153],dtrain_predict:56,dtrain_predprob:56,dtree:148,dtyp:51,dtype:[7,14,22,24,31,33,35,38,43,48,51,56,57,58,59,60,61,64,66,77,79,111,118,120,121,125,126,130,132,133,134,135,143,144,146,148,153,156,160,161,164,177],dual:[68,81,109],dual_sim:[68,81],dube:137,duc:130,duca:178,duck:[93,110,176],due:[14,18,50,54,103,112,120,127,128,130,133,139,140,145,146,148,149,150,154,155,172,184],duel:109,dummi:[22,66,83,135,169],dummy_inst:169,dummyclass:169,dump:[9,85,101,143,157,191],dumpstack:38,duplic:[38,121,122,137,145,163,169,178],duplicate_kei:94,durabl:137,durat:[37,103,157,172],duration_histori:128,dure:[11,14,36,39,40,41,43,49,50,52,54,57,59,60,61,62,83,93,102,105,112,120,122,127,130,131,135,137,139,140,145,146,152,153,154,155,163,166,169,170,189,190,191],dutch:[171,193],dw:[63,65,75,82,186,187],dx:[31,117,126],dy:31,dy_pr:83,dynam:[115,135,138,169,171,191],dynamic_rnn:134,dynamodb:178,e024722:137,e23479:137,e24pc6fwtijzssqxp7ns3yqhydnshpycubsxuoacrqlpxngqdrjyenbdec6vi9bmnn0izuzie3eokikdk:59,e2:130,e2ab30:36,e5ni7of:59,e87ckhmr4qc:59,e:[1,3,8,14,16,33,35,36,39,42,49,50,51,52,54,55,59,63,64,65,68,76,77,81,83,93,94,102,103,113,114,115,117,118,120,121,124,126,128,129,130,133,134,137,143,145,149,150,155,156,161,163,164,165,169,170,172,174,177,180,184,186,189,190,191,192,193],e_1:145,e_:[126,148],e_n:145,e_x:145,e_z:148,each:[1,6,7,11,14,16,21,22,29,30,31,32,33,35,36,37,39,40,41,43,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,68,75,76,77,79,81,83,84,85,91,93,94,102,103,105,107,109,112,113,114,115,117,118,119,120,121,122,125,126,127,128,129,130,131,133,135,137,138,139,140,143,144,145,146,148,149,151,152,153,154,155,156,162,163,164,165,166,169,170,171,172,177,178,182,184,185,186,190,191,192],eagerli:155,earli:[40,50,56,57,59,101,113,148,152,153,163],earlier:[7,29,40,46,50,54,83,92,101,102,103,118,121,135,144,149,156,159,160,165,170],early_stop:[40,152],early_stopping_round:[66,153],earlystop:[39,40,44],earn:114,earth:[59,103,169,172,193],eas:[102,118,168],easi:[0,7,31,36,40,43,46,47,49,50,52,59,102,105,112,113,114,117,118,120,121,127,135,138,139,140,145,148,154,155,165,171,177,178,184,185,193],easier:[1,31,40,41,50,53,58,72,83,102,103,105,113,114,118,130,135,139,155,166,169,170,173,191,192],easiest:[14,40,117,120,139,184],easili:[1,7,26,39,45,46,47,49,50,57,58,59,61,68,81,105,109,112,118,120,121,129,137,138,139,140,141,146,148,156,165,185,187,188],eastwood:93,eat:[166,171,193],ebner:141,ebook:113,ecg5000:29,ecg_autoencoder_model:29,ecg_autoencoder_model_nam:29,ecg_autoencoder_model_respons:29,ecg_autoencoder_model_save_path:29,ecg_autoencoder_model_url:29,ecg_extract_path:29,ecg_zip_file_path:29,echo:[110,138,139,169],echo_funct:169,ecolog:109,econom:[50,76,103,113,135,172,174],econometr:50,economi:7,ecosystem:[103,157],ed:1,eda:[17,101,104,124],ede9d:36,edg:[15,102,119,134,170,178],edgecolor:[50,84,154,156,182,184],edibl:[111,176],edibleclass:[111,176],edit:[3,110,111,112,121,168,185],editor:[23,171,185,193],edu:[58,94,105,107,125,130,134,141,175,191],educ:[11,50,51,103,105,156,172],education_level:56,education_num:51,effect:[7,34,39,45,49,50,52,53,54,56,57,62,75,79,102,109,113,115,120,121,122,130,131,133,137,139,140,141,143,145,149,153,154,155,163,164,169,170,171,173,174,180,189,192],effectiviolog:105,effici:[30,32,54,59,100,102,107,115,120,121,124,127,130,135,139,145,148,153,169,171,173,175],effort:[102,103,105,114,139,172],eg8djywdmyg:160,eg:[3,7,117,164],egg:[169,170,191,192],ehealth:137,ei:55,eight:[85,135],either:[3,7,14,22,29,40,43,45,47,48,49,52,57,101,105,117,120,121,127,131,133,135,137,139,140,141,143,146,148,155,161,163,169,170,171,189],ejection_fract:[9,101,102],ejtdl1tzr2vxnvlm4pwxei:59,ekf6iw6gti6:59,el:[56,141],elabor:8,elaps:126,elast:[77,149],elasticnet:[66,155,164],elasticsearch:178,elbow:156,elec_data:[49,52],elec_df:[49,52],electr:[49,52,54],electrocadriogram:29,electrocardiogram:29,electron:[68,81,102],eleg:171,elem:[170,192],element:[7,13,14,18,19,29,33,39,43,50,68,81,83,93,110,114,117,119,121,125,126,130,132,141,145,148,168,169,171,177,185,190,191,192],elementwis:[33,83],elev:[84,154,182,184],elif:[35,37,39,85,94,121,125,128,131,133,169,170,191],elimin:[28,66,103,113,170,172],elkan:156,ell:[50,145,148],ellips:155,ellipsi:120,ellipsoid:184,els:[1,7,24,31,33,35,37,38,39,41,50,51,54,55,57,58,82,83,85,94,95,100,120,121,122,125,126,128,129,130,131,132,133,134,156,169,170,171,187,191],elsevi:48,email:[2,104,105,114,160,163,185,189],email_df:2,emam:141,emb:[59,77,126,134,138,160],embark:[22,76,150],embarked_v:22,embarked_val_:22,embarked_val_c:22,embarked_val_q:22,embed:[30,124,126,127,130,132,133,134,138,140,163,169],embed_dim:130,embedding_dim:126,embedding_lookup:[132,134],embedding_lookup_1:132,embedding_mat:[132,134],embedding_output:[132,134],embedding_s:[132,134],emblemat:77,embodi:134,embrac:[163,171],emerg:[115,157],emerson:105,emili:[103,172],emiss:59,emit:128,emot:[113,120,121,175],emp:77,empath:105,emphas:[77,103,143],emphasi:54,empir:[50,115,149],emploi:[32,36,49,54,59,75,77,85,102,148,163],employ:[56,117],employe:[6,50,56,113,169,177,191],empow:[76,136],empti:[3,7,14,24,31,40,49,53,93,94,114,118,120,121,124,156,164,169,170,177,185,192],empty_tupl:170,emrebulbul23:35,emreustundag:180,emul:178,en:[3,15,30,107,110,113,119,125,138,141,170,174,176,178],enabl:[0,7,29,41,59,101,102,109,118,121,125,130,133,137,145,148,157,160,163,173,189],enable_categor:[66,152,153],enable_early_stop:[9,101],encircl:171,enclos:[169,170,191,192],enclosedporch:54,encod:[9,22,29,30,31,47,48,49,52,54,57,61,64,68,74,81,101,124,125,131,134,139,144,150,157,163,164,189],encoded_c1:22,encoded_column_nam:22,encoded_column_name_prefix:22,encoded_data:29,encoded_img:[29,30],encoder_b1:124,encoder_b2:124,encoder_h1:124,encoder_h2:124,encoding_dim:30,encompass:[7,77],encount:[7,34,46,105,113,117,118,143,171,191],encourag:[3,113,149],encrypt:[107,137,175],encyclopedia:115,end:[3,7,29,31,32,33,35,38,40,43,46,50,52,53,54,57,58,60,61,64,68,77,81,85,102,103,104,107,109,112,113,115,117,118,120,121,125,127,128,130,131,135,138,140,141,145,146,148,149,153,155,156,162,169,170,175,177,186,191,192],end_slic:121,endang:[110,176],endpoint:[115,173],endswith:[31,156],energet:143,energi:[68,81,142,143,144],enforc:[77,103,113,115,120,172],engag:[103,105,139],engin:[14,18,31,38,47,56,74,76,102,113,120,121,127,131,135,138,139,141,143,149,155,157,163,177,178,189,193],english:[139,170,192],enhanc:[75,76,77,109,110,112,163,177,189],enjoi:[75,109,143,193],enlarg:[131,149],enorm:[7,118,154],enough:[7,31,33,39,45,47,48,58,60,61,68,81,93,100,102,104,107,112,113,117,120,126,130,139,149,154,155,163,165,170,171,189],enrich:137,enrolled_univers:56,ensembl:[50,51,52,53,56,57,58,62,68,81,136,139,146,148,149,151,152,153,161,163,184],ensur:[31,33,47,48,77,105,107,109,110,113,114,118,120,122,130,134,137,138,139,153,155,156,162,168,174,175],entail:102,entangl:141,enter:[38,48,51,96,102,115,128,169,171,181,187,188,191],entertain:121,entir:[31,32,77,105,110,113,120,130,131,135,139,140,141,149,154,156,157,166,169,170,174,192],entireti:[107,175],entiti:[1,114,119,141,178],entri:[7,15,38,46,59,60,79,118,120,126,137,143,153,155,160,164,169],entropi:[36,77,125,126,129,146,148,150,154,155,161],entry_script:[9,101],enumer:[1,34,37,39,54,64,117,121,124,125,126,128,129,130,132,156,162,164,169,184,187,188,191],env:[0,35,93,94,121,161,165],env_test:35,envi:109,environ:[9,35,39,45,47,48,51,57,58,60,61,66,100,101,102,103,105,121,130,138,152,153,156,163,164,167,169,172,189],environment:102,environment_debug:35,envis:165,enzym:102,ep:[31,130,156],epic:38,epidem:[14,120],epidemiolog:140,episod:35,epistolari:109,epoch:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,62,75,83,126,129,131,132,134,137,139,150,155,180,190],epoch_acc:33,epoch_count:35,epoch_end:33,epoch_loss:33,epoch_seq:134,epoch_tim:37,epr:55,epsilon:[35,61,126,130,149],epsilon_decai:35,epsilon_min:35,epsilon_t:149,epub:132,epwxzn7xbrcqomkhcf8velmika8h865zrcf5vpp239awmfgsm7vlsy3zpqzij:59,eq:48,equal:[7,14,18,22,24,33,47,48,50,54,59,68,81,84,93,117,119,120,121,125,126,134,135,139,140,141,145,146,148,149,152,155,156,163,166,168,169,170,191,192],equal_var:[18,117],equat:[55,59,74,75,126,135,149,150,164,170],equilibrium:[36,129],equip:[107,115,138],equiprob:145,equit:[113,174],equiv:[15,121],equival:[7,31,47,77,79,120,121,130,135,137,139,149,169,170,190,192],era:141,eras:1,erasur:113,eratosthen:93,erc20:38,erencan:187,eric:141,eros:141,erp:137,err:[121,145],errd:37,errd_fak:37,errd_real:37,errg:37,erro:43,erron:110,error:[0,1,7,29,35,37,39,40,43,45,47,48,49,50,51,54,55,57,61,63,65,66,74,75,77,84,103,117,120,121,130,134,135,137,138,139,141,146,148,149,151,152,153,154,155,156,164,165,170,171,182,183,186,192],errord:76,errormsg:47,errr:[53,58],erwo:93,es:178,escap:[170,192],especi:[43,49,62,66,76,77,105,109,110,111,115,137,138,139,148,149,153,156,162,163,169,180,189],essai:26,essenc:[50,75,77],essenti:[1,7,50,75,76,100,102,115,118,129,132,149,161,177],establish:[7,33,68,81,100,113,131,135,139,144],estim:[18,49,50,52,53,54,56,57,58,59,60,61,64,83,85,102,105,110,114,115,117,120,128,139,140,141,143,144,145,148,152,154,156,162,164,168,176,183,187,188],estimators_:146,estonia:193,et:[31,35,113,141],eta:66,etc:[7,28,31,33,41,45,49,50,56,68,79,81,103,115,117,120,121,127,131,133,137,138,139,140,141,146,148,149,163,169,171,172,175,176,177,189],ethic:[103,107,116,137,141],ethiko:113,etho:113,ethos3:105,etl:137,euclidean:[93,143,184],euclidian:156,eugen:141,eumskiuekkeicr7ucbqntigtiqukhfk9r3ugcoxgjfgagytsqotjgkqreoppi37rrzisckqbihtgxt8maj9gkxaevmew12mhvkqhsc2hiykqkquwaxulrth6kepmuniqjr8lxka81jbqlyqwwtwos0joleq1:59,european:113,ev:[50,145],eva:[119,178],eval:[31,33,40,125,134],eval_epoch:31,eval_epoch_va:31,eval_everi:[125,132],eval_i:125,eval_index:125,eval_indic:125,eval_input:125,eval_input_shap:125,eval_metr:[66,152,153],eval_set:152,eval_target:125,eval_x:125,evalu:[29,33,36,50,59,66,76,77,85,103,104,107,113,118,120,121,125,126,130,132,138,145,146,148,149,152,153,154,155,156,163,168,169,170,171,172,174,182,183,184,189,192],evaluate_on_last_n_it:156,evaluation_s:125,evan:131,evanesc:[111,176],evauat:60,even:[1,3,7,18,33,41,46,48,50,60,62,64,66,68,77,81,93,100,105,109,111,112,115,117,118,120,121,127,128,135,137,138,139,140,141,143,145,148,149,152,156,162,163,164,165,168,169,170,177,184,185,189,191,192],even_numb:[169,191],evenli:[76,120,139],event:[93,94,100,117,121,137,138,140,169,170,174],event_nam:138,eventu:[54,137,145,178],ever:[83,101,119,122,163,170],everi:[3,7,33,37,40,43,47,49,52,56,59,62,64,77,83,105,113,114,115,118,119,120,121,122,126,128,130,131,132,135,139,140,146,148,149,150,153,155,156,163,169,170,171,179,184,185,189,192,193],everydai:[50,115,149],everyon:[100,105,119,140,149,160,184],everyt:149,everyth:[7,50,61,102,104,105,119,121,122,125,132,135,136,139,143,149,163,169],everytim:43,everywher:[115,164],evid:[17,18,54,105,115,117],evok:105,evolv:[1,100,112,138,153],ex:[38,54,110,113,163,176],exact:[68,77,81,101,117,137,139,145,146,149,154,155,182],exactli:[1,7,50,75,77,79,103,105,107,117,120,121,127,130,134,139,149,150,163,168,169,191],exagger:50,exam:186,exam_model:186,exam_scor:186,examin:[7,29,41,46,59,61,76,118,143,145,153,163,164,177,186],exampl:[1,2,3,7,14,16,18,19,26,28,30,31,32,33,35,38,39,40,41,43,45,46,47,48,49,51,52,56,57,59,64,68,74,76,77,79,81,83,94,102,103,104,105,107,109,110,112,113,114,115,117,118,119,121,122,124,125,127,129,130,131,132,133,134,137,138,139,140,141,143,145,148,151,153,154,156,157,160,162,164,165,166,168,169,170,171,172,177,179,180,190,191,192,193],example1:[7,118],example2:[7,118],example3:[7,118],example4:[7,118],example5:7,example6:7,example_batch:125,example_tensor:43,exce:155,excel:[23,25,29,103,111,114,119,131,154,172,176,182],except:[3,9,14,22,24,30,31,43,45,47,48,49,50,53,63,65,94,101,112,120,121,125,127,130,132,133,148,149,150,163,170,171,190,192],exception:137,exception_has_been_caught:169,exception_has_been_handl:169,exception_is_caught:169,exception_messag:169,excerpt:83,excess:[59,77,169],exchang:[105,113,138,157,175],excit:[50,105,115,125,134,163],exclaim:139,exclud:[54,94,120,121,152,156,168,170,192],exclude_word:94,exclus:[100,146,169],execut:[0,3,12,14,18,22,24,25,47,53,54,68,75,76,81,93,94,99,100,101,102,105,107,110,111,112,120,127,128,132,136,137,138,141,142,143,144,155,156,158,159,160,161,162,164,169,170,171,191],exemplari:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,86,89,90,91,92],exercis:[0,3,12,33,47,89,118,137,155,164,171],exhaust:[117,148,169],exhibit:[92,117,130,139,169],exhuast:56,exist:[1,7,9,14,29,30,31,33,37,39,41,45,47,50,54,56,59,64,66,83,94,101,102,103,105,113,114,115,117,119,121,125,132,134,137,138,139,140,141,143,145,146,149,155,163,169,170,172,177,178,191,192],exist_ok:[36,37,156],exit:[137,171],exogen:128,exot:[149,152],exp1:120,exp2:120,exp:[31,50,54,82,83,120,121,126,140,148,149,150,154,177,182,187,188],expand:[7,118,119,120,148,149],expand_dim:[36,41,44,120,125,132,186],expans:[154,169],expect:[7,33,35,41,47,48,51,57,79,83,92,110,115,117,118,120,121,128,138,139,145,149,164,166,169,171,193],expect_result:14,expected_df:22,expected_diff:14,expected_output:[14,94],expected_result:[14,22,94],expected_sequ:94,expected_sorted_list:94,expectil:149,expedi:128,expend:102,expens:[33,49,50,56,68,79,81,102,121,127,135,137,138,151,166,185],experi:[1,14,16,28,35,40,41,45,47,48,50,102,103,105,109,110,111,113,115,117,118,130,131,138,139,140,149,152,163,165,176,186,189],experienc:[28,113],experiment:[35,47,130,168],experiment_nam:[9,101],experiment_timeout_minut:[9,101],expert:[49,50,105,113,139,140,141,156],expertis:[102,103,115,139,140,172,174],expir:137,explain:[5,8,24,26,33,41,50,54,69,71,74,76,77,80,86,90,103,105,107,113,120,121,125,138,139,141,144,146,154,155,156,161,163,164,172,174,179,184],explained_variance_ratio:184,explained_variance_ratio_:184,explan:[10,20,24,45,47,102,113,121,141,149,155,170,192],explanatori:[24,76,110,152,164],explic:57,explicit:[120,121,169,184],explicitli:[77,83,120,121,128,144,163,169,189],explod:[51,132,139],exploit:156,explor:[9,18,23,28,35,45,47,54,60,74,76,84,99,100,101,102,103,105,106,107,108,111,112,113,114,121,122,136,138,140,143,145,149,151,154,155,157,160,162,163,164,165,166,168,172,175,178,185],exploratori:[17,68,74,81,101,124,175],expm1:66,expn:120,exponenti:[54,120,125,149,170,171,192,193],exponential_decai:125,expos:[54,103,113,121,140,174],expose_map:54,exposit:105,exposur:[105,113],express:[1,8,22,30,36,44,45,47,48,75,77,83,93,94,105,117,120,121,132,137,145,149,163,164,165,170,171,174,186,189,191,192],extend:[33,103,113,120,138,139,148,149,163,169,170,189,191,192],extens:[0,18,40,77,99,100,101,102,108,109,110,111,112,132,139,142,143,149,155,156,158,159,160,161,162,168,171,178,190,191,193],extensionarrai:121,extent:[117,130,154,156],extercond:54,exterior1st:54,exterior2nd:54,extern:[100,113,114,117,141,174],exterqu:54,extinct:[110,176],extra:[18,49,50,120,125,138,146,149,153,163,170],extract:[3,8,31,32,33,38,41,44,54,100,114,115,120,121,125,126,127,130,131,136,137,139,163,166,174,189],extract_fold:125,extract_net_info:125,extract_path:[29,30,31,39],extractal:[29,30,31,33,36,37,39,125],extracted_text:3,extractor:3,extrapol:[50,148],extratreesclassifi:148,extratreesregressor:148,extrem:[48,54,56,117,130,138,149,159,178],extremli:84,ey:[30,83,109,112,139,155,179,180,186],eyeglass:31,eyeglasses_data:31,eyeglasses_id:31,f0:120,f10:146,f1:[40,47,52,57,60,68,81,120,146,150,161,162,165],f1_score:150,f2:[120,146],f2ac792482e3:178,f35:59,f3:[120,146],f4:[120,121,146],f4bafb1ea019:156,f50duri2g6yv8pzu8ii:59,f5:146,f6:146,f7:146,f821:[169,170],f8:[120,146,177],f92ym7eqlakp9nle0rysqk8ksmqlcngjqoegdbg0angjq4daqst67cxfikzwsnwtu5ajx80rqf:59,f9:146,f:[0,1,3,9,14,18,24,29,30,31,33,35,37,38,39,45,47,48,50,51,55,64,75,77,80,83,85,93,94,101,109,117,120,121,124,125,126,128,132,135,143,145,146,148,149,150,153,160,161,164,170,171,177,185,192],f_0:149,f_:148,f_i:149,f_t:[132,149],fa:[54,128],face:[31,36,39,100,103,105,121,125,127,131,138,167,171,172,174,177,180],facebook:[113,141,174],facecolor:[36,84,154,156,182,184],facemask:[163,189],facet:109,facetgrid:[112,143,165,176],facial:[103,121,172],facil:[120,169],facilit:[53,120,169],fact:[1,4,14,18,19,39,40,43,49,50,52,57,58,62,68,81,104,109,110,111,113,114,115,117,120,122,129,142,144,145,148,149,154,155,156,161,163,165,166,169,170,187,188,189,190],factor:[50,53,54,63,65,68,75,77,81,93,100,102,112,126,130,138,145,146,148,154,155,163,169,182,187],factori:[93,100,107],fad:38,fadahunsi:137,faddfvgmmfhrdfp8aynqhtsioeg5b9f3k6nlgsbrsgtcefmco:59,fail:[1,16,47,48,50,59,61,68,81,94,113,127,137,139,163,169,174,189],failur:[9,29,99,125,138],fair:[52,57,58,68,81,103,113,115,125,139,142,145,153,172,174],fairlearn:103,fairli:[33,49,113,125,156,174],fairseq:126,fairytal:164,fake:[36,37,129,163,180],fake_label:37,fake_samples_epoch_:37,falcon:121,fall:[41,45,47,48,62,64,77,100,105,110,117,120,121,148,160,163,164,169,189],fallaci:105,fallback:139,fals:[1,3,7,9,14,18,22,24,29,30,31,33,35,36,37,38,39,40,41,46,49,51,52,53,54,56,57,64,66,68,74,79,81,83,85,93,101,102,110,112,117,118,120,121,125,128,130,131,132,133,135,139,141,145,148,152,153,154,156,160,161,162,165,169,170,171,176,177,180,182,191,192,193],false_boolean:[170,192],false_positive_r:59,falsehood:171,famili:[5,22,105,110,111,119,136,149,153,157,162,176,178],familiar:[28,59,62,103,110,119,121,122,145,150,155,164,165,171,172],family_s:22,family_size_max:22,familys:22,famou:[138,152],fan:[103,171],fan_out:133,fanci:[66,115,177],faoconnor:137,far:[4,7,17,31,36,40,56,64,68,76,79,81,110,117,118,125,126,143,153,154,156,163,164,170,182,186,190],fare:[22,150],fare_add_averag:22,fark:35,farlei:[129,138],farmer:145,farsight:128,farther:[79,143],fascin:[111,113,167],fashion:[20,29,30,99,101,102,103,110,120,127,130,153,164,169,184],fashion_classifi:40,fashion_classifier_21:40,fashion_classifier_22:40,fashion_classifier_23:40,fashion_classifier_24:40,fashion_classifier_2:40,fashion_classifier_3:40,fashion_classifier_4:40,fashion_classifier_vi:40,fashion_mnist:[29,30,40,41],fashion_test:40,fashion_test_label:40,fashion_train:40,fashion_train_label:40,fashon:30,fast:[7,36,40,41,45,48,50,79,102,107,120,121,138,153,163,170,175,177,185],fastai:55,fasten:54,faster:[36,45,47,49,53,54,59,68,75,81,83,115,120,138,152,153,156,163],fastest:[120,153,156],fastforwardlab:124,fastgfil:125,fatal:[8,14,169,191],fater:49,father:64,fault:138,favipiravir:1,favor:[148,149,155,163,171],favorit:[101,114,117,121],favorite_hobbi:94,fayyad:50,fc1:31,fc21:31,fc22:31,fc3:31,fc4:31,fc:[68,81,111,176],fcn:133,fcos_structur:133,fe:139,feasibl:[102,139,141,145,153],feat:125,feat_df:52,feat_dict:53,feat_imp:56,feat_import:[52,53],feat_map:79,featuir:54,featur:[7,9,16,20,22,30,31,33,34,38,39,40,41,44,45,49,58,60,61,62,63,64,65,66,74,76,83,85,101,102,104,113,114,115,119,120,121,124,125,126,127,130,131,133,138,140,145,147,148,149,151,154,155,157,160,161,165,168,169,170,173,177,184,186,190,192],feature_1:135,feature_2:135,feature_column:84,feature_df:160,feature_fract:54,feature_fraction_se:54,feature_importances_:[51,52,53,56,146],feature_indic:146,feature_nam:[7,40,57,58,118,146,184],feature_num:125,feature_rang:[38,42],feature_scor:51,feature_typ:66,featurecolumn:45,featureidx:47,featuremap:133,featurespr:45,februari:[139,171,175,178,193],fed:[31,41,49,51,59,121,130,134,145],feder:113,feed:[3,31,32,39,40,43,54,57,83,115,120,125,127,135,141,156,163,189],feed_dict:[125,128,129,134],feedback:[105,136,138,141],feedforward:[127,130],feel:[3,7,105,126,143,166,171,175],feet:66,fell:169,femal:[22,56,103,163],feminin:109,fenc:[54,66],fence_map:54,fenugreek:160,fernandez:117,fetch:[57,184],fetch_california_h:79,fetch_dataset:31,fetch_openml:[57,58,156],few:[1,7,9,14,36,39,40,41,43,45,46,47,48,50,52,57,58,59,61,66,68,74,75,81,83,89,101,102,103,104,105,107,110,112,113,117,118,119,120,121,125,130,131,132,135,136,138,139,140,143,144,149,152,153,155,156,157,163,165,169,170,177,180,189],fewer:[3,50,57,59,62,71,114,117,120,145,155,162,169],fewest:130,ff_dim:130,fff:157,ffill:[7,118],ffn:130,ffn_output:130,ffoutput:38,fg86ufl9igmpwtk6aurw9v5:59,fgsymyf:59,fh:132,fhxfwxna:133,fhxfwxnax4:133,fi:146,fib_sequ:94,fibonacci:169,fibonacci_at_posit:169,fibonacci_at_position_renam:169,fibonacci_function_clon:169,fibonacci_function_exampl:169,fibonacci_list:169,fibonacci_modul:169,fibonacci_module_renam:169,fibonacci_smaller_than:169,fiction:31,fido:[120,169],field:[7,43,49,50,52,83,110,119,121,130,131,135,136,137,143,145,154,157,163,164,170,178,179,189,192],fieldnam:120,fifth:[120,170,192],fifti:36,fig:[1,22,30,33,35,37,39,44,54,59,64,80,84,110,111,112,126,128,135,148,150,154,176,182,184],fig_dim:22,fig_extens:156,fig_id:156,fight:54,figsiz:[1,3,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,64,66,68,76,79,81,83,84,110,111,112,124,126,131,135,143,144,146,148,150,153,154,156,176,182,184,190],figsize_with_subplot:22,figur:[1,3,7,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,47,48,49,50,52,53,54,55,56,57,59,61,62,64,66,68,76,79,80,81,83,84,103,111,112,114,122,124,126,128,130,131,133,135,139,141,143,144,145,146,148,153,154,156,166,176,178,184,185,190],figure_format:[50,66,135,145,148,184],figureclass:[111,176],file:[0,1,6,9,12,17,22,23,25,29,30,31,33,36,37,38,39,41,42,45,47,48,51,54,59,66,71,74,91,93,94,101,102,109,114,115,119,120,121,125,128,132,134,138,143,144,157,160,161,162,164,166,168,169,170,177,190,191],file_conn:[125,132,134],file_id:57,file_loc:125,file_output:128,file_path:[29,30,31,33,41,66],file_path_to_metadata:1,filenam:[31,39,51,56,125,156,157],filename_queu:125,filepath:[39,44,125],fill:[1,11,14,15,18,22,24,46,48,49,51,52,56,66,68,79,81,98,102,110,118,120,121,126,135,146,152,154,157,163,164,176,182],fill_:37,fill_between:[29,148,154,182],fill_betweenx:156,fill_valu:121,fill_with_mean:7,fill_with_median:7,fill_with_mod:7,fillna:[1,7,14,18,22,46,51,54,56,66,118,135,177],film:109,filter:[7,14,16,24,31,33,34,39,46,54,110,120,121,122,125,126,130,131,143,166,178,191,192],filter_bi:24,filter_by_country_region:14,filter_ninfected_by_year_and_month:14,filteredbird:[110,176],filters1:131,filters2:131,filters3:131,filterwarn:[36,39,49,50,51,52,53,54,56,57,58,59,68,81,148,150,152,156],fin:[63,65],fin_col:54,final_conv_shap:125,final_df:38,final_estim:49,final_featur:157,final_imag:125,final_list:191,final_model_output:125,final_output:125,final_pip:[61,79],final_shap:125,final_st:132,final_state_c:132,final_state_h:132,financ:[6,76,103,115,172],financi:[6,121,128,149,163],find:[7,8,14,15,18,31,32,37,40,46,47,48,49,50,52,53,54,57,58,59,60,61,63,65,69,71,74,76,80,84,85,93,101,102,103,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,127,128,129,136,139,140,142,143,145,146,148,149,150,152,153,154,155,160,161,163,164,165,166,168,169,171,174,182,186,189,192],find_better_split:55,find_common_el:170,find_prime_factor:93,find_stack_level:121,find_varsplit:55,find_wanted_peopl:93,fine:[75,76,85,124,130,131,137,139,148,152,164],finer:[7,118,138],finish:[0,3,32,54,102,135,138,150,155,157,169,171],finit:[117,128,160,165],finland:193,fintech:38,fintype_map:54,fip:140,fire:30,firecolumn1:38,firecolumn2:38,firecolumn:38,firefox:102,firegod:38,firehos:137,fireplac:54,fireplacequ:54,first:[0,1,3,7,11,14,18,31,32,34,39,40,41,43,44,45,46,47,48,49,50,52,53,54,56,57,58,59,60,62,64,66,68,74,76,77,81,83,94,101,102,104,105,107,111,112,113,115,117,118,119,120,121,122,125,127,128,129,130,131,132,134,135,137,138,139,140,141,143,145,146,148,149,150,152,153,154,156,157,160,161,163,164,165,167,169,170,171,174,175,177,184,185,186,189,190,191,192,193],first_baseman:[18,117],first_char_set:170,first_nam:[94,191,193],first_numb:[170,192],first_param:169,first_term:125,first_tuple_numb:170,first_word:[169,191],firstli:[46,84,139],firstnam:[119,171,178],fiscal:25,fisher:7,fit:[29,30,31,32,33,34,35,36,38,39,40,41,42,44,47,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,65,66,68,74,75,76,77,79,81,82,84,85,89,93,94,101,114,115,119,128,131,135,137,139,140,141,144,146,148,149,150,151,152,153,156,157,160,161,162,164,165,168,169,170,182,184,187,188],fit_epoch:31,fit_epoch_va:31,fit_gener:32,fit_on_text:134,fit_predict:156,fit_resampl:160,fit_transform:[30,38,40,42,44,49,51,52,53,56,57,58,59,60,61,64,68,79,81,84,144,152,156,157,165,184,186,187,188],fitted_model:[9,101],fiumlogtswc31vrwbvd:59,five:[7,16,46,49,52,84,93,105,108,130,135,160,166,170,192],five_up:120,fix:[29,45,48,49,52,62,83,113,114,120,121,126,130,132,138,139,148,150,153,154,160,171,174,179,182,184],fixat:105,fixed_nois:37,fixedformatt:156,fixedlengthrecordread:125,fixedloc:156,fk:[12,122],flag:[3,29,33,35,121,130,139,143],flair:[103,172],flat:[39,64,143],flat_map:44,flat_output:125,flatten:[29,30,32,33,34,36,37,39,40,41,43,44,64,83,94,124,126,130,157,161,170,184,192],flatten_nested_list:94,flatten_vector:[170,192],flattened_list:94,flavor:[7,128,155],flaw:[66,69,86,92,103,172],fledg:149,flexibl:[7,66,77,100,114,120,121,122,136,137,138,149,154,173,177,178,185],flip:[68,79,81,109,125,128,129,131,163,189],flipsid:7,fll:46,float32:[29,30,31,33,35,43,77,120,124,125,126,128,129,130,131,132,133,134,156,180,190],float64:[14,24,38,44,59,60,64,79,118,120,121,143,148,164,177,184],float_format:[45,47,48],float_neg:[170,192],float_numb:[170,192],float_number_via_funct:[170,192],float_with_big_:[170,192],float_with_small_:[170,192],floatbox:133,floattensor:31,floor:[38,54,128,145,170,177,192,193],floppi:138,florian:131,florida:[109,177],flow:[32,34,50,110,127,170,192],flower:[60,84,109],flowform:154,flu:[103,172],flu_trend:135,fluctuat:[14,49,52,155,164],fluoresc:39,flush:191,fluvisit:135,fly:171,fma:29,fmt:[34,38,40,51,59,64,68,81,125],fn:[52,59,68,81,165],fname:31,fnlwgt:51,foconnora:137,focu:[1,14,18,49,54,59,77,83,100,103,104,107,112,114,115,120,121,122,137,139,146,160,161,163,164,172,178,185],focus:[46,75,77,102,103,104,105,107,111,113,114,118,119,136,138,139,140,149,162,167,168,172,174,175],foggi:128,fold:[49,50,56,57,58,60,61,64,68,81,84,151,156],folder:[14,31,33,39,101,109,125,143,157,160,166,171,176],folder_path:125,follow:[0,1,6,7,9,11,12,14,16,17,18,24,25,28,29,31,32,36,40,41,43,45,47,48,50,51,53,54,58,59,66,74,75,76,77,79,84,93,94,100,101,102,103,104,105,107,109,111,113,114,115,117,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,138,139,140,143,145,146,148,149,152,153,154,155,156,157,161,162,163,164,165,166,168,169,170,171,178,191,192],font:[59,111,157],fontsiz:[30,39,84,125,156],fontweight:84,foo:[120,121,171],food:[109,137,159,170,192],fool:[109,129,180],footbal:50,forc:[1,77,103,124,129,140,141,143,155,169],forcast:135,forcibl:191,ford:141,forecast:[38,50,76,101,107,140,175],forecasting_d:[38,44],forehead:180,foreign:122,forest:[50,57,58,62,66,68,81,124,145,147,149,152,162,163],forest_best:[52,53],forest_clf:52,forest_grid:50,forest_param:50,forest_reg:53,forget:[83,101,102,103,127,132,141,172],forgotten:[113,132,174],fork:0,form:[3,7,47,50,51,59,77,83,113,115,118,120,121,122,127,128,135,138,140,143,144,149,153,154,157,160,163,164,169,170,178,186,189,190,191],form_df:15,form_linearly_separable_data:50,formal:[18,50,77,113,117,130,141,146,148,169,191],format:[6,14,26,29,31,32,33,35,36,40,41,45,46,48,49,51,52,53,56,57,58,59,60,61,63,65,68,79,81,93,99,100,101,102,103,108,109,110,111,112,113,114,115,118,119,120,121,125,127,128,129,131,132,133,134,137,138,142,143,144,145,148,153,154,155,156,157,158,159,160,161,162,163,166,169,171,172,177,182,184,189,190,191,193],format_nam:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162],format_person_info:94,format_vers:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162,191],formatfactori:38,formatted_column:46,formatted_info:94,formatted_str:[170,192],former:[43,49,61,115,120,126,130,139,141,145,146,163,165,189],formul:[163,186],formula:[18,74,75,93,119,146,149,165,170],forth:[49,105],forthcom:168,fortran:120,fortun:[7,46,68,81,118,144,149,166],forum:136,forward:[7,31,32,33,37,46,83,118,125,138,163],found:[1,9,26,32,50,54,56,63,65,68,81,85,93,101,102,104,110,114,117,120,121,125,132,133,137,139,140,149,152,153,154,169,170,171,185,191,192],foundat:[113,115,136,137,138,140,149,163],foundationdb:178,founder:163,four:[7,32,41,50,51,59,68,81,93,102,118,119,120,135,146,155,160,168,169,170,191],four_g:[68,81],fourier:120,fourteen:184,fourth:[14,32,84,120],fowler:140,fp:[59,68,81,133,165],fpath:31,fpcoor:133,fpn:133,fpr:[59,165],fr:14,frac:[14,47,48,50,62,75,76,77,94,126,129,133,145,146,148,149,150,153,165,186],fractal:120,fraction:[41,50,62,148,155,156,165,170,190,192],fragil:[62,169],frame:[1,7,14,35,36,38,50,57,58,59,60,79,118,121,125,127,139,143,153,160,164],framework:[0,29,40,41,54,77,102,113,125,127,131,132,134,136,137,138,139,141,153,157],francesco:141,franci:145,frank:139,fraud:[103,143,163,172,189],free:[3,30,48,54,93,94,103,111,113,115,126,127,133,141,143,163,166,169,170,171,172,174,176],freecodecamp:179,freed_by_count:29,freedom:[103,117,121,128,172],french:109,freq:[38,44,57,64,79,121,135],frequenc:[1,3,61,64,135,137,139,148],frequent:[49,50,51,52,53,54,59,77,107,117,122,132,138,139,149,160,163,184],fresh:[69,113,153,157,166],fresh_fruit:[170,192],friedman:[50,148,153],friedman_ms:56,friend:[105,114,115,121,139],friendli:[103,109,138,139],frog:125,from:[0,1,3,4,6,7,9,11,12,14,16,17,18,22,23,24,25,26,28,29,30,31,32,33,35,36,37,38,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,75,76,77,79,80,81,83,84,85,89,92,93,95,99,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,117,118,119,122,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,152,153,154,155,156,157,160,161,162,163,164,165,166,168,169,171,172,173,174,175,176,177,178,180,182,185,186,188,189,191,192],from_arrai:121,from_categor:39,from_config:[9,101],from_lat:31,from_logit:[41,131],from_logitstru:131,from_se:43,from_tensor_slic:44,fromarrai:[31,125],front:[68,81,110,170,176,192],frozen:153,frozenset:[121,170,192],fruit:[170,192,193],fruit_nam:39,fruits_copi:[170,192],fruits_dictionari:[170,192],fruits_set:170,fruits_set_via_constructor:170,fruits_tupl:170,fruits_tuple_via_constructor:170,frustrat:137,ftc:[113,174],fu:121,fulfil:[120,149],full1:125,full1_bia:125,full1_input_s:125,full1_weight:125,full2:125,full2_bia:125,full2_weight:125,full3:125,full:[1,7,29,31,37,41,43,48,49,61,68,81,94,100,101,102,110,113,118,120,121,122,133,138,139,148,149,152,156,160,161,164,169,170,192],full_bias1:125,full_bias2:125,full_bias3:125,full_layer1:125,full_layer2:125,full_model_dir:132,full_mult1:125,full_mult2:125,full_mult3:125,full_weight1:125,full_weight2:125,full_weight3:125,fullbath:54,fulli:[0,32,33,41,45,48,64,83,86,125,127,128,130,131,133,137,138,139,140,149,156,163],fully_connected1:125,fully_connected_size1:125,fulvou:[110,176],fun:[57,83,120,164,165,191],func:[93,121,130,169,191],func_nam:169,func_wrapp:169,function_nam:171,function_that_receives_names_argu:169,function_wrapp:[169,191],functool:125,fund:56,fundament:[52,53,58,60,75,76,100,120,121,123,160,163],fungi:111,furnish:[93,94,169,170],further:[1,14,36,50,54,59,60,61,74,75,93,101,102,114,115,117,120,124,125,128,138,139,145,149,151,152,153,156,157,162,163,169,177,189],furthermor:[47,50,85,104,139,149],fuse:130,futher:54,futur:[29,38,44,47,54,58,74,103,113,115,140,141,149,157,160,163,165,169,189],future_step:[38,44],futurewarn:[121,144,156,184],futurolog:125,fx:132,fxbyxm:59,fy:25,fykun93:59,g:[3,37,38,39,42,50,51,54,56,59,75,76,77,83,94,103,113,115,120,121,124,125,128,129,130,133,134,137,143,148,149,155,161,165,169,170,172,174,177,180,190,192,193],g_b1:129,g_b2:129,g_b3:129,g_b4:129,g_error:129,g_k:128,g_loss:[36,37,129],g_loss_metr:36,g_opt:129,g_optim:36,g_origin:125,g_resolut:36,g_sampl:129,g_style:125,g_t:132,g_var_list:129,g_w1:129,g_w2:129,g_w3:129,g_w4:129,gain:[29,48,50,54,59,74,77,100,110,121,128,137,139,146,148,149,150,153],galaxi:6,gallagh:137,gallahad:169,galleri:140,galton:145,gam:149,gambl:103,gamboost:149,game:[35,38,50,99,103,128,129,141,163,189],gamedownload:38,gamma:[35,59,60,61,66,128,130,149,152,153,156],gan:[129,140,141],gan_input:180,gan_output:180,gan_structur:180,ganlab:[129,180],gao:130,gap:[14,22,41,50,59,105,113,130,139,155,166,174],garagearea:54,garagearea_mean:54,garagecar:54,garagecond:54,garagefinish:54,garagequ:54,garagetyp:54,garageyrblt:54,garbag:[39,120],garbl:137,gari:[38,141],garlic:160,gartner:[113,137,141],gartner_inc:141,gartnerinc:141,gate:[127,171],gatewai:137,gather:[15,39,103,104,115,126,134,139,141,143,157,162,164,172],gaug:[76,77,165],gaussian:[30,59,126,143,149,161,163],gaussiannb:161,gaussianprocessclassifi:161,gave:[49,50,145],gazett:141,gb:1,gbc:56,gbdt:[54,149],gbm:[56,153],gbm_tuned_1:56,gbm_tuned_2:56,gbm_tuned_3:56,gbrt:149,gbtree:[54,152,153],gc:39,gca:[1,32,110,111,125,154,156,176,182],gcf:[111,176],gcp:138,gcv:148,gd:54,gdpr:113,gdprv:54,gdwo:54,gebru:[103,172],geeksforgeek:[139,154,191],gees:[19,110,176],geforc:29,gelu:126,gemston:178,gen_imag:37,gen_z:37,gender:[7,22,50,103,113,115,121,153,163,172,174],gender_df:22,gender_xt:22,gender_xt_pct:22,gener:[1,3,7,18,22,30,31,32,33,34,41,43,45,46,47,48,49,50,52,53,57,59,60,62,74,77,79,85,101,102,103,104,109,110,112,113,114,115,117,118,119,121,122,124,125,126,127,128,131,132,134,135,136,137,139,140,141,143,144,145,146,148,149,150,152,153,154,155,156,160,161,162,163,168,169,170,171,174,177,178,181,182,186,190,193],generalis:[54,154],generalist:105,generalizaton:34,generar:36,generate_from_frequ:3,generated_imag:[36,180],generated_paint:36,generated_path:36,generated_portrait:36,generated_text:132,generation_num:125,generator_opt:36,generd:129,genfromtxt:184,genom:103,genr:[143,144],genu:[110,176],geoffrei:[33,125,184],geograph:[61,102],geographi:140,geoloc:14,geometr:[143,154],geometri:[130,143],georg:[121,131,170,171,192],georgia:[113,133,174],geospati:[103,172],geq:149,geqq:126,gerg:128,germani:157,geron:[43,49],get:[0,7,9,11,14,16,18,22,28,29,30,31,32,33,36,37,39,41,43,46,47,48,49,52,53,54,56,57,58,59,60,61,62,64,66,68,76,81,83,100,101,102,103,104,105,109,110,113,117,118,119,121,122,125,127,128,130,132,134,135,137,138,139,140,144,145,146,149,150,152,153,155,156,157,160,161,162,163,164,165,166,167,169,170,171,177,180,184,189,191],get_accuraci:125,get_age_by_surviv:22,get_age_group:169,get_base_model:131,get_batch:31,get_bootstrap_sampl:145,get_cmap:184,get_count:169,get_dat:[169,191],get_default_devic:33,get_df_column_diff:14,get_df_corr_with:24,get_df_mean:24,get_df_std:24,get_dummi:[7,22,54,66,164],get_environ:[9,101],get_equivalent_kernel_bia:130,get_fil:[38,39,40,42,44],get_full_id:[169,191],get_grid:50,get_imaginari:169,get_index:121,get_initial_st:132,get_item:121,get_lay:[130,131],get_level_valu:121,get_loc:121,get_messag:[169,191],get_model:126,get_nam:[169,191],get_oper:125,get_output:[9,101],get_param:[52,53,57,58],get_pinfect:14,get_properti:[9,101],get_real:169,get_result:121,get_rolling_window:14,get_rt:14,get_shap:[125,128,130,134],get_slice_bound:121,get_smoothed_ax:14,get_std:24,get_survival_rate_by_gend:22,get_tensor_by_nam:125,get_text:169,get_the_unique_values_of_pclass:22,get_tim:[169,191],get_timestep_embed:126,get_transition_sigmoid:140,get_valu:121,get_vari:125,get_vers:131,get_xaxi:[29,30,125],get_xlim:[154,182],get_yaxi:[29,30,125],get_ylim:[154,182],getcwd:[29,30,31,33,39,41,66,125],gettint:43,gfile:125,ggplot:148,gh:[121,132],ghdoc:138,ghost:165,ghwa:130,ghwb:130,gift:166,gigabyt:[68,81],gigaspac:178,gill:[111,176],ginger:160,gini:[50,57,146,148,150],giraph:178,girshick:133,gist_rainbow:[68,81],git:[0,38,93,138],github:[5,14,35,38,51,57,58,60,61,66,75,76,103,120,121,124,125,136,138,139,140,144,152,153,156,160,164,165,168,179,180],githubusercont:[12,14,18,25,68,76,81,144,156],give:[1,7,18,24,36,41,49,50,51,54,56,59,63,65,76,79,101,102,105,109,110,113,115,117,118,120,121,127,130,133,139,144,146,149,150,153,154,156,163,164,165,169,170,171,174,189],give_me_sunglass:31,given:[1,7,14,18,19,22,29,33,34,40,44,47,49,50,52,53,54,56,57,58,59,60,68,77,79,81,83,93,94,100,102,109,110,111,112,117,120,121,124,127,128,130,131,133,139,140,141,143,144,146,148,149,153,154,155,156,160,161,163,164,165,166,168,169,170,176,177,183,184,186,189,191,192],gkioxari:133,glacier:137,glanc:[36,54,61,137,149,150,163],glean:105,glenc:56,glinternet:149,glmboost:149,glob:[2,31],global:[14,22,50,59,102,130,131,137,140,154,156,182,191],global_variables_initi:[125,129,134],globalaveragepooling2d:[130,131],gloss:105,glq:54,glu:[170,192],glue:137,gluon:139,gmail:163,gn:133,go:[0,1,7,31,36,41,43,48,49,50,52,53,55,57,58,60,61,63,65,66,68,79,81,83,90,99,100,101,102,105,109,110,112,117,118,120,121,122,126,127,131,132,137,138,139,144,146,149,152,155,156,160,163,165,168,169,170,171,173,180,184,189,191,193],goal:[1,7,8,16,29,46,71,79,96,103,104,105,107,115,124,128,139,140,141,149,153,154,155,163,164,172,174,175,180,189],goali:128,goalx:128,goe:[49,50,60,62,79,83,105,115,136,145,148,149,161,163,166,180,191],gog:38,gold:140,golden:[137,169],golovin:141,gomez:129,gone:[3,113,149,163,189],gonna:83,good:[1,3,7,18,19,25,31,39,40,41,43,45,47,48,49,50,52,53,54,57,59,60,61,62,63,65,66,68,77,81,83,85,101,103,105,109,110,112,113,115,117,118,125,126,129,130,137,139,140,141,143,144,145,148,149,150,154,156,157,161,162,163,164,165,166,169,171,176,182,183,184,185,190],good_init:156,goodby:169,goodfellow:[29,50,77,129,180],googl:[40,43,45,47,48,100,103,113,121,125,127,137,138,139,140,163,171,172,178,180,189],googleapi:125,googlenet:130,goos:[110,176],gosset:117,got:[7,43,50,51,56,83,144,149,150,156,171,185],gov:141,govern:[22,45,47,48,75,113,115,135,141,163,189],govt:113,gp:180,gpu:[29,33,36,40,43,49,54,101,102],gpu_0_bfc:29,gpu_devic:29,gpu_hist:54,gpu_id:[66,152,153],gqzcera47adwxyhstef0ylhkjkxs6mzc5wxktnnxrosnswyh9ihfnvbjcsbu6v8mav:59,grab:[41,120],gracefulli:[121,170],grad:[33,36,125],grad_bias:83,grad_boost_clf:49,grad_input:83,grad_output:83,grad_softmax_crossentropy_with_logit:83,grad_w:83,grad_weight:83,grade:[164,165,185],gradient:[33,36,47,48,54,57,58,63,65,68,74,77,81,82,83,124,125,126,127,128,130,132,136,139,148,152,154,161,164,182,186,187,190],gradient_boost:150,gradient_desc:80,gradient_i:80,gradient_loss:150,gradient_react_3d:164,gradient_x:80,gradientboostingclassifi:[49,56],gradientdescentoptim:125,gradienttap:[36,124,126,128,132],gradual:[64,75,112,139,149,156,163,189],graduat:56,grai:[18,29,30,31,47,83,110,115,124,125,156,176,184,190],grain:[7,118,137,148,164],gram:125,grand:130,granda:117,grant:[36,50,93,94,121,163,169,170],granular:[110,138,143,162],grape:[170,192],graph:[1,3,8,14,19,24,30,33,40,41,47,54,115,117,119,125,126,129,134,135,140,143,145,148,149,152,153,154,164,166,168,178],graph_def:125,graph_obj:35,graph_object:1,graphdef:125,graphic:[8,24,43,102,117,119,120,128,145,155,163,173,178,183],graphwin:128,grasp:[75,145,162],grass:[111,176],grassi:157,gratifi:111,grayscal:[41,156],great:[16,30,40,49,50,52,53,63,65,74,79,102,103,105,109,115,117,120,139,141,144,146,148,149,156,170,171,172,192],greater:[29,46,48,50,54,93,105,110,120,121,127,146,148,149,156,169,170,176,191,192],greater_equ:120,greatest:[50,93,120,125],greatli:[48,50,115,130,139,143,148,149],greedi:[50,149,153,184],greek:113,green:[49,50,51,52,105,109,110,111,117,128,130,138,149,164,166,170,171,176,187,188,192],greenawai:25,greengrass:140,greensock:109,greet:[169,191],greet_again:[169,191],greet_funct:169,greet_one_mor:[169,191],greet_someon:[169,191],greet_with_closur:169,greeter:169,greeting_with_div_p:169,greeting_with_p:169,greeting_with_tag:169,greetingclass:169,grei:50,gremlin:[119,178],greys_r:125,greyscal:125,grid:[18,22,29,41,50,53,56,57,59,60,66,79,83,85,128,133,140,143,145,154,157,182],grid_clf:156,grid_estim:85,grid_param:85,grid_pr:60,grid_search:[52,53,57,58,59,60],gridsearch:[52,53,57,58,60,148],gridsearchcv:[50,52,53,57,58,59,60,85,148,156],gridsearchcvgridsearchcv:[57,58,60,156],grlivarea:[54,66],groceri:[153,160],gross:25,ground:[66,130,170,190],groundbreak:127,groundwork:105,group:[14,18,22,31,38,49,50,54,79,102,103,105,107,108,109,111,112,113,114,115,117,119,126,130,132,137,139,140,142,143,144,145,148,153,157,160,161,163,165,166,167,168,170,172,174,175,176,177,178,184,189,191,192],group_by_categori:94,group_kei:[22,121],groupbi:[1,14,18,22,31,38,54,84,111,121,166,176],groupby_sum:14,grouper:38,groupnorm:[126,133],grover:55,grow:[83,102,111,117,120,122,133,138,149,178],grow_polici:[66,152,153],grown:148,growth:[77,130,135,148],growth_rat:130,grunin:14,gryffindor:185,gsearch3:56,gsearch4:56,gsearch5:56,gt:[46,132],gu:140,guarante:[50,120,121,138,171],guardian:109,guardrail:113,guarrant:[68,81],guava:39,guess:[7,18,47,50,53,56,58,93,94,118,139,145,149,161,165,169],guesser:50,gui:[54,102,173],guid:[0,17,23,50,54,56,75,100,113,115,120,121,136,138,139,140,163,169,173,179,189],guidanc:[45,48,59,74,80,113,139,163,184,189],guidelin:[48,113],guido:[170,171,191,192,193],guin:117,gun:109,gupta:[137,141],gust:128,gutedbanoeu:160,gutenberg:[103,132,172],guttula:137,guyon:59,gym:94,gz:[33,125,130],h0:176,h1:[1,15,18,128],h2:[1,18,128],h2o:[138,149],h5:[38,39,40,41,42,44],h:[18,31,33,38,85,94,113,125,126,131,132,134,149,153,170,187,192],h_:186,h_t:[134,149],ha:[5,6,7,12,14,15,16,17,18,23,29,30,31,33,36,39,40,41,43,45,46,47,48,49,50,52,54,56,57,62,63,64,65,68,74,75,79,81,83,89,100,102,103,104,105,107,109,110,111,112,114,115,117,118,119,120,121,122,125,127,130,131,132,133,134,135,138,139,140,141,142,143,144,145,148,149,150,152,153,154,155,156,157,162,163,164,165,168,169,170,171,175,176,177,178,180,184,185,186,189,190,191,192,193],habit:[23,169],habitat:[111,176],hack:[94,113],hacker:93,had:[16,29,39,45,47,48,49,50,52,56,57,59,68,81,103,105,113,120,121,122,149,153,164,169,172,174],haemoglobin:102,haffner:179,haha:171,half:[1,31,33,49,50,52,93,117,120,135,156,164,166],half_dim:126,halfbath:54,hall:[137,163],halloween:[164,167],halt:169,halv:[33,139],ham:[134,169,191],hamster:163,han:141,hand:[31,34,39,41,49,54,56,104,105,109,118,121,135,137,138,143,145,150,154,155,160,163,166,168,189],handbook:[57,58,60,61,109],handi:[40,79,120,143,169],handl:[0,7,23,39,49,50,54,56,58,60,61,68,74,77,81,93,94,102,105,109,110,113,115,118,120,121,127,137,138,139,140,141,143,148,151,154,161,163,168,170,173,182],handle_data:3,handle_endtag:3,handle_missing_valu:79,handle_starttag:3,handler:169,handout:144,handson:156,handwritten:[29,32,41,47,83,190],hang:161,hao:133,haoyi:141,happen:[1,7,18,41,48,54,60,63,65,105,114,117,120,121,128,139,142,149,155,157,169,179,185],happi:[105,109,117,121,163,185,189],happier:[48,112],har:[76,100,138],hard:[45,49,52,59,66,105,107,127,130,149,152,156,163,166,189],hardcod:169,hardcov:135,harder:[45,47,50,62,139,140,149,169],hardest:157,hardwar:[100,102,107,138,156],harm:[28,102,103,113,172,174],harmon:[40,52,57,59,68,81],harmoni:145,harness22:138,hartwig:[130,131],harvard:[105,137,141],harvest:165,hasattr:130,hash:[46,119,171,178],hashabl:[121,170],hashablet:121,hashtabl:121,hashtable_class_help:121,hashtag:100,hasn:[64,155],hasti:[148,149],hat:[75,76,77,130,145,146,149,153,185],have:[0,1,3,4,6,7,8,9,12,14,15,16,17,18,20,23,25,28,29,30,31,32,33,34,36,39,40,41,43,45,46,48,49,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,68,74,76,77,79,81,83,92,93,94,98,99,100,101,102,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,148,149,150,153,154,155,156,157,160,161,162,163,164,166,168,169,170,171,175,176,178,179,184,185,186,189,190,191,192],haven:[53,58,163],hawkin:137,hay:171,hazelcast:178,hbase:178,hbr:105,hd:39,hdbscan:143,hdf5:180,he:[18,117,121,130,133,135,138,145,148,157,163,189],he_norm:131,head:[1,14,15,24,29,31,35,38,39,40,44,47,48,49,50,51,52,53,54,56,57,59,60,61,63,64,65,66,67,68,74,79,81,84,87,110,111,112,118,121,130,133,135,140,143,145,146,150,153,157,160,161,164,165,166,176],head_dim:133,header:[18,29,38,47,119,125,143,170],headlin:28,headwai:106,health:[1,13,100,113,120,137,140,174],healthcar:[76,103,172],healthi:102,hear:163,heard:[28,38,77,79,105,143,149,150],heart:[6,9,33,50,99,114,141],heat:115,heatingqc:54,heatmap:[1,8,34,38,40,48,49,51,52,53,54,59,64,68,79,81,143],heav:139,heavi:[107,149,161],heavili:[125,128,138,144,163,166],heavyweight:161,height:[3,18,31,33,60,68,81,109,112,114,117,125,126,130,144,156,157,160,164,168,176],height_shift_rang:32,heirloom:164,held:[113,145],helicopt:128,hello:[41,94,121,125,168,169,170,171,177,191,192],hello_world_str:[170,192],helloworld:[171,193],help:[0,1,7,8,23,28,32,33,35,36,41,45,48,50,51,54,56,59,62,64,66,68,74,75,76,79,81,83,86,99,100,102,103,104,105,107,108,109,113,114,115,117,118,120,121,124,126,135,136,137,138,139,140,141,143,144,148,149,152,153,154,155,156,159,160,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,184,186,191],helper:[33,41,111,125,135],helvetica:157,henc:[7,40,48,54,59,60,61,63,65,79,124,137,145],heparin:1,her:[7,50,139],here:[1,7,11,14,18,24,28,32,35,40,41,43,45,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,68,74,75,76,79,80,81,83,85,93,94,97,98,101,102,103,105,107,109,111,113,115,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,135,136,137,138,139,143,144,146,149,150,152,153,155,156,161,162,163,164,165,168,169,170,171,177,178,180,184,185,186,189,191,192],hereaft:170,herebi:[93,94,169,170],hessian:149,heterogen:146,heurist:[50,139,141,149,163],hf10:138,hf:[9,101],hi:[7,49,64,117,121,125,146,155],hidden:[30,41,47,48,62,115,124,132,133,134,135,139,141,155,190],hidden_dim:133,hidden_layer_s:35,hidden_unit:190,hide:[18,47,49,52,53,57,58,68,81,169],hide_result:47,hierarch:[115,143,179],hierarchi:[114,130,131,169,179],high:[14,18,31,38,41,43,44,47,48,49,50,53,56,57,59,60,61,63,64,65,68,79,81,84,93,102,115,120,122,127,129,130,135,137,138,139,141,149,151,152,153,154,155,163,164,165,166,171,177,180,184,186,193],high_blood_pressur:[9,101,102],high_valu:140,higher:[18,29,33,39,45,49,50,52,54,56,57,64,66,74,76,79,102,103,105,110,117,120,131,135,139,146,148,152,154,155,156,164],highest:[33,41,47,130,131,153,166,190],highli:[48,52,54,79,117,128,137,139,140,141,148,171,184],highlight:[1,28,77,103,111,113,115,119,122,163,189],highlight_max:185,hilari:109,hill:141,him:149,hima:137,hing:77,hint:[3,7,14,22,24,47,53,83,93,94,101,119,144,166,168],hinton:[33,125,155,184],hipaa:113,hire:[56,103,105,113,172],hire_d:177,hist2d:[110,176],hist:[1,18,22,29,39,47,49,52,53,56,58,59,60,61,66,110,145,176],hist_df:39,histogram:[1,4,18,40,47,49,52,54,58,59,60,79,109,117],histor:[103,109,140,163,164],histori:[29,31,32,33,34,35,36,38,39,40,44,45,47,48,62,102,103,135],history_df:[36,62],history_t:35,history_va:31,histplot:[68,81],hit:[7,128],hitchhik:138,hither:169,hjd:137,hline:146,hn7frmhbx0grnwcxwxgvksqremvudikmafwmruksyobbcirjjq0nqss6al2kvan3f4in:59,ho:[59,126,148],hoang:130,hobbi:94,hoc:138,holbrook:62,hold:[31,34,35,50,64,77,119,121,127,145,153,163,170],holder:[93,94,169,170],hole:111,holidai:164,hollow:166,holt:141,home:[50,79,157,185],homegrown:138,homeless:109,homepag:136,hometown:170,homogen:[7,120,146,177],honei:[13,161],honestli:113,hong:191,honor:121,hood:[93,148,149,186],hope:[26,54,56,74,121,130,150,155,160,171,193],hopefulli:[41,54,61,79],hopkin:[14,120,140],hoptroff:141,horeca:153,horizon:[128,135],horizont:[14,51,109,120,121,125,131],horizontalalign:[84,184],horribl:[170,192],hors:125,horseradish:160,hospit:140,host:[48,100,103,107,114,137,138,172,173],hostel:146,hostel_data:146,hostel_factor:146,hot18:107,hot:[1,7,40,47,51,54,107,125,134,139,163,164,175],hotel:153,hotz:107,hour:[33,38,49,52,56,101,102,103,105,114,139,172,185,186],hour_df:38,hourli:[38,114],hours_per_week:51,hous:[50,54,61,79,127,139,140,141,163,185],house_price_test:54,house_price_train:[54,152],household:[61,79],housekeep:128,housing_median_ag:[61,79],how:[1,7,8,9,10,11,14,15,16,18,20,29,30,31,33,38,39,40,41,43,45,46,47,48,49,52,53,54,57,58,60,61,62,63,65,66,68,69,71,74,75,76,77,79,81,83,84,89,91,100,101,102,103,104,105,107,109,110,111,112,113,115,116,117,118,119,120,121,122,123,126,127,128,132,133,135,136,137,138,139,140,143,144,145,148,150,152,153,154,156,157,160,161,162,163,164,165,166,168,169,170,172,174,175,176,178,183,184,185,186,189,191,192],howard:130,howden:[164,165],howev:[1,3,7,28,30,32,33,36,45,46,47,48,50,54,56,62,66,75,77,83,102,104,113,114,115,117,118,120,121,122,124,125,131,132,133,138,139,146,149,151,154,155,156,161,163,164,166,168,169,170,171,174,184,193],hpo:139,hr:[38,56,177],href:[144,156,157,160,164,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],hs2tsaiyzwkbo6orj6wvehycjhbrkjuhw0crkpjtggndbp0arhryiicw5s0jc2svz2ebhfxhoobmrhcgskb0pxtwf:59,hs:[126,133],hsnxm5szde9abszvecizlizzyqekuo0ss8hzlzezp0:59,hspace:[31,156],hsplit:120,hstack:120,htkshwkqgmkzmgvh4qt4nn6juvi0bflsiclyxnon:59,html:[3,15,31,57,58,60,61,66,77,94,114,121,138,144,152,153,156,157,160,164,168,169,170,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],htmlparser:3,http:[3,12,14,15,18,22,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,51,56,57,58,66,68,75,76,77,81,83,94,101,102,103,107,109,110,111,112,113,115,116,119,121,124,125,126,130,131,132,133,134,135,138,139,140,141,143,144,154,156,160,161,162,164,165,169,170,172,173,174,175,176,178,179,180,184,191],http_get:3,httpmessag:156,huang:[93,94,130],hub:[16,100,103,115,140,172],huber:[44,77,126,149],hubspot:105,hue:[49,51,52,57,60,61,64,68,79,81,84,110,112,143,176],hufflepuff:185,huge:[1,64,100,127,137,163,189],human:[16,31,41,47,50,107,113,114,115,127,130,138,141,163,171,174,189],humanist:103,humbl:138,hundr:[7,126,139],hungri:[36,160],hunt:[71,83],husl:135,hutter:139,huyacli:38,huyenchip:138,hw8:59,hw:125,hxfbpxg4aih7u:59,hybrid:[77,100,135,173],hydroxychloroquin:1,hype:[38,113],hypeparamet:33,hyper:[32,60,130,132,149,183,184],hyperparam:54,hyperparamat:[49,60],hyperparamet:[33,45,48,49,50,52,53,54,57,58,60,61,63,65,68,81,85,101,127,130,135,140,149,153,154,156,163],hyperplan:[50,154,182],hypert:178,hypertens:102,hyphen:132,hypothes:[18,115,117],hypothesi:[29,63,65,153,164],hyungjin:133,i1:120,i4:[120,121,177],i6hdvncl4sdud5y6jyyqihm09adf43u3jaepldi0xp9cfogdawd7jds9m5kcdyifkqt7n6n6iacdgdb:59,i8:120,i:[1,3,8,14,16,18,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,49,50,51,52,54,55,56,57,58,59,60,64,66,68,75,76,77,79,80,81,82,83,93,94,101,102,103,104,105,107,109,115,117,120,121,124,125,126,127,128,129,130,131,132,134,135,137,140,144,145,146,148,149,150,153,154,155,156,164,170,177,183,184,185,186,187,188,190,191,192,193],i_1:120,i_:[14,146],i_batch:37,i_i:146,i_imag:37,i_j:153,i_m:120,i_t:[14,132],i_x:132,iaa:[100,138,173],iac:138,iam:137,ian:[29,50,77,129,180],iat:121,ibm:[103,113,137,138,172,178],ic:[58,134],iccv:141,iclr:139,icml:149,icon:[7,46,102,111,118,168,171],id3:50,id:[7,12,15,29,31,54,56,57,63,64,65,66,83,101,119,121,122,157,169,178],id_out:130,id_tensor:130,id_var:64,idea:[7,31,36,38,46,49,50,52,53,58,60,61,62,66,68,81,84,103,105,117,118,120,130,136,139,140,143,145,149,150,151,153,154,156,160,161,163,164,165,169,175,185,186,190],ideal:[54,76,79,105,115,117,125,139,145,149,152,154,155,164,165,169,171,191],ident:[41,50,113,119,120,121,128,130,131,134,137,138,148,170,178,192],identif:[77,128,137,154],identifi:[6,11,16,23,28,29,33,36,46,49,50,52,56,57,59,62,74,77,102,103,105,107,108,113,114,115,117,118,119,121,122,127,130,133,137,139,140,149,163,168,171,172,174,175,176,177,178,179,184,189],idl:[36,102,120],idx1:39,idx2:39,idx:[31,55,156],ie:15,ieee:[7,118,141],ifram:[77,144,156,160,164],ig:50,igam:38,iglob:31,ignit:178,ignor:[36,39,49,50,51,52,53,54,56,57,58,59,64,68,81,83,93,105,119,121,134,135,148,149,150,152,156],ignore_index:[121,177],ih:132,ihm:140,ii:[18,37,59],iii:31,ij:[18,117],iljxqfj1omejrnpbca8g:59,ill:152,illinoi:177,illumin:[39,130,133],illus:[113,174],illustr:[3,8,24,29,36,50,59,103,113,119,121,124,125,126,129,130,133,135,145,148,149,154,155,169,174,183],iloc:[1,14,31,35,39,42,46,47,48,50,54,64,83,85,121,146,148,161,177,186,187,188],ilsvrc:130,im:[126,133],im_batch_s:37,im_shap:126,imag:[3,28,31,34,35,36,39,40,43,47,51,59,60,64,68,77,80,81,83,85,93,103,105,108,109,114,115,120,124,125,126,127,128,129,133,134,139,141,143,145,149,152,153,160,163,164,165,171,172,174,176,180,189,190],image_:37,image_arrai:[37,125],image_batch:180,image_data_format:131,image_dataset_from_directori:[36,126],image_dict:125,image_dictionari:125,image_ev:125,image_extract:125,image_h:31,image_height:125,image_label:[40,125],image_pixel:129,image_s:[36,37,126,130,190],image_segmentation_diagram:156,image_shap:133,image_uint8imag:125,image_vec_length:125,image_w:31,image_width:125,imageclassificationbas:33,imagedatagener:[32,34],imagefold:[33,37],imageio:[31,125],imagenet:[125,141],imagenet_mean:125,imagenum:31,imageri:[39,105],images_path:156,images_to_vector:129,imagin:[50,77,114,122,139,143,149,155,157,160,168,178,185],imaginari:[18,93,169,170,192],imaginary_part:169,imbal:[52,68,81,137,139,160,163,165],imbalanc:[57,58,59,144,149],imbalnc:59,imblearn:160,imdb:[113,174],img0:125,img:[31,33,36,37,39,41,124,125,126,133],img_align_celeba:126,img_label:39,img_nois:125,img_path:39,img_pool:131,img_shift:125,imgplot:37,immedi:[7,43,46,50,79,105,118,128,149,157,166,169],immens:[50,121],immut:[43,170,171,192,193],imp_coef:66,impact:[28,41,49,52,54,103,105,113,128,139,141,164,172,183],impair:[50,109],implaus:180,implement:[0,16,31,33,36,46,47,49,50,51,52,53,54,57,58,59,61,68,79,81,83,93,97,98,105,113,120,121,126,129,130,131,132,134,138,139,141,148,152,154,156,163,169,170,177,192],impli:[22,45,47,48,59,64,93,94,101,134,138,139,143,163,165,169,170],implic:[16,113,134],implicit:[113,138,148,174],implicitli:[59,128,169],imporov:66,import_graph_def:125,importance_typ:[66,152,153],importantli:[102,121,173],importerror:[169,171],impos:[148,155],imposs:[115,163,189],impress:[3,40,52,60,105],improb:117,improv:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,32,33,36,40,41,43,47,48,49,50,54,59,64,66,68,69,71,72,74,75,76,81,86,89,90,91,92,94,101,103,105,113,115,118,126,128,130,132,136,137,138,140,141,145,148,149,152,153,154,156,162,163,164,165,174,184,189],impur:[50,146,148],imput:[7,22,51,54,56,61,66,68,79,81,152,163,189],impute_with_mean:22,impute_with_median:22,imputed_column_nam:22,imread:[31,37,39,125,156],imsav:125,imshap:133,imshow:[1,3,29,30,31,33,34,36,37,39,40,41,50,83,85,124,125,126,131,156,180,184,190],imura:168,imwrit:125,in_channel:[31,130],in_clust:156,in_dim:129,in_plan:130,inabl:127,inaccur:[7,46,103,113,118,128,135,149,152,172],inaccuraci:[46,118],inact:102,inadequ:59,inappropri:115,inargu:40,incent:113,incentiv:113,incept:125,inception5h:125,inch:[164,165,166],incid:28,incident:155,includ:[1,3,4,8,14,31,32,36,40,41,49,51,54,56,64,75,77,79,84,93,94,100,101,102,103,106,109,110,112,113,115,117,120,121,127,130,131,133,135,136,137,138,139,140,141,142,144,146,149,152,155,156,157,160,161,163,164,165,166,167,168,169,171,172,173,177,185,186,189,190,191],include_top:131,inclus:[76,103,113,121,128,138,139,174],incom:[50,51,79,113,139,146,163,170,174],income_evalu:51,incompar:109,incompat:[120,121],incomplet:[4,46,69,91,113,114,118,128],incomprehens:115,inconsist:[36,118,175],incorpor:[50,121,131,138,140],incorrect:[15,41,45,47,48,51,59,68,79,81,145,149,193],incorrectli:[40,52,57,59,68,81,137,139,149,162],increa:40,increas:[14,32,33,35,36,39,40,45,47,48,49,52,53,56,57,59,62,64,68,74,81,83,102,105,107,112,115,117,120,124,130,133,137,138,139,141,145,148,149,153,154,155,156,163,171,173,182,184,193],increasingli:[135,139,163],incred:[40,49,163],increment:[48,49,64,75,93,94,120,128,137,138,139,149,150,156,169],increment_count:169,increment_funct:169,incur:[102,141,173],ind1:120,ind2:120,ind:[120,146,177],ind_1:120,ind_2:120,ind_n:120,inde:[7,18,48,112,120,149,150,156,184],indefinit:134,indent:[85,169],indentationerror:193,independ:[0,54,74,76,117,120,126,128,134,138,145,148,153,165],index:[1,7,14,24,31,33,37,38,39,40,43,50,51,52,54,56,57,59,62,66,74,79,84,93,111,114,118,132,135,143,144,148,156,157,161,162,164,168,169,170,178,190,192],index_col:[46,54,135],index_nam:14,indexengin:121,indexerror:[63,65,120,121,171],indexin:[22,24],indexingerror:121,indi:143,india:[159,160],indian:[160,161,162],indian_df:160,indian_ingredient_df:160,indic:[1,7,14,16,22,29,41,46,47,48,54,56,64,74,76,77,83,93,100,101,103,113,114,117,118,121,122,128,130,131,132,144,145,146,155,163,164,166,169,170,171,177,189,190,192],indirect:120,indirectli:[49,169,170,190],indistinguish:154,individu:[7,14,41,49,50,54,56,62,75,103,105,113,118,119,126,139,141,145,148,163,169,170,172,177,189,192],induc:132,induct:[139,143],industri:[107,113,135,138,141,149,163,171,189],indx:37,ineffici:[102,120,149,153,170],inequ:156,inertia:[144,184],inertia_:[144,156,184],inertia_vs_k_plot:156,inexhaust:130,inf:[14,45,55],infect:[1,8,14,120,140],infected_dataset_url:14,infected_df:14,infecti:[14,140],infer:[9,77,101,102,130,131,132,137,138,139,140,141,143,157,163,177,189],infer_sampl:132,inference_config:[9,101],inferenceconfig:[9,101],inferior:50,infinispan:178,infinit:[14,56,105,128,149,169,170],infinitegraph:178,infinitydb:178,infix:120,inflection_idx:140,inflection_r:140,inflict:109,influenc:[17,52,54,75,77,107,113,128,144,157,162,163,170,175],influenti:113,info:[14,38,40,49,51,52,54,59,60,68,79,81,85,118,119,131,143,153,157,160,164,165,178],infocli:38,infograph:[105,109,115,143,144,160,164,165,166],inform:[1,4,12,14,15,17,22,23,24,25,31,38,40,41,43,46,48,49,50,52,53,54,56,57,58,68,76,79,81,94,100,101,102,103,104,105,107,110,111,113,114,115,117,119,120,121,122,127,128,130,131,132,133,135,137,139,140,141,143,146,148,149,153,154,155,156,163,164,168,169,170,172,174,175,178,180,191],infrastructur:[100,107,140,173],infti:[117,126,128,145],infus:162,ingest:138,ingredi:[159,161],ingredient_df:160,inher:[64,131],inherit:177,init:[30,56,82,93,125,129,134,144,156,169,186,187],init_imag:125,init_lr:126,init_notebook_mod:35,init_s:156,init_tim:126,initi:[0,3,15,33,35,43,48,49,50,54,55,63,64,65,75,80,83,93,94,100,103,113,114,120,124,125,128,129,130,131,132,133,137,139,141,144,148,149,152,163,164,166,169,170,172,177,184,191,192],initial_eda:51,initial_prob:150,initial_st:132,initiali:33,initialis:36,initialise_graph:128,inject:121,inland:[61,79],inlin:[49,51,52,53,55,57,58,59,60,61,62,66,75,79,80,83,84,85,125,148,154,156,157,182,184,186,187,188,190],inlinebackend:[50,66,135,145,148,184],inner:[38,75,93,121,122,135,169,178],innermost:[169,191],innov:[54,100,103,113,173],inordin:149,inplac:[1,7,14,22,30,37,38,46,48,50,51,54,75,121,135,152,157,160,165],input:[9,14,15,18,22,29,30,31,32,33,36,37,38,40,41,42,43,45,47,49,50,51,52,53,55,56,57,58,61,62,64,68,74,75,76,77,80,81,83,92,93,94,100,101,102,117,120,121,124,125,126,127,128,129,130,131,132,133,134,135,138,139,140,141,143,144,145,146,148,149,153,154,155,156,157,160,163,164,168,169,170,171,180,184,185,189,190],input_1:126,input_2:126,input_data:[9,48,52,53,57,58,79,101,125,129],input_dim:[35,36,45,47,48,130,180,190],input_funct:48,input_imag:[125,131],input_mask:131,input_pipelin:125,input_proj:133,input_s:[131,190],input_shap:[32,34,36,38,39,40,41,42,44,62,77,130,131,133],input_tensor:131,input_text:94,input_unit:83,input_valu:128,inquiri:[103,110],insensit:[122,148,154],insert:[63,65,75,119,120,121,149,169,191,192],insertion_sort:94,insid:[0,1,3,33,50,60,61,62,68,75,81,117,120,121,122,124,128,130,132,138,150,156,157,170,171,185,192],insight:[11,16,49,52,54,59,60,75,76,79,100,102,103,105,110,113,115,121,136,137,172,174],inspect:[41,57,58,59,68,79,81,163],inspir:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,79,81,83,84,85,86,87,89,90,91,92,93,94,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,122,124,125,126,127,128,129,130,131,132,133,134,135,139,140,143,144,145,146,148,149,150,152,153,157,160,161,162,163,164,165,166,168,179,184,185,186,187,189,190],instabl:50,instagram:121,instal:[0,3,12,18,25,35,43,51,76,99,100,101,102,109,110,111,112,119,127,132,142,143,144,155,156,157,158,159,160,161,162,164,169,185],instanc:[7,31,46,49,50,51,52,54,59,77,84,102,103,105,118,119,120,121,127,130,133,135,138,139,146,148,153,155,156,163,165,170,180,189,191,192],instant:[56,111],instanti:[43,51,59,84,121,153,165,169],instantli:136,instead:[7,22,31,32,33,43,47,48,49,50,53,54,57,58,61,62,83,100,105,109,111,113,114,115,120,121,127,130,131,135,137,138,139,148,149,150,152,155,156,157,163,164,166,169,170,171,184,185,189,192],institut:[50,140],instruct:[0,29,50,68,81,101,102,105,109,127,168,171],instrument:[103,113,143,144,145,149,157],insuffici:[16,109],insur:113,int16:120,int19:139,int32:[43,120,125,126,132,133,134,144,156],int64:[22,38,57,58,59,60,61,64,79,120,121,134,143,146,148,153,156,160,164,177],int64index:164,int8:[56,148],int8dtyp:135,int_:117,int_featur:157,int_memori:[68,81],int_seri:7,int_shap:131,intact:22,intang:113,integ:[7,12,40,41,47,53,54,56,58,77,93,118,121,125,128,130,131,169,171,177,191,193],integer_vari:[170,192],integr:[0,59,77,100,102,103,105,113,114,115,121,126,137,138,140,172,173],intellectu:[113,174],intellig:[39,41,100,103,115,127,137,140,141,173,174],intellisens:86,intend:[41,77,105,109,121,137,169],intenion:150,intens:[50,102,130,139,180,184],intent:[105,109,113,174],intention:149,inter:[59,117,130,138],interact:[5,7,16,29,74,100,101,102,105,109,115,118,121,128,129,136,137,138,149,154,164,168,169,171,173,182,185,191,193],interaction_constraint:[66,152,153],interactivesess:[125,129],intercept:[75,79,135,164,186],intercept_:[79,164,186],interchang:[7,77,122,163],interdisciplinari:[136,163,189],interest:[1,5,13,14,16,19,29,33,40,49,50,52,57,58,59,68,79,81,100,103,108,109,110,111,112,114,117,119,121,122,128,130,131,139,141,142,143,148,149,154,157,160,163,165,166,168,176,177,178,180],interestingli:[1,111,143],interfac:[16,99,102,111,114,120,171,173],interg:171,interleaf:168,intermedi:[18,30,131,156],intermediari:33,intern:[30,50,68,81,102,120,121,125,128,136,137,138,140,141,144,145,148],internet:[14,32,100,109,110,113,114,115,122,137,138,173],interpol:[1,31,50,125,130,131,156,160,180],interpret:[3,7,40,41,47,48,50,57,58,66,110,113,117,119,120,121,128,141,143,145,148,149,163,164,169,170,171,174,178,179,189,191,192],interquartil:54,interrelationship:105,interrupt:[102,155],intersect:[77,107,119,121,164,170],interspers:120,intersystem:178,interv:[49,52,56,112,120,126,128,137,140,145,154,182],interview:149,intimid:153,intl:[50,145],intp:120,intra:[130,133,156],intract:129,intric:77,intricaci:[76,105],intrins:157,intro:[117,138],introduc:[18,29,31,47,50,54,66,74,75,77,96,105,110,115,126,127,128,130,131,133,138,139,141,143,149,155,169,179,180,191],introducin:138,introduct:[7,37,43,61,106,119,128,137,139,141,163,167,170,178,179,180,181,182,184,186,189,191],intuit:[50,55,68,76,81,121,127,130,149,154,163,179,184],inv:74,inv_i:38,inv_sigmoid:140,inv_yhat:38,invalid:[14,137,169,171],invalid_column:[14,24],invalid_column_nam:[14,22,24],invalid_column_valu:24,invalid_df:14,invalid_month_typ:14,invalid_window_typ:14,invalid_year_typ:14,invalidindexerror:121,invari:[130,139],invent:[149,163],inventori:[103,137],inventoryexampl:119,invers:[39,64,66,120,140,148],inverse_transform:[38,42,187,188],invert:[38,120],invest:[100,138],investig:[23,47,54,103,113,114,139,148,153,164,174],invis:[113,174],invit:120,invoc:[138,169],invok:75,involv:[7,36,43,46,50,54,74,75,76,77,102,104,105,107,113,115,118,121,130,153,163,165,169,173,175,189],io:[30,31,102,125,134,138,157,164,179,180],ioc:138,ion:128,iot:[115,137,157,174],iou:[77,139],iou_loss:77,ip:59,iplot:35,iplot_mpl:35,ipykernel_15370:176,ipykernel_24432:184,ipykernel_30912:191,ipykernel_44:169,ipykernel_6364:110,ipykernel_6653:121,ipykernel_6984:62,ipynb:[0,143,144,157,160,162,164,166,168,177],ipytest:[3,14,22,24,53,79,93,94],ipython:[12,22,25,39,55,60,64,76,77,83,99,100,101,102,110,111,112,120,121,127,129,131,132,142,143,144,154,155,156,158,159,160,161,162,164,191],ipywidget:[154,182],iqr:[54,117],ir1:66,irani:50,ireland:12,iri:[7,46,60,84,118,121,146],iris_data:146,iris_df:[7,46,118],iris_df____:46,iris_isduplicated_df:46,iris_isnull_df:46,iris_support:60,iris_versicolor_3:60,iris_virginica:60,iris_with_drop_duplicates_on_column_df:46,iris_with_drop_duplicates_on_df:46,iris_with_dropna_1_values_on_rows_df:46,iris_with_dropna_2_values_on_rows_df:46,iris_with_dropna_on_column_df:46,iris_with_dropna_on_row_df:46,iris_with_fillna_back_df:46,iris_with_fillna_back_df____:46,iris_with_fillna_df:46,iris_with_fillna_df____:46,iris_with_fillna_forward_df:46,iris_with_fillna_forward_df____:46,iris_with_missing_value_after_fillna_back_df:46,iris_with_missing_value_after_fillna_df:46,iris_with_missing_value_after_fillna_forward_df:46,iris_with_missing_value_df:46,irrelev:[127,154],irrespect:102,is_avail:[31,33,37],is_bool_index:121,is_cnn:31,is_empti:93,is_good_enough:94,is_hash:121,is_integ:121,is_leaf:55,is_list_like_index:121,is_marri:193,is_monotonic_increas:121,is_prim:93,is_scalar:121,is_uniqu:121,isabel:59,isalignedstruct:120,isalpha:170,isbn:138,ischoolonlin:[107,175],isclos:93,isdecim:170,isdir:[39,125],isfil:[125,132,134],ish:[36,66],isinst:[14,33,51,93,94,121,130,131,133,169,170,192],island:[61,79],isn:[39,45,48,77,121,146,155,157,169],isna:[14,51,56,104],isnan:[46,120],isnt:54,isnul:[7,22,46,47,48,49,51,52,53,54,57,58,59,61,64,68,74,79,81,104,118,143,153,166,177],iso2:140,iso3:140,iso:137,isol:[7,75,118,138,141],iss:29,issu:[0,7,28,40,45,46,49,50,54,57,58,66,68,81,105,113,118,121,129,132,136,138,144,149,154,156,174],issubclass:169,issubset:14,isupp:170,item:[31,33,37,43,59,93,112,113,119,120,121,125,132,139,143,162,165,168,169,171,177,191,192,193],item_from_zerodim:121,items:[120,177],iter:[31,33,35,37,48,55,61,63,65,68,74,75,80,81,93,94,101,102,121,125,126,128,129,138,139,140,144,149,151,152,153,156,163,165,169,170,171,185,191,192],iter_n:125,iterate_minibatch:83,iterated_numb:[169,191],iteration_count:132,iterrow:135,ith:[55,153],its:[4,6,7,12,18,22,26,28,29,31,33,39,40,41,43,48,49,50,54,59,61,62,68,74,75,76,79,81,86,94,100,102,103,104,107,109,110,112,113,114,115,118,119,120,121,122,124,126,127,128,130,131,132,135,137,138,139,141,143,144,145,146,148,149,150,153,154,155,156,157,160,162,163,165,166,168,169,170,171,172,175,176,177,180,182,184,189,192],itself:[7,14,50,54,83,109,115,119,122,137,138,139,140,148,149,157,163,165,169,170,184,189],itslek:54,iucn:110,ium:[170,192],ivborw0kggoaaaansuheugaaayqaaacccamaaabxtu9iaaaah1bmvex:59,ix2vocab:132,ix:[125,132],ix_:120,ix_cutoff:134,ix_to_vocab_dict:132,j7z80yoo:59,j:[1,32,33,34,37,38,48,50,56,93,94,109,120,124,128,129,130,139,145,146,148,149,153,156,170,171,184,187,188,192,193],jack:[170,192],jade:178,jag:[110,148],jain:[126,137],jake:[57,58,60,61,177],jakevdp:[154,182],jam:[36,115],jame:[117,137,191],jane:94,januari:[1,17],japan:[122,178],japanes:[160,161,162],japanese_df:160,japanese_ingredient_df:160,jar:138,jargon:[148,162],jasmin:25,jason:141,java:138,javascript:[114,119,140,157,171,193],jbase:178,jcodella:[113,174],jean:[40,43,81,129],jehx7a7:59,jellek:99,jello:[170,192],jen:[103,144,160,164,165,172],jenna:108,jerom:[148,149],jerri:[93,94],jesucristo:37,jetbrain:38,jez:138,jgzcjvracubdwr59:59,jha:126,ji:141,jian:[130,133],jiang:141,jim:[105,115],jitter:149,jl:131,jlwfklkcd5a5zdyvlszj0s5qme6nbl:59,joaquin:139,job:[3,29,31,38,59,66,85,100,102,105,114,115,138,139,141,143,148,161,163,170,189,192],joe:171,john:[14,93,94,120,137,140,169,170,171,191,192],johnson:94,joi:[103,172],join:[12,29,30,31,33,36,37,39,41,45,46,47,48,51,56,66,118,125,127,132,134,135,136,146,156,160,164,169,170,184,192],join_ax:177,join_nam:121,joint:126,jointli:131,jointplot:143,joli:50,jonathan:[126,131],jone:149,joseph:137,josip:137,journal:[50,137],journei:[76,103,115,136],jovian:33,jp:14,jpeg:[31,38,125],jpg:[31,36,38,60,125],jpn:137,js:[29,136,140,157,193],json:[6,9,85,101,109,114,115,157],judgment:145,jul:[103,172],juli:[17,115,138,139],jump:[85,101,105,112,120,156,169],jun:[102,193],jungl:143,junho:130,jupit:193,jupyt:[0,12,18,25,57,58,60,61,66,68,76,81,84,85,101,102,117,118,121,136,144,152,153,156,161,164,165,166,168,169,171,177,184,185,186,187,190,191],jupyterlab:0,jupyterlab_myst:[76,99,100,101,102,110,111,112,127,132,142,143,144,155,156,158,159,160,161,162,164],jupytext:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162],jupytext_vers:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162],juri:145,juror:145,just:[0,1,3,7,9,14,18,28,29,31,40,43,44,45,46,49,50,55,56,57,59,60,62,66,75,83,94,100,101,102,105,110,111,113,115,117,118,120,121,122,125,127,130,131,133,135,138,140,141,143,146,148,149,152,153,154,155,156,160,163,164,166,169,170,171,184,185,186,189,192],justifi:[48,105,139,157],jython:[170,192],k0:121,k0ejw9dkfvdwds21a1rdro0ancgqymgncr:59,k1:121,k2:121,k3:121,k4:121,k5:121,k5izpn8apjgrfovv82wjhtletgw:59,k5osgokaymjjuvfm5otnz2dlvb28rkyutra3q6ury8vlly8vf39:59,k8:138,k:[3,50,76,84,85,120,121,125,127,128,130,132,133,134,143,145,149,151,154,163,165,182,190],k_d:128,k_i:128,k_list:84,k_p:128,k_size:37,kaggl:[1,4,10,20,25,30,31,32,33,35,38,39,51,56,68,79,81,84,85,102,104,114,118,120,126,127,130,135,149,163,165,180,184,185,186,187,189,190],kaim:[130,133],kaiyang:141,kalenichenko:130,kam:148,kamal:113,kamala:113,kanta:113,kapoor:36,karen:130,karnika:36,karr:164,kashnitski:[50,145,146,148,149,184],kayod:137,kb:[29,38,50,60,118,143,153,164],kdd:137,kde:[22,54,56,110,143,176],kdeplot:[110,176],kdr:38,keep:[7,22,33,36,45,47,61,63,65,68,79,81,92,100,102,107,118,119,120,121,129,130,135,139,144,148,154,155,156,163,164,165,166,169],keep_dim:131,keepdim:[83,177],kei:[3,7,9,38,48,76,94,100,101,102,103,105,113,119,120,121,122,125,126,128,132,133,134,137,138,139,140,161,169,171,172,177,178,185,191,192,193],kendal:131,kept:[7,118,131],kera:[29,30,31,32,35,36,38,40,41,42,43,44,45,47,48,49,62,77,124,126,130,131,132,133,134,139,155,180],kernel1x1:130,kernel3x3:130,kernel:[29,31,32,33,56,60,61,125,130,131,135,143,153,162,164,181],kernel_initi:[131,133],kernel_regular:77,kernel_s:[29,30,31,32,33,34,36,37,39,130,131],kernel_valu:130,kernelid:130,kernelspec:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162],keskar:139,key_dim:[126,130],key_is_scalar:121,keyerror:[93,121,132,171],keys_list:93,keyword:[3,94,101,114,115,119,120,121,122,144,155,170,171,178,191,192],kfhh15qw86isx1ucrjzsekn0ijaykf3i96hnjna:59,kfold:[56,59,64],kfold_scor:56,kfoldcv:64,khale:141,khg:133,khsa:130,khsb:130,kilian:130,kill:171,killer:46,kilobyt:[53,58,163],kim:[30,130,133],kind:[1,7,15,22,30,31,39,43,45,47,48,49,50,51,52,54,56,59,60,61,62,64,66,68,81,91,93,94,102,108,109,110,112,118,120,121,124,127,129,132,135,136,143,149,153,154,155,160,161,163,165,166,168,169,170,171,176,180,189],kinesi:137,kingdom:12,kingma:31,kingpin:109,kit:[62,99],kitchen:146,kitchenabvgr:54,kitchenqu:54,kiwi:[39,170,192],kld:31,km:[137,144],kmean:[144,156,184],kmeans_:156,kmeans__n_clust:156,kmeans_algorithm_plot:156,kmeans_bad:156,kmeans_good:156,kmeans_iter1:156,kmeans_iter2:156,kmeans_iter3:156,kmeans_k3:156,kmeans_k8:156,kmeans_per_k:156,kmeans_rnd_10_init:156,kmeans_rnd_init1:156,kmeans_rnd_init2:156,kmeans_variability_plot:156,kmeanskmean:156,kneighbor:[156,161,162],kneighborsclassifi:[56,84,85,156,162],kneighborsclassifierkneighborsclassifi:156,knife:185,knight:[169,170,192],knights_nam:169,knights_properti:169,knn:[50,56,124,148,156,162,163],know:[7,17,18,23,27,33,40,43,45,46,49,50,52,53,56,58,59,68,79,81,83,85,100,102,104,105,113,115,117,118,119,121,122,126,127,131,135,139,144,149,153,155,163,169,170,171,186,189,192],knowledg:[7,31,41,50,54,59,69,100,102,107,115,117,126,128,137,139,140,141,149,152,163,164,173,174],known:[32,50,57,58,59,68,75,76,81,107,113,114,115,117,120,121,127,131,133,135,136,137,138,139,140,145,149,154,163,169,170,189],kogwl43x3ogqzqjpuoe8b:59,kool_kheart:38,korbut:139,korean:[160,161,162],korean_df:160,korean_ingredient_df:160,kosaciec_szczecinkowaty_iris_setosa:60,kotthoff:139,kpash:59,kqxjp1r14yggzhpqx_gpx6580000gn:176,kriz:[125,130],krizhevski:[33,125],ks:[130,145],ksize:125,ksv:64,kubeflow:138,kubernet:138,kullback:126,kuqvjmwrkag9whlqdvrh:59,kurtosi:59,kw:125,kwangnam:126,kwarg:[43,110,121,131,133,169,176,191],l1:[63,65,77,95,124,129,139],l1regular:[63,65],l2:[63,65,77,95,129,139,154],l2_leaf_reg:54,l2_loss:125,l2regular:[63,65],l3:129,l4lsxqfk:59,l9dkgf1pchhmpqsobc9eb:59,l:[35,50,55,77,83,117,121,124,125,128,133,134,148,149,150,153,165,170,177,178],l_1:[66,149],l_2:[66,149],l_:[77,149],l_left:50,l_p:117,l_q:149,l_right:50,lab:[0,39,40,43,58,60,61,68,81,103,172],label:[1,7,15,22,29,30,31,32,33,34,36,37,38,39,40,41,42,45,46,47,48,49,50,52,53,56,57,58,59,61,64,66,68,74,77,79,80,81,83,85,101,102,109,110,111,112,119,125,128,129,130,131,134,139,140,143,144,145,148,153,154,156,157,160,161,162,164,165,171,176,177,179,180,184,186,187,188],label_batch:125,label_column_nam:[9,101],label_enc:[49,52,57],label_encod:[22,52,56],label_length:77,label_logit:133,label_mod:[36,126],labelbottom:156,labelencod:[38,49,52,56,57,64,84,144,157,165],labelleft:156,labels:[62,135,156],labels_:[144,156],labels_df:160,labels_fil:125,labelweight:[62,135],labl:3,labor:139,labori:[7,46,118],lachin:102,lack:[13,26,28,128,139,140,149,169],laclo:109,ladi:[109,143],ladybug:156,lag:38,lag_1:135,lai:[105,131],laid:105,lake:[100,115,137,174],laken:48,lamb:169,lambda:[1,14,22,31,32,36,38,44,47,54,56,66,77,121,132,140,153,164,170,183,191,192],lambda_l1:54,lambda_l2:54,lambdamart:149,lamda:[63,65],land:[54,137,163],landcontour:66,landmark:113,landscap:141,lang:[15,38],languag:[1,22,41,43,45,47,48,59,99,100,101,102,108,109,110,111,112,115,119,120,121,122,127,132,134,136,138,139,141,142,143,155,156,158,159,160,161,162,163,169,170,171,177,178,191,192,193],lap78:141,laped:141,laplacian:149,lar:139,larg:[1,7,11,30,31,39,45,46,49,50,51,54,59,60,61,62,63,65,66,71,74,77,100,102,103,104,105,107,113,115,118,119,120,121,122,124,127,130,132,135,137,138,139,141,143,145,146,148,149,152,153,154,155,156,162,163,164,170,173,174,177,180,182,184,185,192],larger:[14,29,48,59,74,75,76,77,93,102,113,120,124,125,126,139,149,152,165,170,177,179],largest:[48,59,100,120,130],larxel:102,laser:105,laskoski:142,lasso:[66,77,149,155,164],lasso_pr:66,lasso_sklearn:[63,65],lassocv:66,lassolarscv:66,lassoregress:[63,65],last:[7,8,14,29,32,38,39,40,41,43,44,45,47,49,52,55,60,62,68,81,83,84,94,105,113,115,118,120,121,125,127,131,134,135,137,138,139,144,149,155,160,161,163,166,169,170,174,177,189,190,191,192],last_index:170,last_nam:[94,191,193],last_new_job:56,last_stat:132,last_tl:35,lastli:[32,36,45,54,105],lastnam:171,lastnewjob:56,lat:[14,140,185],late:109,latenc:[130,135,138,141],latent:[29,31,36,124,126,139],latent_dim:[29,30,36],latent_vec:31,later:[7,18,37,40,41,43,47,50,53,54,59,83,84,105,107,113,115,117,118,121,122,125,127,128,135,139,152,153,156,163,168,169,170,171,186,189,193],latest:[102,125,127,138,140],latest_iter:185,latin1:125,latin:48,latitud:[61,79,157],latter:[40,113,115,120,121,126,127,130,139,140,145,146,157,161,164,165],launch:[16,102,119,138,141,181],lauren:130,lavend:135,lavenderblush:135,law:[22,45,47,48,103,107,113,172],layer:[29,30,31,33,34,35,36,38,39,40,42,43,44,45,48,62,77,109,121,124,125,126,129,130,131,132,133,134,139,153,155,180],layer_1:124,layer_2:124,layer_activ:83,layer_i:83,layer_input:83,layer_nam:131,layernorm1:130,layernorm2:130,layernorm:130,layout:[120,128],lbfg:[156,161],lc:[64,110,176],lcca:131,ldot:[149,150],le:[40,64,84,109,117,144,179],lea:128,lead:[48,50,59,64,75,77,105,113,115,117,120,121,128,135,137,138,144,145,146,152,155,169,174,177],lead_tim:135,leader:141,leaderboard:66,leaf:[50,54,148,153],leagu:117,leak:[57,113],leakag:[54,66,163],leaky_relu:129,leakyrelu:[31,36,37,127],lean:139,lear:152,learn:[0,3,7,12,16,18,21,22,25,28,29,30,31,32,33,34,35,37,38,39,40,42,44,46,47,48,49,51,52,53,54,55,57,58,60,61,62,66,68,69,71,74,75,76,77,80,81,83,91,93,94,99,100,101,103,104,105,107,110,111,112,113,114,115,116,117,118,119,120,121,122,123,125,126,129,130,131,132,134,137,138,140,143,144,145,148,149,150,151,152,153,154,159,162,165,169,170,171,174,177,178,179,180,181,183,186,187,188,190,191,193],learn_curv:64,learnabl:[32,83,130,139],learned_paramet:156,learner:[54,56,77,150,151,153],learning_curv:64,learning_r:[35,48,49,54,56,63,65,66,75,80,82,83,124,125,126,128,132,134,153,186,187],learningrateschedul:[32,126],learnpython:170,learnt:[18,54,57,64,131],least:[4,8,11,13,16,28,39,50,51,59,110,113,115,117,120,121,135,139,146,149,154,155,156,164,165,169,170,176],leav:[49,50,52,62,66,68,75,81,102,105,111,115,121,145,146,148,153,166,171,176,193],lectur:[84,117,137,149],led:58,lee:[7,108,163],leed:50,leff:137,left:[1,7,31,32,33,40,43,50,54,55,56,75,76,85,93,102,104,107,110,119,120,121,125,128,131,134,145,146,148,149,150,154,156,163,165,169,170,175,182,185],left_column:185,left_i:146,left_idx:55,left_index:[38,121],left_join_kei:121,left_on:121,left_output:128,left_shifted_imag:85,leftarrow:149,legaci:102,legal:[113,169],legend:[22,29,31,32,33,34,35,37,38,42,45,47,48,50,51,74,80,83,109,110,112,125,131,134,135,145,146,148,156,176,184,187,188],legibl:145,legisl:109,legitim:59,leibler:126,lejmjnc8nyfra0oarlwsptp1nrr855zaajnceahw7uhgewwf:59,len:[1,14,18,22,31,33,35,37,38,39,40,41,42,44,45,47,48,49,51,52,53,54,55,56,57,58,59,60,61,64,68,76,79,81,83,93,94,121,125,126,128,129,130,131,132,133,134,135,145,156,162,169,170,177,186,187,188,190,191,192],len_axi:121,lend:[141,165],lenet:130,length:[3,8,14,31,41,43,46,50,60,64,84,94,109,110,115,117,118,120,121,127,132,134,135,143,144,145,146,167,169,170,176,184,192],lenovo:62,leo:[145,146,148],lepiota:111,leq:[50,77,120,149],leqq:126,less:[1,6,7,8,18,26,29,31,33,36,39,40,41,49,50,52,54,56,59,66,76,93,100,102,105,110,112,113,119,120,127,132,137,138,139,141,143,145,148,149,152,153,155,156,163,166,169,170,174,177,191,192],less_equ:120,lesson:[54,62,72,132,135,164,165,166],let:[1,3,7,9,14,16,18,24,25,29,30,31,32,33,34,36,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,66,68,74,76,77,79,81,83,84,87,97,98,100,101,103,104,105,107,109,110,111,112,113,115,117,118,119,120,121,122,124,126,127,130,131,132,134,135,136,139,140,141,142,143,144,145,146,148,149,150,153,155,156,157,159,160,161,162,163,164,165,166,167,168,169,171,172,174,175,177,178,184,185,186,189,190,192],lett:93,letter:[7,94,101,109,113,115,118,121,122,157,169,170,192],level:[7,41,43,45,47,54,57,58,59,102,113,117,120,121,126,127,130,138,139,141,143,148,149,153,154,163,169,171,177,182,186,189,190,193],leverag:[0,41,49,54,55,100,136,137,138,139,141,157,160,161,162,166],lexsort:120,lfw:31,lfw_attribut:31,lg:165,lgbm:54,lgbmregressor:54,lh:55,lhs_cnt:55,lhs_std:55,lhs_sum2:55,lhs_sum:55,li:[33,45,50,109,141,191],liabil:[93,94,169,170],liabl:[93,94,169,170],liaison:109,liang:131,lib:[57,121,144,161,165,177,184,191],liblinear:161,librari:[0,1,3,7,8,18,33,35,36,39,41,45,46,47,48,56,72,74,76,79,87,102,104,109,110,111,112,118,119,120,136,139,141,143,145,146,148,149,157,161,162,164,165,166,167,171,176,177,180,185],licenc:[57,154,182],licens:[22,41,45,47,48,76,84,85,93,94,102,139,144,169,170,184,185,186,187,190],lidiya:193,lie:[50,109,117],lieu:149,life:[11,18,34,50,59,60,102,103,107,113,115,117,120,143,156,163,169,172,189],lifecycl:[17,23,101,103,104,138,140,141,181],lifetim:149,lift:107,light:[39,49,115,130,157,163,185,193],lightbgm:54,lightcor:29,lighter:[103,172],lightgbm:[49,150],lightgbm_search:54,lightgrai:1,lightn:153,lightweight:138,like:[7,11,14,17,18,23,28,30,31,33,34,36,40,41,43,46,48,49,50,52,53,54,55,56,57,58,59,60,61,62,66,68,74,75,77,79,81,83,100,101,103,104,107,109,110,113,114,115,117,118,119,120,122,125,127,130,132,134,135,136,137,138,139,140,141,143,144,145,146,148,149,152,153,155,156,157,160,161,163,164,165,166,168,169,170,171,172,175,177,178,180,185,186,189,190,191,192,193],likehood:149,likelihood:[77,105,126,129,154,160,163,165],likewis:[34,41,120],lili:24,limit:[7,14,16,22,28,31,45,47,48,50,56,59,68,74,76,77,79,81,93,94,102,107,113,119,120,121,128,132,133,137,139,140,145,146,149,153,163,169,170,192],limits_:[50,129,156],limits_k:50,limousin:[17,23],lin_pr:60,lin_reg:[164,186],lin_reg_2:186,lin_svc:60,lin_svr:61,linalg:[74,132,156],line2d:[80,164],line:[1,14,18,31,41,45,49,50,52,59,60,61,74,76,80,83,102,109,110,113,120,121,125,128,135,143,144,149,154,156,157,160,162,165,166,168,169,170,171,177,179,186,190,192,193],line_chart:185,line_kw:54,lineag:[113,140,174],linear:[18,31,33,35,41,42,45,49,50,51,52,54,55,56,60,61,63,65,68,69,77,81,82,83,85,120,124,125,127,128,130,139,144,148,149,153,156,160,161,163,166,167,168,169,170,181,184,189,190],linear_beta_schedul:126,linear_model:[49,56,63,64,65,66,68,79,81,82,135,156,157,161,162,164,165,168,186,187,188],linear_reg:[63,65],linear_reward_:128,linear_scor:59,linear_svc1000:59,linear_svc100:59,linear_svc:59,linearli:[59,84,120,126,139,154],linearregress:[74,75,79,135,164,168,186],linearregressionlinearregress:[164,168],linearsvc:[59,60],linearsvclinearsvc:60,linearsvr:61,linearsvrlinearsvr:61,lineplot2:[112,176],lineplot:[49,52,56,64,112,144,165,176],liner:164,linestyl:[14,18,32,76,154,156,182],linewidth:[38,50,54,59,76,110,135,154,156,168,176,182],linguist:[141,165],link:[1,28,29,31,35,61,102,105,107,109,115,128,131,139,140,143,149,150,153,157,168,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],linkag:[103,156],linnerud:89,linspac:[50,80,83,120,126,148,154,156,182,186],linux:[119,130],lisa:177,lisens:[63,65],lisheng:159,list1:93,list2:93,list3:93,list4:93,list5:93,list:[1,3,7,12,14,18,28,31,33,35,38,39,40,41,43,44,45,49,50,51,52,53,54,57,58,59,61,63,64,65,71,77,79,83,84,91,101,110,111,112,115,117,118,119,120,122,125,128,129,130,131,133,134,138,139,141,146,148,150,157,162,163,166,176,177,178],list_i:34,list_of_char:[170,192],list_of_coordin:120,list_of_numb:[170,192],listcomp:[121,170,192],listdir:[33,37,38,39],listedcolormap:[187,188],listen:[0,139,170],listlik:121,listnod:95,lite:157,liter:[169,191],literari:103,litt:143,littl:[1,7,14,30,40,41,47,63,65,68,71,77,79,81,107,109,112,118,121,125,130,144,146,149,150,156,160,162,164,166,168,169,186],liu:[130,141],live:[48,50,100,102,103,113,114,135,136,143,144,157,163,181],ljust:170,lkei:121,ll:[16,22,28,29,33,41,45,47,48,50,62,64,66,71,76,83,100,103,104,106,107,109,113,114,119,120,121,122,123,126,131,135,137,139,144,145,146,149,150,152,155,157,160,161,166,167,168,169,170,177,178,192],llc:[45,47,48,105],lmdb:178,ln:149,lo:[40,125,170],load:[2,7,9,15,17,18,23,33,40,45,48,51,66,74,75,83,85,87,110,118,121,125,127,129,131,132,135,137,138,143,148,152,156,157,162,164,165,168,169,184,185,190,191],load_batch_from_fil:125,load_breast_canc:40,load_data:[29,30,40,41,124,180,190],load_dataset:83,load_diabet:168,load_digit:[50,156],load_ext:[12,25,40],load_imag:131,load_images_from_fold:39,load_img:39,load_iri:[7,46,118,184],load_model:[29,30,38,39,40,41,42,44,180],load_next_batch:156,loader:[33,129],loadmat:125,loadtestsfromtestcas:47,loan:[50,163,189],lobe:157,loc:[1,14,18,22,31,32,38,47,48,50,51,54,56,62,66,83,110,117,121,125,134,135,144,145,148,164,166,176,177,180,184],local:[14,28,43,57,62,101,102,107,119,121,125,130,131,133,154,157,161,163,168,169,177,182,184,191],localhost:29,localto:131,locat:[1,9,66,79,103,107,113,114,119,120,121,125,128,131,133,139,146,154,169,172,178],log1p:66,log2:[50,120,148],log:[0,9,16,37,38,40,54,66,77,83,85,101,102,115,120,126,129,131,137,138,149,150,174,187],log_2:50,log_classifi:49,log_dir:40,log_imag:129,log_model:[68,81],log_reg:[49,64,156],log_reg_scor:156,log_scor:[68,81],log_templ:31,log_transform:66,logaddexp:[120,150],loganberri:[170,192],logarithm:[120,139,141,190],logdir:40,logger:129,logging_level:54,logic:[3,34,50,83,120,121,137,163,165,168,170,192],logical_and:120,logical_not:120,logical_or:120,logical_xor:120,logist:[49,56,59,75,90,103,132,149,153,156,157,160,163,164,167,168,181,190],logisticregress:[49,56,64,68,81,156,157,161,162,165,187,188],logisticregressionlogisticregress:156,logisticregressor:64,logit:[37,41,83,125,129,130,132,133,134,139],logit_length:77,logit_output:132,logitech:39,logits_concat:133,logits_for_answ:83,logits_out:134,logvar:31,lokesh:137,lon:185,london:[12,137],long_:140,longer:[7,32,36,40,45,48,49,50,52,54,62,75,79,102,107,114,121,139,152,156,169,184,191],longest:[68,81,105],longitud:[61,79,157],loo:165,looa:164,loob:164,look:[3,6,7,8,10,13,14,15,17,18,20,25,28,29,30,31,33,34,36,41,43,46,47,48,49,50,52,54,55,58,59,60,62,64,66,68,71,74,76,79,81,83,84,87,89,100,101,102,103,105,107,109,110,111,112,113,115,117,118,119,120,121,122,125,130,132,134,139,142,143,144,145,148,149,153,155,156,157,159,160,161,163,165,166,168,169,170,172,176,177,178,180,184,186,192],lookback:[38,44],lookout:121,lookup:[117,119,120],loop:[33,35,56,94,109,120,121,125,128,141,144,156,163,169,170,171,177,191,192],looper:[103,144,160,164,165,172],loos:[68,81,143],lopinavir:1,lose:[66,77],loss:[13,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,48,54,55,56,62,74,121,124,125,126,127,131,132,134,148,150,151,153,155,161,180,182,183,186],loss_acc_metrics_df:40,loss_d:37,loss_fn:36,loss_fun:132,loss_funct:54,loss_g:37,loss_grad:83,loss_histori:150,loss_vae_fn:31,loss_valu:125,lossi:31,lossless:31,lost:31,lot:[3,7,14,46,48,49,50,52,56,59,66,86,100,101,102,114,115,118,130,132,135,143,146,148,149,150,152,153,155,157,160,162,163,169,189],lotarea:[54,66],lotfrontag:[54,66],lotfrontage_mean:54,lotshap:66,loud:[142,143,144],loudli:184,loukid:113,love:[36,50,94,160,169,193],low:[18,30,38,41,43,44,45,48,49,56,57,59,61,63,64,65,68,79,81,93,99,101,103,105,117,120,130,139,152,154,155,159,164,165,166,167,170,172,180],low_valu:140,lower:[1,3,7,29,47,48,49,54,56,59,64,74,76,79,94,102,113,117,120,121,124,125,132,134,139,145,149,156,164,165,170,174],lower_cas:98,lowercas:[94,170],lowest:[7,156],lowqualfinsf:54,loyal:145,loyal_cal:145,loyal_mean_scor:145,loyalti:109,lpsa:75,lr:[31,33,34,37,48,63,64,65,75,82,154,161,180,182,186,187],lr_d:37,lr_decai:125,lr_g:37,lrn:125,lrschedul:126,ls:138,lst2:39,lst:[39,93,94,170,171],lstm:[42,127,132],lstm_builder:44,lstm_model:[38,42,132],lstm_output:132,lsuffix:121,lt:79,ltd:56,ltorgo:58,ltsm:127,ltv:149,lu:[130,131],luci:[24,141],lucidchart:105,luck:[47,109],lucki:[68,81],luckili:[83,132],lug_boot:57,luggag:57,lui:58,lunch:163,lund:191,lvert:[155,183],lvl:66,lw:[50,148,154,182,184],lwq:54,lxl:141,ly:83,m1:[18,168],m2:18,m:[1,3,12,18,24,25,37,59,63,65,66,76,99,100,101,102,105,110,111,112,113,120,121,127,128,132,139,140,142,143,144,145,148,149,150,154,155,156,158,159,160,161,162,163,164,170,177,182,189],m_:18,m_dep:[68,81],maaten:130,mac:[102,130,138,168],machin:[0,3,7,12,18,25,31,33,36,39,40,43,46,48,49,50,52,53,54,56,57,58,68,74,75,76,77,81,91,99,100,101,103,107,109,113,115,117,119,121,124,127,128,134,135,136,137,138,139,140,143,144,145,148,149,150,151,152,153,155,160,161,162,164,165,166,171,174,177,179,180,181,183,186,191,193],machine_cpu:58,machine_cup:53,machine_data:[53,58],machine_label:58,machine_learning_complet:81,maco:[119,171],macro:[35,57,59,60,161,162,165],made:[16,24,29,39,43,49,50,62,68,75,81,83,101,102,107,119,120,127,130,135,137,138,143,145,149,151,163,168,169,171,178,191],madip:[143,164,165,166],mae:[29,38,54,62,74,77,148],mae_cb:54,mae_lgbm:54,mae_xgb:54,magic:[149,163,170],magic_dict:93,magnitud:[66,74,76,84,117,164],mah:[68,81],mai:[1,8,12,14,22,25,28,29,30,31,32,34,40,45,46,47,48,49,50,52,56,57,58,59,60,62,63,64,65,68,74,75,77,79,81,83,102,103,104,105,107,110,113,114,115,117,118,119,120,121,122,125,128,130,131,135,137,138,139,140,141,143,145,146,148,149,152,153,154,155,156,157,163,164,165,169,170,171,172,175,182,191,192],mail:[50,115,145],main:[3,12,18,25,31,37,43,49,50,53,54,58,59,66,68,76,80,81,83,100,102,107,109,115,117,120,124,125,127,131,137,141,144,148,149,151,154,155,163,164,165,169,174,175,189],mainli:[54,124,130,134,154],maint:57,maintain:[31,57,75,100,114,127,130,136,138,140,148,163],mainten:[57,100,107,141,163,169,175,191],maje:137,major:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,77,79,81,83,84,85,86,87,89,90,91,92,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,128,129,130,131,132,133,134,135,137,138,139,140,141,143,144,145,146,148,149,150,152,153,156,157,160,161,162,163,164,165,166,168,169,170,171,179,184,185,186,187,190],major_axi:121,major_disciplin:56,majumdar:141,make:[0,1,3,4,5,7,9,11,15,18,22,30,31,32,35,38,39,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,66,68,74,76,77,79,81,83,85,93,100,102,103,104,105,107,110,112,113,114,115,117,118,120,121,122,125,126,127,128,129,130,132,134,135,137,138,139,140,141,143,144,145,146,148,149,150,152,154,155,156,157,160,163,164,168,169,170,171,172,174,177,178,185,186,189,192,193],make_blob:[154,156,182],make_circl:[148,154,182,187],make_classif:[187,188],make_dataclass:121,make_df:177,make_grid:33,make_increment_funct:169,make_lag:135,make_me_smil:31,make_moon:[156,187],make_multistep_target:135,make_pipelin:164,make_regress:[63,65],makedir:[29,30,31,33,36,37,39,41,66,125,132,134,156],maketran:94,makeup:109,male:[22,56,163],malici:113,malign:40,man:[102,157],manag:[0,38,100,101,102,103,104,105,114,121,123,137,138,140,148,167,171,172,178],manageri:105,mandat:113,mandi:143,maneuv:109,manfr:[170,192],mango:[39,193],mani:[1,3,7,18,29,35,36,39,40,43,44,46,47,49,50,51,52,53,54,56,57,58,59,60,61,66,68,75,77,79,81,84,89,100,101,102,103,104,105,107,109,111,112,113,115,117,118,120,121,123,125,127,128,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,148,149,152,153,154,155,156,157,160,161,163,166,168,169,170,171,173,174,177,180,189,191,192,193],manifest:77,manifold:[30,184],manipul:[85,109,113,115,121,122,123,128,163,170,177,185,189,192],manishmsft:[119,178],manner:[7,30,50,59,103,113,115,118,121,140,164,170,174,192],manual:[1,139,140,141,155,156,184],manual_se:33,manufactur:[138,163,189],map:[1,5,7,22,30,31,33,36,39,41,43,44,48,51,56,59,68,81,93,103,110,115,120,121,124,125,126,127,128,130,131,132,140,143,146,154,160,163,165,169,170,173,189,190,191,192],map_data:185,map_funct:93,mapper:[30,121],mapper_fruit_nam:39,mapper_noisi:30,mapper_org:30,mappingproxi:120,mar:[139,169,193],marcela:142,march:[119,173,178],marco:130,margarin:109,margin:[60,61,83,125,141,157],mari:[169,191],marital_statu:51,mark:[1,64,84,93,121,154,163,189],markdown:[39,168],marker:[84,121,156,165,184],marker_s:30,markeredgecolor:135,markeredgewidth:[154,182],markerfacecolor:135,markers:[154,156,182],market:[49,52,100,113,115,128,143,163,173],marketplac:113,marklog:178,marktab:107,maroon:[111,176],marquis:109,mart:149,martin:[22,139,140],martinfowl:138,mask:[7,46,54,64,118,120,121,131,177],mask_logit:133,maskrcnn_upxconv_head:133,mason:113,mass:[24,105,110,149,168],massiv:[41,103,141,172],master:[7,14,56,68,76,81,125,143,156],masteri:126,masvnrarea:54,masvnrtyp:54,mat:125,mat_mean:125,mat_tensor:43,match:[0,7,34,41,45,48,63,65,71,77,120,121,122,126,130,135,143,154,163,169,184],matconvnet:125,materi:[50,103,117,118],math:[18,29,31,36,38,43,46,60,61,77,93,117,126,131,164,165,166,171,191],mathbb:[117,128,129,149],mathbf:[146,156,186],mathcal:[77,128,149],mathemat:[54,56,59,74,75,76,93,94,114,115,117,120,125,126,127,129,140,143,149,155,163,164,170,171,177,186,192,193],mathematician:117,mathfrak:146,matlab_2016:38,matlotlib:125,matmul:[120,124,125,128,129,132,134],matmul_1:132,mato:48,matplotlib:[1,3,14,15,18,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,72,74,75,76,79,80,81,83,84,85,99,100,101,102,103,109,110,111,112,124,125,126,127,128,131,132,134,135,142,143,144,145,146,148,150,153,154,155,156,157,158,159,160,161,162,164,165,168,172,176,180,182,184,185,186,187,188,190],matplotlibdeprecationwarn:[62,184],matric:[45,50,66,120,134,139,154,165],matrix:[1,8,18,24,33,34,39,40,43,49,50,52,57,60,64,68,79,81,83,84,117,120,125,143,154,163,168,170,184,192],matter:[59,83,105,113,137,141,155,163,165,166,169,171,183],maverick:141,max:[3,7,18,22,32,33,38,39,41,47,48,50,57,58,59,60,61,64,77,79,104,110,121,125,129,133,134,143,148,150,153,156,157,170,176,187,188],max_ag:22,max_bin:[54,66,152,153],max_cat_threshold:66,max_cat_to_onehot:[66,152,153],max_concurrent_iter:[9,101],max_delta:125,max_delta_step:[66,152,153],max_depth:[49,50,52,54,57,58,66,146,148,150,152,153,184],max_depth_grid:148,max_document_length:134,max_featur:[49,50,52,57,58,146,148],max_features_grid:148,max_it:[56,64,80,156,157],max_ix:134,max_leaf_nod:[52,53,56,57,58,148],max_leav:[66,152,153],max_len:[134,170],max_nod:[9,101],max_pool1:125,max_pool2:125,max_pool:125,max_pool_size1:125,max_pool_size2:125,max_pooling2d:130,max_row:[45,47,48],max_sampl:49,max_sequence_length:134,max_val:29,maxbodymass:[110,176],maxim:[37,50,59,77,128,129,162,169,184],maximis:154,maximum:[3,7,22,47,48,49,50,53,56,57,58,77,80,83,101,102,110,124,125,130,148,154,165],maxiter:128,maxlen:[35,134],maxlength:[110,176],maxpool2d:[31,32,33,34,126],maxpool:125,maxpooling2d:[39,126,131],maxstep:128,maxval:[126,129],maxwingspan:[110,176],mayb:[7,62,77,105,112,121,135,144,150,162,164,166],maybe_cal:121,maybe_convert_indic:121,maze:128,maze_collect:128,maze_typ:128,mb:[29,38,59,79,160],mbox:[149,150],mcculloch:134,mcgraw:141,mckinnei:[120,121],md5_checksum:57,md:[99,100,101,102,108,109,110,111,112,132,133,142,143,155,156,158,159,160,161,162,168],mdp:128,me:[1,36,40,107,125,130,150,164,165,171,175,185],meadow:[111,176],mean:[3,7,14,18,22,29,31,32,33,34,36,37,38,40,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,74,75,77,79,81,83,84,85,93,100,101,102,103,104,105,109,112,113,114,115,118,120,121,122,124,125,128,129,132,134,135,139,141,143,145,146,148,149,150,152,153,154,155,162,163,164,165,166,169,170,171,172,177,182,186,187,189,190,192],mean_absolute_error:[54,74,152,190],mean_actu:76,mean_confidence_interv:18,mean_cross_v:54,mean_imput:79,mean_squar:124,mean_squared_error:[38,42,53,54,58,61,74,79,135,164,190],meanarr:48,meaning:[3,16,30,41,110,113,130,137,163,175],meansquarederror:[29,30],meant:[120,138],meantim:163,measur:[7,14,24,41,49,50,52,59,60,66,68,74,76,77,79,81,102,103,107,112,113,114,115,117,126,128,135,139,140,141,143,144,146,148,151,156,163,164,166,169,174,175,184,186,189],mechan:[45,75,120,127,130,137,138,169,191],med:[1,57,165],media:[5,49,50,52,103,105,138,140,141,163,172],median:[7,18,22,54,57,79,121,149,163],median_house_valu:[61,79],median_incom:[61,79],medic:[1,8,40,100,102,103,113,131,137,141,143,163,168,174],medicin:[8,115,163],medium:[1,59,68,79,81,105,113,124,178],meet:[105,109,113,120,138,141,166,174],mega:[68,81],megapixel:[39,68,81],megatrend:113,mehdi:129,mehta:137,mel:139,melt:64,member:[5,41,50,103,105,107,113,143,145,170,172,175,192],membership:[170,171,192],memcach:178,memcachedb:178,meme:149,memmap:156,memo:105,memor:[41,68,81],memori:[29,33,35,38,49,53,54,58,59,60,68,79,81,118,120,125,127,128,131,137,138,139,143,153,154,156,160,164,170,177],memory_gb:[9,101],memory_unit:128,memoryview:[170,192],men:[56,89,113,174],menglong:130,mention:[0,1,2,8,19,39,40,43,56,59,107,115,117,119,120,121,127,131,135,137,141,146,149,155,163,169,177],menu:[40,101,102,185],merchant:[93,94,169,170],mercuri:193,mere:120,merg:[14,31,38,93,118,149,169,170],merge_asof:121,merge_dict:94,merged_dict:94,merged_list:95,mergetwolist:95,merteuil:109,meshgrid:[50,80,148,154,156,182,187,188],mess:[68,81,166],messag:[50,59,93,102,105,114,121,134,145,163,169,170,175],messi:[137,163],met:[31,40,120],meta:[15,54,139,145,157],metadata:[1,7,46,114,118,120,121,122,137,169,191],metaflow:138,metal:138,meteorologist:135,meter:[103,172],metho:[63,64,65],method:[1,3,7,14,18,24,30,31,33,36,41,46,47,50,54,56,57,58,68,74,75,81,92,93,101,102,103,107,109,110,111,112,115,118,120,124,126,130,131,133,135,136,137,138,139,140,141,143,145,146,148,149,151,153,157,160,161,162,163,164,165,168,174,175,177,181,184,191],method_nam:169,methodnam:169,methodolog:[126,139,149],methylprednisolon:1,metric:[29,30,32,34,36,38,39,40,41,44,47,49,50,51,52,53,54,55,56,57,58,60,61,63,65,74,75,79,84,85,101,102,105,131,135,137,140,144,148,150,152,153,156,157,161,162,164,165,184,187,188],mhrw5iwz2ifmqolguyvnuygzqyrvbxwmbzgjluaj:59,mi:45,michael:141,michalbialecki:[119,178],michel:141,michigan:113,mickei:93,micro:[137,152,157],microcomput:138,microphon:139,microprocessor:[68,81],microsoft:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,38,41,46,49,54,67,68,69,71,72,86,87,89,90,91,92,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,122,137,138,141,143,144,157,160,161,162,164,165,166,168,172,174,178],mid:[93,140],middl:[89,93,111,131,144,154],middlenam:171,midnight:121,midpoint:[140,165],might:[1,7,11,14,18,26,33,34,39,43,47,49,54,55,59,62,64,66,68,75,76,77,81,100,102,109,112,114,115,117,118,120,122,128,133,135,137,139,143,145,148,155,156,161,163,164,165,168,169,170,171,178,180,186,189],migrat:137,mike:24,milk:153,miller:117,millimet:[122,178],million:[32,33,103,130,163,172,189],millionair:171,mimic:[32,41,115,120,163,169,189],min:[1,3,7,18,31,38,47,48,50,58,59,61,64,66,79,84,104,110,121,129,130,133,134,143,148,149,153,156,157,176,187,188],min_:[57,150,186],min_after_dequeu:125,min_child_sampl:54,min_child_weight:[54,66,152,153],min_freq:132,min_impurity_decreas:[56,57,58],min_impurity_split:[56,148],min_ix:134,min_leaf:55,min_nod:[9,101],min_sampl:156,min_samples_leaf:[50,52,57,58,148],min_samples_leaf_grid:148,min_samples_split:[52,53,57,58,148],min_val:29,min_weight_fraction_leaf:[56,57,58,148],min_word_freq:132,min_word_frequ:134,minbodymass:[110,176],mind:[7,36,45,103,107,118,121,130,139,141,144,165,175],mine:[3,48,50,107,123,137,154,171],minecraft:149,ming:191,mini:[139,165],miniatur:164,minibatch:[35,37,83],minibatch_kmean:156,minibatch_kmeans_vs_kmean:156,minibatchkmean:156,minibatchkmeansminibatchkmean:156,miniconda3:144,miniconda:[121,161,165],minim:[29,32,41,49,50,52,53,54,55,74,75,77,90,113,115,124,125,129,134,135,139,143,144,145,149,150,153,155,156,161,163,164,174,186,190],minima:[55,139],minimis:[154,182],minimum:[3,7,48,50,53,56,58,64,75,80,102,110,120,148,150,153,154,155,164,170,192],minio_url:57,minist:125,minlength:[110,176],minmax:129,minmaxscal:[38,40,42,47,60,62,68,79,81],minnesota:[4,110,176],minor:[48,59,66,77,160],minor_axi:121,minu:[149,150],minut:[9,47,49,50,52,101,102,105,114,115,120,125,138,140,143,144,145,156,160,162,163,168],minval:[126,129],minwingspan:[110,176],mirza:129,misc:[125,191],miscfeatur:[54,66],misclassfi:54,misclassif:[50,64,84],misclassifi:[54,64,137,153],miscval:[54,66],misgend:103,mishra:113,mislead:[57,113,137,163,174,189],misleading_label:36,mismatch:[58,120],misrepresent:[113,174],miss:[14,16,18,19,22,24,25,31,49,50,52,53,56,58,61,66,74,76,104,115,120,121,135,137,139,143,148,150,152,163,164,169,189],miss_rinola:38,missclass:50,missing_count:54,mission:113,mistak:[50,54,62,66,105,128,137,149,153,171],mistaken:169,misung:141,misus:138,mit:[41,56,76,93,94,103,113,144,154,169,170,172,174,182],mitchel:[50,163,189],mitig:[28,103,113,155,172],mitpress:94,mittal:137,mix:[121,149,164,166,170,192],mixed4d_3x3_bottleneck_pre_relu:125,mixed_list:[170,192],mixtur:[143,149],mkamal21:113,mkdir:[37,128],mkframe:14,ml2:156,ml:[48,49,52,60,66,67,68,69,71,72,86,87,89,90,91,92,99,100,127,134,135,136,138,139,141,157,159,160,161,162,163,164,165,166,167,168,173,189],mlaa:138,mlb:18,mlcc:[47,48],mleap:138,mlearn:58,mledu:[47,48],mlflow:[102,138],mlop:[136,137,140],mlp:[30,43,133,190],mlpclassifi:161,mlsummari:58,mltest:47,mm:166,mmax:[53,58],mmin:[53,58],mn:54,mncb:59,mnist:[29,30,40,83,124,129,156,180,190],mnist_784:156,mnist_8x8:184,mnist_data:129,mnist_test:[32,83,85],mnist_train:[32,83,85],mnist_train_smal:47,mnistdata:47,mnistdf:47,mnistdf_backup:47,mnistlabel:47,mnistpr:47,mnprv:54,mnww:54,mo:184,mobil:[68,81,105,130,138,157,185],mobile_price_test:[68,81],mobile_price_train:[68,81],mobile_test:[68,81],mobile_train:[68,81],mobile_wt:[68,81],mobilenetv1:131,mobilenetv2:[130,131],mock:[5,24,53,77],mock_df_boxplot:24,mock_df_hist:53,mock_df_pairplot:53,mock_df_plot:24,mock_pairplot:53,mod_resourc:191,mode:[0,7,33,51,54,102,129,130,131,133,138,139,156,157,164,165,169,181],modefin:46,modefined_sklearn_iris_dataset:46,model2:133,model:[7,10,14,20,31,32,35,42,55,58,60,61,62,63,75,76,77,85,86,89,90,91,99,103,104,107,113,114,115,117,118,120,121,124,125,127,129,132,136,137,143,145,146,148,149,150,151,153,154,156,159,160,161,162,173,174,175,178,181,182,184,185],model_1:40,model_auto:31,model_definit:125,model_ev:40,model_filenam:157,model_fn:125,model_histori:131,model_lasso:66,model_learning_r:125,model_mean:126,model_nam:[9,30,31,101,129],model_output:[125,132],model_path:[38,39,40,42,44,101,132],model_perform:54,model_respons:[30,31],model_ridg:66,model_save_path:[30,31],model_select:[29,30,31,32,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,64,66,68,75,79,81,84,85,135,148,150,152,153,156,157,161,162,164,165,168,184,186,187,188],model_url:[30,31,38,39,40,42,44],model_va:31,model_vae_nam:31,model_vae_respons:31,model_vae_save_path:31,model_vae_url:31,model_xgb:66,modelcheckpoint:[39,40,44],modelfit:56,moder:[64,141],modern:[62,107,127,138,140],modif:[29,130,148],modifi:[1,8,45,47,48,50,76,93,94,115,120,121,122,125,131,139,140,150,152,169,170,171,177,178,184,191,193],modifii:94,modnam:169,modul:[31,33,37,59,66,83,101,102,115,119,131,133,138,139,140,156,157,165,168],modulenotfounderror:[83,171],modulo:[170,192],modulu:[170,171,192,193],moment:[102,109,135,139,140,144,149,160,163,164,170,171,190],momentarili:177,momentum:[36,190],momentumoptim:125,mondai:[49,52],monei:[18,102,103,115,146,149,171,172],moneybal:103,mongodb:[115,178],monitor:[39,40,41,44,101,102,103,136,137,138,139,140,173],monkei:121,monoton:[121,141,148,169],monotone_constraint:[66,152,153],monster:83,month:[1,14,15,39,114,135,164,166,171],monthli:[1,114,135,164],mood:[103,172],moodle2:191,moon:31,moraga:150,moral:[6,109,113,174],mordvintsev:125,more:[1,2,3,7,8,14,16,17,18,21,23,28,29,33,34,35,36,39,40,41,43,46,48,50,53,54,56,57,58,59,62,63,64,65,66,74,75,76,77,79,83,100,101,102,103,104,105,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,125,127,128,130,131,132,134,135,136,137,138,139,140,141,143,144,145,146,148,149,152,153,154,155,156,157,160,162,163,164,165,167,168,169,170,171,172,175,177,178,182,184,185,186,189,190,191,192,193],moreov:[50,59,62,130,149,150],mosold:[54,66],mosquera:141,most:[1,3,7,14,17,18,24,29,30,31,32,36,40,41,43,47,48,49,50,51,52,53,54,55,57,58,59,60,62,63,65,66,77,79,83,100,102,105,108,110,111,112,113,115,117,118,119,120,121,122,124,127,128,129,130,135,136,137,138,139,140,141,143,144,145,146,148,149,150,153,154,155,156,160,161,163,166,168,169,170,171,173,176,177,184,189,190,191,192],mostli:[7,59,115,127,139,148,149,164,165,189],motiv:[58,61,103,113,127],motor:128,motorcycl:50,mount:141,mous:93,move:[7,14,33,39,47,49,52,75,77,83,105,107,109,120,125,126,127,137,139,140,145,149,152,156,170,171],move_down:128,move_left:128,move_right:128,move_up:128,movement:[128,149],movi:[103,109,113,163,172,174],moving_mean:130,moving_vari:130,mp3:31,mpeg:31,mpimg:37,mpl:[156,160],mpl_toolkit:[80,84,109,154,182,184],mplot3d:[80,84,109,154,182,184],mrcnn:133,mri:[103,141],mrr:139,ms:[156,177],mse:[35,38,44,45,47,48,50,53,55,58,61,74,75,77,79,84,124,139,146,148,153,164,186],mse_cross_v:79,mseloss:31,msg:[47,121,165],msi:38,msocach:38,msr:103,msrafil:133,mssubclass:[54,66],mszone:[54,66],mtwuhpol:59,mu:[31,117,126,145,148],mu_p:126,mu_q:126,much:[1,3,7,18,30,47,48,49,50,52,54,55,57,58,59,61,62,66,68,79,81,102,104,105,115,117,120,121,122,127,131,137,139,144,145,146,148,149,150,155,156,160,163,164,165,169,177,189],mudiger:139,mug:130,mujumdar:137,mul:[31,125],multi:[30,43,47,57,77,120,121,130,131,135,137,138,140,143,154,160,169,177,178],multi_class:[156,161],multi_grid:131,multi_line_str:[170,192],multiclass:[131,139,154,160,161],multicollinear:[74,184],multidimension:[43,120,125],multifield:120,multiheadattent:[126,130],multiindex:121,multilabel:161,multilay:130,multilin:[112,170,171,192,193],multiline_str:170,multimod:117,multinomi:[161,165],multioutput:161,multioutputregressor:135,multipl:[0,7,12,16,18,33,41,43,45,49,52,53,56,66,76,84,89,93,94,107,110,112,115,118,121,122,125,127,130,132,135,137,138,139,141,143,149,151,153,154,155,168,171,177,178,182,191,192,193],multipli:[43,75,83,93,119,120,130,149,152,155,164,191],multipurpos:193,multitud:152,multivalu:178,multivari:186,munich:[113,174],munigala:137,muralidhar:64,muscl:171,music:[142,143,144,145],muskmelon:39,must:[0,30,32,36,40,41,45,48,59,64,75,79,83,93,101,105,107,114,116,119,120,121,125,130,138,139,141,143,154,156,157,163,164,169,170,182,189,191,192],mustach:157,mutabl:[43,120,169,170,192],mutlipl:125,muufdbikxdmks9nw6kt1ryvntpqvf9:59,mv:178,mvbase:178,mventerpris:178,mx:75,mx_i:75,mxiwdgk8ic9dz8xhyd7evn2garncxycf6tjsnoupao3pjxyhxosmimbvb06qv7nnzxvaul:59,my:[34,54,120,121,132,133,139,140,169,170,185,191,192],my_conv_net:125,my_dict:[93,94],my_funct:191,my_get_text:[169,191],my_imput:152,my_list:[93,191],my_mnist:156,my_model:152,my_modul:191,my_optim:125,my_own_classifi:187,my_sum:[97,191],my_tupl:[170,192],mybind:181,mybnk3dsmcymz0gwylxxqfulhrvy5axto:59,mycount:169,myct:[53,58],mycustomerror:169,myfunct:191,myhtmlpars:3,mylst:171,mymodel0:56,mymodel:56,myownlinearregress:186,myownlogisticregress:[82,187],myqcloud:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,75,110,111,112,143,144,156,160,161,162,164,176],mysql:[122,178],myst:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162],mysteri:160,mythbusting_1:57,n24wr7ee6evwkotuekcka3picccvrgxpyku:59,n:[7,9,18,25,29,30,31,33,35,38,39,40,45,50,51,52,55,56,57,59,63,64,65,75,76,77,85,93,94,102,109,113,117,120,121,124,125,126,128,129,130,131,132,133,134,135,138,139,141,145,146,148,149,154,156,164,165,169,170,171,173,175,178,182,186,191,192],n_1:50,n_2:50,n_:148,n_anchor:133,n_arrai:43,n_batch:129,n_channel:31,n_class:[83,130],n_classifi:162,n_cluster:[144,156,184],n_clusters_:156,n_clusters_per_class:[187,188],n_col:[31,129],n_color:[135,156],n_column:48,n_compon:[30,184],n_connected_components_:156,n_core:[68,81],n_dense_block:130,n_estim:[49,50,51,52,53,54,55,56,66,146,148,153,162],n_featur:[38,63,65,75,82,186,187,188],n_features_in_:156,n_filter:130,n_group:126,n_head:126,n_hour:38,n_i:[50,120],n_imag:37,n_in:38,n_inform:[187,188],n_init:[144,156],n_input:37,n_iter:[54,61,75,82,156,186,187],n_iter_no_chang:56,n_job:[50,52,53,56,66,85,148,153],n_label:156,n_layer:130,n_layers_per_block:130,n_leaves_:156,n_neighbor:[84,85,156],n_ob:38,n_out:38,n_output:37,n_redund:[187,188],n_resnet:126,n_row:[31,48,129],n_sampl:[50,57,63,65,75,82,145,148,154,156,182,186,187],n_split:[56,59,64,148],n_test:[50,148],n_train:[50,148],n_train_hour:38,n_var:38,na:[7,14,46,51,54,66,118,121,133,139],na_val:51,nabla:149,naftaliharri:[144,156],nagalapatti:137,nair:[33,125],naiv:[83,120,149,152],name1:120,name2:120,name:[0,1,7,8,9,12,14,15,18,22,24,29,32,36,38,40,41,54,55,57,58,59,60,61,64,79,83,84,93,94,97,99,100,101,102,107,108,109,110,111,112,114,115,117,119,120,122,125,126,127,130,131,132,133,134,135,138,139,142,143,146,149,153,154,155,156,157,158,159,160,161,162,163,164,165,166,168,169,170,171,176,177,178,184,185,191,192,193],name_1:[170,192],name_2:[170,192],nameerror:[125,169,171],namespac:[121,169,191],nan:[1,14,18,38,45,46,47,51,54,56,64,66,79,118,120,121,139,152,153,164,165],nanosecond:[53,58],narr:[109,113],narrow:[45,49,50,93,111,145,162,163,176,189],nash:129,nasknxwdtb4aaaaasuvork5cyii:59,nasty_list:93,nat:35,nation:[103,157,160,172],nativ:[138,177,178],native_countri:51,native_country_41:51,natur:[1,39,43,45,47,54,59,105,108,111,112,113,115,120,121,127,128,134,135,139,141,143,164,166,171,186],naught:83,navig:[100,102,103,157,163,172],nax4:133,nbmake:0,nbsp:41,nbviewer:[57,58,60,61,66,152,153,156,164,168],nbyte:177,ncc:58,nchw:133,ncluster:144,ncol:[37,39,125],nconfus:39,ncss:133,ndarrai:79,ndf:38,ndframe:121,ndim:[43,120,121,177],ndimag:85,nearbi:[143,148],nearer:164,nearest:[1,31,84,85,143,144,154,156,161,163,169,180,182],nearest_neighbor:131,nearli:[49,52,68,81,133,177,186],neat:[66,164,165,169],neatli:161,necess:127,necessar:138,necessari:[0,7,12,18,20,25,39,45,50,74,76,100,101,109,110,111,112,113,118,120,121,125,127,132,135,137,138,139,142,143,144,154,155,156,158,159,160,161,162,163,164,166,169,170,189],necessarili:[49,66,105,117,124,139,164],need:[0,1,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,23,24,26,27,28,33,38,40,41,42,43,44,46,47,48,49,50,52,53,54,55,56,57,58,59,62,63,65,69,71,72,74,76,83,84,86,89,90,91,92,93,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,125,126,129,131,135,137,138,139,140,141,143,144,145,148,149,152,153,154,155,156,157,160,161,162,163,164,166,168,169,170,171,174,175,178,182,184,185,186,189,191,192],needless:[7,120],neg:[40,41,50,51,52,56,57,59,66,68,81,93,103,117,120,125,126,127,128,129,139,141,149,154,156,165,169,170,171,180,190,192,193],neg_mean_squared_error:66,neg_root_mean_squared_error:[54,79],negative_integ:[170,192],negative_slop:37,negativs:52,neglig:48,neigh_garag:54,neigh_lot:54,neighbor:[49,52,56,84,85,128,144,156,161,163],neighborhood:54,neightborhood:54,neither:[71,150],neo4j:178,nepoch:31,neptun:193,neq:[120,128,145],nervou:134,ness:133,nest:[56,75,94,109,120,121,169],nested_list:94,nested_tupl:170,nestim:59,net50:130,net:[6,25,32,35,47,130,131,134,138,149,153],netd:37,neteas:38,netflix:[113,127,163,174],netg:37,network:[5,29,30,31,36,38,41,43,45,47,48,49,62,64,68,81,100,103,115,120,121,124,128,130,131,132,133,135,136,137,138,139,141,149,155,157,160,161,163,168,173,174,181,188,189],network_weight:125,networth:171,neural:[29,30,31,35,36,37,41,43,45,47,49,62,64,68,81,120,121,124,128,130,131,132,133,135,136,139,141,149,155,157,160,161,163,168,180,181,188,189],neural_network:125,neuralearn:126,neuron:[30,40,41,45,47,62,127,134,139,155,179],neurral:155,neutral:138,neutron:59,never:[31,40,49,50,52,54,56,57,83,102,114,120,129,130,139,155,163,169,189],nevertheless:[7,84,118,120],new_ax:121,new_column:[14,164,165,166],new_data:121,new_df:30,new_dict:170,new_imag:34,new_label:121,new_pumpkin:[164,165,166],new_row:121,newaxi:[29,30,45,63,65,77,120,131,168],newbi:139,newer:[79,139,177],newli:[14,121,122,170],newlin:[132,170,191],newshap:120,newton:[93,161],next:[3,7,9,34,35,36,37,38,39,40,41,44,46,47,48,49,50,52,53,54,56,58,61,62,74,93,94,95,99,101,102,103,105,107,113,118,120,121,122,125,126,127,128,130,132,134,135,138,139,140,143,145,148,149,150,152,153,154,156,157,160,162,163,165,166,168,169,170,171,177,185,189,191,192],next_num:94,next_stat:35,nfals:59,nfold:153,ng17:139,ng:[77,109,125,137,139,140,163],ngo:56,nh:133,nhwc:[129,133],ni:[170,192],nice:[47,50,66,110,150,160,170,184,192],nicer:[1,14,169],nichol:126,nick:[107,125,132,134,163],nigeria:142,nigerian:[143,144],night:[50,125,145,157,186],ninfav:14,ninfect:14,nip:[125,141],nipy_spectr:184,nitin:137,niven:186,nj:[138,145],nl:57,nlargest:38,nlookup:120,nlp:[1,59,130,139],nlp_rake:3,nltk:1,nmodel:56,nmultilin:171,nn:[31,33,37,40,124,125,126,128,129,130,132,133,134],nn_vi:179,no_enrol:56,no_exceptions_has_been_fir:169,no_grad:[31,33],no_missing_data_df:46,no_missing_dup_data_df:46,no_smile_data:31,no_smile_id:31,no_smile_lat:31,noced:139,node:[1,29,30,41,50,101,102,109,119,125,132,138,146,148,153,178,193],node_id:146,nois:[3,29,31,36,37,41,45,50,59,64,68,81,124,125,128,129,141,143,148,149,154,155,156,180,182,186,187],noise_factor:[29,30],noise_s:129,noise_shap:47,noisi:[29,140,143,144,148,149],nol20:115,nolli:115,nomin:[54,57,153],non:[1,14,18,29,38,44,54,56,59,60,61,79,93,94,102,113,118,120,121,123,124,125,126,129,132,139,141,143,146,148,149,153,154,155,163,164,169,174,181,191],non_block:33,non_cor:156,non_core_mask:156,none:[3,9,14,18,22,24,29,35,36,38,39,45,47,48,49,52,53,55,56,57,58,63,65,66,68,74,75,81,82,90,94,95,101,102,111,112,118,120,121,126,128,129,130,131,133,134,135,144,145,148,152,153,154,155,156,160,164,169,170,176,182,184,186,187,192],nonetheless:156,nonetyp:[170,177,192],nonexistent_column:14,nonflat:143,noninfring:[93,94,169,170],nonlin:45,nonlinear:[32,45,61,74,125,127,130,139,155,164],nonoptim:139,nonparametr:[148,161],nonzero:[55,120],nooooooo:171,noqa:[169,170],nor:71,norm1:125,norm2:125,norm:[113,125,133,155,156],norm_hist:54,normal:[7,29,30,31,32,36,37,40,43,45,49,50,52,59,66,68,74,79,81,83,118,120,124,125,126,127,129,130,131,132,133,137,139,144,146,148,149,155,163,166,169,180,184,190],normal_:37,normal_goal_i:128,normal_goal_x:128,normal_i:128,normal_random:18,normal_test_data:29,normal_train_data:29,normal_x:128,normalizaiton:32,normalization_matrix:125,normalization_mean:125,normalized_data:[68,81],normalizedata:48,norri:93,north:[79,167],northgat:178,norwai:193,norwegian:169,nosql:[115,174],nostruct:120,not_equ:120,not_existing_charact:[170,192],not_existing_vari:169,not_ther:120,notabl:[61,127,163,178],notat:[54,114,119,120,121,169,170,192],notclean:38,note:[0,1,7,8,14,18,29,36,40,41,47,48,50,52,53,54,57,58,61,66,68,81,84,85,101,102,104,112,113,114,117,118,120,121,125,126,127,131,139,141,143,145,146,148,149,150,154,156,164,166,168,169,170,184,186,192],notebook:[0,4,7,9,13,16,17,18,19,22,23,30,31,33,36,40,41,49,53,54,57,58,60,61,63,64,65,66,68,69,72,81,83,84,85,86,90,102,103,104,117,118,127,136,143,144,152,153,156,157,161,164,165,166,167,171,172,177,181,184,185,186,187,190],notebook_path:[29,30,31,33,39,41,66],noteworthi:[77,126],notexist:3,notfittederror:150,noth:[7,41,57,60,62,83,112,120,145,149,150,152,153,156,169],notic:[7,29,40,48,93,94,103,105,107,110,111,112,117,118,119,122,135,155,157,163,166,169,170,175,177,178,186,189,191],notifi:[113,174],notion:[49,58,163],notnul:[7,46,51,118,177],notori:[36,109],notwithstand:[7,118],noun:130,novel:[109,131,133],novemb:[109,135,138,139,140],novic:105,now:[1,3,6,7,10,14,16,17,18,20,29,30,33,34,35,36,40,41,43,45,46,47,48,49,50,51,52,54,56,57,58,59,60,61,62,66,68,75,77,79,81,83,84,90,92,100,101,102,103,105,111,112,113,114,115,117,118,120,121,122,125,131,132,133,134,135,138,139,144,145,146,148,149,150,153,154,155,156,157,160,161,163,164,165,166,168,169,170,171,172,178,184,185,186,192],nowadai:[115,154],nowdai:163,np:[1,7,14,18,22,24,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,74,75,76,77,79,80,82,83,85,87,117,118,120,121,124,125,126,128,129,130,132,133,134,135,140,145,146,148,150,153,154,156,157,160,161,162,164,165,168,177,180,182,184,185,186,187,188,190],np_util:32,npm:109,npredict:39,npy:34,npython:171,nrow:[33,37,39,125],ns:38,nsampl:[38,44,131],nsecond:170,nshape:[63,65],nstandard:18,nswdeman:[49,52],nswdemand:[49,52],nswprice:[49,52],nt:[110,176,178],ntest:[40,41,190],nthe:[40,49,52,53,57,58,60,61,68,81],ntrain:64,ntree:148,ntrue:59,nu:150,nudg:[113,174],nuforc:157,null_accuraci:59,nullifi:77,num1:191,num2:191,num3:191,num:[61,79,93,120,124,126,129,131,132,170,191,192],num_allow_arg:121,num_anchor:133,num_batch:[129,132,134],num_block:130,num_boost_round:[66,153],num_categori:133,num_channel:125,num_class:[32,77,130,131,133],num_col:[41,54],num_conv:133,num_correct:125,num_epoch:[33,129],num_exampl:131,num_feat:[61,79],num_feats_imput:79,num_feats_pip:79,num_feats_preprocess:79,num_featur:[83,124],num_filt:130,num_gens_to_wait:125,num_head:[126,130],num_hidden_1:124,num_hidden_2:124,num_hours_studi:186,num_imag:41,num_img:36,num_independent_vari:76,num_input_data:[68,81],num_label:190,num_lay:130,num_list:[61,79],num_memory_unit:128,num_output:83,num_parallel_cal:131,num_parallel_tre:[66,152,153],num_patch:130,num_pip:61,num_preprocess:61,num_queri:133,num_row:41,num_scal:79,num_target:125,num_test_sampl:129,num_thread:125,num_to_plot:146,num_unit:[83,134],num_vowel:170,num_work:33,numa:29,numa_nod:29,number:[1,3,6,7,8,14,18,22,25,29,30,31,32,33,34,35,36,38,39,40,41,43,45,46,47,48,49,50,52,54,55,57,58,59,62,63,64,65,68,75,76,79,80,81,83,84,85,101,102,105,107,109,110,111,112,114,115,118,121,122,124,125,126,127,128,130,131,132,133,135,138,139,140,143,144,145,146,148,149,152,153,154,155,157,160,161,162,163,164,165,166,168,169,174,176,177,180,182,184,185,186,189,191],number_imgs_each_part:39,number_limit:169,number_of_iter:[169,191],number_of_part:39,number_to_be_found:[169,191],numbug:191,numclass:47,numcol:[112,176],numer:[1,8,31,33,40,43,46,49,52,57,58,61,66,68,77,81,83,93,102,104,109,110,111,112,114,117,118,119,120,122,125,127,128,139,144,146,148,162,163,164,166,168,170,176,178,189,192],numeric_:54,numeric_feat:66,numeric_train:54,numeric_v:93,numpi:[1,7,14,18,22,24,29,30,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,74,75,76,77,79,80,83,84,85,87,99,100,101,102,103,110,111,112,118,121,123,124,125,126,127,128,129,130,132,133,134,135,142,143,144,145,146,148,150,153,154,155,156,157,158,159,160,161,162,164,165,168,169,172,180,181,182,184,185,186,187,188,190],numvehicl:135,nuniqu:51,nusvc:59,nvalid:64,nvarianc:18,nvidia:29,nw:133,nx0:133,nx1:55,nx4:133,nx:[38,44,120],nxcx:133,nxn:125,ny0:133,ny:[38,44,120,141],nyandwi:[40,43,49,52,53,68,79,81,163],nyc:[103,107,109,172],nyu:191,nz:37,o4yuzatazi:59,o6hc4qs8gkymfwwpxf6fxtxiucvqqcrsvyah3ppbsfh7yeiqsd:59,o:[12,25,42,51,54,55,59,84,113,120,128,133,134,137,141,145,156,170,190,192],o_lay:125,o_t:132,ob:35,obama:[93,141],obei:[40,120,154],obes:102,obj:[120,121,169,177],object:[3,7,9,14,16,24,31,36,38,43,44,47,48,50,53,54,56,57,59,64,66,76,79,80,83,84,101,103,109,111,114,118,119,124,125,127,129,130,131,132,135,138,139,140,142,143,149,152,153,154,155,157,160,161,163,164,170,171,172,176,178,179,190,191,192,193],object_:120,objectdatabas:178,objectdb:178,objectstor:178,observ:[1,3,7,18,30,38,47,53,59,76,77,114,115,118,121,126,128,135,137,139,143,144,145,146,149,152,160,164,165,184],observablehq:164,observepoint:105,obtain:[3,22,24,45,47,48,50,58,59,83,93,94,115,117,120,126,139,146,148,151,153,164,169,170,174,192],obviou:[18,56,111,117,130,148],obvious:[50,56,112,154,180],ocademi:[0,12,18,25,76,98,136,144,171,179,191,193],occam:155,occasion:[77,169],occlud:[130,133],occlus:[39,130],occup:[51,153],occur:[1,7,8,28,49,52,59,75,113,120,125,132,135,139,155,157,166,169,170,185,191],occurr:[1,2,8,28,46,47,54,59,118,165],ocean:[61,79],ocean_proxim:[61,79],oceanproxim:79,octav:125,octave_n:125,octave_scal:125,octob:[113,166,178],od:169,odaba:178,odd:[93,191],odor:[111,176],odot:126,odunsi:143,ofcours:127,off:[30,34,36,37,39,40,46,49,50,52,56,59,61,62,68,76,77,81,83,107,125,126,128,130,131,132,135,145,148,153,155,156,163,169,175,180,190],offer:[21,40,75,77,100,109,110,111,113,120,130,137,143,152,160,161,162,165,166,174,177],offic:[115,130,135],office16:38,offici:[43,120,153],offlin:[35,157],offset:[120,149],often:[1,3,7,8,40,41,46,49,50,52,54,59,62,68,74,77,81,102,103,109,113,114,115,117,118,120,126,128,130,132,135,138,139,145,146,148,149,155,156,161,163,165,166,167,169,170,174,177,191,192],oftentim:115,oh:[47,132,145],ohadlight:130,ohh:[49,52,57,68,81],oil:36,ok:[119,121,122,145],okai:[41,57,58,156],old:[50,121,138,144,160,171,191],older:[117,120],oldid:178,oleksii:[93,94,169,170],ols:154,omar:56,omega_t:134,omit:[1,29,117,121,145,149,169,170],on3sx3y9kwmxfjcw:59,on_bad_lin:38,on_epoch_end:[40,131],onboard:[105,137],onc:[0,7,41,43,45,48,53,55,58,74,79,83,101,102,113,115,117,118,120,121,129,132,135,137,138,139,149,150,153,155,157,162,163,165,169,171,191,193],one:[1,6,7,8,11,13,14,16,18,19,21,22,24,26,27,28,29,31,32,33,36,39,40,41,43,44,45,46,47,48,49,50,51,52,54,56,58,59,60,61,62,63,65,66,68,69,72,75,76,79,80,81,83,85,86,91,92,93,94,100,102,103,105,107,108,109,110,111,112,113,115,117,118,119,120,121,122,125,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,148,149,152,153,154,155,156,157,160,161,162,163,164,165,167,168,169,170,171,172,176,177,178,182,185,186,189,190,191,192,193],one_hot:[7,79,125,129],one_hot_data:7,one_hot_encod:[22,79],one_trunc:121,onefield:120,onehotencod:[51,61,79,186],ones:[7,11,36,37,43,46,49,50,56,63,65,66,74,77,102,103,105,109,118,120,124,126,130,137,143,144,148,153,155,165,166,171,172,177,180,186],ones_for_answ:83,ones_lik:129,ones_tensor:43,ones_tensor_1:43,ongo:[107,141,175],onion:161,onli:[0,1,7,11,14,18,24,27,29,31,32,33,34,36,39,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,63,65,66,68,77,79,81,83,91,93,94,99,100,101,102,105,107,110,113,114,117,118,119,120,121,122,125,127,128,129,130,133,135,137,138,139,141,143,146,148,149,153,154,155,156,157,161,164,165,166,169,170,171,173,175,178,182,184,191,192,193],onlin:[1,28,113,115,117,120,121,138,139,141,157,163,169],only_path:39,onnx:[138,157],ontario:14,onto:[47,51,105,124,140,184,186],ontotext:178,onward:14,oob:145,oob_scor:148,oocademi:171,op:[121,125,132,134],open:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,36,37,38,39,40,41,42,43,44,46,49,50,52,53,54,55,56,57,58,59,60,61,62,64,66,67,68,69,71,72,76,79,81,83,84,85,86,87,89,90,91,92,93,94,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,141,143,144,145,146,148,149,150,152,153,157,160,161,162,163,164,165,166,168,169,170,171,177,184,185,186,187,189,190,191,193],open_access:[76,144],opencv:[38,126],openinsight:178,openlink:178,openml1:57,openml:[53,57,58],openporchsf:54,openqm:178,oper:[7,18,25,29,33,40,49,56,59,75,93,100,102,113,115,117,119,125,128,130,132,136,137,138,139,140,165,169,171,173,174,193],operand:[120,170,177,192],operation:[113,174],opinion:139,oppon:129,opportun:[54,102,103,104,139,141,157],oppos:[121,152,169,170],opposit:[7,109,124,142,150,155,165,180],oppurtun:149,opt:[100,144,163],opt_func:33,optic:[138,143],optim:[29,30,31,32,33,34,35,36,38,39,40,41,42,43,44,45,47,50,52,54,57,62,75,76,77,80,84,102,103,105,110,120,121,124,125,126,127,128,129,130,131,132,134,137,140,141,144,146,148,149,150,152,153,154,161,164,165,180,182,184],optimis:154,optimist:[49,145],optimizerd:37,optimizerg:37,optimum:[56,144],option:[1,7,15,16,43,45,48,50,68,79,81,94,95,101,103,107,112,113,118,119,120,121,135,137,138,141,149,156,157,161,162,169,170,171,172,177,190,191,192],oracl:[122,178],orang:[39,50,109,110,117,128,160,165,170,176,192,193],orchestr:[137,138],ord:131,ord_col:54,ord_enc:57,order:[1,3,6,7,14,18,31,40,43,46,47,50,53,54,55,57,58,64,68,75,79,81,83,84,93,110,111,113,114,115,117,118,119,120,121,126,128,130,133,135,139,140,141,145,148,149,150,153,154,157,163,164,165,169,170,171,174,176,178,184,186,189,191,192,193],ordin:165,ordinal_map:54,ordinalencod:[57,79],ordinari:[57,79,135,165],ordinary_encod:79,oreilli:105,org:[3,22,45,47,48,57,58,60,61,66,105,121,125,126,130,131,132,133,139,141,152,153,154,156,164,168,169,170,178,179,184,191],organ:[34,40,100,101,103,107,110,113,114,115,118,119,120,130,137,138,163,168,172,174,175,176,178,184,185,189],organiz:113,orgin:[53,58,79],orient:[36,127,130,137,168,169,170,171,192],orientdb:178,origin:[3,7,14,29,30,31,34,36,39,45,49,50,55,57,58,59,63,65,81,90,93,94,112,115,120,121,124,125,129,135,137,138,143,145,146,148,149,150,153,154,156,160,164,165,166,170,178],original_featur:125,original_imag:125,original_image_fil:125,original_image_weight:125,original_label:121,original_lay:125,original_layers_w:125,original_loss:125,original_minus_mean:125,original_norm:125,original_str:[98,170],originl:55,ornella:103,orthogon:[124,184],os:[29,30,31,33,35,36,37,38,39,41,45,47,48,51,56,59,66,76,83,85,99,100,101,102,110,111,112,125,127,128,132,134,138,142,143,144,155,156,158,159,160,161,162,164,169],oscil:129,ossif:113,ot:125,other:[3,7,14,17,18,20,31,33,35,40,41,43,44,46,48,49,51,52,53,54,56,57,58,59,62,64,66,74,76,77,79,83,84,86,89,93,94,99,101,102,103,105,110,111,112,113,114,117,118,119,121,122,124,126,127,130,131,133,135,136,137,138,139,140,141,142,143,144,145,146,148,149,152,153,154,155,156,159,160,163,164,166,167,168,169,170,171,177,178,184,186,187,188,189,190,191,192],other_nam:[169,191],otherwis:[33,61,77,83,93,94,120,121,122,125,130,139,141,143,148,152,163,164,166,169,170],ouch:156,our:[1,3,7,14,18,29,30,31,32,33,34,36,39,40,41,43,46,47,48,50,52,54,55,56,57,58,59,60,63,65,66,68,74,75,76,77,79,81,83,84,103,104,105,111,112,113,115,117,118,121,122,124,125,126,127,130,133,135,136,139,140,141,143,144,145,146,148,149,150,153,155,156,157,160,161,162,163,164,165,168,169,171,174,177,178,184,185,189,193],ourselv:[48,54,135,149],oustand:49,out1:130,out:[3,7,8,14,15,18,29,33,34,35,37,41,43,48,50,53,54,56,59,62,64,66,68,81,93,94,100,101,103,105,109,110,112,113,114,115,117,118,120,121,122,125,126,127,128,129,130,131,133,135,136,138,139,141,143,144,146,148,149,152,153,155,157,160,161,162,163,165,166,168,169,170,171,177,178,184,185,189,191],out_channel:[31,130],out_col:54,out_conn:132,out_dir:129,out_filt:131,out_sampl:126,out_sent:132,out_siz:131,outbreak:14,outcom:[7,16,56,59,77,103,107,113,115,117,118,126,137,145,160,164,165],outer:[75,160,169,177],outermost:[121,169],outfield:117,outli:139,outlier:[7,45,46,47,60,61,74,76,77,79,108,110,117,137,139,143,144,145,148,149,154,156,176],outliers_influ:[54,64],outlin:[54,105,113,135,138],outlook:163,outperform:[49,139],output:[7,9,29,30,31,33,36,37,38,40,41,43,46,47,48,50,51,56,77,80,83,100,101,102,118,120,121,122,124,125,127,128,129,130,131,132,133,134,135,139,140,141,143,145,146,148,149,150,153,155,156,157,160,163,164,165,169,170,171,177,178,179,180,185,189,190,192],output_channel:131,output_class:131,output_everi:125,output_fil:125,output_file_nam:128,output_final_layer_before_activation_funct:128,output_gener:125,output_imag:37,output_indic:125,output_loc:125,output_memori:128,output_prepar:[38,44],output_s:130,output_stag:131,output_unit:83,outsid:[54,105,117,120,121,152,161,169,191],outwork:163,over:[1,7,8,13,14,24,31,32,33,36,40,46,48,49,51,52,54,59,68,77,81,83,91,94,100,103,105,109,112,113,118,120,122,124,125,127,128,129,130,132,133,134,135,137,138,139,140,141,143,145,146,148,149,150,153,156,157,160,161,162,165,167,169,170,171,172,173,176,178,191,192],over_sampl:160,overal:[7,13,14,30,31,48,49,50,54,56,103,104,112,114,115,118,139,146,149,163,164,189],overallcond:54,overallqu:54,overcom:[49,52,57,58,154],overdu:50,overexcit:155,overfit:[32,33,40,41,47,48,49,50,52,53,54,57,58,60,61,62,63,65,66,68,74,77,81,83,135,139,145,148,149,151,152,153,154,162,182,190],overfit_cat:54,overfit_num:54,overflow:121,overhead:[133,177],overlap:[18,117,120,121,143,144,169],overli:[49,50,77],overlin:[126,146],overload:154,overlook:[113,163],overrid:[121,169,191],override_groups_map:130,oversampl:160,overshadow:141,overshoot:[75,150],oversimplif:105,overtim:163,overtrain:64,overview:[50,71,102,105,107,110,118,121,127,137,139,181],overwhelm:115,overwrit:[128,170,191,192],ovr:[156,161],owlim:178,own:[0,11,17,28,39,41,50,62,89,91,100,101,102,103,107,109,113,117,120,121,124,128,130,137,140,141,145,148,149,154,155,156,163,169,175,189],owner:[137,146],ownership:[50,113,174],ox:132,oxford:[113,174],oxford_iiit_pet:131,ozair:129,p1:191,p2:[32,126,191],p8jfm99bcnocr0fprrwgct14av4jdyx2gbnqpcnfextg3ams9qwtwvps5ycf06zz62cbjwwxw4muuruopw4ovcvkv7zqj4edmwgpr6w:59,p:[3,18,32,37,48,50,55,56,57,77,117,120,121,126,128,129,135,139,144,145,146,148,150,153,154,155,156,157,160,163,164,169,170,182,186,189,191,192],p_1:[50,117,126],p_2:[50,117],p_:[50,126,129],p_i:[50,77,126],p_k:50,p_n:[117,126],p_sampl:126,p_z:129,paa:[100,173],pace:[41,75],pack:[120,168,170,191],packag:[18,35,51,57,103,117,120,121,138,143,144,149,157,160,161,163,164,165,166,168,172,177,180,184,191],packed_tupl:170,pacsuta:128,pad:[1,14,18,29,30,32,33,34,36,37,39,54,120,124,125,126,130,131,133,134,156,157],pad_bord:133,pad_sequ:134,padding_11:130,paderborn:128,page:[3,21,26,40,43,57,58,60,61,66,77,102,103,105,114,115,121,140,152,153,156,157,164,165,168,172],pagefil:38,pai:[18,59,84,100,113,127,132,146,148,164,173,174],paid:[113,127,174],pain:156,paint:[36,119],pair:[7,50,77,91,94,117,119,120,148,149,156,161,169,170,171,178,191,192,193],pair_list:3,pairgrid:[58,79,165],pairplot:[58,68,79,81],pairwis:[84,148],pal:36,palett:[39,51,56,68,81,109,110,112,135,176],palette_kwarg:135,palette_kwargs_:135,palinami:[63,65],palyground:164,pamphlet:50,pan:131,pancak:128,panda:[1,2,14,15,17,18,22,23,24,29,30,31,32,34,35,36,38,39,40,42,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,74,75,76,79,81,83,84,85,87,99,100,101,102,103,110,111,112,118,120,123,127,132,135,136,140,142,143,144,145,146,148,150,152,153,155,156,157,158,159,160,161,162,164,165,166,172,175,176,180,181,184,185,186,187,188,190],pandasarrai:121,pandem:[1,11,120,140],panel:185,papandr:131,paper:[7,14,21,26,28,49,50,103,115,117,125,127,129,131,132,133,153,156,165,172,179],paperback:135,papercodereview:133,papiu:66,par:66,parabol:164,paradigm:[115,163,189],paragraph:[89,91,132,169],parallel:[37,54,100,102,131,148,152,153],param:[29,47,48,61,63,64,65,66,125,131,153,169],param_distribut:[54,61],param_grid:[50,56,57,58,59,60,156],param_lst:54,param_test1:56,param_test2:56,param_test3:56,param_test4:56,param_test5:56,paramet:[3,7,10,22,31,32,33,34,41,45,48,49,52,57,58,59,60,61,62,63,64,65,66,68,75,77,81,82,83,85,101,102,110,112,117,118,120,121,124,125,126,127,130,131,132,134,135,139,140,149,150,152,153,154,155,156,161,162,164,165,169,170,171,183,186,187,191,192],parameter:77,parameteriz:140,parameterless:169,parameters_input:171,parameters_output:171,parametr:154,params_grid:[52,53,57,58,60],paramt:[33,150],parch:22,paremet:[60,79],parent:[6,22,113,121,169,174],parenthes:[7,169,170,191,192],park:157,parma:[63,65],parmet:155,parquet:115,parquet_url:57,parrot:[121,169,191],parrot_typ:169,pars:[3,118,135],parse_d:135,parsed_data:3,parsefromstr:125,parser:[3,169],part:[1,7,8,11,30,33,34,39,43,47,50,54,68,77,81,83,93,100,101,104,105,107,108,109,113,115,116,118,119,120,121,124,128,129,130,131,132,133,135,136,137,138,139,140,141,143,144,145,148,149,154,155,157,162,163,164,166,167,168,169,170,171,176,180,182,189,191,192,193],parti:[100,105,115],partial:[39,80,86,111,120,137,139,143,149,150,153,176],partial_deriv:126,partial_fit:156,partially_propag:156,particip:[50,113,134,145,149,174],particular:[7,31,43,49,50,51,57,59,77,79,93,94,104,107,111,112,114,118,119,120,121,127,129,139,145,146,149,156,163,164,169,170,175,189,192],particularli:[7,46,110,112,113,118,143,144,166,170,192],partit:[50,119,120,137,144,154],partner:[113,174],pascal:169,pass:[0,3,7,31,36,40,46,48,50,54,56,57,58,59,83,93,104,105,110,113,120,121,125,126,127,130,150,155,161,164,169,170,171,176,185,191,192],passag:109,passeng:[7,17,22,23],passenger_class:22,passengerid:150,passion:[105,170,192],passthrough:186,past:[49,50,54,113,122,125,130,133,134,135,138,140,141,157,179],pastel2:156,patch:[24,49,53,100,130,164],patch_dim:130,patch_project:130,patch_siz:130,patchifi:130,patel:137,path:[0,2,15,17,23,29,30,31,33,36,37,39,41,45,47,48,50,51,56,66,68,74,81,101,111,113,120,125,126,131,132,134,135,141,149,150,156,162,169,176,191],path_to_param:125,pathcollect:164,pathlib:135,pathnam:[45,47,48],patienc:[39,40,44],patient:[24,40,101,102,103,139,168],patrick:56,pattern:[36,54,55,56,62,64,74,76,77,103,104,107,112,113,115,127,135,138,141,142,143,151,155,163,165,168,169,174,175,189],paul:[38,171],paus:128,pave:66,pavithra:[63,65],pawel:193,payment:50,paz20:141,pazzanes:141,pb:125,pbar_out:31,pc:[68,81],pca:[124,163],pci:29,pclass:[22,150],pclass_xt:22,pclass_xt_pct:22,pcolormesh:50,pctdistanc:[111,176],pd:[1,2,7,14,15,17,18,22,23,24,29,30,31,32,34,35,36,38,39,40,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,74,75,79,81,83,85,87,110,111,112,118,121,135,140,143,144,145,146,148,150,152,153,157,160,161,162,164,165,166,176,180,184,185,186,187,188,190],pdf:[130,131,191],peac:105,peach:39,peak:152,pear:[39,170,192],pearsonr:66,pedestrian:163,pedoia:141,peek:[85,93,165],peep:40,peer:103,peke:191,penal:[74,76,77,127,149,163,180,189],penalti:[59,77,113,124,130,149,154,155],pendant:[111,176],peopl:[3,14,31,40,46,49,56,79,94,100,102,103,105,107,109,113,115,117,118,119,120,121,138,139,141,163,170,173,174,178,189,191],people_info:94,people_to_check1:93,people_to_check2:93,pep557:121,pepper:161,per:[33,39,45,47,48,49,50,60,110,112,120,121,125,126,130,131,133,139,156,160,164,166,176,177],per_image_standard:125,perceiv:[143,163,189],percent:[1,184,190],percentag:[14,34,41,50,52,59,62,68,79,81,102,139,148,165],percentil:[117,145,156],percentile_closest:156,percept:[143,163],perceptron:30,perceptu:130,perceptualedg:105,perfect:[47,49,59,64,77,94,110,155,156,176],perfectli:[7,50,64,68,77,81,118,139,145,154,164,182],perform:[1,7,18,29,31,32,33,39,40,41,48,49,50,51,53,54,56,58,59,61,62,64,66,74,75,76,77,79,83,84,85,90,94,100,102,107,115,117,119,120,122,126,127,128,130,131,133,136,137,138,139,140,141,143,145,146,148,149,150,152,153,154,155,156,160,161,164,165,168,169,170,171,173,175,177,183,185,186,191,192],performcv:56,perhap:[4,47,48,62,77,110,126,131,135,143,156,157,163,180,189],period:[13,14,38,39,44,49,52,102,103,121,135,141,169],period_rang:135,periodindex:135,perm:94,permiss:[22,45,47,48,93,94,102,113,169,170],permit:[93,94,120,169,170],permut:[31,33,83,94,129,134],perpendicular:[50,59],perplex:139,pers:77,persimmon:39,persist:[9,128],person:[6,7,14,28,31,36,50,51,57,93,94,101,103,105,113,114,115,117,119,127,135,138,163,168,169,170,171,174,189,191],person_id:31,personsdata:119,perspect:[77,103,113,130,149],perst:178,persuad:105,persuas:105,pervas:[113,115],pet:15,petabyt:[103,172],petal:[46,60,84,118,146,184],petallength:[84,121,146],petallengthcm:64,petalratio:121,petalwidth:[84,121,146],petalwidthcm:64,peter:[117,170,192],petra:137,petrova:14,pfa:138,pg100:132,pg4mtoh4b05qn5dt:59,ph:48,ph_delta_weights_list:128,phase:[33,56,104,105,140,143,163,189],phd:56,phenomenon:141,phi:126,philip:137,phillip:141,phone:[6,68,81,105,113,114,115,170,174,185,192],phonem:132,photo:[31,34,43,99,106,108,121,123,159,167,180],photo_id:31,photo_numb:31,photo_path:31,photograph:[115,121,142],photoshopcs6:38,php:[178,191],phrase:[29,130,163,175],physic:[50,102,128,138],physicochem:48,physiolog:89,pi:[126,128,146,170,171,191,192],pi_j:146,pi_valu:[170,192],pic:31,pic_input:31,pic_output:31,pick:[16,26,28,33,36,64,66,68,81,91,105,112,119,125,128,144,148,150,153,156,166,168,178],pickl:[132,138,191],pickler:191,pickletool:191,pickup:[103,172],pictur:[1,3,14,30,31,37,50,51,59,60,115,117,120,121,127,139,145,146,149,163,180,184,189],pid:128,pie:[27,51,68,81,109,164,166],pie_pumpkin:164,piec:[46,51,59,98,104,115,118,137,140,152,168,180],piecewis:50,pieter:126,pii:113,pil:[31,36,125],pillow:169,pin:185,pin_memori:33,pineappl:[170,192],pinfect:14,pink:[1,109,111,176],pinpoint:54,piotr:[133,139],pip:[3,12,18,25,76,99,100,101,102,110,111,112,127,132,142,143,144,155,156,157,158,159,160,161,162,164,185],pipe:57,pipelin:[53,56,57,58,60,61,64,101,102,125,131,137,138,139,140,156,164],pipeline_scor:156,pipelinepipelin:[156,164],pipeln:64,piplin:[125,128],pitaya:39,pitch:140,pitt:134,pivot:[38,77,115],pivot_t:121,pix2pix:131,pixel:[29,30,33,36,39,40,41,43,47,50,68,81,85,120,130,131,133,139,163,184],pk:[12,122],pkl:157,pktfrwjz:59,pl:146,place:[7,33,46,50,54,93,94,102,104,105,109,115,118,120,121,127,137,145,160,163,165,168,169,170,171,192],placehold:[125,128,129,130,134,157,171,185],plai:[3,14,18,43,48,50,56,75,76,79,101,115,117,137,149,154,162,168,169,182,185],plain:[3,130],plainli:111,plan:[1,50,100,105,137,140,145],plane:[50,130,143,154,164,184],planet:[6,103,172,193],planetari:[103,172],plastic:143,platelet:[9,101,102],platform:[10,20,29,43,74,100,102,105,137,138,141,149,157,163,171,173,189],plausibl:180,play:75,player:[18,103,117,129,138,163],playground:[140,149,160],playgroundn:164,pleas:[15,29,45,46,47,48,49,52,57,58,60,61,66,83,101,121,125,130,152,153,155,156,157,164,168,169,181],plenti:[109,137,139,141,149,156],plot:[1,3,8,14,15,18,19,29,31,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,54,56,57,59,60,61,62,64,66,68,74,75,76,80,81,83,84,89,109,115,117,121,125,126,128,131,132,134,135,139,143,146,148,150,154,155,156,160,161,163,164,166,168,182,184,186,187,188,189,190],plot_3d:[154,182],plot_accuraci:33,plot_align:22,plot_centroid:156,plot_clust:156,plot_clusterer_comparison:156,plot_color:22,plot_dat:35,plot_data:156,plot_dbscan:156,plot_decision_boundari:156,plot_galleri:31,plot_imag:41,plot_import:153,plot_infected_vs_recov:14,plot_kind:22,plot_loss:[33,37],plot_model:190,plot_multistep:135,plot_param:135,plot_profit:35,plot_spectral_clust:156,plot_support:[154,182],plot_surfac:80,plot_svc_decision_funct:[154,182],plot_svm:[154,182],plot_titl:22,plot_train:39,plot_tre:[57,146],plot_value_arrai:41,plotli:[1,30,35,44],plt:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,74,75,76,79,80,81,83,84,85,110,111,112,124,125,126,128,131,132,134,135,143,144,145,146,148,150,153,154,156,160,164,166,168,176,180,182,184,186,187,188,190],plu:[32,50,75,82,109,120,121,186,187],plugin:0,pluginfil:191,plum:39,plumag:169,plymouth:145,pm:[107,117,169,191],pmlr:141,pmml:138,pneumonia:1,png:[3,36,37,39,59,66,128,156,164,165],po:[54,128,133,156],poc:102,poem:103,poetic:103,poetri:[103,172],poignant:112,poin:64,point3d:121,point:[7,8,11,15,16,28,29,30,31,33,36,40,41,47,48,49,50,52,59,60,61,62,68,74,75,76,79,80,81,85,105,107,109,110,112,114,117,118,120,121,128,129,133,134,135,138,139,143,144,145,148,149,153,154,155,156,157,160,162,163,164,165,166,167,168,169,170,177,183,184,185,186,189,190,192],pointer:[93,120,122],pointwis:130,pois:121,poison:[111,176],pojo:138,polar:38,poli:[59,60,61,164],polic:103,polici:[100,107,163,189],polli:121,poloclub:[179,180],poly_best:60,poly_pr:60,poly_svc100:59,poly_svc:[59,60],poly_svr:61,poly_transform:186,polynomi:[60,61,69,74,154,155,167],polynomialfeatur:[164,186],polynomialfeaturespolynomialfeatur:164,pomegran:39,ponder:75,pool1:125,pool1_pad:131,pool2:125,pool3:125,pool4:125,pool:[32,125,127,130,131],pool_layer1:125,pool_layer2:125,pool_siz:[34,39,130],poolarea:[54,66],poolqc:[54,66],poor:[31,40,53,58,59,64,68,79,81,120,132,139,143,149,155,163],poorer:76,poorli:[33,59,77,86,139,154,155,163,183],pop:[7,14,35,93,105,121,126,143,144,170,177,192],popul:[4,13,14,61,79,111,114,117,122,135,145,148,149,164,166,168,176,178],popular:[1,43,45,50,59,104,105,107,114,119,127,136,138,139,140,141,142,143,144,149,150,151,153,160,165,170,171,184],porch:54,port:22,portabl:[113,126,191],portal:[9,50,102],portion:[33,50,77,93,94,120,130,137,139,168,169,170],portrait:36,pose:[36,39,49],posit:[3,28,35,40,50,51,52,54,56,57,66,68,77,80,81,93,103,117,120,127,128,130,133,139,146,149,154,165,169,170,171,179,184,186,191,192,193],position_embed:130,position_salari:186,positionalembed:126,positive_integ:[170,192],positive_vector:[170,192],positv:59,possess:[54,68,79,81,163,189],possibl:[1,11,34,40,43,45,47,48,50,52,54,59,61,68,77,79,81,93,103,109,115,117,120,121,125,126,127,130,132,135,137,138,139,140,145,148,149,153,154,156,163,164,169,170,172,189,192],post:[0,1,14,28,29,32,43,50,120,121,133,134,157,173],postdoc:171,posterior:148,posterior_vari:126,posterior_variance_t:126,postur:36,potenti:[23,28,40,47,54,57,76,102,103,105,107,110,113,115,117,120,121,125,127,128,138,139,141,153,160,166,172,174,183],pothol:[113,174],potrait:36,potrait_gener:36,potraits_gener:36,pouget:129,pound:[112,145,166],pow:[31,124,128],power:[1,7,33,43,49,52,53,57,58,59,60,61,76,99,100,103,105,109,120,121,125,127,128,139,141,149,153,154,163,164,169,170,171,172,177,191,192],power_of:[169,191],ppf:18,pprint:31,pq:57,practic:[4,7,16,30,40,45,47,48,50,53,58,59,61,77,103,107,113,115,117,118,120,122,127,129,130,131,132,134,135,138,139,141,145,149,152,154,155,157,163,165,168,169,170,171,174,184,191],practical_dl:83,practis:154,practition:[76,113,135,174],prafulla:126,prashant111:51,prashant:[59,153,185,190],pre:[3,9,41,47,100,102,121,131,138,139,140,141,152,155,164,168],preced:[47,75,120,130,169],precis:[29,40,46,47,52,54,57,60,66,68,75,76,77,81,83,93,104,120,134,139,140,155,161,162,165,169,186],precision_recall_curv:[161,162],precision_scor:[29,30,161,162],precison:[52,57],precomput:121,pred:[29,33,39,40,49,52,53,54,56,57,58,66,125,135,150,164,184],pred_class:39,pred_mask:131,predefin:[33,117,119,128,143,162,178],predf:55,predi:55,predicit:150,predict:[9,22,29,33,34,35,36,38,40,43,44,45,47,48,49,51,52,53,55,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,79,82,83,85,103,107,113,115,117,125,126,127,128,129,130,132,133,134,135,137,138,139,140,141,144,145,146,148,149,150,151,152,154,156,157,160,162,163,164,165,166,167,168,169,172,173,174,175,180,189,190],predict_class:47,predict_imag:33,predict_proba:[56,150,156,161,165,184],predict_row:55,predicted_column:[38,44],predicted_correctli:125,predicted_df:[38,44],predicted_label:41,predicted_nois:126,predicted_pric:42,predicted_valu:[38,76],prediction_text:157,predictions_arrai:41,predictions_on_train:[68,81],predictions_singl:41,predictor:[49,56,66,139,146,152,153,156,164],predominantli:[36,103,172],preds_test_cb:54,preds_test_lgbm:54,preds_test_xgb:54,prefer:[48,56,64,77,79,103,113,117,120,139,148,153,155,156,163,165,167,170,171,172,192],prefetch:[44,125,126,131],preffer:64,prefix:[22,56,169,170,192],preiousli:36,preliminari:144,preload:164,premis:[100,107,138,160,175],prep:[38,160],prepackag:168,prepar:[18,22,43,49,52,53,57,58,68,79,81,101,102,104,105,107,109,123,124,137,156,163,173,175,184],prepend:169,prepocess:36,preprint:[14,50,141],preprints202006:14,preprocess:[32,34,38,40,42,43,44,50,51,54,59,62,64,74,84,130,134,139,144,157,164,165,168,186,187,188],preprocessor:62,prerequisit:[0,125,136,169],presenc:[54,139],present:[1,3,4,5,7,9,13,14,19,21,26,27,35,46,49,51,52,54,57,69,71,86,90,91,93,94,103,105,109,111,117,118,120,121,130,132,133,136,137,140,141,160,161,163,169,171,172],preserv:[46,85,113,118,120,121,127,156,165,169],preset:16,press:[38,51,128,135,137,168,171,185],pressur:[24,102,114,115,168],presum:[36,143],pretend:[18,149,169],pretrain:[127,131,180],pretti:[7,31,54,57,58,60,64,66,143,144,146,152,156,161,162,163,165,166,186],prevent:[28,30,32,41,43,47,50,54,77,102,103,120,121,126,128,139,140,145,148,154,155,169,170,182,192],preview:[59,102,103],previou:[7,14,17,32,35,40,47,48,49,50,55,56,57,75,83,101,104,109,110,114,117,118,119,120,121,126,130,131,132,135,139,141,144,145,148,149,150,151,152,153,156,157,161,162,163,164,166,169,170,189,192],previouli:49,previous:[18,41,54,57,75,118,120,138,144,145,162,165,177],previous_numb:169,prgn:[68,81],price:[22,38,49,52,54,57,66,68,76,79,103,112,127,139,146,160,163,164,165,172,188,189],price_add_averag:22,price_rang:[68,81],priceperlb:[112,176],pricier:166,prim:169,primari:[6,7,46,56,68,75,81,101,102,114,115,118,121,122,153,178,179],primarili:[7,75,77,105,121,146,163,168,189],primary_metr:[9,101],prime:[93,169],prime_factor:93,prime_text:132,primit:[170,192],princ:55,princip:[124,163],principl:[31,45,47,48,50,56,80,100,103,115,122,128,145,153,154,155,169,174],print:[1,2,3,9,15,17,18,23,24,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,63,64,65,66,68,74,75,76,77,79,80,81,83,84,85,93,101,111,117,118,120,124,125,126,128,130,131,132,134,135,144,145,146,148,150,152,153,156,157,160,161,162,164,165,166,168,169,170,171,176,177,180,184,186,187,188,190,191,192,193],print_four_numb:191,print_funct:[37,125],print_stat:29,printfeatureimport:56,printmd:39,prior:[59,102,109,112,125,134,153,173],priorit:139,prioriti:102,privaci:[107,113,141,174],privat:[56,100,107,138,173,175],privileg:169,prix:130,priya:42,prize:[113,174],pro:[7,38,47,56,102,113,157],prob:[38,150],proba:161,probabilist:[59,126,127],probability_model:41,probabl:[7,31,33,40,41,48,49,50,52,55,56,58,77,83,99,102,103,104,105,107,110,114,115,116,122,126,127,128,129,130,139,143,144,145,148,149,150,156,162,163,164,166,168,170,180],probalist:127,probe:[6,59],problem:[7,11,23,29,36,41,45,46,47,48,49,52,54,56,57,58,60,62,64,74,75,77,85,91,101,104,105,107,109,113,115,117,118,120,121,127,128,129,130,131,132,133,135,136,138,139,144,145,146,150,153,154,155,156,160,161,166,170,174,175,182,183],problemat:[18,26,139],proce:[36,54,68,74,81,83,153],procedur:[47,50,54,135,141,145,148,149,153,164],proceed:[50,137,141],process:[1,3,7,11,18,28,30,31,32,34,36,41,42,43,45,46,48,50,51,53,56,57,58,59,62,68,74,75,80,81,83,91,93,100,101,102,103,104,105,113,114,115,120,124,127,128,130,131,134,135,136,138,139,141,144,145,148,149,150,151,152,153,154,156,157,160,161,162,163,164,168,169,170,171,172,173,174,177,183,184,185,189,190],processed_data:31,processing_d:57,processor:[68,81,85],prod:[120,138],produc:[7,29,31,32,36,46,51,57,59,62,77,102,109,110,112,115,118,120,129,133,135,137,138,143,145,153,155,163,166,169,170,174,180],product:[11,13,49,93,100,102,103,105,112,113,114,115,117,120,121,126,130,135,136,137,138,139,140,157,163,165,172,173,174,176,185,189,190,191],production:[46,140,141],prodvalu:[112,176],profession:[100,138,143,153,163,171,174],professor:[149,163],profil:[59,113,175],profit:[35,119,137,149,178],profium:178,prognosi:163,program:[38,41,50,57,100,102,113,114,121,122,126,127,136,137,138,139,154,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,190],programm:[114,163,169,171,189,193],programmat:[7,102,118],progress:[14,36,40,45,47,112,125,137,139,162,163,168,169,180],progress_info:125,project:[5,7,9,16,22,30,31,36,38,58,59,66,80,93,94,100,103,105,107,111,113,118,120,124,125,126,128,129,130,131,132,133,134,136,137,138,139,140,141,154,160,163,168,169,171,172,173,175,182,184,185,189],project_fold:101,project_root_dir:156,promin:50,promis:[45,83,113,174],promot:163,promote_typ:120,prompt:[6,102,157,171],prone:[66,148],pronounc:[122,168],proof:[28,102,143],propag:[7,31,83,118,121,135,143,156,190],propens:152,proper:[18,49,52,53,57,58,68,81,105,120,125,129,143,163],properli:[5,46,64,83,92,118,137,139,145,151,163,165,166,189],properti:[9,14,31,33,36,47,48,50,55,84,101,113,117,119,120,121,139,146,148,149,154,164,169,170,174,178],proport:[50,59,62,74,76,109,117,148,149,155],propos:[59,104,105,126,129,130,132,133,141,145,148,154,156,175,182,190],proposals2:133,proprocess:40,prose:31,prospect:105,prostat:75,protagonist:109,protect:[14,100,103,113,137,163,172,174],protocol:[121,137],prototyp:[47,48,102,103],prove:[18,26,28,50,109,115,117,139,143,145,148],provid:[0,1,7,12,14,15,16,17,21,23,28,33,34,40,41,45,46,48,49,50,52,53,54,57,58,59,74,75,76,77,79,83,93,94,100,102,103,104,105,107,109,113,115,118,119,120,121,122,124,125,127,130,133,135,136,137,138,139,140,143,145,146,148,149,153,155,156,157,161,163,166,168,169,170,171,172,174,175,178,180,189,190,192],provinc:14,province_st:[14,140],provis:[101,138],provisioning_configur:[9,101],proxim:[79,143,148],prp:[53,58],prune:[50,130],pseudo:[18,149],pseudocod:149,pseudonym:117,psgk:59,psycholog:143,pt:58,pth:[31,33,37],public_dataset:[68,81],publicli:[102,140],publish:[50,53,58,59,93,94,102,117,137,138,169,170,173],publish_tim:1,pubu:[68,81],pull:[50,109,113,121],pullov:[30,40,41],puls:59,pulsar:59,pulsar_star:59,pumpkin:[72,90,92,160,164,165,167],pun:169,punctuat:[93,94,132],pungent:[111,176],purchas:[100,105,112,115,164],pure:[40,48,59,83,117,121,148,169],puriti:146,purpl:[30,109,111,176],purpos:[16,30,35,47,48,58,59,60,61,75,93,94,107,113,120,121,125,127,129,139,143,153,156,157,163,165,168,169,170,171,174,175,177,189,191,192,193],pursu:[103,139,157,163,189],pursuit:75,push:[0,47,93,105,109,128,138,169,177],pussin:[93,94],put:[38,40,43,50,55,62,77,102,105,113,122,127,134,145,149,155,163,168,169,170,171,189,191,192],pval:[18,117],pvt:56,pw:146,px:[30,33,44],px_height:[68,81],px_width:[68,81],pxi:121,py3:191,py:[9,57,62,101,110,121,125,128,144,157,161,165,169,170,171,176,177,184,191,192,193],pycharm:38,pycharmproject:191,pycon:121,pydata:[120,121],pylab:22,pylint:[169,170,192],pyobjecthasht:121,pypi:[170,192],pyplot:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,68,74,75,76,79,80,81,83,84,85,110,111,112,124,125,126,128,131,132,134,135,143,144,145,146,148,150,153,154,156,160,164,166,168,176,180,182,184,186,187,188,190],pyramid:[131,140],pytest:[0,3,14,22,24,53,79,93,94,136,169,170,192],python37:191,python38:[57,184],python3:[93,94,99,100,101,102,108,109,110,111,112,121,132,142,143,144,155,156,157,158,159,160,161,162,165,177],python3_7_4:191,python:[0,1,3,7,18,22,23,33,35,38,43,46,49,51,56,57,58,59,60,61,74,83,99,100,101,102,103,104,108,109,110,111,112,117,118,121,123,125,126,130,132,134,136,138,142,143,155,156,157,158,159,160,161,162,166,172,173,174,175,176,178,179,180,181,182,183,184,185,186,187,188,189,190],python_3_2021:191,python_cast:170,python_datatyp:170,python_dictionari:170,python_funct:191,python_numb:170,python_oper:170,python_ref_str:170,python_set:170,python_str:170,python_try_except:169,python_tupl:170,python_vari:170,pythonista:170,pythonpath:169,pythontutor:[169,171],pythonwin:191,pytorch:[31,33,102,127,157],pytutor:0,pyvideo:121,pywaffl:[111,176],pyx:121,q1:117,q3:117,q:[22,35,50,120,126,130,165,191],q_:[126,128],q_sampl:126,qbcdxtzitda:59,qgl:59,qhbdyylbkvbnfrlfmvucxrow5xhs1wmxbnfgnxdijre3r9vnpmddx8mskgudzlfb10qnqi:59,qizx:178,qmcrlph5c7vc:59,qmqvejnztng9kv28rwerdmjfiwjrgfn:59,qq:[3,14,22,24,53,93,94],qqpcmgr_docpro:38,qty:119,quad:[75,145,149],quadrat:[54,59,77,148,149,154,170],quadraticdiscrinationanalysi:161,qualit:[6,24,105,114,137,163,174],qualiti:[0,39,46,47,48,53,54,56,62,66,83,86,102,104,107,110,113,114,117,130,138,140,141,143,145,146,148,162,163,164,165,166,174,175,184],quan:57,quantifi:[59,75,76,77,107,175],quantil:[54,104,149],quantit:[6,50,54,105,114,137,163,174],quantiti:[4,107,111,115,119,128,135,163],quantiz:[130,139],quarter:130,quarterli:114,quartil:[7,18,54],quebec:14,queliti:31,queri:[2,12,16,25,46,100,114,115,118,122,126,137,157,175,178],query_emb:133,question:[0,16,17,23,28,32,47,49,50,51,57,58,59,71,75,103,104,105,107,109,112,113,115,117,121,127,129,136,139,140,141,149,150,154,157,160,163,164,168,174,175,177,189],queue:[105,125],qui:138,quick:[40,48,49,52,53,54,61,76,84,102,121,139,141,143,154,160,163,166,167],quickli:[7,14,40,45,47,48,58,68,79,81,102,110,112,118,120,126,137,138,149,153,164,165,177,180],quicksight:137,quickstart:138,quiet:[3,12,18,25,76,99,100,101,102,110,111,112,127,132,142,143,144,155,156,158,159,160,161,162,164],quirk:170,quit:[1,3,7,18,33,34,36,39,40,50,59,60,61,68,81,111,112,121,122,133,139,145,146,148,156,161,162,163,164,168,170,189],quora:141,quot:[121,169,170,171,192,193],quotient:[93,120],qx5jiesrfw94xegtzrdtkdjuz7nhti39ouuuo8wwxphae76msb63ba1hgkn0vbrht0vdl3u8tzoejcarcybnqi8lslxo2ysfgf08tsx3pdj2jjdzwa:59,r2:[63,65,74],r2_score:[63,65,74,76],r2_socr:[63,65],r:[22,29,30,31,33,36,37,39,55,59,64,74,79,83,112,117,120,125,128,131,132,134,137,138,143,148,149,154,156,157,170,176,182,184,186],r_0:14,r_:[50,77,85,128,149,156],r_k:128,r_p:117,r_t:[8,149],rabbit:191,race:51,racial:103,radial:[60,61,154],radic:130,radio:[59,185],radiolog:125,raffael:115,rai:103,rainbow:112,rainfall_id:[122,178],rainforest:114,rais:[3,14,22,24,53,93,94,97,98,103,113,120,121,131,139,170,172,191,192],rake:3,ram:[39,53,68,81,102,148],ramif:162,ran:[10,20,29,171],rand:[18,35,49,50,74,148,177],rand_i:125,rand_index:125,rand_tensor:43,rand_x:125,randint:[31,37,50,125,145,177,180,190],randn:[31,37,74,83,121,185],randn_lik:31,random:[29,31,32,33,35,36,37,38,39,40,43,44,45,47,50,55,56,57,58,59,60,61,62,64,66,68,74,81,83,104,120,121,124,125,126,128,129,130,131,132,134,139,144,145,147,149,152,153,155,156,160,162,163,177,180,184,185,190],random_bright:125,random_contrast:125,random_flip_left_right:[125,126],random_index:[40,126],random_norm:[124,125],random_normal_initi:133,random_se:33,random_split:33,random_st:[29,30,31,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,79,84,144,146,148,150,152,153,154,156,157,162,164,165,182,184,186,187,188],random_strength:54,random_transform:37,random_uniform:[129,134],randomappli:37,randomflip:131,randomforest:56,randomforestclassifi:[49,50,51,52,56,146,148,161,162],randomforestregressor:[53,146,148],randomhorizontalflip:37,randomizedsearchcv:[54,61],randomizedsearchcvrandomizedsearchcv:61,randomli:[30,34,50,54,55,62,66,76,125,126,130,131,145,146,148,155,156,184],randomnorm:[124,130],randomrot:37,randomst:[148,177],randomtreesembed:148,randrang:35,rang:[1,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,50,51,52,53,54,55,56,57,58,63,64,65,68,74,75,79,80,82,83,84,85,94,100,102,103,110,113,115,117,120,124,125,126,128,129,130,131,132,133,134,135,137,138,139,144,146,150,151,152,156,165,170,173,174,177,180,184,185,186,187,188,190,191,192],rangeindex:[38,59,60,79,118,143,153,160,177],rank:[43,113,120,121,139,143,146,149,161,174],rankboost:149,rapid:[103,171],rapidli:[120,137],rare:[54,59,107,129,139,143,148,149,177],raschka:[50,124,129,132,134],rate:[6,8,14,22,33,35,47,48,49,55,62,64,75,80,102,103,105,109,114,125,127,128,130,131,132,139,140,146,150,152,153,155,156,163,165,184,189,190],rater:47,rather:[7,31,36,46,54,68,75,77,81,100,112,115,118,120,121,122,138,143,148,154,156,163,164,168,169,170,177,185,189,192],ratio:[14,40,46,49,52,57,59,121,139,146,156],ration:[40,105],rational:146,ravel:[50,56,57,148,150,154,156,161,162,182,187,188],ravenclaw:185,ravendb:178,raw:[6,12,14,16,18,25,43,45,57,58,62,68,76,77,81,114,115,117,118,121,130,137,139,140,144,156,157,163,166,177,189],raw_data:29,razor:155,rb:[125,157],rbf:[60,61,156,182],rbf_score:59,rbf_svc:59,rbk:59,rbkzduqmatb85:59,rbr_1x1:130,rbr_dens:130,rbr_ident:130,rbr_reparam:130,rc:[22,36,62,135,156],rcl:[145,148],rcnn:133,rcparam:[14,59,66,148,176],rdbm:178,rdss:93,re:[3,7,15,31,34,38,40,41,45,47,48,52,57,62,64,66,68,77,81,83,103,105,107,118,119,120,121,122,125,130,131,132,133,134,139,140,149,150,155,157,160,163,164,168,169,170,172,178,185,189],re_fit:60,reach:[33,36,41,48,50,55,75,107,129,146,148,152,154,169,170],react:[164,193],reaction:136,read:[16,29,31,40,45,47,53,54,58,68,81,83,102,109,110,111,112,113,115,117,119,120,125,132,134,136,139,160,161,164,165,168,169,170,191],read_cifar_fil:125,read_csv:[1,2,14,15,17,18,22,23,24,29,31,32,35,38,42,44,46,47,48,49,50,51,52,53,54,56,59,60,61,62,64,66,67,68,74,79,81,83,84,85,87,110,111,112,121,135,140,143,144,145,146,148,150,152,153,157,160,161,162,164,165,166,176,186,187,188,190],read_data_set:[125,129],read_tabl:75,readabl:[0,111,138,157,170,171,192,193],reader:[100,125],readi:[34,40,41,49,51,52,59,68,81,102,137,138,139,140,141,143,150,157,161,162,163,164,166,168],readm:[5,109],readthedoc:30,real:[0,7,11,28,29,33,34,35,36,37,38,39,40,42,45,46,50,53,57,58,59,60,77,93,113,115,118,119,120,121,128,129,130,133,135,137,138,140,141,145,149,155,156,163,164,169,170,171,174,177,178,180,181,186,189,192],real_imag:[36,37],real_label:37,real_part:169,real_sampl:37,real_stock_pric:42,realist:[39,129,180],realiti:[7,56,113,127,139,165,178],realiz:[107,128,134,149,165],realli:[40,49,54,56,60,61,66,68,81,101,105,112,153,155,161,163,165,169,170,189,192],realm:[50,76,77,178],realpython:169,rearrang:[75,109],reason:[7,11,14,40,46,49,50,60,62,66,68,77,79,81,83,100,115,117,118,120,125,138,139,145,146,150,152,153,163,168,170,173,189],reassign:170,reboot:103,rebuild:[29,40],rec:54,recal:[29,40,47,50,52,57,60,68,81,104,120,139,145,150,161,162,165,177],recalcul:146,recall_scor:[29,30],receiv:[6,41,59,83,101,104,105,114,121,128,140,149,165,169,175],recent:[14,43,83,105,120,121,135,141,144,149,161,177,191],recept:179,recgon:190,recip:[149,186],recipi:114,recogn:[40,43,62,68,81,103,120,127,130,133,137,163,169,172,189],recognit:[30,39,41,77,125,127,130,132,140,163,189],recommend:[15,45,49,102,103,105,112,113,115,119,120,121,125,139,146,148,149,156,168,169,171,174],recon_x:31,reconstr_img:124,reconstruct:[29,30,31,124,141],reconstructed_imag:124,record:[9,15,101,113,114,120,125,126,127,135,137,140,143,149,163,169,177,189,191],record_byt:125,record_length:125,record_str:125,recov:[14,140,149],recovered_dataset_url:14,recovered_df:14,recoveri:[8,14,38,100,137,140],recreat:[48,110,111,124],recruit:113,rect:[37,184],rectangl:[50,119,128],rectifi:[83,113,125,127,130],rectifier_:125,recur:47,recurr:[28,160],recurs:[50,93,94,134,169],recycl:38,red08:137,red:[14,38,41,42,45,48,49,50,52,56,62,74,76,102,105,109,110,111,117,130,146,148,154,155,156,164,170,171,176,182,186,187,188,192],red_win:62,reddit:109,redefin:[47,104,107,169],redhat:138,redi:178,redman:137,redo:[92,137],redshift:137,reduc:[7,30,32,36,40,45,47,49,50,52,54,56,57,58,61,64,75,77,93,102,107,120,125,127,130,131,138,139,143,145,148,149,152,153,155,156,157,163,165,170,184,189,190,191],reduce_max:29,reduce_mean:[77,124,125,129,130,132,134],reduce_min:29,reduce_sum:[77,125,132],reduct:[31,50,54,124,135,145,146,148,163,189],reduction_model:30,redund:[124,153,169],ref:[30,138,162],refer:[3,17,22,23,24,33,34,43,46,49,50,52,54,56,57,58,60,75,76,77,79,100,101,104,105,107,109,113,117,118,119,120,121,122,124,125,126,127,128,130,134,137,139,140,141,143,144,145,155,157,162,163,164,169,170,189],referenc:[50,169,170],reference_answ:83,referenti:115,refin:141,refit:[52,53,57,58],reflect:[7,28,39,40,77,92,113,137,143,157],reformat:41,refram:38,refresh:[102,138,140,166],refus:[45,113,174],reg:[54,66,77],reg_alpha:[54,152,153],reg_lambda:[54,152],reg_model:79,reg_tre:50,reg_tree_pr:50,regard:[7,33,50,112,118,120,128,148,149,153,165,170],regardless:[46,117,120,138,141,143,169,170],regener:[48,134],regex:[164,166],regim:155,region:[14,79,102,113,133,140,144,153,159,169],regist:[9,101,102,191],register_model:[9,101],registr:[1,120],registri:[102,138],regplot:[54,135],regress:[40,43,45,47,49,52,54,55,56,57,59,60,66,92,101,107,127,139,144,145,146,148,150,151,153,156,157,159,160,162,175,181,183,189,190],regressor:[42,49,50,74,75,139,148,150,186],regressorchain:135,regul:[107,141,162],regular:[1,8,36,41,52,53,57,59,61,64,68,74,81,124,125,135,139,148,149,153,154,156,162,182,190],regularioz:[63,65],regularis:[154,182],regularization_weight:125,regularli:[140,141],rei:48,reilli:[113,141],reimport:[29,169],rein:77,reindex:135,reinforc:[31,113,128,141,149],reinforcement_learning_course_materi:128,reinvent:141,reiter:[105,137],reject:117,rekognit:141,rel:[1,36,39,41,49,51,52,53,58,74,75,77,93,110,115,117,122,126,130,139,143,149,157,170,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],rel_tol:93,relat:[1,3,16,18,28,47,56,77,96,102,105,112,113,114,117,121,123,126,134,139,140,148,155,163,165,169,171,176,181,189,190],relationship:[1,33,40,49,51,52,56,64,66,68,74,76,81,84,87,89,104,107,109,110,115,117,119,127,135,140,143,154,155,160,163,164,165,166,167,168,169,175,186,189],relax:[120,128,154],releas:[113,120,138,171,174,184,193],release_d:[143,144],relev:[3,16,28,100,103,113,115,117,120,127,128,139,149,163,165,172,189],relevent_experi:56,reli:[57,62,68,77,81,107,114,115,118,119,163,165,170,192],reliabl:[76,100,103,113,138,148,163,173,174],relief_pitch:117,reload:[46,47,118],reloop:55,relplot:[112,176],relu1:125,relu1_1:125,relu1_2:125,relu2:125,relu2_1:125,relu2_2:125,relu3_1:125,relu3_2:125,relu3_3:125,relu3_4:125,relu4_1:125,relu4_2:125,relu4_3:125,relu4_4:125,relu5_1:125,relu5_2:125,relu5_3:125,relu5_4:125,relu:[29,30,31,32,33,34,35,36,37,39,40,41,43,44,47,48,62,77,83,125,127,130,131,133,180,190],relu_conv1:125,relu_conv2:125,relu_grad:83,remain:[7,50,54,59,62,68,77,81,93,94,113,118,120,121,126,130,137,145,153,169],remaind:[93,119,120,169,170,171,186,192],remark:[49,57,60,61,68,81,141,145,171,193],remdesivir:1,rememb:[7,35,48,52,57,68,81,105,115,120,129,132,135,139,145,149,150,155,165,168,170,179,186],remind:164,remix:103,remot:[0,138],remote_run:[9,101],remov:[1,3,14,29,31,36,37,49,50,51,52,55,59,62,64,68,81,83,93,107,110,112,113,132,139,143,144,155,160,163,165,169,171,175,184,192],remove_dupl:[94,170],ren:[130,133],renam:[1,18,59,121,169],render:[16,54,57,58,60,61,66,77,152,153,156,157,164,168,170,185,192],render_deepdream:125,render_templ:157,rent:100,rep:105,repack:[164,165],repai:163,reparameter:31,repay:[163,189],repeat:[36,38,44,50,55,80,85,94,115,120,121,131,137,144,145,148,149,153,156,164,170,184,192],repeat_delai:126,repeatedli:[93,152,191],repetit:[49,52,53,58,139],replac:[7,14,22,30,31,32,35,41,46,49,51,54,55,56,66,74,76,83,102,118,120,129,130,132,135,139,145,156,164,169,170,192],replai:35,replec:49,replic:120,replica:29,repo:[0,5,131],report:[14,33,39,40,52,56,57,60,105,113,140,157,161,162,165,166,169,174],repositori:[0,1,14,58,75,120,134,136,138,163],repres:[1,7,18,30,31,35,36,39,40,41,43,46,47,48,50,51,52,54,56,57,59,64,75,76,77,79,93,101,103,104,105,111,113,114,115,117,118,119,120,126,127,130,135,139,143,144,145,146,149,150,156,170,171,177,178,184,192],represent:[7,22,29,30,36,41,50,57,58,60,61,64,66,68,76,79,81,93,104,107,110,118,119,120,124,128,130,134,136,152,153,154,155,156,163,164,168,177,178,191],representative_digit_idx:156,representative_images_diagram:156,reproduc:[39,45,48,139,145,146,153,177],reproduct:14,repvgg:130,repvgg_convert:130,repvggblock:130,request:[3,16,29,30,31,33,36,37,39,41,61,66,68,79,81,83,101,103,113,115,121,125,132,134,141,156,157,163,170,189,192],requir:[0,1,15,22,24,31,33,41,43,45,47,48,56,59,61,77,79,87,94,100,102,103,105,107,113,114,118,119,120,131,133,135,137,138,139,140,141,143,148,149,152,156,157,163,168,169,170,173,174,175,192],requires_grad:33,requisit:9,rerun:[40,43,57,58,60,61,66,152,153,156,164,166,168,185],res_block:126,resblock:126,rescal:[40,62,79,163],research:[1,16,28,100,105,110,111,112,113,121,127,137,139,140,141,149,160,162,163,168,173,174],researchg:50,resembl:[75,79,142],reserv:[50,83],reset:[35,45,47,48,121,128,132,155],reset_default_graph:[125,132,134],reset_index:[1,14,38,39,47,48,54,64],reshap:[29,30,31,32,34,35,36,38,42,43,44,47,50,83,85,121,124,125,126,129,130,132,133,148,154,156,161,164,177,180,182,184,186,187,188,190],reshaped_dim:125,reshaped_imag:[85,125],reshaped_output:125,reshuffle_each_iter:126,resid:[79,157],residu:[48,55,66,125,126,130,149,151,153],residual_block:130,residual_sum_squar:76,resili:77,resist:48,resiz:[31,37,39,125,126,130,131,132,190],resize_bilinear:125,resize_image_with_crop_or_pad:125,resize_with_pad:126,resizemethod:131,resnet101:131,resnet152:131,resnet50:131,resnet:[126,131],resolut:[31,39,41,68,81,121,126,133,156,169],resolv:[15,46,50,104,118,121,131,139,169],reson:[43,79],resourc:[28,40,43,75,100,101,103,107,113,115,120,121,122,137,138,139,141,143,163,169,170,173],resource_group:9,respect:[1,14,30,33,35,47,49,50,52,54,66,77,79,80,83,113,120,121,122,124,126,130,132,146,153,156,163,168,170,189],respond:[135,168],respons:[3,9,17,36,37,50,75,101,102,103,113,125,132,137,146,148,164,168,174,175,186],rest:[50,57,101,102,118,119,120,138,149,155,156,161,164,165,169,170,178,192],rest_of_the_numb:169,restart:157,restat:105,restor:[30,126,149],restore_best_weight:40,restrict:[7,48,93,94,114,118,148,169,170],result:[0,1,7,8,9,14,16,18,22,24,31,32,33,36,37,38,44,45,46,47,49,50,51,52,53,54,57,58,60,66,68,74,75,79,80,81,85,92,93,94,101,102,103,104,107,113,115,117,118,120,121,122,124,125,127,128,130,131,137,138,139,140,141,143,144,145,146,148,149,152,154,155,156,157,160,161,162,163,164,165,169,170,171,174,175,180,182,184,185,189,190,191,192],result_typ:120,resultdf:161,resulting_height:125,resulting_width:125,results_df:85,resum:114,ret:133,retail:[135,137,153],retain:[31,130,163,184],rethinkdb:178,retina:[50,66,135,145,148,184],retrain:[40,45,47,52,53,86,113,125,139,163],retri:165,retriev:[3,25,53,68,81,94,104,107,109,113,119,124,138,139,165,169,173,175,191],retrospect:149,retun:[63,65],return_count:190,return_sequ:[42,44,132],return_st:132,return_valu:[24,53],return_x_i:[156,168],reus:[118,125,127,130,131,148,169,191],reusabl:[138,171],reuse_vari:125,reveal:[26,136],revel:[26,178],reveng:109,revenu:[25,105],revers:[35,109,113,117,131,192],reversed_list:170,reveurmichael:124,review:[45,100,102,103,105,109,113,126,137,138,143,149,162,163],revis:113,revisit:[103,105,110,131,141,165,172],revolutionari:[68,81,157],revolv:43,reward:[35,113,163,189],rewritten:[83,132,149],rex:120,rezend:31,rf:[12,25,40,148],rf_predict:148,rfc:[51,146,148],rfc_100:51,rfi:59,rfst:162,rgb:[33,36,39,120,130],rh:55,rho:[148,149],rho_t:149,rhs_cnt:55,rhs_std:55,rhs_sum2:55,rhs_sum:55,rhythm:29,ri:[33,146],ri_j:146,riak:178,rice:160,rich:[43,115],richard:141,richer:156,rid:[1,14,125,127,143,164,170],ridg:[66,68,74,77,81,155,164],ridge_sklearn:[63,65],ridge_sol:66,ridgecv:66,ridgeregress:[63,65],right:[1,22,27,30,31,36,38,41,45,47,50,51,54,55,56,57,58,62,64,66,68,76,79,81,83,85,93,94,105,111,112,113,115,119,120,121,125,127,128,130,138,139,141,143,144,145,146,148,149,150,152,154,155,157,163,165,168,169,170,171,174,176,182,185,189],right_column:185,right_i:146,right_idx:55,right_index:[38,121],right_join_kei:121,right_kei:121,right_on:121,right_output:128,right_shifted_imag:85,rightarrow:145,rightmost:[120,146],rigid:130,rigor:48,ring:[111,176],ringo:171,riot:38,rise:[1,105,110,112,117,136,155,165,181],risk:[101,102,103,113,120,138,141,154,182],riski:149,riskiest:138,ritonavir:1,river:[138,178],rk:[33,121],rkei:121,rkswahlyepd0yioe0t4oe3i3:59,rl:66,rm:[12,25,40,191],rmse:[38,53,54,58,61,66,74,79,135],rmse_cb:54,rmse_cross_v:79,rmse_cv:66,rmse_lgbm:54,rmse_xgb:54,rmsle:66,rmsprop:190,rmspropoptim:134,rnd_indx:37,rnd_search:61,rng:177,rnn1:134,rnn2:134,rnn3:134,rnn4:134,rnn:[129,132,134],rnn_builder:44,rnn_cell:134,rnn_model:42,rnn_size:[132,134],rnplwnsp1zaqp:59,ro:[33,80,184],road:[68,81,115,127,163],roadwai:[113,174],roam:191,robert:148,roberto:131,robin:[93,169],roblem:144,robot:[113,133,163,189],robust:[7,36,39,49,54,60,62,77,131,141,148,149,153,154],robustscal:[51,54],roc3qtujlwlgnjug8xyjhmyab7mslm:59,roc:139,roc_auc:[56,59],roc_auc_scor:[56,59,150,165,184],roc_curv:[59,165],rocket:[39,178],roi:[105,133],roi_align:133,roialign:133,role:[14,18,56,75,77,79,96,107,115,117,120,127,137,141,149,154,166,179,182],roll:[14,117,125,132,138,169],rollback:[137,138],rollout:138,rom:129,ronald:7,room:[39,49,79,115,121,140,146,163],root:[50,53,58,61,63,65,74,93,109,111,113,126,129,143,146,157,166,170,190],ropdlmfyn4ohgsyja3v360gmftkvclk41nfwlarseergxyopsipx93d46srv8ri2d64xaa7qwptq9xydracyi8rh:59,ropsasrsaeuchxukvv2ymdhz:59,ross:[110,133,176],rossii:[110,176],rossum:[171,191,193],rotat:[1,3,18,22,34,39,41,51,54,85,128,133,143,144,156,176],rotate_in_all_direct:85,rotated_imag:85,rotation_rang:[32,34],roug:139,roughli:[14,45,47,50,117,129,156],round:[39,40,46,48,59,64,84,85,93,125,138,143,152,153,170,184,192],rout:[7,103,118,137,157,172],routin:120,row:[2,6,7,14,29,38,39,40,41,43,45,46,47,48,49,51,52,54,55,56,57,58,59,64,66,68,74,81,102,104,111,112,114,118,119,120,121,122,134,135,140,144,150,160,161,164,165,166,170,176,177,178,186,192],row_index:121,row_vector:120,rowsum:120,rpjd4ybgjdq7gkacrtovujgsdyhalfr1w5fyhbiykds2iefhc89farl5yiokg0wjchcyl3mhl2bebrqo90lbfmfd7oyzgqnciklgibijeokjhnkz2318t:59,rpn:133,rpn_head:133,rrgtp8yqcvnf:59,rror:145,rsuffix:121,rt:[14,150],rt_with_na_fil:14,rtol:14,rtx:29,ruhi:137,rule:[40,43,50,75,79,83,93,104,114,115,121,127,137,139,141,143,148,149,156,161,163,170,177,189,192],run:[0,5,7,14,32,33,38,39,40,43,45,47,48,49,51,52,53,56,57,66,68,80,81,83,84,85,92,97,98,100,101,102,109,115,117,118,119,120,121,124,125,128,129,131,132,133,134,137,138,139,148,149,152,153,155,156,157,161,163,164,169,171,177,184,185,189,191,193],run_functions_eagerli:132,run_optim:124,rundetail:[9,101],runner:138,running_loss:31,running_mean:130,running_var:130,runtim:[0,40,138,141,152,157],rush:[114,141,143],russian:31,rutherford:171,rutwik:141,rvert:[155,183],rx:[33,184],ryan:62,ryanholbrook:135,s1:[24,55,120,121,168,170,192],s1qqhlobm9hyrc7kgf87fdwaibhqseihtedrbe6uai7ny2paowiewltl6:59,s2:[55,121,171],s3:[120,137],s6:24,s:[1,3,6,7,9,12,14,17,18,20,22,23,24,25,28,29,30,31,32,33,34,35,36,37,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,66,68,69,74,76,77,81,83,84,85,87,92,93,94,97,98,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,127,128,129,130,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,150,152,153,155,156,157,159,160,161,162,163,164,167,168,169,171,172,178,183,184,185,186,189,190,192],s_0:50,s_1:[50,117],s_2:50,s_i:[50,117],s_j:117,s_n:117,s_o:50,s_text:132,s_text_ix:132,s_text_word:132,sa:121,saa:[100,137,157,173],sack:166,sacrif:77,sacrific:50,sad:105,saddl:138,sadli:48,safari:102,safe:[60,125,138,163,184],safefi:57,safeti:[57,58,103,113,125,163,172,174],sag:[157,161],saga:161,sagemak:[137,138,140],sahara:139,sai:[7,31,33,36,48,49,50,52,57,58,59,66,68,79,81,100,113,117,118,120,127,135,139,142,145,149,155,163,165,169,170,180,184,192],said:[7,40,43,49,50,58,64,105,130,163,189],sake:[54,131,146,148,161],salari:[18,50,186,187,188],salary_data:186,sale:[76,135,163,164,165,166,170,189],salecondit:66,salepric:[66,152],saletyp:[54,66],same:[0,1,7,9,18,29,30,31,32,33,34,36,39,40,41,43,44,45,46,47,48,49,50,51,52,54,57,58,59,61,62,63,65,68,75,77,79,81,84,89,94,101,105,107,111,112,114,117,118,119,120,121,122,124,125,126,129,130,131,132,133,134,135,137,138,139,143,145,146,148,149,150,153,155,156,160,162,163,164,165,169,170,171,175,177,185,191,192,193],sameep:137,samll:[63,65],sampl:[2,5,9,18,25,30,33,34,35,36,37,38,40,41,47,48,49,50,53,56,57,59,60,62,63,64,65,66,68,72,76,77,81,83,84,94,101,102,112,113,117,118,119,125,128,132,133,138,140,141,144,145,146,148,149,153,154,155,157,160,162,163,164,165,168,171,175,182,189,190,193],sample_imag:[33,131],sample_kernel:33,sample_mask:131,sample_s:18,sample_time_series_covid19_deaths_u:140,sample_weight:148,sampledb:119,sampler:33,samuel:[93,94,163,189],sandal:[30,40,41],sanit:[103,172],saniti:[48,132,139],sankei:1,santino:143,sape:[170,192],sar:1,satellit:131,satisfi:[48,54,120,139,140,149,170,192],saturn:193,saurabh:141,save:[1,29,30,31,33,36,40,41,45,47,48,51,56,66,74,83,102,120,125,126,131,132,134,139,145,148,149,154,156,160,161,169,180,185],save_best_onli:[39,40,44],save_everi:132,save_fig:156,save_format:[29,30],save_imag:37,save_images_from_dict:125,savefig:[128,156],saw:[10,13,20,40,47,49,50,52,57,68,81,101,109,135,145,149,155,156,163,165,166,170,189,192],say_goodby:169,say_hello:[169,191],sc1:156,sc2:156,sc:[42,64,156,187,188],sc_h:[68,81],sc_w:[68,81],scalabl:[50,100,102,103,113,137,138,148,154,173,174,182],scalar:[43,128,131,149,184],scalar_tensor:43,scale:[0,7,15,38,40,41,45,47,49,53,56,57,58,60,61,62,64,74,100,102,103,109,113,118,120,125,130,131,133,138,139,141,144,148,155,163,168,173,178,180,184,189],scale_feat:[68,81],scale_pip:[53,58,60],scaler:[38,40,44,51,53,54,58,59,60,61,64,68,79,81],scaler_i:44,scali:[111,176],scam:163,scan:[103,127,143],scari:167,scatter3d:[154,182],scatter:[18,24,45,50,60,66,74,75,76,84,109,110,111,112,117,121,143,144,148,154,156,164,166,168,176,182,184,186,187,188],scatter_3d:30,scatter_kw:135,scatterplot:[19,24,49,52,60,61,68,79,81,110,143,144,164,165,166,168],scaveng:71,sceipt:138,scenario:[26,39,49,52,53,75,100,105,113,115,138,141,163,189],scene:161,schedul:[49,52,137,140],schema:[102,115,137],schema_max:48,schema_min:48,scheme:[50,112,161],scholar:137,school:[11,50,56,103,191],schroff:131,sci:[62,168],scienc:[1,2,4,5,7,8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,46,48,54,56,57,58,60,61,102,104,105,109,110,111,112,114,116,117,118,119,120,121,122,135,136,137,149,157,168,171,177,181],scientif:[1,50,59,115,120,136,141,160,170,174,192],scientificnam:[110,176],scientist:[3,6,7,21,56,76,100,101,102,103,104,107,108,109,112,113,114,115,116,117,137,138,139,149,160,163,166,167,168,172,173,175,176],scikit:[7,40,46,47,49,51,57,58,61,62,66,69,71,76,99,100,101,102,110,111,112,118,127,132,135,138,141,142,143,144,145,148,152,153,155,156,157,158,159,160,162,165,167],scipi:[18,66,79,85,117,121,125,154,182,184],scoop:169,scope:[60,61,125,127,161,163,170,186,189,192],score:[9,35,40,41,45,47,48,50,51,52,54,55,56,57,60,63,64,65,66,68,77,79,81,84,85,101,102,103,115,131,133,139,142,146,148,150,152,156,161,162,164,165,186],score_cb:54,score_lgbm:54,score_xgb:54,scoreboard:165,scoring_file_v_1_0_0:[9,101],scout:103,scrape:[103,114,172],scrapi:[103,172],scratch:[43,100,101,125,139,188],screen:[68,81,109],screenporch:54,screenshot:[16,105,133],script:[3,101,102,125,136,169,171,185,191,193],script_file_nam:[9,101],scroll:[109,144,156,160,164],scrollytel:109,scrutin:113,scullei:141,scylladb:178,sd:59,sdjfhhes1figky8fmsto5n:59,sdk:[99,102,121,138,173],sdpzzf8euy6hn86ydqexmfsez:59,se4ml:141,se:18,sea:79,seaborn:[22,30,34,36,38,39,40,48,49,50,51,52,53,54,56,57,58,59,60,61,62,64,66,68,72,79,81,84,109,110,112,135,143,144,145,146,148,154,165,176,182,184],seali:117,seam:122,seamless:102,search:[1,46,50,52,53,56,57,59,60,61,62,66,85,101,102,103,105,110,113,114,115,118,120,121,139,140,141,143,148,149,153,169,170,172,192],searchitoper:138,searchsort:120,season:[17,23,49,52,103,114,135],sebastian:[50,124,129,132,134],second:[0,7,18,31,32,39,40,41,43,48,49,50,57,102,110,113,117,119,120,121,125,129,130,135,139,145,146,149,150,153,156,157,162,163,164,169,170,171,185,190,192,193],second_baseman:[18,117],second_char_set:170,second_numb:[170,192],second_term:125,second_term_numer:125,second_tuple_numb:170,second_word:[169,191],secondari:[6,114],secondli:149,secret:[26,93,141],section:[2,3,7,13,15,16,17,19,21,28,29,36,45,47,48,54,59,64,69,74,86,90,91,92,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,125,126,128,137,138,139,140,141,143,144,145,150,151,152,153,154,155,157,159,160,161,162,163,164,165,166,167,168,170,171,175,177,178,185,192,193],sector:[50,56],secur:[100,103,113,157,172,173,174],sedol:163,see:[1,3,6,7,8,9,10,14,18,22,30,31,32,34,36,40,41,43,45,46,47,48,49,50,51,52,53,54,57,58,59,60,61,64,66,68,75,77,79,80,81,83,84,93,99,100,101,102,105,110,111,112,113,115,117,118,120,121,122,125,127,128,132,133,134,135,137,139,143,144,145,148,149,150,153,154,156,157,160,161,163,164,165,166,168,169,170,171,178,184,186,189,191,192],seed:[33,36,38,39,43,44,50,64,74,83,131,144,145,148,149,150,153,156,177,184],seed_numb:43,seek:[79,105,154,163,164,168,182,189],seem:[7,17,22,30,32,33,40,48,49,50,52,62,66,68,81,110,112,113,117,118,122,135,139,143,149,155,164,166,174],seen:[1,7,28,30,40,41,46,49,52,54,58,59,77,110,112,113,117,118,120,122,124,127,129,130,139,145,148,149,154,157,163,164,169,170,189],segment:[43,77,103,111,127,133,143,149,160,163],segmentation_mask:131,segmented_img:156,segreg:59,seir:140,select:[3,12,14,15,16,22,24,25,29,31,47,48,50,59,62,64,66,77,102,104,109,110,111,113,119,120,122,125,130,134,140,141,144,145,146,148,149,153,154,156,157,165,166,168,169,178,181,184,185],select_dtyp:[54,111,152,176],selected_featur:[157,165],selector:185,self:[3,14,18,22,24,29,30,31,33,35,36,37,40,43,47,53,55,63,65,74,75,82,83,93,94,95,126,130,131,132,133,136,150,154,163,182,186,187,191],self_dense_2:43,self_dense_3:43,sell:[35,93,94,113,164,169,170],selu:[44,127],sem:18,semant:[115,121,131,169],semi:[6,114,115,143,156,163,174],semicolon:[170,192],send:[101,105,137,175],sender:[105,163,175],senet:130,sens:[1,3,7,18,32,46,49,50,53,66,68,79,81,93,102,114,115,117,118,120,121,127,145,150,163,164,166,169,178,186],sensibl:139,sensit:[38,50,59,74,76,122,130,137,139,141,151,170,179,184,192],sensor:[114,115],sent:[101,114,127,137,140,157,163],sentenc:[89,94,127,132,170,171,193],sentiment:[103,115,127,172],sentinel:177,seok:30,sep:[9,18,24,31,47,103,169,170,191],sepal:[60,84,118,121,146,184],sepal_ratio:121,sepallength:[84,121,146],sepallengthcm:64,sepalratio:121,sepalwidth:[84,121,146],sepalwidthcm:64,separ:[1,7,29,50,61,75,84,107,115,117,119,120,121,122,125,130,133,135,139,140,144,149,154,164,166,169,170,184,192],septemb:[107,160,166],sequel:122,sequenc:[14,18,38,41,43,49,77,79,103,117,120,127,130,132,134,135,146,169,170,171,191,192],sequenti:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,47,48,54,56,62,77,83,127,128,130,134,150,151,153,170,180,184,190],sequential_2:29,sequential_3:29,sequential_window_dataset:44,ser1:177,ser2:177,ser:[121,177],sercostams:84,sergei:[31,156],seri:[7,8,14,18,22,24,31,34,38,46,49,50,51,52,56,57,58,60,66,79,109,118,119,127,130,131,134,140,144,149,161,167,169,171,178],serial:[135,138,157,191],series_to_supervis:38,seriou:59,serum:102,serum_creatinin:[9,101,102],serum_sodium:[9,101,102],serv:[43,75,76,77,101,107,109,120,121,139,140,141,169],server:[100,107,115,122,138,157,168,171,178],serverless:137,servic:[1,9,50,100,101,102,103,105,107,113,120,121,127,137,138,139,140,145,146,157,163,172,173,174,189],sesame_oil:161,sess1:125,sess2:125,sess:[125,128,132,134],session:[77,84,125,129,134,140,190,191],session_st:185,set1:[51,84],set2:56,set:[0,3,7,14,17,22,29,31,33,34,35,36,38,39,40,43,44,45,46,47,48,50,56,58,60,61,62,63,64,65,66,68,69,75,77,80,81,83,85,86,93,94,100,101,102,103,105,107,110,112,113,114,117,118,119,120,121,122,124,125,126,128,129,130,131,132,133,134,135,136,138,139,140,143,144,145,146,148,149,152,154,155,156,157,160,161,162,163,164,165,166,167,168,169,172,176,177,182,184,185,189,192],set_aspect:135,set_axis_off:37,set_color:41,set_grad_en:31,set_index:[1,14,38,121,135],set_major_formatt:156,set_major_loc:156,set_printopt:186,set_prop_cycl:135,set_properti:135,set_se:[43,44],set_styl:[54,84],set_them:143,set_ticklabel:[84,184],set_titl:[1,22,37,39,51,55,59,64,80,84,135,154,182],set_vis:[29,30,125],set_xlabel:[22,47,55,59,80,84,135,148,154,182],set_xlim:[154,182],set_xtick:[1,33,156],set_xticklabel:[1,51],set_ylabel:[22,47,55,59,64,80,84,135,148,154,182],set_ylim:[14,32,148,154,182],set_ytick:[1,33],set_yticklabel:1,set_zlabel:[80,84,154,182],setfil:128,setosa:[60,64,84,121,146,184],settl:[113,174],settlement:[113,174],setup:[0,45,47,56,125,128,138,164,168],sever:[7,8,14,21,35,41,45,51,54,56,63,65,72,74,76,100,102,110,111,112,115,118,120,121,122,130,132,133,138,139,143,145,150,153,157,160,161,162,164,165,166,168,169,170,171,184,190,191,192],sew:149,sex:[9,22,51,101,102,150,168],sex_distribut:24,sex_val:22,sgd:[33,40,45,49,62,68,81,139,190],sgd_classifi:49,sgd_clf:[68,81],sgd_score:[68,81],sgdclassifi:[49,68,81],shade:[39,47,103,109,113,172,174],shadi:109,shadow:[39,51],shah:141,shakespear:132,shakespeare_fil:132,shakespeare_model:132,shakespeare_url:132,shall:[93,94,169,170],shallow:[120,131,139,163,170,189,192],shanghai:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,51,66,75,110,136,143,144,156,160,161,162,164,191],shanmukha:137,shannon:50,shaoq:[130,133],shape:[29,30,31,32,33,34,36,38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,63,64,65,66,74,75,82,83,85,111,117,118,120,124,125,126,129,130,131,132,133,134,138,144,148,154,156,157,160,164,165,166,168,176,177,179,180,182,184,186,187,188,190],shape_i:[63,65],shape_img:39,shape_y_0:[63,65],share:[28,33,50,51,57,59,103,104,105,107,112,113,114,115,118,120,121,133,136,138,140,145,146,149,161,163,165,169,172,177,189],sharei:[50,55],sharma:137,sharmila:141,sharp:[139,145],shashank:137,shazia:137,she:[18,139,163,189],sheet:[139,141,161,162],shelham:131,shell:[169,193],shen:133,shepb1jhw5o:77,sherjil:129,shg:141,shift:[8,14,38,44,51,54,62,68,81,85,94,125,134,135,138,140,143,154],shift_in_all_direct:85,shift_in_one_direct:85,shifted_imag:85,shine:[149,157],ship:[49,62,125],shipment:137,shirlei:109,shirt:[30,40,41],shop:[39,143],shortcom:130,shortcut:[130,131,169,171],shorten:59,shorter:[21,26,102,121],shorthand:[120,169],shortli:[143,168],shortsight:128,shortstop:117,shot:36,should:[7,18,29,32,33,36,39,41,45,46,47,48,50,51,58,59,63,64,65,83,84,93,94,101,102,104,105,107,109,113,115,117,118,120,121,122,125,127,128,130,131,132,134,137,138,139,140,141,143,144,148,152,153,155,156,157,160,161,162,163,164,165,167,168,169,170,171,174,175,180,185,186,190,191,192],shouldn:[56,105],show:[1,3,5,7,8,9,13,14,15,16,18,19,29,30,31,32,34,35,38,39,40,41,42,44,45,47,49,50,51,52,53,55,56,57,58,59,60,61,62,64,66,68,74,75,76,80,81,83,85,101,103,104,105,110,111,112,117,118,119,120,121,124,125,126,127,128,131,132,133,134,135,138,139,140,143,144,146,148,149,150,152,153,154,156,160,161,163,164,165,166,168,171,176,178,180,184,186,187,188,189,190],show_centroid:156,show_generated_img:37,show_imag:33,show_images_batch:33,show_img:36,show_nam:191,show_new_sampl:34,show_output:[9,101],show_point:30,show_predict:131,show_xlabel:156,show_ylabel:156,showarrai:125,showcas:[28,66,103,172],showclassificationresult:47,showdown:111,showexampl:47,showmean:18,shown:[0,7,14,16,30,32,49,50,52,59,69,102,117,120,130,140,141,148,154,156,163,165,169,189],showregressionresult:48,shp:133,shrink:[38,156],shrinkag:150,shrivastava:141,shuffl:[29,30,33,37,38,39,40,43,48,56,64,83,109,125,126,129,131,132,134,135,139,148,162],shuffle_batch:125,shuffle_tensor:43,shuffled_ix:134,shufflenet:130,shuga:143,shut:62,sibl:22,sibsp:[22,150],sicp:94,sid:109,side:[7,8,14,54,55,59,68,79,81,112,121,128,141,149,154,161,169,170,171,192],siev:93,sieve_of_eratosthen:93,sigh:139,sight:[157,161],sigkdd:137,sigma:[117,126,132,134,145,146,148,153],sigma_ix_i:117,sigma_p:126,sigma_q:126,sigma_t:126,sigmoid:[29,30,31,36,37,40,43,60,61,82,124,127,128,132,133,140,150,165,180,190],sigmoid_cross_entropy_with_logit:129,sigmoid_svc100:59,sigmoid_svc:59,sign:[50,53,56,63,65,102,105,119,120,148,149,163,170],signal:[48,59,66,68,81,105,139,144,146,155,163,168,175,180],signatur:[103,121,170,172,192],signifi:[7,75,76],signific:[18,40,48,54,75,102,105,115,117,145,146,148,154,170,179],significantli:[47,50,75,76,137,139,143,148,149,156,164,170,184],signup:56,silenc:184,silent:[46,54,152,170],silhouett:156,silhouette_analysis_plot:156,silhouette_coeffici:156,silhouette_sampl:156,silhouette_scor:[144,156],silhouette_score_vs_k_plot:156,silu:126,silver:149,sim:[68,81,149],sim_count:[68,81],simcard:[68,81],similar:[3,6,7,14,29,31,39,43,47,50,52,59,63,65,68,74,81,105,107,113,115,117,118,119,120,121,124,125,131,133,134,135,138,139,140,141,143,144,145,149,154,157,160,162,163,164,169,170,171,175,177,189,192,193],similarli:[18,49,50,57,59,64,75,120,121,137,139,152,170],simonyan:130,simpl:[1,3,15,30,33,34,40,41,43,47,48,49,50,54,55,59,64,68,74,76,77,79,80,81,84,85,104,112,115,120,121,124,125,127,130,131,133,135,138,148,149,153,154,156,163,168,169,170,171,176,179,180,184,189,192],simplefilt:135,simpleimput:[54,61,79,152],simpler:[31,45,47,48,120,138,139,156,163,177],simplernn:44,simplest:[3,18,32,43,47,48,50,83,115,120,138,139,149,155,156,163,169,184,190],simpli:[0,7,30,33,43,46,47,48,49,50,51,74,75,77,83,101,105,109,118,121,127,131,139,145,149,152,154,155,156,163,164,169,170,177,185,189,192],simplic:[77,101,130,135,146,148,149],simplifi:[1,29,30,48,55,75,103,115,120,126,137,138,139,143,149,172],simpson:38,simul:[0,120,140,141,169],simultan:[36,117,130,133,138],sin:[18,120,126,149,191],sinc:[18,22,30,32,33,35,36,40,41,45,47,48,49,50,52,53,54,56,58,59,60,61,62,64,66,68,79,81,83,102,113,115,117,120,121,125,127,130,131,132,133,135,138,139,145,146,149,152,153,154,155,156,157,161,162,164,165,168,169,170,174,184,190,191,192],sine:120,singh:141,singl:[7,32,34,41,43,47,49,50,54,56,59,68,77,81,93,100,112,114,118,121,125,130,133,134,135,139,140,148,151,152,153,156,163,169,170,171,189,192,193],single_quote_str:[170,192],singleton_tupl:170,sink:100,sinn:123,sinusoid:126,siobhan:137,sir:[14,140],sirkap:103,sit:[57,58,107,163,175],site:[16,57,100,109,113,115,121,141,143,144,161,165,168,177,184,191],situat:[28,54,59,77,105,115,117,128,137,139,141,146,149,164,169,170],situp:89,six:[39,125],sixth:[170,192],size:[1,7,14,18,22,31,32,33,34,35,36,37,38,39,40,43,45,46,48,49,50,52,53,57,58,59,60,61,62,68,74,79,80,81,83,84,85,93,101,102,111,112,117,118,120,121,124,125,127,129,130,131,132,133,134,139,141,144,145,148,149,153,154,155,156,157,163,164,165,170,176,177,180,183,184,189,190,192],sjoerd:[170,192],ska20:139,skalski:139,skalskip:[84,85],skeeter:154,skeptic:149,sketch:171,sketchnot:168,skew:[7,22,54,57,59,66,68,81,110,144,160],skewed_feat:66,skf:148,skill:[38,47,102,103,109,110,115,122,172,176,193],skim:[101,166],skimag:125,skin:[103,172],skip:[0,3,31,38,41,43,47,48,110,131,169,170,176],skip_head:184,skiprow:31,skiti:[63,65],sklearn:[7,29,30,31,32,34,38,39,40,42,44,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,68,74,75,81,84,85,118,135,144,145,148,150,152,153,154,155,156,157,161,162,164,165,168,186,187,188],sklz5kcmqsshyyfixsjcin0srf5:59,sl:146,slate:119,slaughter:145,sleep:185,slept:186,slice:[51,59,83,125,169,170,177,192],slice_index:121,slice_loc:121,slice_obj:121,slicer:121,slide:[14,33,105,136,140,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],slideshow:181,slight:[56,148],slightli:[18,30,32,41,49,50,56,64,66,77,105,125,126,148,149,155,164,169],slope:[75,164],slow:[14,40,49,62,79,120,133,138,177],slower:[7,75,102,125],slowest:156,slowli:[45,48],slytherin:185,sm:[134,165],small:[0,15,29,32,33,41,48,49,50,57,58,60,61,63,64,65,66,68,74,77,79,81,83,102,117,119,120,121,125,126,130,131,132,133,137,139,141,145,148,149,152,154,155,156,157,163,164,165,168,169,171,174,180,184],smaller:[7,18,30,33,36,48,62,75,83,93,110,118,120,124,130,139,145,148,152,165,177],smallest:[93,139],smart:[120,139,152],smartphon:[68,81,115,127],smartwatch:[6,114],smelyanskii:139,smile_data:31,smile_id:31,smile_lat:31,smile_vec:31,smith:94,smo:[154,182],smoke:[9,101,102],smoker:160,smooth:[14,50,77,110,111,125,140,148,176],smoother:110,smoothli:[59,110,165],smote:160,smsspamcollect:134,smv:[60,61],sn:[30,34,36,38,39,40,48,49,50,51,52,53,54,56,57,58,59,60,61,64,66,68,79,81,84,110,112,135,143,144,145,146,148,154,165,176,182,184],sna:184,snake:50,snapshot:[39,102,111],sne:[156,163,184],sneaker:[30,40,41],snippet:[7,50,74,140,170],snow:[19,110,176],snr:59,so:[1,4,7,15,17,18,29,30,31,32,33,34,36,39,40,41,43,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,68,74,77,79,81,83,93,94,98,102,103,105,109,110,111,112,113,117,118,120,121,122,124,125,126,127,129,130,131,132,134,135,136,137,138,139,140,141,143,144,145,146,148,149,150,152,153,154,155,156,157,160,161,162,163,164,165,166,168,169,170,171,172,177,184,189,192],social:[5,103,105,109,113,115,172,174],social_network_ad:[187,188],societi:[113,141],socio:[103,113,174],socr:18,socr_mlb:18,soda:[119,178],sodium:102,soft:[59,156],softmax:[32,34,39,40,41,47,83,125,127,128,130,132,134,190],softmax_crossentropy_with_logit:83,softwar:[0,22,23,45,47,48,93,94,99,100,107,117,119,137,138,139,140,141,157,168,169,170,171,173,178,193],sold:[25,54,166],sole:[54,75,77,139,148,169],solid:[19,48,157],solidifi:149,soluion:[63,65],solut:[11,28,50,66,69,75,93,100,102,103,105,109,113,137,138,139,140,141,148,149,154,156,157,163,166,170,173,174,178,182,186],solv:[50,52,54,57,101,104,105,107,117,120,121,127,128,130,133,138,139,141,149,153,154,156,160,161,163,170,175,189],solvabl:[140,149],solver:[128,156,157,161],somber:105,some:[0,1,3,7,8,10,11,12,14,15,16,17,18,20,21,25,28,30,31,33,34,36,39,40,41,43,45,46,47,49,50,52,54,55,56,57,58,59,60,62,64,66,68,72,74,76,77,79,81,83,84,86,93,100,102,103,104,105,106,107,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,142,143,145,148,149,150,152,153,154,155,156,157,160,161,162,163,164,165,166,168,169,171,173,174,175,177,178,180,182,186,189,192],some_digit:85,some_digit_imag:85,somehow:[7,117,120,166],someon:[7,49,99,100,105,107,137,139,149,163,164,169,175],someth:[7,43,54,62,68,81,83,105,110,114,115,119,120,121,122,127,141,150,155,163,164,169,170,178,179,180,189,192],sometim:[7,30,46,49,59,62,75,111,114,115,117,118,120,121,122,124,128,130,135,137,139,140,141,149,152,163,164,165,169,170,177,189,192],somewhat:[7,47,111,156,164,165,185],somewher:[117,149,163,164,165],sonali:105,song:[142,143,144],soo:68,soon:[29,40,149],sophist:[49,109,110,138,145,148,163,176,189],sore:127,sort:[22,39,45,50,54,62,93,115,121,125,130,143,148,156,160,163,166,169,170,176,185,189,191,192],sort_i:55,sort_idx:55,sort_index:121,sort_valu:[1,31,50,51,54,56,66,160,161],sort_x:55,sosa:164,sosb:164,soshnikov:[14,100,164],sound:[7,18,31,45,117,118,127,145,152,163,189],sound_packag:169,sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,39,40,43,44,46,49,50,52,53,54,55,56,57,58,59,60,61,62,64,66,67,68,69,71,72,79,81,83,84,85,86,87,89,90,91,92,93,94,100,101,102,103,104,105,107,108,109,110,111,112,113,115,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,148,149,150,152,153,154,156,157,160,161,162,163,164,165,166,168,169,170,171,177,179,184,185,186,187,189,190,191,193],source_indic:1,sours:134,south:[49,52],soy_sauc:161,space:[1,6,29,31,36,39,50,83,93,94,103,109,111,117,120,121,124,128,130,133,139,140,146,148,149,153,154,157,162,165,166,169,170,171,172,176,184,191,192,193],spacing_h:133,spacing_w:133,spam:[134,160,163,169,170,189,192],span:[112,170,192],spanish:50,spark:[137,138],sparki:143,spars:[77,79,124,148,149,153],sparse_categorical_crossentropi:[40,47,132],sparse_softmax_cross_entropy_with_logit:[125,134],sparsecategoricalcrossentropi:[40,41,131],sparsiti:[77,153],spatial:[103,127,130,131,133,184],speak:[105,109,112,137,139,157,169],speaker:139,speci:[60,64,84,110,111],special:[7,29,31,54,62,77,102,115,118,120,127,143,153,154,163,165,168,169,170,177,191],specialti:166,specif:[3,7,14,22,28,31,39,40,43,45,46,47,48,49,50,52,62,68,75,76,77,81,100,103,104,113,114,118,120,121,122,130,131,134,137,138,139,141,143,145,148,149,150,154,162,163,164,169,170,171,179,184,191,192],specifi:[1,7,14,22,31,33,34,40,43,46,48,85,100,118,120,121,125,130,140,148,152,153,161,163,169,170,189,192],spectral:143,spectralclust:156,spectralclusteringspectralclust:156,spectrum:117,specular:39,speech:[41,77,100,127,163],speechi:[142,143,144],speed:[14,40,54,62,68,81,83,102,107,113,120,121,130,133,139,140,141,152,153,163],spend:[23,49,68,81,100,105,138,149,152,163],spent:[105,139,149],spepal:46,spigeabqjcqcjpji8ek2gq3feuwpa07b3mmrhwktxsn67uoiyut4sgkuoutl8jqc5a:59,spike:[1,108,109,112,176],spinach:166,spine:112,spline:149,split:[31,33,35,38,40,49,52,55,56,60,61,62,64,74,83,84,120,121,122,128,129,130,131,132,133,134,135,137,139,145,146,148,149,150,154,156,163,164,165,168,169,170,171,177,178,182,184,191,192],split_col:55,split_data:150,split_nam:55,splitidx:48,splitted_str:170,splitted_sub_str:170,splitter:[57,58],sponsor:[107,138,175],spore:[111,176],sport:103,sports_hobbi:94,spot:[7,46,118,120,155,163,189],spotifi:143,spous:22,spread:[14,115,117,122,126,128,143,149,166],spreadsheet:[6,23,25,27,71,114,121,122,157,163,166,189],spring:[140,169],springer:139,spruce:166,spuriou:[59,62,109],sql:[12,25,100,115,119,121,122,137,178],sqlite:[12,25],sqrt:[38,52,53,54,55,56,58,61,66,74,76,79,94,117,126,129,130,133,146,148,164,184],sqrt_alphas_cumprod:126,sqrt_alphas_cumprod_t:126,sqrt_iter:94,sqrt_one_minus_alphas_cumprod:126,sqrt_one_minus_alphas_cumprod_t:126,sqrt_recip_alpha:126,sqrt_recip_alphas_t:126,sqrzypw0qccfugn2wxewatjnaka17wwjlsrqdqfu1jch8nwfc14oqv2anesclwvrugbvlhspfwzjrcf8etm8okncdewokyi:59,squar:[38,40,45,48,50,53,58,61,63,65,66,68,74,75,77,81,93,111,120,124,125,126,128,135,139,143,144,145,148,149,153,154,155,156,164,165,170,185,186,190,191,192],square_root:93,square_tupl:[170,192],squared_error:[58,76],squarederror:54,squeez:[29,30,31,36,37,125,133,154],sr:133,src:[77,109,133,144,156,160,164],ss20:[124,129,132,134],ssh:102,sssg17:141,stabal:62,stabil:[83,112,139,144],stabl:[1,66,120,121,139,156,184],stack:[1,22,31,33,40,54,109,120,121,127,130,133,137,149,176],stack_clf:49,stackingclassifi:49,stacklevel:121,stackoverflow:18,staff:146,staff_id:[169,191],stage0:130,stage1:130,stage2:130,stage3:130,stage4:130,stage:[17,23,55,56,59,104,105,107,130,131,133,138,153,155,163,175],stai:[48,79,139,157,185],staircas:125,stakehold:[105,107,175],stalk:[111,176],stamp:[49,52],stand:[49,59,62,68,81,105,112,150,153,166],standard:[7,18,29,31,46,47,48,59,62,64,79,90,104,107,113,118,120,121,122,127,135,137,138,140,146,149,152,154,163,164,166,169,191],standard_d2_v2:[9,101],standardscal:[44,53,58,59,61,62,64,79,187,188],standpoint:77,stanford:[37,103,130,149,163,164,165],stapl:77,star:[59,160,170],starri:125,starry_night:125,start:[0,1,3,8,11,13,18,29,33,34,37,41,43,45,46,47,48,54,56,59,61,68,74,75,80,81,83,85,93,94,100,101,102,103,104,105,109,110,112,113,115,117,118,119,120,121,125,126,128,129,132,134,135,136,140,144,146,148,149,150,152,153,154,155,156,157,160,162,163,164,165,166,169,170,171,173,177,179,180,184,185,187,188,189,192],start_idx:83,start_queue_runn:125,start_slic:121,start_tim:39,starter:[31,109,165],starti:128,starting_pitch:117,startswith:[3,156],startup:[43,56],startx:128,stat453:[124,129,132,134],stat:[18,40,49,53,54,58,64,66,117,139,140,145,154,182],stat_interv:145,state:[9,13,14,15,31,35,49,50,52,59,101,103,109,112,114,120,121,122,125,127,130,132,134,137,138,139,140,145,150,157,160,162,163,166,169,176,178,185],state_c:132,state_dict:37,state_h:132,state_s:35,statement:[31,33,97,98,113,114,117,119,122,128,168,171,178],stationeri:38,statist:[7,39,47,50,52,54,59,61,74,76,77,107,112,113,115,116,120,126,134,136,139,140,141,143,145,148,149,154,160,163,164,175,177,180],statsmodel:[54,64],statu:[22,57,101,102,110,128,129,138,140,176],std:[18,24,29,31,38,47,48,58,59,61,64,79,83,117,120,130,143,148,153,156,177],std_agg:55,stdarr:48,stddev:[125,126,129,133,134],stderr:47,stdout:191,steam:38,steep:[140,165],steer:41,stellar:59,stem:[7,56],step:[0,7,9,16,28,31,33,35,36,37,38,39,40,41,43,44,47,48,49,50,52,54,59,60,61,62,64,74,75,76,80,83,93,100,101,102,103,104,105,107,110,113,115,118,119,120,121,122,124,125,126,127,128,130,132,134,137,138,139,140,141,144,145,146,153,156,157,160,163,164,166,169,170,174,177,184,187,188,189],steps_mean:128,steps_per_epoch:[32,131],steps_taken:128,stepwis:164,stereotyp:113,stick:[48,105],sticki:111,stiff:169,stikeleath:105,still:[7,18,36,48,49,52,53,57,75,77,117,118,120,121,127,131,132,134,135,137,138,139,141,149,156,163,169,170,185,192],stochast:[83,126,128,149,161,163,190],stock:[112,128,163,176],stockast:[49,68,81],stop:[33,39,40,50,55,75,101,120,121,126,148,152,153,169,177,187,188],stop_gradi:133,stop_train:40,storag:[11,33,100,102,107,115,122,125,164,165,173,174,175,178],store:[6,7,11,12,29,30,31,33,39,41,46,50,53,64,66,68,81,93,94,97,100,105,114,115,118,120,121,122,123,124,125,126,127,129,132,135,137,138,139,140,141,146,152,154,169,170,171,173,178,185,192,193],stori:[4,13,19,50,108,109,141,170,175,176,192],storymap:103,storytel:[19,26,175],stott:7,str1:[48,170],str2:170,str:[1,9,14,33,35,37,47,48,54,56,59,66,68,81,84,101,121,125,126,131,133,146,152,164,166,169,170,171,177,191,192,193],straight:[43,45,50,105,152,154,164,168,182,186,190],straightforward:[31,75,115,120,139,152,157,165,168,169],straightfoward:135,strang:[18,109,166],strateg:[128,163],strategi:[7,29,41,47,49,52,61,68,77,79,81,105,113,128,131,139,140,160,163,189],strategist:105,stratifi:[148,184],stratifiedkfold:[64,148],stratifiedkfoldcv:64,stream:[47,50,100,127,128,133,137,138,141,163,189,191],stream_executor:29,streamlin:[130,136],streamlit:140,street:[60,61,66,113,174],strenghten:55,strength:[1,54,135,139,154,182],strengthen:[100,149],stretch:[1,8,120],strftime:38,strict:[107,121,139],strictli:169,stride:[29,30,31,32,33,34,36,37,124,125,126,130,131,133],strike:77,string:[7,14,22,39,54,56,59,84,118,120,121,132,166],string_input_produc:125,string_vari:[170,192],string_with_whitespac:[170,192],strip:[3,14,59,132,169,170,192],stripe:165,stripplot:165,strive:[36,77],strong:[18,43,49,52,54,64,66,110,112,117,129,130,132,143,145,149,151,153,163],stronger:35,strongest:[54,113],strongli:[117,149,156,163,189],struc:77,struct:120,structur:[6,7,12,22,30,31,38,40,41,50,57,58,91,93,113,114,115,119,122,124,125,127,128,129,130,131,133,137,150,153,154,157,161,163,164,166,169,171,174,176,178,179,182,184,189,191],struggl:[139,145],strutur:152,stubbornli:45,stuck:[62,139],student:[16,18,64,115,117,119,140,155,164,168,178],student_admiss:191,studi:[14,16,33,39,50,127,149,154,159,161,163,172,174,177,186,189],studio:[7,9,101,103,164,166,167,168,172],study_15:57,study_1:57,study_20:57,study_41:57,study_7:57,stuff:[83,169],stump:149,stun:57,style:[0,3,32,36,38,51,62,92,120,121,130,135,136,140,143,144,148,156,157,160,164,172,173,174,175,176,177,178,179,180,182,183,184,186,187,188,189,190,191,192,193],style_expect:125,style_featur:125,style_gram_matrix:125,style_imag:125,style_image_fil:125,style_image_weight:125,style_lay:125,style_loss:125,style_minus_mean:125,style_norm:125,style_shap:125,style_weight:125,stylesheet:[157,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],sub:[1,90,120,125,132,134,139,164,165],sub_str:170,subarrai:177,subclass:[3,29,132,169],subdimension:120,subgroup:[50,103,113],subitem:169,subject:[1,7,31,36,45,50,93,94,103,105,113,114,120,169,170,172,174,180],sublicens:[93,94,169,170],sublist:94,subm:54,submiss:54,submit:[9,15,66,72,89,101,105,139,157],submodul:169,subnet:137,suboptim:156,subpackag:169,subplot:[1,29,30,31,33,34,36,37,38,39,40,41,50,51,54,55,59,64,83,110,112,125,126,131,135,143,144,148,150,154,156,176,182,184,190],subplot_kw:39,subplots_adjust:[31,34,154,156,182],subregion:125,subsampl:32,subscrib:[113,138,174],subscript:[100,102,113,163,174],subscription_id:9,subsect:[7,46,118],subsequ:[31,32,49,54,75,120,128,148,152,153,162,170,185,192],subset:[7,18,33,41,46,49,50,68,79,81,84,87,90,113,117,118,120,121,124,127,138,139,148,149,152,153],subspac:[49,120,148,184],substanti:[93,94,145,146,169,170],substitut:[7,11,169,191],substr:[1,170,192],subsubitem:169,subtl:[7,118,152],subtract:[76,93,120,125,131,170,171,177,192,193],subtre:50,subtyp:170,subwai:103,succe:163,succeed:153,success:[103,105,113,120,130,139,140,141,149,163,169,170,186],successfulli:[36,37,50,56,128,139,140,149],succinct:105,sudden:64,suddenli:64,sue:177,suffer:[56,57,58,127,135],suffici:[30,32,117,145,149,153,154,170],suffix:[121,157,168,169],sugar:[48,120,169],suggest:[11,14,18,33,59,76,117,146,148,149,163,164],suit:[43,47,59,60,61,121,144,163,165,176],suitabl:[3,54,60,120,127,137,141,149,161,163,169,190],sulfur:48,sulphat:48,sum:[1,7,14,18,22,25,31,33,38,47,48,49,50,51,52,53,54,55,56,57,58,59,61,63,65,66,68,74,75,76,79,81,82,83,117,119,120,121,125,126,128,129,134,135,143,144,145,146,148,149,151,153,154,156,160,164,166,169,177,182,186,187,190,191],sum_:[50,75,76,77,126,128,129,134,145,146,148,149,153,155,183,186],sum_i:[124,145],sum_inertia_:156,sum_of_list:93,sum_of_valu:93,sum_t:149,summar:[51,59,77,79,104,105,117,130,132,146,163],summari:[7,29,30,36,46,47,49,52,53,58,74,75,102,105,118,120,126,127,169,174,177,180],summaris:59,summat:[75,130],summer16:191,summer:[17,103,107],sun:[57,130,133,141],sundai:[49,52],sunglass:31,sunglasses_data:31,sunglasses_id:31,sunglasses_lat:31,sunglasses_vec:31,sunshin:39,sup:48,supercalifragilisticexpialidoci:[170,192],supercharg:109,superclass:130,superimpos:[45,112],superman:93,supermarket:39,superpow:58,supervis:[29,36,38,50,52,53,57,58,59,60,61,68,81,130,131,136,139,141,142,143,148,149,153,154,156,160,161,162,168,184],supervisor:128,suppli:[7,49,52,89,103,112,120,137,169],support:[0,1,7,18,29,43,47,48,49,50,52,54,57,58,68,77,81,83,102,103,104,105,107,109,111,113,114,117,120,121,131,136,137,138,139,143,145,148,149,153,156,157,161,163,165,168,169,170,177,185,192],support_vectors_:[154,182],suppos:[18,49,50,115,117,120,131,145,146,154,166,170],suppress:[121,144],supris:40,suptitl:18,sure:[0,4,9,11,46,49,50,52,77,83,105,109,111,113,114,117,118,120,125,135,138,139,141,144,150,156,160,161,163,164,168,169,170,174],surfac:[50,54,74,80,111,176],surmis:144,surpass:29,surpris:[7,118,120,143,163,166,169],surprisingli:[53,165],surround:[115,131,163,164,170],survei:[6,7,115,137,146,174],surveil:[115,133,141],surviv:[22,140,149,163,189],survivor:22,suscept:140,suspect:[59,186],suspicion:137,sustain:[16,102,138],sustract:150,sv_classifi:49,svc:[49,56,59,60,154,161,182],svcsvc:60,svm:[49,56,77,124,161,162,163],svr:61,svr_rnd:61,svrsvr:61,svxnq0nwbkfkeool59ws3awqcdihomgjxzrj7rcf7inikape9zeqssiu0czvvz9siareaafurxwl8b:59,sw:146,swap:[94,120,121,170],swarmplot:165,sweden:193,sweet:155,swiss:185,switzerland:135,sx:125,sy:[3,12,18,25,29,38,47,76,83,99,100,101,102,110,111,112,125,127,132,142,143,144,155,156,158,159,160,161,162,164,169,191],syllabl:170,symbol:[44,56,169,171],symmetr:[133,137,149,170],synaps:100,sync:117,synchron:141,synonym:[59,77,130,177],synset:130,syntact:[120,169,191],syntax:[120,121,122,157,169,177],syntaxerror:[169,171],synthes:85,synthesi:[85,137],synthet:[50,139,140,141,160],syphili:[113,174],system:[14,38,39,41,48,50,79,100,102,103,105,107,113,114,119,120,127,128,134,136,137,138,139,140,141,149,157,168,171,172,174,178,180,193],systemat:[113,137,141,163],sz:125,t:[0,1,7,14,18,24,26,30,31,32,33,34,35,36,38,39,40,41,43,45,47,48,49,50,51,52,53,55,56,57,58,59,60,63,64,65,66,68,74,75,77,79,81,82,83,94,100,101,102,103,104,105,107,109,110,113,114,117,118,119,120,121,122,124,125,126,127,128,129,130,132,133,134,135,137,139,140,146,148,149,150,152,153,154,155,156,157,160,161,162,163,164,165,166,168,169,170,171,172,174,176,177,182,184,186,187,188,189,191,192],t_1:[117,148],t_2:117,t_:128,t_dim:126,t_fix:128,t_grad:125,t_index:126,t_input:125,t_k:128,t_loss:31,t_maze:128,t_n:148,t_obj:125,t_preprocess:125,t_score:125,ta:54,tab:[22,31,101,102,119,121,169],tabl:[11,12,14,46,71,109,111,115,117,119,120,137,139,140,143,146,161,164,165,169,170,185,192],table_data:[170,192],table_str:[170,192],tableau:[105,111],tabular:[40,51,59,102,120,127,152,163,170,178,189],tac:169,tack:120,tackl:[50,54,60,61,103,121,136,139,153,156,166],tag:[3,9,57,101,114,169],tag_nam:169,tags_decor:169,tags_to_skip:3,taha:44,tail:[38,46,49,52,54,66,68,79,81,118],tailor:77,tajgahors4ocotjy9nzfd2lup14efuvkaejjbkdpghifzjonppwudirlzfb2z0zcqcqr18iv0f7ro4iebuqiyaif9q0jgojxciilkn7anonkruijjrghi:59,take:[1,3,7,8,9,11,14,17,18,29,30,31,32,33,34,36,39,41,43,45,47,48,49,50,52,53,54,56,57,58,59,61,64,66,68,74,75,76,77,79,80,81,83,84,89,93,100,101,102,103,104,105,107,109,111,112,113,114,115,117,118,120,121,122,124,125,126,127,128,130,131,132,136,137,138,139,141,143,144,145,148,149,152,153,155,156,157,160,161,162,163,164,165,166,168,169,170,171,174,180,184,189,191,193],takeabl:121,takeawai:[7,24,46,105,118],taken:[1,24,28,34,35,46,56,107,115,117,118,120,128,135,153,166,175,186],talent:103,talk:[16,18,50,62,68,81,103,105,109,113,115,117,136,150,153,163,165,172,174,186],talk_tim:[68,81],tall:[112,128,130],taller:[18,117],tan:[111,120,176],tandem:191,tang:139,tangent:120,tangerin:[170,192],tangibl:100,tanh:[36,37,45,129,132,180,190],tape:[0,36,128,132],tar:[33,125,130],tarantool:178,tarfil:[33,125],target:[1,9,29,30,35,37,40,49,50,52,53,55,56,57,58,60,62,63,64,65,66,68,74,77,79,80,81,83,89,93,101,102,124,125,132,133,135,137,138,139,144,145,146,148,149,150,154,156,163,168,169,184,186,189,190],target_class:59,target_f:35,target_fil:125,target_indic:1,target_nam:40,target_s:125,target_shap:125,tarih:35,task:[7,8,9,16,29,36,41,43,46,47,51,57,58,59,60,68,74,76,77,81,96,100,101,102,104,107,108,109,110,113,115,118,119,120,121,127,130,131,133,136,137,138,139,141,142,149,150,151,153,154,156,157,159,160,161,162,163,165,166,167,168,171,173,176,186,189,191],task_typ:54,tast:[142,143],tasti:[111,176],taught:[54,143],tax:36,taxi:[17,107],taxicab:[103,172],taxonom:7,tbd:[124,125,126,128,129,130,131,132,133,134,135,143,144,145,146,148,149,150,152,153,163],tc:168,tcl:150,tdd:136,tdsp:107,teach:[40,109,193],team:[17,18,23,103,105,107,113,117,136,138,141],teammat:[96,105],tecent_fil:38,tech:[43,163,189],technic:[38,43,50,113,122,137,138,141,149,150,152,163,174,178,189],techniqu:[1,4,7,15,17,32,34,41,46,49,50,54,56,57,58,59,60,69,71,74,75,76,77,79,85,86,103,104,107,108,112,113,115,117,118,120,127,139,143,144,145,148,152,153,155,160,161,162,163,164,165,166,168,170,175,186],technolog:[56,100,103,114,137,141,149,157,163],tediou:[107,119,154,164],telecom_churn:[50,145,148],telecom_data:145,telemetri:29,televis:105,tell:[4,7,13,19,36,50,54,55,56,60,68,81,103,105,108,109,113,117,127,135,148,155,163,176,180,189,191],temb:126,temp:[38,62,125,170,184,191],temp_accuraci:125,temp_original_loss:125,temp_output_:125,temp_test_acc:[125,134,148],temp_test_loss:134,temp_train_acc:[125,134,148],temp_train_loss:[125,134],temp_train_pr:125,temperatur:[114,115,167],templat:[38,119,140,157],tempo:[143,144],tempor:77,temporari:[120,125],temporarili:[33,75],temporary_attribut:169,tempt:[48,117],temptat:48,ten:[47,56,79,125,130,160],tencent:38,tend:[40,49,52,53,56,57,58,59,62,109,110,120,121,127,144,145,163,178],tendenc:[108,176],tens_reshap:43,tension:131,tensor2tensor:126,tensor:[33,77,125,130,131,132,177,190],tensor_0:43,tensor_1:43,tensor_1d:43,tensor_2:43,tensor_2d:43,tensor_3d:43,tensor_nam:43,tensor_shuffl:43,tensorflow:[30,36,38,39,41,42,44,45,47,48,49,57,58,62,77,102,124,126,127,128,129,130,131,132,133,134,136,138,139,140,141,157,160,168,180,190],tensorflow_addon:[126,130],tensorflow_cookbook:[125,132,134],tensorflow_dataset:[130,131],tensorflow_exampl:131,tensorflow_inception_graph:125,tensorpack:133,term:[1,3,31,47,49,50,52,57,59,74,75,76,77,101,103,112,115,119,120,122,125,126,127,128,130,134,137,141,143,144,149,154,155,156,162,163,164,165,169,172,178,182,186,189],termin:[0,40,101,102,109,128,157,166,169,171],terminolog:[1,59,113,119,122,143,162],terribl:47,territori:14,test:[0,14,15,22,29,31,32,35,38,39,40,41,50,55,58,60,61,64,66,68,81,85,94,100,102,103,110,113,115,120,124,125,129,130,131,132,134,135,138,139,143,144,145,148,149,150,155,156,157,161,162,163,164,165,168,169,171,180,183,184,189,190],test_absolute_valu:93,test_acc:[41,125,148],test_accuraci:[125,134],test_addit:93,test_append_diff_column_happy_cas:14,test_append_diff_column_with_empty_column_to_diff:14,test_append_diff_column_with_empty_df:14,test_append_diff_column_with_empty_new_column:14,test_append_diff_column_with_invalid_column_to_diff_nam:14,test_append_diff_column_with_invalid_column_to_diff_typ:14,test_append_diff_column_with_invalid_df_typ:14,test_append_diff_column_with_invalid_new_column_typ:14,test_append_diff_column_with_none_column_to_diff:14,test_append_diff_column_with_none_df:14,test_append_diff_column_with_none_new_column:14,test_batch:[125,131],test_calculate_happy_cas:94,test_calculate_with_invalid_c_input:94,test_calculate_with_none_input:94,test_calculate_with_str_input:94,test_capitalize_words_default:94,test_capitalize_words_exclude_word:94,test_censor_word:94,test_censor_words_no_censor:94,test_censor_words_partial_match:94,test_column_filter_happy_cas:14,test_column_filter_with_empty_column_nam:14,test_column_filter_with_empty_df:14,test_column_filter_with_invalid_column_name_typ:14,test_column_filter_with_invalid_df_typ:14,test_column_filter_with_none_column_nam:14,test_column_filter_with_none_df:14,test_conjug:93,test_cont:3,test_count_occurr:94,test_count_occurrences_empty_list:94,test_count_occurrences_str:94,test_count_word_occurr:94,test_count_word_occurrences_empty_text:94,test_count_word_occurrences_same_word_rep:94,test_data:[29,49,52,53,57,61,79,124],test_data_path:[68,81],test_data_schema:48,test_dataset:33,test_df:[14,22,24,53,83,85],test_df_1:14,test_df_2:14,test_df_3:14,test_df_boxplot_happy_cas:24,test_df_boxplot_with_empty_df:24,test_df_boxplot_with_none_df:24,test_df_hist_happy_cas:53,test_df_hist_with_empty_df:53,test_df_hist_with_none_df:53,test_df_pairplot_happy_cas:53,test_df_pairplot_with_empty_df:53,test_df_pairplot_with_none_df:53,test_df_plot_happy_cas:24,test_df_plot_with_empty_df:24,test_df_plot_with_none_df:24,test_df_scatterplot_happy_cas:24,test_df_scatterplot_with_empty_df:24,test_df_scatterplot_with_none_df:24,test_dict:[125,134],test_divis:93,test_drop_columns_happy_cas:14,test_drop_columns_with_empty_column:14,test_drop_columns_with_empty_df:14,test_drop_columns_with_invalid_columns_input:14,test_drop_columns_with_invalid_columns_nam:14,test_drop_columns_with_invalid_columns_typ:14,test_drop_columns_with_invalid_df_typ:14,test_drop_columns_with_none_column:14,test_drop_columns_with_none_df:14,test_dtyp:48,test_empty_list:93,test_equ:93,test_existing_el:93,test_feed_happy_cas:3,test_feed_with_empty_cont:3,test_feed_with_empty_tag:3,test_feed_with_non:3,test_feed_with_skipped_tag:3,test_fibonacci_sequ:94,test_fibonacci_sequence_single_term:94,test_fibonacci_sequence_zero_term:94,test_filter_by_country_region_happy_cas:14,test_filter_by_country_region_with_empty_country_region_nam:14,test_filter_by_country_region_with_empty_df:14,test_filter_by_country_region_with_invalid_country_region_name_typ:14,test_filter_by_country_region_with_none_country_region_nam:14,test_filter_by_country_region_with_none_df:14,test_filter_by_country_region_with_wrong_country_region_nam:14,test_filter_by_country_region_without_none_province_st:14,test_filter_by_happy_cas:24,test_filter_by_invalid_column_nam:24,test_filter_by_invalid_column_valu:24,test_filter_by_with_empty_df:24,test_filter_by_with_none_df:24,test_filter_ninfected_by_year_and_month_happy_cas:14,test_filter_ninfected_by_year_and_month_with_empty_df:14,test_filter_ninfected_by_year_and_month_with_invalid_df_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_month_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_year_numb:14,test_filter_ninfected_by_year_and_month_with_invalid_year_typ:14,test_filter_ninfected_by_year_and_month_with_none_df:14,test_filter_ninfected_by_year_and_month_with_none_month:14,test_filter_ninfected_by_year_and_month_with_none_year:14,test_flatten_nested_list:94,test_flatten_nested_lists_empty_list:94,test_flatten_nested_lists_no_nested_list:94,test_float_numb:93,test_fold:125,test_format_person_info:94,test_format_person_info_empty_list:94,test_format_person_info_single_person:94,test_funct:169,test_function_scop:169,test_get_df_column_diff_happy_cas:14,test_get_df_column_diff_with_empty_column:14,test_get_df_column_diff_with_empty_df:14,test_get_df_column_diff_with_invalid_column_nam:14,test_get_df_column_diff_with_invalid_df_typ:14,test_get_df_column_diff_with_none_column_nam:14,test_get_df_column_diff_with_none_column_typ:14,test_get_df_column_diff_with_none_df:14,test_get_df_corr_with_happy_cas:24,test_get_df_corr_with_with_empty_df:24,test_get_df_corr_with_with_invalid_column_nam:24,test_get_df_corr_with_with_none_df:24,test_get_df_mean_happy_cas:24,test_get_df_mean_with_empty_df:24,test_get_df_mean_with_none_df:24,test_get_df_std_happy_cas:24,test_get_df_std_with_empty_df:24,test_get_df_std_with_none_df:24,test_get_pinfected_happy_cas:14,test_get_pinfected_with_empty_df:14,test_get_pinfected_with_invalid_df_typ:14,test_get_pinfected_with_none_df:14,test_get_rolling_window_happy_cas:14,test_get_rolling_window_with_empty_column:14,test_get_rolling_window_with_empty_df:14,test_get_rolling_window_with_invalid_column_nam:14,test_get_rolling_window_with_invalid_column_typ:14,test_get_rolling_window_with_invalid_df_typ:14,test_get_rolling_window_with_invalid_window_typ:14,test_get_rolling_window_with_negative_window:14,test_get_rolling_window_with_none_column:14,test_get_rolling_window_with_none_df:14,test_get_rolling_window_with_none_window:14,test_get_rt_happy_cas:14,test_get_rt_with_empty_column:14,test_get_rt_with_empty_df:14,test_get_rt_with_invalid_column_nam:14,test_get_rt_with_invalid_column_typ:14,test_get_rt_with_invalid_df_typ:14,test_get_rt_with_invalid_window_typ:14,test_get_rt_with_negative_window:14,test_get_rt_with_none_column:14,test_get_rt_with_none_df:14,test_get_rt_with_none_window:14,test_get_smoothed_ax_happy_cas:14,test_get_smoothed_ax_with_empty_column_nam:14,test_get_smoothed_ax_with_empty_df:14,test_get_smoothed_ax_with_invalid_column_name_typ:14,test_get_smoothed_ax_with_invalid_df_typ:14,test_get_smoothed_ax_with_invalid_window_numb:14,test_get_smoothed_ax_with_invalid_window_typ:14,test_get_smoothed_ax_with_none_column_nam:14,test_get_smoothed_ax_with_none_df:14,test_get_smoothed_ax_with_none_window:14,test_get_smoothed_ax_with_nonexistent_column:14,test_global_variable_access:169,test_group_by_categori:94,test_group_by_category_empty_input:94,test_group_by_category_no_categori:94,test_group_by_category_single_categori:94,test_groupby_sum_happy_cas:14,test_groupby_sum_with_empty_column_nam:14,test_groupby_sum_with_empty_df:14,test_groupby_sum_with_invalid_column_nam:14,test_groupby_sum_with_invalid_column_name_typ:14,test_groupby_sum_with_invalid_df_typ:14,test_groupby_sum_with_none_column_nam:14,test_groupby_sum_with_none_df:14,test_http_get_happy_cas:3,test_http_get_with_invalid_url:3,test_http_get_with_none_url:3,test_i:[38,152],test_imag:[41,125,129,131],test_impute_with_mean_happy_cas:22,test_impute_with_mean_invalid_column_nam:22,test_impute_with_mean_with_empty_df:22,test_impute_with_mean_with_none_df:22,test_impute_with_median_happy_cas:22,test_impute_with_median_invalid_column_nam:22,test_impute_with_median_with_empty_df:22,test_impute_with_median_with_none_df:22,test_index:148,test_init:3,test_input_data:[61,79],test_input_dim:48,test_insertion_sort:94,test_insertion_sort_empty_list:94,test_insertion_sort_single_element_list:94,test_insertion_sort_sorted_list:94,test_is_empti:93,test_label:[29,41,61,79,125],test_label_encode_happy_cas:22,test_label_encode_invalid_column_nam:22,test_label_encode_invalid_encoded_column_nam:22,test_label_encode_with_empty_df:22,test_label_encode_with_none_df:22,test_large_numb:93,test_load:33,test_loss:[29,41,134],test_lstm_model:132,test_merge_dicts_with_list:94,test_merge_nested_dict:94,test_merge_three_dict:94,test_merge_two_dict:94,test_mkframe_happy_cas:14,test_mkframe_with_empty_column_nam:14,test_mkframe_with_empty_df_1:14,test_mkframe_with_empty_df_2:14,test_mkframe_with_empty_df_3:14,test_mkframe_with_invalid_column_nam:14,test_mkframe_with_invalid_column_typ:14,test_mkframe_with_invalid_df_1_typ:14,test_mkframe_with_invalid_df_2_typ:14,test_mkframe_with_none_column_nam:14,test_mkframe_with_none_df_1:14,test_mkframe_with_none_df_2:14,test_mkframe_with_none_df_3:14,test_model_output:125,test_ms:[61,79],test_multipl:93,test_nam:[66,125],test_negative_numb:93,test_nois:129,test_non_existing_el:93,test_nul:48,test_one_as_input:93,test_one_hot_encode_happy_cas:22,test_one_hot_encode_invalid_column_nam:22,test_one_hot_encode_with_empty_df:22,test_one_hot_encode_with_none_df:22,test_output:125,test_permut:94,test_permutations_empty_list:94,test_permutations_single_el:94,test_pop:93,test_positive_numb:93,test_pr:[60,61,79,125],test_pred_poli:60,test_predict:125,test_preprocess:[61,79],test_push:93,test_rang:48,test_remove_dupl:94,test_remove_duplicates_empty_dict:94,test_remove_duplicates_empty_list:94,test_remove_duplicates_no_dupl:94,test_remove_duplicates_str:94,test_respons:66,test_result:33,test_rms:[61,79,135],test_rt_with_na_filled_happy_cas:14,test_rt_with_na_filled_with_empty_df:14,test_rt_with_na_filled_with_invalid_df_typ:14,test_rt_with_na_filled_with_none_df:14,test_same_numb:93,test_sampl:[9,101],test_save_path:66,test_scal:[53,60],test_scor:[56,64],test_single_element_list:93,test_siz:[29,31,32,34,40,49,50,51,52,53,54,56,57,58,59,60,61,79,84,135,148,150,152,153,157,161,162,164,165,168,184,186,187,188],test_sqrt:94,test_sqrt_non_perfect_squar:94,test_sqrt_perfect_squar:94,test_square_funct:93,test_str:94,test_string_input:93,test_string_numb:93,test_string_upper_empty_str:94,test_string_upper_happy_cas:94,test_string_upper_none_str:94,test_subtract:93,test_target:125,test_url:[3,66],test_vari:169,test_wrong_target_typ:93,test_x:[38,63,65,152],test_xdata:125,test_zero:93,testabl:136,testappenddiffcolumn:14,testbinarysearch:93,testcalcul:94,testcalculatesum:93,testcapitalizefirstletterp:94,testcapitalizeword:94,testcas:[3,14,22,24,47,53,94],testcensorword:94,testcleanfar:22,testcolumnfilt:14,testcomplex:93,testcountdigit:93,testcountoccurr:94,testcountwordoccurr:94,testdfboxplot:24,testdfhist:53,testdfplot:24,testdfscatterplot:24,testdropcolumn:14,testfactori:93,testfibonacci:94,testfilterbi:24,testfilterbycountryregion:14,testfilterninfectedbyyearandmonth:14,testfindprimefactor:93,testflattennestedlist:94,testformatpersoninfo:94,testgcd:93,testgetdfcolumndiff:14,testgetdfcorrwith:24,testgetdfmean:24,testgetdfstd:24,testgetpinfect:14,testgetrollingwindow:14,testgetrt:14,testgetsmoothedax:14,testgroupbycategori:94,testgroupbysum:14,testimoni:105,testinsertionsort:94,testlabelencod:22,testload:47,testmapfunct:93,testmean:47,testmergedict:94,testmkfram:14,testmyhtmlpars:3,testonehotencod:22,testpermut:94,testremovedupl:94,testrtwithnafil:14,testset:[42,54],testsieveoferatosthen:93,testsqrt:94,testsquareroot:93,teststack:93,teststd:47,teutschmann:167,texa:[113,157,177],text3d:[84,184],text:[1,12,15,23,38,40,41,43,48,57,58,59,66,68,76,77,79,81,94,100,103,105,109,114,115,119,120,127,132,134,137,139,143,144,146,148,149,156,157,160,163,164,168,169,170,171,172,173,174,175,177,178,179,180,182,183,184,185,186,187,188,189,190,191,192,193],text_data:134,text_data_target:134,text_data_train:134,text_process:134,text_represent:[99,100,101,102,108,109,110,111,112,132,142,143,155,156,158,159,160,161,162],text_str:134,textbar:138,textbf:146,textbook:[50,149,163],textbox:86,textcolor:155,textcoord:156,textrm:75,texts_to_sequ:134,texttestrunn:47,textual:[1,8,109,111,169],tf0btgg9:59,tf:[29,30,36,38,39,40,41,42,44,45,47,48,77,124,125,126,128,129,130,131,132,133,134,139,155,160,180],tf_data:129,tfa:[126,130],tfboard_callback:40,tfd:[130,131],tfdetect:133,tffunc:125,tfv1:133,tgz:33,th:[50,76,117,120,126,145,148],thai:[160,161,162],thai_df:160,thai_ingredient_df:160,than:[1,2,7,8,14,18,29,30,31,32,33,35,39,40,41,43,45,46,47,49,50,52,54,56,57,59,60,61,62,64,68,71,77,81,83,93,100,102,105,110,112,113,115,117,118,119,120,121,122,125,126,127,130,132,135,138,139,141,143,144,145,146,148,149,152,153,154,155,156,161,162,163,164,165,166,168,169,170,171,174,177,178,182,184,185,186,189,191,192,193],thang:130,thank:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,79,81,83,84,85,86,87,89,90,91,92,93,94,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,128,129,130,131,132,133,134,135,139,143,144,145,146,148,149,150,152,153,157,160,161,162,163,164,165,166,168,169,170,171,184,185,186,187,190],thecodeship:169,thee:170,theguardian:109,thei:[1,6,7,12,15,18,23,25,31,40,41,43,46,47,48,49,50,52,56,57,58,59,62,66,68,75,77,79,81,83,91,100,101,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,135,137,138,139,141,143,145,146,148,149,153,154,155,156,157,163,164,165,166,168,169,170,171,172,174,175,177,179,184,189,191,192,193],them:[0,1,3,7,15,21,26,31,33,34,36,39,40,41,43,45,46,49,50,52,54,56,57,58,59,60,61,64,68,74,75,77,79,81,83,84,86,91,94,100,101,102,104,105,107,109,111,112,113,115,117,118,120,121,122,123,124,125,126,127,130,131,132,133,135,136,137,138,139,140,141,145,148,149,150,152,153,154,155,156,160,163,164,165,166,168,169,170,171,173,174,178,184,189,190,191,192],theme:[30,38,105],themselv:[7,62,105,107,120,127,149,163,165,189],theorem:145,theoret:[115,139,145,148,154,168],theori:[50,104,109,117,126,129,134,149,154],thereaft:128,therebi:[143,154],therefor:[7,30,32,45,50,54,102,120,126,128,130,137,139,148,149,150,153,154,156,169,170,184,192],thereof:177,theta:[77,126,148,149,150,186],theta_0:149,theta_1:[148,150],theta_2:148,theta_i:[148,149],theta_n:150,theta_t:149,thi:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,75,76,79,80,81,83,84,85,86,87,89,90,91,92,93,94,100,101,102,103,104,105,107,109,110,111,112,113,114,115,116,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,166,167,168,169,170,171,172,174,175,176,177,178,179,184,185,186,187,188,189,190,191,192,193],thick:1,thicksim:[126,129],thing:[1,7,40,43,49,50,52,53,57,60,63,65,66,68,79,81,83,101,102,104,105,107,109,113,115,117,118,120,121,122,127,135,140,142,143,149,156,157,160,163,169,170,178,180,184,185,189,192],think:[7,11,18,26,28,31,34,41,43,47,48,49,50,55,62,68,81,103,105,109,113,115,120,121,122,139,140,143,144,154,155,160,162,163,165,166,168,169,170,182,184,192],thinkhdi:105,third:[14,32,40,49,50,64,100,105,117,120,129,146,149,169],third_baseman:117,third_term:125,third_tuple_str:170,thisag:171,thisplot:41,tho:[170,192],thoma:137,thon:[170,192],thorough:138,thoroughli:104,those:[1,7,14,16,18,32,39,44,47,49,50,52,56,57,62,68,77,79,81,102,104,105,107,110,111,112,113,114,115,117,118,120,121,125,128,132,134,135,137,138,140,143,145,146,149,152,154,160,163,164,169,170,175,189,191,192],thou:132,though:[7,41,47,62,103,105,112,120,121,129,135,139,140,152,162,165,169],thought:[7,16,30,34,53,58,68,81,105,115,120,138,163,175,177],thoughtfulli:91,thousand:[29,49,50,79,109,140,153],threadpoolctl:144,threaten:[110,176],three:[7,13,14,19,21,27,29,32,36,39,48,49,50,52,56,60,71,79,84,89,93,94,99,100,103,111,114,119,120,121,125,130,131,133,135,137,139,140,141,143,144,154,156,157,169,170,172,177,182,191,192],three_g:[68,81],thresh:[7,118],threshold:[1,18,29,46,47,50,54,59,117,137,139,148,149,165],through:[1,3,9,10,20,24,30,31,41,45,47,48,54,61,62,63,65,74,83,91,93,100,101,102,104,105,107,109,110,113,114,115,119,120,121,125,126,128,129,130,131,132,134,135,136,137,138,139,140,141,143,144,149,150,152,155,160,161,163,164,168,169,170,171,174,177,180,181,186,189,191],throughout:[74,83,105,107,117,149,163,164,175,189],thrown:120,thrwebnuukudcrmdcyspswrnn7srqiwzrty3f44vjwvswkbhy5p:59,thu:[3,14,32,43,47,49,50,53,54,57,59,77,102,112,115,117,120,121,127,143,145,146,148,152,153,154,155,163,164,165,166,167,169],thunder9:38,thunder:38,ti:[77,105,134],tial:[63,65],tian:133,tibco:178,tibshirani:148,tic:169,tick:[3,101,143,146,156],tick_param:[54,156],ticker:156,ticket:105,tid:109,tidi:166,tier:137,tight_layout:[18,31,37,39,41,54,110,156,176],tightli:77,tiktok:141,tile:[102,125,156],tile_s:125,till:[56,155],tim:186,time:[0,1,7,8,9,13,14,29,31,32,33,35,37,38,39,40,42,43,45,49,50,52,53,54,56,58,59,60,61,62,63,65,66,68,76,79,81,83,101,102,103,104,105,107,109,111,112,115,117,118,120,121,122,125,126,127,128,129,130,131,132,134,137,138,139,140,141,144,145,146,149,152,153,154,155,156,157,161,163,164,165,166,168,169,170,171,172,173,176,178,184,185,186,189,191,192],time_model:39,time_series_covid19_confirmed_glob:14,time_series_covid19_deaths_glob:14,time_series_covid19_recovered_glob:14,time_signatur:[143,144],time_step:126,time_t:35,timeit:[156,177],timelin:[96,140],timeseri:44,timeseriesclassif:29,timestamp:[38,114,121,135,137],timestap:44,timestep:[38,44,77,126,134],timnit:[103,172],tin:148,ting:164,tini:[33,77,156],tiniest:163,tip:[17,23,83,105,165],titan:150,titanic_train:22,titanic_train_and_test:150,titl:[15,22,29,30,31,32,33,34,37,38,39,40,42,45,47,48,50,54,55,56,59,64,66,68,76,80,81,83,84,110,111,112,114,125,131,132,134,143,144,146,148,156,157,168,170,176,178,184,186,187,188],title1:156,title2:156,title_cas:98,titlepad:[62,135],titles:[62,135],titleweight:[62,135],tj:38,tl:35,tl_start:35,tld:59,tmp:[12,25,29,30,31,33,36,37,38,39,41,66,110,121,132,134,169],tmp_folder_path:[29,30,31,33,39,41,66],tmp_zip_path:39,tn:[52,59,68,81,165],tnhyqyfnsetmngznqkkxbxoqiy1gnxcjp6di0o2y4r8h3cdbjmbistoucntckz29yda5fw64wk4fpnxb1wvkic4rnetvukhrbqdw:59,to_categor:[32,39,190],to_csv:[66,74,160],to_datetim:[1,14,35,38,44,164],to_devic:33,to_fil:3,to_fram:[121,160],to_lat:31,to_numer:[35,56],to_numpi:[44,121,164],to_pandas_datafram:[9,101],to_period:135,to_print:128,to_pydatetim:121,to_seri:38,toarrai:79,tobacco:102,tobia:130,toc:138,tocilizumab:1,todai:[109,113,132,136,137,139,141,149,150,163],todd:141,toe:169,togeth:[0,1,3,7,8,14,38,40,41,46,49,50,94,105,111,117,118,119,120,122,126,138,143,146,149,153,155,169,170,171,178,191,192],toggl:102,toh:30,toi:[18,146,149],token:[43,130,134,171],tokyo:[14,122,178],tol:56,told:105,toler:[121,141],tolist:[38,39,44,49,146],tom:[24,163,171,189],tomato:[39,166],tomomi:168,tomorrow:190,tone:103,tong:133,tongchuan:38,too:[18,32,47,48,49,50,52,53,54,57,58,61,64,66,77,79,109,110,112,121,126,127,129,135,138,139,143,144,145,149,152,155,161,163,164,165,166,169,170,192],took:[17,20,39,50,105,149,156],tool:[7,35,40,51,54,59,100,102,103,104,107,113,114,115,118,121,126,136,137,138,139,141,144,149,159,164,166,167,169,170,172,173,177],toolbox:[115,149],toolchain:138,toolkit:[103,138],tooltip:109,top:[3,7,16,30,31,34,40,41,45,50,52,54,57,64,79,83,85,93,102,105,112,119,120,121,133,136,137,140,143,144,145,160,165,166,169,177,185,186,193],top_pol:38,top_sen:38,top_tweet:38,top_vol:38,topic:[1,100,103,104,105,111,113,117,118,119,120,136,141,187,188],topilimag:33,topolog:30,toppredict:161,torch:[31,33,37,129],torchvis:[33,37,129],torgo:58,toronto:[125,130,155],tort:[93,94,169,170],tosin:137,total:[7,29,31,35,37,38,40,43,48,50,51,54,56,57,58,59,60,61,68,75,76,79,81,93,109,112,117,118,119,120,125,130,140,143,145,146,148,153,156,164,170,184,190,191],total_bedroom:[61,79],total_incom:170,total_len:31,total_na:51,total_profit:35,total_room:[61,79],total_s:125,total_sum_squar:76,total_var_i:125,total_var_x:125,total_variation_loss:125,total_volum:170,totalbath:54,totalbsmtfin:54,totalbsmtsf:54,totallot:54,totalporch:54,totalprod:[112,176],totalprofit:35,totalsf:54,totensor:[33,37,129],totrmsabvgrd:54,toucantoco:105,touch:[60,61,68,81,115,163],touch_scr:[68,81],touch_screen:[68,81],touchscreen:[68,81],tour:109,toward:[59,75,105,113,120,148,157,170,174],towardsdatasci:[115,139,178],tp:[52,59,68,81,165],tpr:[59,165],tpsnva:105,tqdm:[31,36,37,83],tqdm_notebook:37,tqglcthldriywg8myzqcl7noahjavxjdfcxbw4s9zs28husnqyjpw:59,traceback:[83,120,121,144,177,191],track:[3,36,40,45,47,94,102,103,105,113,119,121,132,139,140,149,156],tractabl:126,trade:[49,56,68,81,128,130,148,155,163,167],tradeoff:[7,52,57,68,81,118,139],trader:38,tradit:[3,45,54,102,105,117,130,138,139,140,141,159,163,168,178,189],tradition:[105,137,139],traffic:[103,114,115,138,163],trail:[59,120,162,170],train:[9,10,20,29,38,42,43,44,45,48,50,56,62,63,65,66,74,75,77,85,92,99,103,105,107,113,115,117,121,124,125,128,130,132,133,134,135,137,138,141,143,145,146,148,149,150,151,152,154,155,156,157,161,162,164,165,168,172,173,174,180,182,183,184],train_acc:[125,148],train_accuraci:[40,134],train_batch:131,train_d:33,train_data:[29,37,49,50,52,53,57,61,68,79,81,124],train_data_path:[68,81],train_dataset:126,train_df:[83,85],train_dict:[125,134],train_dir:125,train_dl:33,train_fold:125,train_i:[38,152],train_imag:[41,131],train_index:148,train_label:[29,37,41,50,125],train_length:131,train_load:[33,37],train_log:[83,125],train_loss:[29,31,33,40,125,132,134],train_nam:[66,125],train_on_batch:180,train_op:[125,132],train_respons:66,train_rms:135,train_save_path:66,train_scor:64,train_siz:[33,64],train_step:[36,125,132,134],train_test_split:[29,30,31,32,34,39,40,49,50,51,52,53,54,56,57,58,59,60,61,64,75,79,84,135,148,150,152,153,156,157,161,162,164,165,168,184,186,187,188],train_url:66,train_va:31,train_x:[31,38,152],train_xdata:125,trainabl:[29,62,124,125,126,130,131,161,180],trainable_vari:[124,132],trainable_weight:[36,126],trainhistori:[45,47,48],training_block:126,training_data:[9,101],training_data_preprocess:[61,79],training_fin:[68,81],training_hour:56,training_input_data:[61,68,79,81],training_label:[61,68,79,81],training_loss:64,training_s:64,training_sc:42,training_seq_len:132,training_step:[33,124],trainset:42,traj1:128,tran:[164,165],trane:[63,65],trang:83,transact:[6,17,122,143],transcrib:141,transcript:141,transduct:[139,143],transfer:[31,33,49,52,119,124,127,131],transform:[7,22,30,33,37,40,41,42,44,45,46,47,49,50,51,52,53,54,56,57,60,61,62,66,74,83,84,100,110,118,120,121,124,125,126,129,130,133,135,136,137,139,144,146,152,154,156,163,184,186,187,188,189,191],transform_fpcoor_for_tf:133,transformed_df:160,transformed_feature_df:160,transformed_label_df:160,transformer_block:130,transformerblock:130,transfrom:60,transit:[100,130,140,149],transition_block:130,translat:[41,94,105,115,127,137,140,163],transmit:115,transpar:[113,141,174],transpos:[29,37,40,45,61,79,83,120,124,125,133,134,170,192],transposed_matrix:[170,192],transposed_row:[170,192],trap:[113,139,174],trash:168,travel:135,travers:[31,170],treat:[1,7,56,59,68,75,81,113,118,120,121,122,130,138,139,169,174],treatment:[113,120,141,168,174],tree:[31,49,52,53,54,55,62,68,81,125,128,139,145,146,149,150,152,161,162,163,184,189],tree_best:[57,58],tree_clf:[57,68,81],tree_grid:50,tree_list:146,tree_method:54,tree_param:50,tree_pr:50,tree_reg:58,tree_reg_sc:58,tree_scor:[68,81],treebeardtech:0,trees_grid:148,trekhleb:[93,94,169,170],tremend:7,trend:[14,49,52,74,76,103,105,109,113,114,155,172,174,176],treshold:1,trevor:[131,148],tri:[36,50,56,58,63,65,145,155,163],triag:138,trial:[48,139,161,168],triangl:156,triangular:143,trick:[32,36,109,113,124,139,152,153,154,155,163,169,174],tricki:154,trickier:[122,178],trigger:[0,113,120,137,138,140],trim:132,trip:[23,103,172],tripadvisor:146,tripl:[120,170,171,192,193],triplestor:178,triu:64,triumphantli:139,trivial:[83,127,130],troubl:[62,109,143,148],trouser:[30,40,41,50],truck:[125,127],true_boolean:[170,192],true_label:41,true_positive_r:59,truli:[49,54,57,64],trump:171,truncat:134,truncated_norm:[125,128,134],truncated_normal_initi:125,truncated_normal_var:125,trust:[57,58,60,61,66,105,109,141,152,153,156,164,168,181],trustworthi:141,truth:[109,120,130,141,170,171,186,190,192],ts:135,tsl:29,tsne:184,tstep:128,tsv:[18,24],ttest_ind:[18,117],tthoe3gp290gz:59,tue:57,tumor:143,tunabl:[50,190],tune:[47,49,50,59,60,66,68,75,76,81,85,124,135,148,149,151,153,163,183],tup:121,tupl:[33,34,49,130,131,133,168,169,178,184,192],turn:[3,7,30,33,40,41,48,50,75,121,136,155,185,189],turntabl:142,turori:138,turtl:120,tuskege:[113,174],tutor:136,tutori:[1,29,31,59,76,111,120,121,125,129,131,136,155,166,168,169,170,171,180,186],tv:105,tval:[18,117],tweak:[86,111,144,162],tweet:[100,119],tweet_vol:38,twenti:89,twice:[120,134,169],twinx:[112,176],twitter:[100,119,178],two:[1,3,7,8,12,13,14,18,19,27,29,30,31,32,34,36,38,39,40,41,43,45,46,48,49,50,52,53,54,56,57,59,60,61,62,63,65,68,72,77,79,80,81,83,84,85,91,93,94,99,102,103,105,107,109,110,111,112,113,117,118,119,120,121,122,124,125,126,127,129,130,132,133,135,138,139,140,141,143,146,148,149,153,154,155,156,157,160,161,162,163,164,165,168,169,175,178,180,182,185,189,191,192],twofield:120,twon:128,txt:[31,125,128,132,134,157,163],type:[1,6,7,9,15,19,20,29,31,33,38,39,40,43,45,46,48,49,50,52,53,57,58,59,60,61,64,68,74,79,81,94,95,101,102,103,107,110,111,112,113,114,117,118,119,121,122,124,125,126,128,130,131,134,135,137,138,139,141,143,144,149,151,152,153,154,157,164,165,166,167,168,169,172,173,174,175,176,177,178,179,180,182,183,184,185,186,187,188,190,191],typeerror:[93,94,120,121,144,171,177,191],typic:[3,8,14,22,32,43,45,46,47,49,50,56,62,64,68,74,75,77,79,81,100,107,114,115,117,118,120,121,124,127,135,137,138,139,140,141,148,149,152,153,160,164,165,169,186],u10:[120,177],u2:178,u:[66,112,128,131,146,170],u_:128,u_k:128,ua:[15,191],uber:[103,172],ubuntu:138,ucb:[107,175],uci:[48,58,134],ucl:[163,189],ucla:140,uclaacm:164,ufo:157,ufunc:7,ugli:[109,170],ugqbzwiq8iiufasvi9dz:59,ugqprfa:59,uhbmv7qcey4:56,ui:[102,138,185],uid:140,uid_iso_fips_lookup_t:14,uint8:[31,36,120,125],uk:[14,128,157],ultim:[93,94,114,115,163,189],ultra:130,um:50,umap:30,umap_3d:30,umap_df:30,umbrella:[119,138,178],umn:105,umokw0jfgt13wtybc8bwnpnzgvwr859t7tsomewf31raloux4ychbk5bd97j5wopu3d0g2fnghimgunwegmg31qizveudt5:59,umr_sum:177,umt:175,un:[157,170,192],unabl:[54,57,58,60,61,64,66,148,152,153,156,164,168],unacc:57,unaffect:120,unalign:121,unalt:75,unambigu:120,unansw:105,unbalanc:[66,68,81,149,154,182],unbatch:126,unbias:[139,145],uncertain:128,uncertainti:50,unchang:170,uncheck:77,uncom:14,uncondition:[169,191],unconstrain:39,uncorrel:[66,145,148],uncov:[19,54,107,166,167],undeclar:141,undefin:[7,18,169],under:[0,22,31,39,45,47,48,50,51,63,65,77,84,85,102,110,113,117,119,120,125,133,138,139,140,141,148,149,154,161,165,166,171,177,178,182,184,185,186,187,190,193],under_name_scop:133,undercomplet:30,underfit:[61,62,63,65,139,152],underli:[59,64,74,75,76,100,107,110,117,127,155,163,164,177,186,189,190],underlin:156,undermin:109,underneath:59,underrepres:[68,81],underscor:[101,119,169,170,178,192],underset:[83,149],understand:[7,16,23,30,31,41,43,45,48,50,74,75,76,77,79,100,101,102,103,104,107,108,109,110,112,113,114,115,117,120,121,127,135,136,139,140,141,143,149,150,152,153,154,155,157,159,161,163,164,165,166,168,170,171,172,174,175,178,187,188,189],understood:[7,54,107,114,120,169,175],undertak:[77,105],undesir:28,undestard:150,undo:125,undu:77,unearth:54,unemploy:140,unet:126,unet_model:131,uneven:[143,160],unexpect:[48,92,121,139,144,155,169,191],unexpectedli:169,unf:54,unfair:113,unfamiliar:163,unfold:[50,109,134],unfortun:[18,101,149,156],unhandl:169,unhealthi:102,unhelp:160,unicorn:139,unidata:178,unifi:[107,133,139],uniform:[18,36,43,47,55,117,125,126,128],uniformli:[7,145,156],unimagin:137,unimport:66,unindex:[120,170],uninform:56,unintend:[28,103,113,174],unintention:169,union:[77,113,120,121,170],uniq:51,uniqu:[5,14,22,39,46,47,50,51,56,57,64,76,77,79,94,102,119,121,127,135,139,149,156,157,160,163,164,169,170,171,178,187,188,190,192,193],unique_list:94,unique_numb:170,unique_valu:94,uniqueag:171,unit:[0,12,30,32,40,41,42,43,45,47,48,53,58,62,79,83,102,103,112,114,119,120,122,125,127,130,132,138,139,140,145,155,163,164,165,166,172,178,180,190,191],unittest:[3,14,22,24,47,48,53,79,93,94],univari:[7,80,126,168],univers:[14,64,113,117,128,136,141,155,178,190,191],unix:[44,137],unknown:[57,58,117,128,132,143,149,155,169],unknowningli:54,unlabel:[124,139,143,148,156,163,184,189],unlaw:113,unless:[22,45,47,48,56,121,135,169,191],unlik:[33,56,60,66,74,76,83,120,139,145,148,170,171,177,180,187,188,192,193],unlimit:[170,192],unlock:[26,166],unnam:[67,160,161,162,164,165],unnecessari:[76,120,122,155,156],unord:[79,170,171,192,193],unpack:[3,121,143,165,170],unpickl:191,unpreced:113,unprun:148,unqualifi:169,unreason:141,unrel:3,unreli:163,unrol:134,unsaf:120,unscal:[40,58],unse:40,unseen:[40,41,50,64,77,148,163,168],unsort:94,unsorted_list:94,unspecifi:[43,120],unsplash:[99,106,108,123,142,159,167],unsqueez:[31,33],unstabl:[62,139,149],unstack:41,unstructur:[6,114,115,137,163,174,189],unsuccess:139,unsupervis:[36,50,136,139,141,143,148,162,168,181],unsupervised_learn:156,unsupport:[163,170,177,192],unsur:15,unsurprisingli:157,until:[31,33,50,55,61,75,93,104,120,122,139,144,145,148,156,163,169,170,178,184,189],untouch:121,untrain:36,untruncated_norm:133,unununium:[170,192],unus:[120,166],unusu:[120,155],unweight:165,unwrap:113,unzip:[36,37,125],up:[0,3,5,7,14,18,22,33,36,38,40,46,48,49,50,52,53,54,56,58,60,62,64,66,68,81,85,86,87,93,100,101,102,103,104,105,107,109,113,117,118,119,120,121,122,125,128,129,130,131,133,135,138,139,140,141,143,145,148,149,150,152,153,154,155,156,157,160,163,164,165,166,167,169,170,171,178,189,192],up_shifted_imag:85,up_stack:131,upbeat:105,upcast:[7,118],upcom:7,updat:[0,31,36,37,41,43,48,49,52,55,63,65,75,80,82,83,93,94,114,124,125,126,127,128,132,134,135,138,139,149,150,152,153,156,163,173,180,184,185,186,187,190],update_st:36,update_trac:30,update_weight:128,upfront:105,upgrad:[100,138],upload:[9,20,101,102,119,140],upload_d:57,upon:[40,50,64,102,113,115,122,153],upper:[7,30,32,51,93,121,122,124,125,134,138,139,156,170,191],upper_cas:98,uppercas:171,uppered_anim:191,upsampl:[29,30,126,131],upsampling2d:[36,131],upward:126,uranu:193,urban:[111,176],url:[0,3,57,60,102,103,107,113,115,116,119,125,126,130,131,133,138,139,140,141,156,164,165,172,174],url_for:157,url_setosa:60,url_versicolor:60,url_virginica:60,urllib:[61,68,79,81,83,125,156],urlretriev:[68,81,83,125,156],us:[0,1,2,3,4,5,6,7,8,9,11,12,14,15,16,17,18,19,20,22,23,24,27,29,31,32,34,35,36,38,39,42,43,44,45,46,47,49,50,51,52,53,54,55,57,58,60,61,66,68,69,72,74,75,76,77,79,80,81,83,85,87,90,92,99,100,101,102,103,104,107,108,111,112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,137,138,140,143,144,145,146,148,149,150,151,152,154,155,159,160,162,167,168,169,170,172,173,174,175,177,178,180,181,182,184,186,189,191,192,193],usa:140,usabl:[109,137],usag:[5,38,49,54,59,60,79,102,103,113,118,143,149,153,160,164,168,169,170,172,173,192],usd:35,usd_tri:35,usda:166,usdt:[38,44],use_bia:[130,133],useless:120,user:[6,17,23,43,54,57,62,99,100,102,103,105,109,111,112,113,114,115,120,121,138,139,141,163,168,169,171,172,173,174,177,184,185,189,191],userwarn:[110,121,156,161,165,176],usr:[121,161,165,177],usual:[7,46,48,49,50,52,54,59,66,68,81,83,100,104,105,110,114,118,120,121,124,126,127,128,129,130,134,135,137,138,139,141,143,148,149,154,155,163,166,169,170,171,186],ut:145,utf:[15,132,157],util:[31,32,33,37,38,39,40,42,44,54,57,58,66,75,76,77,93,118,121,129,131,133,138,139,140,153,168,169,190],utilitarian:139,v0_8:62,v1:[14,57,120,125,128,129,132,134,138],v2:138,v2rayn:38,v3:[38,120,138],v65nkkht5gsyqed6jhn7nvl3x672hikcirp:59,v7:59,v7lab:139,v7t09o1tbxdw8p7:59,v:[1,3,38,56,129,155,183],v_:128,vaccin:[11,140],vae:31,vae_model:31,vagu:[105,163],val1:93,val2:93,val3:93,val4:93,val:[31,55,83,93,95,132],val_acc:[33,39,47],val_accuraci:[32,39,40],val_d:33,val_dl:33,val_load:33,val_log:83,val_loss:[31,33,34,38,39,44,47,48,62,131],val_siz:33,val_subsplit:131,val_x:31,valdat:33,valentina:141,valid:[7,14,15,31,34,39,40,46,49,56,62,66,68,81,83,94,113,118,120,121,125,130,131,137,139,145,148,152,155,161,163,164,169,171,190],validation_data:[29,30,32,34,38,62,131],validation_dir:125,validation_epoch_end:33,validation_fract:56,validation_loss:64,validation_split:[38,39,40,44,47,48],validation_step:[33,131],valmont:109,vals1:177,vals2:177,valu:[1,3,6,8,14,15,18,22,29,31,32,34,36,38,39,40,41,42,43,44,45,46,48,49,50,52,53,55,58,60,61,63,64,65,66,74,75,76,77,80,83,84,85,86,97,98,101,103,104,107,110,111,112,113,114,115,117,118,119,122,124,125,126,127,130,131,132,133,135,137,139,140,143,144,145,146,148,149,150,151,152,154,156,157,160,161,163,164,165,166,167,168,171,174,175,178,183,184,185,186,187,188,189,191,192,193],valuabl:[7,75,76,140,148],value_count:[7,14,15,22,34,39,51,54,56,57,59,60,61,64,68,79,81,143,144,160,176],valueerror:[93,120,121,131,169,170,171,192],valueless:7,values_list:93,van:[130,171,191,193],vanderpla:[57,58,60,61],vanilla:[7,132],vanish:[127,129,130,132],vanooteghem:99,vanschoren:139,vapnik:59,var1:38,var2:38,var3:38,var4:38,var5:38,var_idx:55,var_list:129,var_tensor:43,vare:29,varepsilon_i:145,varepsilon_j:145,vari:[36,40,49,52,54,102,114,115,120,137,144,148,156,166,184],variabl:[7,22,31,33,37,39,50,53,54,56,58,64,66,68,74,76,79,80,81,84,89,93,94,97,98,102,107,109,110,112,118,124,125,126,127,128,129,132,134,137,139,140,143,144,146,148,149,154,157,160,163,164,167,168,171,175,176,185,186,189,193],variable_nam:169,variable_scop:125,variables_and_typ:170,variad:169,varianc:[18,50,54,56,63,65,74,76,83,110,124,145,153,176,184],variance_inflation_factor:[54,64],variance_scaling_initi:133,variant:[59,127,156,169],variat:[39,47,125,126,130,133,149,169,190],varieti:[41,43,54,120,130,135,141,149,155,161,164,165,170,192],varinac:[63,65],variou:[16,28,30,36,39,40,50,54,59,62,76,77,86,91,100,102,103,108,109,111,112,113,114,119,120,121,127,130,131,137,138,140,142,143,145,149,160,162,163,166,168,171,176,178,189],vassilvitskii:156,vast:[7,22,100,115,118,137],vastli:36,vault:102,vb:131,vc:39,vdf:38,ve:[7,28,31,50,75,77,83,103,105,107,113,118,119,120,121,122,130,135,145,149,155,163,165,169,170,172,178,185,191],vec:[31,83,145],vect_tensor:43,vector:[7,29,31,33,43,45,49,50,55,57,63,64,65,68,77,81,83,120,124,125,126,129,130,131,132,134,139,148,155,157,161,163,164,170,177,184,186,189,190,192],vectorregress:154,vectors_to_imag:129,vegan:168,veget:167,vegetable_oil:161,vehicl:[127,135,163,189],veil:[111,176],veloc:[128,178],vend:137,venn:[116,174],venu:[76,103,144,169,193],verb:169,verbos:[32,35,38,39,41,44,45,47,48,50,52,53,54,56,57,58,59,60,61,62,85,109,148,152,156],verdict:36,verghes:105,veri:[14,18,30,31,39,40,41,45,47,49,50,52,53,54,55,57,58,59,62,63,64,65,68,77,79,81,84,99,102,104,105,107,110,111,115,117,120,121,124,125,127,130,132,134,135,137,138,139,140,141,143,144,146,148,149,152,153,154,155,156,157,159,160,162,163,165,166,168,169,170,171,177,180,183,184,187,188,192,193],verif:[0,117],verifi:[33,40,45,47,48,58,74,79,97,98,111,112,121,130,139,143,150,156],verify_integr:[121,177],versa:[49,50,52,56,57,68,81,117],versant:178,versatil:[170,192],versicolor:[60,64,84,146],versicolour:[84,184],version:[1,7,22,29,33,35,45,46,47,48,49,50,57,59,75,76,102,107,117,120,121,122,127,131,133,134,138,139,143,150,152,156,168,171,177,184,193],version_info:[83,156],versu:[149,168],vert:18,vertex:50,vertic:[3,18,109,117,120],veryde:125,verydeep:125,vet:[109,121],vf4l3peswap51eb6clsmx7uuklt158tt0o:59,vg1e19lamcl0zwjb346nru0q5g1n9m1cgakz9gnqxe43qpp0nhlch:59,vgan:129,vgg16:131,vgg19:131,vgg:[125,130],vgg_data:125,vgg_layer:125,vgg_net:125,vgg_network:125,vgg_path:125,vgood:57,vhigh:57,vhx8dhywgnjy2:59,vi:144,via:[7,110,119,121,125,131,149,154,155,156,161,169,184],viabil:102,vibranc:109,vibrant:163,vicdemand:[49,52],vice:[49,50,52,56,57,68,81,117],vicin:[1,8],viciou:109,vicki:[170,192],vicomt:109,vicpric:[49,52],victor:29,victoria:[49,52],video:[43,77,114,115,119,120,125,127,133,141,149,152,160,163,166,167,168,171,174,189],view:[7,30,31,33,37,40,47,59,77,84,100,101,102,105,109,115,119,129,130,131,153,157,165,166,177],view_init:[154,182],viewpoint:[128,130,133],viewport:15,vijai:131,vinai:141,vinod:[33,125],viola:149,violat:[113,141,174],violenc:109,violinplot:56,virginica:[60,64,84,146,184],viridi:[38,80,148],virtual:[100,102,138,168],virtuoso:178,visibl:[30,57,105,128,130],vision:[33,41,43,85,100,121,125,127,130,133,139,141,149,157,160,163,179,189],visiontransform:130,visit:[100,103,107,113,115,116,119,125,126,130,131,133,135,138,139,145,164,165,172,174],visitor:[146,163],visual:[0,1,5,8,14,15,16,18,19,30,45,46,49,50,51,52,53,54,58,59,68,74,75,79,81,85,100,101,102,103,113,115,117,118,120,121,124,125,127,130,131,135,136,137,143,144,145,146,148,149,153,154,156,157,160,161,163,164,167,168,169,172,174,175,179,181,184,186,189],visualcapitalist:105,visualis:[31,59,154,164],vital:54,vitobha:137,viz:156,vjmi9yzk0h151fljqxe0c6kcd5dgcxydykwchd1eqbm4vtx3fmdgbr8xnmgivfktk28qnpkt1akrcd9vvkustvhxh6ggj8ifmemubkcwjsg5w69rdxnksqoyqlkymbnjlauf6xayut7pg1sxzhwp:59,vladimir:59,vlfeat:125,vm:[100,101,102],vm_size:[9,101],vmail:[50,145],vmax:[31,38,143],vmin:31,vocab2ix:132,vocab:132,vocab_processor:134,vocab_s:[132,134],vocab_to_ix_dict:132,vocabulari:[132,134,143],voic:[50,127,145],voila:[111,146],vol:38,volatil:48,voldemort:178,volt:169,voltag:169,volum:[7,44,100,102,137,138,139,141,164,166,173],volume_btc:38,volume_dollar:38,volumetr:127,volunt:113,voluntari:113,voluntarili:113,voom:169,vooooom:169,voronoi:[144,156],voronoi_plot:156,vot_classifi:49,vote:[117,136,140,145,148,149,161],votingclassifi:49,vs:[33,38,39,41,55,59,68,81,86,102,105,107,110,111,113,128,137,138,139,143,150,152,156,160,161,164,165,166,168,175,181,186],vs_code_with_a_notebook_open:168,vscode:177,vscodecod:38,vstack:[120,154,182],vthyuhdilvw8hkemhmr:59,vu:[110,176],vue:109,vulner:[110,121,176],vutil:37,w0:134,w1:[128,134],w2:[128,134],w3:128,w3school:[169,170],w:[29,31,33,63,65,79,83,84,85,117,124,125,128,131,132,134,135,149,153,155,156,169,178,183,184],w_0:149,w_:[132,146],w_box:133,w_crop:133,w_d:129,w_g:129,w_h:134,w_hh:134,w_hx:134,w_i:[146,149,155,183],w_img:133,w_j:[149,153],w_n:148,w_xaxi:[84,184],w_yaxi:[84,184],w_yh:134,w_zaxi:[84,184],wa:[1,11,16,28,32,33,39,40,43,45,49,50,52,53,54,57,58,59,60,61,74,79,93,103,105,107,109,113,114,115,117,120,121,127,130,131,133,135,137,138,140,143,144,145,146,149,156,157,160,161,162,163,168,169,170,171,172,175,184,186,189,192,193],waffl:[27,109],wai:[0,1,3,7,11,18,30,36,40,41,43,46,49,50,52,53,54,56,57,58,59,60,61,62,68,71,74,77,79,81,83,99,100,103,104,105,109,110,111,112,113,114,115,117,118,119,120,121,122,123,125,127,128,130,133,134,136,137,138,139,140,143,144,145,148,149,150,152,153,155,156,157,160,161,162,163,165,166,168,169,170,171,175,176,177,178,185,186,189,191,192],waistlin:89,wait:[1,102,104,125,131,152,163,171],wait_for_complet:[9,101],wait_for_deploy:[9,101],wake:139,wale:[49,52],walk:[1,31,51,56,91,119,121,140,152,160,162],wall:[128,161,184],walter:134,wang:130,want:[1,3,7,8,14,16,17,18,23,30,39,40,41,43,46,47,48,49,50,51,52,53,56,57,58,59,62,63,65,68,76,77,79,81,83,84,100,102,103,105,110,113,114,115,117,118,120,121,122,125,127,128,129,130,131,133,135,139,143,146,149,150,152,153,154,155,157,160,162,163,164,165,168,169,170,171,175,176,178,182,184,185,186,189,191,192],wanted1:93,wanted2:93,wanted_peopl:93,ward:[129,143],warehous:[100,137],wark:137,warm_start:[56,148],warn:[36,39,48,49,50,51,52,53,54,56,57,58,59,68,81,110,120,121,127,132,135,144,148,150,152,156,161,165,176,184],warn_singular:[110,176],warrant:[32,144],warranti:[22,45,47,48,93,94,169,170],warren:134,warrior:149,wasn:105,wast:[103,111,137,141,170,176],watch:[56,115,127,163,164,165,166],water:[103,180],waterfowl:[110,176],watson:138,wavenet:127,wb:[29,30,31,33,36,37,39,41,66,157],wc:3,wcss:144,wd:66,wdrfosfa13slih0epo:59,we:[1,3,7,8,9,10,11,14,16,17,18,20,22,23,24,30,31,32,33,34,36,39,40,43,44,46,47,48,49,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,79,80,81,83,84,85,99,100,101,102,103,104,105,107,110,112,113,115,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,143,144,145,146,148,149,150,151,152,153,154,155,156,157,160,161,162,163,164,165,166,168,169,170,171,172,174,175,176,177,178,179,182,184,185,186,189,190,191,192,193],weak:[46,54,55,56,118,129,135,139,143,148,149,151,153,165],weaker:1,weapon:[113,170,192],wear:[163,189],wearer:6,weather:[103,135],web:[5,39,77,92,100,101,102,103,109,114,115,138,140,141,143,168,171,172,181,193],webapp:140,webservic:[9,101],websit:[100,115,128,130,140,141,146,163,164,166,168,189],wechat:38,wechat_fil:38,wechat_files_comput:38,weeight:155,week:[38,49,50,52,105,135],weekend:105,weekli:[14,135,140],weigh:[56,149,166],weight:[7,18,30,33,36,38,39,40,43,45,47,49,52,54,56,57,58,59,60,62,63,64,65,66,68,75,77,79,81,82,83,85,101,105,117,120,124,125,126,128,130,132,133,134,135,139,145,146,148,153,154,155,156,160,161,162,165,166,177,180,186,187],weight_1:135,weight_2:135,weightag:54,weights_init:37,weights_list:128,weijun:130,weinberg:130,weird:163,welcom:[136,168,170,191,192],well:[3,5,15,18,30,31,36,39,40,43,45,46,47,49,50,53,54,56,57,58,59,60,61,64,66,68,69,71,74,76,77,79,81,83,84,89,90,104,105,107,109,110,112,114,115,117,118,119,120,121,122,127,128,129,130,131,133,135,138,139,143,144,145,148,149,153,155,156,162,163,164,165,166,168,169,171,175,177,180,183,186,189,193],went:[10,40,46,49,52,105,118,163,169],wer:164,were:[7,10,12,16,20,29,31,39,40,43,47,49,50,52,53,57,58,60,61,62,66,68,69,74,79,81,102,104,105,113,117,119,120,121,122,126,132,135,137,138,140,144,145,149,153,156,163,164,165,169,171,174,178,179,189,191],weslei:138,west:79,weyand:130,wget:[125,130],wh:134,wha21:138,wha:139,what:[1,7,10,16,17,18,21,26,31,36,40,47,48,49,50,52,53,54,55,56,57,60,62,63,65,66,68,75,77,79,81,83,91,99,103,104,107,110,112,113,114,117,118,119,120,121,122,125,127,128,129,134,138,139,140,142,143,149,153,155,156,157,160,162,164,165,166,168,169,171,172,178,179,185],whatev:[57,58,83,105,127,130,152,155,163,169],wheat:[163,189],wheel:141,when:[1,3,4,7,10,14,16,18,20,30,31,33,34,35,36,40,41,43,45,46,47,48,49,50,52,53,54,56,57,58,59,60,61,62,63,64,65,66,68,74,75,76,77,79,81,84,86,99,102,104,105,107,109,110,111,113,114,115,117,118,119,120,121,122,125,126,127,129,130,131,132,135,137,138,139,140,141,143,145,146,148,149,152,153,154,155,156,157,160,161,162,164,165,167,168,169,170,171,173,174,175,177,179,180,184,185,186,189,191,192],whenev:[43,120,138,139,155],where:[2,7,12,14,17,25,28,29,31,33,34,39,40,41,45,46,49,50,51,54,55,58,59,61,64,68,76,77,79,81,83,93,102,103,104,105,107,109,110,111,113,114,117,118,119,120,121,122,125,126,131,135,137,138,139,142,144,145,146,148,149,152,153,154,155,156,157,160,163,164,165,166,168,169,170,171,172,174,175,177,178,184,185,186,189,192],wherea:[31,50,54,57,59,68,81,120,154,163,165,168,169,170,182,189],wherefor:132,wherev:169,whether:[7,22,23,29,32,36,46,47,48,50,51,58,76,84,93,94,101,110,113,117,118,120,121,130,131,137,139,141,148,149,160,163,165,168,169,170,189,191,192],which:[0,1,3,7,8,11,12,14,18,22,24,29,31,33,34,36,39,40,41,43,46,47,48,49,50,52,53,54,55,56,58,59,60,62,63,64,65,68,72,75,76,77,79,81,83,84,93,94,100,101,102,103,104,105,109,111,112,113,114,115,117,118,119,120,121,122,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,148,149,150,152,153,154,155,156,157,160,161,162,163,164,165,166,168,169,170,171,175,176,177,178,180,182,185,186,189,191,192],whichev:135,whiskei:[160,161],whistl:[110,176],white:[3,38,47,48,50,110,111,125,128,130,140,141,165,168,171,176,184,193],white_bread:[160,161],white_win:[160,161],whitegrid:[51,62,84,135],whiten:125,whitesmok:[111,176],whitespac:[46,118,169,170,192],who:[31,43,46,50,56,79,100,104,105,107,113,114,117,118,137,145,149,163,169,170,171,174,175,192],whole:[14,40,43,50,52,53,54,56,57,58,59,62,68,79,81,117,124,125,127,129,137,138,140,141,145,148,153,160,163,170,176,180,192],whole_grain_wheat_flour:[160,161],wholesale_customers_data:153,whom:[93,94,114,136,169,170],whose:[56,62,110,120,121,128,134,169,170,192],why:[7,16,18,40,43,45,46,47,48,49,50,53,60,66,69,75,83,86,91,99,102,103,104,105,107,113,117,118,120,122,125,129,143,144,145,149,150,154,156,161,163,165,166,169,172,174,175,178],wide:[43,54,61,74,75,76,100,102,113,120,121,127,129,130,133,135,137,141,149,151,170,173,178,192],wider:[117,140,155],widespread:149,widget:[9,101],width:[1,3,14,15,31,33,46,60,61,68,81,84,109,111,118,125,126,130,144,146,156,157,160,164,166,176,184],width_multipli:130,width_shift_rang:32,wifi:[68,81],wifi_count:[68,81],wik:125,wiki:[3,125],wikimedia:[60,127],wikipedia:[3,43,115,117,125,153,163,178,179,189],wild:[31,121,143,157],wildli:[152,161],william:117,willing:36,willingli:7,willpow:83,win32:191,win:[57,128,130,149,153],wind:128,window:[14,39,44,119,125,169,171,178,191],window_s:44,wine:[48,62,160,161],wine_feature_col:48,wine_feature_row:48,wine_schema:48,winedf:48,winefeatur:48,winefeaturessimpl:48,winefeaturessmal:48,winelabel:48,winelabelssmal:48,winequ:48,wingspan:110,winner:149,winston:56,winter:[17,107],wirefram:105,wisdom:[49,145],wise:[7,54,120,121,125,126,130,131,132,153],wish:[120,121,122,170,171,191,192],with_column:24,with_info:131,with_titl:31,withdraw:113,withheld:113,within:[6,33,46,47,48,50,54,56,79,84,101,104,105,107,110,111,113,114,117,118,119,133,138,144,153,157,164,168,169,170,177,184,191,192],without:[0,1,4,16,18,21,22,29,34,39,43,45,47,48,50,52,57,60,64,77,93,94,102,105,109,113,117,120,121,124,130,137,139,152,153,154,157,163,169,170,171,182,184,189,192],woke:150,woman:[50,102],women:[113,174],won:[7,49,52,56,60,105,120,122,127,128,129,130,139,152,153,155,163,166,186,189],wonder:[45,48,103,109,122],wood:[111,160,161,176],wooddecksf:54,word1:170,word2:170,word:[1,3,31,40,41,43,49,54,59,68,81,89,91,94,104,108,110,113,115,117,118,120,127,129,130,132,133,134,135,139,145,148,149,153,155,163,164,168,169,170,171,174,175,176,186,189,191,192],word_count:[94,132,134],word_index:[169,191],word_list:132,wordcloud:3,wordnet:130,words_length:169,work:[1,3,4,7,11,18,19,24,30,31,33,36,40,41,43,45,46,49,52,53,54,57,58,59,60,61,63,65,66,68,71,72,74,75,79,81,83,84,86,91,100,101,102,103,104,105,107,109,113,114,115,117,118,119,121,122,124,125,126,127,129,131,132,133,135,136,137,138,139,140,143,144,145,146,148,150,152,153,155,156,157,159,160,161,162,163,164,165,166,167,169,170,171,174,175,177,184,185,186,189,191],workbench:[103,172],workbook:119,workclass:51,workflow:[0,54,84,101,102,103,105,113,121,137,138,141,152,172],workload:[102,137,163],workplac:[6,105],worksheet:119,workshop:[121,141],workspac:138,workstat:102,world:[0,7,18,28,29,33,35,37,39,40,41,45,46,50,53,57,58,60,62,76,94,109,113,115,118,119,121,125,127,130,133,135,137,138,140,141,145,149,150,155,157,163,164,169,170,171,174,177,178,181,189,191,192,193],worldwid:[102,113],worri:[100,117,163,169],wors:[41,47,139,148,156,162,180],worst:[59,164,165],worth:[6,32,48,66,108,110,130,148,149,150,163,171,176,189],would:[1,7,11,14,16,18,23,24,30,31,36,40,43,47,49,50,52,54,56,58,59,60,61,62,66,68,71,77,79,81,83,89,91,105,107,114,115,117,118,120,121,122,125,126,127,135,139,140,143,144,145,148,149,150,152,154,155,156,157,160,162,163,164,165,166,168,169,170,178,184,185,189,192],wouldn:[7,114,149,169],wow:[47,49,52,57,61,156],wrangl:120,wrap:[33,66,112,124,125,135,138,169],wrapper:[33,120,121,125,135,169,191],wrestl:[7,118],wrgsj6ct4mkv0s6rpj6xety7gqmy8lit80oz:59,write:[0,1,3,7,21,22,23,26,29,30,31,33,36,37,39,41,45,47,48,50,51,56,66,83,94,101,105,113,115,120,121,122,125,127,128,132,134,139,145,148,149,156,163,168,169,170,171,189,191,192],writefil:191,written:[7,89,109,120,121,126,132,136,148,153,169,170,171,191,192,193],wrong:[1,14,41,47,56,113,115,117,121,130,139,149,156,169,170,171,192],wrong_nam:14,wrong_sampl:18,wrote:[47,171],wrt:51,ws:[9,101,177],wspace:[154,156,182],wsr4u5caj:59,wt:134,wts2:44,wu:[109,141],www:[22,25,32,45,47,48,56,58,77,107,109,113,119,125,126,130,132,135,138,139,141,144,154,156,160,169,170,173,178,179,180,191],wxzsnhukpclpvn1op9pjq61679mjrojzzhfons0:59,x0:133,x0_box:133,x1:[32,50,110,120,131,133,156,176,177,187,188],x1_max:50,x1_min:50,x1y1x2y2:133,x27:[57,58,60,61,152,153,156,164],x2:[32,50,110,120,156,176,177,187,188],x2_max:50,x2_min:50,x3:[32,110,176,177],x4:[110,176],x4kimebdus7rzgkszdigbxnkbyqt65wweq9sbl7:59,x5:[110,176],x6:[110,176],x80:38,x86:38,x99ve:38,x:[1,14,15,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,51,52,54,55,56,57,59,60,61,63,64,65,66,68,74,75,77,79,80,81,82,83,84,85,93,94,103,109,110,112,113,117,120,121,124,125,126,128,129,130,131,132,133,134,135,140,143,144,145,146,148,149,150,152,153,154,156,157,160,161,162,163,164,165,168,169,170,171,174,176,177,180,182,184,185,186,187,188,189,191,192],x_0:[126,134],x_1:[50,77,117,126,134,145,146,148,156,163,189],x_1p_1:117,x_2:[50,77,117,126,134,146,148,156,163,189],x_2p_2:117,x_3:146,x_4:146,x_:[18,126,128,146],x_batch:[83,126,129,156],x_center:184,x_cluster_dist:156,x_data:[132,134],x_digit:156,x_digits_dist:156,x_dist:156,x_histori:80,x_i:[18,77,117,124,126,148,149],x_init:[80,156],x_input:125,x_input_shap:125,x_int:80,x_j:[18,146,148],x_k:[128,148],x_m:145,x_max:50,x_min:[50,80],x_mm:156,x_n:[77,117,126,163,189],x_new:156,x_noisi:126,x_np_n:117,x_organ:34,x_pca:184,x_po:128,x_poli:186,x_rang:[148,169],x_reduc:184,x_representative_digit:156,x_set:[187,188],x_shape:126,x_shuffl:134,x_start:126,x_t:134,x_test:[29,30,32,34,40,42,49,50,51,52,53,56,58,59,60,66,83,84,85,124,134,135,148,150,153,156,157,161,162,164,165,168,180,184,186,187,188,190],x_test_circl:148,x_test_noisi:[29,30],x_test_scal:40,x_train2:32,x_train:[29,30,31,32,34,38,39,40,42,44,49,50,51,52,53,54,56,58,59,60,62,66,83,84,85,124,134,135,148,150,153,156,157,161,162,164,165,168,180,184,186,187,188,190],x_train_add:85,x_train_batch:134,x_train_circl:148,x_train_combin:85,x_train_flat:30,x_train_noisi:[29,30],x_train_noisy_flat:30,x_train_partially_propag:156,x_train_scal:[40,53,58,60],x_tsne:184,x_umap:30,x_val2:32,x_val:[31,54,83],x_valid:62,x_vif:64,xa:55,xarrai:120,xavier_init:129,xaxi:184,xb:33,xception:131,xe2:38,xentropi:83,xfb:59,xfhxfw:133,xfit:[154,182],xfyplk79sjp:59,xgb:[54,56,66,153],xgb_clf:153,xgb_cv:153,xgb_pred:66,xgb_reg:54,xgb_search:54,xgbclassifi:[56,153],xgbclassifierxgbclassifi:153,xgboost:[49,56,135,149,150,151],xgboostclassifi:56,xgbregressor:[54,66,135,152],xgbregressorxgbregressor:[66,152],xhf2neuisqwe9q2ota5bqxws9epzwd8lkdb71jfdsfuznneuj7l6wzrdiqtftipxfy26z2ldqwncov6aej8o2inlmd9ckymesp0bjkgsguh1bmu6jzdb0c4aratff2cwxagqw:59,xi:[55,59,131],xiangyu:130,xiao:141,xingjian:141,xiong:141,xit:59,xj:59,xk:128,xknfkgixmjdoybdf7ugnnwjivklotgyiz7k2rgnwbhlk95pyt6emrffsjbdva02xmfqpp:59,xks2cxejztkqivxffffcr4:59,xl5eghoaagicdnz2kpksvr69cqkiljsvoaghjsukxfxd4ehhqufanjycqebaehh5aqebjy2m3nzdawlpisegdoarbaaaqeeleqvr4no1diwkqohdnrbu3wjdarbi02tp:59,xl:165,xla:29,xlabel:[18,22,29,31,32,33,34,35,37,38,39,40,41,42,50,55,56,57,59,60,61,66,68,74,76,80,81,84,110,121,125,128,131,132,134,144,145,156,164,165,168,176,184,186,187,188],xlim:[50,56,146,148,154,182,184,187,188],xor:120,xplzqjohaao63bfq05ntwlheg6anqrhcuin:59,xrp:44,xs:[55,121,131],xtick:[3,18,22,31,37,39,41,47,54,56,143,144,146,156,176],xticklabel:[40,68,81],xu:129,xuanyu:141,xuhong:141,xw:59,xx1:148,xx2:148,xx:[50,156],xxl:165,xxxx:102,xy:[154,156,164,182],xytext:156,y0:133,y1:[55,133,156],y1x1y2x2:133,y212szmlszq:177,y2:[55,156],y3:55,y4:55,y5:55,y:[14,30,34,35,38,39,40,44,45,47,49,50,51,52,54,55,56,57,59,60,61,63,64,65,66,68,74,75,76,77,79,80,81,82,83,84,94,109,110,112,117,120,121,125,126,128,132,134,135,140,143,144,145,146,148,149,150,152,153,154,156,157,161,162,163,164,165,166,168,170,171,176,180,182,184,186,187,188,189,191,192],y_1:77,y_2:[77,134],y_:128,y_batch:83,y_clr:184,y_cluster_kmean:144,y_di:180,y_digit:156,y_dist:156,y_distribut:24,y_fit:135,y_gen:180,y_hat:148,y_histori:80,y_i:[50,55,75,76,77,146,148,149,153],y_init:80,y_j:50,y_k:128,y_lag_2:135,y_lag_3:135,y_lag_4:135,y_lag_5:135,y_lag_6:135,y_lag_:135,y_max:50,y_min:[50,80],y_n:77,y_output:[132,134],y_po:128,y_pred:[51,55,59,63,65,74,75,77,84,135,150,153,156,161,162,168,186,187,188],y_pred_100:51,y_pred_idx:156,y_pred_sklearn:[63,65],y_pred_test:59,y_pred_train:59,y_predict:[34,75,82,186,187],y_predict_class:34,y_predicted_cl:[82,187],y_prob:150,y_representative_digit:156,y_score:165,y_set:[187,188],y_shuffl:134,y_step_1:135,y_step_2:135,y_step_3:135,y_step_:135,y_target:125,y_test:[30,32,34,39,40,49,50,51,52,53,56,58,59,60,83,84,85,124,134,135,148,150,153,156,157,161,162,164,165,168,180,184,186,187,188,190],y_test_circl:148,y_test_class:39,y_test_prepar:[49,52],y_train2:32,y_train:[30,32,34,38,39,40,42,44,49,50,51,52,53,54,56,58,59,60,62,83,84,85,124,134,135,148,150,153,156,157,161,162,164,165,168,180,184,186,187,188,190],y_train_add:85,y_train_batch:134,y_train_circl:148,y_train_combin:85,y_train_partially_propag:156,y_train_prepar:[49,52],y_train_propag:156,y_true:[34,74,77],y_val2:32,y_val:[54,83],y_valid:62,ya:[59,83],yahoo:149,yam:[160,161],yandex:[54,149],yandexdataschool:83,yang:131,yaxi:[156,184],yb:33,ye:[7,45,50,101,102,112,113,141,145,163,169,171],year:[1,13,14,24,25,49,50,51,52,56,105,112,113,115,121,122,125,135,138,149,153,164,168,170,171,174,176,178,186,191],yearbuilt:54,yearn:139,yeast:[160,161],yellow:[17,23,50,105,109,110,111,164,170,176,192],yet:[0,14,36,43,50,53,58,60,94,101,102,109,139,149,150,163,169,184],yetayeh:193,yf:149,yfit:[154,182],yfozmvgstfo5xi:59,yhat:38,yi:55,yield:[31,33,50,59,83,112,121,149,152,153,169,176],yieldpercol:[112,176],yiyiwang0826:25,yizh:164,yk_temp:38,ylabel:[18,22,29,31,32,33,34,35,37,38,40,42,50,55,56,57,59,60,61,64,66,68,74,76,80,81,84,110,112,121,125,128,131,132,134,144,145,156,164,165,166,168,176,184,186,187,188],ylgnbu:[51,59],ylim:[41,48,131,154,182,187,188],ylorbr:[112,176],ymean:47,ymeanactu:47,yml:0,ymp6irqbiss3usmcdyxx:59,yogurt:[160,161],yolo:133,york:[14,17,23,50,117,139,141,170,177],yoshua:[29,50,77,129],you:[0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,38,40,41,42,43,44,45,46,48,49,50,51,52,53,54,56,57,58,60,62,66,68,69,71,74,76,77,79,80,81,83,84,86,90,91,92,93,94,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,116,117,118,119,120,121,122,123,124,125,126,127,128,130,131,133,135,136,137,139,140,141,143,144,145,146,148,149,150,152,153,154,155,156,157,159,160,161,162,163,166,167,168,169,170,171,172,173,175,176,178,184,185,186,187,188,191,192,193],young:141,younger:119,your:[0,7,9,11,16,17,19,23,26,27,28,29,32,33,40,45,46,47,49,50,52,53,58,60,62,66,68,69,71,74,75,76,79,81,83,84,86,89,91,92,93,94,97,98,108,121,127,155,156,159,167,184,185,189],yourself:[7,47,50,103,105,110,112,118,148,163],yourthoughtpartn:105,yousfi:56,youtub:[43,56,77,125,127,137,140,160,163],youyang:140,ypred:47,yrsold:[54,66],ys:55,ystd:47,ystdactual:47,yt:160,ytick:[31,37,39,41,156,184],yticklabel:[40,68,81],yu:126,yup:79,yuri:[50,145,146,148,149,184],yy:[50,156],yyyi:166,z1:[31,93],z2:[31,93],z5bt0bx2dkfaicvnnfxngetnt0e2j7y77:59,z:[30,31,37,45,48,80,94,120,121,126,128,129,131,134,139,140,148,156,169,170,171,192],z_h:134,z_j:146,z_y:134,zalando:41,zaxi:184,zd_zt:38,zdcy9hbpglxfy7px9hrlmewpjjzzzjhnajf0t78plkqryfsznc4xql3:59,zealand:[122,178],zero:[1,33,36,37,43,50,54,55,63,65,66,75,77,82,83,93,94,103,117,120,121,125,128,129,130,132,133,139,145,148,150,155,169,170,171,177,180,184,186,187,191,192,193],zero_grad:[31,33,37],zero_var:125,zerodivisionerror:[93,94,169,171,191],zeropadding2d:[36,130,131],zeros_lik:[83,125,129,156],zeroth:[170,192],zettabyt:113,zh:85,zhang:[130,141],zhangqi:177,zhi:133,zhu:130,zhuang:130,zia:[116,174],zinkevich:139,zip:[18,22,29,30,31,33,36,37,39,41,66,120,124,125,126,128,131,132,134,154,169,170,182,184,190,191,192],zip_file_path:[29,30,31,39],zip_filenam:[36,37],zip_ref:[29,30,31,33,36,37,39],zip_store_path:[29,30,31,33,41,66],zip_url:[36,37,134],zipfil:[29,30,31,33,36,37,39,66,134],zisserman:130,zlad:38,zn:31,znqn85053zltaka5jxfylfyesc1k5w8dzgqesmbrcz:59,zodb:178,zone:137,zoom:85,zoom_rang:[32,34,85],zoomed_imag:85,zopedb:178,zorder:156,zorro:93,zsy:59,zth:133,zucchini:[160,161],zut3vtnbg6hloje6yfvqbbk0jiyijjbtnsshondn6:59,zw:85},titles:["37. Self-paced assignments","37.22. Analyzing COVID-19 papers","37.27. Analyzing data","37.9. Analyzing text about Data Science","37.13. Apply your skills","37.16. Build your own custom vis","37.17. Classifying datasets","37.26. Data preparation","37.24. Data processing in Python","37.41. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","37.40. Data Science project using Azure ML SDK","37.10. Data Science scenarios","37.20. Displaying airport data","37.15. Dive into the beehive","37.23. Estimation of COVID-19 pandemic","37.25. Evaluating data from a form","37.36. Explore a planetary computer dataset","37.37. Exploring for answers","37.19. Introduction to probability and statistics","37.12. Lines, scatters and bars","37.39. Low code/no code Data Science project on Azure ML","37.38. Market research","37.29. Matplotlib applied","37.28. NYC taxi data in winter and summer","37.18. Small diabetes study","37.21. Soda profits","37.35. Tell a story","37.14. Try it in Excel","37.11. Write a data ethics case study","37.103. Intro to Autoencoders","37.104. Base/Denoising Autoencoder & Dimension Reduction","37.105. Fun with Variational Autoencoders","37.92. How to choose cnn architecture mnist","37.96. Object Recognition in Images using CNN","37.94. Sign Language Digits Classification with CNN","37.114. DQN On Foreign Exchange Market","37.115. Art by gan","37.117. Generative Adversarial Networks (GANs)","37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment","37.109. NN Classify 15 Fruits Assignment","37.108. Neural Networks for Classification with TensorFlow","37.118. Basic classification: Classify images of clothing","37.101. Google Stock Price Prediction RNN","37.97. Intro to TensorFlow for Deep Learning","37.106. Time Series Forecasting Assignment","37.85. Counterintuitive Challenges in ML Debugging","37.84. Data engineering","37.86. Case Study: Debugging in Classification","37.87. Case Study: Debugging in Regression","37.77. Beyond random forests: more ensemble models","37.78. Decision trees","37.82. Random Forest Classifier with Feature Importance","37.76. Random forests for classification","37.75. Random forests intro and regression","37.81. Boosting with tuning","37.80. Gradient boosting","37.79. Hyperparameter tuning gradient boosting","37.69. Decision Trees - Classification","37.68. Decision Trees - Intro and Regression","37.65. Kernel method assignment 1","37.67. Support Vector Machines (SVM) - Classification","37.66. Support Vector Machines (SVM) - Intro and SVM for Regression","37.72. Dropout and Batch Normalization","37.73. Lasso and Ridge Regression","37.71. Learning Curve To Identify Overfit & Underfit","37.70. Model selection assignment 1","37.74. Regularized Linear Models","37.90. Build Classification Model","37.89. Build classification models","37.58. Create a regression model","37.62. Delicious asian and indian cuisines","37.63. Explore classification methods","37.56. Exploring visualizations","37.59. Linear and polynomial regression","37.64. Linear Regression Implementation from Scratch","37.49. Gradient descent","37.47. Linear Regression Metrics","37.48. Loss Function","37.55. Managing data","37.45. ML linear regression - assignment 1","37.46. ML linear regression - assignment 2","37.51. ML logistic regression - assignment 1","37.52. ML logistic regression - assignment 2","37.53. ML neural network - Assignment 1","37.42. Machine Learning overview - assignment 1","37.43. Machine Learning overview - assignment 2","37.91. Parameter play","37.61. Pumpkin varieties and color","37.54. Regression tools","37.44. Regression with Scikit-learn","37.60. Retrying some regression","37.88. Study the solvers","37.57. Try a different model","37.8. Python programming advanced","37.7. Python programming basics","37.6. Python programming introduction","37.5. Project Plan\u200b Template","37.3. First assignment","37.4. Second assignment","8. Data Science in the cloud","8.1. Introduction","8.3. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","8.2. The \u201clow code/no code\u201d way","9. Data Science in the real world","7.2. Analyzing","7.3. Communication","7. Data Science lifecycle","7.1. Introduction to the Data Science lifecycle","6. Data visualization","6.4. Making meaningful visualizations","6.1. Visualizing distributions","6.2. Visualizing proportions","6.3. Visualizing relationships: all about honey \ud83c\udf6f","4.2. Data Science ethics","4.3. Defining data","4.1. Defining data science","4. Introduction","4.4. Introduction to statistics and probability","5.5. Data preparation","5.2. Non-relational data","5.3. NumPy","5.4. Pandas","5.1. Relational databases","5. Working with data","24. Autoencoder","21. Convolutional Neural Networks","30. Diffusion Model","20. Intro to Deep Learning","27. Deep Q-learning","22. Generative adversarial networks","28. Image classification","29. Image segmentation","25. Long-short term memory","31. Object detection","23. Recurrent Neural Networks","26. Time series","Learn AI together, for free","34. Data engineering","36. Model deployment","35. Model training & evaluation","32. Overview","33. Problem framing","14. Clustering models for Machine Learning","14.1. Introduction to clustering","14.2. K-Means clustering","15.1. Bagging","15.3. Feature importance","15. Getting started with ensemble learning","15.2. Random forest","16.1. Gradient Boosting","16.2. Gradient boosting example","16. Introduction to Gradient Boosting","16.3. XGBoost","16.4. XGBoost + k-fold CV + Feature Importance","18. Kernel method","19. Model selection","17. Unsupervised learning","12. Build a web app to use a Machine Learning model","13.4. Applied Machine Learning : build a web app","13. Getting started with classification","13.1. Introduction to classification","13.2. More classifiers","13.3. Yet other classifiers","10. Machine Learning overview","11.3. Linear and polynomial regression","11.4. Logistic regression","11.2. Managing data","11. Regression models for Machine Learning","11.1. Tools of the trade","3. Python programming advanced","2. Python programming basics","1. Python programming introduction","38.10. Data Science in real world","38.9. Data Science in the cloud","38.4. Data Science introduction","38.8. Data Science lifecycle","38.7. Data visualization","38.6. NumPy and Pandas","38.5. Relational vs. non-relational database","38.20. Convolutional Neural Network","38.21. Generative Adversarial Network","38. Slides","38.18. Kernel method","38.19. Model Selection","38.17. Unsupervised learning","38.16. Build an machine learning web application","38.12. Linear Regression","38.13. Logistic Regression","38.14. Logistic Regression","38.11. Machine Learning overview","38.15. Neural Network","38.3. Python programming advanced","38.2. Python programming basics","38.1. Python programming introduction"],titleterms:{"0":59,"1":[3,24,30,32,43,49,50,52,53,54,56,57,58,59,60,61,65,68,79,81,83,84,105,114,120,130,172,173,174,175,176,177,178,179,180,182,186,188,192,193],"10":[40,56,125,130],"100":[51,59,130],"1000":[59,130],"11":56,"12":56,"13":56,"15":39,"19":[1,8,14],"1d":120,"2":[3,24,30,32,43,44,49,50,51,52,53,54,56,57,58,60,61,68,80,81,82,85,105,114,120,172,173,174,175,176,177,178,179,180,182,186,188,192,193],"2d":[30,120,182],"3":[3,24,32,39,43,49,50,52,53,54,56,57,58,60,61,68,79,81,105,120,172,173,174,175,176,177,179,180,186,192,193],"3d":[30,84,109,182],"4":[3,24,32,43,49,50,51,52,53,54,56,57,58,60,61,68,81,105,172,173,174,175,176,177,178,192,193],"5":[24,32,43,49,50,53,54,56,57,58,60,61,68,81,84,105,130,172,173,174,175,176,178,192,193],"50":56,"500":56,"6":[43,50,52,53,54,56,57,58,60,61,68,81,172,173,174,175,176],"7":[43,50,52,53,56,57,58,60,61,172,175,176],"8":[52,56,175],"9":56,"boolean":[120,170,171,192,193],"break":[93,169,191],"case":[28,45,47,48,50,105,113,166,182],"class":[35,39,47,50,51,63,65,93,169,191],"default":[51,59,169],"do":[47,115,165,166,170,174,182],"final":[49,75,79],"float":[7,170,192],"function":[43,51,59,75,77,83,93,94,120,127,128,149,169,171,177,187,188,190,191],"import":[9,29,33,37,41,44,49,51,52,53,54,56,57,58,59,60,61,64,66,84,118,126,139,146,153,168,169,186,187,188,190],"long":132,"new":[56,95,120,121,187,188],"null":[7,59,177],"public":37,"return":[95,128,169],"short":132,"true":59,"try":[0,27,48,68,81,92,169,191],"while":[93,169,191],A:[31,77,127,155,161,162,164],And:163,At:46,But:166,By:149,For:93,Is:141,It:[122,165,178],NOT:165,Not:163,On:35,One:[79,80,190],That:187,The:[9,36,43,51,53,75,76,83,101,102,118,122,155,156,162,166,168,169,170,173,177,178,179,182,191,192],There:166,To:[64,155],With:[34,75,135],about:[3,33,112,160,165,176],absolut:76,acceler:156,access:[94,120,121],accuraci:[32,41,47,59,130,153,190],acknowledg:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,74,79,81,83,84,85,86,87,89,90,91,92,93,94,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,126,128,129,130,131,132,133,134,135,136,139,143,144,145,146,148,149,150,152,153,154,157,160,161,162,163,164,165,166,168,169,170,171,179,182,184,185,186,187,190],ackowledg:180,action:128,activ:127,actual:105,ad:[30,31,47,62,66,120,155],adaboost:49,adam:190,add:[48,120,139],addit:121,adjust:76,advanc:[32,93,120,169,191],adversari:[37,129,180],after:[30,155,183],ag:24,against:48,agent:[35,128],agglom:156,aggreg:[120,121,174,177],ahead:83,ai:[36,41,136,184],airport:12,aka:64,algorithm:[50,54,128,140,143,148,149,153,156],align:121,all:[24,47,79,112,122,164,176,178],alpha:126,an:[9,31,64,66,101,102,105,119,120,157,179,185],anagram:170,analysi:[8,38,49,51,52,53,54,56,57,58,59,60,61,76,79,100,104,163,184,189],analyz:[1,2,3,18,104,120,166,175],anchor:[39,51],anim:109,ann:44,annot:[169,191],anomal:47,anomali:29,anoth:37,answer:17,api:[34,43],app:[157,158],append:[94,177],appli:[4,22,47,113,158,161,162,174],applic:[50,124,163,185,189],approach:[51,105,122,161,178],ar:170,arbitrari:169,architectur:[32,125,127,179,190],argument:[169,191],arithmet:[121,170,192],arrai:[120,121,177],art:36,artifici:[163,189],artwork:36,ascend:[94,95],ascent:129,asian:70,ask:166,assert:51,assign:[0,12,25,39,44,59,65,79,80,81,82,83,84,85,97,98,120,121,188],assist:131,attribut:[59,120,121,177],auc:[56,59],audienc:105,augment:[32,34,126],author:168,autoencod:[29,30,31,124],automl:[9,101,102,139],avail:120,averag:[93,166],avoid:[109,155],axi:120,azur:[9,10,20,101,102,119],b:75,babylonian:94,background:126,backprop:83,bag:[49,145,148,153],balanc:160,bar:[19,22,176],base:[30,93,121,153],basebal:18,baselin:[47,48,163,189],basi:59,basic:[29,32,41,43,94,113,120,121,128,170,171,174,177,192,193],batch:[33,62,156],beehiv:13,begin:105,behind:55,best:[9,32,37,101,141],beta:126,better:[161,165],between:[24,54,56,68,77,79,81,120,148,174,177],beyond:[40,49,154,182],bi:54,bia:[64,148,155,183],bibliographi:25,big:190,binai:54,binari:[40,165],binder:0,bird:[110,176],bit:[31,120],bitcoin:38,blend:54,bmi:24,boost:[49,54,55,56,149,150,151,153],bootstrap:145,bound:126,boundari:[154,156,182],boxplot:[24,84],bp:24,brain:179,broadcast:[120,177],bug:48,build:[5,29,31,32,36,41,50,51,67,68,81,109,144,157,158,164,165,166,176,185],c:59,cach:185,calcul:[47,93,94,170],call:191,callabl:121,callback:40,can:[50,56,115,174],candid:56,capac:155,captur:[107,175],cardin:51,cast:[170,192],catalog:137,catboost:54,categor:[7,51,54,57,68,79,81,164,186],categori:94,categorical_crossentropi:190,caus:45,central:[18,117],centroid:156,chain:121,challeng:[1,14,22,45,113,120,127,130,133,174],chang:[34,54],changin:34,channel:105,chart:[109,112,176,185],check:[30,47,48,51,53,57,59,68,79,81,139,153,166,170,193],checkbox:185,checklist:113,choic:[121,141],choos:[32,50,79,100,102,109,161,173],churn:50,cifar:[125,130],citi:[56,122,178],classic:[130,131,133,149],classif:[34,40,41,47,49,50,51,52,57,59,60,67,68,71,77,81,84,130,149,159,160,162,163,165,182],classifi:[6,39,40,41,49,51,52,57,60,153,160,161,162],clean:[118,157,160,165],cloth:41,cloud:[9,99,100,101,173],cluster:[9,101,102,142,143,144,156,184],cnn:[32,33,34,44,125,133,179],code:[20,75,102,113,124,125,126,128,129,130,131,132,133,134,138,171,173,180,191],collect:[39,163,189],color:[87,109],column:[7,51,54,121,185],combin:[120,121,177],come:187,comment:[59,170,171,192,193],common:[63,65,77,118,127,170],commun:[105,175],compani:56,compar:[59,176],comparison:[120,148,170,192],compil:[36,40,41,190],complex:[48,50,93,170,192],compon:184,comprehens:[165,170,192],comput:[1,9,14,16,24,101,102,120,177,179,190],con:[50,148],concat:[121,177],concaten:[54,177],concept:[77,113,122,174,178],conclus:[1,18,31,32,34,45,47,48,59,63,65,74,76,77,105,117,122,149,152,153,155,166,183],conculs:36,condit:93,confid:[18,117],configur:[9,101,126,168],confus:[51,59,165,187,188],connect:[124,127,136,179],consider:157,constant:43,consum:9,consumpt:[101,102,137],contain:120,content:[33,57,58,60,61,189,191],context:56,continu:[93,128,169,191],control:[40,169,171,191],converg:[45,129],convert:[54,120],convolut:[29,32,33,124,125,127,179],corp:18,correl:[18,24,48,53,54,68,79,81,117,164,165],correspond:1,cosin:126,cosmo:119,cost:77,count:[93,94,170],counterintuit:45,covari:117,covid:[1,8,14,120],creat:[9,32,39,40,43,45,68,69,79,81,93,94,101,102,120,121,180],creation:[56,63,65,120],criteria:50,cross:[50,59,79,84,153,187],crucial:50,csv:44,cuisin:[70,160,161],cultur:113,current:125,curv:[36,59,64,139,155,165],custom:[5,40,50],cv:[59,153],d3:109,data:[1,2,3,7,8,9,10,11,12,14,15,18,20,23,24,25,28,29,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,63,64,65,66,68,74,78,79,81,84,99,100,101,103,104,105,106,107,108,110,113,114,115,117,118,119,120,121,122,123,126,135,137,139,140,141,143,153,157,160,161,162,163,165,166,170,171,172,173,174,175,176,177,178,182,185,186,189,190,192,193],databas:[12,122,178],databasetyp:178,dataclass:121,datafram:[7,118,121,177],dataset:[6,16,29,30,31,33,35,39,41,45,46,47,48,51,59,84,101,102,110,121,130,131,148,153,160,168,176,177,184,186,187,188,190],datatyp:120,date:166,db:119,dbscan:156,deal:[7,46,54,93,118,120],debug:[45,47,48,139],decept:109,decis:[50,51,57,58,148,156],decisiontre:55,decisiontreeclassifi:50,declar:[51,59,153],decor:[169,191],decorrel:148,decreas:45,deep:[41,43,127,128,135,163,189],deepdream:125,deeplab:131,def:[169,171],defin:[29,33,35,114,115,126,131,135,163,165,174,189,191],definit:[77,113,126,128,169,174],degre:24,del:[94,170,192],delet:121,delici:70,demens:30,denois:[29,30],dens:[32,83,127],densenet:130,densiti:[22,110,176],depend:[24,128],deploi:[9,163,189],deploy:[101,102,138,140],depth:139,deriv:75,descent:[75,80,129,149],describ:[7,114],descript:[59,84,104],design:[186,190],detaphor:77,detect:[7,29,133],determin:166,detr:133,develop:[0,74],deviat:117,diabet:[24,168],diagnosi:1,dict:[93,94,121],dictionari:[93,94,170,171,192,193],differ:[24,77,92,121],difficult:75,diffus:126,digit:[34,50,85,115,125],dimens:[30,51,84,184],dimension:[59,80,120,148,177],direct:135,dirrec:135,disciplin:56,discov:160,discrimin:[36,37,129],diseas:24,dispers:59,displai:[12,51,109,120,144,185],distant:182,distribut:[18,24,51,54,59,110,117,143,176],dive:[13,154],diverg:126,divid:84,docstr:[170,191,192],document:[119,169,191],doe:[0,180],dog:37,donut:[111,176],download:29,dqn:35,draw:[182,185],drop:7,drop_dupl:7,dropout:[32,47,62,155,183],dual:[112,176],duplic:[7,46,94,118,170],earli:[155,166,183],early_stopping_round:152,easi:141,ecg:29,eda:[51,68,81,153,163,189],educ:56,effect:[105,175],elbo:126,elbow:144,element:[94,120,170],elif:93,els:93,emot:105,empir:77,emul:119,encod:[7,51,56,79,84,186,190],end:105,endpoint:[9,101,102],engin:[46,48,51,54,137,140],enrol:56,enrollee_id:56,ensembl:[49,54,145,147,162],entropi:[50,187],envireon:35,environ:[0,128,168,171],episod:128,equat:186,equival:48,error:[59,76,145,163,169,189,191],establish:[47,48,163,189],estim:[14,22],ethic:[28,113,174],eval:121,evalu:[15,40,41,49,52,53,54,57,58,60,61,68,74,79,81,84,128,139,140,190],everyth:[120,174,177],evid:126,evil:18,evolut:[138,153],exampl:[29,37,50,62,100,120,128,135,146,149,150,152,155,163,178,186,189],excel:27,except:[93,169,191],exchang:35,exercis:[7,143,144,157,160,161,162,165,166,168],exist:[43,120],expect:126,experi:[9,32,56,101,166],explan:77,explod:45,exploit:128,explor:[7,16,17,31,33,41,46,49,51,52,59,68,71,72,75,79,81,104,110,118,119,128,176,177],exploratori:[38,49,51,52,53,56,57,58,59,60,61,79,104,163,189],express:169,extend:94,extract:[1,179],extrem:[148,153],f1:59,facet:[112,176],failur:[101,102],fals:59,fashion:[40,41],faster:133,fcn:131,fco:133,featur:[32,47,48,50,51,52,53,54,56,57,59,68,79,81,84,135,136,139,146,153,163,164,179,187,188,189],feed:41,feel:75,fibonacci:94,field:[115,120,174],file:[34,44,171,193],fill:[7,54,93],filter:170,find:[51,56,68,75,81,156,170],fine:125,first:[29,84,97,166,168],fit:[45,56,64,154,155,183,186,190],fix:47,flask:157,flat:120,flatten:179,flow:[169,171,191],flu:135,fold:[59,153],forecast:[44,135],foreign:35,forest:[49,51,52,53,146,148],fork:31,form:15,format:[47,94,170,192],formul:[68,81,189],formula:[76,94],forward:126,four:164,frame:[140,141],free:[75,136],frequenc:51,friedman:149,from:[15,34,39,43,63,65,74,82,94,120,121,170,179,184,187,190],fruit:39,full:[83,179],fulli:124,fun:31,gain:75,gan:[36,37,180],gate:132,gbm:149,gcd:93,gender:[24,56],gener:[36,37,39,94,120,129,180],geograph:79,ger:180,get:[1,3,24,40,45,84,94,111,115,120,126,143,147,159,168,176],giant:184,gif:126,github:0,give:31,glass:31,global:[32,84,169],go:[40,161],goal:[3,118],good:[64,155,186],googl:42,govern:137,gradient:[45,49,55,56,75,80,129,149,150,151,153],grid:[112,165,176],gridsearch:59,gridsearchcv:56,group:[84,94,121],guid:41,hand:170,handl:[46,57,59,64,79,169,177],handwritten:[50,125],have:[47,54,165],head:7,heart:[101,102],hello:160,here:166,hidden:127,hide:185,hierarch:[121,156],high:[45,121,148],higher:59,hing:154,hint:48,histogram:[22,53,110,176],histori:[130,131,133,149],honei:[112,176],hood:59,hot:[79,190],how:[0,32,50,114,125,131,141,149,155,171,179,180,182,190],human:[103,172],hyperparamet:[56,59,139],hyperplan:59,hypothesi:[18,24,117,186],id:[39,51],identifi:[7,54,64,104],iiit:131,illustr:146,imag:[29,30,32,33,37,41,121,130,131,156,179],imagenet:130,imbalanc:47,impact:155,implement:[34,40,48,74,76,94,150,153,186],improv:[52,53,56,57,58,60,61,139],includ:[170,192],inconsist:[46,104],indent:[170,171,192,193],index:[120,121,177],indian:70,indic:120,individu:[33,79,120],industri:[103,172],inequ:126,inertia:156,info:7,inform:[7,59,118],infrastructur:138,ingest:[137,140],ingredi:160,inherit:[169,191],initi:[9,37,56,156],input:[48,59,79],insensit:182,insert:[94,170],insid:[169,191],insight:[3,68,81],instal:[168,171],instanc:[101,169],instruct:[4,5,6,10,11,13,15,16,17,19,20,21,23,26,27,28,69,71,86,89,90,91,92],integ:[120,170,192],intellig:[163,189],interpret:[64,76,139,155],interv:[18,117],intro:[29,43,53,58,61,127],introduc:[121,177],introduct:[9,18,24,30,50,54,59,62,64,74,79,95,100,101,105,107,116,117,120,143,144,149,151,153,160,164,165,166,168,171,174,183,185,187,188,190,193],intuit:[59,75,146,153],inventori:119,investig:14,involv:120,iri:[64,184],isol:54,item:[94,170],iter:120,jensen:126,job:56,join:[94,121,122,177,178],js:109,json:119,just:54,k:[59,144,148,153,156,162,184],kaggl:22,kei:[163,170,189],kera:[34,39,190],kernel:[22,59,154,179,182],keyword:169,kl:126,knn:84,know:[111,176],l1:[155,183],l2:[155,183],label:[51,84,121,163,189,190],lag:135,lambda:[93,155,169],languag:34,larg:[32,117],lasso:[63,65],lasson:[63,65],last:[46,56],latent:30,law:117,layer:[32,41,47,83,127,137,190],layout:185,lda:156,learn:[9,36,41,43,45,50,56,59,63,64,65,79,84,85,89,102,124,127,128,135,136,139,141,142,147,155,156,157,158,160,161,163,164,166,167,168,173,184,185,189],learning_r:152,length:93,let:[75,154,170,180,182,191],level:[34,56],libari:33,librari:[29,32,34,37,38,42,51,59,84,126,153,168,186,187,188,190],lifecycl:[106,107,175],lightgbm:54,like:[105,121],limit:[18,117,156],line:[19,112,164,176,182,185],linear:[47,48,59,66,73,74,75,76,79,80,126,135,154,155,162,164,165,182,186,187,188],linearli:182,list:[93,94,95,121,169,170,171,191,192,193],liter:[170,192],load:[12,14,25,29,30,31,32,34,35,36,37,38,39,41,42,44,47,49,52,53,54,56,57,58,60,61,84,101,102,126,153],local:0,logic:55,logist:[64,68,81,82,154,161,165,182,187,188],look:[1,40,53,56,164],loop:[37,55,83,93],loss:[45,47,64,77,83,129,139,149,154,187,190],lot:[54,165],low:[20,102,173],lower:[98,126],lstm:[38,44],m:75,machin:[9,41,59,60,61,79,84,85,102,141,142,154,157,158,163,167,168,173,182,185,189],mae:76,magic:185,main:[128,153],maintain:[107,175],mainten:140,major:56,make:[14,36,41,109,131,153,166,187,188],manag:[78,107,119,166,175],mani:32,manipul:[43,120],map:[32,54,79,162,185],mape:76,margin:[59,154,182],market:[21,35,166],mask:133,math:[55,75,120,154],mathemat:77,matplotlib:[22,166],matrix:[48,51,54,59,165,186,187,188],max:[120,174,177],max_depth:56,max_featur:56,maxim:[154,182],maximum:[59,177],mean:[24,76,117,126,144,156,184],meaning:[105,109],media:100,median:117,medicin:1,memori:132,men:24,merg:[94,95,121,177],method:[49,59,71,94,105,121,144,154,156,169,170,182,190,192],metric:[59,68,76,81,139,190],min:[120,174,177],min_samples_leaf:56,min_samples_split:56,mind:105,mini:156,minimum:177,miscellan:56,miss:[7,46,51,54,57,59,68,79,81,93,118,153,166,177],ml:[9,10,20,45,79,80,81,82,83,101,102,149],mnist:[32,41,47,50,125,184],mobilenet:130,mode:117,model:[8,9,29,30,33,34,36,37,38,39,40,41,43,44,45,47,48,49,50,51,52,53,54,56,57,59,64,65,66,67,68,69,74,79,81,84,92,101,102,126,128,130,131,133,135,138,139,140,141,142,144,152,155,157,163,164,165,166,167,168,180,183,186,187,188,189,190],modul:[169,191],more:[32,49,52,68,81,161,166],most:56,mostli:54,motiv:154,mse:76,much:32,multiclass:40,multicollinear:[54,64],multidimension:80,multioutput:135,multipl:[120,156,169,170,186],multistep:135,mushroom:[111,176],mutabl:94,n_estim:152,n_job:152,name:[51,121],namedtupl:121,nan:[7,177],nation:161,nativ:120,ndarrai:[120,121],nearest:148,need:165,neighbor:[148,162],nest:[170,192],network:[32,33,37,39,40,83,109,125,127,129,134,179,180,187,190],neural:[32,33,39,40,83,125,127,134,179,187,190],next:29,nn:39,nois:[30,126],noisi:30,non:[7,119,178,182],none:[7,177],nonlinear:[47,48,83],nonloc:169,normal:[18,22,44,48,62,117,186],nosql:[119,178],note:49,notebook:[101,168],now:182,number:[51,56,93,94,117,120,156,170,171,190,192,193],numer:[7,50,51,54,59,79,177],numpi:[34,120,177],nyc:23,o:39,object:[33,75,77,120,121,133,169,177],obtain:141,occurr:94,odd:166,one:166,oper:[43,94,120,121,170,177,192],optim:[37,48,56,59,139,156,186,190],option:[0,47,102,154,185],order:94,ordin:54,ordinari:[163,189],orign:30,other:[29,50,68,81,115,120,162,165],our:[186,190,191],out:[0,145],outlier:[54,59],outlin:[182,183,184],output:[79,126,191],over:[155,183],overfit:[59,64,155],overiew:135,overview:[29,41,84,85,124,128,129,132,140,155,163,189],own:[5,186,191],oxford:131,pace:0,packag:169,pad:179,pair:32,pairplot:[53,84],panda:[7,44,104,121,177],pandem:14,paper:[1,8,100,120],paramet:[37,50,51,56,84,86,148,190],parameter:126,part:[24,53],partial:75,pass:47,path:44,pca:[156,184],pd:177,peopl:93,percentag:[51,76],perform:[43,68,81,121,163,189,190],permut:146,pet:131,phrase:105,pickl:157,pictur:39,pie:[111,176],piec:93,pipelin:[79,130],pivot:121,plai:[86,179,180,187],plan:[56,96,162],planetari:16,plot:[22,24,30,32,55,79,110,112,165,176,185],plote:36,point:182,polici:128,polynomi:[59,73,164,186],pool:179,popul:94,posit:[59,121],potenti:124,practic:[146,148],pre:[14,38,56],precis:59,predict:[39,41,42,50,54,56,81,84,101,102,131,153,155,161,183,186,187,188],predictor:54,prepar:[7,31,32,34,40,44,74,118,131,135,144,162,164,166],prepreprocess:36,preprocess:[36,37,41,49,52,53,56,57,58,60,61,66,68,79,81,126,156,163,189,190],prerequisit:[144,164,165],preserv:177,preview:[51,153],price:[42,81,166],princip:184,principl:113,pro:[50,148],probabl:[18,24,117,174],problem:[50,51,59,68,81,140,141,148,149,163,186,189],process:[8,14,38,47,54,79,107,121,126,137,140,175,179],product:141,profession:113,profil:104,profit:25,program:[93,94,95,120,163,169,170,171,189,191,192,193],progress:[24,185],project:[10,20,96,101,102,109],promot:120,properti:[51,126],proport:[111,176],pumpkin:[87,166],put:[79,141,164],python:[8,76,93,94,95,120,153,168,169,170,171,177,191,192,193],q:128,qualiti:[50,137,139],quantiti:176,quartil:117,queri:[104,119,121],question:[165,166],quot:184,r2:76,r:[76,133],r_t:14,radial:59,rainfal:[122,178],rais:169,random:[18,30,49,51,52,53,117,146,148,174],rang:[81,93,121,169],rate:[45,56,59],rbf:[59,154],re:126,reach:45,read:[44,50,153],readabl:109,readi:24,real:[18,100,103,117,139,148,172],reason:[64,161],recal:59,recap:76,recogn:85,recognit:[33,50],record:121,recurr:[127,134],recurs:[135,170],reduc:48,reduct:[30,184],redund:54,refer:[14,172,173,174,175,176,177,178,191,192,193],refresh:64,regress:[48,50,53,58,61,63,64,65,68,69,73,74,75,76,77,79,80,81,82,88,89,90,135,149,154,155,161,163,164,165,166,167,168,182,186,187,188],regressor:[53,58,61],regul:113,regular:[47,63,65,66,77,155,183],reinforc:[163,189],relat:[115,119,122,174,178],relationship:[54,79,112,122,176,178],relev:56,remov:[7,46,47,54,56,94,118,120,170],renam:51,replac:94,report:[51,59],represent:148,research:[21,103,125,172],reshap:120,residu:76,resnet:130,resourc:102,respect:75,respons:105,result:[3,30,39,40,48,56,59,153,186,187,188],retri:90,retriev:[122,178],revers:[126,170],reward:128,ridg:[63,65],right:[102,109,166],risk:77,rl:128,rmse:76,rnn:[42,44,127],road:83,roc:[59,165],role:[49,53],root:[76,94],rotaion:34,row:84,rubric:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,69,71,72,86,89,90,91,92],rule:120,run:[9,59,168],s:[75,79,126,149,154,165,166,170,174,175,176,177,180,182,187,188,191,193],salepric:54,sampl:[31,104,126],satisf:139,save:[9,37,101],scalar:[120,121],scale:[30,51,54,59,68,79,81,84,187,188],scatter:[19,22,55],scatterplot:[54,112,176],scenario:11,schedul:126,schema:[12,48],scienc:[3,9,10,11,20,99,100,101,103,106,107,113,115,163,172,173,174,175,189],scientif:100,scikit:[50,59,63,65,89,161,164,166,168],scope:[169,191],score:[59,76,144,153],scratch:[39,63,65,74,82,186,187,190],sdk:[9,10,101],search:[93,137],second:[29,47,98,166],section:77,secur:[107,137,175],see:[56,179],segment:[131,156],segnet:131,select:[43,51,65,121,139,155,163,177,183,189],selectbox:185,self:[0,100,101,102,103,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,128,134,137,139,140,141,143,144,157,160,162,164,165,166,168,169,170],sens:14,sentenc:93,sentiment:[38,100],separ:[51,59,153,182,187],sequenc:94,sequenti:43,seri:[44,121,135,177],serv:138,session:75,set:[32,41,49,51,52,53,54,57,59,79,84,153,170,171,186,187,188,190,193],setdefault:94,setup:[37,48,101,171],sex:24,shape:[7,43,84,153],shell:171,shortcom:[122,178],show:[37,84,109,185],showcas:137,shuffl:[47,59],side:165,sidebar:185,sigmoid:[59,187,188],sign:34,silhouett:144,similar:148,simpl:[31,44,45,139,155,164,177,186],simul:[18,55],singl:[33,79,94,120,122,127,178],size:56,skew:47,skicit:[63,65],skill:4,skip:75,sklearn:[79,146,182,184],slice:[47,94,120,121,139],slide:181,slider:185,small:[24,56],smile:31,social:100,soda:25,solut:[45,47,48,128],solver:91,some:[37,90,170],someth:166,sort:[94,120],sourc:114,space:[30,59],special:132,specif:[9,56,59],specifi:94,spectral:156,split:[34,47,48,50,51,54,57,59,79,94,153,161,162,186,187,188],splite:84,spread:[8,120],spreadsheet:119,squar:[76,94],st:185,stack:[49,93],standard:[117,130],start:[40,122,139,143,147,159,168,178],state:128,statement:[51,93,149,169,170,191,192],statist:[18,24,48,51,57,68,79,81,104,117,153,174],step:[3,29,56,79,135,149],still:165,stock:42,stop:[155,183],storag:137,store:[107,119,175],stori:[26,105],storytel:105,str:[94,98],strategi:[1,118,135,138,166],stratifi:59,streamlit:185,stride:120,string:[93,94,169,170,171,191,192,193],structur:[1,32,77,120,121,177],student:[103,172],studi:[24,28,45,47,48,91,100,101,102,103,105,107,109,110,111,112,113,114,115,117,118,119,120,121,122,124,125,128,134,137,139,140,141,143,144,157,160,162,164,165,166,168,169,170],studio:[102,171],style:[109,125,185],stylenet:125,subarrai:120,subclass:43,subplot2grid:22,subplot:22,subsambl:32,subsampl:56,sum:93,summari:[32,45,51,57,59,68,81,153,154,190],summer:23,sup:178,supervis:[163,189],support:[59,60,61,154,162,182],sustain:[103,172],svc:162,svm:[59,60,61,154,182],svr:154,swarm:165,syntax:[170,171,192],system:[163,189],tabl:[33,121,122,178,189,191],tail:7,take:40,target:[51,54,59,153],task1:44,task2:[44,56],task5:52,task:[24,44,49,50,52,53,54,56,79,114,128,135],taxi:23,taxonomi:128,tell:26,templat:96,tensor:43,tensorboard:40,tensorflow:[29,40,43,125],term:[94,132],terminolog:[128,163,189],test:[18,24,33,34,47,48,49,51,52,53,54,56,57,59,79,83,84,117,126,140,153,186,187,188],text:[3,110,176],text_input:185,tf:43,thank:189,theme:185,theorem:[18,117],theori:31,thi:[0,41,55,77,165],thing:166,third:29,tidi:165,time:[44,75,100,135,179,180],titan:22,titl:[94,98,120],togeth:[54,136,164],toi:50,tool:[88,120,157,168],top:130,trade:168,tradeoff:[155,183],traffic:135,train:[30,31,32,33,34,35,36,37,39,40,41,47,49,51,52,53,54,57,58,59,60,61,64,68,79,81,83,84,101,102,126,127,129,131,139,140,153,163,186,187,188,189,190],trane:186,transfer:139,transform:[3,59,79,115,127,148],transpos:121,treatment:1,tree:[50,51,56,57,58,148,153],trend:[1,125,135],trick:[59,126,182],trigonometr:120,tune:[54,56,84,125,139,152],tunnel:135,tupl:[120,121,170,171,193],turn:[100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,122,124,125,126,128,129,130,131,132,133,134,135,137,138,139,140,141,143,144,145,146,148,149,150,152,153,154,157,160,161,162,163,164,165,166,168,169,170,171,172,173,174,175,176,177,178,191,192,193],tweet:38,twiddl:120,two:[95,170,177],type:[51,54,56,105,109,115,120,127,163,170,171,189,192,193],typic:[163,189],ufunc:[120,177],under:[59,155,183],underfit:[59,64,155],understand:[47,54,105],univari:[54,186],univers:[56,120,177],unpack:[169,191],unstructur:120,unsupervis:[124,156,163,184,189],up:[41,94,168],updat:129,upper:[94,98],upvot:31,us:[10,30,33,40,41,48,56,59,62,63,64,65,84,93,94,105,109,110,136,139,141,153,156,157,161,163,164,165,166,171,176,185,190],useless:54,v3:131,v:[154,182,187,188],valid:[32,33,47,48,50,54,59,64,79,84,153],valu:[7,24,47,51,54,56,57,59,68,79,81,93,94,120,121,128,153,155,169,170,176,177],variabl:[18,24,32,43,51,59,117,120,153,156,165,169,170,174,191,192],varianc:[24,64,117,126,144,148,155,183],variat:[31,54],varieti:87,vector:[51,59,60,61,121,153,154,162,182],veri:48,verifi:41,versa:170,vggnet:130,vi:5,via:[32,165],vice:170,view:[51,120,190],vif:64,violin:165,visual:[3,22,39,40,56,72,84,104,108,109,110,111,112,165,166,170,171,176,190],visualis:[186,187,188],vit:130,volum:38,vote:49,vowel:170,vs:[153,163,178,189],w:39,waffl:[111,176],wai:[9,101,102,164,173],wait:166,want:93,we:[50,56],web:[157,158,185],weight:[37,149],what:[24,32,43,84,100,101,102,105,115,130,131,133,135,141,150,152,161,163,173,174,175,176,180,184,186,189,193],when:[163,187],where:115,whole:186,why:[100,127,171,173,182,193],widget:185,width:139,wingspan:176,winter:23,within:120,women:24,word:[93,105],work:[0,50,56,110,120,123,149,168,176,180],workflow:[163,189],workspac:[9,101,102],world:[103,117,139,172],write:[28,185],x_t:126,xgboost:[54,66,152,153],y:24,yet:162,you:[47,75,115,165,174,189],your:[4,5,48,100,101,102,103,104,105,107,109,110,111,112,113,114,115,117,118,119,120,122,124,125,126,128,129,130,131,132,133,134,135,137,138,139,140,141,143,144,145,146,148,149,150,152,153,154,157,160,161,162,163,164,165,166,168,169,170,171,172,173,174,175,176,177,178,191,192,193],zero:47,zoom:34}}) \ No newline at end of file diff --git a/slides/data-science/data-science-in-real-world.html b/slides/data-science/data-science-in-real-world.html index e44672f6bd..579d80e778 100644 --- a/slides/data-science/data-science-in-real-world.html +++ b/slides/data-science/data-science-in-real-world.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/data-science/data-science-in-the-cloud.html b/slides/data-science/data-science-in-the-cloud.html index 0647a49eb3..3f969db4cf 100644 --- a/slides/data-science/data-science-in-the-cloud.html +++ b/slides/data-science/data-science-in-the-cloud.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/data-science/data-science-introduction.html b/slides/data-science/data-science-introduction.html index 3038792d93..de5f4dbb3e 100644 --- a/slides/data-science/data-science-introduction.html +++ b/slides/data-science/data-science-introduction.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/data-science/data-science-lifecycle.html b/slides/data-science/data-science-lifecycle.html index 9b5f5ec78a..ae09c40cec 100644 --- a/slides/data-science/data-science-lifecycle.html +++ b/slides/data-science/data-science-lifecycle.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/data-science/data-visualization.html b/slides/data-science/data-visualization.html index 8aaeaf24c1..ad2cf3402e 100644 --- a/slides/data-science/data-visualization.html +++ b/slides/data-science/data-visualization.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/data-science/numpy-and-pandas.html b/slides/data-science/numpy-and-pandas.html index 701ee0ff4c..214b438be1 100644 --- a/slides/data-science/numpy-and-pandas.html +++ b/slides/data-science/numpy-and-pandas.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/data-science/relational-vs-non-relational-database.html b/slides/data-science/relational-vs-non-relational-database.html index 60134c1275..71d2783354 100644 --- a/slides/data-science/relational-vs-non-relational-database.html +++ b/slides/data-science/relational-vs-non-relational-database.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/deep-learning/cnn.html b/slides/deep-learning/cnn.html index 0b81d531b8..4b233e253a 100644 --- a/slides/deep-learning/cnn.html +++ b/slides/deep-learning/cnn.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/deep-learning/gan.html b/slides/deep-learning/gan.html index cd3a80f81c..1ef4017f18 100644 --- a/slides/deep-learning/gan.html +++ b/slides/deep-learning/gan.html @@ -833,279 +833,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/introduction.html b/slides/introduction.html index ddb49529ef..f406e84f44 100644 --- a/slides/introduction.html +++ b/slides/introduction.html @@ -99,7 +99,7 @@ - + @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • @@ -1493,7 +1513,7 @@

    38. Slides

    previous

    -

    37.113. Basic classification: Classify images of clothing

    +

    37.118. Basic classification: Classify images of clothing

    diff --git a/slides/ml-advanced/kernel-method.html b/slides/ml-advanced/kernel-method.html index d327685622..c26f4c5031 100644 --- a/slides/ml-advanced/kernel-method.html +++ b/slides/ml-advanced/kernel-method.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2
    +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/ml-advanced/model-selection.html b/slides/ml-advanced/model-selection.html index d6b1fbf16f..73396775f7 100644 --- a/slides/ml-advanced/model-selection.html +++ b/slides/ml-advanced/model-selection.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/ml-advanced/unsupervised-learning.html b/slides/ml-advanced/unsupervised-learning.html index e2a20d69b9..8a0f4e349d 100644 --- a/slides/ml-advanced/unsupervised-learning.html +++ b/slides/ml-advanced/unsupervised-learning.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/ml-fundamentals/build-an-ml-web-app.html b/slides/ml-fundamentals/build-an-ml-web-app.html index ab5afba957..3af9e8b8a4 100644 --- a/slides/ml-fundamentals/build-an-ml-web-app.html +++ b/slides/ml-fundamentals/build-an-ml-web-app.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/ml-fundamentals/linear-regression.html b/slides/ml-fundamentals/linear-regression.html index 1627bce556..6620e60ef6 100644 --- a/slides/ml-fundamentals/linear-regression.html +++ b/slides/ml-fundamentals/linear-regression.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/ml-fundamentals/logistic-regression-condensed.html b/slides/ml-fundamentals/logistic-regression-condensed.html index fe40a7e605..3251ea1568 100644 --- a/slides/ml-fundamentals/logistic-regression-condensed.html +++ b/slides/ml-fundamentals/logistic-regression-condensed.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/ml-fundamentals/logistic-regression.html b/slides/ml-fundamentals/logistic-regression.html index ba9ee96898..351cdd336f 100644 --- a/slides/ml-fundamentals/logistic-regression.html +++ b/slides/ml-fundamentals/logistic-regression.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/ml-fundamentals/ml-overview.html b/slides/ml-fundamentals/ml-overview.html index fb1d190155..ece51db881 100644 --- a/slides/ml-fundamentals/ml-overview.html +++ b/slides/ml-fundamentals/ml-overview.html @@ -836,279 +836,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/ml-fundamentals/neural-network.html b/slides/ml-fundamentals/neural-network.html index 089553993b..e27dc2c8f0 100644 --- a/slides/ml-fundamentals/neural-network.html +++ b/slides/ml-fundamentals/neural-network.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/python-programming/python-programming-advanced.html b/slides/python-programming/python-programming-advanced.html index de7f3a581f..e1cf24de26 100644 --- a/slides/python-programming/python-programming-advanced.html +++ b/slides/python-programming/python-programming-advanced.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/python-programming/python-programming-basics.html b/slides/python-programming/python-programming-basics.html index 96eb441bfe..d1986cbac2 100644 --- a/slides/python-programming/python-programming-basics.html +++ b/slides/python-programming/python-programming-basics.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing
  • diff --git a/slides/python-programming/python-programming-introduction.html b/slides/python-programming/python-programming-introduction.html index e0cf90c6cd..749b1dc8f5 100644 --- a/slides/python-programming/python-programming-introduction.html +++ b/slides/python-programming/python-programming-introduction.html @@ -834,279 +834,299 @@

    Ocademy Open Machine Learning Book

    37.46. ML linear regression - assignment 2 +
  • + + 37.47. Linear Regression Metrics + +
  • +
  • + + 37.48. Loss Function + +
  • +
  • + + 37.49. Gradient descent + +
  • - 37.47. ML logistic regression - assignment 1 + 37.51. ML logistic regression - assignment 1
  • - 37.48. ML logistic regression - assignment 2 + 37.52. ML logistic regression - assignment 2
  • - 37.49. ML neural network - Assignment 1 + 37.53. ML neural network - Assignment 1
  • - 37.50. Regression tools + 37.54. Regression tools
  • - 37.51. Managing data + 37.55. Managing data
  • - 37.52. Exploring visualizations + 37.56. Exploring visualizations
  • - 37.53. Try a different model + 37.57. Try a different model
  • - 37.54. Create a regression model + 37.58. Create a regression model
  • - 37.55. Linear and polynomial regression + 37.59. Linear and polynomial regression
  • - 37.56. Retrying some regression + 37.60. Retrying some regression
  • - 37.57. Pumpkin varieties and color + 37.61. Pumpkin varieties and color
  • - 37.58. Delicious asian and indian cuisines + 37.62. Delicious asian and indian cuisines
  • - 37.59. Explore classification methods + 37.63. Explore classification methods + +
  • +
  • + + 37.64. Linear Regression Implementation from Scratch
  • - 37.60. Kernel method assignment 1 + 37.65. Kernel method assignment 1
  • - 37.61. Support Vector Machines (SVM) - Intro and SVM for Regression + 37.66. Support Vector Machines (SVM) - Intro and SVM for Regression
  • - 37.62. Support Vector Machines (SVM) - Classification + 37.67. Support Vector Machines (SVM) - Classification
  • - 37.63. Decision Trees - Intro and Regression + 37.68. Decision Trees - Intro and Regression
  • - 37.64. Decision Trees - Classification + 37.69. Decision Trees - Classification
  • - 37.65. Model selection assignment 1 + 37.70. Model selection assignment 1
  • - 37.66. Learning Curve To Identify Overfit & Underfit + 37.71. Learning Curve To Identify Overfit & Underfit
  • - 37.67. Dropout and Batch Normalization + 37.72. Dropout and Batch Normalization
  • - 37.68. Lasso and Ridge Regression + 37.73. Lasso and Ridge Regression
  • - 37.69. Regularized Linear Models + 37.74. Regularized Linear Models
  • - 37.70. Random forests intro and regression + 37.75. Random forests intro and regression
  • - 37.71. Random forests for classification + 37.76. Random forests for classification
  • - 37.72. Beyond random forests: more ensemble models + 37.77. Beyond random forests: more ensemble models
  • - 37.73. Decision trees + 37.78. Decision trees
  • - 37.74. Hyperparameter tuning gradient boosting + 37.79. Hyperparameter tuning gradient boosting
  • - 37.75. Gradient boosting + 37.80. Gradient boosting
  • - 37.76. Boosting with tuning + 37.81. Boosting with tuning
  • - 37.77. Random Forest Classifier with Feature Importance + 37.82. Random Forest Classifier with Feature Importance
  • - 37.79. Data engineering + 37.84. Data engineering
  • - 37.80. Counterintuitive Challenges in ML Debugging + 37.85. Counterintuitive Challenges in ML Debugging
  • - 37.81. Case Study: Debugging in Classification + 37.86. Case Study: Debugging in Classification
  • - 37.82. Case Study: Debugging in Regression + 37.87. Case Study: Debugging in Regression
  • - 37.83. Study the solvers + 37.88. Study the solvers
  • - 37.84. Build classification models + 37.89. Build classification models
  • - 37.85. Build Classification Model + 37.90. Build Classification Model
  • - 37.86. Parameter play + 37.91. Parameter play
  • - 37.87. How to choose cnn architecture mnist + 37.92. How to choose cnn architecture mnist
  • - 37.89. Sign Language Digits Classification with CNN + 37.94. Sign Language Digits Classification with CNN
  • - 37.91. Object Recognition in Images using CNN + 37.96. Object Recognition in Images using CNN
  • - 37.92. Intro to TensorFlow for Deep Learning + 37.97. Intro to TensorFlow for Deep Learning
  • - 37.94. Bitcoin LSTM Model with Tweet Volume and Sentiment + 37.99. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 37.96. Google Stock Price Prediction RNN + 37.101. Google Stock Price Prediction RNN
  • - 37.98. Intro to Autoencoders + 37.103. Intro to Autoencoders
  • - 37.99. Base/Denoising Autoencoder & Dimension Reduction + 37.104. Base/Denoising Autoencoder & Dimension Reduction
  • - 37.100. Fun with Variational Autoencoders + 37.105. Fun with Variational Autoencoders
  • - 37.101. Time Series Forecasting Assignment + 37.106. Time Series Forecasting Assignment
  • - 37.103. Neural Networks for Classification with TensorFlow + 37.108. Neural Networks for Classification with TensorFlow
  • - 37.104. NN Classify 15 Fruits Assignment + 37.109. NN Classify 15 Fruits Assignment
  • - 37.109. DQN On Foreign Exchange Market + 37.114. DQN On Foreign Exchange Market
  • - 37.110. Art by gan + 37.115. Art by gan
  • - 37.112. Generative Adversarial Networks (GANs) + 37.117. Generative Adversarial Networks (GANs)
  • - 37.113. Basic classification: Classify images of clothing + 37.118. Basic classification: Classify images of clothing